aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra')
-rw-r--r--src/share/algebra/browse.daase3044
-rw-r--r--src/share/algebra/category.daase5916
-rw-r--r--src/share/algebra/compress.daase1349
-rw-r--r--src/share/algebra/interp.daase10427
-rw-r--r--src/share/algebra/operation.daase33831
5 files changed, 27305 insertions, 27262 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index f5929d94..c9fd7594 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2264375 . 3462598954)
+(2267227 . 3462993424)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4412 . T) (-4410 . T) (-4409 . T) ((-4417 "*") . T) (-4408 . T) (-4413 . T) (-4407 . T))
+((-4413 . T) (-4411 . T) (-4410 . T) ((-4418 "*") . T) (-4409 . T) (-4414 . T) (-4408 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -1975)
+(-32 R -2111)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))
+((|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4415)))
+((|HasAttribute| |#1| (QUOTE -4416)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,20 +82,20 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -1975 UP UPUP -2689)
+(-40 -2111 UP UPUP -3416)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4408 |has| (-409 |#2|) (-365)) (-4413 |has| (-409 |#2|) (-365)) (-4407 |has| (-409 |#2|) (-365)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2676 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2676 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2676 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2676 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))))
-(-41 R -1975)
+((-4409 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) (-4408 |has| (-410 |#2|) (-365)) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2909 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2909 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2909 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2909 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))))
+(-41 R -2111)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -433) (|devaluate| |#1|)))))
(-42 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -106,31 +106,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-308))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4412 |has| |#1| (-558)) (-4410 . T) (-4409 . T))
-((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558))))
+((-4413 |has| |#1| (-559)) (-4411 . T) (-4410 . T))
+((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4415 . T) (-4416 . T))
-((-2676 (-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|))))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-850))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))))
+((-4416 . T) (-4417 . T))
+((-2909 (-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|))))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))))
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566)))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -1975)
+(-54 |Base| R -2111)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-61 -3534)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-61 -1817)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3534)
+(-62 -1817)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3534)
+(-63 -1817)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3534)
+(-64 -1817)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3534)
+(-65 -1817)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3534)
+(-66 -1817)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3534)
+(-67 -1817)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3534)
+(-68 -1817)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3534)
+(-69 -1817)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3534)
+(-70 -1817)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3534)
+(-71 -1817)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3534)
+(-72 -1817)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3534)
+(-73 -1817)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3534)
+(-74 -1817)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3534)
+(-77 -1817)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -3534)
+(-78 -1817)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3534)
+(-79 -1817)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3534)
+(-80 -1817)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3534)
+(-81 -1817)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3534)
+(-82 -1817)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3534)
+(-83 -1817)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3534)
+(-84 -1817)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3534)
+(-85 -1817)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3534)
+(-86 -1817)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3534)
+(-87 -1817)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3534)
+(-88 -1817)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -3534)
+(-89 -1817)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-365))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4415 . T))
+((-4416 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4415 . T) ((-4417 "*") . T) (-4416 . T) (-4412 . T) (-4410 . T) (-4409 . T) (-4408 . T) (-4413 . T) (-4407 . T) (-4406 . T) (-4405 . T) (-4404 . T) (-4403 . T) (-4411 . T) (-4414 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4402 . T))
+((-4416 . T) ((-4418 "*") . T) (-4417 . T) (-4413 . T) (-4411 . T) (-4410 . T) (-4409 . T) (-4414 . T) (-4408 . T) (-4407 . T) (-4406 . T) (-4405 . T) (-4404 . T) (-4412 . T) (-4415 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4403 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4417 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4418 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4415 . T))
+((-4416 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4416 . T))
+((-4417 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2676 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2909 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1151))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1176)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1100))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1100))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")))
@@ -388,22 +388,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
-(-115 -1975 UP)
+(-115 -2111 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-909))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-116 |#1|) (QUOTE (-1022))) (|HasCategory| (-116 |#1|) (QUOTE (-820))) (-2676 (|HasCategory| (-116 |#1|) (QUOTE (-820))) (|HasCategory| (-116 |#1|) (QUOTE (-850)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-1150))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-547))) (|HasCategory| (-116 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-909)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-910))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-116 |#1|) (QUOTE (-1023))) (|HasCategory| (-116 |#1|) (QUOTE (-821))) (-2909 (|HasCategory| (-116 |#1|) (QUOTE (-821))) (|HasCategory| (-116 |#1|) (QUOTE (-851)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-1151))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -517) (QUOTE (-1176)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-308))) (|HasCategory| (-116 |#1|) (QUOTE (-548))) (|HasCategory| (-116 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-910)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4416)))
+((|HasAttribute| |#1| (QUOTE -4417)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2676 (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099)))) (|HasCategory| (-129) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-129) (QUOTE (-1099))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))))
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1100))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129)))))) (-2909 (-12 (|HasCategory| (-129) (QUOTE (-1100))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-129) (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1100)))) (|HasCategory| (-129) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-129) (QUOTE (-1100))) (|HasCategory| (-129) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-129) (QUOTE (-1100))) (|HasCategory| (-129) (LIST (QUOTE -310) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -466,13 +466,13 @@ NIL
NIL
(-134)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
-(((-4417 "*") . T))
+(((-4418 "*") . T))
NIL
-(-135 |minix| -3910 S T$)
+(-135 |minix| -2189 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -3910 R)
+(-136 |minix| -2189 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -494,8 +494,8 @@ NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4415 . T) (-4405 . T) (-4416 . T))
-((-2676 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+((-4416 . T) (-4406 . T) (-4417 . T))
+((-2909 (-12 (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-370))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -510,7 +510,7 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-146 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -518,9 +518,9 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-148 -1975 UP UPUP)
+(-148 -2111 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
@@ -531,14 +531,14 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasAttribute| |#1| (QUOTE -4415)))
+((|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasAttribute| |#1| (QUOTE -4416)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-152 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4410 . T) (-4409 . T) (-4412 . T))
+((-4411 . T) (-4410 . T) (-4413 . T))
NIL
(-153)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -1975)
+(-158 R -2111)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1200))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4411)) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))))
+((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1201))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasAttribute| |#2| (QUOTE -4415)) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4408 -2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4411 |has| |#1| (-6 -4411)) (-4414 |has| |#1| (-6 -4414)) (-1561 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 -2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4415 |has| |#1| (-6 -4415)) (-2938 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,8 +606,8 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4408 -2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4411 |has| |#1| (-6 -4411)) (-4414 |has| |#1| (-6 -4414)) (-1561 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-828)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1200)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-909))))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1200)))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| |#1| (QUOTE (-1059))) (-12 (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-1200)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasAttribute| |#1| (QUOTE -4411)) (|HasAttribute| |#1| (QUOTE -4414)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-351)))))
+((-4409 -2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4412 |has| |#1| (-6 -4412)) (-4415 |has| |#1| (-6 -4415)) (-2938 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-370)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-829)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-1201)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-910))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-910))))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| |#1| (QUOTE (-1060))) (-12 (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-1201)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4415)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176))))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-351)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -618,7 +618,7 @@ NIL
NIL
(-172)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-173)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -626,7 +626,7 @@ NIL
NIL
(-174 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4417 "*") . T) (-4408 . T) (-4413 . T) (-4407 . T) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") . T) (-4409 . T) (-4414 . T) (-4408 . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-175)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -643,7 +643,7 @@ NIL
(-178 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-952 |#2|) (LIST (QUOTE -886) (|devaluate| |#1|))))
+((|HasCategory| (-953 |#2|) (LIST (QUOTE -887) (|devaluate| |#1|))))
(-179 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
@@ -680,7 +680,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-188 R -1975)
+(-188 R -2111)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -788,23 +788,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,start,end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-215 -1975 UP UPUP R)
+(-215 -2111 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-216 -1975 FP)
+(-216 -2111 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-217)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2676 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2909 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1151))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1176)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145)))))
(-218)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-219 R -1975)
+(-219 R -2111)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -818,19 +818,19 @@ NIL
NIL
(-222 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-223 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-224 R -1975)
+(-224 R -2111)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-225)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1551 . T) (-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-2927 . T) (-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-226)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -838,23 +838,23 @@ NIL
NIL
(-227 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4417 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4418 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
(-228 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-229 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4416 . T))
+((-4417 . T))
NIL
(-230 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))))
+((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-233))))
(-231 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x, deriv, n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x, deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-232 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -862,36 +862,36 @@ NIL
NIL
(-233)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x, n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-234 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4415)))
+((|HasAttribute| |#1| (QUOTE -4416)))
(-235 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4416 . T))
+((-4417 . T))
NIL
(-236)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-237 S -3910 R)
+(-237 S -2189 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasAttribute| |#3| (QUOTE -4412)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099))))
-(-238 -3910 R)
+((|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasAttribute| |#3| (QUOTE -4413)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-1100))))
+(-238 -2189 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4409 |has| |#2| (-1049)) (-4410 |has| |#2| (-1049)) (-4412 |has| |#2| (-6 -4412)) ((-4417 "*") |has| |#2| (-172)) (-4415 . T))
+((-4410 |has| |#2| (-1050)) (-4411 |has| |#2| (-1050)) (-4413 |has| |#2| (-6 -4413)) ((-4418 "*") |has| |#2| (-172)) (-4416 . T))
NIL
-(-239 -3910 A B)
+(-239 -2189 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-240 -3910 R)
+(-240 -2189 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4409 |has| |#2| (-1049)) (-4410 |has| |#2| (-1049)) (-4412 |has| |#2| (-6 -4412)) ((-4417 "*") |has| |#2| (-172)) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2676 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2676 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+((-4410 |has| |#2| (-1050)) (-4411 |has| |#2| (-1050)) (-4413 |has| |#2| (-6 -4413)) ((-4418 "*") |has| |#2| (-172)) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2909 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-233))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasCategory| |#2| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-2909 (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
(-241)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -902,7 +902,7 @@ NIL
NIL
(-243)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4408 . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-244 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -910,16 +910,16 @@ NIL
NIL
(-245 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
(-246 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-247 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4417 "*") |has| |#2| (-172)) (-4408 |has| |#2| (-558)) (-4413 |has| |#2| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4418 "*") |has| |#2| (-172)) (-4409 |has| |#2| (-559)) (-4414 |has| |#2| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-910))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-248)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -934,23 +934,23 @@ NIL
NIL
(-251 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4412 -2676 (-3144 (|has| |#4| (-1049)) (|has| |#4| (-233))) (-3144 (|has| |#4| (-1049)) (|has| |#4| (-900 (-1175)))) (|has| |#4| (-6 -4412)) (-3144 (|has| |#4| (-1049)) (|has| |#4| (-639 (-566))))) (-4409 |has| |#4| (-1049)) (-4410 |has| |#4| (-1049)) ((-4417 "*") |has| |#4| (-172)) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2676 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2676 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-793))) (-2676 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-848)))) (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (QUOTE (-726))) (-2676 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-726)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-848)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099))))) (-2676 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-726))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-848))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-2676 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (|HasCategory| |#4| (QUOTE (-726))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2676 (|HasCategory| |#4| (QUOTE (-1049))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (QUOTE (-1099)))) (-2676 (|HasAttribute| |#4| (QUOTE -4412)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1049)))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#4| (QUOTE (-1049))) (|HasCategory| |#4| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))))
+((-4413 -2909 (-1410 (|has| |#4| (-1050)) (|has| |#4| (-233))) (-1410 (|has| |#4| (-1050)) (|has| |#4| (-901 (-1176)))) (|has| |#4| (-6 -4413)) (-1410 (|has| |#4| (-1050)) (|has| |#4| (-640 (-567))))) (-4410 |has| |#4| (-1050)) (-4411 |has| |#4| (-1050)) ((-4418 "*") |has| |#4| (-172)) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176)))))) (|HasCategory| |#4| (QUOTE (-365))) (-2909 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-1050)))) (-2909 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-365)))) (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-794))) (-2909 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (QUOTE (-849)))) (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (QUOTE (-727))) (-2909 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1050)))) (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-365)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-370)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-727)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-794)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-849)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1050)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1100))))) (-2909 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1050))) (-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-727))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-794))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-849))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (-2909 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (|HasCategory| |#4| (QUOTE (-727))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176)))))) (-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567))))) (-2909 (|HasCategory| |#4| (QUOTE (-1050))) (-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (QUOTE (-1100)))) (-2909 (|HasAttribute| |#4| (QUOTE -4413)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1050)))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#4| (QUOTE (-1050))) (|HasCategory| |#4| (LIST (QUOTE -901) (QUOTE (-1176)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))))
(-252 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4412 -2676 (-3144 (|has| |#3| (-1049)) (|has| |#3| (-233))) (-3144 (|has| |#3| (-1049)) (|has| |#3| (-900 (-1175)))) (|has| |#3| (-6 -4412)) (-3144 (|has| |#3| (-1049)) (|has| |#3| (-639 (-566))))) (-4409 |has| |#3| (-1049)) (-4410 |has| |#3| (-1049)) ((-4417 "*") |has| |#3| (-172)) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2676 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2676 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2676 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2676 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2676 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2676 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-726))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2676 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-2676 (|HasAttribute| |#3| (QUOTE -4412)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
+((-4413 -2909 (-1410 (|has| |#3| (-1050)) (|has| |#3| (-233))) (-1410 (|has| |#3| (-1050)) (|has| |#3| (-901 (-1176)))) (|has| |#3| (-6 -4413)) (-1410 (|has| |#3| (-1050)) (|has| |#3| (-640 (-567))))) (-4410 |has| |#3| (-1050)) (-4411 |has| |#3| (-1050)) ((-4418 "*") |has| |#3| (-172)) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))))) (|HasCategory| |#3| (QUOTE (-365))) (-2909 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2909 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2909 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2909 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1100))))) (-2909 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2909 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-727))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-2909 (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1100)))) (-2909 (|HasAttribute| |#3| (QUOTE -4413)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
(-253 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-233))))
(-254 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
NIL
(-255 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
(-256)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,g,h),a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,a..b,c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,a..b,c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,curve(f,g,h),a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,g,h),a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,g,h),a..b,c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d)} draws the graph of the parametric surface \\spad{f(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g,h),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t), z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,g),a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,g),a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -990,8 +990,8 @@ NIL
NIL
(-265 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-266 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v, n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1036,11 +1036,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-277 R -1975)
+(-277 R -2111)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-278 R -1975)
+(-278 R -2111)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1059,10 +1059,10 @@ NIL
(-282 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))))
+((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1100))))
(-283 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4416 . T))
+((-4417 . T))
NIL
(-284 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1083,18 +1083,18 @@ NIL
(-288 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4416)))
+((|HasAttribute| |#1| (QUOTE -4417)))
(-289 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-290 S R |Mod| -4270 -3848 |exactQuo|)
+(-290 S R |Mod| -2362 -3768 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-291)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4408 . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-292)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Identifier|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{setProperty!(n,p,v,e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1110,21 +1110,21 @@ NIL
NIL
(-295 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4412 -2676 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4409 |has| |#1| (-1049)) (-4410 |has| |#1| (-1049)))
-((|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726)))) (|HasCategory| |#1| (QUOTE (-475))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2676 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-303))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-475)))) (-2676 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726)))) (-2676 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-726))))
+((-4413 -2909 (|has| |#1| (-1050)) (|has| |#1| (-476))) (-4410 |has| |#1| (-1050)) (-4411 |has| |#1| (-1050)))
+((|HasCategory| |#1| (QUOTE (-365))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727)))) (|HasCategory| |#1| (QUOTE (-476))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-1100)))) (-2909 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-303))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-476)))) (-2909 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727)))) (-2909 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-727))))
(-296 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
(-297)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-298 -1975 S)
+(-298 -2111 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-299 E -1975)
+(-299 E -2111)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
@@ -1139,7 +1139,7 @@ NIL
(-302 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1049))))
+((|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1050))))
(-303)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1162,7 +1162,7 @@ NIL
NIL
(-308)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-309 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1172,7 +1172,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-311 -1975)
+(-311 -2111)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1186,8 +1186,8 @@ NIL
NIL
(-314 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-1022))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (-2676 (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-820))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-850)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-1150))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-547))) (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145)))) (-2676 (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3| |#4|) (QUOTE (-909))) (|HasCategory| $ (QUOTE (-145))))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-910))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-1023))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (-2909 (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-821))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-851)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-1151))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -517) (QUOTE (-1176)) (LIST (QUOTE -1252) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -310) (LIST (QUOTE -1252) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (LIST (QUOTE -287) (LIST (QUOTE -1252) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1252) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-308))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-548))) (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-851))) (-12 (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-910))) (|HasCategory| $ (QUOTE (-145)))) (-2909 (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1252 |#1| |#2| |#3| |#4|) (QUOTE (-910))) (|HasCategory| $ (QUOTE (-145))))))
(-315 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1198,9 +1198,9 @@ NIL
NIL
(-317 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4412 -2676 (-3144 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-12 (|has| |#1| (-558)) (-2676 (-3144 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (|has| |#1| (-1049)) (|has| |#1| (-475)))) (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) ((-4417 "*") |has| |#1| (-558)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-558)) (-4407 |has| |#1| (-558)))
-((-2676 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (QUOTE (-21))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1111)))) (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049)))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2676 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2676 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1111)))) (-2676 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))))) (-2676 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#1| (QUOTE (-1049)))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1111))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-318 R -1975)
+((-4413 -2909 (-1410 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (-12 (|has| |#1| (-559)) (-2909 (-1410 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (|has| |#1| (-1050)) (|has| |#1| (-476)))) (|has| |#1| (-1050)) (|has| |#1| (-476))) (-4411 |has| |#1| (-172)) (-4410 |has| |#1| (-172)) ((-4418 "*") |has| |#1| (-559)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-559)) (-4408 |has| |#1| (-559)))
+((-2909 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (-2909 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (QUOTE (-21))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050)))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1112)))) (-2909 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2909 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1112)))) (-2909 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))))) (-2909 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#1| (QUOTE (-1050)))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567)))))
+(-318 R -2111)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
@@ -1210,8 +1210,8 @@ NIL
NIL
(-320 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))))
(-321 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1222,8 +1222,8 @@ NIL
NIL
(-323 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4410 . T) (-4409 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-792))))
+((-4411 . T) (-4410 . T))
+((|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-793))))
(-324 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1231,26 +1231,26 @@ NIL
(-325 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-771) (QUOTE (-792))))
+((|HasCategory| (-772) (QUOTE (-793))))
(-326 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))))
+((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))))
(-327 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-328 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-329 S -1975)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-329 S -2111)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))))
-(-330 -1975)
+(-330 -2111)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-331)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1272,54 +1272,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-336 S -1975 UP UPUP R)
+(-336 S -2111 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-337 -1975 UP UPUP R)
+(-337 -2111 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-338 -1975 UP UPUP R)
+(-338 -2111 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-339 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))))
(-340 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-341 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566)))))
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-381)))) (|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567)))))
(-342 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-343 S -1975 UP UPUP)
+(-343 S -2111 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-365))))
-(-344 -1975 UP UPUP)
+(-344 -2111 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4408 |has| (-409 |#2|) (-365)) (-4413 |has| (-409 |#2|) (-365)) (-4407 |has| (-409 |#2|) (-365)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) (-4408 |has| (-410 |#2|) (-365)) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-345 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| (-911 |#1|) (QUOTE (-145))) (|HasCategory| (-911 |#1|) (QUOTE (-370)))) (|HasCategory| (-911 |#1|) (QUOTE (-147))) (|HasCategory| (-911 |#1|) (QUOTE (-370))) (|HasCategory| (-911 |#1|) (QUOTE (-145))))
(-346 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-347 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-348 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1334,33 +1334,33 @@ NIL
NIL
(-351)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-352 R UP -1975)
+(-352 R UP -2111)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-353 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| (-911 |#1|) (QUOTE (-145))) (|HasCategory| (-911 |#1|) (QUOTE (-370)))) (|HasCategory| (-911 |#1|) (QUOTE (-147))) (|HasCategory| (-911 |#1|) (QUOTE (-370))) (|HasCategory| (-911 |#1|) (QUOTE (-145))))
(-354 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-355 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-356 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| (-910 |#1|) (QUOTE (-145))) (|HasCategory| (-910 |#1|) (QUOTE (-370)))) (|HasCategory| (-910 |#1|) (QUOTE (-147))) (|HasCategory| (-910 |#1|) (QUOTE (-370))) (|HasCategory| (-910 |#1|) (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| (-911 |#1|) (QUOTE (-145))) (|HasCategory| (-911 |#1|) (QUOTE (-370)))) (|HasCategory| (-911 |#1|) (QUOTE (-147))) (|HasCategory| (-911 |#1|) (QUOTE (-370))) (|HasCategory| (-911 |#1|) (QUOTE (-145))))
(-357 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
-(-358 -1975 GF)
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+(-358 -2111 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1368,21 +1368,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-360 -1975 FP FPP)
+(-360 -2111 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-361 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-145))))
(-362 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-363 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4412 . T))
+((-4413 . T))
NIL
(-364 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1390,7 +1390,7 @@ NIL
NIL
(-365)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-366 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1403,10 +1403,10 @@ NIL
(-368 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-558))))
+((|HasCategory| |#2| (QUOTE (-559))))
(-369 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4412 |has| |#1| (-558)) (-4410 . T) (-4409 . T))
+((-4413 |has| |#1| (-559)) (-4411 . T) (-4410 . T))
NIL
(-370)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1418,7 +1418,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-365))))
(-372 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-373 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1427,14 +1427,14 @@ NIL
(-374 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))))
+((|HasAttribute| |#1| (QUOTE -4417)) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1100))))
(-375 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4415 . T))
+((-4416 . T))
NIL
(-376 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4410 . T) (-4409 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4411 . T) (-4410 . T))
NIL
(-377 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1443,10 +1443,10 @@ NIL
(-378 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))))
+((|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))))
(-379 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4412 . T))
+((-4413 . T))
NIL
(-380 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1454,7 +1454,7 @@ NIL
NIL
(-381)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4398 . T) (-4406 . T) (-1551 . T) (-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4399 . T) (-4407 . T) (-2927 . T) (-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
(-382 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1462,11 +1462,11 @@ NIL
NIL
(-383 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-384 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
NIL
(-385)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1478,3631 +1478,3635 @@ NIL
NIL
(-387 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-388 S)
+((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
+NIL
+NIL
+(-389 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-850))))
-(-389)
+((|HasCategory| |#1| (QUOTE (-851))))
+(-390)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-390)
+(-391)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
NIL
NIL
-(-391)
+(-392)
((|constructor| (NIL "This category provides an interface to names in the file system.")) (|new| (($ (|String|) (|String|) (|String|)) "\\spad{new(d,pref,e)} constructs the name of a new writable file with \\spad{d} as its directory,{} \\spad{pref} as a prefix of its name and \\spad{e} as its extension. When \\spad{d} or \\spad{t} is the empty string,{} a default is used. An error occurs if a new file cannot be written in the given directory.")) (|writable?| (((|Boolean|) $) "\\spad{writable?(f)} tests if the named file be opened for writing. The named file need not already exist.")) (|readable?| (((|Boolean|) $) "\\spad{readable?(f)} tests if the named file exist and can it be opened for reading.")) (|exists?| (((|Boolean|) $) "\\spad{exists?(f)} tests if the file exists in the file system.")) (|extension| (((|String|) $) "\\spad{extension(f)} returns the type part of the file name.")) (|name| (((|String|) $) "\\spad{name(f)} returns the name part of the file name.")) (|directory| (((|String|) $) "\\spad{directory(f)} returns the directory part of the file name.")) (|filename| (($ (|String|) (|String|) (|String|)) "\\spad{filename(d,n,e)} creates a file name with \\spad{d} as its directory,{} \\spad{n} as its name and \\spad{e} as its extension. This is a portable way to create file names. When \\spad{d} or \\spad{t} is the empty string,{} a default is used.")))
NIL
NIL
-(-392 |n| |class| R)
+(-393 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-393)
+(-394)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-394 -1975 UP UPUP R)
+(-395 -2111 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
-(-395 S)
+(-396 S)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat1} provides a utility coercion for changing to SCRIPT formula format anything that has a coercion to the standard output format.")) (|coerce| (((|ScriptFormulaFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from an expression \\spad{s} of domain \\spad{S} to SCRIPT formula format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to SCRIPT formula format.")))
NIL
NIL
-(-396)
+(-397)
((|constructor| (NIL "\\spadtype{ScriptFormulaFormat} provides a coercion from \\spadtype{OutputForm} to IBM SCRIPT/VS Mathematical Formula Format. The basic SCRIPT formula format object consists of three parts: a prologue,{} a formula part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{formula} and \\spadfun{epilogue} extract these parts,{} respectively. The central parts of the expression go into the formula part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \":df.\" and \":edf.\" so that the formula section will be printed in display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a formatted object \\spad{t} to \\spad{strings}.")) (|setFormula!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setFormula!(t,strings)} sets the formula section of a formatted object \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a formatted object \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a formatted object \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setFormula!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|formula| (((|List| (|String|)) $) "\\spad{formula(t)} extracts the formula section of a formatted object \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a formatted object \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to SCRIPT formula format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-397)
+(-398)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
NIL
NIL
-(-398)
+(-399)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-399)
+(-400)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}")))
NIL
NIL
-(-400 -3534 |returnType| -3098 |symbols|)
+(-401 -1817 |returnType| -3914 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-401 -1975 UP)
+(-402 -2111 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f, n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
-(-402 R)
+(-403 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
NIL
NIL
-(-403 S)
+(-404 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
NIL
NIL
-(-404)
+(-405)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-405 S)
+(-406 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4398)) (|HasAttribute| |#1| (QUOTE -4406)))
-(-406)
+((|HasAttribute| |#1| (QUOTE -4399)) (|HasAttribute| |#1| (QUOTE -4407)))
+(-407)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1551 . T) (-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-2927 . T) (-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-407 R S)
+(-408 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
-(-408 A B)
+(-409 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
-(-409 S)
+(-410 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4402 -12 (|has| |#1| (-6 -4413)) (|has| |#1| (-454)) (|has| |#1| (-6 -4402))) (-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-820))) (-2676 (|HasCategory| |#1| (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-850)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-828)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-547))) (-12 (|HasAttribute| |#1| (QUOTE -4413)) (|HasAttribute| |#1| (QUOTE -4402)) (|HasCategory| |#1| (QUOTE (-454)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-410 S R UP)
+((-4403 -12 (|has| |#1| (-6 -4414)) (|has| |#1| (-455)) (|has| |#1| (-6 -4403))) (-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-821))) (-2909 (|HasCategory| |#1| (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-851)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1151))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-829)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-548))) (-12 (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4403)) (|HasCategory| |#1| (QUOTE (-455)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-411 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
-(-411 R UP)
+(-412 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-412 A S)
+(-413 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-413 S)
+((|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))
+(-414 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-414 R1 F1 U1 A1 R2 F2 U2 A2)
+(-415 R1 F1 U1 A1 R2 F2 U2 A2)
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-415 R -1975 UP A)
+(-416 R -2111 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-416 R -1975 UP A |ibasis|)
+(-417 R -2111 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -1038) (|devaluate| |#2|))))
-(-417 AR R AS S)
+((|HasCategory| |#4| (LIST (QUOTE -1039) (|devaluate| |#2|))))
+(-418 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
-(-418 S R)
+(-419 S R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#2| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-365))))
-(-419 R)
+(-420 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4412 |has| |#1| (-558)) (-4410 . T) (-4409 . T))
+((-4413 |has| |#1| (-559)) (-4411 . T) (-4410 . T))
NIL
-(-420 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1219))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-1219)))) (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-454))))
(-421 R)
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -310) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -287) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1220))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-1220)))) (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-455))))
+(-422 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}.")))
NIL
NIL
-(-422 R FE |x| |cen|)
+(-423 R FE |x| |cen|)
((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
-(-423 R A S B)
+(-424 R A S B)
((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
-(-424 R FE |Expon| UPS TRAN |x|)
+(-425 R FE |Expon| UPS TRAN |x|)
((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
-(-425 S A R B)
+(-426 S A R B)
((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-426 A S)
+(-427 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-370))))
-(-427 S)
+((|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370))))
+(-428 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4415 . T) (-4405 . T) (-4416 . T))
+((-4416 . T) (-4406 . T) (-4417 . T))
NIL
-(-428 R -1975)
+(-429 R -2111)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
-(-429 R E)
+(-430 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4402 -12 (|has| |#1| (-6 -4402)) (|has| |#2| (-6 -4402))) (-4409 . T) (-4410 . T) (-4412 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4402)) (|HasAttribute| |#2| (QUOTE -4402))))
-(-430 R -1975)
+((-4403 -12 (|has| |#1| (-6 -4403)) (|has| |#2| (-6 -4403))) (-4410 . T) (-4411 . T) (-4413 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4403)) (|HasAttribute| |#2| (QUOTE -4403))))
+(-431 R -2111)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-431 S R)
+(-432 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-1111))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))))
-(-432 R)
+((|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))))
+(-433 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4412 -2676 (|has| |#1| (-1049)) (|has| |#1| (-475))) (-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) ((-4417 "*") |has| |#1| (-558)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-558)) (-4407 |has| |#1| (-558)))
+((-4413 -2909 (|has| |#1| (-1050)) (|has| |#1| (-476))) (-4411 |has| |#1| (-172)) (-4410 |has| |#1| (-172)) ((-4418 "*") |has| |#1| (-559)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-559)) (-4408 |has| |#1| (-559)))
NIL
-(-433 R -1975)
+(-434 R -2111)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-434 R -1975)
+(-435 R -2111)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-435 R -1975)
+(-436 R -2111)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
-(-436)
+(-437)
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-437 R -1975 UP)
+(-438 R -2111 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-48)))))
-(-438)
+((|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-48)))))
+(-439)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
NIL
-(-439)
+(-440)
((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type")))
NIL
NIL
-(-440 |f|)
+(-441 |f|)
((|constructor| (NIL "This domain implements named functions")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-441)
+(-442)
((|constructor| (NIL "This is the datatype for exported function descriptor. A function descriptor consists of: (1) a signature; (2) a predicate; and (3) a slot into the scope object.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of function described by \\spad{x}.")))
NIL
NIL
-(-442)
+(-443)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
NIL
NIL
-(-443)
+(-444)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-444 UP)
+(-445 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-445 R UP -1975)
+(-446 R UP -2111)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
-(-446 R UP)
+(-447 R UP)
((|constructor| (NIL "\\spadtype{GaloisGroupPolynomialUtilities} provides useful functions for univariate polynomials which should be added to \\spadtype{UnivariatePolynomialCategory} or to \\spadtype{Factored} (July 1994).")) (|factorsOfDegree| (((|List| |#2|) (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorsOfDegree(d,f)} returns the factors of degree \\spad{d} of the factored polynomial \\spad{f}.")) (|factorOfDegree| ((|#2| (|PositiveInteger|) (|Factored| |#2|)) "\\spad{factorOfDegree(d,f)} returns a factor of degree \\spad{d} of the factored polynomial \\spad{f}. Such a factor shall exist.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|Factored| |#2|)) "\\spad{degreePartition(f)} returns the degree partition (\\spadignore{i.e.} the multiset of the degrees of the irreducible factors) of the polynomial \\spad{f}.")) (|shiftRoots| ((|#2| |#2| |#1|) "\\spad{shiftRoots(p,c)} returns the polynomial which has for roots \\spad{c} added to the roots of \\spad{p}.")) (|scaleRoots| ((|#2| |#2| |#1|) "\\spad{scaleRoots(p,c)} returns the polynomial which has \\spad{c} times the roots of \\spad{p}.")) (|reverse| ((|#2| |#2|) "\\spad{reverse(p)} returns the reverse polynomial of \\spad{p}.")) (|unvectorise| ((|#2| (|Vector| |#1|)) "\\spad{unvectorise(v)} returns the polynomial which has for coefficients the entries of \\spad{v} in the increasing order.")) (|monic?| (((|Boolean|) |#2|) "\\spad{monic?(p)} tests if \\spad{p} is monic (\\spadignore{i.e.} leading coefficient equal to 1).")))
NIL
NIL
-(-447 R)
+(-448 R)
((|constructor| (NIL "\\spadtype{GaloisGroupUtilities} provides several useful functions.")) (|safetyMargin| (((|NonNegativeInteger|)) "\\spad{safetyMargin()} returns the number of low weight digits we do not trust in the floating point representation (used by \\spadfun{safeCeiling}).") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{safetyMargin(n)} sets to \\spad{n} the number of low weight digits we do not trust in the floating point representation and returns the previous value (for use by \\spadfun{safeCeiling}).")) (|safeFloor| (((|Integer|) |#1|) "\\spad{safeFloor(x)} returns the integer which is lower or equal to the largest integer which has the same floating point number representation.")) (|safeCeiling| (((|Integer|) |#1|) "\\spad{safeCeiling(x)} returns the integer which is greater than any integer with the same floating point number representation.")) (|fillPascalTriangle| (((|Void|)) "\\spad{fillPascalTriangle()} fills the stored table.")) (|sizePascalTriangle| (((|NonNegativeInteger|)) "\\spad{sizePascalTriangle()} returns the number of entries currently stored in the table.")) (|rangePascalTriangle| (((|NonNegativeInteger|)) "\\spad{rangePascalTriangle()} returns the maximal number of lines stored.") (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rangePascalTriangle(n)} sets the maximal number of lines which are stored and returns the previous value.")) (|pascalTriangle| ((|#1| (|NonNegativeInteger|) (|Integer|)) "\\spad{pascalTriangle(n,r)} returns the binomial coefficient \\spad{C(n,r)=n!/(r! (n-r)!)} and stores it in a table to prevent recomputation.")))
NIL
-((|HasCategory| |#1| (QUOTE (-406))))
-(-448)
+((|HasCategory| |#1| (QUOTE (-407))))
+(-449)
((|constructor| (NIL "Package for the factorization of complex or gaussian integers.")) (|prime?| (((|Boolean|) (|Complex| (|Integer|))) "\\spad{prime?(zi)} tests if the complex integer \\spad{zi} is prime.")) (|sumSquares| (((|List| (|Integer|)) (|Integer|)) "\\spad{sumSquares(p)} construct \\spad{a} and \\spad{b} such that \\spad{a**2+b**2} is equal to the integer prime \\spad{p},{} and otherwise returns an error. It will succeed if the prime number \\spad{p} is 2 or congruent to 1 mod 4.")) (|factor| (((|Factored| (|Complex| (|Integer|))) (|Complex| (|Integer|))) "\\spad{factor(zi)} produces the complete factorization of the complex integer \\spad{zi}.")))
NIL
NIL
-(-449 |Dom| |Expon| |VarSet| |Dpol|)
+(-450 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{EuclideanGroebnerBasisPackage} computes groebner bases for polynomial ideals over euclidean domains. The basic computation provides a distinguished set of generators for these ideals. This basis allows an easy test for membership: the operation \\spadfun{euclideanNormalForm} returns zero on ideal members. The string \"info\" and \"redcrit\" can be given as additional args to provide incremental information during the computation. If \"info\" is given,{} \\indented{1}{a computational summary is given for each \\spad{s}-polynomial. If \"redcrit\"} is given,{} the reduced critical pairs are printed. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|euclideanGroebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{euclideanGroebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. If the second argument is \\spad{\"info\"},{} a summary is given of the critical pairs. If the third argument is \"redcrit\",{} critical pairs are printed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{euclideanGroebner(lp, infoflag)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}. During computation,{} additional information is printed out if infoflag is given as either \"info\" (for summary information) or \"redcrit\" (for reduced critical pairs)") (((|List| |#4|) (|List| |#4|)) "\\spad{euclideanGroebner(lp)} computes a groebner basis for a polynomial ideal over a euclidean domain generated by the list of polynomials \\spad{lp}.")) (|euclideanNormalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{euclideanNormalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")))
NIL
NIL
-(-450 |Dom| |Expon| |VarSet| |Dpol|)
+(-451 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
-(-451 |Dom| |Expon| |VarSet| |Dpol|)
+(-452 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Keywords: Description This package provides low level tools for Groebner basis computations")) (|virtualDegree| (((|NonNegativeInteger|) |#4|) "\\spad{virtualDegree }\\undocumented")) (|makeCrit| (((|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)) |#4| (|NonNegativeInteger|)) "\\spad{makeCrit }\\undocumented")) (|critpOrder| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critpOrder }\\undocumented")) (|prinb| (((|Void|) (|Integer|)) "\\spad{prinb }\\undocumented")) (|prinpolINFO| (((|Void|) (|List| |#4|)) "\\spad{prinpolINFO }\\undocumented")) (|fprindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{fprindINFO }\\undocumented")) (|prindINFO| (((|Integer|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (|Integer|) (|Integer|) (|Integer|)) "\\spad{prindINFO }\\undocumented")) (|prinshINFO| (((|Void|) |#4|) "\\spad{prinshINFO }\\undocumented")) (|lepol| (((|Integer|) |#4|) "\\spad{lepol }\\undocumented")) (|minGbasis| (((|List| |#4|) (|List| |#4|)) "\\spad{minGbasis }\\undocumented")) (|updatD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{updatD }\\undocumented")) (|sPol| ((|#4| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{sPol }\\undocumented")) (|updatF| (((|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|))) |#4| (|NonNegativeInteger|) (|List| (|Record| (|:| |totdeg| (|NonNegativeInteger|)) (|:| |pol| |#4|)))) "\\spad{updatF }\\undocumented")) (|hMonic| ((|#4| |#4|) "\\spad{hMonic }\\undocumented")) (|redPo| (((|Record| (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (|List| |#4|)) "\\spad{redPo }\\undocumented")) (|critMonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMonD1 }\\undocumented")) (|critMTonD1| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critMTonD1 }\\undocumented")) (|critBonD| (((|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (|List| (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) "\\spad{critBonD }\\undocumented")) (|critB| (((|Boolean|) |#2| |#2| |#2| |#2|) "\\spad{critB }\\undocumented")) (|critM| (((|Boolean|) |#2| |#2|) "\\spad{critM }\\undocumented")) (|critT| (((|Boolean|) (|Record| (|:| |lcmfij| |#2|) (|:| |totdeg| (|NonNegativeInteger|)) (|:| |poli| |#4|) (|:| |polj| |#4|))) "\\spad{critT }\\undocumented")) (|gbasis| (((|List| |#4|) (|List| |#4|) (|Integer|) (|Integer|)) "\\spad{gbasis }\\undocumented")) (|redPol| ((|#4| |#4| (|List| |#4|)) "\\spad{redPol }\\undocumented")) (|credPol| ((|#4| |#4| (|List| |#4|)) "\\spad{credPol }\\undocumented")))
NIL
NIL
-(-452 |Dom| |Expon| |VarSet| |Dpol|)
+(-453 |Dom| |Expon| |VarSet| |Dpol|)
((|constructor| (NIL "\\spadtype{GroebnerPackage} computes groebner bases for polynomial ideals. The basic computation provides a distinguished set of generators for polynomial ideals over fields. This basis allows an easy test for membership: the operation \\spadfun{normalForm} returns zero on ideal members. When the provided coefficient domain,{} Dom,{} is not a field,{} the result is equivalent to considering the extended ideal with \\spadtype{Fraction(Dom)} as coefficients,{} but considerably more efficient since all calculations are performed in Dom. Additional argument \"info\" and \"redcrit\" can be given to provide incremental information during computation. Argument \"info\" produces a computational summary for each \\spad{s}-polynomial. Argument \"redcrit\" prints out the reduced critical pairs. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|normalForm| ((|#4| |#4| (|List| |#4|)) "\\spad{normalForm(poly,gb)} reduces the polynomial \\spad{poly} modulo the precomputed groebner basis \\spad{gb} giving a canonical representative of the residue class.")) (|groebner| (((|List| |#4|) (|List| |#4|) (|String|) (|String|)) "\\spad{groebner(lp, \"info\", \"redcrit\")} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp},{} displaying both a summary of the critical pairs considered (\\spad{\"info\"}) and the result of reducing each critical pair (\"redcrit\"). If the second or third arguments have any other string value,{} the indicated information is suppressed.") (((|List| |#4|) (|List| |#4|) (|String|)) "\\spad{groebner(lp, infoflag)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}. Argument infoflag is used to get information on the computation. If infoflag is \"info\",{} then summary information is displayed for each \\spad{s}-polynomial generated. If infoflag is \"redcrit\",{} the reduced critical pairs are displayed. If infoflag is any other string,{} no information is printed during computation.") (((|List| |#4|) (|List| |#4|)) "\\spad{groebner(lp)} computes a groebner basis for a polynomial ideal generated by the list of polynomials \\spad{lp}.")))
NIL
((|HasCategory| |#1| (QUOTE (-365))))
-(-453 S)
+(-454 S)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-454)
+(-455)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-455 R |n| |ls| |gamma|)
+(-456 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4412 |has| (-409 (-952 |#1|)) (-558)) (-4410 . T) (-4409 . T))
-((|HasCategory| (-409 (-952 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-409 (-952 |#1|)) (QUOTE (-558))))
-(-456 |vl| R E)
+((-4413 |has| (-410 (-953 |#1|)) (-559)) (-4411 . T) (-4410 . T))
+((|HasCategory| (-410 (-953 |#1|)) (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-410 (-953 |#1|)) (QUOTE (-559))))
+(-457 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4417 "*") |has| |#2| (-172)) (-4408 |has| |#2| (-558)) (-4413 |has| |#2| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-457 R BP)
+(((-4418 "*") |has| |#2| (-172)) (-4409 |has| |#2| (-559)) (-4414 |has| |#2| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-910))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-458 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
NIL
-(-458 OV E S R P)
+(-459 OV E S R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| |#5|) |#5|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-459 E OV R P)
+(-460 E OV R P)
((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
NIL
NIL
-(-460 R)
+(-461 R)
((|constructor| (NIL "\\indented{1}{Description} This package provides operations for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" the finite \"berlekamp's\" factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{factor(p)} returns the factorisation of \\spad{p}")))
NIL
NIL
-(-461 R FE)
+(-462 R FE)
((|constructor| (NIL "\\spadtype{GenerateUnivariatePowerSeries} provides functions that create power series from explicit formulas for their \\spad{n}th coefficient.")) (|series| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{series(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{series(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{series(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{series(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{series(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")) (|puiseux| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(a(n),n,x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(a(n),n,x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Fraction| (|Integer|))) (|Equation| |#2|) (|UniversalSegment| (|Fraction| (|Integer|))) (|Fraction| (|Integer|))) "\\spad{puiseux(n +-> a(n),x = a,r0..,r)} returns \\spad{sum(n = r0,r0 + r,r0 + 2*r..., a(n) * (x - a)**n)}; \\spad{puiseux(n +-> a(n),x = a,r0..r1,r)} returns \\spad{sum(n = r0 + k*r while n <= r1, a(n) * (x - a)**n)}.")) (|laurent| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(a(n),n,x=a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(a(n),n,x=a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|Integer|))) "\\spad{laurent(n +-> a(n),x = a,n0..)} returns \\spad{sum(n = n0..,a(n) * (x - a)**n)}; \\spad{laurent(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..n1,a(n) * (x - a)**n)}.")) (|taylor| (((|Any|) |#2| (|Symbol|) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(a(n),n,x = a,n0..)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}; \\spad{taylor(a(n),n,x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|) (|UniversalSegment| (|NonNegativeInteger|))) "\\spad{taylor(n +-> a(n),x = a,n0..)} returns \\spad{sum(n=n0..,a(n)*(x-a)**n)}; \\spad{taylor(n +-> a(n),x = a,n0..n1)} returns \\spad{sum(n = n0..,a(n)*(x-a)**n)}.") (((|Any|) |#2| (|Symbol|) (|Equation| |#2|)) "\\spad{taylor(a(n),n,x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.") (((|Any|) (|Mapping| |#2| (|Integer|)) (|Equation| |#2|)) "\\spad{taylor(n +-> a(n),x = a)} returns \\spad{sum(n = 0..,a(n)*(x-a)**n)}.")))
NIL
NIL
-(-462 RP TP)
+(-463 RP TP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni} General Hensel Lifting Used for Factorization of bivariate polynomials over a finite field.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(u,pol)} computes the symmetric reduction of \\spad{u} mod \\spad{pol}")) (|completeHensel| (((|List| |#2|) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{completeHensel(pol,lfact,prime,bound)} lifts \\spad{lfact},{} the factorization mod \\spad{prime} of \\spad{pol},{} to the factorization mod prime**k>bound. Factors are recombined on the way.")) (|HenselLift| (((|Record| (|:| |plist| (|List| |#2|)) (|:| |modulo| |#1|)) |#2| (|List| |#2|) |#1| (|PositiveInteger|)) "\\spad{HenselLift(pol,lfacts,prime,bound)} lifts \\spad{lfacts},{} that are the factors of \\spad{pol} mod \\spad{prime},{} to factors of \\spad{pol} mod prime**k > \\spad{bound}. No recombining is done .")))
NIL
NIL
-(-463 |vl| R IS E |ff| P)
+(-464 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-464 E V R P Q)
+(-465 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
-(-465 R E |VarSet| P)
+(-466 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-466 S R E)
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-467 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-467 R E)
+(-468 R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
-(-468)
+(-469)
((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
-(-469)
+(-470)
((|constructor| (NIL "TwoDimensionalPlotSettings sets global flags and constants for 2-dimensional plotting.")) (|screenResolution| (((|Integer|) (|Integer|)) "\\spad{screenResolution(n)} sets the screen resolution to \\spad{n}.") (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution \\spad{n}.")) (|minPoints| (((|Integer|) (|Integer|)) "\\spad{minPoints()} sets the minimum number of points in a plot.") (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot.")) (|maxPoints| (((|Integer|) (|Integer|)) "\\spad{maxPoints()} sets the maximum number of points in a plot.") (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot.")) (|adaptive| (((|Boolean|) (|Boolean|)) "\\spad{adaptive(true)} turns adaptive plotting on; \\spad{adaptive(false)} turns adaptive plotting off.") (((|Boolean|)) "\\spad{adaptive()} determines whether plotting will be done adaptively.")) (|drawToScale| (((|Boolean|) (|Boolean|)) "\\spad{drawToScale(true)} causes plots to be drawn to scale. \\spad{drawToScale(false)} causes plots to be drawn so that they fill up the viewport window. The default setting is \\spad{false}.") (((|Boolean|)) "\\spad{drawToScale()} determines whether or not plots are to be drawn to scale.")) (|clipPointsDefault| (((|Boolean|) (|Boolean|)) "\\spad{clipPointsDefault(true)} turns on automatic clipping; \\spad{clipPointsDefault(false)} turns off automatic clipping. The default setting is \\spad{true}.") (((|Boolean|)) "\\spad{clipPointsDefault()} determines whether or not automatic clipping is to be done.")))
NIL
NIL
-(-470)
+(-471)
((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
-(-471 S R E)
+(-472 S R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-472 R E)
+(-473 R E)
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-473 |lv| -1975 R)
+(-474 |lv| -2111 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
-(-474 S)
+(-475 S)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
NIL
NIL
-(-475)
+(-476)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-476 |Coef| |var| |cen|)
+(-477 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
-(-477 |Key| |Entry| |Tbl| |dent|)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))))
+(-478 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))))
-(-478 R E V P)
+((-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))))
+(-479 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-479)
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-480)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-480)
+(-481)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
NIL
NIL
-(-481 |Key| |Entry| |hashfn|)
+(-482 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-482)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-483)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
-(-483 |vl| R)
+(-484 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4417 "*") |has| |#2| (-172)) (-4408 |has| |#2| (-558)) (-4413 |has| |#2| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-484 -3910 S)
+(((-4418 "*") |has| |#2| (-172)) (-4409 |has| |#2| (-559)) (-4414 |has| |#2| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-910))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-485 -2189 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4409 |has| |#2| (-1049)) (-4410 |has| |#2| (-1049)) (-4412 |has| |#2| (-6 -4412)) ((-4417 "*") |has| |#2| (-172)) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2676 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2676 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
-(-485)
+((-4410 |has| |#2| (-1050)) (-4411 |has| |#2| (-1050)) (-4413 |has| |#2| (-6 -4413)) ((-4418 "*") |has| |#2| (-172)) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2909 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-233))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasCategory| |#2| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-2909 (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+(-486)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
-(-486 S)
+(-487 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-487 -1975 UP UPUP R)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-488 -2111 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
-(-488 BP)
+(-489 BP)
((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
NIL
NIL
-(-489)
+(-490)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2676 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
-(-490 A S)
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2909 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1151))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1176)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145)))))
+(-491 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4415)) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-491 S)
+((|HasAttribute| |#1| (QUOTE -4416)) (|HasAttribute| |#1| (QUOTE -4417)) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-492 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
NIL
-(-492 S)
+(-493 S)
((|constructor| (NIL "A is homotopic to \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain \\spad{B},{} and nay element of domain \\spad{B} can be automatically converted into an A.")))
NIL
NIL
-(-493)
+(-494)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
NIL
NIL
-(-494 S)
+(-495 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-495)
+(-496)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-496 -1975 UP |AlExt| |AlPol|)
+(-497 -2111 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
-(-497)
+(-498)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| $ (QUOTE (-1049))) (|HasCategory| $ (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-498 S |mn|)
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| $ (QUOTE (-1050))) (|HasCategory| $ (LIST (QUOTE -1039) (QUOTE (-567)))))
+(-499 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-499 R |mnRow| |mnCol|)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-500 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-500 K R UP)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-501 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-501 R UP -1975)
+(-502 R UP -2111)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
-(-502 |mn|)
+(-503 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-112) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-112) (QUOTE (-1099))) (|HasCategory| (-112) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-503 K R UP L)
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| (-112) (QUOTE (-1100))) (|HasCategory| (-112) (LIST (QUOTE -310) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-112) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-112) (QUOTE (-1100))) (|HasCategory| (-112) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-504 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
NIL
-(-504)
+(-505)
((|constructor| (NIL "\\indented{1}{This domain implements a container of information} about the AXIOM library")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts \\axiom{\\spad{s}} into an \\axiom{IndexCard}. Warning: if \\axiom{\\spad{s}} is not of the right format then an error will occur when using it.")) (|fullDisplay| (((|Void|) $) "\\spad{fullDisplay(ic)} prints all of the information contained in \\axiom{\\spad{ic}}.")) (|display| (((|Void|) $) "\\spad{display(ic)} prints a summary of the information contained in \\axiom{\\spad{ic}}.")) (|elt| (((|String|) $ (|Symbol|)) "\\spad{elt(ic,s)} selects a particular field from \\axiom{\\spad{ic}}. Valid fields are \\axiom{name,{} nargs,{} exposed,{} type,{} abbreviation,{} kind,{} origin,{} params,{} condition,{} doc}.")))
NIL
NIL
-(-505 R Q A B)
+(-506 R Q A B)
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-506 -1975 |Expon| |VarSet| |DPoly|)
+(-507 -2111 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-1175)))))
-(-507 |vl| |nv|)
+((|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-1176)))))
+(-508 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-508)
+(-509)
((|constructor| (NIL "This domain represents identifer AST. This domain differs from Symbol in that it does not support any form of scripting. A value of this domain is a plain old identifier. \\blankline")) (|gensym| (($) "\\spad{gensym()} returns a new identifier,{} different from any other identifier in the running system")))
NIL
NIL
-(-509 A S)
+(-510 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-510 A S)
+(-511 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
-(-511 A S)
+(-512 A S)
((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
-(-512 A S)
+(-513 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-513 A S)
+(-514 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
-(-514 A S)
+(-515 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-515 S A B)
+(-516 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-516 A B)
+(-517 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-517 S E |un|)
+(-518 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-792))))
-(-518 S |mn|)
+((|HasCategory| |#2| (QUOTE (-793))))
+(-519 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-519)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-520)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
-(-520 |p| |n|)
+(-521 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| (-583 |#1|) (QUOTE (-145))) (|HasCategory| (-583 |#1|) (QUOTE (-370)))) (|HasCategory| (-583 |#1|) (QUOTE (-147))) (|HasCategory| (-583 |#1|) (QUOTE (-370))) (|HasCategory| (-583 |#1|) (QUOTE (-145))))
-(-521 R |mnRow| |mnCol| |Row| |Col|)
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| (-584 |#1|) (QUOTE (-145))) (|HasCategory| (-584 |#1|) (QUOTE (-370)))) (|HasCategory| (-584 |#1|) (QUOTE (-147))) (|HasCategory| (-584 |#1|) (QUOTE (-370))) (|HasCategory| (-584 |#1|) (QUOTE (-145))))
+(-522 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-522 S |mn|)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-523 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-523 R |Row| |Col| M)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-524 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4416)))
-(-524 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4417)))
+(-525 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4416)))
-(-525 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4417)))
+(-526 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4417 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-526)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4418 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-527)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
NIL
-(-527)
+(-528)
((|constructor| (NIL "This domain represents the `in' iterator syntax.")) (|sequence| (((|SpadAst|) $) "\\spad{sequence(i)} returns the sequence expression being iterated over by `i'.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the `in' iterator 'i'")))
NIL
NIL
-(-528 S)
+(-529 S)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-529)
+(-530)
((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
-(-530 GF)
+(-531 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-531)
+(-532)
((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-532 R)
+(-533 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-533 |Varset|)
+(-534 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-534 K -1975 |Par|)
+(-535 K -2111 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-535)
+(-536)
NIL
NIL
NIL
-(-536)
+(-537)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-537 R)
+(-538 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-538)
+(-539)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-539 |Coef| UTS)
+(-540 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-540 K -1975 |Par|)
+(-541 K -2111 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-541 R BP |pMod| |nextMod|)
+(-542 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-542 OV E R P)
+(-543 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-543 K UP |Coef| UTS)
+(-544 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-544 |Coef| UTS)
+(-545 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-545 R UP)
+(-546 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,r,i,f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,i,f)} \\undocumented")))
NIL
NIL
-(-546 S)
+(-547 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-547)
+(-548)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4413 . T) (-4414 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4414 . T) (-4415 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-548)
+(-549)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
NIL
NIL
-(-549)
+(-550)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 32 bits.")))
NIL
NIL
-(-550)
+(-551)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits.")))
NIL
NIL
-(-551)
+(-552)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits.")))
NIL
NIL
-(-552 |Key| |Entry| |addDom|)
+(-553 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-553 R -1975)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-554 R -2111)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-554 R0 -1975 UP UPUP R)
+(-555 R0 -2111 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-555)
+(-556)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-556 R)
+(-557 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1551 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-2927 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-557 S)
+(-558 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-558)
+(-559)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-559 R -1975)
+(-560 R -2111)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-560 I)
+(-561 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-561)
+(-562)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-562 R -1975 L)
+(-563 R -2111 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|))))
-(-563)
+((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|))))
+(-564)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-564 -1975 UP UPUP R)
+(-565 -2111 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-565 -1975 UP)
+(-566 -2111 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-566)
+(-567)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4397 . T) (-4403 . T) (-4407 . T) (-4402 . T) (-4413 . T) (-4414 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4398 . T) (-4404 . T) (-4408 . T) (-4403 . T) (-4414 . T) (-4415 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-567)
+(-568)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-568 R -1975 L)
+(-569 R -2111 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -656) (|devaluate| |#2|))))
-(-569 R -1975)
+((|HasCategory| |#3| (LIST (QUOTE -657) (|devaluate| |#2|))))
+(-570 R -2111)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-629)))))
-(-570 -1975 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1139)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-630)))))
+(-571 -2111 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-571 S)
+(-572 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-572 -1975)
+(-573 -2111)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-573 R)
+(-574 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1551 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-2927 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-574)
+(-575)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-575 R -1975)
+(-576 R -2111)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-629))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-558))))
-(-576 -1975 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-285))) (|HasCategory| |#2| (QUOTE (-630))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176))))) (-12 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-285)))) (|HasCategory| |#1| (QUOTE (-559))))
+(-577 -2111 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-577 R -1975)
+(-578 R -2111)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-578)
+(-579)
((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations.")))
NIL
NIL
-(-579)
+(-580)
((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-580)
+(-581)
((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input.")))
NIL
NIL
-(-581)
+(-582)
((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
-(-582 |p| |unBalanced?|)
+(-583 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-583 |p|)
+(-584 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370))))
-(-584)
+(-585)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-585 R -1975)
+(-586 R -2111)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-586 E -1975)
+(-587 E -2111)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-587 -1975)
+(-588 -2111)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4410 . T) (-4409 . T))
-((|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-1175)))))
-(-588 I)
+((-4411 . T) (-4410 . T))
+((|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-1176)))))
+(-589 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-589 GF)
+(-590 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-590 R)
+(-591 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-147))))
-(-591)
+(-592)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-592 R E V P TS)
+(-593 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-593)
+(-594)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'.")))
NIL
NIL
-(-594 |mn|)
+(-595 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2676 (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
-(-595 E V R P)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (-2909 (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1100)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+(-596 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-596 |Coef|)
-((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))) (|HasCategory| (-566) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))))
(-597 |Coef|)
+((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))) (|HasCategory| (-567) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))))
+(-598 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4410 |has| |#1| (-558)) (-4409 |has| |#1| (-558)) ((-4417 "*") |has| |#1| (-558)) (-4408 |has| |#1| (-558)) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-558))))
-(-598 A B)
+((-4411 |has| |#1| (-559)) (-4410 |has| |#1| (-559)) ((-4418 "*") |has| |#1| (-559)) (-4409 |has| |#1| (-559)) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-559))))
+(-599 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-599 A B C)
+(-600 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-600 R -1975 FG)
+(-601 R -2111 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-601 S)
+(-602 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-602 R |mn|)
+(-603 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-603 S |Index| |Entry|)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-604 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-850))) (|HasAttribute| |#1| (QUOTE -4415)) (|HasCategory| |#3| (QUOTE (-1099))))
-(-604 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4417)) (|HasCategory| |#2| (QUOTE (-851))) (|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#3| (QUOTE (-1100))))
+(-605 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
NIL
-(-605)
+(-606)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")))
NIL
NIL
-(-606)
+(-607)
((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
-(-607 R A)
+(-608 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4412 -2676 (-3144 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4410 . T) (-4409 . T))
-((-2676 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
-(-608 |Entry|)
+((-4413 -2909 (-1410 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4411 . T) (-4410 . T))
+((-2909 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
+(-609 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-609 S |Key| |Entry|)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (QUOTE (-1158))) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| (-1158) (QUOTE (-851))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-610 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-610 |Key| |Entry|)
+(-611 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4416 . T))
+((-4417 . T))
NIL
-(-611 R S)
+(-612 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-612 S)
+(-613 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))))
-(-613 S)
+((|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))))
+(-614 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-614 S)
+(-615 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-615 -1975 UP)
+(-616 -2111 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-616 S)
+(-617 S)
((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-617)
+(-618)
((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
-(-618 S)
+(-619 S)
((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
NIL
NIL
-(-619 S R)
+(-620 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-620 R)
+(-621 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-621 A R S)
+(-622 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-848))))
-(-622 R -1975)
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-849))))
+(-623 R -2111)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
-(-623 R UP)
+(-624 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4410 . T) (-4409 . T) ((-4417 "*") . T) (-4408 . T) (-4412 . T))
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-624 R E V P TS ST)
+((-4411 . T) (-4410 . T) ((-4418 "*") . T) (-4409 . T) (-4413 . T))
+((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))
+(-625 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-625 OV E Z P)
+(-626 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-626)
+(-627)
((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'.")))
NIL
NIL
-(-627 |VarSet| R |Order|)
+(-628 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-628 R |ls|)
+(-629 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-629)
+(-630)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-630 R -1975)
+(-631 R -2111)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-631 |lv| -1975)
+(-632 |lv| -2111)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-632)
+(-633)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2484) (QUOTE (-52))))))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1157) (QUOTE (-850))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (QUOTE (-1099))))
-(-633 S R)
+((-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (QUOTE (-1158))) (LIST (QUOTE |:|) (QUOTE -3859) (QUOTE (-52))))))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-52) (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1100))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1100))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-1158) (QUOTE (-851))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (QUOTE (-1100))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (QUOTE (-1100))))
+(-634 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-365))))
-(-634 R)
+(-635 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4410 . T) (-4409 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4411 . T) (-4410 . T))
NIL
-(-635 R A)
+(-636 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4412 -2676 (-3144 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))) (-4410 . T) (-4409 . T))
-((-2676 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -419) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
-(-636 R FE)
+((-4413 -2909 (-1410 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))) (-4411 . T) (-4410 . T))
+((-2909 (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -420) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -369) (|devaluate| |#1|))))
+(-637 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}.")))
NIL
NIL
-(-637 R)
+(-638 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-638 S R)
+(-639 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3129 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365))))
-(-639 R)
+((-1397 (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-365))))
+(-640 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-640 R)
+(-641 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-linear set if it is stable by dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{Module} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet,{} RightLinearSet.")))
NIL
NIL
-(-641 A B)
+(-642 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-642 A B)
+(-643 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
-(-643 A B C)
+(-644 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-644 S)
+(-645 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-828))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-645 T$)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-829))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-646 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
-(-646 R)
+(-647 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{LeftModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-647 S)
+(-648 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-648 R)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-649 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-649 S E |un|)
+(-650 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-650 A S)
+(-651 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4416)))
-(-651 S)
+((|HasAttribute| |#1| (QUOTE -4417)))
+(-652 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-652 R -1975 L)
+(-653 R -2111 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-653 A)
+(-654 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365))))
-(-654 A M)
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
+(-655 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365))))
-(-655 S A)
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
+(-656 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-365))))
-(-656 A)
+(-657 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-657 -1975 UP)
+(-658 -2111 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-658 A -2431)
+(-659 A -2813)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365))))
-(-659 A L)
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
+(-660 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-660 S)
+(-661 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-661)
+(-662)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-662 M R S)
+(-663 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4410 . T) (-4409 . T))
-((|HasCategory| |#1| (QUOTE (-791))))
-(-663 R)
+((-4411 . T) (-4410 . T))
+((|HasCategory| |#1| (QUOTE (-792))))
+(-664 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-664 |VarSet| R)
+(-665 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4410 . T) (-4409 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4411 . T) (-4410 . T))
((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-172))))
-(-665 A S)
+(-666 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-666 S)
+(-667 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-667 -1975)
+(-668 -2111)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-668 -1975 |Row| |Col| M)
+(-669 -2111 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-669 R E OV P)
+(-670 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-670 |n| R)
+(-671 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4412 . T) (-4415 . T) (-4409 . T) (-4410 . T))
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4417 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))) (-2676 (|HasAttribute| |#2| (QUOTE (-4417 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
-(-671)
+((-4413 . T) (-4416 . T) (-4410 . T) (-4411 . T))
+((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4418 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))) (-2909 (|HasAttribute| |#2| (QUOTE (-4418 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+(-672)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
-(-672 |VarSet|)
+(-673 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-673 A S)
+(-674 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-674 S)
+(-675 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-675 R)
+(-676 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-676)
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-677)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-677 |VarSet|)
+(-678 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-678 A)
+(-679 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-679 A C)
+(-680 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument.")))
NIL
NIL
-(-680 A B C)
+(-681 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-681)
+(-682)
((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
-(-682 A)
+(-683 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-683 A C)
+(-684 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-684 A B C)
+(-685 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}")))
NIL
NIL
-(-685 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-686 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-686 S R |Row| |Col|)
+(-687 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4417 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-558))))
-(-687 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4418 "*"))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-559))))
+(-688 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
-(-688 R |Row| |Col| M)
+(-689 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))))
-(-689 R)
-((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4415 . T) (-4416 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-558))) (|HasAttribute| |#1| (QUOTE (-4417 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))))
(-690 R)
+((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
+((-4416 . T) (-4417 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-559))) (|HasAttribute| |#1| (QUOTE (-4418 "*"))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-691 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-691 T$)
+(-692 T$)
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-692 S -1975 FLAF FLAS)
+(-693 S -2111 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-693 R Q)
+(-694 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-694)
+(-695)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4408 . T) (-4413 |has| (-699) (-365)) (-4407 |has| (-699) (-365)) (-1561 . T) (-4414 |has| (-699) (-6 -4414)) (-4411 |has| (-699) (-6 -4411)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-699) (QUOTE (-147))) (|HasCategory| (-699) (QUOTE (-145))) (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-370))) (|HasCategory| (-699) (QUOTE (-365))) (-2676 (|HasCategory| (-699) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-233))) (-2676 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (LIST (QUOTE -287) (QUOTE (-699)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -310) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-699)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-699) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-699) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (-2676 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-351)))) (|HasCategory| (-699) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-699) (QUOTE (-1022))) (|HasCategory| (-699) (QUOTE (-1200))) (-12 (|HasCategory| (-699) (QUOTE (-1002))) (|HasCategory| (-699) (QUOTE (-1200)))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-365))) (|HasCategory| (-699) (QUOTE (-909)))) (-12 (|HasCategory| (-699) (QUOTE (-351))) (|HasCategory| (-699) (QUOTE (-909))))) (|HasCategory| (-699) (QUOTE (-547))) (-12 (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-1200)))) (|HasCategory| (-699) (QUOTE (-1059))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-558)))) (-12 (|HasCategory| (-699) (QUOTE (-233))) (|HasCategory| (-699) (QUOTE (-365)))) (-12 (|HasCategory| (-699) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-699) (QUOTE (-365)))) (|HasCategory| (-699) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-699) (QUOTE (-558))) (|HasAttribute| (-699) (QUOTE -4414)) (|HasAttribute| (-699) (QUOTE -4411)) (-12 (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-145)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-699) (QUOTE (-308))) (|HasCategory| (-699) (QUOTE (-909)))) (|HasCategory| (-699) (QUOTE (-351)))))
-(-695 S)
+((-4409 . T) (-4414 |has| (-700) (-365)) (-4408 |has| (-700) (-365)) (-2938 . T) (-4415 |has| (-700) (-6 -4415)) (-4412 |has| (-700) (-6 -4412)) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-700) (QUOTE (-147))) (|HasCategory| (-700) (QUOTE (-145))) (|HasCategory| (-700) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-370))) (|HasCategory| (-700) (QUOTE (-365))) (-2909 (|HasCategory| (-700) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-700) (QUOTE (-233))) (-2909 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (LIST (QUOTE -287) (QUOTE (-700)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -310) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -517) (QUOTE (-1176)) (QUOTE (-700)))) (|HasCategory| (-700) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-700) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-700) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (-2909 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-351)))) (|HasCategory| (-700) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-700) (QUOTE (-1023))) (|HasCategory| (-700) (QUOTE (-1201))) (-12 (|HasCategory| (-700) (QUOTE (-1003))) (|HasCategory| (-700) (QUOTE (-1201)))) (-2909 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-365))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-910))))) (-2909 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (-12 (|HasCategory| (-700) (QUOTE (-365))) (|HasCategory| (-700) (QUOTE (-910)))) (-12 (|HasCategory| (-700) (QUOTE (-351))) (|HasCategory| (-700) (QUOTE (-910))))) (|HasCategory| (-700) (QUOTE (-548))) (-12 (|HasCategory| (-700) (QUOTE (-1060))) (|HasCategory| (-700) (QUOTE (-1201)))) (|HasCategory| (-700) (QUOTE (-1060))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910))) (-2909 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-365)))) (-2909 (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-559)))) (-12 (|HasCategory| (-700) (QUOTE (-233))) (|HasCategory| (-700) (QUOTE (-365)))) (-12 (|HasCategory| (-700) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-700) (QUOTE (-365)))) (|HasCategory| (-700) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-700) (QUOTE (-559))) (|HasAttribute| (-700) (QUOTE -4415)) (|HasAttribute| (-700) (QUOTE -4412)) (-12 (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-145)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-700) (QUOTE (-308))) (|HasCategory| (-700) (QUOTE (-910)))) (|HasCategory| (-700) (QUOTE (-351)))))
+(-696 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4416 . T))
+((-4417 . T))
NIL
-(-696 U)
+(-697 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-697)
+(-698)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-698 OV E -1975 PG)
+(-699 OV E -2111 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-699)
+(-700)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1551 . T) (-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-2927 . T) (-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-700 R)
+(-701 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-701)
+(-702)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4414 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4415 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-702 S D1 D2 I)
+(-703 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-703 S)
+(-704 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-704 S)
+(-705 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-705 S T$)
+(-706 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-706 S -1316 I)
+(-707 S -2692 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-707 E OV R P)
+(-708 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented")))
NIL
NIL
-(-708 R)
+(-709 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-709 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-710 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-710)
+(-711)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-711 R |Mod| -4270 -3848 |exactQuo|)
+(-712 R |Mod| -2362 -3768 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-712 R |Rep|)
+(-713 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4411 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-713 IS E |ff|)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4412 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1151))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-714 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-714 R M)
+(-715 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) (-4412 . T))
+((-4411 |has| |#1| (-172)) (-4410 |has| |#1| (-172)) (-4413 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-715 R |Mod| -4270 -3848 |exactQuo|)
+(-716 R |Mod| -2362 -3768 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-716 S R)
+(-717 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-717 R)
+(-718 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-718 -1975)
+(-719 -2111)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-719 S)
+(-720 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-720)
+(-721)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-721 S)
+(-722 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-722)
+(-723)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-723 S R UP)
+(-724 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
((|HasCategory| |#2| (QUOTE (-351))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))))
-(-724 R UP)
+(-725 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4408 |has| |#1| (-365)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-725 S)
+(-726 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-726)
+(-727)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-727 -1975 UP)
+(-728 -2111 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-728 |VarSet| E1 E2 R S PR PS)
+(-729 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-729 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-730 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-730 E OV R PPR)
+(-731 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-731 |vl| R)
+(-732 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4417 "*") |has| |#2| (-172)) (-4408 |has| |#2| (-558)) (-4413 |has| |#2| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-864 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-732 E OV R PRF)
+(((-4418 "*") |has| |#2| (-172)) (-4409 |has| |#2| (-559)) (-4414 |has| |#2| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-910))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-865 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-733 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-733 E OV R P)
+(-734 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-734 R S M)
+(-735 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-735 R M)
+(-736 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) (-4412 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-850))))
-(-736 S)
+((-4411 |has| |#1| (-172)) (-4410 |has| |#1| (-172)) (-4413 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-851))))
+(-737 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4405 . T) (-4416 . T))
+((-4406 . T) (-4417 . T))
NIL
-(-737 S)
+(-738 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4415 . T) (-4405 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-738)
+((-4416 . T) (-4406 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-739)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-739 S)
+(-740 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-740 |Coef| |Var|)
+(-741 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4410 . T) (-4409 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4411 . T) (-4410 . T) (-4413 . T))
NIL
-(-741 OV E R P)
+(-742 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-742 E OV R P)
+(-743 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-743 S R)
+(-744 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-744 R)
+(-745 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-745)
+(-746)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-746)
+(-747)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-747)
+(-748)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-748)
+(-749)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-749)
+(-750)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-750)
+(-751)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-751)
+(-752)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-752)
+(-753)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-753)
+(-754)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-754)
+(-755)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-755)
+(-756)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-756)
+(-757)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-757)
+(-758)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-758)
+(-759)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-759)
+(-760)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-760 S)
+(-761 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-761)
+(-762)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-762 S)
+(-763 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-763)
+(-764)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-764 |Par|)
+(-765 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-765 -1975)
+(-766 -2111)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-766 P -1975)
+(-767 P -2111)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-767 T$)
+(-768 T$)
NIL
NIL
NIL
-(-768 UP -1975)
+(-769 UP -2111)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-769)
+(-770)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-770 R)
+(-771 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-771)
+(-772)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4417 "*") . T))
+(((-4418 "*") . T))
NIL
-(-772 R -1975)
+(-773 R -2111)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-773 S)
+(-774 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-774)
+(-775)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-775 R |PolR| E |PolE|)
+(-776 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-776 R E V P TS)
+(-777 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-777 -1975 |ExtF| |SUEx| |ExtP| |n|)
+(-778 -2111 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-778 BP E OV R P)
+(-779 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-779 |Par|)
+(-780 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-780 R |VarSet|)
+(-781 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-3129 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-3129 (|HasCategory| |#1| (QUOTE (-547)))) (-3129 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-3129 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-566))))) (-3129 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-1175)))) (-3129 (|HasCategory| |#1| (LIST (QUOTE -992) (QUOTE (-566))))))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-781 R S)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176)))) (-1397 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176)))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176)))) (-1397 (|HasCategory| |#1| (QUOTE (-548)))) (-1397 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176)))) (-1397 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-567))))) (-1397 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-1176)))) (-1397 (|HasCategory| |#1| (LIST (QUOTE -993) (QUOTE (-567))))))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-782 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-782 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4411 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-783 R)
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4412 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1151))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-784 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
-(-784 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
+(-785 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-785 S)
+(-786 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-1049))) (|HasCategory| |#1| (QUOTE (-172))))
-(-786)
+((-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-1050))) (|HasCategory| |#1| (QUOTE (-172))))
+(-787)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-787)
+(-788)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-788)
+(-789)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-789)
+(-790)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-790 |Curve|)
+(-791 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-791)
+(-792)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-792)
+(-793)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-793)
+(-794)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-794)
+(-795)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-795)
+(-796)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-796 S R)
+(-797 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-370))))
-(-797 R)
+((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-370))))
+(-798 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-798 -2676 R OS S)
+(-799 -2909 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-799 R)
+(-800 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2676 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-999 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-800)
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (-2909 (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1000 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))))
+(-801)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-801 R -1975 L)
+(-802 R -2111 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-802 R -1975)
+(-803 R -2111)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-803)
+(-804)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-804 R -1975)
+(-805 R -2111)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-805)
+(-806)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-806 -1975 UP UPUP R)
+(-807 -2111 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-807 -1975 UP L LQ)
+(-808 -2111 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-808)
+(-809)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-809 -1975 UP L LQ)
+(-810 -2111 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-810 -1975 UP)
+(-811 -2111 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-811 -1975 L UP A LO)
+(-812 -2111 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-812 -1975 UP)
+(-813 -2111 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-813 -1975 LO)
+(-814 -2111 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-814 -1975 LODO)
+(-815 -2111 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-815 -3910 S |f|)
+(-816 -2189 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4409 |has| |#2| (-1049)) (-4410 |has| |#2| (-1049)) (-4412 |has| |#2| (-6 -4412)) ((-4417 "*") |has| |#2| (-172)) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-365))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-793))) (-2676 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848)))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-726))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1049)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (|HasCategory| |#2| (QUOTE (-233))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-848)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-848))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1049)))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2676 (|HasCategory| |#2| (QUOTE (-1049))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-1099)))) (|HasAttribute| |#2| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
-(-816 R)
+((-4410 |has| |#2| (-1050)) (-4411 |has| |#2| (-1050)) (-4413 |has| |#2| (-6 -4413)) ((-4418 "*") |has| |#2| (-172)) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-365))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365)))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-794))) (-2909 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849)))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-727))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1050)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (|HasCategory| |#2| (QUOTE (-233))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasCategory| |#2| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-370)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-849)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-794))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-849))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1050)))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176))))) (-2909 (|HasCategory| |#2| (QUOTE (-1050))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-1100)))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))))
+(-817 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-818 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-817 |Kernels| R |var|)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-819 (-1176)) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-819 (-1176)) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-819 (-1176)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-819 (-1176)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-819 (-1176)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-818 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4417 "*") |has| |#2| (-365)) (-4408 |has| |#2| (-365)) (-4413 |has| |#2| (-365)) (-4407 |has| |#2| (-365)) (-4412 . T) (-4410 . T) (-4409 . T))
+(((-4418 "*") |has| |#2| (-365)) (-4409 |has| |#2| (-365)) (-4414 |has| |#2| (-365)) (-4408 |has| |#2| (-365)) (-4413 . T) (-4411 . T) (-4410 . T))
((|HasCategory| |#2| (QUOTE (-365))))
-(-818 S)
+(-819 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-819 S)
+(-820 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l, r) = [l, 1, r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-820)
+(-821)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-821)
+(-822)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-822)
+(-823)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-823)
+(-824)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-824)
+(-825)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-825)
+(-826)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-826 R)
+(-827 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-827 P R)
+(-828 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233))))
-(-828)
+(-829)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-829)
+(-830)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-830 S)
+(-831 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4415 . T) (-4405 . T) (-4416 . T))
+((-4416 . T) (-4406 . T) (-4417 . T))
NIL
-(-831)
+(-832)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-832 R S)
+(-833 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-833 R)
+(-834 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4412 |has| |#1| (-848)))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2676 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2676 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547))))
-(-834 A S)
+((-4413 |has| |#1| (-849)))
+((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2909 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2909 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548))))
+(-835 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-835 S)
+(-836 S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}.")))
NIL
NIL
-(-836 R)
+(-837 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) (-4412 . T))
+((-4411 |has| |#1| (-172)) (-4410 |has| |#1| (-172)) (-4413 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-837)
+(-838)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-838)
+(-839)
((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
NIL
NIL
-(-839)
+(-840)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-840)
+(-841)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-841)
+(-842)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-842 R S)
+(-843 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-843 R)
+(-844 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4412 |has| |#1| (-848)))
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-21))) (-2676 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-848)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2676 (|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-547))))
-(-844)
+((-4413 |has| |#1| (-849)))
+((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-21))) (-2909 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2909 (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-548))))
+(-845)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-845 -3910 S)
+(-846 -2189 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-846)
+(-847)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-847 S)
+(-848 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-848)
+(-849)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-849 S)
+(-850 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-850)
+(-851)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-851 S R)
+(-852 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))))
-(-852 R)
+((|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))))
+(-853 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-853 R C)
+(-854 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558))))
-(-854 R |sigma| -3560)
+((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559))))
+(-855 R |sigma| -2605)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-365))))
-(-855 |x| R |sigma| -3560)
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-365))))
+(-856 |x| R |sigma| -2605)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-365))))
-(-856 R)
+((-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-365))))
+(-857 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
-(-857)
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
+(-858)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-858)
+(-859)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-859 S)
+(-860 S)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-860)
+(-861)
((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-861)
+(-862)
((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
NIL
NIL
-(-862)
+(-863)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-863)
+(-864)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-864 |VariableList|)
+(-865 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-865)
+(-866)
((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}.")))
NIL
NIL
-(-866 R |vl| |wl| |wtlevel|)
+(-867 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) (-4412 . T))
+((-4411 |has| |#1| (-172)) (-4410 |has| |#1| (-172)) (-4413 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))))
-(-867 R PS UP)
+(-868 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-868 R |x| |pt|)
+(-869 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-869 |p|)
+(-870 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-870 |p|)
+(-871 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-871 |p|)
+(-872 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-870 |#1|) (QUOTE (-909))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-147))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-870 |#1|) (QUOTE (-1022))) (|HasCategory| (-870 |#1|) (QUOTE (-820))) (-2676 (|HasCategory| (-870 |#1|) (QUOTE (-820))) (|HasCategory| (-870 |#1|) (QUOTE (-850)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-1150))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| (-870 |#1|) (QUOTE (-233))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -870) (|devaluate| |#1|)) (LIST (QUOTE -870) (|devaluate| |#1|)))) (|HasCategory| (-870 |#1|) (QUOTE (-308))) (|HasCategory| (-870 |#1|) (QUOTE (-547))) (|HasCategory| (-870 |#1|) (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-870 |#1|) (QUOTE (-909)))) (|HasCategory| (-870 |#1|) (QUOTE (-145)))))
-(-872 |p| PADIC)
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-871 |#1|) (QUOTE (-910))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| (-871 |#1|) (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-147))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-871 |#1|) (QUOTE (-1023))) (|HasCategory| (-871 |#1|) (QUOTE (-821))) (-2909 (|HasCategory| (-871 |#1|) (QUOTE (-821))) (|HasCategory| (-871 |#1|) (QUOTE (-851)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-1151))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| (-871 |#1|) (QUOTE (-233))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -517) (QUOTE (-1176)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -310) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (LIST (QUOTE -287) (LIST (QUOTE -871) (|devaluate| |#1|)) (LIST (QUOTE -871) (|devaluate| |#1|)))) (|HasCategory| (-871 |#1|) (QUOTE (-308))) (|HasCategory| (-871 |#1|) (QUOTE (-548))) (|HasCategory| (-871 |#1|) (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-871 |#1|) (QUOTE (-910)))) (|HasCategory| (-871 |#1|) (QUOTE (-145)))))
+(-873 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (-2676 (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-873 S T$)
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-821))) (-2909 (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1151))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-851))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-874 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))))
-(-874)
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))))
+(-875)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-875)
+(-876)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-876 CF1 CF2)
+(-877 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-877 |ComponentFunction|)
+(-878 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-878 CF1 CF2)
+(-879 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-879 |ComponentFunction|)
+(-880 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-880)
+(-881)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-881 CF1 CF2)
+(-882 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented")))
NIL
NIL
-(-882 |ComponentFunction|)
+(-883 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-883)
+(-884)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,l,n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-884 R)
+(-885 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-885 R S L)
+(-886 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-886 S)
+(-887 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-887 |Base| |Subject| |Pat|)
+(-888 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3129 (|HasCategory| |#2| (QUOTE (-1049)))) (-3129 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#2| (QUOTE (-1049))) (-3129 (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))
-(-888 R A B)
+((-12 (-1397 (|HasCategory| |#2| (QUOTE (-1050)))) (-1397 (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176)))))) (-12 (|HasCategory| |#2| (QUOTE (-1050))) (-1397 (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176)))))
+(-889 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-889 R S)
+(-890 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-890 R -1316)
+(-891 R -2692)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-891 R S)
+(-892 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-892 R)
+(-893 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-893 |VarSet|)
+(-894 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-894 UP R)
+(-895 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented")))
NIL
NIL
-(-895)
+(-896)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-896 UP -1975)
+(-897 UP -2111)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-897)
+(-898)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-898)
+(-899)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-899 A S)
+(-900 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-900 S)
+(-901 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1, n1)..., sn, nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{D(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x, [s1,...,sn], [n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x, s, n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}.") (($ $ |#1|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-901 S)
+(-902 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-902 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-903 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-903 S)
+(-904 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p, el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-904 S)
+(-905 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-905 S)
+(-906 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4412 . T))
-((-2676 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-850))))
-(-906 R E |VarSet| S)
+((-4413 . T))
+((-2909 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-851))))
+(-907 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-907 R S)
+(-908 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-908 S)
+(-909 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-145))))
-(-909)
+(-910)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-910 |p|)
+(-911 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-370))))
-(-911 R0 -1975 UP UPUP R)
+(-912 R0 -2111 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-912 UP UPUP R)
+(-913 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-913 UP UPUP)
+(-914 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-914 R)
+(-915 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-915 R)
+(-916 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-916 E OV R P)
+(-917 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-917)
+(-918)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-918 -1975)
+(-919 -2111)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-919 R)
+(-920 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-920)
+(-921)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-921)
+(-922)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4417 "*") . T))
+(((-4418 "*") . T))
NIL
-(-922 -1975 P)
+(-923 -2111 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
-(-923 |xx| -1975)
+(-924 |xx| -2111)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-924 R |Var| |Expon| GR)
+(-925 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-925 S)
+(-926 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-926)
+(-927)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-927)
+(-928)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}.")))
NIL
NIL
-(-928)
+(-929)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-929 R -1975)
+(-930 R -2111)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-930)
+(-931)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-931 S A B)
+(-932 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-932 S R -1975)
+(-933 S R -2111)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-933 I)
+(-934 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-934 S E)
+(-935 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-935 S R L)
+(-936 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-936 S E V R P)
+(-937 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -886) (|devaluate| |#1|))))
-(-937 R -1975 -1316)
+((|HasCategory| |#3| (LIST (QUOTE -887) (|devaluate| |#1|))))
+(-938 R -2111 -2692)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-938 -1316)
+(-939 -2692)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-939 S R Q)
+(-940 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-940 S)
+(-941 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-941 S R P)
+(-942 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-942)
+(-943)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}.")))
NIL
NIL
-(-943 R)
+(-944 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-944 |lv| R)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-945 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-945 |TheField| |ThePols|)
+(-946 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-848))))
-(-946 R S)
+((|HasCategory| |#1| (QUOTE (-849))))
+(-947 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-947 |x| R)
+(-948 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-948 S R E |VarSet|)
+(-949 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-909))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#4| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))))
-(-949 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-910))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#4| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#4| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))))
+(-950 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
NIL
-(-950 E V R P -1975)
+(-951 E V R P -2111)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-951 E |Vars| R P S)
+(-952 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-952 R)
+(-953 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1175) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-953 E V R P -1975)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1176) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1176) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1176) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1176) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1176) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-954 E V R P -2111)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
-((|HasCategory| |#3| (QUOTE (-454))))
-(-954)
+((|HasCategory| |#3| (QUOTE (-455))))
+(-955)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-955)
+(-956)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-956 R L)
+(-957 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
-(-957 A B)
+(-958 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
-(-958 S)
+(-959 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-959)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-960)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-960 -1975)
+(-961 -2111)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-961 I)
+(-962 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-962)
+(-963)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-963 R E)
+(-964 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4413)))
-(-964 A B)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4414)))
+(-965 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
-((-4412 -12 (|has| |#2| (-475)) (|has| |#1| (-475))))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850))))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-475))) (|HasCategory| |#2| (QUOTE (-475)))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-793))))) (-12 (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-726)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-850)))))
-(-965)
+((-4413 -12 (|has| |#2| (-476)) (|has| |#1| (-476))))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851))))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727))))) (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-370)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-476))) (|HasCategory| |#2| (QUOTE (-476)))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-794))) (|HasCategory| |#2| (QUOTE (-794))))) (-12 (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-727)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-851)))))
+(-966)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-966 T$)
+(-967 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isTerm| (((|Maybe| |#1|) $) "\\spad{isTerm f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term.")))
NIL
NIL
-(-967)
+(-968)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
-(-968 S)
+(-969 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
-(-969 R |polR|)
+(-970 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
-((|HasCategory| |#1| (QUOTE (-454))))
-(-970)
+((|HasCategory| |#1| (QUOTE (-455))))
+(-971)
((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-971)
+(-972)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(li)} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-972 S |Coef| |Expon| |Var|)
+(-973 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-973 |Coef| |Expon| |Var|)
+(-974 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-974)
+(-975)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-975 S R E |VarSet| P)
+(-976 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-558))))
-(-976 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-559))))
+(-977 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4415 . T))
+((-4416 . T))
NIL
-(-977 R E V P)
+(-978 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-454))))
-(-978 K)
+((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-455))))
+(-979 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-979 |VarSet| E RC P)
+(-980 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-980 R)
+(-981 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-981 R1 R2)
+(-982 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented")))
NIL
NIL
-(-982 R)
+(-983 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-983 K)
+(-984 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-984 R E OV PPR)
+(-985 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-985 K R UP -1975)
+(-986 K R UP -2111)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-986 |vl| |nv|)
+(-987 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-987 R |Var| |Expon| |Dpoly|)
+(-988 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-308)))))
-(-988 R E V P TS)
+(-989 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-989)
+(-990)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation.")))
NIL
NIL
-(-990 A B R S)
+(-991 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-991 A S)
+(-992 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-820))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-1150))))
-(-992 S)
+((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-821))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-1151))))
+(-993 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-993 |n| K)
+(-994 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-994)
+(-995)
((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted.")))
NIL
NIL
-(-995 S)
+(-996 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
-(-996 S R)
+(-997 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (QUOTE (-1059))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-291))))
-(-997 R)
+((|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (QUOTE (-1060))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-291))))
+(-998 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4408 |has| |#1| (-291)) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 |has| |#1| (-291)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-998 QR R QS S)
+(-999 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-999 R)
+(-1000 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4408 |has| |#1| (-291)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-1059))) (|HasCategory| |#1| (QUOTE (-547))))
-(-1000 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
+((-4409 |has| |#1| (-291)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-291))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -287) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-1060))) (|HasCategory| |#1| (QUOTE (-548))))
(-1001 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1002 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1002)
+(-1003)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1003 -1975 UP UPUP |radicnd| |n|)
+(-1004 -2111 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4408 |has| (-409 |#2|) (-365)) (-4413 |has| (-409 |#2|) (-365)) (-4407 |has| (-409 |#2|) (-365)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-409 |#2|) (QUOTE (-145))) (|HasCategory| (-409 |#2|) (QUOTE (-147))) (|HasCategory| (-409 |#2|) (QUOTE (-351))) (-2676 (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (|HasCategory| (-409 |#2|) (QUOTE (-365))) (|HasCategory| (-409 |#2|) (QUOTE (-370))) (-2676 (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (QUOTE (-351)))) (-2676 (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-351))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -639) (QUOTE (-566)))) (-2676 (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 |#2|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-409 |#2|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-409 |#2|) (QUOTE (-233))) (|HasCategory| (-409 |#2|) (QUOTE (-365)))))
-(-1004 |bb|)
+((-4409 |has| (-410 |#2|) (-365)) (-4414 |has| (-410 |#2|) (-365)) (-4408 |has| (-410 |#2|) (-365)) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-410 |#2|) (QUOTE (-145))) (|HasCategory| (-410 |#2|) (QUOTE (-147))) (|HasCategory| (-410 |#2|) (QUOTE (-351))) (-2909 (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (|HasCategory| (-410 |#2|) (QUOTE (-365))) (|HasCategory| (-410 |#2|) (QUOTE (-370))) (-2909 (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (QUOTE (-351)))) (-2909 (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-410 |#2|) (QUOTE (-351))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -640) (QUOTE (-567)))) (-2909 (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 |#2|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-12 (|HasCategory| (-410 |#2|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))) (-12 (|HasCategory| (-410 |#2|) (QUOTE (-233))) (|HasCategory| (-410 |#2|) (QUOTE (-365)))))
+(-1005 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-566) (QUOTE (-909))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| (-566) (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-147))) (|HasCategory| (-566) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-1022))) (|HasCategory| (-566) (QUOTE (-820))) (-2676 (|HasCategory| (-566) (QUOTE (-820))) (|HasCategory| (-566) (QUOTE (-850)))) (|HasCategory| (-566) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-1150))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| (-566) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| (-566) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| (-566) (QUOTE (-233))) (|HasCategory| (-566) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| (-566) (LIST (QUOTE -516) (QUOTE (-1175)) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -310) (QUOTE (-566)))) (|HasCategory| (-566) (LIST (QUOTE -287) (QUOTE (-566)) (QUOTE (-566)))) (|HasCategory| (-566) (QUOTE (-308))) (|HasCategory| (-566) (QUOTE (-547))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-566) (LIST (QUOTE -639) (QUOTE (-566)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-566) (QUOTE (-909)))) (|HasCategory| (-566) (QUOTE (-145)))))
-(-1005)
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-567) (QUOTE (-910))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| (-567) (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-147))) (|HasCategory| (-567) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-1023))) (|HasCategory| (-567) (QUOTE (-821))) (-2909 (|HasCategory| (-567) (QUOTE (-821))) (|HasCategory| (-567) (QUOTE (-851)))) (|HasCategory| (-567) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-1151))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| (-567) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| (-567) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| (-567) (QUOTE (-233))) (|HasCategory| (-567) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| (-567) (LIST (QUOTE -517) (QUOTE (-1176)) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -310) (QUOTE (-567)))) (|HasCategory| (-567) (LIST (QUOTE -287) (QUOTE (-567)) (QUOTE (-567)))) (|HasCategory| (-567) (QUOTE (-308))) (|HasCategory| (-567) (QUOTE (-548))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-567) (LIST (QUOTE -640) (QUOTE (-567)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-567) (QUOTE (-910)))) (|HasCategory| (-567) (QUOTE (-145)))))
+(-1006)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-1006)
+(-1007)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-1007 RP)
+(-1008 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-1008 S)
+(-1009 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-1009 A S)
+(-1010 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4416)) (|HasCategory| |#2| (QUOTE (-1099))))
-(-1010 S)
+((|HasAttribute| |#1| (QUOTE -4417)) (|HasCategory| |#2| (QUOTE (-1100))))
+(-1011 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
-(-1011 S)
+(-1012 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-1012)
+(-1013)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4408 . T) (-4413 . T) (-4407 . T) (-4410 . T) (-4409 . T) ((-4417 "*") . T) (-4412 . T))
+((-4409 . T) (-4414 . T) (-4408 . T) (-4411 . T) (-4410 . T) ((-4418 "*") . T) (-4413 . T))
NIL
-(-1013 R -1975)
+(-1014 R -2111)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1014 R -1975)
+(-1015 R -2111)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1015 -1975 UP)
+(-1016 -2111 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1016 -1975 UP)
+(-1017 -2111 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1017 S)
+(-1018 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1018 F1 UP UPUP R F2)
+(-1019 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented")))
NIL
NIL
-(-1019)
+(-1020)
((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied.")))
NIL
NIL
-(-1020 |Pol|)
+(-1021 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1021 |Pol|)
+(-1022 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-1022)
+(-1023)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-1023)
+(-1024)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-1024 |TheField|)
+(-1025 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4408 . T) (-4413 . T) (-4407 . T) (-4410 . T) (-4409 . T) ((-4417 "*") . T) (-4412 . T))
-((-2676 (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-409 (-566)) (LIST (QUOTE -1038) (QUOTE (-566)))))
-(-1025 -1975 L)
+((-4409 . T) (-4414 . T) (-4408 . T) (-4411 . T) (-4410 . T) ((-4418 "*") . T) (-4413 . T))
+((-2909 (|HasCategory| (-410 (-567)) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-410 (-567)) (LIST (QUOTE -1039) (QUOTE (-567)))))
+(-1026 -2111 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-1026 S)
+(-1027 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1099))))
-(-1027 R E V P)
+((|HasCategory| |#1| (QUOTE (-1100))))
+(-1028 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1028 R)
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1029 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4417 "*"))))
-(-1029 R)
+((|HasAttribute| |#1| (QUOTE (-4418 "*"))))
+(-1030 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-308))))
-(-1030 S)
+(-1031 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1031)
+(-1032)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-1032 S)
+(-1033 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-1033 S)
+(-1034 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1034 -1975 |Expon| |VarSet| |FPol| |LFPol|)
+(-1035 -2111 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1035)
-((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2484) (QUOTE (-52))))))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))))
(-1036)
+((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3859) (QUOTE (-52))))))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-52) (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1100))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1100))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-1176) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1037)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
NIL
-(-1037 A S)
+(-1038 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1038 S)
+(-1039 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")))
NIL
NIL
-(-1039 Q R)
+(-1040 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-1040)
+(-1041)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-1041 UP)
+(-1042 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1042 R)
+(-1043 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-1043 R)
+(-1044 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-1044 T$)
+(-1045 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
NIL
NIL
-(-1045 T$)
+(-1046 T$)
((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
-(-1046 R |ls|)
+(-1047 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| (-780 |#1| (-864 |#2|)) (QUOTE (-1099))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -780) (|devaluate| |#1|) (LIST (QUOTE -864) (|devaluate| |#2|)))))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-780 |#1| (-864 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| (-864 |#2|) (QUOTE (-370))) (|HasCategory| (-780 |#1| (-864 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1047)
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1100))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -781) (|devaluate| |#1|) (LIST (QUOTE -865) (|devaluate| |#2|)))))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-781 |#1| (-865 |#2|)) (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| (-865 |#2|) (QUOTE (-370))) (|HasCategory| (-781 |#1| (-865 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1048)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-1048 S)
+(-1049 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-1049)
+(-1050)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4412 . T))
+((-4413 . T))
NIL
-(-1050 |xx| -1975)
+(-1051 |xx| -2111)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-1051 R)
+(-1052 R)
((|constructor| (NIL "\\indented{2}{A set is an \\spad{R}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the ring \\spad{R}.\\space{2}This category differs from} \\indented{2}{\\spad{RightModule} in that no other assumption (such as addition)} \\indented{2}{is made about the underlying set.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{r*x} is the left-dilation of \\spad{x} by \\spad{r}.")) (|zero?| (((|Boolean|) $) "\\spad{zero? x} holds is \\spad{x} is the origin.")) ((|Zero|) (($) "\\spad{0} represents the origin of the linear set")))
NIL
NIL
-(-1052 S |m| |n| R |Row| |Col|)
+(-1053 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-558))) (|HasCategory| |#4| (QUOTE (-172))))
-(-1053 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-308))) (|HasCategory| |#4| (QUOTE (-365))) (|HasCategory| |#4| (QUOTE (-559))) (|HasCategory| |#4| (QUOTE (-172))))
+(-1054 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4415 . T) (-4410 . T) (-4409 . T))
+((-4416 . T) (-4411 . T) (-4410 . T))
NIL
-(-1054 |m| |n| R)
+(-1055 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4415 . T) (-4410 . T) (-4409 . T))
-((|HasCategory| |#3| (QUOTE (-172))) (-2676 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-558))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1055 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4416 . T) (-4411 . T) (-4410 . T))
+((|HasCategory| |#3| (QUOTE (-172))) (-2909 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (QUOTE (-308))) (|HasCategory| |#3| (QUOTE (-559))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1056 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-1056 R)
+(-1057 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
NIL
NIL
-(-1057)
+(-1058)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-1058 S)
+(-1059 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-1059)
+(-1060)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1060 |TheField| |ThePolDom|)
+(-1061 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-1061)
+(-1062)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4403 . T) (-4407 . T) (-4402 . T) (-4413 . T) (-4414 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4404 . T) (-4408 . T) (-4403 . T) (-4414 . T) (-4415 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1062)
+(-1063)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (QUOTE (-1175))) (LIST (QUOTE |:|) (QUOTE -2484) (QUOTE (-52))))))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-52) (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| (-52) (QUOTE (-1099))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (QUOTE (-1099))) (|HasCategory| (-1175) (QUOTE (-850))) (|HasCategory| (-52) (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-52) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1063 S R E V)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (QUOTE (-1176))) (LIST (QUOTE |:|) (QUOTE -3859) (QUOTE (-52))))))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-52) (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (QUOTE (-1100))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| (-52) (QUOTE (-1100))) (|HasCategory| (-52) (LIST (QUOTE -310) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (QUOTE (-1100))) (|HasCategory| (-1176) (QUOTE (-851))) (|HasCategory| (-52) (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-52) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1064 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-547))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -992) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-1175)))))
-(-1064 R E V)
+((|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-548))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -993) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-1176)))))
+(-1065 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
NIL
-(-1065)
+(-1066)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
NIL
NIL
-(-1066 S |TheField| |ThePols|)
+(-1067 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1067 |TheField| |ThePols|)
+(-1068 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1068 R E V P TS)
+(-1069 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1069 S R E V P)
+(-1070 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1070 R E V P)
+(-1071 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1071 R E V P TS)
+(-1072 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1072)
+(-1073)
((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted.")))
NIL
NIL
-(-1073)
+(-1074)
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1074 |f|)
+(-1075 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1075 |Base| R -1975)
+(-1076 |Base| R -2111)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1076 |Base| R -1975)
+(-1077 |Base| R -2111)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
-(-1077 R |ls|)
+(-1078 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1078 UP SAE UPA)
+(-1079 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1079 R UP M)
+(-1080 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4408 |has| |#1| (-365)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))))
-(-1080 UP SAE UPA)
+((-4409 |has| |#1| (-365)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-351))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-351)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-370))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-351)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#1| (QUOTE (-351))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))))
+(-1081 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1081)
+(-1082)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1082)
+(-1083)
((|constructor| (NIL "This is the category of Spad syntax objects.")))
NIL
NIL
-(-1083 S)
+(-1084 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1084)
+(-1085)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1085 R)
+(-1086 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1086 R)
+(-1087 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1087 (-1175)) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1087 S)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1088 (-1176)) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1088 (-1176)) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1088 (-1176)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1088 (-1176)) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1088 (-1176)) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1088 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1088 R S)
+(-1089 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-848))))
-(-1089)
+((|HasCategory| |#1| (QUOTE (-849))))
+(-1090)
((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
-(-1090 R S)
+(-1091 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1091 S)
+(-1092 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1099))))
-(-1092 S)
+((|HasCategory| |#1| (QUOTE (-1100))))
+(-1093 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
NIL
NIL
-(-1093 S)
+(-1094 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1099))))
-(-1094 S L)
+((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1100))))
+(-1095 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}.")))
NIL
NIL
-(-1095)
+(-1096)
((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'.")))
NIL
NIL
-(-1096 A S)
+(-1097 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1097 S)
+(-1098 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4405 . T))
+((-4406 . T))
NIL
-(-1098 S)
+(-1099 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1099)
+(-1100)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|before?| (((|Boolean|) $ $) "spad{before?(\\spad{x},{}\\spad{y})} holds if \\spad{x} comes before \\spad{y} in the internal total ordering used by OpenAxiom.")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1100 |m| |n|)
+(-1101 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1101 S)
+(-1102 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
-((-4415 . T) (-4405 . T) (-4416 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-1102 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4416 . T) (-4406 . T) (-4417 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-370))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-1103 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,...,an), [i1,...,im])} returns \\spad{(a_i1,...,a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,...,an), i)} returns \\spad{ai}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1103)
+(-1104)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1104 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1105 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1105 R FS)
+(-1106 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1106 R E V P TS)
+(-1107 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1107 R E V P TS)
+(-1108 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1108 R E V P)
+(-1109 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1109)
+(-1110)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1110 S)
+(-1111 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1111)
+(-1112)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1112 |dimtot| |dim1| S)
+(-1113 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4409 |has| |#3| (-1049)) (-4410 |has| |#3| (-1049)) (-4412 |has| |#3| (-6 -4412)) ((-4417 "*") |has| |#3| (-172)) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#3| (QUOTE (-365))) (-2676 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2676 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-793))) (-2676 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848)))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-726))) (-2676 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (-2676 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2676 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2676 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1049)))) (-2676 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (|HasCategory| |#3| (QUOTE (-233))) (-2676 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-726)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-848)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099))))) (-2676 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-726))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-848))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (|HasCategory| (-566) (QUOTE (-850))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1049)))) (-12 (|HasCategory| |#3| (QUOTE (-1049))) (|HasCategory| |#3| (LIST (QUOTE -900) (QUOTE (-1175))))) (-2676 (|HasCategory| |#3| (QUOTE (-1049))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566)))))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#3| (QUOTE (-1099)))) (|HasAttribute| |#3| (QUOTE -4412)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#3| (QUOTE (-1099))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
-(-1113 R |x|)
+((-4410 |has| |#3| (-1050)) (-4411 |has| |#3| (-1050)) (-4413 |has| |#3| (-6 -4413)) ((-4418 "*") |has| |#3| (-172)) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))))) (-2909 (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1100)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#3| (QUOTE (-365))) (-2909 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2909 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-365)))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-794))) (-2909 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849)))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-727))) (-2909 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (-2909 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2909 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2909 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-1050)))) (-2909 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (|HasCategory| |#3| (QUOTE (-233))) (-2909 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (QUOTE (-1100)))) (|HasCategory| |#3| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-365)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-370)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-727)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-794)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-849)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1100))))) (-2909 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-365))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-727))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-794))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-849))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (|HasCategory| (-567) (QUOTE (-851))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1050)))) (-12 (|HasCategory| |#3| (QUOTE (-1050))) (|HasCategory| |#3| (LIST (QUOTE -901) (QUOTE (-1176))))) (-2909 (|HasCategory| |#3| (QUOTE (-1050))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567)))))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#3| (QUOTE (-1100)))) (|HasAttribute| |#3| (QUOTE -4413)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#3| (QUOTE (-1100))) (|HasCategory| |#3| (LIST (QUOTE -310) (|devaluate| |#3|)))))
+(-1114 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
-((|HasCategory| |#1| (QUOTE (-454))))
-(-1114)
+((|HasCategory| |#1| (QUOTE (-455))))
+(-1115)
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1115 R -1975)
+(-1116 R -2111)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1116 R)
+(-1117 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1117)
+(-1118)
((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1118)
+(-1119)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1119)
+(-1120)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4403 . T) (-4407 . T) (-4402 . T) (-4413 . T) (-4414 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4404 . T) (-4408 . T) (-4403 . T) (-4414 . T) (-4415 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1120 S)
+(-1121 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4415 . T) (-4416 . T))
+((-4416 . T) (-4417 . T))
NIL
-(-1121 S |ndim| R |Row| |Col|)
+(-1122 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4417 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
-(-1122 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-365))) (|HasAttribute| |#3| (QUOTE (-4418 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
+(-1123 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4415 . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4416 . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1123 R |Row| |Col| M)
+(-1124 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1124 R |VarSet|)
+(-1125 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1125 |Coef| |Var| SMP)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1126 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))))
-(-1126 R E V P)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))))
+(-1127 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1127 UP -1975)
+(-1128 UP -2111)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1128 R)
+(-1129 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1129 R)
+(-1130 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1130 R)
+(-1131 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1131 S A)
+(-1132 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-850))))
-(-1132 R)
+((|HasCategory| |#1| (QUOTE (-851))))
+(-1133 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1133 R)
+(-1134 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1134)
+(-1135)
((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}")))
NIL
NIL
-(-1135)
+(-1136)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1136)
+(-1137)
((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
NIL
NIL
-(-1137)
+(-1138)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1138)
+(-1139)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1139 V C)
+(-1140 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1140 V C)
+(-1141 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))) (-2676 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1139) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1139 |#1| |#2|) (QUOTE (-1099))))) (|HasCategory| (-1139 |#1| |#2|) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1141 |ndim| R)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-1140 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1140 |#1| |#2|) (QUOTE (-1100)))) (|HasCategory| (-1140 |#1| |#2|) (QUOTE (-1100))) (-2909 (|HasCategory| (-1140 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-1140 |#1| |#2|) (LIST (QUOTE -310) (LIST (QUOTE -1140) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1140 |#1| |#2|) (QUOTE (-1100))))) (|HasCategory| (-1140 |#1| |#2|) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1142 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4412 . T) (-4404 |has| |#2| (-6 (-4417 "*"))) (-4415 . T) (-4409 . T) (-4410 . T))
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4417 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-365))) (-2676 (|HasAttribute| |#2| (QUOTE (-4417 "*"))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
-(-1142 S)
+((-4413 . T) (-4405 |has| |#2| (-6 (-4418 "*"))) (-4416 . T) (-4410 . T) (-4411 . T))
+((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4418 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (QUOTE (-308))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-365))) (-2909 (|HasAttribute| |#2| (QUOTE (-4418 "*"))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+(-1143 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1143)
+(-1144)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1144 R E V P TS)
+(-1145 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1145 R E V P)
+(-1146 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1146 S)
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1147 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1147 A S)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1148 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1148 S)
+(-1149 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1149 |Key| |Ent| |dent|)
+(-1150 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-850))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))))
-(-1150)
+((-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-851))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))))
+(-1151)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1151 |Coef|)
+(-1152 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1152 S)
+(-1153 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
NIL
-(-1153 A B)
+(-1154 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}.")))
NIL
NIL
-(-1154 A B C)
+(-1155 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}.")))
NIL
NIL
-(-1155 S)
+(-1156 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4416 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1156)
+((-4417 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1157)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1157)
+(-1158)
NIL
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| (-144) (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| (-144) (QUOTE (-1099))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
-(-1158 |Entry|)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| (-144) (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| (-144) (QUOTE (-1100))) (|HasCategory| (-144) (LIST (QUOTE -310) (QUOTE (-144))))))
+(-1159 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (QUOTE (-1157))) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#1|)))))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (QUOTE (-1099))) (|HasCategory| (-1157) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1159 A)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (QUOTE (-1158))) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#1|)))))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (QUOTE (-1100))) (|HasCategory| (-1158) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1160 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
-(-1160 |Coef|)
+((|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
+(-1161 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1161 |Coef|)
+(-1162 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1162 R UP)
+(-1163 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-308))))
-(-1163 |n| R)
+(-1164 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1164 S1 S2)
+(-1165 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1165)
+(-1166)
((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'.")))
NIL
NIL
-(-1166 |Coef| |var| |cen|)
+(-1167 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4417 "*") -2676 (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4408 -2676 (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-3144 (|has| |#1| (-365)) (|has| (-1173 |#1| |#2| |#3|) (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1167 R -1975)
+(((-4418 "*") -2909 (-1410 (|has| |#1| (-365)) (|has| (-1174 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1410 (|has| |#1| (-365)) (|has| (-1174 |#1| |#2| |#3|) (-910)))) (-4409 -2909 (-1410 (|has| |#1| (-365)) (|has| (-1174 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1410 (|has| |#1| (-365)) (|has| (-1174 |#1| |#2| |#3|) (-910)))) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-1151))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1176)) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1112))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-1151))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1176)) (LIST (QUOTE -1174) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1174 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1168 R -2111)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1168 R)
+(-1169 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1169 R S)
+(-1170 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1170 E OV R P)
+(-1171 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1171 R)
+(-1172 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4411 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#1| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1150))) (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1172 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4412 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#1| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-1151))) (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4414)) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1173 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))))
+(-1174 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
-(-1174)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1112))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))))
+(-1175)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1175)
+(-1176)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1176 R)
+(-1177 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}.")))
NIL
NIL
-(-1177 R)
+(-1178 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-6 -4413)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-454))) (-12 (|HasCategory| (-971) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasAttribute| |#1| (QUOTE -4413)))
-(-1178)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-6 -4414)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-455))) (-12 (|HasCategory| (-972) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasAttribute| |#1| (QUOTE -4414)))
+(-1179)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1179)
+(-1180)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1180)
+(-1181)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1181 N)
+(-1182 N)
((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type.")))
NIL
NIL
-(-1182 N)
+(-1183 N)
((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
NIL
NIL
-(-1183)
+(-1184)
((|constructor| (NIL "This domain is a datatype system-level pointer values.")))
NIL
NIL
-(-1184 R)
+(-1185 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1185)
+(-1186)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1186 S)
+(-1187 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1187 S)
+(-1188 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1188 |Key| |Entry|)
+(-1189 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4415 . T) (-4416 . T))
-((-12 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3476) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2484) (|devaluate| |#2|)))))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#2| (QUOTE (-1099)))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -614) (QUOTE (-538)))) (-12 (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-1099))) (-2676 (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#2| (LIST (QUOTE -613) (QUOTE (-862)))) (|HasCategory| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1189 R)
+((-4416 . T) (-4417 . T))
+((-12 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -310) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1762) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3859) (|devaluate| |#2|)))))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#2| (QUOTE (-1100)))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -615) (QUOTE (-539)))) (-12 (|HasCategory| |#2| (QUOTE (-1100))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#2| (QUOTE (-1100))) (-2909 (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-863)))) (|HasCategory| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1190 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1190 S |Key| |Entry|)
+(-1191 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1191 |Key| |Entry|)
+(-1192 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4416 . T))
+((-4417 . T))
NIL
-(-1192 |Key| |Entry|)
+(-1193 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1193)
+(-1194)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1194 S)
+(-1195 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1195)
+(-1196)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
-(-1196)
+(-1197)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1197 R)
+(-1198 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1198)
+(-1199)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1199 S)
+(-1200 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1200)
+(-1201)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1201 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1099))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
(-1202 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1100))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1203 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1203)
+(-1204)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1204 R -1975)
+(-1205 R -2111)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1205 R |Row| |Col| M)
+(-1206 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1206 R -1975)
+(-1207 R -2111)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -886) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -886) (|devaluate| |#1|)))))
-(-1207 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -615) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -887) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -887) (|devaluate| |#1|)))))
+(-1208 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-370))))
-(-1208 R E V P)
+(-1209 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1209 |Coef|)
+(-1210 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-365))))
-(-1210 |Curve|)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-365))))
+(-1211 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1211)
+(-1212)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1212 S)
+(-1213 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
-((|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1213 -1975)
+((|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1214 -2111)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1214)
+(-1215)
((|constructor| (NIL "This domain represents a type AST.")))
NIL
NIL
-(-1215)
+(-1216)
((|constructor| (NIL "The fundamental Type.")))
NIL
NIL
-(-1216 S)
+(-1217 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-850))))
-(-1217)
+((|HasCategory| |#1| (QUOTE (-851))))
+(-1218)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1218 S)
+(-1219 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1219)
+(-1220)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1220)
+(-1221)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
NIL
NIL
-(-1221)
+(-1222)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits.")))
NIL
NIL
-(-1222)
+(-1223)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits.")))
NIL
NIL
-(-1223)
+(-1224)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits.")))
NIL
NIL
-(-1224 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1225 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1225 |Coef|)
+(-1226 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1226 S |Coef| UTS)
+(-1227 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-365))))
-(-1227 |Coef| UTS)
+(-1228 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1228 |Coef| UTS)
+(-1229 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2676 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850))))) (-2676 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-820)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1022)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-1175)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -516) (QUOTE (-1175)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-909))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
-(-1229 |Coef| |var| |cen|)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1151)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))) (-2909 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-147))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1112))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851))))) (-2909 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-821)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1023)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1151)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-1176)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1151)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -287) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -310) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -517) (QUOTE (-1176)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-851)))) (|HasCategory| |#2| (QUOTE (-910))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-548)))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-308)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-145))))))
+(-1230 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4417 "*") -2676 (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-820))) (|has| |#1| (-172)) (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-909)))) (-4408 -2676 (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-820))) (|has| |#1| (-558)) (-3144 (|has| |#1| (-365)) (|has| (-1257 |#1| |#2| |#3|) (-909)))) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|)))))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-566)) (|devaluate| |#1|))))) (|HasCategory| (-566) (QUOTE (-1111))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-1175)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-1150))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -516) (QUOTE (-1175)) (LIST (QUOTE -1257) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-566))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-547))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-820))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-909))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1257 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1230 ZP)
+(((-4418 "*") -2909 (-1410 (|has| |#1| (-365)) (|has| (-1258 |#1| |#2| |#3|) (-821))) (|has| |#1| (-172)) (-1410 (|has| |#1| (-365)) (|has| (-1258 |#1| |#2| |#3|) (-910)))) (-4409 -2909 (-1410 (|has| |#1| (-365)) (|has| (-1258 |#1| |#2| |#3|) (-821))) (|has| |#1| (-559)) (-1410 (|has| |#1| (-365)) (|has| (-1258 |#1| |#2| |#3|) (-910)))) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-1151))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1176)) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|)))))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-567)) (|devaluate| |#1|))))) (|HasCategory| (-567) (QUOTE (-1112))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-365))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-1176)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-365)))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365))))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-1151))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -287) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -310) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -517) (QUOTE (-1176)) (LIST (QUOTE -1258) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-567))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-548))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-308))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-821))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-910))) (|HasCategory| |#1| (QUOTE (-365)))) (-12 (|HasCategory| (-1258 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-365)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1231 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1231 R S)
+(-1232 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-848))))
-(-1232 S)
+((|HasCategory| |#1| (QUOTE (-849))))
+(-1233 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-848))) (|HasCategory| |#1| (QUOTE (-1099))))
-(-1233 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1100))))
+(-1234 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1234 R Q UP)
+(-1235 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1235 R UP)
+(-1236 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1236 R UP)
+(-1237 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1237 R U)
+(-1238 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1238 |x| R)
+(-1239 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4417 "*") |has| |#2| (-172)) (-4408 |has| |#2| (-558)) (-4411 |has| |#2| (-365)) (-4413 |has| |#2| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-909))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-558)))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-381))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -886) (QUOTE (-566)))) (|HasCategory| |#2| (LIST (QUOTE -886) (QUOTE (-566))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-381)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -614) (LIST (QUOTE -892) (QUOTE (-566)))))) (-12 (|HasCategory| (-1081) (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#2| (LIST (QUOTE -614) (QUOTE (-538))))) (|HasCategory| |#2| (LIST (QUOTE -639) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (QUOTE (-566)))) (-2676 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| |#2| (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (-2676 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1150))) (|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4413)) (|HasCategory| |#2| (QUOTE (-454))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (-2676 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-909)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-1239 R PR S PS)
+(((-4418 "*") |has| |#2| (-172)) (-4409 |has| |#2| (-559)) (-4412 |has| |#2| (-365)) (-4414 |has| |#2| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-910))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-381)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-381))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -887) (QUOTE (-567)))) (|HasCategory| |#2| (LIST (QUOTE -887) (QUOTE (-567))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-381)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -615) (LIST (QUOTE -893) (QUOTE (-567)))))) (-12 (|HasCategory| (-1082) (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#2| (LIST (QUOTE -615) (QUOTE (-539))))) (|HasCategory| |#2| (LIST (QUOTE -640) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (QUOTE (-567)))) (-2909 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| |#2| (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (-2909 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-1151))) (|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4414)) (|HasCategory| |#2| (QUOTE (-455))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (-2909 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-910)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-1240 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1240 S R)
+(-1241 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-454))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1150))))
-(-1241 R)
+((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))) (|HasCategory| |#2| (QUOTE (-455))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1151))))
+(-1242 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4411 |has| |#1| (-365)) (-4413 |has| |#1| (-6 -4413)) (-4410 . T) (-4409 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4412 |has| |#1| (-365)) (-4414 |has| |#1| (-6 -4414)) (-4411 . T) (-4410 . T) (-4413 . T))
NIL
-(-1242 S |Coef| |Expon|)
+(-1243 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1111))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2725) (LIST (|devaluate| |#2|) (QUOTE (-1175))))))
-(-1243 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1112))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -4101) (LIST (|devaluate| |#2|) (QUOTE (-1176))))))
+(-1244 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1244 RC P)
+(-1245 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1245 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1246 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1246 |Coef|)
+(-1247 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1247 S |Coef| ULS)
+(-1248 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1248 |Coef| ULS)
+(-1249 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1249 |Coef| ULS)
+(-1250 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))))
-(-1250 |Coef| |var| |cen|)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))))
+(-1251 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4413 |has| |#1| (-365)) (-4407 |has| |#1| (-365)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-172))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566))) (|devaluate| |#1|)))) (|HasCategory| (-409 (-566)) (QUOTE (-1111))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-2676 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-558)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -409) (QUOTE (-566)))))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
-(-1251 R FE |var| |cen|)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4414 |has| |#1| (-365)) (-4408 |has| |#1| (-365)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-172))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567))) (|devaluate| |#1|)))) (|HasCategory| (-410 (-567)) (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-2909 (|HasCategory| |#1| (QUOTE (-365))) (|HasCategory| |#1| (QUOTE (-559)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -410) (QUOTE (-567)))))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))))
+(-1252 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
-(((-4417 "*") |has| (-1250 |#2| |#3| |#4|) (-172)) (-4408 |has| (-1250 |#2| |#3| |#4|) (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-172))) (-2676 (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566)))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1038) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| (-1250 |#2| |#3| |#4|) (LIST (QUOTE -1038) (QUOTE (-566)))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-454))) (|HasCategory| (-1250 |#2| |#3| |#4|) (QUOTE (-558))))
-(-1252 A S)
+(((-4418 "*") |has| (-1251 |#2| |#3| |#4|) (-172)) (-4409 |has| (-1251 |#2| |#3| |#4|) (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-172))) (-2909 (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567)))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -1039) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| (-1251 |#2| |#3| |#4|) (LIST (QUOTE -1039) (QUOTE (-567)))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-365))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-455))) (|HasCategory| (-1251 |#2| |#3| |#4|) (QUOTE (-559))))
+(-1253 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4416)))
-(-1253 S)
+((|HasAttribute| |#1| (QUOTE -4417)))
+(-1254 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
-(-1254 |Coef1| |Coef2| UTS1 UTS2)
+(-1255 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1255 S |Coef|)
+(-1256 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#2| (QUOTE (-959))) (|HasCategory| |#2| (QUOTE (-1200))) (|HasSignature| |#2| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1879) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1175))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#2| (QUOTE (-365))))
-(-1256 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-1201))) (|HasSignature| |#2| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2113) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1176))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#2| (QUOTE (-365))))
+(-1257 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1257 |Coef| |var| |cen|)
+(-1258 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4417 "*") |has| |#1| (-172)) (-4408 |has| |#1| (-558)) (-4409 . T) (-4410 . T) (-4412 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasCategory| |#1| (QUOTE (-558))) (-2676 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -900) (QUOTE (-1175)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-771)) (|devaluate| |#1|)))) (|HasCategory| (-771) (QUOTE (-1111))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasSignature| |#1| (LIST (QUOTE -2725) (LIST (|devaluate| |#1|) (QUOTE (-1175)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-771))))) (|HasCategory| |#1| (QUOTE (-365))) (-2676 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-566)))) (|HasCategory| |#1| (QUOTE (-959))) (|HasCategory| |#1| (QUOTE (-1200))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasSignature| |#1| (LIST (QUOTE -1879) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1175))))) (|HasSignature| |#1| (LIST (QUOTE -4170) (LIST (LIST (QUOTE -644) (QUOTE (-1175))) (|devaluate| |#1|)))))))
-(-1258 |Coef| UTS)
+(((-4418 "*") |has| |#1| (-172)) (-4409 |has| |#1| (-559)) (-4410 . T) (-4411 . T) (-4413 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasCategory| |#1| (QUOTE (-559))) (-2909 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-559)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -901) (QUOTE (-1176)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-772)) (|devaluate| |#1|)))) (|HasCategory| (-772) (QUOTE (-1112))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasSignature| |#1| (LIST (QUOTE -4101) (LIST (|devaluate| |#1|) (QUOTE (-1176)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-772))))) (|HasCategory| |#1| (QUOTE (-365))) (-2909 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-567)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-1201))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasSignature| |#1| (LIST (QUOTE -2113) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1176))))) (|HasSignature| |#1| (LIST (QUOTE -2449) (LIST (LIST (QUOTE -645) (QUOTE (-1176))) (|devaluate| |#1|)))))))
+(-1259 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1259 -1975 UP L UTS)
+(-1260 -2111 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-558))))
-(-1260)
+((|HasCategory| |#1| (QUOTE (-559))))
+(-1261)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
NIL
NIL
-(-1261 |sym|)
+(-1262 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1262 S R)
+(-1263 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-1002))) (|HasCategory| |#2| (QUOTE (-1049))) (|HasCategory| |#2| (QUOTE (-726))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1263 R)
+((|HasCategory| |#2| (QUOTE (-1003))) (|HasCategory| |#2| (QUOTE (-1050))) (|HasCategory| |#2| (QUOTE (-727))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1264 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4416 . T) (-4415 . T))
+((-4417 . T) (-4416 . T))
NIL
-(-1264 A B)
+(-1265 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1265 R)
+(-1266 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4416 . T) (-4415 . T))
-((-2676 (-12 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2676 (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862))))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-538)))) (-2676 (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| (-566) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-726))) (|HasCategory| |#1| (QUOTE (-1049))) (-12 (|HasCategory| |#1| (QUOTE (-1002))) (|HasCategory| |#1| (QUOTE (-1049)))) (|HasCategory| |#1| (LIST (QUOTE -613) (QUOTE (-862)))) (-12 (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
-(-1266)
+((-4417 . T) (-4416 . T))
+((-2909 (-12 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|))))) (-2909 (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863))))) (|HasCategory| |#1| (LIST (QUOTE -615) (QUOTE (-539)))) (-2909 (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100)))) (|HasCategory| |#1| (QUOTE (-851))) (|HasCategory| (-567) (QUOTE (-851))) (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-727))) (|HasCategory| |#1| (QUOTE (-1050))) (-12 (|HasCategory| |#1| (QUOTE (-1003))) (|HasCategory| |#1| (QUOTE (-1050)))) (|HasCategory| |#1| (LIST (QUOTE -614) (QUOTE (-863)))) (-12 (|HasCategory| |#1| (QUOTE (-1100))) (|HasCategory| |#1| (LIST (QUOTE -310) (|devaluate| |#1|)))))
+(-1267)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1267)
+(-1268)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1268)
+(-1269)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1269)
+(-1270)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1270)
+(-1271)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1271 A S)
+(-1272 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1272 S)
+(-1273 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4410 . T) (-4409 . T))
+((-4411 . T) (-4410 . T))
NIL
-(-1273 R)
+(-1274 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1274 K R UP -1975)
+(-1275 K R UP -2111)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
-(-1275)
+(-1276)
((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'.")))
NIL
NIL
-(-1276)
+(-1277)
((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'.")))
NIL
NIL
-(-1277 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1278 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4410 |has| |#1| (-172)) (-4409 |has| |#1| (-172)) (-4412 . T))
+((-4411 |has| |#1| (-172)) (-4410 |has| |#1| (-172)) (-4413 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))))
-(-1278 R E V P)
+(-1279 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4416 . T) (-4415 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-538)))) (|HasCategory| |#4| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -613) (QUOTE (-862)))))
-(-1279 R)
+((-4417 . T) (-4416 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#4| (LIST (QUOTE -310) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -615) (QUOTE (-539)))) (|HasCategory| |#4| (QUOTE (-1100))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#3| (QUOTE (-370))) (|HasCategory| |#4| (LIST (QUOTE -614) (QUOTE (-863)))))
+(-1280 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4409 . T) (-4410 . T) (-4412 . T))
+((-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1280 |vl| R)
+(-1281 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4412 . T) (-4408 |has| |#2| (-6 -4408)) (-4410 . T) (-4409 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4408)))
-(-1281 R |VarSet| XPOLY)
+((-4413 . T) (-4409 |has| |#2| (-6 -4409)) (-4411 . T) (-4410 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4409)))
+(-1282 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1282 |vl| R)
+(-1283 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4408 |has| |#2| (-6 -4408)) (-4410 . T) (-4409 . T) (-4412 . T))
+((-4409 |has| |#2| (-6 -4409)) (-4411 . T) (-4410 . T) (-4413 . T))
NIL
-(-1283 S -1975)
+(-1284 S -2111)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-370))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1284 -1975)
+(-1285 -2111)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4407 . T) (-4413 . T) (-4408 . T) ((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+((-4408 . T) (-4414 . T) (-4409 . T) ((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
-(-1285 |VarSet| R)
+(-1286 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4408 |has| |#2| (-6 -4408)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -717) (LIST (QUOTE -409) (QUOTE (-566))))) (|HasAttribute| |#2| (QUOTE -4408)))
-(-1286 |vl| R)
+((-4409 |has| |#2| (-6 -4409)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -718) (LIST (QUOTE -410) (QUOTE (-567))))) (|HasAttribute| |#2| (QUOTE -4409)))
+(-1287 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4408 |has| |#2| (-6 -4408)) (-4410 . T) (-4409 . T) (-4412 . T))
+((-4409 |has| |#2| (-6 -4409)) (-4411 . T) (-4410 . T) (-4413 . T))
NIL
-(-1287 R)
+(-1288 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4408 |has| |#1| (-6 -4408)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4408)))
-(-1288 R E)
+((-4409 |has| |#1| (-6 -4409)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4409)))
+(-1289 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4412 . T) (-4413 |has| |#1| (-6 -4413)) (-4408 |has| |#1| (-6 -4408)) (-4410 . T) (-4409 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4413)) (|HasAttribute| |#1| (QUOTE -4408)))
-(-1289 |VarSet| R)
+((-4413 . T) (-4414 |has| |#1| (-6 -4414)) (-4409 |has| |#1| (-6 -4409)) (-4411 . T) (-4410 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-365))) (|HasAttribute| |#1| (QUOTE -4413)) (|HasAttribute| |#1| (QUOTE -4414)) (|HasAttribute| |#1| (QUOTE -4409)))
+(-1290 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4408 |has| |#2| (-6 -4408)) (-4410 . T) (-4409 . T) (-4412 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4408)))
-(-1290 A)
+((-4409 |has| |#2| (-6 -4409)) (-4411 . T) (-4410 . T) (-4413 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4409)))
+(-1291 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1291 R |ls| |ls2|)
+(-1292 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1292 R)
+(-1293 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1293 |p|)
+(-1294 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4417 "*") . T) (-4409 . T) (-4410 . T) (-4412 . T))
+(((-4418 "*") . T) (-4410 . T) (-4411 . T) (-4413 . T))
NIL
NIL
NIL
@@ -5120,4 +5124,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2264355 2264360 2264365 2264370) (-2 NIL 2264335 2264340 2264345 2264350) (-1 NIL 2264315 2264320 2264325 2264330) (0 NIL 2264295 2264300 2264305 2264310) (-1293 "ZMOD.spad" 2264104 2264117 2264233 2264290) (-1292 "ZLINDEP.spad" 2263170 2263181 2264094 2264099) (-1291 "ZDSOLVE.spad" 2253115 2253137 2263160 2263165) (-1290 "YSTREAM.spad" 2252610 2252621 2253105 2253110) (-1289 "XRPOLY.spad" 2251830 2251850 2252466 2252535) (-1288 "XPR.spad" 2249625 2249638 2251548 2251647) (-1287 "XPOLY.spad" 2249180 2249191 2249481 2249550) (-1286 "XPOLYC.spad" 2248499 2248515 2249106 2249175) (-1285 "XPBWPOLY.spad" 2246936 2246956 2248279 2248348) (-1284 "XF.spad" 2245399 2245414 2246838 2246931) (-1283 "XF.spad" 2243842 2243859 2245283 2245288) (-1282 "XFALG.spad" 2240890 2240906 2243768 2243837) (-1281 "XEXPPKG.spad" 2240141 2240167 2240880 2240885) (-1280 "XDPOLY.spad" 2239755 2239771 2239997 2240066) (-1279 "XALG.spad" 2239415 2239426 2239711 2239750) (-1278 "WUTSET.spad" 2235254 2235271 2239061 2239088) (-1277 "WP.spad" 2234453 2234497 2235112 2235179) (-1276 "WHILEAST.spad" 2234251 2234260 2234443 2234448) (-1275 "WHEREAST.spad" 2233922 2233931 2234241 2234246) (-1274 "WFFINTBS.spad" 2231585 2231607 2233912 2233917) (-1273 "WEIER.spad" 2229807 2229818 2231575 2231580) (-1272 "VSPACE.spad" 2229480 2229491 2229775 2229802) (-1271 "VSPACE.spad" 2229173 2229186 2229470 2229475) (-1270 "VOID.spad" 2228850 2228859 2229163 2229168) (-1269 "VIEW.spad" 2226530 2226539 2228840 2228845) (-1268 "VIEWDEF.spad" 2221731 2221740 2226520 2226525) (-1267 "VIEW3D.spad" 2205692 2205701 2221721 2221726) (-1266 "VIEW2D.spad" 2193583 2193592 2205682 2205687) (-1265 "VECTOR.spad" 2192257 2192268 2192508 2192535) (-1264 "VECTOR2.spad" 2190896 2190909 2192247 2192252) (-1263 "VECTCAT.spad" 2188800 2188811 2190864 2190891) (-1262 "VECTCAT.spad" 2186511 2186524 2188577 2188582) (-1261 "VARIABLE.spad" 2186291 2186306 2186501 2186506) (-1260 "UTYPE.spad" 2185935 2185944 2186281 2186286) (-1259 "UTSODETL.spad" 2185230 2185254 2185891 2185896) (-1258 "UTSODE.spad" 2183446 2183466 2185220 2185225) (-1257 "UTS.spad" 2178259 2178287 2181913 2182010) (-1256 "UTSCAT.spad" 2175738 2175754 2178157 2178254) (-1255 "UTSCAT.spad" 2172861 2172879 2175282 2175287) (-1254 "UTS2.spad" 2172456 2172491 2172851 2172856) (-1253 "URAGG.spad" 2167129 2167140 2172446 2172451) (-1252 "URAGG.spad" 2161766 2161779 2167085 2167090) (-1251 "UPXSSING.spad" 2159411 2159437 2160847 2160980) (-1250 "UPXS.spad" 2156565 2156593 2157543 2157692) (-1249 "UPXSCONS.spad" 2154324 2154344 2154697 2154846) (-1248 "UPXSCCA.spad" 2152895 2152915 2154170 2154319) (-1247 "UPXSCCA.spad" 2151608 2151630 2152885 2152890) (-1246 "UPXSCAT.spad" 2150197 2150213 2151454 2151603) (-1245 "UPXS2.spad" 2149740 2149793 2150187 2150192) (-1244 "UPSQFREE.spad" 2148154 2148168 2149730 2149735) (-1243 "UPSCAT.spad" 2145765 2145789 2148052 2148149) (-1242 "UPSCAT.spad" 2143082 2143108 2145371 2145376) (-1241 "UPOLYC.spad" 2138122 2138133 2142924 2143077) (-1240 "UPOLYC.spad" 2133054 2133067 2137858 2137863) (-1239 "UPOLYC2.spad" 2132525 2132544 2133044 2133049) (-1238 "UP.spad" 2129724 2129739 2130111 2130264) (-1237 "UPMP.spad" 2128624 2128637 2129714 2129719) (-1236 "UPDIVP.spad" 2128189 2128203 2128614 2128619) (-1235 "UPDECOMP.spad" 2126434 2126448 2128179 2128184) (-1234 "UPCDEN.spad" 2125643 2125659 2126424 2126429) (-1233 "UP2.spad" 2125007 2125028 2125633 2125638) (-1232 "UNISEG.spad" 2124360 2124371 2124926 2124931) (-1231 "UNISEG2.spad" 2123857 2123870 2124316 2124321) (-1230 "UNIFACT.spad" 2122960 2122972 2123847 2123852) (-1229 "ULS.spad" 2113518 2113546 2114605 2115034) (-1228 "ULSCONS.spad" 2105914 2105934 2106284 2106433) (-1227 "ULSCCAT.spad" 2103651 2103671 2105760 2105909) (-1226 "ULSCCAT.spad" 2101496 2101518 2103607 2103612) (-1225 "ULSCAT.spad" 2099728 2099744 2101342 2101491) (-1224 "ULS2.spad" 2099242 2099295 2099718 2099723) (-1223 "UINT8.spad" 2099119 2099128 2099232 2099237) (-1222 "UINT64.spad" 2098995 2099004 2099109 2099114) (-1221 "UINT32.spad" 2098871 2098880 2098985 2098990) (-1220 "UINT16.spad" 2098747 2098756 2098861 2098866) (-1219 "UFD.spad" 2097812 2097821 2098673 2098742) (-1218 "UFD.spad" 2096939 2096950 2097802 2097807) (-1217 "UDVO.spad" 2095820 2095829 2096929 2096934) (-1216 "UDPO.spad" 2093313 2093324 2095776 2095781) (-1215 "TYPE.spad" 2093245 2093254 2093303 2093308) (-1214 "TYPEAST.spad" 2093164 2093173 2093235 2093240) (-1213 "TWOFACT.spad" 2091816 2091831 2093154 2093159) (-1212 "TUPLE.spad" 2091302 2091313 2091715 2091720) (-1211 "TUBETOOL.spad" 2088169 2088178 2091292 2091297) (-1210 "TUBE.spad" 2086816 2086833 2088159 2088164) (-1209 "TS.spad" 2085415 2085431 2086381 2086478) (-1208 "TSETCAT.spad" 2072542 2072559 2085383 2085410) (-1207 "TSETCAT.spad" 2059655 2059674 2072498 2072503) (-1206 "TRMANIP.spad" 2054021 2054038 2059361 2059366) (-1205 "TRIMAT.spad" 2052984 2053009 2054011 2054016) (-1204 "TRIGMNIP.spad" 2051511 2051528 2052974 2052979) (-1203 "TRIGCAT.spad" 2051023 2051032 2051501 2051506) (-1202 "TRIGCAT.spad" 2050533 2050544 2051013 2051018) (-1201 "TREE.spad" 2049108 2049119 2050140 2050167) (-1200 "TRANFUN.spad" 2048947 2048956 2049098 2049103) (-1199 "TRANFUN.spad" 2048784 2048795 2048937 2048942) (-1198 "TOPSP.spad" 2048458 2048467 2048774 2048779) (-1197 "TOOLSIGN.spad" 2048121 2048132 2048448 2048453) (-1196 "TEXTFILE.spad" 2046682 2046691 2048111 2048116) (-1195 "TEX.spad" 2043828 2043837 2046672 2046677) (-1194 "TEX1.spad" 2043384 2043395 2043818 2043823) (-1193 "TEMUTL.spad" 2042939 2042948 2043374 2043379) (-1192 "TBCMPPK.spad" 2041032 2041055 2042929 2042934) (-1191 "TBAGG.spad" 2040082 2040105 2041012 2041027) (-1190 "TBAGG.spad" 2039140 2039165 2040072 2040077) (-1189 "TANEXP.spad" 2038548 2038559 2039130 2039135) (-1188 "TABLE.spad" 2036959 2036982 2037229 2037256) (-1187 "TABLEAU.spad" 2036440 2036451 2036949 2036954) (-1186 "TABLBUMP.spad" 2033243 2033254 2036430 2036435) (-1185 "SYSTEM.spad" 2032471 2032480 2033233 2033238) (-1184 "SYSSOLP.spad" 2029954 2029965 2032461 2032466) (-1183 "SYSPTR.spad" 2029853 2029862 2029944 2029949) (-1182 "SYSNNI.spad" 2029035 2029046 2029843 2029848) (-1181 "SYSINT.spad" 2028439 2028450 2029025 2029030) (-1180 "SYNTAX.spad" 2024645 2024654 2028429 2028434) (-1179 "SYMTAB.spad" 2022713 2022722 2024635 2024640) (-1178 "SYMS.spad" 2018736 2018745 2022703 2022708) (-1177 "SYMPOLY.spad" 2017743 2017754 2017825 2017952) (-1176 "SYMFUNC.spad" 2017244 2017255 2017733 2017738) (-1175 "SYMBOL.spad" 2014747 2014756 2017234 2017239) (-1174 "SWITCH.spad" 2011518 2011527 2014737 2014742) (-1173 "SUTS.spad" 2008423 2008451 2009985 2010082) (-1172 "SUPXS.spad" 2005564 2005592 2006555 2006704) (-1171 "SUP.spad" 2002377 2002388 2003150 2003303) (-1170 "SUPFRACF.spad" 2001482 2001500 2002367 2002372) (-1169 "SUP2.spad" 2000874 2000887 2001472 2001477) (-1168 "SUMRF.spad" 1999848 1999859 2000864 2000869) (-1167 "SUMFS.spad" 1999485 1999502 1999838 1999843) (-1166 "SULS.spad" 1990030 1990058 1991130 1991559) (-1165 "SUCHTAST.spad" 1989799 1989808 1990020 1990025) (-1164 "SUCH.spad" 1989481 1989496 1989789 1989794) (-1163 "SUBSPACE.spad" 1981596 1981611 1989471 1989476) (-1162 "SUBRESP.spad" 1980766 1980780 1981552 1981557) (-1161 "STTF.spad" 1976865 1976881 1980756 1980761) (-1160 "STTFNC.spad" 1973333 1973349 1976855 1976860) (-1159 "STTAYLOR.spad" 1965987 1965998 1973214 1973219) (-1158 "STRTBL.spad" 1964492 1964509 1964641 1964668) (-1157 "STRING.spad" 1963901 1963910 1963915 1963942) (-1156 "STRICAT.spad" 1963689 1963698 1963869 1963896) (-1155 "STREAM.spad" 1960607 1960618 1963214 1963229) (-1154 "STREAM3.spad" 1960180 1960195 1960597 1960602) (-1153 "STREAM2.spad" 1959308 1959321 1960170 1960175) (-1152 "STREAM1.spad" 1959014 1959025 1959298 1959303) (-1151 "STINPROD.spad" 1957950 1957966 1959004 1959009) (-1150 "STEP.spad" 1957151 1957160 1957940 1957945) (-1149 "STBL.spad" 1955677 1955705 1955844 1955859) (-1148 "STAGG.spad" 1954752 1954763 1955667 1955672) (-1147 "STAGG.spad" 1953825 1953838 1954742 1954747) (-1146 "STACK.spad" 1953182 1953193 1953432 1953459) (-1145 "SREGSET.spad" 1950886 1950903 1952828 1952855) (-1144 "SRDCMPK.spad" 1949447 1949467 1950876 1950881) (-1143 "SRAGG.spad" 1944590 1944599 1949415 1949442) (-1142 "SRAGG.spad" 1939753 1939764 1944580 1944585) (-1141 "SQMATRIX.spad" 1937369 1937387 1938285 1938372) (-1140 "SPLTREE.spad" 1931921 1931934 1936805 1936832) (-1139 "SPLNODE.spad" 1928509 1928522 1931911 1931916) (-1138 "SPFCAT.spad" 1927318 1927327 1928499 1928504) (-1137 "SPECOUT.spad" 1925870 1925879 1927308 1927313) (-1136 "SPADXPT.spad" 1918009 1918018 1925860 1925865) (-1135 "spad-parser.spad" 1917474 1917483 1917999 1918004) (-1134 "SPADAST.spad" 1917175 1917184 1917464 1917469) (-1133 "SPACEC.spad" 1901374 1901385 1917165 1917170) (-1132 "SPACE3.spad" 1901150 1901161 1901364 1901369) (-1131 "SORTPAK.spad" 1900699 1900712 1901106 1901111) (-1130 "SOLVETRA.spad" 1898462 1898473 1900689 1900694) (-1129 "SOLVESER.spad" 1896990 1897001 1898452 1898457) (-1128 "SOLVERAD.spad" 1893016 1893027 1896980 1896985) (-1127 "SOLVEFOR.spad" 1891478 1891496 1893006 1893011) (-1126 "SNTSCAT.spad" 1891078 1891095 1891446 1891473) (-1125 "SMTS.spad" 1889350 1889376 1890643 1890740) (-1124 "SMP.spad" 1886825 1886845 1887215 1887342) (-1123 "SMITH.spad" 1885670 1885695 1886815 1886820) (-1122 "SMATCAT.spad" 1883780 1883810 1885614 1885665) (-1121 "SMATCAT.spad" 1881822 1881854 1883658 1883663) (-1120 "SKAGG.spad" 1880785 1880796 1881790 1881817) (-1119 "SINT.spad" 1879617 1879626 1880651 1880780) (-1118 "SIMPAN.spad" 1879345 1879354 1879607 1879612) (-1117 "SIG.spad" 1878675 1878684 1879335 1879340) (-1116 "SIGNRF.spad" 1877793 1877804 1878665 1878670) (-1115 "SIGNEF.spad" 1877072 1877089 1877783 1877788) (-1114 "SIGAST.spad" 1876457 1876466 1877062 1877067) (-1113 "SHP.spad" 1874385 1874400 1876413 1876418) (-1112 "SHDP.spad" 1864096 1864123 1864605 1864736) (-1111 "SGROUP.spad" 1863704 1863713 1864086 1864091) (-1110 "SGROUP.spad" 1863310 1863321 1863694 1863699) (-1109 "SGCF.spad" 1856473 1856482 1863300 1863305) (-1108 "SFRTCAT.spad" 1855403 1855420 1856441 1856468) (-1107 "SFRGCD.spad" 1854466 1854486 1855393 1855398) (-1106 "SFQCMPK.spad" 1849103 1849123 1854456 1854461) (-1105 "SFORT.spad" 1848542 1848556 1849093 1849098) (-1104 "SEXOF.spad" 1848385 1848425 1848532 1848537) (-1103 "SEX.spad" 1848277 1848286 1848375 1848380) (-1102 "SEXCAT.spad" 1845878 1845918 1848267 1848272) (-1101 "SET.spad" 1844202 1844213 1845299 1845338) (-1100 "SETMN.spad" 1842652 1842669 1844192 1844197) (-1099 "SETCAT.spad" 1841974 1841983 1842642 1842647) (-1098 "SETCAT.spad" 1841294 1841305 1841964 1841969) (-1097 "SETAGG.spad" 1837843 1837854 1841274 1841289) (-1096 "SETAGG.spad" 1834400 1834413 1837833 1837838) (-1095 "SEQAST.spad" 1834103 1834112 1834390 1834395) (-1094 "SEGXCAT.spad" 1833259 1833272 1834093 1834098) (-1093 "SEG.spad" 1833072 1833083 1833178 1833183) (-1092 "SEGCAT.spad" 1831997 1832008 1833062 1833067) (-1091 "SEGBIND.spad" 1831071 1831082 1831952 1831957) (-1090 "SEGBIND2.spad" 1830769 1830782 1831061 1831066) (-1089 "SEGAST.spad" 1830483 1830492 1830759 1830764) (-1088 "SEG2.spad" 1829918 1829931 1830439 1830444) (-1087 "SDVAR.spad" 1829194 1829205 1829908 1829913) (-1086 "SDPOL.spad" 1826620 1826631 1826911 1827038) (-1085 "SCPKG.spad" 1824709 1824720 1826610 1826615) (-1084 "SCOPE.spad" 1823862 1823871 1824699 1824704) (-1083 "SCACHE.spad" 1822558 1822569 1823852 1823857) (-1082 "SASTCAT.spad" 1822467 1822476 1822548 1822553) (-1081 "SAOS.spad" 1822339 1822348 1822457 1822462) (-1080 "SAERFFC.spad" 1822052 1822072 1822329 1822334) (-1079 "SAE.spad" 1820227 1820243 1820838 1820973) (-1078 "SAEFACT.spad" 1819928 1819948 1820217 1820222) (-1077 "RURPK.spad" 1817587 1817603 1819918 1819923) (-1076 "RULESET.spad" 1817040 1817064 1817577 1817582) (-1075 "RULE.spad" 1815280 1815304 1817030 1817035) (-1074 "RULECOLD.spad" 1815132 1815145 1815270 1815275) (-1073 "RTVALUE.spad" 1814867 1814876 1815122 1815127) (-1072 "RSTRCAST.spad" 1814584 1814593 1814857 1814862) (-1071 "RSETGCD.spad" 1810962 1810982 1814574 1814579) (-1070 "RSETCAT.spad" 1800898 1800915 1810930 1810957) (-1069 "RSETCAT.spad" 1790854 1790873 1800888 1800893) (-1068 "RSDCMPK.spad" 1789306 1789326 1790844 1790849) (-1067 "RRCC.spad" 1787690 1787720 1789296 1789301) (-1066 "RRCC.spad" 1786072 1786104 1787680 1787685) (-1065 "RPTAST.spad" 1785774 1785783 1786062 1786067) (-1064 "RPOLCAT.spad" 1765134 1765149 1785642 1785769) (-1063 "RPOLCAT.spad" 1744208 1744225 1764718 1764723) (-1062 "ROUTINE.spad" 1740091 1740100 1742855 1742882) (-1061 "ROMAN.spad" 1739419 1739428 1739957 1740086) (-1060 "ROIRC.spad" 1738499 1738531 1739409 1739414) (-1059 "RNS.spad" 1737402 1737411 1738401 1738494) (-1058 "RNS.spad" 1736391 1736402 1737392 1737397) (-1057 "RNG.spad" 1736126 1736135 1736381 1736386) (-1056 "RMODULE.spad" 1735891 1735902 1736116 1736121) (-1055 "RMCAT2.spad" 1735311 1735368 1735881 1735886) (-1054 "RMATRIX.spad" 1734135 1734154 1734478 1734517) (-1053 "RMATCAT.spad" 1729714 1729745 1734091 1734130) (-1052 "RMATCAT.spad" 1725183 1725216 1729562 1729567) (-1051 "RLINSET.spad" 1724577 1724588 1725173 1725178) (-1050 "RINTERP.spad" 1724465 1724485 1724567 1724572) (-1049 "RING.spad" 1723935 1723944 1724445 1724460) (-1048 "RING.spad" 1723413 1723424 1723925 1723930) (-1047 "RIDIST.spad" 1722805 1722814 1723403 1723408) (-1046 "RGCHAIN.spad" 1721388 1721404 1722290 1722317) (-1045 "RGBCSPC.spad" 1721169 1721181 1721378 1721383) (-1044 "RGBCMDL.spad" 1720699 1720711 1721159 1721164) (-1043 "RF.spad" 1718341 1718352 1720689 1720694) (-1042 "RFFACTOR.spad" 1717803 1717814 1718331 1718336) (-1041 "RFFACT.spad" 1717538 1717550 1717793 1717798) (-1040 "RFDIST.spad" 1716534 1716543 1717528 1717533) (-1039 "RETSOL.spad" 1715953 1715966 1716524 1716529) (-1038 "RETRACT.spad" 1715381 1715392 1715943 1715948) (-1037 "RETRACT.spad" 1714807 1714820 1715371 1715376) (-1036 "RETAST.spad" 1714619 1714628 1714797 1714802) (-1035 "RESULT.spad" 1712679 1712688 1713266 1713293) (-1034 "RESRING.spad" 1712026 1712073 1712617 1712674) (-1033 "RESLATC.spad" 1711350 1711361 1712016 1712021) (-1032 "REPSQ.spad" 1711081 1711092 1711340 1711345) (-1031 "REP.spad" 1708635 1708644 1711071 1711076) (-1030 "REPDB.spad" 1708342 1708353 1708625 1708630) (-1029 "REP2.spad" 1698000 1698011 1708184 1708189) (-1028 "REP1.spad" 1692196 1692207 1697950 1697955) (-1027 "REGSET.spad" 1689993 1690010 1691842 1691869) (-1026 "REF.spad" 1689328 1689339 1689948 1689953) (-1025 "REDORDER.spad" 1688534 1688551 1689318 1689323) (-1024 "RECLOS.spad" 1687317 1687337 1688021 1688114) (-1023 "REALSOLV.spad" 1686457 1686466 1687307 1687312) (-1022 "REAL.spad" 1686329 1686338 1686447 1686452) (-1021 "REAL0Q.spad" 1683627 1683642 1686319 1686324) (-1020 "REAL0.spad" 1680471 1680486 1683617 1683622) (-1019 "RDUCEAST.spad" 1680192 1680201 1680461 1680466) (-1018 "RDIV.spad" 1679847 1679872 1680182 1680187) (-1017 "RDIST.spad" 1679414 1679425 1679837 1679842) (-1016 "RDETRS.spad" 1678278 1678296 1679404 1679409) (-1015 "RDETR.spad" 1676417 1676435 1678268 1678273) (-1014 "RDEEFS.spad" 1675516 1675533 1676407 1676412) (-1013 "RDEEF.spad" 1674526 1674543 1675506 1675511) (-1012 "RCFIELD.spad" 1671712 1671721 1674428 1674521) (-1011 "RCFIELD.spad" 1668984 1668995 1671702 1671707) (-1010 "RCAGG.spad" 1666912 1666923 1668974 1668979) (-1009 "RCAGG.spad" 1664767 1664780 1666831 1666836) (-1008 "RATRET.spad" 1664127 1664138 1664757 1664762) (-1007 "RATFACT.spad" 1663819 1663831 1664117 1664122) (-1006 "RANDSRC.spad" 1663138 1663147 1663809 1663814) (-1005 "RADUTIL.spad" 1662894 1662903 1663128 1663133) (-1004 "RADIX.spad" 1659815 1659829 1661361 1661454) (-1003 "RADFF.spad" 1658228 1658265 1658347 1658503) (-1002 "RADCAT.spad" 1657823 1657832 1658218 1658223) (-1001 "RADCAT.spad" 1657416 1657427 1657813 1657818) (-1000 "QUEUE.spad" 1656764 1656775 1657023 1657050) (-999 "QUAT.spad" 1655346 1655356 1655688 1655753) (-998 "QUATCT2.spad" 1654967 1654985 1655336 1655341) (-997 "QUATCAT.spad" 1653138 1653148 1654897 1654962) (-996 "QUATCAT.spad" 1651060 1651072 1652821 1652826) (-995 "QUAGG.spad" 1649888 1649898 1651028 1651055) (-994 "QQUTAST.spad" 1649657 1649665 1649878 1649883) (-993 "QFORM.spad" 1649122 1649136 1649647 1649652) (-992 "QFCAT.spad" 1647825 1647835 1649024 1649117) (-991 "QFCAT.spad" 1646119 1646131 1647320 1647325) (-990 "QFCAT2.spad" 1645812 1645828 1646109 1646114) (-989 "QEQUAT.spad" 1645371 1645379 1645802 1645807) (-988 "QCMPACK.spad" 1640118 1640137 1645361 1645366) (-987 "QALGSET.spad" 1636197 1636229 1640032 1640037) (-986 "QALGSET2.spad" 1634193 1634211 1636187 1636192) (-985 "PWFFINTB.spad" 1631609 1631630 1634183 1634188) (-984 "PUSHVAR.spad" 1630948 1630967 1631599 1631604) (-983 "PTRANFN.spad" 1627076 1627086 1630938 1630943) (-982 "PTPACK.spad" 1624164 1624174 1627066 1627071) (-981 "PTFUNC2.spad" 1623987 1624001 1624154 1624159) (-980 "PTCAT.spad" 1623242 1623252 1623955 1623982) (-979 "PSQFR.spad" 1622549 1622573 1623232 1623237) (-978 "PSEUDLIN.spad" 1621435 1621445 1622539 1622544) (-977 "PSETPK.spad" 1606868 1606884 1621313 1621318) (-976 "PSETCAT.spad" 1600788 1600811 1606848 1606863) (-975 "PSETCAT.spad" 1594682 1594707 1600744 1600749) (-974 "PSCURVE.spad" 1593665 1593673 1594672 1594677) (-973 "PSCAT.spad" 1592448 1592477 1593563 1593660) (-972 "PSCAT.spad" 1591321 1591352 1592438 1592443) (-971 "PRTITION.spad" 1590282 1590290 1591311 1591316) (-970 "PRTDAST.spad" 1590001 1590009 1590272 1590277) (-969 "PRS.spad" 1579563 1579580 1589957 1589962) (-968 "PRQAGG.spad" 1578998 1579008 1579531 1579558) (-967 "PROPLOG.spad" 1578297 1578305 1578988 1578993) (-966 "PROPFRML.spad" 1577113 1577124 1578287 1578292) (-965 "PROPERTY.spad" 1576601 1576609 1577103 1577108) (-964 "PRODUCT.spad" 1574283 1574295 1574567 1574622) (-963 "PR.spad" 1572675 1572687 1573374 1573501) (-962 "PRINT.spad" 1572427 1572435 1572665 1572670) (-961 "PRIMES.spad" 1570680 1570690 1572417 1572422) (-960 "PRIMELT.spad" 1568761 1568775 1570670 1570675) (-959 "PRIMCAT.spad" 1568388 1568396 1568751 1568756) (-958 "PRIMARR.spad" 1567393 1567403 1567571 1567598) (-957 "PRIMARR2.spad" 1566160 1566172 1567383 1567388) (-956 "PREASSOC.spad" 1565542 1565554 1566150 1566155) (-955 "PPCURVE.spad" 1564679 1564687 1565532 1565537) (-954 "PORTNUM.spad" 1564454 1564462 1564669 1564674) (-953 "POLYROOT.spad" 1563303 1563325 1564410 1564415) (-952 "POLY.spad" 1560638 1560648 1561153 1561280) (-951 "POLYLIFT.spad" 1559903 1559926 1560628 1560633) (-950 "POLYCATQ.spad" 1558021 1558043 1559893 1559898) (-949 "POLYCAT.spad" 1551491 1551512 1557889 1558016) (-948 "POLYCAT.spad" 1544299 1544322 1550699 1550704) (-947 "POLY2UP.spad" 1543751 1543765 1544289 1544294) (-946 "POLY2.spad" 1543348 1543360 1543741 1543746) (-945 "POLUTIL.spad" 1542289 1542318 1543304 1543309) (-944 "POLTOPOL.spad" 1541037 1541052 1542279 1542284) (-943 "POINT.spad" 1539875 1539885 1539962 1539989) (-942 "PNTHEORY.spad" 1536577 1536585 1539865 1539870) (-941 "PMTOOLS.spad" 1535352 1535366 1536567 1536572) (-940 "PMSYM.spad" 1534901 1534911 1535342 1535347) (-939 "PMQFCAT.spad" 1534492 1534506 1534891 1534896) (-938 "PMPRED.spad" 1533971 1533985 1534482 1534487) (-937 "PMPREDFS.spad" 1533425 1533447 1533961 1533966) (-936 "PMPLCAT.spad" 1532505 1532523 1533357 1533362) (-935 "PMLSAGG.spad" 1532090 1532104 1532495 1532500) (-934 "PMKERNEL.spad" 1531669 1531681 1532080 1532085) (-933 "PMINS.spad" 1531249 1531259 1531659 1531664) (-932 "PMFS.spad" 1530826 1530844 1531239 1531244) (-931 "PMDOWN.spad" 1530116 1530130 1530816 1530821) (-930 "PMASS.spad" 1529126 1529134 1530106 1530111) (-929 "PMASSFS.spad" 1528093 1528109 1529116 1529121) (-928 "PLOTTOOL.spad" 1527873 1527881 1528083 1528088) (-927 "PLOT.spad" 1522796 1522804 1527863 1527868) (-926 "PLOT3D.spad" 1519260 1519268 1522786 1522791) (-925 "PLOT1.spad" 1518417 1518427 1519250 1519255) (-924 "PLEQN.spad" 1505707 1505734 1518407 1518412) (-923 "PINTERP.spad" 1505329 1505348 1505697 1505702) (-922 "PINTERPA.spad" 1505113 1505129 1505319 1505324) (-921 "PI.spad" 1504722 1504730 1505087 1505108) (-920 "PID.spad" 1503692 1503700 1504648 1504717) (-919 "PICOERCE.spad" 1503349 1503359 1503682 1503687) (-918 "PGROEB.spad" 1501950 1501964 1503339 1503344) (-917 "PGE.spad" 1493567 1493575 1501940 1501945) (-916 "PGCD.spad" 1492457 1492474 1493557 1493562) (-915 "PFRPAC.spad" 1491606 1491616 1492447 1492452) (-914 "PFR.spad" 1488269 1488279 1491508 1491601) (-913 "PFOTOOLS.spad" 1487527 1487543 1488259 1488264) (-912 "PFOQ.spad" 1486897 1486915 1487517 1487522) (-911 "PFO.spad" 1486316 1486343 1486887 1486892) (-910 "PF.spad" 1485890 1485902 1486121 1486214) (-909 "PFECAT.spad" 1483572 1483580 1485816 1485885) (-908 "PFECAT.spad" 1481282 1481292 1483528 1483533) (-907 "PFBRU.spad" 1479170 1479182 1481272 1481277) (-906 "PFBR.spad" 1476730 1476753 1479160 1479165) (-905 "PERM.spad" 1472415 1472425 1476560 1476575) (-904 "PERMGRP.spad" 1467177 1467187 1472405 1472410) (-903 "PERMCAT.spad" 1465735 1465745 1467157 1467172) (-902 "PERMAN.spad" 1464267 1464281 1465725 1465730) (-901 "PENDTREE.spad" 1463608 1463618 1463896 1463901) (-900 "PDRING.spad" 1462159 1462169 1463588 1463603) (-899 "PDRING.spad" 1460718 1460730 1462149 1462154) (-898 "PDEPROB.spad" 1459733 1459741 1460708 1460713) (-897 "PDEPACK.spad" 1453773 1453781 1459723 1459728) (-896 "PDECOMP.spad" 1453243 1453260 1453763 1453768) (-895 "PDECAT.spad" 1451599 1451607 1453233 1453238) (-894 "PCOMP.spad" 1451452 1451465 1451589 1451594) (-893 "PBWLB.spad" 1450040 1450057 1451442 1451447) (-892 "PATTERN.spad" 1444579 1444589 1450030 1450035) (-891 "PATTERN2.spad" 1444317 1444329 1444569 1444574) (-890 "PATTERN1.spad" 1442653 1442669 1444307 1444312) (-889 "PATRES.spad" 1440228 1440240 1442643 1442648) (-888 "PATRES2.spad" 1439900 1439914 1440218 1440223) (-887 "PATMATCH.spad" 1438097 1438128 1439608 1439613) (-886 "PATMAB.spad" 1437526 1437536 1438087 1438092) (-885 "PATLRES.spad" 1436612 1436626 1437516 1437521) (-884 "PATAB.spad" 1436376 1436386 1436602 1436607) (-883 "PARTPERM.spad" 1433776 1433784 1436366 1436371) (-882 "PARSURF.spad" 1433210 1433238 1433766 1433771) (-881 "PARSU2.spad" 1433007 1433023 1433200 1433205) (-880 "script-parser.spad" 1432527 1432535 1432997 1433002) (-879 "PARSCURV.spad" 1431961 1431989 1432517 1432522) (-878 "PARSC2.spad" 1431752 1431768 1431951 1431956) (-877 "PARPCURV.spad" 1431214 1431242 1431742 1431747) (-876 "PARPC2.spad" 1431005 1431021 1431204 1431209) (-875 "PAN2EXPR.spad" 1430417 1430425 1430995 1431000) (-874 "PALETTE.spad" 1429387 1429395 1430407 1430412) (-873 "PAIR.spad" 1428374 1428387 1428975 1428980) (-872 "PADICRC.spad" 1425708 1425726 1426879 1426972) (-871 "PADICRAT.spad" 1423723 1423735 1423944 1424037) (-870 "PADIC.spad" 1423418 1423430 1423649 1423718) (-869 "PADICCT.spad" 1421967 1421979 1423344 1423413) (-868 "PADEPAC.spad" 1420656 1420675 1421957 1421962) (-867 "PADE.spad" 1419408 1419424 1420646 1420651) (-866 "OWP.spad" 1418648 1418678 1419266 1419333) (-865 "OVERSET.spad" 1418221 1418229 1418638 1418643) (-864 "OVAR.spad" 1418002 1418025 1418211 1418216) (-863 "OUT.spad" 1417088 1417096 1417992 1417997) (-862 "OUTFORM.spad" 1406480 1406488 1417078 1417083) (-861 "OUTBFILE.spad" 1405898 1405906 1406470 1406475) (-860 "OUTBCON.spad" 1404904 1404912 1405888 1405893) (-859 "OUTBCON.spad" 1403908 1403918 1404894 1404899) (-858 "OSI.spad" 1403383 1403391 1403898 1403903) (-857 "OSGROUP.spad" 1403301 1403309 1403373 1403378) (-856 "ORTHPOL.spad" 1401786 1401796 1403218 1403223) (-855 "OREUP.spad" 1401239 1401267 1401466 1401505) (-854 "ORESUP.spad" 1400540 1400564 1400919 1400958) (-853 "OREPCTO.spad" 1398397 1398409 1400460 1400465) (-852 "OREPCAT.spad" 1392544 1392554 1398353 1398392) (-851 "OREPCAT.spad" 1386581 1386593 1392392 1392397) (-850 "ORDSET.spad" 1385753 1385761 1386571 1386576) (-849 "ORDSET.spad" 1384923 1384933 1385743 1385748) (-848 "ORDRING.spad" 1384313 1384321 1384903 1384918) (-847 "ORDRING.spad" 1383711 1383721 1384303 1384308) (-846 "ORDMON.spad" 1383566 1383574 1383701 1383706) (-845 "ORDFUNS.spad" 1382698 1382714 1383556 1383561) (-844 "ORDFIN.spad" 1382518 1382526 1382688 1382693) (-843 "ORDCOMP.spad" 1380983 1380993 1382065 1382094) (-842 "ORDCOMP2.spad" 1380276 1380288 1380973 1380978) (-841 "OPTPROB.spad" 1378914 1378922 1380266 1380271) (-840 "OPTPACK.spad" 1371323 1371331 1378904 1378909) (-839 "OPTCAT.spad" 1369002 1369010 1371313 1371318) (-838 "OPSIG.spad" 1368656 1368664 1368992 1368997) (-837 "OPQUERY.spad" 1368205 1368213 1368646 1368651) (-836 "OP.spad" 1367947 1367957 1368027 1368094) (-835 "OPERCAT.spad" 1367413 1367423 1367937 1367942) (-834 "OPERCAT.spad" 1366877 1366889 1367403 1367408) (-833 "ONECOMP.spad" 1365622 1365632 1366424 1366453) (-832 "ONECOMP2.spad" 1365046 1365058 1365612 1365617) (-831 "OMSERVER.spad" 1364052 1364060 1365036 1365041) (-830 "OMSAGG.spad" 1363840 1363850 1364008 1364047) (-829 "OMPKG.spad" 1362456 1362464 1363830 1363835) (-828 "OM.spad" 1361429 1361437 1362446 1362451) (-827 "OMLO.spad" 1360854 1360866 1361315 1361354) (-826 "OMEXPR.spad" 1360688 1360698 1360844 1360849) (-825 "OMERR.spad" 1360233 1360241 1360678 1360683) (-824 "OMERRK.spad" 1359267 1359275 1360223 1360228) (-823 "OMENC.spad" 1358611 1358619 1359257 1359262) (-822 "OMDEV.spad" 1352920 1352928 1358601 1358606) (-821 "OMCONN.spad" 1352329 1352337 1352910 1352915) (-820 "OINTDOM.spad" 1352092 1352100 1352255 1352324) (-819 "OFMONOID.spad" 1348341 1348351 1352082 1352087) (-818 "ODVAR.spad" 1347602 1347612 1348331 1348336) (-817 "ODR.spad" 1347246 1347272 1347414 1347563) (-816 "ODPOL.spad" 1344628 1344638 1344968 1345095) (-815 "ODP.spad" 1334475 1334495 1334848 1334979) (-814 "ODETOOLS.spad" 1333124 1333143 1334465 1334470) (-813 "ODESYS.spad" 1330818 1330835 1333114 1333119) (-812 "ODERTRIC.spad" 1326827 1326844 1330775 1330780) (-811 "ODERED.spad" 1326226 1326250 1326817 1326822) (-810 "ODERAT.spad" 1323841 1323858 1326216 1326221) (-809 "ODEPRRIC.spad" 1320878 1320900 1323831 1323836) (-808 "ODEPROB.spad" 1320135 1320143 1320868 1320873) (-807 "ODEPRIM.spad" 1317469 1317491 1320125 1320130) (-806 "ODEPAL.spad" 1316855 1316879 1317459 1317464) (-805 "ODEPACK.spad" 1303521 1303529 1316845 1316850) (-804 "ODEINT.spad" 1302956 1302972 1303511 1303516) (-803 "ODEIFTBL.spad" 1300351 1300359 1302946 1302951) (-802 "ODEEF.spad" 1295842 1295858 1300341 1300346) (-801 "ODECONST.spad" 1295379 1295397 1295832 1295837) (-800 "ODECAT.spad" 1293977 1293985 1295369 1295374) (-799 "OCT.spad" 1292117 1292127 1292831 1292870) (-798 "OCTCT2.spad" 1291763 1291784 1292107 1292112) (-797 "OC.spad" 1289559 1289569 1291719 1291758) (-796 "OC.spad" 1287080 1287092 1289242 1289247) (-795 "OCAMON.spad" 1286928 1286936 1287070 1287075) (-794 "OASGP.spad" 1286743 1286751 1286918 1286923) (-793 "OAMONS.spad" 1286265 1286273 1286733 1286738) (-792 "OAMON.spad" 1286126 1286134 1286255 1286260) (-791 "OAGROUP.spad" 1285988 1285996 1286116 1286121) (-790 "NUMTUBE.spad" 1285579 1285595 1285978 1285983) (-789 "NUMQUAD.spad" 1273555 1273563 1285569 1285574) (-788 "NUMODE.spad" 1264909 1264917 1273545 1273550) (-787 "NUMINT.spad" 1262475 1262483 1264899 1264904) (-786 "NUMFMT.spad" 1261315 1261323 1262465 1262470) (-785 "NUMERIC.spad" 1253429 1253439 1261120 1261125) (-784 "NTSCAT.spad" 1251937 1251953 1253397 1253424) (-783 "NTPOLFN.spad" 1251488 1251498 1251854 1251859) (-782 "NSUP.spad" 1244534 1244544 1249074 1249227) (-781 "NSUP2.spad" 1243926 1243938 1244524 1244529) (-780 "NSMP.spad" 1240157 1240176 1240465 1240592) (-779 "NREP.spad" 1238535 1238549 1240147 1240152) (-778 "NPCOEF.spad" 1237781 1237801 1238525 1238530) (-777 "NORMRETR.spad" 1237379 1237418 1237771 1237776) (-776 "NORMPK.spad" 1235281 1235300 1237369 1237374) (-775 "NORMMA.spad" 1234969 1234995 1235271 1235276) (-774 "NONE.spad" 1234710 1234718 1234959 1234964) (-773 "NONE1.spad" 1234386 1234396 1234700 1234705) (-772 "NODE1.spad" 1233873 1233889 1234376 1234381) (-771 "NNI.spad" 1232768 1232776 1233847 1233868) (-770 "NLINSOL.spad" 1231394 1231404 1232758 1232763) (-769 "NIPROB.spad" 1229935 1229943 1231384 1231389) (-768 "NFINTBAS.spad" 1227495 1227512 1229925 1229930) (-767 "NETCLT.spad" 1227469 1227480 1227485 1227490) (-766 "NCODIV.spad" 1225685 1225701 1227459 1227464) (-765 "NCNTFRAC.spad" 1225327 1225341 1225675 1225680) (-764 "NCEP.spad" 1223493 1223507 1225317 1225322) (-763 "NASRING.spad" 1223089 1223097 1223483 1223488) (-762 "NASRING.spad" 1222683 1222693 1223079 1223084) (-761 "NARNG.spad" 1222035 1222043 1222673 1222678) (-760 "NARNG.spad" 1221385 1221395 1222025 1222030) (-759 "NAGSP.spad" 1220462 1220470 1221375 1221380) (-758 "NAGS.spad" 1210123 1210131 1220452 1220457) (-757 "NAGF07.spad" 1208554 1208562 1210113 1210118) (-756 "NAGF04.spad" 1202956 1202964 1208544 1208549) (-755 "NAGF02.spad" 1197025 1197033 1202946 1202951) (-754 "NAGF01.spad" 1192786 1192794 1197015 1197020) (-753 "NAGE04.spad" 1186486 1186494 1192776 1192781) (-752 "NAGE02.spad" 1177146 1177154 1186476 1186481) (-751 "NAGE01.spad" 1173148 1173156 1177136 1177141) (-750 "NAGD03.spad" 1171152 1171160 1173138 1173143) (-749 "NAGD02.spad" 1163899 1163907 1171142 1171147) (-748 "NAGD01.spad" 1158192 1158200 1163889 1163894) (-747 "NAGC06.spad" 1154067 1154075 1158182 1158187) (-746 "NAGC05.spad" 1152568 1152576 1154057 1154062) (-745 "NAGC02.spad" 1151835 1151843 1152558 1152563) (-744 "NAALG.spad" 1151376 1151386 1151803 1151830) (-743 "NAALG.spad" 1150937 1150949 1151366 1151371) (-742 "MULTSQFR.spad" 1147895 1147912 1150927 1150932) (-741 "MULTFACT.spad" 1147278 1147295 1147885 1147890) (-740 "MTSCAT.spad" 1145372 1145393 1147176 1147273) (-739 "MTHING.spad" 1145031 1145041 1145362 1145367) (-738 "MSYSCMD.spad" 1144465 1144473 1145021 1145026) (-737 "MSET.spad" 1142423 1142433 1144171 1144210) (-736 "MSETAGG.spad" 1142268 1142278 1142391 1142418) (-735 "MRING.spad" 1139245 1139257 1141976 1142043) (-734 "MRF2.spad" 1138815 1138829 1139235 1139240) (-733 "MRATFAC.spad" 1138361 1138378 1138805 1138810) (-732 "MPRFF.spad" 1136401 1136420 1138351 1138356) (-731 "MPOLY.spad" 1133872 1133887 1134231 1134358) (-730 "MPCPF.spad" 1133136 1133155 1133862 1133867) (-729 "MPC3.spad" 1132953 1132993 1133126 1133131) (-728 "MPC2.spad" 1132599 1132632 1132943 1132948) (-727 "MONOTOOL.spad" 1130950 1130967 1132589 1132594) (-726 "MONOID.spad" 1130269 1130277 1130940 1130945) (-725 "MONOID.spad" 1129586 1129596 1130259 1130264) (-724 "MONOGEN.spad" 1128334 1128347 1129446 1129581) (-723 "MONOGEN.spad" 1127104 1127119 1128218 1128223) (-722 "MONADWU.spad" 1125134 1125142 1127094 1127099) (-721 "MONADWU.spad" 1123162 1123172 1125124 1125129) (-720 "MONAD.spad" 1122322 1122330 1123152 1123157) (-719 "MONAD.spad" 1121480 1121490 1122312 1122317) (-718 "MOEBIUS.spad" 1120216 1120230 1121460 1121475) (-717 "MODULE.spad" 1120086 1120096 1120184 1120211) (-716 "MODULE.spad" 1119976 1119988 1120076 1120081) (-715 "MODRING.spad" 1119311 1119350 1119956 1119971) (-714 "MODOP.spad" 1117976 1117988 1119133 1119200) (-713 "MODMONOM.spad" 1117707 1117725 1117966 1117971) (-712 "MODMON.spad" 1114502 1114518 1115221 1115374) (-711 "MODFIELD.spad" 1113864 1113903 1114404 1114497) (-710 "MMLFORM.spad" 1112724 1112732 1113854 1113859) (-709 "MMAP.spad" 1112466 1112500 1112714 1112719) (-708 "MLO.spad" 1110925 1110935 1112422 1112461) (-707 "MLIFT.spad" 1109537 1109554 1110915 1110920) (-706 "MKUCFUNC.spad" 1109072 1109090 1109527 1109532) (-705 "MKRECORD.spad" 1108676 1108689 1109062 1109067) (-704 "MKFUNC.spad" 1108083 1108093 1108666 1108671) (-703 "MKFLCFN.spad" 1107051 1107061 1108073 1108078) (-702 "MKBCFUNC.spad" 1106546 1106564 1107041 1107046) (-701 "MINT.spad" 1105985 1105993 1106448 1106541) (-700 "MHROWRED.spad" 1104496 1104506 1105975 1105980) (-699 "MFLOAT.spad" 1103016 1103024 1104386 1104491) (-698 "MFINFACT.spad" 1102416 1102438 1103006 1103011) (-697 "MESH.spad" 1100198 1100206 1102406 1102411) (-696 "MDDFACT.spad" 1098409 1098419 1100188 1100193) (-695 "MDAGG.spad" 1097700 1097710 1098389 1098404) (-694 "MCMPLX.spad" 1093711 1093719 1094325 1094526) (-693 "MCDEN.spad" 1092921 1092933 1093701 1093706) (-692 "MCALCFN.spad" 1090043 1090069 1092911 1092916) (-691 "MAYBE.spad" 1089327 1089338 1090033 1090038) (-690 "MATSTOR.spad" 1086635 1086645 1089317 1089322) (-689 "MATRIX.spad" 1085339 1085349 1085823 1085850) (-688 "MATLIN.spad" 1082683 1082707 1085223 1085228) (-687 "MATCAT.spad" 1074412 1074434 1082651 1082678) (-686 "MATCAT.spad" 1066013 1066037 1074254 1074259) (-685 "MATCAT2.spad" 1065295 1065343 1066003 1066008) (-684 "MAPPKG3.spad" 1064210 1064224 1065285 1065290) (-683 "MAPPKG2.spad" 1063548 1063560 1064200 1064205) (-682 "MAPPKG1.spad" 1062376 1062386 1063538 1063543) (-681 "MAPPAST.spad" 1061691 1061699 1062366 1062371) (-680 "MAPHACK3.spad" 1061503 1061517 1061681 1061686) (-679 "MAPHACK2.spad" 1061272 1061284 1061493 1061498) (-678 "MAPHACK1.spad" 1060916 1060926 1061262 1061267) (-677 "MAGMA.spad" 1058706 1058723 1060906 1060911) (-676 "MACROAST.spad" 1058285 1058293 1058696 1058701) (-675 "M3D.spad" 1056005 1056015 1057663 1057668) (-674 "LZSTAGG.spad" 1053243 1053253 1055995 1056000) (-673 "LZSTAGG.spad" 1050479 1050491 1053233 1053238) (-672 "LWORD.spad" 1047184 1047201 1050469 1050474) (-671 "LSTAST.spad" 1046968 1046976 1047174 1047179) (-670 "LSQM.spad" 1045198 1045212 1045592 1045643) (-669 "LSPP.spad" 1044733 1044750 1045188 1045193) (-668 "LSMP.spad" 1043583 1043611 1044723 1044728) (-667 "LSMP1.spad" 1041401 1041415 1043573 1043578) (-666 "LSAGG.spad" 1041070 1041080 1041369 1041396) (-665 "LSAGG.spad" 1040759 1040771 1041060 1041065) (-664 "LPOLY.spad" 1039713 1039732 1040615 1040684) (-663 "LPEFRAC.spad" 1038984 1038994 1039703 1039708) (-662 "LO.spad" 1038385 1038399 1038918 1038945) (-661 "LOGIC.spad" 1037987 1037995 1038375 1038380) (-660 "LOGIC.spad" 1037587 1037597 1037977 1037982) (-659 "LODOOPS.spad" 1036517 1036529 1037577 1037582) (-658 "LODO.spad" 1035901 1035917 1036197 1036236) (-657 "LODOF.spad" 1034947 1034964 1035858 1035863) (-656 "LODOCAT.spad" 1033613 1033623 1034903 1034942) (-655 "LODOCAT.spad" 1032277 1032289 1033569 1033574) (-654 "LODO2.spad" 1031550 1031562 1031957 1031996) (-653 "LODO1.spad" 1030950 1030960 1031230 1031269) (-652 "LODEEF.spad" 1029752 1029770 1030940 1030945) (-651 "LNAGG.spad" 1025584 1025594 1029742 1029747) (-650 "LNAGG.spad" 1021380 1021392 1025540 1025545) (-649 "LMOPS.spad" 1018148 1018165 1021370 1021375) (-648 "LMODULE.spad" 1017916 1017926 1018138 1018143) (-647 "LMDICT.spad" 1017203 1017213 1017467 1017494) (-646 "LLINSET.spad" 1016600 1016610 1017193 1017198) (-645 "LITERAL.spad" 1016506 1016517 1016590 1016595) (-644 "LIST.spad" 1014241 1014251 1015653 1015680) (-643 "LIST3.spad" 1013552 1013566 1014231 1014236) (-642 "LIST2.spad" 1012254 1012266 1013542 1013547) (-641 "LIST2MAP.spad" 1009157 1009169 1012244 1012249) (-640 "LINSET.spad" 1008779 1008789 1009147 1009152) (-639 "LINEXP.spad" 1008213 1008223 1008759 1008774) (-638 "LINDEP.spad" 1007022 1007034 1008125 1008130) (-637 "LIMITRF.spad" 1004950 1004960 1007012 1007017) (-636 "LIMITPS.spad" 1003853 1003866 1004940 1004945) (-635 "LIE.spad" 1001869 1001881 1003143 1003288) (-634 "LIECAT.spad" 1001345 1001355 1001795 1001864) (-633 "LIECAT.spad" 1000849 1000861 1001301 1001306) (-632 "LIB.spad" 998899 998907 999508 999523) (-631 "LGROBP.spad" 996252 996271 998889 998894) (-630 "LF.spad" 995207 995223 996242 996247) (-629 "LFCAT.spad" 994266 994274 995197 995202) (-628 "LEXTRIPK.spad" 989769 989784 994256 994261) (-627 "LEXP.spad" 987772 987799 989749 989764) (-626 "LETAST.spad" 987471 987479 987762 987767) (-625 "LEADCDET.spad" 985869 985886 987461 987466) (-624 "LAZM3PK.spad" 984573 984595 985859 985864) (-623 "LAUPOL.spad" 983266 983279 984166 984235) (-622 "LAPLACE.spad" 982849 982865 983256 983261) (-621 "LA.spad" 982289 982303 982771 982810) (-620 "LALG.spad" 982065 982075 982269 982284) (-619 "LALG.spad" 981849 981861 982055 982060) (-618 "KVTFROM.spad" 981584 981594 981839 981844) (-617 "KTVLOGIC.spad" 981096 981104 981574 981579) (-616 "KRCFROM.spad" 980834 980844 981086 981091) (-615 "KOVACIC.spad" 979557 979574 980824 980829) (-614 "KONVERT.spad" 979279 979289 979547 979552) (-613 "KOERCE.spad" 979016 979026 979269 979274) (-612 "KERNEL.spad" 977671 977681 978800 978805) (-611 "KERNEL2.spad" 977374 977386 977661 977666) (-610 "KDAGG.spad" 976483 976505 977354 977369) (-609 "KDAGG.spad" 975600 975624 976473 976478) (-608 "KAFILE.spad" 974563 974579 974798 974825) (-607 "JORDAN.spad" 972392 972404 973853 973998) (-606 "JOINAST.spad" 972086 972094 972382 972387) (-605 "JAVACODE.spad" 971952 971960 972076 972081) (-604 "IXAGG.spad" 970085 970109 971942 971947) (-603 "IXAGG.spad" 968073 968099 969932 969937) (-602 "IVECTOR.spad" 966843 966858 966998 967025) (-601 "ITUPLE.spad" 966004 966014 966833 966838) (-600 "ITRIGMNP.spad" 964843 964862 965994 965999) (-599 "ITFUN3.spad" 964349 964363 964833 964838) (-598 "ITFUN2.spad" 964093 964105 964339 964344) (-597 "ITAYLOR.spad" 961887 961902 963929 964054) (-596 "ISUPS.spad" 954324 954339 960861 960958) (-595 "ISUMP.spad" 953825 953841 954314 954319) (-594 "ISTRING.spad" 952828 952841 952994 953021) (-593 "ISAST.spad" 952547 952555 952818 952823) (-592 "IRURPK.spad" 951264 951283 952537 952542) (-591 "IRSN.spad" 949268 949276 951254 951259) (-590 "IRRF2F.spad" 947753 947763 949224 949229) (-589 "IRREDFFX.spad" 947354 947365 947743 947748) (-588 "IROOT.spad" 945693 945703 947344 947349) (-587 "IR.spad" 943494 943508 945548 945575) (-586 "IR2.spad" 942522 942538 943484 943489) (-585 "IR2F.spad" 941728 941744 942512 942517) (-584 "IPRNTPK.spad" 941488 941496 941718 941723) (-583 "IPF.spad" 941053 941065 941293 941386) (-582 "IPADIC.spad" 940814 940840 940979 941048) (-581 "IP4ADDR.spad" 940371 940379 940804 940809) (-580 "IOMODE.spad" 939992 940000 940361 940366) (-579 "IOBFILE.spad" 939353 939361 939982 939987) (-578 "IOBCON.spad" 939218 939226 939343 939348) (-577 "INVLAPLA.spad" 938867 938883 939208 939213) (-576 "INTTR.spad" 932249 932266 938857 938862) (-575 "INTTOOLS.spad" 930004 930020 931823 931828) (-574 "INTSLPE.spad" 929324 929332 929994 929999) (-573 "INTRVL.spad" 928890 928900 929238 929319) (-572 "INTRF.spad" 927314 927328 928880 928885) (-571 "INTRET.spad" 926746 926756 927304 927309) (-570 "INTRAT.spad" 925473 925490 926736 926741) (-569 "INTPM.spad" 923858 923874 925116 925121) (-568 "INTPAF.spad" 921722 921740 923790 923795) (-567 "INTPACK.spad" 912096 912104 921712 921717) (-566 "INT.spad" 911544 911552 911950 912091) (-565 "INTHERTR.spad" 910818 910835 911534 911539) (-564 "INTHERAL.spad" 910488 910512 910808 910813) (-563 "INTHEORY.spad" 906927 906935 910478 910483) (-562 "INTG0.spad" 900660 900678 906859 906864) (-561 "INTFTBL.spad" 894689 894697 900650 900655) (-560 "INTFACT.spad" 893748 893758 894679 894684) (-559 "INTEF.spad" 892133 892149 893738 893743) (-558 "INTDOM.spad" 890756 890764 892059 892128) (-557 "INTDOM.spad" 889441 889451 890746 890751) (-556 "INTCAT.spad" 887700 887710 889355 889436) (-555 "INTBIT.spad" 887207 887215 887690 887695) (-554 "INTALG.spad" 886395 886422 887197 887202) (-553 "INTAF.spad" 885895 885911 886385 886390) (-552 "INTABL.spad" 884413 884444 884576 884603) (-551 "INT8.spad" 884293 884301 884403 884408) (-550 "INT64.spad" 884172 884180 884283 884288) (-549 "INT32.spad" 884051 884059 884162 884167) (-548 "INT16.spad" 883930 883938 884041 884046) (-547 "INS.spad" 881433 881441 883832 883925) (-546 "INS.spad" 879022 879032 881423 881428) (-545 "INPSIGN.spad" 878470 878483 879012 879017) (-544 "INPRODPF.spad" 877566 877585 878460 878465) (-543 "INPRODFF.spad" 876654 876678 877556 877561) (-542 "INNMFACT.spad" 875629 875646 876644 876649) (-541 "INMODGCD.spad" 875117 875147 875619 875624) (-540 "INFSP.spad" 873414 873436 875107 875112) (-539 "INFPROD0.spad" 872494 872513 873404 873409) (-538 "INFORM.spad" 869693 869701 872484 872489) (-537 "INFORM1.spad" 869318 869328 869683 869688) (-536 "INFINITY.spad" 868870 868878 869308 869313) (-535 "INETCLTS.spad" 868847 868855 868860 868865) (-534 "INEP.spad" 867385 867407 868837 868842) (-533 "INDE.spad" 867114 867131 867375 867380) (-532 "INCRMAPS.spad" 866535 866545 867104 867109) (-531 "INBFILE.spad" 865607 865615 866525 866530) (-530 "INBFF.spad" 861401 861412 865597 865602) (-529 "INBCON.spad" 859691 859699 861391 861396) (-528 "INBCON.spad" 857979 857989 859681 859686) (-527 "INAST.spad" 857640 857648 857969 857974) (-526 "IMPTAST.spad" 857348 857356 857630 857635) (-525 "IMATRIX.spad" 856293 856319 856805 856832) (-524 "IMATQF.spad" 855387 855431 856249 856254) (-523 "IMATLIN.spad" 853992 854016 855343 855348) (-522 "ILIST.spad" 852650 852665 853175 853202) (-521 "IIARRAY2.spad" 852038 852076 852257 852284) (-520 "IFF.spad" 851448 851464 851719 851812) (-519 "IFAST.spad" 851062 851070 851438 851443) (-518 "IFARRAY.spad" 848555 848570 850245 850272) (-517 "IFAMON.spad" 848417 848434 848511 848516) (-516 "IEVALAB.spad" 847822 847834 848407 848412) (-515 "IEVALAB.spad" 847225 847239 847812 847817) (-514 "IDPO.spad" 847023 847035 847215 847220) (-513 "IDPOAMS.spad" 846779 846791 847013 847018) (-512 "IDPOAM.spad" 846499 846511 846769 846774) (-511 "IDPC.spad" 845437 845449 846489 846494) (-510 "IDPAM.spad" 845182 845194 845427 845432) (-509 "IDPAG.spad" 844929 844941 845172 845177) (-508 "IDENT.spad" 844579 844587 844919 844924) (-507 "IDECOMP.spad" 841818 841836 844569 844574) (-506 "IDEAL.spad" 836767 836806 841753 841758) (-505 "ICDEN.spad" 835956 835972 836757 836762) (-504 "ICARD.spad" 835147 835155 835946 835951) (-503 "IBPTOOLS.spad" 833754 833771 835137 835142) (-502 "IBITS.spad" 832957 832970 833390 833417) (-501 "IBATOOL.spad" 829934 829953 832947 832952) (-500 "IBACHIN.spad" 828441 828456 829924 829929) (-499 "IARRAY2.spad" 827429 827455 828048 828075) (-498 "IARRAY1.spad" 826474 826489 826612 826639) (-497 "IAN.spad" 824697 824705 826290 826383) (-496 "IALGFACT.spad" 824300 824333 824687 824692) (-495 "HYPCAT.spad" 823724 823732 824290 824295) (-494 "HYPCAT.spad" 823146 823156 823714 823719) (-493 "HOSTNAME.spad" 822954 822962 823136 823141) (-492 "HOMOTOP.spad" 822697 822707 822944 822949) (-491 "HOAGG.spad" 819979 819989 822687 822692) (-490 "HOAGG.spad" 817036 817048 819746 819751) (-489 "HEXADEC.spad" 815138 815146 815503 815596) (-488 "HEUGCD.spad" 814173 814184 815128 815133) (-487 "HELLFDIV.spad" 813763 813787 814163 814168) (-486 "HEAP.spad" 813155 813165 813370 813397) (-485 "HEADAST.spad" 812692 812700 813145 813150) (-484 "HDP.spad" 802535 802551 802912 803043) (-483 "HDMP.spad" 799749 799764 800365 800492) (-482 "HB.spad" 798000 798008 799739 799744) (-481 "HASHTBL.spad" 796470 796501 796681 796708) (-480 "HASAST.spad" 796186 796194 796460 796465) (-479 "HACKPI.spad" 795677 795685 796088 796181) (-478 "GTSET.spad" 794616 794632 795323 795350) (-477 "GSTBL.spad" 793135 793170 793309 793324) (-476 "GSERIES.spad" 790306 790333 791267 791416) (-475 "GROUP.spad" 789579 789587 790286 790301) (-474 "GROUP.spad" 788860 788870 789569 789574) (-473 "GROEBSOL.spad" 787354 787375 788850 788855) (-472 "GRMOD.spad" 785925 785937 787344 787349) (-471 "GRMOD.spad" 784494 784508 785915 785920) (-470 "GRIMAGE.spad" 777383 777391 784484 784489) (-469 "GRDEF.spad" 775762 775770 777373 777378) (-468 "GRAY.spad" 774225 774233 775752 775757) (-467 "GRALG.spad" 773302 773314 774215 774220) (-466 "GRALG.spad" 772377 772391 773292 773297) (-465 "GPOLSET.spad" 771831 771854 772059 772086) (-464 "GOSPER.spad" 771100 771118 771821 771826) (-463 "GMODPOL.spad" 770248 770275 771068 771095) (-462 "GHENSEL.spad" 769331 769345 770238 770243) (-461 "GENUPS.spad" 765624 765637 769321 769326) (-460 "GENUFACT.spad" 765201 765211 765614 765619) (-459 "GENPGCD.spad" 764787 764804 765191 765196) (-458 "GENMFACT.spad" 764239 764258 764777 764782) (-457 "GENEEZ.spad" 762190 762203 764229 764234) (-456 "GDMP.spad" 759246 759263 760020 760147) (-455 "GCNAALG.spad" 753169 753196 759040 759107) (-454 "GCDDOM.spad" 752345 752353 753095 753164) (-453 "GCDDOM.spad" 751583 751593 752335 752340) (-452 "GB.spad" 749109 749147 751539 751544) (-451 "GBINTERN.spad" 745129 745167 749099 749104) (-450 "GBF.spad" 740896 740934 745119 745124) (-449 "GBEUCLID.spad" 738778 738816 740886 740891) (-448 "GAUSSFAC.spad" 738091 738099 738768 738773) (-447 "GALUTIL.spad" 736417 736427 738047 738052) (-446 "GALPOLYU.spad" 734871 734884 736407 736412) (-445 "GALFACTU.spad" 733044 733063 734861 734866) (-444 "GALFACT.spad" 723233 723244 733034 733039) (-443 "FVFUN.spad" 720256 720264 723223 723228) (-442 "FVC.spad" 719308 719316 720246 720251) (-441 "FUNDESC.spad" 718986 718994 719298 719303) (-440 "FUNCTION.spad" 718835 718847 718976 718981) (-439 "FT.spad" 717132 717140 718825 718830) (-438 "FTEM.spad" 716297 716305 717122 717127) (-437 "FSUPFACT.spad" 715197 715216 716233 716238) (-436 "FST.spad" 713283 713291 715187 715192) (-435 "FSRED.spad" 712763 712779 713273 713278) (-434 "FSPRMELT.spad" 711645 711661 712720 712725) (-433 "FSPECF.spad" 709736 709752 711635 711640) (-432 "FS.spad" 704004 704014 709511 709731) (-431 "FS.spad" 698050 698062 703559 703564) (-430 "FSINT.spad" 697710 697726 698040 698045) (-429 "FSERIES.spad" 696901 696913 697530 697629) (-428 "FSCINT.spad" 696218 696234 696891 696896) (-427 "FSAGG.spad" 695335 695345 696174 696213) (-426 "FSAGG.spad" 694414 694426 695255 695260) (-425 "FSAGG2.spad" 693157 693173 694404 694409) (-424 "FS2UPS.spad" 687648 687682 693147 693152) (-423 "FS2.spad" 687295 687311 687638 687643) (-422 "FS2EXPXP.spad" 686420 686443 687285 687290) (-421 "FRUTIL.spad" 685374 685384 686410 686415) (-420 "FR.spad" 679090 679100 684398 684467) (-419 "FRNAALG.spad" 674209 674219 679032 679085) (-418 "FRNAALG.spad" 669340 669352 674165 674170) (-417 "FRNAAF2.spad" 668796 668814 669330 669335) (-416 "FRMOD.spad" 668206 668236 668727 668732) (-415 "FRIDEAL.spad" 667431 667452 668186 668201) (-414 "FRIDEAL2.spad" 667035 667067 667421 667426) (-413 "FRETRCT.spad" 666546 666556 667025 667030) (-412 "FRETRCT.spad" 665923 665935 666404 666409) (-411 "FRAMALG.spad" 664271 664284 665879 665918) (-410 "FRAMALG.spad" 662651 662666 664261 664266) (-409 "FRAC.spad" 659750 659760 660153 660326) (-408 "FRAC2.spad" 659355 659367 659740 659745) (-407 "FR2.spad" 658691 658703 659345 659350) (-406 "FPS.spad" 655506 655514 658581 658686) (-405 "FPS.spad" 652349 652359 655426 655431) (-404 "FPC.spad" 651395 651403 652251 652344) (-403 "FPC.spad" 650527 650537 651385 651390) (-402 "FPATMAB.spad" 650289 650299 650517 650522) (-401 "FPARFRAC.spad" 648776 648793 650279 650284) (-400 "FORTRAN.spad" 647282 647325 648766 648771) (-399 "FORT.spad" 646231 646239 647272 647277) (-398 "FORTFN.spad" 643401 643409 646221 646226) (-397 "FORTCAT.spad" 643085 643093 643391 643396) (-396 "FORMULA.spad" 640559 640567 643075 643080) (-395 "FORMULA1.spad" 640038 640048 640549 640554) (-394 "FORDER.spad" 639729 639753 640028 640033) (-393 "FOP.spad" 638930 638938 639719 639724) (-392 "FNLA.spad" 638354 638376 638898 638925) (-391 "FNCAT.spad" 636949 636957 638344 638349) (-390 "FNAME.spad" 636841 636849 636939 636944) (-389 "FMTC.spad" 636639 636647 636767 636836) (-388 "FMONOID.spad" 633756 633766 636595 636600) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2267207 2267212 2267217 2267222) (-2 NIL 2267187 2267192 2267197 2267202) (-1 NIL 2267167 2267172 2267177 2267182) (0 NIL 2267147 2267152 2267157 2267162) (-1294 "ZMOD.spad" 2266956 2266969 2267085 2267142) (-1293 "ZLINDEP.spad" 2266022 2266033 2266946 2266951) (-1292 "ZDSOLVE.spad" 2255967 2255989 2266012 2266017) (-1291 "YSTREAM.spad" 2255462 2255473 2255957 2255962) (-1290 "XRPOLY.spad" 2254682 2254702 2255318 2255387) (-1289 "XPR.spad" 2252477 2252490 2254400 2254499) (-1288 "XPOLY.spad" 2252032 2252043 2252333 2252402) (-1287 "XPOLYC.spad" 2251351 2251367 2251958 2252027) (-1286 "XPBWPOLY.spad" 2249788 2249808 2251131 2251200) (-1285 "XF.spad" 2248251 2248266 2249690 2249783) (-1284 "XF.spad" 2246694 2246711 2248135 2248140) (-1283 "XFALG.spad" 2243742 2243758 2246620 2246689) (-1282 "XEXPPKG.spad" 2242993 2243019 2243732 2243737) (-1281 "XDPOLY.spad" 2242607 2242623 2242849 2242918) (-1280 "XALG.spad" 2242267 2242278 2242563 2242602) (-1279 "WUTSET.spad" 2238106 2238123 2241913 2241940) (-1278 "WP.spad" 2237305 2237349 2237964 2238031) (-1277 "WHILEAST.spad" 2237103 2237112 2237295 2237300) (-1276 "WHEREAST.spad" 2236774 2236783 2237093 2237098) (-1275 "WFFINTBS.spad" 2234437 2234459 2236764 2236769) (-1274 "WEIER.spad" 2232659 2232670 2234427 2234432) (-1273 "VSPACE.spad" 2232332 2232343 2232627 2232654) (-1272 "VSPACE.spad" 2232025 2232038 2232322 2232327) (-1271 "VOID.spad" 2231702 2231711 2232015 2232020) (-1270 "VIEW.spad" 2229382 2229391 2231692 2231697) (-1269 "VIEWDEF.spad" 2224583 2224592 2229372 2229377) (-1268 "VIEW3D.spad" 2208544 2208553 2224573 2224578) (-1267 "VIEW2D.spad" 2196435 2196444 2208534 2208539) (-1266 "VECTOR.spad" 2195109 2195120 2195360 2195387) (-1265 "VECTOR2.spad" 2193748 2193761 2195099 2195104) (-1264 "VECTCAT.spad" 2191652 2191663 2193716 2193743) (-1263 "VECTCAT.spad" 2189363 2189376 2191429 2191434) (-1262 "VARIABLE.spad" 2189143 2189158 2189353 2189358) (-1261 "UTYPE.spad" 2188787 2188796 2189133 2189138) (-1260 "UTSODETL.spad" 2188082 2188106 2188743 2188748) (-1259 "UTSODE.spad" 2186298 2186318 2188072 2188077) (-1258 "UTS.spad" 2181111 2181139 2184765 2184862) (-1257 "UTSCAT.spad" 2178590 2178606 2181009 2181106) (-1256 "UTSCAT.spad" 2175713 2175731 2178134 2178139) (-1255 "UTS2.spad" 2175308 2175343 2175703 2175708) (-1254 "URAGG.spad" 2169981 2169992 2175298 2175303) (-1253 "URAGG.spad" 2164618 2164631 2169937 2169942) (-1252 "UPXSSING.spad" 2162263 2162289 2163699 2163832) (-1251 "UPXS.spad" 2159417 2159445 2160395 2160544) (-1250 "UPXSCONS.spad" 2157176 2157196 2157549 2157698) (-1249 "UPXSCCA.spad" 2155747 2155767 2157022 2157171) (-1248 "UPXSCCA.spad" 2154460 2154482 2155737 2155742) (-1247 "UPXSCAT.spad" 2153049 2153065 2154306 2154455) (-1246 "UPXS2.spad" 2152592 2152645 2153039 2153044) (-1245 "UPSQFREE.spad" 2151006 2151020 2152582 2152587) (-1244 "UPSCAT.spad" 2148617 2148641 2150904 2151001) (-1243 "UPSCAT.spad" 2145934 2145960 2148223 2148228) (-1242 "UPOLYC.spad" 2140974 2140985 2145776 2145929) (-1241 "UPOLYC.spad" 2135906 2135919 2140710 2140715) (-1240 "UPOLYC2.spad" 2135377 2135396 2135896 2135901) (-1239 "UP.spad" 2132576 2132591 2132963 2133116) (-1238 "UPMP.spad" 2131476 2131489 2132566 2132571) (-1237 "UPDIVP.spad" 2131041 2131055 2131466 2131471) (-1236 "UPDECOMP.spad" 2129286 2129300 2131031 2131036) (-1235 "UPCDEN.spad" 2128495 2128511 2129276 2129281) (-1234 "UP2.spad" 2127859 2127880 2128485 2128490) (-1233 "UNISEG.spad" 2127212 2127223 2127778 2127783) (-1232 "UNISEG2.spad" 2126709 2126722 2127168 2127173) (-1231 "UNIFACT.spad" 2125812 2125824 2126699 2126704) (-1230 "ULS.spad" 2116370 2116398 2117457 2117886) (-1229 "ULSCONS.spad" 2108766 2108786 2109136 2109285) (-1228 "ULSCCAT.spad" 2106503 2106523 2108612 2108761) (-1227 "ULSCCAT.spad" 2104348 2104370 2106459 2106464) (-1226 "ULSCAT.spad" 2102580 2102596 2104194 2104343) (-1225 "ULS2.spad" 2102094 2102147 2102570 2102575) (-1224 "UINT8.spad" 2101971 2101980 2102084 2102089) (-1223 "UINT64.spad" 2101847 2101856 2101961 2101966) (-1222 "UINT32.spad" 2101723 2101732 2101837 2101842) (-1221 "UINT16.spad" 2101599 2101608 2101713 2101718) (-1220 "UFD.spad" 2100664 2100673 2101525 2101594) (-1219 "UFD.spad" 2099791 2099802 2100654 2100659) (-1218 "UDVO.spad" 2098672 2098681 2099781 2099786) (-1217 "UDPO.spad" 2096165 2096176 2098628 2098633) (-1216 "TYPE.spad" 2096097 2096106 2096155 2096160) (-1215 "TYPEAST.spad" 2096016 2096025 2096087 2096092) (-1214 "TWOFACT.spad" 2094668 2094683 2096006 2096011) (-1213 "TUPLE.spad" 2094154 2094165 2094567 2094572) (-1212 "TUBETOOL.spad" 2091021 2091030 2094144 2094149) (-1211 "TUBE.spad" 2089668 2089685 2091011 2091016) (-1210 "TS.spad" 2088267 2088283 2089233 2089330) (-1209 "TSETCAT.spad" 2075394 2075411 2088235 2088262) (-1208 "TSETCAT.spad" 2062507 2062526 2075350 2075355) (-1207 "TRMANIP.spad" 2056873 2056890 2062213 2062218) (-1206 "TRIMAT.spad" 2055836 2055861 2056863 2056868) (-1205 "TRIGMNIP.spad" 2054363 2054380 2055826 2055831) (-1204 "TRIGCAT.spad" 2053875 2053884 2054353 2054358) (-1203 "TRIGCAT.spad" 2053385 2053396 2053865 2053870) (-1202 "TREE.spad" 2051960 2051971 2052992 2053019) (-1201 "TRANFUN.spad" 2051799 2051808 2051950 2051955) (-1200 "TRANFUN.spad" 2051636 2051647 2051789 2051794) (-1199 "TOPSP.spad" 2051310 2051319 2051626 2051631) (-1198 "TOOLSIGN.spad" 2050973 2050984 2051300 2051305) (-1197 "TEXTFILE.spad" 2049534 2049543 2050963 2050968) (-1196 "TEX.spad" 2046680 2046689 2049524 2049529) (-1195 "TEX1.spad" 2046236 2046247 2046670 2046675) (-1194 "TEMUTL.spad" 2045791 2045800 2046226 2046231) (-1193 "TBCMPPK.spad" 2043884 2043907 2045781 2045786) (-1192 "TBAGG.spad" 2042934 2042957 2043864 2043879) (-1191 "TBAGG.spad" 2041992 2042017 2042924 2042929) (-1190 "TANEXP.spad" 2041400 2041411 2041982 2041987) (-1189 "TABLE.spad" 2039811 2039834 2040081 2040108) (-1188 "TABLEAU.spad" 2039292 2039303 2039801 2039806) (-1187 "TABLBUMP.spad" 2036095 2036106 2039282 2039287) (-1186 "SYSTEM.spad" 2035323 2035332 2036085 2036090) (-1185 "SYSSOLP.spad" 2032806 2032817 2035313 2035318) (-1184 "SYSPTR.spad" 2032705 2032714 2032796 2032801) (-1183 "SYSNNI.spad" 2031887 2031898 2032695 2032700) (-1182 "SYSINT.spad" 2031291 2031302 2031877 2031882) (-1181 "SYNTAX.spad" 2027497 2027506 2031281 2031286) (-1180 "SYMTAB.spad" 2025565 2025574 2027487 2027492) (-1179 "SYMS.spad" 2021588 2021597 2025555 2025560) (-1178 "SYMPOLY.spad" 2020595 2020606 2020677 2020804) (-1177 "SYMFUNC.spad" 2020096 2020107 2020585 2020590) (-1176 "SYMBOL.spad" 2017599 2017608 2020086 2020091) (-1175 "SWITCH.spad" 2014370 2014379 2017589 2017594) (-1174 "SUTS.spad" 2011275 2011303 2012837 2012934) (-1173 "SUPXS.spad" 2008416 2008444 2009407 2009556) (-1172 "SUP.spad" 2005229 2005240 2006002 2006155) (-1171 "SUPFRACF.spad" 2004334 2004352 2005219 2005224) (-1170 "SUP2.spad" 2003726 2003739 2004324 2004329) (-1169 "SUMRF.spad" 2002700 2002711 2003716 2003721) (-1168 "SUMFS.spad" 2002337 2002354 2002690 2002695) (-1167 "SULS.spad" 1992882 1992910 1993982 1994411) (-1166 "SUCHTAST.spad" 1992651 1992660 1992872 1992877) (-1165 "SUCH.spad" 1992333 1992348 1992641 1992646) (-1164 "SUBSPACE.spad" 1984448 1984463 1992323 1992328) (-1163 "SUBRESP.spad" 1983618 1983632 1984404 1984409) (-1162 "STTF.spad" 1979717 1979733 1983608 1983613) (-1161 "STTFNC.spad" 1976185 1976201 1979707 1979712) (-1160 "STTAYLOR.spad" 1968839 1968850 1976066 1976071) (-1159 "STRTBL.spad" 1967344 1967361 1967493 1967520) (-1158 "STRING.spad" 1966753 1966762 1966767 1966794) (-1157 "STRICAT.spad" 1966541 1966550 1966721 1966748) (-1156 "STREAM.spad" 1963459 1963470 1966066 1966081) (-1155 "STREAM3.spad" 1963032 1963047 1963449 1963454) (-1154 "STREAM2.spad" 1962160 1962173 1963022 1963027) (-1153 "STREAM1.spad" 1961866 1961877 1962150 1962155) (-1152 "STINPROD.spad" 1960802 1960818 1961856 1961861) (-1151 "STEP.spad" 1960003 1960012 1960792 1960797) (-1150 "STBL.spad" 1958529 1958557 1958696 1958711) (-1149 "STAGG.spad" 1957604 1957615 1958519 1958524) (-1148 "STAGG.spad" 1956677 1956690 1957594 1957599) (-1147 "STACK.spad" 1956034 1956045 1956284 1956311) (-1146 "SREGSET.spad" 1953738 1953755 1955680 1955707) (-1145 "SRDCMPK.spad" 1952299 1952319 1953728 1953733) (-1144 "SRAGG.spad" 1947442 1947451 1952267 1952294) (-1143 "SRAGG.spad" 1942605 1942616 1947432 1947437) (-1142 "SQMATRIX.spad" 1940221 1940239 1941137 1941224) (-1141 "SPLTREE.spad" 1934773 1934786 1939657 1939684) (-1140 "SPLNODE.spad" 1931361 1931374 1934763 1934768) (-1139 "SPFCAT.spad" 1930170 1930179 1931351 1931356) (-1138 "SPECOUT.spad" 1928722 1928731 1930160 1930165) (-1137 "SPADXPT.spad" 1920861 1920870 1928712 1928717) (-1136 "spad-parser.spad" 1920326 1920335 1920851 1920856) (-1135 "SPADAST.spad" 1920027 1920036 1920316 1920321) (-1134 "SPACEC.spad" 1904226 1904237 1920017 1920022) (-1133 "SPACE3.spad" 1904002 1904013 1904216 1904221) (-1132 "SORTPAK.spad" 1903551 1903564 1903958 1903963) (-1131 "SOLVETRA.spad" 1901314 1901325 1903541 1903546) (-1130 "SOLVESER.spad" 1899842 1899853 1901304 1901309) (-1129 "SOLVERAD.spad" 1895868 1895879 1899832 1899837) (-1128 "SOLVEFOR.spad" 1894330 1894348 1895858 1895863) (-1127 "SNTSCAT.spad" 1893930 1893947 1894298 1894325) (-1126 "SMTS.spad" 1892202 1892228 1893495 1893592) (-1125 "SMP.spad" 1889677 1889697 1890067 1890194) (-1124 "SMITH.spad" 1888522 1888547 1889667 1889672) (-1123 "SMATCAT.spad" 1886632 1886662 1888466 1888517) (-1122 "SMATCAT.spad" 1884674 1884706 1886510 1886515) (-1121 "SKAGG.spad" 1883637 1883648 1884642 1884669) (-1120 "SINT.spad" 1882469 1882478 1883503 1883632) (-1119 "SIMPAN.spad" 1882197 1882206 1882459 1882464) (-1118 "SIG.spad" 1881527 1881536 1882187 1882192) (-1117 "SIGNRF.spad" 1880645 1880656 1881517 1881522) (-1116 "SIGNEF.spad" 1879924 1879941 1880635 1880640) (-1115 "SIGAST.spad" 1879309 1879318 1879914 1879919) (-1114 "SHP.spad" 1877237 1877252 1879265 1879270) (-1113 "SHDP.spad" 1866948 1866975 1867457 1867588) (-1112 "SGROUP.spad" 1866556 1866565 1866938 1866943) (-1111 "SGROUP.spad" 1866162 1866173 1866546 1866551) (-1110 "SGCF.spad" 1859325 1859334 1866152 1866157) (-1109 "SFRTCAT.spad" 1858255 1858272 1859293 1859320) (-1108 "SFRGCD.spad" 1857318 1857338 1858245 1858250) (-1107 "SFQCMPK.spad" 1851955 1851975 1857308 1857313) (-1106 "SFORT.spad" 1851394 1851408 1851945 1851950) (-1105 "SEXOF.spad" 1851237 1851277 1851384 1851389) (-1104 "SEX.spad" 1851129 1851138 1851227 1851232) (-1103 "SEXCAT.spad" 1848730 1848770 1851119 1851124) (-1102 "SET.spad" 1847054 1847065 1848151 1848190) (-1101 "SETMN.spad" 1845504 1845521 1847044 1847049) (-1100 "SETCAT.spad" 1844826 1844835 1845494 1845499) (-1099 "SETCAT.spad" 1844146 1844157 1844816 1844821) (-1098 "SETAGG.spad" 1840695 1840706 1844126 1844141) (-1097 "SETAGG.spad" 1837252 1837265 1840685 1840690) (-1096 "SEQAST.spad" 1836955 1836964 1837242 1837247) (-1095 "SEGXCAT.spad" 1836111 1836124 1836945 1836950) (-1094 "SEG.spad" 1835924 1835935 1836030 1836035) (-1093 "SEGCAT.spad" 1834849 1834860 1835914 1835919) (-1092 "SEGBIND.spad" 1833923 1833934 1834804 1834809) (-1091 "SEGBIND2.spad" 1833621 1833634 1833913 1833918) (-1090 "SEGAST.spad" 1833335 1833344 1833611 1833616) (-1089 "SEG2.spad" 1832770 1832783 1833291 1833296) (-1088 "SDVAR.spad" 1832046 1832057 1832760 1832765) (-1087 "SDPOL.spad" 1829472 1829483 1829763 1829890) (-1086 "SCPKG.spad" 1827561 1827572 1829462 1829467) (-1085 "SCOPE.spad" 1826714 1826723 1827551 1827556) (-1084 "SCACHE.spad" 1825410 1825421 1826704 1826709) (-1083 "SASTCAT.spad" 1825319 1825328 1825400 1825405) (-1082 "SAOS.spad" 1825191 1825200 1825309 1825314) (-1081 "SAERFFC.spad" 1824904 1824924 1825181 1825186) (-1080 "SAE.spad" 1823079 1823095 1823690 1823825) (-1079 "SAEFACT.spad" 1822780 1822800 1823069 1823074) (-1078 "RURPK.spad" 1820439 1820455 1822770 1822775) (-1077 "RULESET.spad" 1819892 1819916 1820429 1820434) (-1076 "RULE.spad" 1818132 1818156 1819882 1819887) (-1075 "RULECOLD.spad" 1817984 1817997 1818122 1818127) (-1074 "RTVALUE.spad" 1817719 1817728 1817974 1817979) (-1073 "RSTRCAST.spad" 1817436 1817445 1817709 1817714) (-1072 "RSETGCD.spad" 1813814 1813834 1817426 1817431) (-1071 "RSETCAT.spad" 1803750 1803767 1813782 1813809) (-1070 "RSETCAT.spad" 1793706 1793725 1803740 1803745) (-1069 "RSDCMPK.spad" 1792158 1792178 1793696 1793701) (-1068 "RRCC.spad" 1790542 1790572 1792148 1792153) (-1067 "RRCC.spad" 1788924 1788956 1790532 1790537) (-1066 "RPTAST.spad" 1788626 1788635 1788914 1788919) (-1065 "RPOLCAT.spad" 1767986 1768001 1788494 1788621) (-1064 "RPOLCAT.spad" 1747060 1747077 1767570 1767575) (-1063 "ROUTINE.spad" 1742943 1742952 1745707 1745734) (-1062 "ROMAN.spad" 1742271 1742280 1742809 1742938) (-1061 "ROIRC.spad" 1741351 1741383 1742261 1742266) (-1060 "RNS.spad" 1740254 1740263 1741253 1741346) (-1059 "RNS.spad" 1739243 1739254 1740244 1740249) (-1058 "RNG.spad" 1738978 1738987 1739233 1739238) (-1057 "RMODULE.spad" 1738743 1738754 1738968 1738973) (-1056 "RMCAT2.spad" 1738163 1738220 1738733 1738738) (-1055 "RMATRIX.spad" 1736987 1737006 1737330 1737369) (-1054 "RMATCAT.spad" 1732566 1732597 1736943 1736982) (-1053 "RMATCAT.spad" 1728035 1728068 1732414 1732419) (-1052 "RLINSET.spad" 1727429 1727440 1728025 1728030) (-1051 "RINTERP.spad" 1727317 1727337 1727419 1727424) (-1050 "RING.spad" 1726787 1726796 1727297 1727312) (-1049 "RING.spad" 1726265 1726276 1726777 1726782) (-1048 "RIDIST.spad" 1725657 1725666 1726255 1726260) (-1047 "RGCHAIN.spad" 1724240 1724256 1725142 1725169) (-1046 "RGBCSPC.spad" 1724021 1724033 1724230 1724235) (-1045 "RGBCMDL.spad" 1723551 1723563 1724011 1724016) (-1044 "RF.spad" 1721193 1721204 1723541 1723546) (-1043 "RFFACTOR.spad" 1720655 1720666 1721183 1721188) (-1042 "RFFACT.spad" 1720390 1720402 1720645 1720650) (-1041 "RFDIST.spad" 1719386 1719395 1720380 1720385) (-1040 "RETSOL.spad" 1718805 1718818 1719376 1719381) (-1039 "RETRACT.spad" 1718233 1718244 1718795 1718800) (-1038 "RETRACT.spad" 1717659 1717672 1718223 1718228) (-1037 "RETAST.spad" 1717471 1717480 1717649 1717654) (-1036 "RESULT.spad" 1715531 1715540 1716118 1716145) (-1035 "RESRING.spad" 1714878 1714925 1715469 1715526) (-1034 "RESLATC.spad" 1714202 1714213 1714868 1714873) (-1033 "REPSQ.spad" 1713933 1713944 1714192 1714197) (-1032 "REP.spad" 1711487 1711496 1713923 1713928) (-1031 "REPDB.spad" 1711194 1711205 1711477 1711482) (-1030 "REP2.spad" 1700852 1700863 1711036 1711041) (-1029 "REP1.spad" 1695048 1695059 1700802 1700807) (-1028 "REGSET.spad" 1692845 1692862 1694694 1694721) (-1027 "REF.spad" 1692180 1692191 1692800 1692805) (-1026 "REDORDER.spad" 1691386 1691403 1692170 1692175) (-1025 "RECLOS.spad" 1690169 1690189 1690873 1690966) (-1024 "REALSOLV.spad" 1689309 1689318 1690159 1690164) (-1023 "REAL.spad" 1689181 1689190 1689299 1689304) (-1022 "REAL0Q.spad" 1686479 1686494 1689171 1689176) (-1021 "REAL0.spad" 1683323 1683338 1686469 1686474) (-1020 "RDUCEAST.spad" 1683044 1683053 1683313 1683318) (-1019 "RDIV.spad" 1682699 1682724 1683034 1683039) (-1018 "RDIST.spad" 1682266 1682277 1682689 1682694) (-1017 "RDETRS.spad" 1681130 1681148 1682256 1682261) (-1016 "RDETR.spad" 1679269 1679287 1681120 1681125) (-1015 "RDEEFS.spad" 1678368 1678385 1679259 1679264) (-1014 "RDEEF.spad" 1677378 1677395 1678358 1678363) (-1013 "RCFIELD.spad" 1674564 1674573 1677280 1677373) (-1012 "RCFIELD.spad" 1671836 1671847 1674554 1674559) (-1011 "RCAGG.spad" 1669764 1669775 1671826 1671831) (-1010 "RCAGG.spad" 1667619 1667632 1669683 1669688) (-1009 "RATRET.spad" 1666979 1666990 1667609 1667614) (-1008 "RATFACT.spad" 1666671 1666683 1666969 1666974) (-1007 "RANDSRC.spad" 1665990 1665999 1666661 1666666) (-1006 "RADUTIL.spad" 1665746 1665755 1665980 1665985) (-1005 "RADIX.spad" 1662667 1662681 1664213 1664306) (-1004 "RADFF.spad" 1661080 1661117 1661199 1661355) (-1003 "RADCAT.spad" 1660675 1660684 1661070 1661075) (-1002 "RADCAT.spad" 1660268 1660279 1660665 1660670) (-1001 "QUEUE.spad" 1659616 1659627 1659875 1659902) (-1000 "QUAT.spad" 1658197 1658208 1658540 1658605) (-999 "QUATCT2.spad" 1657818 1657836 1658187 1658192) (-998 "QUATCAT.spad" 1655989 1655999 1657748 1657813) (-997 "QUATCAT.spad" 1653911 1653923 1655672 1655677) (-996 "QUAGG.spad" 1652739 1652749 1653879 1653906) (-995 "QQUTAST.spad" 1652508 1652516 1652729 1652734) (-994 "QFORM.spad" 1651973 1651987 1652498 1652503) (-993 "QFCAT.spad" 1650676 1650686 1651875 1651968) (-992 "QFCAT.spad" 1648970 1648982 1650171 1650176) (-991 "QFCAT2.spad" 1648663 1648679 1648960 1648965) (-990 "QEQUAT.spad" 1648222 1648230 1648653 1648658) (-989 "QCMPACK.spad" 1642969 1642988 1648212 1648217) (-988 "QALGSET.spad" 1639048 1639080 1642883 1642888) (-987 "QALGSET2.spad" 1637044 1637062 1639038 1639043) (-986 "PWFFINTB.spad" 1634460 1634481 1637034 1637039) (-985 "PUSHVAR.spad" 1633799 1633818 1634450 1634455) (-984 "PTRANFN.spad" 1629927 1629937 1633789 1633794) (-983 "PTPACK.spad" 1627015 1627025 1629917 1629922) (-982 "PTFUNC2.spad" 1626838 1626852 1627005 1627010) (-981 "PTCAT.spad" 1626093 1626103 1626806 1626833) (-980 "PSQFR.spad" 1625400 1625424 1626083 1626088) (-979 "PSEUDLIN.spad" 1624286 1624296 1625390 1625395) (-978 "PSETPK.spad" 1609719 1609735 1624164 1624169) (-977 "PSETCAT.spad" 1603639 1603662 1609699 1609714) (-976 "PSETCAT.spad" 1597533 1597558 1603595 1603600) (-975 "PSCURVE.spad" 1596516 1596524 1597523 1597528) (-974 "PSCAT.spad" 1595299 1595328 1596414 1596511) (-973 "PSCAT.spad" 1594172 1594203 1595289 1595294) (-972 "PRTITION.spad" 1593133 1593141 1594162 1594167) (-971 "PRTDAST.spad" 1592852 1592860 1593123 1593128) (-970 "PRS.spad" 1582414 1582431 1592808 1592813) (-969 "PRQAGG.spad" 1581849 1581859 1582382 1582409) (-968 "PROPLOG.spad" 1581148 1581156 1581839 1581844) (-967 "PROPFRML.spad" 1579964 1579975 1581138 1581143) (-966 "PROPERTY.spad" 1579452 1579460 1579954 1579959) (-965 "PRODUCT.spad" 1577134 1577146 1577418 1577473) (-964 "PR.spad" 1575526 1575538 1576225 1576352) (-963 "PRINT.spad" 1575278 1575286 1575516 1575521) (-962 "PRIMES.spad" 1573531 1573541 1575268 1575273) (-961 "PRIMELT.spad" 1571612 1571626 1573521 1573526) (-960 "PRIMCAT.spad" 1571239 1571247 1571602 1571607) (-959 "PRIMARR.spad" 1570244 1570254 1570422 1570449) (-958 "PRIMARR2.spad" 1569011 1569023 1570234 1570239) (-957 "PREASSOC.spad" 1568393 1568405 1569001 1569006) (-956 "PPCURVE.spad" 1567530 1567538 1568383 1568388) (-955 "PORTNUM.spad" 1567305 1567313 1567520 1567525) (-954 "POLYROOT.spad" 1566154 1566176 1567261 1567266) (-953 "POLY.spad" 1563489 1563499 1564004 1564131) (-952 "POLYLIFT.spad" 1562754 1562777 1563479 1563484) (-951 "POLYCATQ.spad" 1560872 1560894 1562744 1562749) (-950 "POLYCAT.spad" 1554342 1554363 1560740 1560867) (-949 "POLYCAT.spad" 1547150 1547173 1553550 1553555) (-948 "POLY2UP.spad" 1546602 1546616 1547140 1547145) (-947 "POLY2.spad" 1546199 1546211 1546592 1546597) (-946 "POLUTIL.spad" 1545140 1545169 1546155 1546160) (-945 "POLTOPOL.spad" 1543888 1543903 1545130 1545135) (-944 "POINT.spad" 1542726 1542736 1542813 1542840) (-943 "PNTHEORY.spad" 1539428 1539436 1542716 1542721) (-942 "PMTOOLS.spad" 1538203 1538217 1539418 1539423) (-941 "PMSYM.spad" 1537752 1537762 1538193 1538198) (-940 "PMQFCAT.spad" 1537343 1537357 1537742 1537747) (-939 "PMPRED.spad" 1536822 1536836 1537333 1537338) (-938 "PMPREDFS.spad" 1536276 1536298 1536812 1536817) (-937 "PMPLCAT.spad" 1535356 1535374 1536208 1536213) (-936 "PMLSAGG.spad" 1534941 1534955 1535346 1535351) (-935 "PMKERNEL.spad" 1534520 1534532 1534931 1534936) (-934 "PMINS.spad" 1534100 1534110 1534510 1534515) (-933 "PMFS.spad" 1533677 1533695 1534090 1534095) (-932 "PMDOWN.spad" 1532967 1532981 1533667 1533672) (-931 "PMASS.spad" 1531977 1531985 1532957 1532962) (-930 "PMASSFS.spad" 1530944 1530960 1531967 1531972) (-929 "PLOTTOOL.spad" 1530724 1530732 1530934 1530939) (-928 "PLOT.spad" 1525647 1525655 1530714 1530719) (-927 "PLOT3D.spad" 1522111 1522119 1525637 1525642) (-926 "PLOT1.spad" 1521268 1521278 1522101 1522106) (-925 "PLEQN.spad" 1508558 1508585 1521258 1521263) (-924 "PINTERP.spad" 1508180 1508199 1508548 1508553) (-923 "PINTERPA.spad" 1507964 1507980 1508170 1508175) (-922 "PI.spad" 1507573 1507581 1507938 1507959) (-921 "PID.spad" 1506543 1506551 1507499 1507568) (-920 "PICOERCE.spad" 1506200 1506210 1506533 1506538) (-919 "PGROEB.spad" 1504801 1504815 1506190 1506195) (-918 "PGE.spad" 1496418 1496426 1504791 1504796) (-917 "PGCD.spad" 1495308 1495325 1496408 1496413) (-916 "PFRPAC.spad" 1494457 1494467 1495298 1495303) (-915 "PFR.spad" 1491120 1491130 1494359 1494452) (-914 "PFOTOOLS.spad" 1490378 1490394 1491110 1491115) (-913 "PFOQ.spad" 1489748 1489766 1490368 1490373) (-912 "PFO.spad" 1489167 1489194 1489738 1489743) (-911 "PF.spad" 1488741 1488753 1488972 1489065) (-910 "PFECAT.spad" 1486423 1486431 1488667 1488736) (-909 "PFECAT.spad" 1484133 1484143 1486379 1486384) (-908 "PFBRU.spad" 1482021 1482033 1484123 1484128) (-907 "PFBR.spad" 1479581 1479604 1482011 1482016) (-906 "PERM.spad" 1475266 1475276 1479411 1479426) (-905 "PERMGRP.spad" 1470028 1470038 1475256 1475261) (-904 "PERMCAT.spad" 1468586 1468596 1470008 1470023) (-903 "PERMAN.spad" 1467118 1467132 1468576 1468581) (-902 "PENDTREE.spad" 1466459 1466469 1466747 1466752) (-901 "PDRING.spad" 1465010 1465020 1466439 1466454) (-900 "PDRING.spad" 1463569 1463581 1465000 1465005) (-899 "PDEPROB.spad" 1462584 1462592 1463559 1463564) (-898 "PDEPACK.spad" 1456624 1456632 1462574 1462579) (-897 "PDECOMP.spad" 1456094 1456111 1456614 1456619) (-896 "PDECAT.spad" 1454450 1454458 1456084 1456089) (-895 "PCOMP.spad" 1454303 1454316 1454440 1454445) (-894 "PBWLB.spad" 1452891 1452908 1454293 1454298) (-893 "PATTERN.spad" 1447430 1447440 1452881 1452886) (-892 "PATTERN2.spad" 1447168 1447180 1447420 1447425) (-891 "PATTERN1.spad" 1445504 1445520 1447158 1447163) (-890 "PATRES.spad" 1443079 1443091 1445494 1445499) (-889 "PATRES2.spad" 1442751 1442765 1443069 1443074) (-888 "PATMATCH.spad" 1440948 1440979 1442459 1442464) (-887 "PATMAB.spad" 1440377 1440387 1440938 1440943) (-886 "PATLRES.spad" 1439463 1439477 1440367 1440372) (-885 "PATAB.spad" 1439227 1439237 1439453 1439458) (-884 "PARTPERM.spad" 1436627 1436635 1439217 1439222) (-883 "PARSURF.spad" 1436061 1436089 1436617 1436622) (-882 "PARSU2.spad" 1435858 1435874 1436051 1436056) (-881 "script-parser.spad" 1435378 1435386 1435848 1435853) (-880 "PARSCURV.spad" 1434812 1434840 1435368 1435373) (-879 "PARSC2.spad" 1434603 1434619 1434802 1434807) (-878 "PARPCURV.spad" 1434065 1434093 1434593 1434598) (-877 "PARPC2.spad" 1433856 1433872 1434055 1434060) (-876 "PAN2EXPR.spad" 1433268 1433276 1433846 1433851) (-875 "PALETTE.spad" 1432238 1432246 1433258 1433263) (-874 "PAIR.spad" 1431225 1431238 1431826 1431831) (-873 "PADICRC.spad" 1428559 1428577 1429730 1429823) (-872 "PADICRAT.spad" 1426574 1426586 1426795 1426888) (-871 "PADIC.spad" 1426269 1426281 1426500 1426569) (-870 "PADICCT.spad" 1424818 1424830 1426195 1426264) (-869 "PADEPAC.spad" 1423507 1423526 1424808 1424813) (-868 "PADE.spad" 1422259 1422275 1423497 1423502) (-867 "OWP.spad" 1421499 1421529 1422117 1422184) (-866 "OVERSET.spad" 1421072 1421080 1421489 1421494) (-865 "OVAR.spad" 1420853 1420876 1421062 1421067) (-864 "OUT.spad" 1419939 1419947 1420843 1420848) (-863 "OUTFORM.spad" 1409331 1409339 1419929 1419934) (-862 "OUTBFILE.spad" 1408749 1408757 1409321 1409326) (-861 "OUTBCON.spad" 1407755 1407763 1408739 1408744) (-860 "OUTBCON.spad" 1406759 1406769 1407745 1407750) (-859 "OSI.spad" 1406234 1406242 1406749 1406754) (-858 "OSGROUP.spad" 1406152 1406160 1406224 1406229) (-857 "ORTHPOL.spad" 1404637 1404647 1406069 1406074) (-856 "OREUP.spad" 1404090 1404118 1404317 1404356) (-855 "ORESUP.spad" 1403391 1403415 1403770 1403809) (-854 "OREPCTO.spad" 1401248 1401260 1403311 1403316) (-853 "OREPCAT.spad" 1395395 1395405 1401204 1401243) (-852 "OREPCAT.spad" 1389432 1389444 1395243 1395248) (-851 "ORDSET.spad" 1388604 1388612 1389422 1389427) (-850 "ORDSET.spad" 1387774 1387784 1388594 1388599) (-849 "ORDRING.spad" 1387164 1387172 1387754 1387769) (-848 "ORDRING.spad" 1386562 1386572 1387154 1387159) (-847 "ORDMON.spad" 1386417 1386425 1386552 1386557) (-846 "ORDFUNS.spad" 1385549 1385565 1386407 1386412) (-845 "ORDFIN.spad" 1385369 1385377 1385539 1385544) (-844 "ORDCOMP.spad" 1383834 1383844 1384916 1384945) (-843 "ORDCOMP2.spad" 1383127 1383139 1383824 1383829) (-842 "OPTPROB.spad" 1381765 1381773 1383117 1383122) (-841 "OPTPACK.spad" 1374174 1374182 1381755 1381760) (-840 "OPTCAT.spad" 1371853 1371861 1374164 1374169) (-839 "OPSIG.spad" 1371507 1371515 1371843 1371848) (-838 "OPQUERY.spad" 1371056 1371064 1371497 1371502) (-837 "OP.spad" 1370798 1370808 1370878 1370945) (-836 "OPERCAT.spad" 1370264 1370274 1370788 1370793) (-835 "OPERCAT.spad" 1369728 1369740 1370254 1370259) (-834 "ONECOMP.spad" 1368473 1368483 1369275 1369304) (-833 "ONECOMP2.spad" 1367897 1367909 1368463 1368468) (-832 "OMSERVER.spad" 1366903 1366911 1367887 1367892) (-831 "OMSAGG.spad" 1366691 1366701 1366859 1366898) (-830 "OMPKG.spad" 1365307 1365315 1366681 1366686) (-829 "OM.spad" 1364280 1364288 1365297 1365302) (-828 "OMLO.spad" 1363705 1363717 1364166 1364205) (-827 "OMEXPR.spad" 1363539 1363549 1363695 1363700) (-826 "OMERR.spad" 1363084 1363092 1363529 1363534) (-825 "OMERRK.spad" 1362118 1362126 1363074 1363079) (-824 "OMENC.spad" 1361462 1361470 1362108 1362113) (-823 "OMDEV.spad" 1355771 1355779 1361452 1361457) (-822 "OMCONN.spad" 1355180 1355188 1355761 1355766) (-821 "OINTDOM.spad" 1354943 1354951 1355106 1355175) (-820 "OFMONOID.spad" 1351192 1351202 1354933 1354938) (-819 "ODVAR.spad" 1350453 1350463 1351182 1351187) (-818 "ODR.spad" 1350097 1350123 1350265 1350414) (-817 "ODPOL.spad" 1347479 1347489 1347819 1347946) (-816 "ODP.spad" 1337326 1337346 1337699 1337830) (-815 "ODETOOLS.spad" 1335975 1335994 1337316 1337321) (-814 "ODESYS.spad" 1333669 1333686 1335965 1335970) (-813 "ODERTRIC.spad" 1329678 1329695 1333626 1333631) (-812 "ODERED.spad" 1329077 1329101 1329668 1329673) (-811 "ODERAT.spad" 1326692 1326709 1329067 1329072) (-810 "ODEPRRIC.spad" 1323729 1323751 1326682 1326687) (-809 "ODEPROB.spad" 1322986 1322994 1323719 1323724) (-808 "ODEPRIM.spad" 1320320 1320342 1322976 1322981) (-807 "ODEPAL.spad" 1319706 1319730 1320310 1320315) (-806 "ODEPACK.spad" 1306372 1306380 1319696 1319701) (-805 "ODEINT.spad" 1305807 1305823 1306362 1306367) (-804 "ODEIFTBL.spad" 1303202 1303210 1305797 1305802) (-803 "ODEEF.spad" 1298693 1298709 1303192 1303197) (-802 "ODECONST.spad" 1298230 1298248 1298683 1298688) (-801 "ODECAT.spad" 1296828 1296836 1298220 1298225) (-800 "OCT.spad" 1294964 1294974 1295678 1295717) (-799 "OCTCT2.spad" 1294610 1294631 1294954 1294959) (-798 "OC.spad" 1292406 1292416 1294566 1294605) (-797 "OC.spad" 1289927 1289939 1292089 1292094) (-796 "OCAMON.spad" 1289775 1289783 1289917 1289922) (-795 "OASGP.spad" 1289590 1289598 1289765 1289770) (-794 "OAMONS.spad" 1289112 1289120 1289580 1289585) (-793 "OAMON.spad" 1288973 1288981 1289102 1289107) (-792 "OAGROUP.spad" 1288835 1288843 1288963 1288968) (-791 "NUMTUBE.spad" 1288426 1288442 1288825 1288830) (-790 "NUMQUAD.spad" 1276402 1276410 1288416 1288421) (-789 "NUMODE.spad" 1267756 1267764 1276392 1276397) (-788 "NUMINT.spad" 1265322 1265330 1267746 1267751) (-787 "NUMFMT.spad" 1264162 1264170 1265312 1265317) (-786 "NUMERIC.spad" 1256276 1256286 1263967 1263972) (-785 "NTSCAT.spad" 1254784 1254800 1256244 1256271) (-784 "NTPOLFN.spad" 1254335 1254345 1254701 1254706) (-783 "NSUP.spad" 1247381 1247391 1251921 1252074) (-782 "NSUP2.spad" 1246773 1246785 1247371 1247376) (-781 "NSMP.spad" 1243004 1243023 1243312 1243439) (-780 "NREP.spad" 1241382 1241396 1242994 1242999) (-779 "NPCOEF.spad" 1240628 1240648 1241372 1241377) (-778 "NORMRETR.spad" 1240226 1240265 1240618 1240623) (-777 "NORMPK.spad" 1238128 1238147 1240216 1240221) (-776 "NORMMA.spad" 1237816 1237842 1238118 1238123) (-775 "NONE.spad" 1237557 1237565 1237806 1237811) (-774 "NONE1.spad" 1237233 1237243 1237547 1237552) (-773 "NODE1.spad" 1236720 1236736 1237223 1237228) (-772 "NNI.spad" 1235615 1235623 1236694 1236715) (-771 "NLINSOL.spad" 1234241 1234251 1235605 1235610) (-770 "NIPROB.spad" 1232782 1232790 1234231 1234236) (-769 "NFINTBAS.spad" 1230342 1230359 1232772 1232777) (-768 "NETCLT.spad" 1230316 1230327 1230332 1230337) (-767 "NCODIV.spad" 1228532 1228548 1230306 1230311) (-766 "NCNTFRAC.spad" 1228174 1228188 1228522 1228527) (-765 "NCEP.spad" 1226340 1226354 1228164 1228169) (-764 "NASRING.spad" 1225936 1225944 1226330 1226335) (-763 "NASRING.spad" 1225530 1225540 1225926 1225931) (-762 "NARNG.spad" 1224882 1224890 1225520 1225525) (-761 "NARNG.spad" 1224232 1224242 1224872 1224877) (-760 "NAGSP.spad" 1223309 1223317 1224222 1224227) (-759 "NAGS.spad" 1212970 1212978 1223299 1223304) (-758 "NAGF07.spad" 1211401 1211409 1212960 1212965) (-757 "NAGF04.spad" 1205803 1205811 1211391 1211396) (-756 "NAGF02.spad" 1199872 1199880 1205793 1205798) (-755 "NAGF01.spad" 1195633 1195641 1199862 1199867) (-754 "NAGE04.spad" 1189333 1189341 1195623 1195628) (-753 "NAGE02.spad" 1179993 1180001 1189323 1189328) (-752 "NAGE01.spad" 1175995 1176003 1179983 1179988) (-751 "NAGD03.spad" 1173999 1174007 1175985 1175990) (-750 "NAGD02.spad" 1166746 1166754 1173989 1173994) (-749 "NAGD01.spad" 1161039 1161047 1166736 1166741) (-748 "NAGC06.spad" 1156914 1156922 1161029 1161034) (-747 "NAGC05.spad" 1155415 1155423 1156904 1156909) (-746 "NAGC02.spad" 1154682 1154690 1155405 1155410) (-745 "NAALG.spad" 1154223 1154233 1154650 1154677) (-744 "NAALG.spad" 1153784 1153796 1154213 1154218) (-743 "MULTSQFR.spad" 1150742 1150759 1153774 1153779) (-742 "MULTFACT.spad" 1150125 1150142 1150732 1150737) (-741 "MTSCAT.spad" 1148219 1148240 1150023 1150120) (-740 "MTHING.spad" 1147878 1147888 1148209 1148214) (-739 "MSYSCMD.spad" 1147312 1147320 1147868 1147873) (-738 "MSET.spad" 1145270 1145280 1147018 1147057) (-737 "MSETAGG.spad" 1145115 1145125 1145238 1145265) (-736 "MRING.spad" 1142092 1142104 1144823 1144890) (-735 "MRF2.spad" 1141662 1141676 1142082 1142087) (-734 "MRATFAC.spad" 1141208 1141225 1141652 1141657) (-733 "MPRFF.spad" 1139248 1139267 1141198 1141203) (-732 "MPOLY.spad" 1136719 1136734 1137078 1137205) (-731 "MPCPF.spad" 1135983 1136002 1136709 1136714) (-730 "MPC3.spad" 1135800 1135840 1135973 1135978) (-729 "MPC2.spad" 1135446 1135479 1135790 1135795) (-728 "MONOTOOL.spad" 1133797 1133814 1135436 1135441) (-727 "MONOID.spad" 1133116 1133124 1133787 1133792) (-726 "MONOID.spad" 1132433 1132443 1133106 1133111) (-725 "MONOGEN.spad" 1131181 1131194 1132293 1132428) (-724 "MONOGEN.spad" 1129951 1129966 1131065 1131070) (-723 "MONADWU.spad" 1127981 1127989 1129941 1129946) (-722 "MONADWU.spad" 1126009 1126019 1127971 1127976) (-721 "MONAD.spad" 1125169 1125177 1125999 1126004) (-720 "MONAD.spad" 1124327 1124337 1125159 1125164) (-719 "MOEBIUS.spad" 1123063 1123077 1124307 1124322) (-718 "MODULE.spad" 1122933 1122943 1123031 1123058) (-717 "MODULE.spad" 1122823 1122835 1122923 1122928) (-716 "MODRING.spad" 1122158 1122197 1122803 1122818) (-715 "MODOP.spad" 1120823 1120835 1121980 1122047) (-714 "MODMONOM.spad" 1120554 1120572 1120813 1120818) (-713 "MODMON.spad" 1117349 1117365 1118068 1118221) (-712 "MODFIELD.spad" 1116711 1116750 1117251 1117344) (-711 "MMLFORM.spad" 1115571 1115579 1116701 1116706) (-710 "MMAP.spad" 1115313 1115347 1115561 1115566) (-709 "MLO.spad" 1113772 1113782 1115269 1115308) (-708 "MLIFT.spad" 1112384 1112401 1113762 1113767) (-707 "MKUCFUNC.spad" 1111919 1111937 1112374 1112379) (-706 "MKRECORD.spad" 1111523 1111536 1111909 1111914) (-705 "MKFUNC.spad" 1110930 1110940 1111513 1111518) (-704 "MKFLCFN.spad" 1109898 1109908 1110920 1110925) (-703 "MKBCFUNC.spad" 1109393 1109411 1109888 1109893) (-702 "MINT.spad" 1108832 1108840 1109295 1109388) (-701 "MHROWRED.spad" 1107343 1107353 1108822 1108827) (-700 "MFLOAT.spad" 1105863 1105871 1107233 1107338) (-699 "MFINFACT.spad" 1105263 1105285 1105853 1105858) (-698 "MESH.spad" 1103045 1103053 1105253 1105258) (-697 "MDDFACT.spad" 1101256 1101266 1103035 1103040) (-696 "MDAGG.spad" 1100547 1100557 1101236 1101251) (-695 "MCMPLX.spad" 1096558 1096566 1097172 1097373) (-694 "MCDEN.spad" 1095768 1095780 1096548 1096553) (-693 "MCALCFN.spad" 1092890 1092916 1095758 1095763) (-692 "MAYBE.spad" 1092174 1092185 1092880 1092885) (-691 "MATSTOR.spad" 1089482 1089492 1092164 1092169) (-690 "MATRIX.spad" 1088186 1088196 1088670 1088697) (-689 "MATLIN.spad" 1085530 1085554 1088070 1088075) (-688 "MATCAT.spad" 1077259 1077281 1085498 1085525) (-687 "MATCAT.spad" 1068860 1068884 1077101 1077106) (-686 "MATCAT2.spad" 1068142 1068190 1068850 1068855) (-685 "MAPPKG3.spad" 1067057 1067071 1068132 1068137) (-684 "MAPPKG2.spad" 1066395 1066407 1067047 1067052) (-683 "MAPPKG1.spad" 1065223 1065233 1066385 1066390) (-682 "MAPPAST.spad" 1064538 1064546 1065213 1065218) (-681 "MAPHACK3.spad" 1064350 1064364 1064528 1064533) (-680 "MAPHACK2.spad" 1064119 1064131 1064340 1064345) (-679 "MAPHACK1.spad" 1063763 1063773 1064109 1064114) (-678 "MAGMA.spad" 1061553 1061570 1063753 1063758) (-677 "MACROAST.spad" 1061132 1061140 1061543 1061548) (-676 "M3D.spad" 1058852 1058862 1060510 1060515) (-675 "LZSTAGG.spad" 1056090 1056100 1058842 1058847) (-674 "LZSTAGG.spad" 1053326 1053338 1056080 1056085) (-673 "LWORD.spad" 1050031 1050048 1053316 1053321) (-672 "LSTAST.spad" 1049815 1049823 1050021 1050026) (-671 "LSQM.spad" 1048045 1048059 1048439 1048490) (-670 "LSPP.spad" 1047580 1047597 1048035 1048040) (-669 "LSMP.spad" 1046430 1046458 1047570 1047575) (-668 "LSMP1.spad" 1044248 1044262 1046420 1046425) (-667 "LSAGG.spad" 1043917 1043927 1044216 1044243) (-666 "LSAGG.spad" 1043606 1043618 1043907 1043912) (-665 "LPOLY.spad" 1042560 1042579 1043462 1043531) (-664 "LPEFRAC.spad" 1041831 1041841 1042550 1042555) (-663 "LO.spad" 1041232 1041246 1041765 1041792) (-662 "LOGIC.spad" 1040834 1040842 1041222 1041227) (-661 "LOGIC.spad" 1040434 1040444 1040824 1040829) (-660 "LODOOPS.spad" 1039364 1039376 1040424 1040429) (-659 "LODO.spad" 1038748 1038764 1039044 1039083) (-658 "LODOF.spad" 1037794 1037811 1038705 1038710) (-657 "LODOCAT.spad" 1036460 1036470 1037750 1037789) (-656 "LODOCAT.spad" 1035124 1035136 1036416 1036421) (-655 "LODO2.spad" 1034397 1034409 1034804 1034843) (-654 "LODO1.spad" 1033797 1033807 1034077 1034116) (-653 "LODEEF.spad" 1032599 1032617 1033787 1033792) (-652 "LNAGG.spad" 1028431 1028441 1032589 1032594) (-651 "LNAGG.spad" 1024227 1024239 1028387 1028392) (-650 "LMOPS.spad" 1020995 1021012 1024217 1024222) (-649 "LMODULE.spad" 1020763 1020773 1020985 1020990) (-648 "LMDICT.spad" 1020050 1020060 1020314 1020341) (-647 "LLINSET.spad" 1019447 1019457 1020040 1020045) (-646 "LITERAL.spad" 1019353 1019364 1019437 1019442) (-645 "LIST.spad" 1017088 1017098 1018500 1018527) (-644 "LIST3.spad" 1016399 1016413 1017078 1017083) (-643 "LIST2.spad" 1015101 1015113 1016389 1016394) (-642 "LIST2MAP.spad" 1012004 1012016 1015091 1015096) (-641 "LINSET.spad" 1011626 1011636 1011994 1011999) (-640 "LINEXP.spad" 1011060 1011070 1011606 1011621) (-639 "LINDEP.spad" 1009869 1009881 1010972 1010977) (-638 "LIMITRF.spad" 1007797 1007807 1009859 1009864) (-637 "LIMITPS.spad" 1006700 1006713 1007787 1007792) (-636 "LIE.spad" 1004716 1004728 1005990 1006135) (-635 "LIECAT.spad" 1004192 1004202 1004642 1004711) (-634 "LIECAT.spad" 1003696 1003708 1004148 1004153) (-633 "LIB.spad" 1001746 1001754 1002355 1002370) (-632 "LGROBP.spad" 999099 999118 1001736 1001741) (-631 "LF.spad" 998054 998070 999089 999094) (-630 "LFCAT.spad" 997113 997121 998044 998049) (-629 "LEXTRIPK.spad" 992616 992631 997103 997108) (-628 "LEXP.spad" 990619 990646 992596 992611) (-627 "LETAST.spad" 990318 990326 990609 990614) (-626 "LEADCDET.spad" 988716 988733 990308 990313) (-625 "LAZM3PK.spad" 987420 987442 988706 988711) (-624 "LAUPOL.spad" 986113 986126 987013 987082) (-623 "LAPLACE.spad" 985696 985712 986103 986108) (-622 "LA.spad" 985136 985150 985618 985657) (-621 "LALG.spad" 984912 984922 985116 985131) (-620 "LALG.spad" 984696 984708 984902 984907) (-619 "KVTFROM.spad" 984431 984441 984686 984691) (-618 "KTVLOGIC.spad" 983943 983951 984421 984426) (-617 "KRCFROM.spad" 983681 983691 983933 983938) (-616 "KOVACIC.spad" 982404 982421 983671 983676) (-615 "KONVERT.spad" 982126 982136 982394 982399) (-614 "KOERCE.spad" 981863 981873 982116 982121) (-613 "KERNEL.spad" 980518 980528 981647 981652) (-612 "KERNEL2.spad" 980221 980233 980508 980513) (-611 "KDAGG.spad" 979330 979352 980201 980216) (-610 "KDAGG.spad" 978447 978471 979320 979325) (-609 "KAFILE.spad" 977410 977426 977645 977672) (-608 "JORDAN.spad" 975239 975251 976700 976845) (-607 "JOINAST.spad" 974933 974941 975229 975234) (-606 "JAVACODE.spad" 974799 974807 974923 974928) (-605 "IXAGG.spad" 972932 972956 974789 974794) (-604 "IXAGG.spad" 970920 970946 972779 972784) (-603 "IVECTOR.spad" 969690 969705 969845 969872) (-602 "ITUPLE.spad" 968851 968861 969680 969685) (-601 "ITRIGMNP.spad" 967690 967709 968841 968846) (-600 "ITFUN3.spad" 967196 967210 967680 967685) (-599 "ITFUN2.spad" 966940 966952 967186 967191) (-598 "ITAYLOR.spad" 964734 964749 966776 966901) (-597 "ISUPS.spad" 957171 957186 963708 963805) (-596 "ISUMP.spad" 956672 956688 957161 957166) (-595 "ISTRING.spad" 955675 955688 955841 955868) (-594 "ISAST.spad" 955394 955402 955665 955670) (-593 "IRURPK.spad" 954111 954130 955384 955389) (-592 "IRSN.spad" 952115 952123 954101 954106) (-591 "IRRF2F.spad" 950600 950610 952071 952076) (-590 "IRREDFFX.spad" 950201 950212 950590 950595) (-589 "IROOT.spad" 948540 948550 950191 950196) (-588 "IR.spad" 946341 946355 948395 948422) (-587 "IR2.spad" 945369 945385 946331 946336) (-586 "IR2F.spad" 944575 944591 945359 945364) (-585 "IPRNTPK.spad" 944335 944343 944565 944570) (-584 "IPF.spad" 943900 943912 944140 944233) (-583 "IPADIC.spad" 943661 943687 943826 943895) (-582 "IP4ADDR.spad" 943218 943226 943651 943656) (-581 "IOMODE.spad" 942839 942847 943208 943213) (-580 "IOBFILE.spad" 942200 942208 942829 942834) (-579 "IOBCON.spad" 942065 942073 942190 942195) (-578 "INVLAPLA.spad" 941714 941730 942055 942060) (-577 "INTTR.spad" 935096 935113 941704 941709) (-576 "INTTOOLS.spad" 932851 932867 934670 934675) (-575 "INTSLPE.spad" 932171 932179 932841 932846) (-574 "INTRVL.spad" 931737 931747 932085 932166) (-573 "INTRF.spad" 930161 930175 931727 931732) (-572 "INTRET.spad" 929593 929603 930151 930156) (-571 "INTRAT.spad" 928320 928337 929583 929588) (-570 "INTPM.spad" 926705 926721 927963 927968) (-569 "INTPAF.spad" 924569 924587 926637 926642) (-568 "INTPACK.spad" 914943 914951 924559 924564) (-567 "INT.spad" 914391 914399 914797 914938) (-566 "INTHERTR.spad" 913665 913682 914381 914386) (-565 "INTHERAL.spad" 913335 913359 913655 913660) (-564 "INTHEORY.spad" 909774 909782 913325 913330) (-563 "INTG0.spad" 903507 903525 909706 909711) (-562 "INTFTBL.spad" 897536 897544 903497 903502) (-561 "INTFACT.spad" 896595 896605 897526 897531) (-560 "INTEF.spad" 894980 894996 896585 896590) (-559 "INTDOM.spad" 893603 893611 894906 894975) (-558 "INTDOM.spad" 892288 892298 893593 893598) (-557 "INTCAT.spad" 890547 890557 892202 892283) (-556 "INTBIT.spad" 890054 890062 890537 890542) (-555 "INTALG.spad" 889242 889269 890044 890049) (-554 "INTAF.spad" 888742 888758 889232 889237) (-553 "INTABL.spad" 887260 887291 887423 887450) (-552 "INT8.spad" 887140 887148 887250 887255) (-551 "INT64.spad" 887019 887027 887130 887135) (-550 "INT32.spad" 886898 886906 887009 887014) (-549 "INT16.spad" 886777 886785 886888 886893) (-548 "INS.spad" 884280 884288 886679 886772) (-547 "INS.spad" 881869 881879 884270 884275) (-546 "INPSIGN.spad" 881317 881330 881859 881864) (-545 "INPRODPF.spad" 880413 880432 881307 881312) (-544 "INPRODFF.spad" 879501 879525 880403 880408) (-543 "INNMFACT.spad" 878476 878493 879491 879496) (-542 "INMODGCD.spad" 877964 877994 878466 878471) (-541 "INFSP.spad" 876261 876283 877954 877959) (-540 "INFPROD0.spad" 875341 875360 876251 876256) (-539 "INFORM.spad" 872540 872548 875331 875336) (-538 "INFORM1.spad" 872165 872175 872530 872535) (-537 "INFINITY.spad" 871717 871725 872155 872160) (-536 "INETCLTS.spad" 871694 871702 871707 871712) (-535 "INEP.spad" 870232 870254 871684 871689) (-534 "INDE.spad" 869961 869978 870222 870227) (-533 "INCRMAPS.spad" 869382 869392 869951 869956) (-532 "INBFILE.spad" 868454 868462 869372 869377) (-531 "INBFF.spad" 864248 864259 868444 868449) (-530 "INBCON.spad" 862538 862546 864238 864243) (-529 "INBCON.spad" 860826 860836 862528 862533) (-528 "INAST.spad" 860487 860495 860816 860821) (-527 "IMPTAST.spad" 860195 860203 860477 860482) (-526 "IMATRIX.spad" 859140 859166 859652 859679) (-525 "IMATQF.spad" 858234 858278 859096 859101) (-524 "IMATLIN.spad" 856839 856863 858190 858195) (-523 "ILIST.spad" 855497 855512 856022 856049) (-522 "IIARRAY2.spad" 854885 854923 855104 855131) (-521 "IFF.spad" 854295 854311 854566 854659) (-520 "IFAST.spad" 853909 853917 854285 854290) (-519 "IFARRAY.spad" 851402 851417 853092 853119) (-518 "IFAMON.spad" 851264 851281 851358 851363) (-517 "IEVALAB.spad" 850669 850681 851254 851259) (-516 "IEVALAB.spad" 850072 850086 850659 850664) (-515 "IDPO.spad" 849870 849882 850062 850067) (-514 "IDPOAMS.spad" 849626 849638 849860 849865) (-513 "IDPOAM.spad" 849346 849358 849616 849621) (-512 "IDPC.spad" 848284 848296 849336 849341) (-511 "IDPAM.spad" 848029 848041 848274 848279) (-510 "IDPAG.spad" 847776 847788 848019 848024) (-509 "IDENT.spad" 847426 847434 847766 847771) (-508 "IDECOMP.spad" 844665 844683 847416 847421) (-507 "IDEAL.spad" 839614 839653 844600 844605) (-506 "ICDEN.spad" 838803 838819 839604 839609) (-505 "ICARD.spad" 837994 838002 838793 838798) (-504 "IBPTOOLS.spad" 836601 836618 837984 837989) (-503 "IBITS.spad" 835804 835817 836237 836264) (-502 "IBATOOL.spad" 832781 832800 835794 835799) (-501 "IBACHIN.spad" 831288 831303 832771 832776) (-500 "IARRAY2.spad" 830276 830302 830895 830922) (-499 "IARRAY1.spad" 829321 829336 829459 829486) (-498 "IAN.spad" 827544 827552 829137 829230) (-497 "IALGFACT.spad" 827147 827180 827534 827539) (-496 "HYPCAT.spad" 826571 826579 827137 827142) (-495 "HYPCAT.spad" 825993 826003 826561 826566) (-494 "HOSTNAME.spad" 825801 825809 825983 825988) (-493 "HOMOTOP.spad" 825544 825554 825791 825796) (-492 "HOAGG.spad" 822826 822836 825534 825539) (-491 "HOAGG.spad" 819883 819895 822593 822598) (-490 "HEXADEC.spad" 817985 817993 818350 818443) (-489 "HEUGCD.spad" 817020 817031 817975 817980) (-488 "HELLFDIV.spad" 816610 816634 817010 817015) (-487 "HEAP.spad" 816002 816012 816217 816244) (-486 "HEADAST.spad" 815539 815547 815992 815997) (-485 "HDP.spad" 805382 805398 805759 805890) (-484 "HDMP.spad" 802596 802611 803212 803339) (-483 "HB.spad" 800847 800855 802586 802591) (-482 "HASHTBL.spad" 799317 799348 799528 799555) (-481 "HASAST.spad" 799033 799041 799307 799312) (-480 "HACKPI.spad" 798524 798532 798935 799028) (-479 "GTSET.spad" 797463 797479 798170 798197) (-478 "GSTBL.spad" 795982 796017 796156 796171) (-477 "GSERIES.spad" 793153 793180 794114 794263) (-476 "GROUP.spad" 792426 792434 793133 793148) (-475 "GROUP.spad" 791707 791717 792416 792421) (-474 "GROEBSOL.spad" 790201 790222 791697 791702) (-473 "GRMOD.spad" 788772 788784 790191 790196) (-472 "GRMOD.spad" 787341 787355 788762 788767) (-471 "GRIMAGE.spad" 780230 780238 787331 787336) (-470 "GRDEF.spad" 778609 778617 780220 780225) (-469 "GRAY.spad" 777072 777080 778599 778604) (-468 "GRALG.spad" 776149 776161 777062 777067) (-467 "GRALG.spad" 775224 775238 776139 776144) (-466 "GPOLSET.spad" 774678 774701 774906 774933) (-465 "GOSPER.spad" 773947 773965 774668 774673) (-464 "GMODPOL.spad" 773095 773122 773915 773942) (-463 "GHENSEL.spad" 772178 772192 773085 773090) (-462 "GENUPS.spad" 768471 768484 772168 772173) (-461 "GENUFACT.spad" 768048 768058 768461 768466) (-460 "GENPGCD.spad" 767634 767651 768038 768043) (-459 "GENMFACT.spad" 767086 767105 767624 767629) (-458 "GENEEZ.spad" 765037 765050 767076 767081) (-457 "GDMP.spad" 762093 762110 762867 762994) (-456 "GCNAALG.spad" 756016 756043 761887 761954) (-455 "GCDDOM.spad" 755192 755200 755942 756011) (-454 "GCDDOM.spad" 754430 754440 755182 755187) (-453 "GB.spad" 751956 751994 754386 754391) (-452 "GBINTERN.spad" 747976 748014 751946 751951) (-451 "GBF.spad" 743743 743781 747966 747971) (-450 "GBEUCLID.spad" 741625 741663 743733 743738) (-449 "GAUSSFAC.spad" 740938 740946 741615 741620) (-448 "GALUTIL.spad" 739264 739274 740894 740899) (-447 "GALPOLYU.spad" 737718 737731 739254 739259) (-446 "GALFACTU.spad" 735891 735910 737708 737713) (-445 "GALFACT.spad" 726080 726091 735881 735886) (-444 "FVFUN.spad" 723103 723111 726070 726075) (-443 "FVC.spad" 722155 722163 723093 723098) (-442 "FUNDESC.spad" 721833 721841 722145 722150) (-441 "FUNCTION.spad" 721682 721694 721823 721828) (-440 "FT.spad" 719979 719987 721672 721677) (-439 "FTEM.spad" 719144 719152 719969 719974) (-438 "FSUPFACT.spad" 718044 718063 719080 719085) (-437 "FST.spad" 716130 716138 718034 718039) (-436 "FSRED.spad" 715610 715626 716120 716125) (-435 "FSPRMELT.spad" 714492 714508 715567 715572) (-434 "FSPECF.spad" 712583 712599 714482 714487) (-433 "FS.spad" 706851 706861 712358 712578) (-432 "FS.spad" 700897 700909 706406 706411) (-431 "FSINT.spad" 700557 700573 700887 700892) (-430 "FSERIES.spad" 699748 699760 700377 700476) (-429 "FSCINT.spad" 699065 699081 699738 699743) (-428 "FSAGG.spad" 698182 698192 699021 699060) (-427 "FSAGG.spad" 697261 697273 698102 698107) (-426 "FSAGG2.spad" 696004 696020 697251 697256) (-425 "FS2UPS.spad" 690495 690529 695994 695999) (-424 "FS2.spad" 690142 690158 690485 690490) (-423 "FS2EXPXP.spad" 689267 689290 690132 690137) (-422 "FRUTIL.spad" 688221 688231 689257 689262) (-421 "FR.spad" 681937 681947 687245 687314) (-420 "FRNAALG.spad" 677056 677066 681879 681932) (-419 "FRNAALG.spad" 672187 672199 677012 677017) (-418 "FRNAAF2.spad" 671643 671661 672177 672182) (-417 "FRMOD.spad" 671053 671083 671574 671579) (-416 "FRIDEAL.spad" 670278 670299 671033 671048) (-415 "FRIDEAL2.spad" 669882 669914 670268 670273) (-414 "FRETRCT.spad" 669393 669403 669872 669877) (-413 "FRETRCT.spad" 668770 668782 669251 669256) (-412 "FRAMALG.spad" 667118 667131 668726 668765) (-411 "FRAMALG.spad" 665498 665513 667108 667113) (-410 "FRAC.spad" 662597 662607 663000 663173) (-409 "FRAC2.spad" 662202 662214 662587 662592) (-408 "FR2.spad" 661538 661550 662192 662197) (-407 "FPS.spad" 658353 658361 661428 661533) (-406 "FPS.spad" 655196 655206 658273 658278) (-405 "FPC.spad" 654242 654250 655098 655191) (-404 "FPC.spad" 653374 653384 654232 654237) (-403 "FPATMAB.spad" 653136 653146 653364 653369) (-402 "FPARFRAC.spad" 651623 651640 653126 653131) (-401 "FORTRAN.spad" 650129 650172 651613 651618) (-400 "FORT.spad" 649078 649086 650119 650124) (-399 "FORTFN.spad" 646248 646256 649068 649073) (-398 "FORTCAT.spad" 645932 645940 646238 646243) (-397 "FORMULA.spad" 643406 643414 645922 645927) (-396 "FORMULA1.spad" 642885 642895 643396 643401) (-395 "FORDER.spad" 642576 642600 642875 642880) (-394 "FOP.spad" 641777 641785 642566 642571) (-393 "FNLA.spad" 641201 641223 641745 641772) (-392 "FNCAT.spad" 639796 639804 641191 641196) (-391 "FNAME.spad" 639688 639696 639786 639791) (-390 "FMTC.spad" 639486 639494 639614 639683) (-389 "FMONOID.spad" 636603 636613 639442 639447) (-388 "FMONCAT.spad" 633756 633766 636593 636598) (-387 "FM.spad" 633451 633463 633690 633717) (-386 "FMFUN.spad" 630481 630489 633441 633446) (-385 "FMC.spad" 629533 629541 630471 630476) (-384 "FMCAT.spad" 627201 627219 629501 629528) (-383 "FM1.spad" 626558 626570 627135 627162) (-382 "FLOATRP.spad" 624293 624307 626548 626553) (-381 "FLOAT.spad" 617607 617615 624159 624288) (-380 "FLOATCP.spad" 615038 615052 617597 617602) (-379 "FLINEXP.spad" 614750 614760 615018 615033) (-378 "FLINEXP.spad" 614416 614428 614686 614691) (-377 "FLASORT.spad" 613742 613754 614406 614411) (-376 "FLALG.spad" 611388 611407 613668 613737) (-375 "FLAGG.spad" 608430 608440 611368 611383) (-374 "FLAGG.spad" 605373 605385 608313 608318) (-373 "FLAGG2.spad" 604098 604114 605363 605368) (-372 "FINRALG.spad" 602159 602172 604054 604093) (-371 "FINRALG.spad" 600146 600161 602043 602048) (-370 "FINITE.spad" 599298 599306 600136 600141) (-369 "FINAALG.spad" 588419 588429 599240 599293) (-368 "FINAALG.spad" 577552 577564 588375 588380) (-367 "FILE.spad" 577135 577145 577542 577547) (-366 "FILECAT.spad" 575661 575678 577125 577130) (-365 "FIELD.spad" 575067 575075 575563 575656) (-364 "FIELD.spad" 574559 574569 575057 575062) (-363 "FGROUP.spad" 573206 573216 574539 574554) (-362 "FGLMICPK.spad" 571993 572008 573196 573201) (-361 "FFX.spad" 571368 571383 571709 571802) (-360 "FFSLPE.spad" 570871 570892 571358 571363) (-359 "FFPOLY.spad" 562133 562144 570861 570866) (-358 "FFPOLY2.spad" 561193 561210 562123 562128) (-357 "FFP.spad" 560590 560610 560909 561002) (-356 "FF.spad" 560038 560054 560271 560364) (-355 "FFNBX.spad" 558550 558570 559754 559847) (-354 "FFNBP.spad" 557063 557080 558266 558359) (-353 "FFNB.spad" 555528 555549 556744 556837) (-352 "FFINTBAS.spad" 553042 553061 555518 555523) (-351 "FFIELDC.spad" 550619 550627 552944 553037) (-350 "FFIELDC.spad" 548282 548292 550609 550614) (-349 "FFHOM.spad" 547030 547047 548272 548277) (-348 "FFF.spad" 544465 544476 547020 547025) (-347 "FFCGX.spad" 543312 543332 544181 544274) (-346 "FFCGP.spad" 542201 542221 543028 543121) (-345 "FFCG.spad" 540993 541014 541882 541975) (-344 "FFCAT.spad" 534166 534188 540832 540988) (-343 "FFCAT.spad" 527418 527442 534086 534091) (-342 "FFCAT2.spad" 527165 527205 527408 527413) (-341 "FEXPR.spad" 518882 518928 526921 526960) (-340 "FEVALAB.spad" 518590 518600 518872 518877) (-339 "FEVALAB.spad" 518083 518095 518367 518372) (-338 "FDIV.spad" 517525 517549 518073 518078) (-337 "FDIVCAT.spad" 515589 515613 517515 517520) (-336 "FDIVCAT.spad" 513651 513677 515579 515584) (-335 "FDIV2.spad" 513307 513347 513641 513646) (-334 "FCTRDATA.spad" 512315 512323 513297 513302) (-333 "FCPAK1.spad" 510882 510890 512305 512310) (-332 "FCOMP.spad" 510261 510271 510872 510877) (-331 "FC.spad" 500268 500276 510251 510256) (-330 "FAXF.spad" 493239 493253 500170 500263) (-329 "FAXF.spad" 486262 486278 493195 493200) (-328 "FARRAY.spad" 484412 484422 485445 485472) (-327 "FAMR.spad" 482548 482560 484310 484407) (-326 "FAMR.spad" 480668 480682 482432 482437) (-325 "FAMONOID.spad" 480336 480346 480622 480627) (-324 "FAMONC.spad" 478632 478644 480326 480331) (-323 "FAGROUP.spad" 478256 478266 478528 478555) (-322 "FACUTIL.spad" 476460 476477 478246 478251) (-321 "FACTFUNC.spad" 475654 475664 476450 476455) (-320 "EXPUPXS.spad" 472487 472510 473786 473935) (-319 "EXPRTUBE.spad" 469775 469783 472477 472482) (-318 "EXPRODE.spad" 466935 466951 469765 469770) (-317 "EXPR.spad" 462210 462220 462924 463331) (-316 "EXPR2UPS.spad" 458332 458345 462200 462205) (-315 "EXPR2.spad" 458037 458049 458322 458327) (-314 "EXPEXPAN.spad" 454977 455002 455609 455702) (-313 "EXIT.spad" 454648 454656 454967 454972) (-312 "EXITAST.spad" 454384 454392 454638 454643) (-311 "EVALCYC.spad" 453844 453858 454374 454379) (-310 "EVALAB.spad" 453416 453426 453834 453839) (-309 "EVALAB.spad" 452986 452998 453406 453411) (-308 "EUCDOM.spad" 450560 450568 452912 452981) (-307 "EUCDOM.spad" 448196 448206 450550 450555) (-306 "ESTOOLS.spad" 440042 440050 448186 448191) (-305 "ESTOOLS2.spad" 439645 439659 440032 440037) (-304 "ESTOOLS1.spad" 439330 439341 439635 439640) (-303 "ES.spad" 432145 432153 439320 439325) (-302 "ES.spad" 424866 424876 432043 432048) (-301 "ESCONT.spad" 421659 421667 424856 424861) (-300 "ESCONT1.spad" 421408 421420 421649 421654) (-299 "ES2.spad" 420913 420929 421398 421403) (-298 "ES1.spad" 420483 420499 420903 420908) (-297 "ERROR.spad" 417810 417818 420473 420478) (-296 "EQTBL.spad" 416282 416304 416491 416518) (-295 "EQ.spad" 411087 411097 413874 413986) (-294 "EQ2.spad" 410805 410817 411077 411082) (-293 "EP.spad" 407131 407141 410795 410800) (-292 "ENV.spad" 405793 405801 407121 407126) (-291 "ENTIRER.spad" 405461 405469 405737 405788) (-290 "EMR.spad" 404668 404709 405387 405456) (-289 "ELTAGG.spad" 402922 402941 404658 404663) (-288 "ELTAGG.spad" 401140 401161 402878 402883) (-287 "ELTAB.spad" 400589 400607 401130 401135) (-286 "ELFUTS.spad" 399976 399995 400579 400584) (-285 "ELEMFUN.spad" 399665 399673 399966 399971) (-284 "ELEMFUN.spad" 399352 399362 399655 399660) (-283 "ELAGG.spad" 397323 397333 399332 399347) (-282 "ELAGG.spad" 395231 395243 397242 397247) (-281 "ELABEXPR.spad" 394163 394171 395221 395226) (-280 "EFUPXS.spad" 390939 390969 394119 394124) (-279 "EFULS.spad" 387775 387798 390895 390900) (-278 "EFSTRUC.spad" 385790 385806 387765 387770) (-277 "EF.spad" 380566 380582 385780 385785) (-276 "EAB.spad" 378842 378850 380556 380561) (-275 "E04UCFA.spad" 378378 378386 378832 378837) (-274 "E04NAFA.spad" 377955 377963 378368 378373) (-273 "E04MBFA.spad" 377535 377543 377945 377950) (-272 "E04JAFA.spad" 377071 377079 377525 377530) (-271 "E04GCFA.spad" 376607 376615 377061 377066) (-270 "E04FDFA.spad" 376143 376151 376597 376602) (-269 "E04DGFA.spad" 375679 375687 376133 376138) (-268 "E04AGNT.spad" 371529 371537 375669 375674) (-267 "DVARCAT.spad" 368218 368228 371519 371524) (-266 "DVARCAT.spad" 364905 364917 368208 368213) (-265 "DSMP.spad" 362372 362386 362677 362804) (-264 "DROPT.spad" 356331 356339 362362 362367) (-263 "DROPT1.spad" 355996 356006 356321 356326) (-262 "DROPT0.spad" 350853 350861 355986 355991) (-261 "DRAWPT.spad" 349026 349034 350843 350848) (-260 "DRAW.spad" 341902 341915 349016 349021) (-259 "DRAWHACK.spad" 341210 341220 341892 341897) (-258 "DRAWCX.spad" 338680 338688 341200 341205) (-257 "DRAWCURV.spad" 338227 338242 338670 338675) (-256 "DRAWCFUN.spad" 327759 327767 338217 338222) (-255 "DQAGG.spad" 325937 325947 327727 327754) (-254 "DPOLCAT.spad" 321286 321302 325805 325932) (-253 "DPOLCAT.spad" 316721 316739 321242 321247) (-252 "DPMO.spad" 308947 308963 309085 309386) (-251 "DPMM.spad" 301186 301204 301311 301612) (-250 "DOMTMPLT.spad" 300846 300854 301176 301181) (-249 "DOMCTOR.spad" 300601 300609 300836 300841) (-248 "DOMAIN.spad" 299688 299696 300591 300596) (-247 "DMP.spad" 296948 296963 297518 297645) (-246 "DLP.spad" 296300 296310 296938 296943) (-245 "DLIST.spad" 294879 294889 295483 295510) (-244 "DLAGG.spad" 293296 293306 294869 294874) (-243 "DIVRING.spad" 292838 292846 293240 293291) (-242 "DIVRING.spad" 292424 292434 292828 292833) (-241 "DISPLAY.spad" 290614 290622 292414 292419) (-240 "DIRPROD.spad" 280194 280210 280834 280965) (-239 "DIRPROD2.spad" 279012 279030 280184 280189) (-238 "DIRPCAT.spad" 277956 277972 278876 279007) (-237 "DIRPCAT.spad" 276629 276647 277551 277556) (-236 "DIOSP.spad" 275454 275462 276619 276624) (-235 "DIOPS.spad" 274450 274460 275434 275449) (-234 "DIOPS.spad" 273420 273432 274406 274411) (-233 "DIFRING.spad" 272716 272724 273400 273415) (-232 "DIFRING.spad" 272020 272030 272706 272711) (-231 "DIFEXT.spad" 271191 271201 272000 272015) (-230 "DIFEXT.spad" 270279 270291 271090 271095) (-229 "DIAGG.spad" 269909 269919 270259 270274) (-228 "DIAGG.spad" 269547 269559 269899 269904) (-227 "DHMATRIX.spad" 267859 267869 269004 269031) (-226 "DFSFUN.spad" 261499 261507 267849 267854) (-225 "DFLOAT.spad" 258230 258238 261389 261494) (-224 "DFINTTLS.spad" 256461 256477 258220 258225) (-223 "DERHAM.spad" 254375 254407 256441 256456) (-222 "DEQUEUE.spad" 253699 253709 253982 254009) (-221 "DEGRED.spad" 253316 253330 253689 253694) (-220 "DEFINTRF.spad" 250853 250863 253306 253311) (-219 "DEFINTEF.spad" 249363 249379 250843 250848) (-218 "DEFAST.spad" 248731 248739 249353 249358) (-217 "DECIMAL.spad" 246837 246845 247198 247291) (-216 "DDFACT.spad" 244650 244667 246827 246832) (-215 "DBLRESP.spad" 244250 244274 244640 244645) (-214 "DBASE.spad" 242914 242924 244240 244245) (-213 "DATAARY.spad" 242376 242389 242904 242909) (-212 "D03FAFA.spad" 242204 242212 242366 242371) (-211 "D03EEFA.spad" 242024 242032 242194 242199) (-210 "D03AGNT.spad" 241110 241118 242014 242019) (-209 "D02EJFA.spad" 240572 240580 241100 241105) (-208 "D02CJFA.spad" 240050 240058 240562 240567) (-207 "D02BHFA.spad" 239540 239548 240040 240045) (-206 "D02BBFA.spad" 239030 239038 239530 239535) (-205 "D02AGNT.spad" 233844 233852 239020 239025) (-204 "D01WGTS.spad" 232163 232171 233834 233839) (-203 "D01TRNS.spad" 232140 232148 232153 232158) (-202 "D01GBFA.spad" 231662 231670 232130 232135) (-201 "D01FCFA.spad" 231184 231192 231652 231657) (-200 "D01ASFA.spad" 230652 230660 231174 231179) (-199 "D01AQFA.spad" 230098 230106 230642 230647) (-198 "D01APFA.spad" 229522 229530 230088 230093) (-197 "D01ANFA.spad" 229016 229024 229512 229517) (-196 "D01AMFA.spad" 228526 228534 229006 229011) (-195 "D01ALFA.spad" 228066 228074 228516 228521) (-194 "D01AKFA.spad" 227592 227600 228056 228061) (-193 "D01AJFA.spad" 227115 227123 227582 227587) (-192 "D01AGNT.spad" 223182 223190 227105 227110) (-191 "CYCLOTOM.spad" 222688 222696 223172 223177) (-190 "CYCLES.spad" 219544 219552 222678 222683) (-189 "CVMP.spad" 218961 218971 219534 219539) (-188 "CTRIGMNP.spad" 217461 217477 218951 218956) (-187 "CTOR.spad" 217152 217160 217451 217456) (-186 "CTORKIND.spad" 216755 216763 217142 217147) (-185 "CTORCAT.spad" 216004 216012 216745 216750) (-184 "CTORCAT.spad" 215251 215261 215994 215999) (-183 "CTORCALL.spad" 214840 214850 215241 215246) (-182 "CSTTOOLS.spad" 214085 214098 214830 214835) (-181 "CRFP.spad" 207809 207822 214075 214080) (-180 "CRCEAST.spad" 207529 207537 207799 207804) (-179 "CRAPACK.spad" 206580 206590 207519 207524) (-178 "CPMATCH.spad" 206084 206099 206505 206510) (-177 "CPIMA.spad" 205789 205808 206074 206079) (-176 "COORDSYS.spad" 200798 200808 205779 205784) (-175 "CONTOUR.spad" 200209 200217 200788 200793) (-174 "CONTFRAC.spad" 195959 195969 200111 200204) (-173 "CONDUIT.spad" 195717 195725 195949 195954) (-172 "COMRING.spad" 195391 195399 195655 195712) (-171 "COMPPROP.spad" 194909 194917 195381 195386) (-170 "COMPLPAT.spad" 194676 194691 194899 194904) (-169 "COMPLEX.spad" 188813 188823 189057 189318) (-168 "COMPLEX2.spad" 188528 188540 188803 188808) (-167 "COMPFACT.spad" 188130 188144 188518 188523) (-166 "COMPCAT.spad" 186202 186212 187864 188125) (-165 "COMPCAT.spad" 184002 184014 185666 185671) (-164 "COMMUPC.spad" 183750 183768 183992 183997) (-163 "COMMONOP.spad" 183283 183291 183740 183745) (-162 "COMM.spad" 183094 183102 183273 183278) (-161 "COMMAAST.spad" 182857 182865 183084 183089) (-160 "COMBOPC.spad" 181772 181780 182847 182852) (-159 "COMBINAT.spad" 180539 180549 181762 181767) (-158 "COMBF.spad" 177921 177937 180529 180534) (-157 "COLOR.spad" 176758 176766 177911 177916) (-156 "COLONAST.spad" 176424 176432 176748 176753) (-155 "CMPLXRT.spad" 176135 176152 176414 176419) (-154 "CLLCTAST.spad" 175797 175805 176125 176130) (-153 "CLIP.spad" 171905 171913 175787 175792) (-152 "CLIF.spad" 170560 170576 171861 171900) (-151 "CLAGG.spad" 167065 167075 170550 170555) (-150 "CLAGG.spad" 163441 163453 166928 166933) (-149 "CINTSLPE.spad" 162772 162785 163431 163436) (-148 "CHVAR.spad" 160910 160932 162762 162767) (-147 "CHARZ.spad" 160825 160833 160890 160905) (-146 "CHARPOL.spad" 160335 160345 160815 160820) (-145 "CHARNZ.spad" 160088 160096 160315 160330) (-144 "CHAR.spad" 157962 157970 160078 160083) (-143 "CFCAT.spad" 157290 157298 157952 157957) (-142 "CDEN.spad" 156486 156500 157280 157285) (-141 "CCLASS.spad" 154635 154643 155897 155936) (-140 "CATEGORY.spad" 153677 153685 154625 154630) (-139 "CATCTOR.spad" 153568 153576 153667 153672) (-138 "CATAST.spad" 153186 153194 153558 153563) (-137 "CASEAST.spad" 152900 152908 153176 153181) (-136 "CARTEN.spad" 148187 148211 152890 152895) (-135 "CARTEN2.spad" 147577 147604 148177 148182) (-134 "CARD.spad" 144872 144880 147551 147572) (-133 "CAPSLAST.spad" 144646 144654 144862 144867) (-132 "CACHSET.spad" 144270 144278 144636 144641) (-131 "CABMON.spad" 143825 143833 144260 144265) (-130 "BYTEORD.spad" 143500 143508 143815 143820) (-129 "BYTE.spad" 142927 142935 143490 143495) (-128 "BYTEBUF.spad" 140786 140794 142096 142123) (-127 "BTREE.spad" 139859 139869 140393 140420) (-126 "BTOURN.spad" 138864 138874 139466 139493) (-125 "BTCAT.spad" 138256 138266 138832 138859) (-124 "BTCAT.spad" 137668 137680 138246 138251) (-123 "BTAGG.spad" 136796 136804 137636 137663) (-122 "BTAGG.spad" 135944 135954 136786 136791) (-121 "BSTREE.spad" 134685 134695 135551 135578) (-120 "BRILL.spad" 132882 132893 134675 134680) (-119 "BRAGG.spad" 131822 131832 132872 132877) (-118 "BRAGG.spad" 130726 130738 131778 131783) (-117 "BPADICRT.spad" 128707 128719 128962 129055) (-116 "BPADIC.spad" 128371 128383 128633 128702) (-115 "BOUNDZRO.spad" 128027 128044 128361 128366) (-114 "BOP.spad" 123209 123217 128017 128022) (-113 "BOP1.spad" 120675 120685 123199 123204) (-112 "BOOLEAN.spad" 120113 120121 120665 120670) (-111 "BMODULE.spad" 119825 119837 120081 120108) (-110 "BITS.spad" 119246 119254 119461 119488) (-109 "BINDING.spad" 118659 118667 119236 119241) (-108 "BINARY.spad" 116770 116778 117126 117219) (-107 "BGAGG.spad" 115975 115985 116750 116765) (-106 "BGAGG.spad" 115188 115200 115965 115970) (-105 "BFUNCT.spad" 114752 114760 115168 115183) (-104 "BEZOUT.spad" 113892 113919 114702 114707) (-103 "BBTREE.spad" 110737 110747 113499 113526) (-102 "BASTYPE.spad" 110409 110417 110727 110732) (-101 "BASTYPE.spad" 110079 110089 110399 110404) (-100 "BALFACT.spad" 109538 109551 110069 110074) (-99 "AUTOMOR.spad" 108989 108998 109518 109533) (-98 "ATTREG.spad" 105712 105719 108741 108984) (-97 "ATTRBUT.spad" 101735 101742 105692 105707) (-96 "ATTRAST.spad" 101452 101459 101725 101730) (-95 "ATRIG.spad" 100922 100929 101442 101447) (-94 "ATRIG.spad" 100390 100399 100912 100917) (-93 "ASTCAT.spad" 100294 100301 100380 100385) (-92 "ASTCAT.spad" 100196 100205 100284 100289) (-91 "ASTACK.spad" 99535 99544 99803 99830) (-90 "ASSOCEQ.spad" 98361 98372 99491 99496) (-89 "ASP9.spad" 97442 97455 98351 98356) (-88 "ASP8.spad" 96485 96498 97432 97437) (-87 "ASP80.spad" 95807 95820 96475 96480) (-86 "ASP7.spad" 94967 94980 95797 95802) (-85 "ASP78.spad" 94418 94431 94957 94962) (-84 "ASP77.spad" 93787 93800 94408 94413) (-83 "ASP74.spad" 92879 92892 93777 93782) (-82 "ASP73.spad" 92150 92163 92869 92874) (-81 "ASP6.spad" 91017 91030 92140 92145) (-80 "ASP55.spad" 89526 89539 91007 91012) (-79 "ASP50.spad" 87343 87356 89516 89521) (-78 "ASP4.spad" 86638 86651 87333 87338) (-77 "ASP49.spad" 85637 85650 86628 86633) (-76 "ASP42.spad" 84044 84083 85627 85632) (-75 "ASP41.spad" 82623 82662 84034 84039) (-74 "ASP35.spad" 81611 81624 82613 82618) (-73 "ASP34.spad" 80912 80925 81601 81606) (-72 "ASP33.spad" 80472 80485 80902 80907) (-71 "ASP31.spad" 79612 79625 80462 80467) (-70 "ASP30.spad" 78504 78517 79602 79607) (-69 "ASP29.spad" 77970 77983 78494 78499) (-68 "ASP28.spad" 69243 69256 77960 77965) (-67 "ASP27.spad" 68140 68153 69233 69238) (-66 "ASP24.spad" 67227 67240 68130 68135) (-65 "ASP20.spad" 66691 66704 67217 67222) (-64 "ASP1.spad" 66072 66085 66681 66686) (-63 "ASP19.spad" 60758 60771 66062 66067) (-62 "ASP12.spad" 60172 60185 60748 60753) (-61 "ASP10.spad" 59443 59456 60162 60167) (-60 "ARRAY2.spad" 58803 58812 59050 59077) (-59 "ARRAY1.spad" 57640 57649 57986 58013) (-58 "ARRAY12.spad" 56353 56364 57630 57635) (-57 "ARR2CAT.spad" 52127 52148 56321 56348) (-56 "ARR2CAT.spad" 47921 47944 52117 52122) (-55 "ARITY.spad" 47293 47300 47911 47916) (-54 "APPRULE.spad" 46553 46575 47283 47288) (-53 "APPLYORE.spad" 46172 46185 46543 46548) (-52 "ANY.spad" 45031 45038 46162 46167) (-51 "ANY1.spad" 44102 44111 45021 45026) (-50 "ANTISYM.spad" 42547 42563 44082 44097) (-49 "ANON.spad" 42240 42247 42537 42542) (-48 "AN.spad" 40549 40556 42056 42149) (-47 "AMR.spad" 38734 38745 40447 40544) (-46 "AMR.spad" 36756 36769 38471 38476) (-45 "ALIST.spad" 34168 34189 34518 34545) (-44 "ALGSC.spad" 33303 33329 34040 34093) (-43 "ALGPKG.spad" 29086 29097 33259 33264) (-42 "ALGMFACT.spad" 28279 28293 29076 29081) (-41 "ALGMANIP.spad" 25753 25768 28112 28117) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 4852c2e7..3ffb64df 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1106 +1,1106 @@
-(188047 . 3462598961)
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) #0#) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
-((((-566)) . T) (($) -2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T))
+(188053 . 3462993431)
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((#0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
+((((-567)) . T) (($) -2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T))
(((|#2| |#2|) . T))
-((((-566)) . T))
-((($ $) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2| |#2|) . T) ((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))))
+((((-567)) . T))
+((($ $) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#2|) . T))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))))
-(|has| |#1| (-909))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((($) . T) (((-409 (-566))) . T))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+(|has| |#1| (-910))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((($) . T) (((-410 (-567))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-144)) . T))
-((((-538)) . T) (((-1157)) . T) (((-225)) . T) (((-381)) . T) (((-892 (-381))) . T))
-(((|#1|) . T))
-((((-225)) . T) (((-862)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
-((($ $) . T) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
-(-2676 (|has| |#1| (-820)) (|has| |#1| (-850)))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T))
-((((-862)) . T))
-((((-862)) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(|has| |#1| (-848))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-317 |#1|)) . T) (((-566)) . T) (($) . T))
+((((-539)) . T) (((-1158)) . T) (((-225)) . T) (((-381)) . T) (((-893 (-381))) . T))
+(((|#1|) . T))
+((((-225)) . T) (((-863)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((($ $) . T) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
+(-2909 (|has| |#1| (-821)) (|has| |#1| (-851)))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T))
+((((-863)) . T))
+((((-863)) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(|has| |#1| (-849))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-317 |#1|)) . T) (((-567)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
-((((-566)) . T) (((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T))
-((((-862)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
+((((-567)) . T) (((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T))
+((((-863)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
(((|#4|) . T))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T))
-((((-862)) . T))
-((((-862)) |has| |#1| (-1099)))
-((((-862)) . T) (((-1180)) . T))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T))
+((((-863)) . T))
+((((-863)) |has| |#1| (-1100)))
+((((-863)) . T) (((-1181)) . T))
(((|#1|) . T) ((|#2|) . T))
-((((-1180)) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(((|#2| (-484 (-3991 |#1|) (-771))) . T))
-(((|#1| (-533 (-1175))) . T))
-(((#0=(-870 |#1|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
-((((-1157)) . T) (((-958 (-129))) . T) (((-862)) . T))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+((((-1181)) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(((|#2| (-485 (-2268 |#1|) (-772))) . T))
+(((|#1| (-534 (-1176))) . T))
+(((#0=(-871 |#1|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+((((-1158)) . T) (((-959 (-129))) . T) (((-863)) . T))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(|has| |#4| (-370))
(|has| |#3| (-370))
(((|#1|) . T))
-((((-1175)) . T))
-((((-508)) . T))
-((((-870 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-1176)) . T))
+((((-509)) . T))
+((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(|has| |#1| (-558))
-((((-566)) . T) (((-409 (-566))) -2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-((((-2 (|:| -2430 |#1|) (|:| -3428 |#2|))) . T))
-((($) . T))
-((((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1175)) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-1175)) . T))
-((((-566)) . T) (($) . T))
-((((-583 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) . T) (((-566)) . T) (($) . T))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1|) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-862)) . T))
+(|has| |#1| (-559))
+((((-567)) . T) (((-410 (-567))) -2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+((((-2 (|:| -3811 |#1|) (|:| -4164 |#2|))) . T))
+((($) . T))
+((((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1176)) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-1176)) . T))
+((((-567)) . T) (($) . T))
+((((-584 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) . T) (((-567)) . T) (($) . T))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1|) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
-((((-862)) . T))
+((((-863)) . T))
(((|#1|) . T))
-(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
(((|#1|) . T))
-((((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((((-862)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-((((-116 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T) (((-566)) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-(((|#2|) . T) (((-566)) . T) ((|#6|) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-863)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+((((-116 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T) (((-567)) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+(((|#2|) . T) (((-567)) . T) ((|#6|) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
((($) . T))
(((|#2|) . T))
((($) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T))
-((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
+((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
((($ $) . T))
((($) . T))
-((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
+((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-370))
(((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
+(((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
(((|#1|) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-566)) . T))
-((((-862)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-567)) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) . T) (((-566)) . T) (($) . T))
-(|has| |#1| (-558))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) . T) (((-567)) . T) (($) . T))
+(|has| |#1| (-559))
(((|#1| |#1|) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(|has| |#1| (-1099))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(|has| |#1| (-1099))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(|has| |#1| (-848))
-((($) . T) (((-409 (-566))) . T))
-((((-862)) . T))
-(((|#1|) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-566) (-129)) . T))
-((($) . T) (((-409 (-566))) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(|has| |#1| (-1100))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(|has| |#1| (-1100))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(|has| |#1| (-849))
+((($) . T) (((-410 (-567))) . T))
+((((-863)) . T))
+(((|#1|) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-567) (-129)) . T))
+((($) . T) (((-410 (-567))) . T))
((((-129)) . T))
-(-2676 (|has| |#4| (-793)) (|has| |#4| (-848)))
-(-2676 (|has| |#4| (-793)) (|has| |#4| (-848)))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
+(-2909 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(-2909 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
(((|#1| |#2|) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1180)) . T))
-(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1175) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-516 (-1175) |#2|))))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1181)) . T))
+(((|#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) (((-1176) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1176) |#2|))))
(((|#1| |#2|) . T))
-(|has| |#1| (-1099))
-(|has| |#1| (-1099))
-((((-566)) . T) (((-409 (-566))) . T))
-(((|#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) . T))
-((((-566) |#1|) . T))
-((((-566)) . T))
-((((-566)) . T))
-((((-910 |#1|)) . T))
-(((|#1| (-533 |#2|)) . T))
-((((-566)) . T))
-((((-566)) . T))
-(((|#1|) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(((|#1| (-771)) . T))
-(|has| |#2| (-793))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-(|has| |#2| (-848))
+(|has| |#1| (-1100))
+(|has| |#1| (-1100))
+((((-567)) . T) (((-410 (-567))) . T))
+(((|#1| (-1176) (-1088 (-1176)) (-534 (-1088 (-1176)))) . T))
+((((-567) |#1|) . T))
+((((-567)) . T))
+((((-567)) . T))
+((((-911 |#1|)) . T))
+(((|#1| (-534 |#2|)) . T))
+((((-567)) . T))
+((((-567)) . T))
+(((|#1|) . T))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(((|#1| (-772)) . T))
+(|has| |#2| (-794))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(|has| |#2| (-849))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1157) |#1|) . T))
-((((-566) (-129)) . T))
+((((-1158) |#1|) . T))
+((((-567) (-129)) . T))
(((|#1|) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-(((|#3| (-771)) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+(((|#3| (-772)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) . T) (((-409 (-566))) . T))
+((($) . T) (((-410 (-567))) . T))
((($) . T))
((($) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-((((-409 (-566))) . T) (($) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+((((-410 (-567))) . T) (($) . T))
((($) . T))
((($) . T))
-(|has| |#1| (-1099))
-((((-409 (-566))) . T) (((-566)) . T))
-((((-566)) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#2|) . T))
-((((-1175) |#2|) |has| |#2| (-516 (-1175) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|)))
-((((-409 (-566))) . T) (((-566)) . T))
-((((-566)) . T) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))
+(|has| |#1| (-1100))
+((((-410 (-567))) . T) (((-567)) . T))
+((((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#2|) . T))
+((((-1176) |#2|) |has| |#2| (-517 (-1176) |#2|)) ((|#2| |#2|) |has| |#2| (-310 |#2|)))
+((((-410 (-567))) . T) (((-567)) . T))
+((((-567)) . T) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1082)) . T) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))
(((|#1|) . T) (($) . T))
-((((-566)) . T))
-((((-566)) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
-((((-566)) . T))
-((((-566)) . T))
-((((-409 (-566))) . T) (($) . T))
-(((#0=(-699) (-1171 #0#)) . T))
-((((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
+((((-567)) . T))
+((((-567)) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((((-567)) . T))
+((((-567)) . T))
+((((-410 (-567))) . T) (($) . T))
+(((#0=(-700) (-1172 #0#)) . T))
+((((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
(|has| |#2| (-365))
-((((-566) |#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
+((((-567) |#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
(((|#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-862)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-1157) |#1|) . T))
+((((-863)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-1158) |#1|) . T))
(((|#3| |#3|) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-863)) . T))
+((((-863)) . T))
(((|#1| |#1|) . T))
-(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-566) |#1|) . T))
-((((-862)) . T))
-((((-169 (-225))) |has| |#1| (-1022)) (((-169 (-381))) |has| |#1| (-1022)) (((-538)) |has| |#1| (-614 (-538))) (((-1171 |#1|)) . T) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-567) |#1|) . T))
+((((-863)) . T))
+((((-169 (-225))) |has| |#1| (-1023)) (((-169 (-381))) |has| |#1| (-1023)) (((-539)) |has| |#1| (-615 (-539))) (((-1172 |#1|)) . T) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
(|has| |#1| (-365))
-((((-862)) . T))
+((((-863)) . T))
((($) . T))
((($) . T))
((((-129)) . T))
-(-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))
-(-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))
-(-2676 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049)))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-((((-862)) . T) (((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-862)) . T))
-(((|#1|) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566))))
-(((|#2|) . T) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-(|has| |#1| (-558))
-((((-566)) -2676 (|has| |#4| (-172)) (|has| |#4| (-848)) (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049))) ((|#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-1099))) (((-409 (-566))) -12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))
-((((-566)) -2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(|has| |#1| (-558))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(((|#1|) . T))
-(|has| |#1| (-558))
-(|has| |#1| (-558))
-(|has| |#1| (-558))
-((((-699)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-1002)) (|has| |#1| (-1200)))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-409 (-566))) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-(-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))
-((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T))
-(((|#4| |#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($ $) |has| |#4| (-172)))
-(((|#3| |#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172)))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566)))))
-((((-862)) . T))
+(-12 (|has| |#4| (-233)) (|has| |#4| (-1050)))
+(-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))
+(-2909 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050)))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+((((-863)) . T) (((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-863)) . T))
+(((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
+(((|#2|) . T) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+(|has| |#1| (-559))
+((((-567)) -2909 (|has| |#4| (-172)) (|has| |#4| (-849)) (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1100))) (|has| |#4| (-1050))) ((|#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-1100))) (((-410 (-567))) -12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1100))))
+((((-567)) -2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100))) (|has| |#3| (-1050))) ((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-1100))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(|has| |#1| (-559))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(((|#1|) . T))
+(|has| |#1| (-559))
+(|has| |#1| (-559))
+(|has| |#1| (-559))
+((((-700)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-1003)) (|has| |#1| (-1201)))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-410 (-567))) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+(-12 (|has| |#1| (-1100)) (|has| |#2| (-1100)))
+((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
+(((|#4| |#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))) (($ $) |has| |#4| (-172)))
+(((|#3| |#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($ $) |has| |#3| (-172)))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567)))))
+((((-863)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -2430 |#1|) (|:| -3428 |#2|))) . T) (((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))))
-(((|#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172)))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172)))
-((((-2 (|:| -2430 |#1|) (|:| -3428 |#2|))) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
-((((-644 |#1|)) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-((((-409 $) (-409 $)) |has| |#2| (-558)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-909))
-((((-1157) (-52)) . T))
-((((-566)) |has| #0=(-409 |#2|) (-639 (-566))) ((#0#) . T))
-((((-538)) . T) (((-225)) . T) (((-381)) . T) (((-892 (-381))) . T))
-((((-862)) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))
+((((-2 (|:| -3811 |#1|) (|:| -4164 |#2|))) . T) (((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))))
+(((|#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))) (($) |has| |#4| (-172)))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172)))
+((((-2 (|:| -3811 |#1|) (|:| -4164 |#2|))) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
+((((-645 |#1|)) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+((((-410 $) (-410 $)) |has| |#2| (-559)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-910))
+((((-1158) (-52)) . T))
+((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T))
+((((-539)) . T) (((-225)) . T) (((-381)) . T) (((-893 (-381))) . T))
+((((-863)) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)))
(((|#1|) |has| |#1| (-172)))
(((|#1| $) |has| |#1| (-287 |#1| |#1|)))
-((((-862)) . T))
-((((-862)) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-(|has| |#1| (-850))
-(((|#2|) . T) (((-566)) . T) (((-819 |#1|)) . T))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-1099))
-((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) . T) (((-1180)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((((-1180)) . T))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+((((-863)) . T))
+((((-863)) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+(|has| |#1| (-851))
+(((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-1100))
+((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) . T) (((-1181)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((((-1181)) . T))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(|has| |#1| (-233))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1| (-533 (-818 (-1175)))) . T))
-(((|#1| (-971)) . T))
-((((-566)) . T) ((|#2|) . T))
-(((#0=(-870 |#1|) $) |has| #0# (-287 #0# #0#)))
-((((-566) |#4|) . T))
-((((-566) |#3|) . T))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1| (-534 (-819 (-1176)))) . T))
+(((|#1| (-972)) . T))
+((((-567)) . T) ((|#2|) . T))
+(((#0=(-871 |#1|) $) |has| #0# (-287 #0# #0#)))
+((((-567) |#4|) . T))
+((((-567) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1150))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-(|has| (-1251 |#1| |#2| |#3| |#4|) (-145))
-(|has| (-1251 |#1| |#2| |#3| |#4|) (-147))
+(|has| |#1| (-1151))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+(|has| (-1252 |#1| |#2| |#3| |#4|) (-145))
+(|has| (-1252 |#1| |#2| |#3| |#4|) (-147))
(|has| |#1| (-145))
(|has| |#1| (-147))
(((|#1|) |has| |#1| (-172)))
-((((-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049))))
-(|has| |#1| (-1099))
-((((-1157) |#1|) . T))
+((((-1176)) -12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050))))
+(|has| |#1| (-1100))
+((((-1158) |#1|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566))))
-((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-818 (-1175))) . T) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T))
+(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
+((((-1125 |#1| (-1176))) . T) (((-567)) . T) (((-819 (-1176))) . T) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-1176)) . T))
(|has| |#2| (-370))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-1049)))
-((((-862)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) #0#) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
+(((|#2|) |has| |#2| (-1050)))
+((((-863)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((#0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
(((|#1|) . T))
-((((-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) #0#) |has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))))
-((((-862)) . T))
-((((-566) |#1|) . T))
-((((-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))) (((-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381))))) (((-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566))))))
+((((-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((#0=(-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) #0#) |has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))))
+((((-863)) . T))
+((((-567) |#1|) . T))
+((((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))) (((-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381))))) (((-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567))))))
((($) . T))
-((((-862)) . T))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) . T))
+((((-863)) . T))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) . T))
-((((-862)) . T))
-(|has| (-1250 |#2| |#3| |#4|) (-147))
-(|has| (-1250 |#2| |#3| |#4|) (-145))
-(((|#2|) |has| |#2| (-1099)) (((-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T))
+((((-863)) . T))
+(|has| (-1251 |#2| |#3| |#4|) (-147))
+(|has| (-1251 |#2| |#3| |#4|) (-145))
+(((|#2|) |has| |#2| (-1100)) (((-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))))
(((|#1|) . T))
-(|has| |#1| (-1099))
-((((-862)) . T))
+(|has| |#1| (-1100))
+((((-863)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)))
(((|#1|) . T))
-((((-566) |#1|) . T))
+((((-567) |#1|) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
-((((-862)) |has| |#1| (-1099)))
-(-2676 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-910 |#1|)) . T))
-((((-409 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-566) |#1|)))
-((((-409 (-566))) . T) (($) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((((-863)) |has| |#1| (-1100)))
+(-2909 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)) (|has| |#1| (-1112)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-911 |#1|)) . T))
+((((-410 |#2|) |#3|) . T))
+(|has| |#1| (-15 * (|#1| (-567) |#1|)))
+((((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
+((((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
(|has| |#1| (-365))
-(-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))
-(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))
+(-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))
+(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
-(|has| |#1| (-15 * (|#1| (-771) |#1|)))
-((((-566)) . T))
-((((-566)) . T))
-((((-1141 |#2| (-409 (-952 |#1|)))) . T) (((-409 (-952 |#1|))) . T))
+(|has| |#1| (-15 * (|#1| (-772) |#1|)))
+((((-567)) . T))
+((((-567)) . T))
+((((-1142 |#2| (-410 (-953 |#1|)))) . T) (((-410 (-953 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-172)) (($) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T))
-(((|#1|) . T))
-((((-566) |#1|) . T))
-((((-862)) . T))
-(((|#2|) . T))
-(-2676 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((($) |has| |#1| (-558)) (((-566)) . T))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-((((-1257 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1261 |#2|)) . T) (((-1257 |#1| |#2| |#3|)) . T) (((-1229 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T))
-(((|#1|) . T))
-((((-1175)) -12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-820)))
-(-2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558)))
-(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((($ $) |has| |#1| (-558)))
-(((#0=(-699) (-1171 #0#)) . T))
-((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-862)) . T) (((-1265 |#4|)) . T))
-((((-862)) . T) (((-1265 |#3|)) . T))
-((((-583 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((($) . T) (((-409 (-566))) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)))
-((((-862)) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((($) . T))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1257 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-(((|#3|) |has| |#3| (-1049)))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-(|has| |#1| (-1099))
-(((|#2| (-819 |#1|)) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
+(((|#1|) . T))
+((((-567) |#1|) . T))
+((((-863)) . T))
+(((|#2|) . T))
+(-2909 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((($) |has| |#1| (-559)) (((-567)) . T))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+((((-1258 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1262 |#2|)) . T) (((-1258 |#1| |#2| |#3|)) . T) (((-1230 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T))
+(((|#1|) . T))
+((((-1176)) -12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
+(-2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559)))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($ $) |has| |#1| (-559)))
+(((#0=(-700) (-1172 #0#)) . T))
+((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-863)) . T) (((-1266 |#4|)) . T))
+((((-863)) . T) (((-1266 |#3|)) . T))
+((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((($) . T) (((-410 (-567))) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)))
+((((-863)) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((($) . T))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1258 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+(((|#3|) |has| |#3| (-1050)))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+(|has| |#1| (-1100))
+(((|#2| (-820 |#1|)) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
(((|#2|) . T) ((|#6|) . T))
(|has| |#1| (-365))
-((((-566)) . T) ((|#2|) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+((((-567)) . T) ((|#2|) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
(((|#2|) . T) ((|#6|) . T))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((#0=(-1081) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-862)) . T))
-((((-910 |#1|)) . T))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((#0=(-1082) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-863)) . T))
+((((-911 |#1|)) . T))
((((-144)) . T))
((((-144)) . T))
-(((|#3|) |has| |#3| (-1099)) (((-566)) -12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+(((|#3|) |has| |#3| (-1100)) (((-567)) -12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100))))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#1|) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
(((|#1|) |has| |#1| (-172)))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
(|has| |#1| (-365))
-((((-1180)) . T))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
-((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
-(|has| |#2| (-820))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-848))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-538)) |has| |#1| (-614 (-538))))
+((((-1181)) . T))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
+((((-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+(|has| |#2| (-821))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-849))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-539)) |has| |#1| (-615 (-539))))
(((|#1| |#2|) . T))
-((((-1175)) -12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175)))))
-((((-1157) |#1|) . T))
-(((|#1| |#2| |#3| (-533 |#3|)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+((((-1176)) -12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176)))))
+((((-1158) |#1|) . T))
+(((|#1| |#2| |#3| (-534 |#3|)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
-((((-862)) . T))
-((((-409 (-566))) . T))
+((((-863)) . T))
+((((-410 (-567))) . T))
(((|#1|) . T))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-((((-409 (-566))) . T))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+((((-410 (-567))) . T))
(|has| |#1| (-370))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-566)) . T))
-((((-566)) . T))
-(((|#1|) . T) (((-566)) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))
-((((-1175) #0=(-870 |#1|)) |has| #0# (-516 (-1175) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
-(((|#1|) . T))
-((((-566) |#4|) . T))
-((((-566) |#3|) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566))))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((((-1251 |#1| |#2| |#3| |#4|)) . T))
-((((-409 (-566))) . T) (((-566)) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-567)) . T))
+((((-567)) . T))
+(((|#1|) . T) (((-567)) . T))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))
+((((-1176) #0=(-871 |#1|)) |has| #0# (-517 (-1176) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
+(((|#1|) . T))
+((((-567) |#4|) . T))
+((((-567) |#3|) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((((-1252 |#1| |#2| |#3| |#4|)) . T))
+((((-410 (-567))) . T) (((-567)) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((((-566)) . T))
-((((-566)) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((((-566)) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((((-567)) . T))
+((((-567)) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((((-567)) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-1100))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))))
(((|#1|) . T))
(((|#1|) . T))
-((((-409 (-566))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-((($) . T) (((-409 (-566))) . T))
-(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-(((|#1|) |has| |#1| (-558)))
-((((-566) |#4|) . T))
-((((-566) |#3|) . T))
-((((-862)) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((((-862)) . T))
-((((-566) |#1|) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+((($) . T) (((-410 (-567))) . T))
+(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+(((|#1|) |has| |#1| (-559)))
+((((-567) |#4|) . T))
+((((-567) |#3|) . T))
+((((-863)) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((((-863)) . T))
+((((-567) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1175) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1176) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2676 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))))
-(((|#2| |#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172)))
+((($) -2909 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+(((|#2| |#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($ $) |has| |#2| (-172)))
((((-144)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-370)) (|has| |#2| (-370)))
-((((-862)) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172)))
+((((-863)) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172)))
(((|#1|) . T))
-((((-862)) . T))
-(|has| |#1| (-1099))
+((((-863)) . T))
+(|has| |#1| (-1100))
(|has| $ (-147))
-((((-1180)) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T))
-((((-566) |#1|) . T))
-((($) -2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))))
+((((-1181)) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
+((((-567) |#1|) . T))
+((($) -2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176)))))
(|has| |#1| (-365))
-(-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))
-(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))
+(-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))
+(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
-(|has| |#1| (-15 * (|#1| (-771) |#1|)))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-((((-862)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(((|#2| (-533 (-864 |#1|))) . T))
-((((-862)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-583 |#1|)) . T))
-((($) . T))
-((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
+(|has| |#1| (-15 * (|#1| (-772) |#1|)))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+((((-863)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(((|#2| (-534 (-865 |#1|))) . T))
+((((-863)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-584 |#1|)) . T))
+((($) . T))
+((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
(((|#1|) . T) (($) . T))
-((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T))
-((((-1173 |#1| |#2| |#3|)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172)))
-((((-1261 |#2|)) . T) (((-1173 |#1| |#2| |#3|)) . T) (((-1166 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
+((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
+((((-1174 |#1| |#2| |#3|)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
+((((-1262 |#2|)) . T) (((-1174 |#1| |#2| |#3|)) . T) (((-1167 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
(((|#4|) . T))
(((|#3|) . T))
-((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T))
-((((-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049))))
-(((|#1|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-566)) . T) (((-409 (-566))) -2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T))
-((((-566) |#2|) . T))
-((((-862)) . T))
-((($) . T) (((-566)) . T) ((|#2|) . T) (((-409 (-566))) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T))
+((((-1176)) -12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050))))
+(((|#1|) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-567)) . T) (((-410 (-567))) -2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T))
+((((-567) |#2|) . T))
+((((-863)) . T))
+((($) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) . T))
+((((-863)) . T))
+((((-863)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((#1=(-1173 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) . T))
-(((|#2|) |has| |#2| (-1049)))
-(|has| |#1| (-1099))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((#1=(-1174 |#1| |#2| |#3|) #1#) |has| |#1| (-365)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T))
+(((|#2|) |has| |#2| (-1050)))
+(|has| |#1| (-1100))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) |has| |#1| (-172)) (($) . T))
(((|#1|) . T))
-(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((((-862)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((((-863)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-(((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+(((#0=(-1082) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
((($) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1099)) (((-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))))
+(((|#2|) |has| |#2| (-1100)) (((-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))))
(((|#2|) |has| |#1| (-365)))
-((((-566) |#1|) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T))
-((((-1180)) . T))
-((((-862)) . T))
-((((-409 |#2|) |#3|) . T))
-(((|#1| (-409 (-566))) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-862)) . T) (((-1180)) . T))
+((((-567) |#1|) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
+((((-1181)) . T))
+((((-863)) . T))
+((((-410 |#2|) |#3|) . T))
+(((|#1| (-410 (-567))) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-863)) . T) (((-1181)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((((-1180)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-(((|#2| |#3| (-864 |#1|)) . T))
-((((-1175)) |has| |#2| (-900 (-1175))))
-(((|#1|) . T))
-(((|#1| (-533 |#2|) |#2|) . T))
-(((|#1| (-771) (-1081)) . T))
-((((-409 (-566))) |has| |#2| (-365)) (($) . T))
-(((|#1| (-533 (-1087 (-1175))) (-1087 (-1175))) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-999 |#1|)) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2676 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(|has| |#2| (-793))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
+((((-1181)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
+(((|#2| |#3| (-865 |#1|)) . T))
+((((-1176)) |has| |#2| (-901 (-1176))))
+(((|#1|) . T))
+(((|#1| (-534 |#2|) |#2|) . T))
+(((|#1| (-772) (-1082)) . T))
+((((-410 (-567))) |has| |#2| (-365)) (($) . T))
+(((|#1| (-534 (-1088 (-1176))) (-1088 (-1176))) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1000 |#1|)) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2909 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(|has| |#2| (-794))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
-(|has| |#2| (-848))
-((((-893 |#1|)) . T) (((-819 |#1|)) . T))
-((((-819 (-1175))) . T))
+(|has| |#2| (-849))
+((((-894 |#1|)) . T) (((-820 |#1|)) . T))
+((((-820 (-1176))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-644 (-566))) . T))
-((((-644 (-566))) . T) (((-862)) . T))
-((((-409 (-566))) . T) (((-862)) . T))
-((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-645 (-567))) . T))
+((((-645 (-567))) . T) (((-863)) . T))
+((((-410 (-567))) . T) (((-863)) . T))
+((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
(|has| |#1| (-233))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-1257 |#1| |#2| |#3|) $) -12 (|has| (-1257 |#1| |#2| |#3|) (-287 (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-1258 |#1| |#2| |#3|) $) -12 (|has| (-1258 |#1| |#2| |#3|) (-287 (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1139 |#1| |#2|)) |has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
-(((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))))
+((((-1140 |#1| |#2|)) |has| (-1140 |#1| |#2|) (-310 (-1140 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
+(((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
(((|#2|) . T))
-((((-862)) -2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1265 |#2|)) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T) (($) . T))
+((((-863)) -2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100))) (((-1266 |#2|)) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
-((((-566)) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-566) (-144)) . T))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))))
-((((-566)) . T))
-(((|#1|) . T) ((|#2|) . T) (((-566)) . T))
-((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049)))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049)))
-((($) . T) (((-566)) . T) ((|#2|) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T))
+((((-567)) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-567) (-144)) . T))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))))
+((((-567)) . T))
+(((|#1|) . T) ((|#2|) . T) (((-567)) . T))
+((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-567)) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050)))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050)))
+((($) . T) (((-567)) . T) ((|#2|) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
(((|#2|) |has| |#1| (-365)))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-1180)) . T))
-((((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1| (-533 #0=(-1175)) #0#) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-1181)) . T))
+((((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1| (-534 #0=(-1176)) #0#) . T))
(((|#1|) . T) (($) . T))
-((((-566)) . T))
+((((-567)) . T))
(|has| |#4| (-172))
(|has| |#3| (-172))
-(((#0=(-409 (-952 |#1|)) #0#) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(|has| |#1| (-1099))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(|has| |#1| (-1099))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
+(((#0=(-410 (-953 |#1|)) #0#) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(|has| |#1| (-1100))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(|has| |#1| (-1100))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1|) . T))
-((((-409 (-952 |#1|))) . T))
-(((|#1|) . T) (((-566)) . T) (($) . T))
+((((-410 (-953 |#1|))) . T))
+(((|#1|) . T) (((-567)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-862)) . T))
-((((-862)) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1049)) (((-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-863)) . T))
+((((-863)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1050)) (((-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))
(((|#1| |#2|) . T))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-(|has| |#3| (-793))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
-(|has| |#3| (-848))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-(((|#2|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1| (-1155 |#1|)) |has| |#1| (-848)))
-((((-566) |#2|) . T))
-(|has| |#1| (-1099))
-(((|#1|) . T))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-1150)))
-((((-409 (-566))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((($) . T) (((-409 (-566))) . T))
-(|has| |#1| (-1099))
-(((|#2|) . T))
-((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566)))))
-(((|#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-365))))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365))))
-((((-862)) . T))
-(((|#1|) . T))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-909)))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-909)))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#2|) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909)))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-1175) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-818 (-1175)) |#1|) . T) ((#1# $) . T))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-909)))
-((((-566) |#2|) . T))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((($) -2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))))
-((((-566) |#1|) . T))
-(|has| (-409 |#2|) (-147))
-(|has| (-409 |#2|) (-145))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+(|has| |#3| (-794))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(|has| |#3| (-849))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+(((|#2|) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1| (-1156 |#1|)) |has| |#1| (-849)))
+((((-567) |#2|) . T))
+(|has| |#1| (-1100))
+(((|#1|) . T))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-1151)))
+((((-410 (-567))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((($) . T) (((-410 (-567))) . T))
+(|has| |#1| (-1100))
+(((|#2|) . T))
+((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567)))))
+(((|#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-365))))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365))))
+((((-863)) . T))
+(((|#1|) . T))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-910)))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-910)))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#2|) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-910)))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-1176) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-819 (-1176)) |#1|) . T) ((#1# $) . T))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-910)))
+((((-567) |#2|) . T))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((($) -2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) ((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))))
+((((-567) |#1|) . T))
+(|has| (-410 |#2|) (-147))
+(|has| (-410 |#2|) (-145))
(((|#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))))
-(|has| |#1| (-38 (-409 (-566))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-409 (-566))) . T))
-((((-862)) . T))
-(|has| |#1| (-558))
-(|has| |#1| (-558))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-862)) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-(|has| |#1| (-38 (-409 (-566))))
-((((-390) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#2| (-1150))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-((((-862)) . T) (((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-1214)) . T) (((-862)) . T) (((-1180)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-410 (-567))) . T))
+((((-863)) . T))
+(|has| |#1| (-559))
+(|has| |#1| (-559))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-863)) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+(|has| |#1| (-38 (-410 (-567))))
+((((-391) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#2| (-1151))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+((((-863)) . T) (((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-1215)) . T) (((-863)) . T) (((-1181)) . T))
((((-116 |#1|)) . T))
-((((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-(((|#1|) . T))
-((((-390) (-1157)) . T))
-(|has| |#1| (-558))
-((((-566) |#1|) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#2|) . T))
-((((-862)) . T))
-((((-819 |#1|)) . T))
+((((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+(((|#1|) . T))
+((((-391) (-1158)) . T))
+(|has| |#1| (-559))
+((((-567) |#1|) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#2|) . T))
+((((-863)) . T))
+((((-820 |#1|)) . T))
(((|#2|) |has| |#2| (-172)))
-((((-1175) (-52)) . T))
+((((-1176) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-558))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-559))
(((|#1|) |has| |#1| (-172)))
-((((-644 |#1|)) . T))
-((((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
+((((-645 |#1|)) . T))
+((((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
(((|#2|) |has| |#2| (-310 |#2|)))
-(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
+(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1171 |#1|)) . T))
+(((|#1| (-1172 |#1|)) . T))
(|has| $ (-147))
(((|#2|) . T))
-(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
+(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
(|has| |#2| (-370))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(((|#1| |#2|) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-862)) . T))
-((((-1173 |#1| |#2| |#3|) $) -12 (|has| (-1173 |#1| |#2| |#3|) (-287 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-863)) . T))
+((((-1174 |#1| |#2| |#3|) $) -12 (|has| (-1174 |#1| |#2| |#3|) (-287 (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365))) (($ $) . T))
((($ $) . T))
((($ $) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((#0=(-1257 |#1| |#2| |#3|) #0#) -12 (|has| (-1257 |#1| |#2| |#3|) (-310 (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1175) #0#) -12 (|has| (-1257 |#1| |#2| |#3|) (-516 (-1175) (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365))))
-(-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((#0=(-1258 |#1| |#2| |#3|) #0#) -12 (|has| (-1258 |#1| |#2| |#3|) (-310 (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1176) #0#) -12 (|has| (-1258 |#1| |#2| |#3|) (-517 (-1176) (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+(-12 (|has| |#1| (-1100)) (|has| |#2| (-1100)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-566)) . T) (($) . T))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) . T) (((-566)) . T) ((|#2|) . T))
-((((-566)) . T) (($) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))))
-((((-409 (-566))) . T) (((-566)) . T))
-((((-566) (-144)) . T))
+((((-567)) . T) (($) . T))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) . T) (((-567)) . T) ((|#2|) . T))
+((((-567)) . T) (($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((((-410 (-567))) . T) (((-567)) . T))
+((((-567) (-144)) . T))
((((-144)) . T))
(((|#1|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049)))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050)))
((((-112)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
((((-112)) . T))
(((|#1|) . T))
-((((-538)) |has| |#1| (-614 (-538))) (((-225)) . #0=(|has| |#1| (-1022))) (((-381)) . #0#))
-((((-862)) . T))
-((((-1180)) . T))
-(|has| |#1| (-820))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-558)))
-(|has| |#1| (-558))
-(|has| |#1| (-850))
-((($) . T) (((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T))
-(|has| |#1| (-909))
-(((|#1|) . T))
-(|has| |#1| (-1099))
-((((-862)) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-558)))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1| (-1265 |#1|) (-1265 |#1|)) . T))
-((((-566) (-144)) . T))
-((($) . T))
-(-2676 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049)))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-((((-1180)) . T) (((-862)) . T))
-((((-1180)) . T))
-((((-862)) . T))
-(|has| |#1| (-1099))
-(((|#1| (-971)) . T))
+((((-539)) |has| |#1| (-615 (-539))) (((-225)) . #0=(|has| |#1| (-1023))) (((-381)) . #0#))
+((((-863)) . T))
+((((-1181)) . T))
+(|has| |#1| (-821))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#2|) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(|has| |#1| (-559))
+(|has| |#1| (-851))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T))
+(|has| |#1| (-910))
+(((|#1|) . T))
+(|has| |#1| (-1100))
+((((-863)) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-559)))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1| (-1266 |#1|) (-1266 |#1|)) . T))
+((((-567) (-144)) . T))
+((($) . T))
+(-2909 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050)))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+((((-1181)) . T) (((-863)) . T))
+((((-1181)) . T))
+((((-863)) . T))
+(|has| |#1| (-1100))
+(((|#1| (-972)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-(-12 (|has| |#1| (-475)) (|has| |#2| (-475)))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((($) . T) (((-566)) . T) (((-870 |#1|)) . T) (((-409 (-566))) . T))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-12 (|has| |#1| (-476)) (|has| |#2| (-476)))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((($) . T) (((-567)) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T))
(((|#1|) . T))
-(|has| |#2| (-793))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
+(|has| |#2| (-794))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(|has| |#2| (-848))
-(-12 (|has| |#1| (-793)) (|has| |#2| (-793)))
-(-12 (|has| |#1| (-793)) (|has| |#2| (-793)))
-(-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(|has| |#2| (-849))
+(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
+(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
+(-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-566)) . T))
+(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-567)) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
-((((-862)) . T))
+((((-863)) . T))
(|has| |#1| (-351))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-409 (-566))) . T) (($) . T))
-(((|#2|) . T) (($) . T) (((-409 (-566))) . T))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T))
-(|has| |#1| (-828))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T))
-(|has| |#1| (-1099))
+((((-410 (-567))) . T) (($) . T))
+(((|#2|) . T) (($) . T) (((-410 (-567))) . T))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
+(|has| |#1| (-829))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T))
+(|has| |#1| (-1100))
(((|#1| $) |has| |#1| (-287 |#1| |#1|)))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((($) |has| |#1| (-558)))
-(((|#2|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1099)))
-(((|#3|) |has| |#3| (-1099)))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((($) |has| |#1| (-559)))
+(((|#2|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1100)))
+(((|#3|) |has| |#3| (-1100)))
(|has| |#3| (-370))
-((($) |has| |#1| (-558)) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-((((-862)) . T))
-((((-862)) . T))
+((($) |has| |#1| (-559)) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-567)) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+((((-863)) . T))
+((((-863)) . T))
(((|#2|) . T))
(((|#1| |#2|) . T))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1| |#1|) |has| |#1| (-172)))
(|has| |#2| (-365))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
-((((-409 (-566))) . T) (((-566)) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((($) . T) (((-566)) . T))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
+((((-410 (-567))) . T) (((-567)) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((($) . T) (((-567)) . T))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
((((-144)) . T))
(((|#1|) . T))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))))
((((-144)) . T))
((((-144)) . T))
-((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#) ((|#2|) . T) (((-566)) . T))
+((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#) ((|#2|) . T) (((-567)) . T))
(((|#1| |#2| |#3|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049)))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050)))
(((|#1|) |has| |#1| (-172)))
(|has| $ (-147))
(|has| $ (-147))
-((((-1180)) . T))
+((((-1181)) . T))
(((|#1|) |has| |#1| (-172)))
-(|has| |#1| (-1099))
-((((-862)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111)))
+(|has| |#1| (-1100))
+((((-863)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1050)) (|has| |#1| (-1112)))
((($ $) |has| |#1| (-287 $ $)) ((|#1| $) |has| |#1| (-287 |#1| |#1|)))
-(((|#1| (-409 (-566))) . T))
-(((|#1|) . T))
-((((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-1175)) . T))
-(|has| |#1| (-558))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(|has| |#1| (-558))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-862)) . T))
+(((|#1| (-410 (-567))) . T))
+(((|#1|) . T))
+((((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-1176)) . T))
+(|has| |#1| (-559))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(|has| |#1| (-559))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-863)) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
(((|#2|) . T) (($) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(|has| |#4| (-848))
-(((|#2| (-240 (-3991 |#1|) (-771)) (-864 |#1|)) . T))
-(|has| |#3| (-848))
-(((|#1| (-533 |#3|) |#3|) . T))
+(|has| |#4| (-849))
+(((|#2| (-240 (-2268 |#1|) (-772)) (-865 |#1|)) . T))
+(|has| |#3| (-849))
+(((|#1| (-534 |#3|) |#3|) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(((#0=(-409 (-566)) #0#) |has| |#2| (-365)) (($ $) . T))
-((((-870 |#1|)) . T))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-365)) (($ $) . T))
+((((-871 |#1|)) . T))
(|has| |#1| (-147))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
-((((-862)) . T))
+((((-863)) . T))
(|has| |#1| (-145))
-((((-409 (-566))) |has| |#2| (-365)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(-2676 (|has| |#1| (-351)) (|has| |#1| (-370)))
-((((-1141 |#2| |#1|)) . T) ((|#1|) . T))
+((((-410 (-567))) |has| |#2| (-365)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(-2909 (|has| |#1| (-351)) (|has| |#1| (-370)))
+((((-1142 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-172))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))
-(((|#2|) . T) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
-((((-862)) . T))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))
+(((|#2|) . T) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
+((((-863)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
-((((-699)) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(|has| |#1| (-558))
+((((-700)) . T))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(|has| |#1| (-559))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -1108,371 +1108,371 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1175) (-52)) . T))
+((((-1176) (-52)) . T))
(((|#1|) . T) (($) . T))
-((((-1004 10)) . T) (((-409 (-566))) . T) (((-862)) . T))
-((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
-(((|#1|) . T))
-((((-1004 16)) . T) (((-409 (-566))) . T) (((-862)) . T))
-((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
-(((|#1| (-566)) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-1005 10)) . T) (((-410 (-567))) . T) (((-863)) . T))
+((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
+(((|#1|) . T))
+((((-1005 16)) . T) (((-410 (-567))) . T) (((-863)) . T))
+((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
+(((|#1| (-567)) . T))
+((((-863)) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-409 (-566))) . T))
-(((|#3|) . T) (((-612 $)) . T))
+(((|#1| (-410 (-567))) . T))
+(((|#3|) . T) (((-613 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-566)) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-567)) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-1100))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-(((#0=(-1173 |#1| |#2| |#3|) #0#) -12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1175) #0#) -12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))
-((((-862)) . T))
-((((-862)) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+(((#0=(-1174 |#1| |#2| |#3|) #0#) -12 (|has| (-1174 |#1| |#2| |#3|) (-310 (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365))) (((-1176) #0#) -12 (|has| (-1174 |#1| |#2| |#3|) (-517 (-1176) (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+((((-863)) . T))
+((((-863)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) |has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))))
-((((-862)) . T))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) |has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))))
+((((-863)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1175) (-52)) . T))
+((((-1176) (-52)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-828))
-((($) . T) (((-566)) . T) ((|#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(|has| |#1| (-1099))
-(((|#2| |#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172)))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365))))
-((((-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172)))
-((((-566)) . T))
-((((-1180)) . T))
-((((-771)) . T))
+((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-829))
+((($) . T) (((-567)) . T) ((|#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(|has| |#1| (-1100))
+(((|#2| |#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($ $) |has| |#2| (-172)))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365))))
+((((-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172)))
+((((-567)) . T))
+((((-1181)) . T))
+((((-772)) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
-(|has| |#1| (-558))
-((((-566)) . T))
+(|has| |#1| (-559))
+((((-567)) . T))
(((|#2|) . T))
-((((-862)) . T))
-(((|#1| (-409 (-566)) (-1081)) . T))
+((((-863)) . T))
+(((|#1| (-410 (-567)) (-1082)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(|has| |#1| (-558))
-((((-566)) . T))
+(|has| |#1| (-559))
+((((-567)) . T))
((((-116 |#1|)) . T))
(((|#1|) . T))
-((((-409 (-566))) . T) (($) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-((($) . T) (((-409 (-566))) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-558)))
+((((-410 (-567))) . T) (($) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+((($) . T) (((-410 (-567))) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-559)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((((-566)) . T))
-((((-566)) . T))
-((((-892 (-566))) . T) (((-892 (-381))) . T) (((-538)) . T) (((-1175)) . T))
-((((-862)) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
+((((-567)) . T))
+((((-567)) . T))
+((((-893 (-567))) . T) (((-893 (-381))) . T) (((-539)) . T) (((-1176)) . T))
+((((-863)) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
((($) . T))
(((|#1|) . T))
-((((-862)) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
+((((-863)) . T))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2676 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))))
-((((-870 |#1|)) . T))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099)))
-(-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))
-(|has| |#2| (-1150))
-(((#0=(-52)) . T) (((-2 (|:| -3476 (-1175)) (|:| -2484 #0#))) . T))
+((($) -2909 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((((-871 |#1|)) . T))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100)))
+(-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))
+(|has| |#2| (-1151))
+(((#0=(-52)) . T) (((-2 (|:| -1762 (-1176)) (|:| -3859 #0#))) . T))
(((|#1| |#2|) . T))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-(((|#1| (-566) (-1081)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1| (-409 (-566)) (-1081)) . T))
-((($) -2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-566) |#2|) . T))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+(((|#1| (-567) (-1082)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1| (-410 (-567)) (-1082)) . T))
+((($) -2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-567) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-370))
(-12 (|has| |#1| (-370)) (|has| |#2| (-370)))
-((((-862)) . T))
-((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(((|#1|) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+((((-863)) . T))
+((((-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#4|) . T))
(|has| |#1| (-351))
-((((-566)) -2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049))) ((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))
-(((|#1|) . T))
-(((|#4|) . T) (((-862)) . T))
-(((|#3|) . T) ((|#2|) . T) (($) -2676 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) (((-566)) . T) ((|#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))))
-(((|#2|) . T) (($) -2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) . T) ((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) #0#) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
-(|has| |#1| (-558))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-862)) . T))
+((((-567)) -2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100))) (|has| |#3| (-1050))) ((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-1100))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100))))
+(((|#1|) . T))
+(((|#4|) . T) (((-863)) . T))
+(((|#3|) . T) ((|#2|) . T) (($) -2909 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050))) (((-567)) . T) ((|#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))))
+(((|#2|) . T) (($) -2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) (((-567)) . T) ((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((#0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
+(|has| |#1| (-559))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-863)) . T))
(((|#1| |#2|) . T))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-909)))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-909)))
-((((-409 (-566))) . T) (((-566)) . T))
-((((-566)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((($) . T))
-((((-862)) . T))
-(((|#1|) . T))
-((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((((-862)) . T))
-(((|#3| |#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($ $) |has| |#3| (-172)))
-(|has| |#1| (-1022))
-((((-862)) . T))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172)))
-((((-566) (-112)) . T))
-((((-1180)) . T))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-910)))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-910)))
+((((-410 (-567))) . T) (((-567)) . T))
+((((-567)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((($) . T))
+((((-863)) . T))
+(((|#1|) . T))
+((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-863)) . T))
+(((|#3| |#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($ $) |has| |#3| (-172)))
+(|has| |#1| (-1023))
+((((-863)) . T))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172)))
+((((-567) (-112)) . T))
+((((-1181)) . T))
(((|#1|) |has| |#1| (-310 |#1|)))
-((((-1180)) . T))
+((((-1181)) . T))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
-((((-1175) $) |has| |#1| (-516 (-1175) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)))
-((((-1175)) |has| |#1| (-900 (-1175))))
-(-2676 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))
+((((-1176) $) |has| |#1| (-517 (-1176) $)) (($ $) |has| |#1| (-310 $)) ((|#1| |#1|) |has| |#1| (-310 |#1|)) (((-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)))
+((((-1176)) |has| |#1| (-901 (-1176))))
+(-2909 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
-((((-390) |#1|) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-(|has| |#1| (-1099))
-(((|#2|) . T) (((-862)) . T))
-((((-862)) . T))
-(((|#2|) . T))
-((((-910 |#1|)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
+((((-391) |#1|) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(|has| |#1| (-1100))
+(((|#2|) . T) (((-863)) . T))
+((((-863)) . T))
+(((|#2|) . T))
+((((-911 |#1|)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
(((|#1| |#2|) . T))
((($) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
(((|#1| |#1|) . T))
-(((#0=(-870 |#1|)) |has| #0# (-310 #0#)))
-((((-566)) . T) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1038 (-409 (-566))))) ((|#1|) . T))
+(((#0=(-871 |#1|)) |has| #0# (-310 #0#)))
+((((-567)) . T) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-1039 (-410 (-567))))) ((|#1|) . T))
(((|#1| |#2|) . T))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-(((|#1|) . T))
-(-12 (|has| |#1| (-793)) (|has| |#2| (-793)))
-(-12 (|has| |#1| (-793)) (|has| |#2| (-793)))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((($) . T) (((-566)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(((|#1|) . T))
+(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
+(-12 (|has| |#1| (-794)) (|has| |#2| (-794)))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((($) . T) (((-567)) . T) ((|#2|) . T))
+(((|#2|) . T) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#2|) . T) (($) . T))
-(|has| |#1| (-1200))
-(((#0=(-566) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
-((((-409 (-566))) . T) (($) . T))
-(((|#4|) |has| |#4| (-1049)))
-(((|#3|) |has| |#3| (-1049)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T))
+(|has| |#1| (-1201))
+(((#0=(-567) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+((((-410 (-567))) . T) (($) . T))
+(((|#4|) |has| |#4| (-1050)))
+(((|#3|) |has| |#3| (-1050)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(|has| |#1| (-365))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-((($ $) . T) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-566) |#3|) . T))
-((((-862)) . T))
-((((-538)) |has| |#3| (-614 (-538))))
-((((-689 |#3|)) . T) (((-862)) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+((($ $) . T) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1| |#1|) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-567) |#3|) . T))
+((((-863)) . T))
+((((-539)) |has| |#3| (-615 (-539))))
+((((-690 |#3|)) . T) (((-863)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-558)))
+(|has| |#1| (-849))
+(|has| |#1| (-849))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-559)))
((($) . T))
-(((#0=(-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) #0#) |has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))))
+(((#0=(-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) #0#) |has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))))
((($) . T))
((($) . T))
-(((|#2|) |has| |#2| (-1099)))
-((((-862)) -2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1265 |#2|)) . T))
+(((|#2|) |has| |#2| (-1100)))
+((((-863)) -2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100))) (((-1266 |#2|)) . T))
((($) . T))
-((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-1157) (-52)) . T))
+((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-1158) (-52)) . T))
(((|#2|) |has| |#2| (-172)))
-((($) -2676 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) |has| |#2| (-172)) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))))
-((((-862)) . T))
-(((|#2|) . T))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))))
-((((-566)) |has| #0=(-409 |#2|) (-639 (-566))) ((#0#) . T))
-((($) . T) (((-566)) . T))
-((((-566) (-144)) . T))
-((((-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((|#1| |#2|) . T))
-((((-409 (-566))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-862)) . T))
-((((-910 |#1|)) . T))
+((($) -2909 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) |has| |#2| (-172)) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((((-863)) . T))
+(((|#2|) . T))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+((((-567)) |has| #0=(-410 |#2|) (-640 (-567))) ((#0#) . T))
+((($) . T) (((-567)) . T))
+((((-567) (-144)) . T))
+((((-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((|#1| |#2|) . T))
+((((-410 (-567))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-863)) . T))
+((((-911 |#1|)) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
(|has| |#1| (-365))
-(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))
-(|has| |#1| (-848))
-((($) -2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
+(|has| |#1| (-849))
+((($) -2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
(|has| |#1| (-365))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-848))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-1175)) |has| |#1| (-900 (-1175))))
-(|has| |#1| (-848))
-((((-508)) . T))
-(((|#1| (-1175)) . T))
-(((|#1| (-1265 |#1|) (-1265 |#1|)) . T))
-((((-862)) . T) (((-1180)) . T))
+(|has| |#1| (-849))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-1176)) |has| |#1| (-901 (-1176))))
+(|has| |#1| (-849))
+((((-509)) . T))
+(((|#1| (-1176)) . T))
+(((|#1| (-1266 |#1|) (-1266 |#1|)) . T))
+((((-863)) . T) (((-1181)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-((((-1180)) . T))
-(|has| |#1| (-1099))
-(((|#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) . T))
-((((-409 (-952 |#1|))) . T))
-((((-538)) . T))
-((((-862)) . T))
+((((-1181)) . T))
+(|has| |#1| (-1100))
+(((|#1| (-1176) (-819 (-1176)) (-534 (-819 (-1176)))) . T))
+((((-410 (-953 |#1|))) . T))
+((((-539)) . T))
+((((-863)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
-((((-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((|#1| |#2|) . T))
+((((-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-172)))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-538)) |has| |#1| (-614 (-538))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))))
-((((-862)) . T))
-((((-870 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#2|) . T) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-508)) . T))
-(|has| |#2| (-848))
-((((-508)) . T))
-(-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))
-(|has| |#1| (-558))
-((((-870 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-1157) |#1|) . T))
-(|has| |#1| (-1150))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((((-958 |#1|)) . T))
-(((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-566))) (((-566)) |has| |#1| (-1038 (-566))) (((-1175)) |has| |#1| (-1038 (-1175))) ((|#1|) . T))
-((((-566) |#2|) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381))))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T))
-(((|#1|) . T))
-((($) . T) (((-566)) . T))
-((((-644 |#4|)) . T) (((-862)) . T))
-((((-538)) |has| |#4| (-614 (-538))))
-((((-538)) |has| |#4| (-614 (-538))))
-((((-862)) . T) (((-644 |#4|)) . T))
-((($) |has| |#1| (-848)))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T))
-((((-566)) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))))
-(((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T))
-((((-644 |#4|)) . T) (((-862)) . T))
-((((-538)) |has| |#4| (-614 (-538))))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T))
-(((|#1|) . T))
-((((-1175)) |has| (-409 |#2|) (-900 (-1175))))
-(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) #0#) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($) . T))
-((($) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-862)) -2676 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-613 (-862))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099))) (((-1265 |#3|)) . T))
-((((-566) |#2|) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(((|#2| |#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($ $) |has| |#2| (-172)))
-(((|#2|) . T) (((-566)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((|#2|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-1157) (-1175) (-566) (-225) (-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-862)) . T))
-((((-566) (-112)) . T))
-(((|#1|) . T))
-((((-862)) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-539)) |has| |#1| (-615 (-539))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))))
+((((-863)) . T))
+((((-871 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#2|) . T) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-509)) . T))
+(|has| |#2| (-849))
+((((-509)) . T))
+(-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))
+(|has| |#1| (-559))
+((((-871 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-1158) |#1|) . T))
+(|has| |#1| (-1151))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((((-959 |#1|)) . T))
+(((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-567))) (((-567)) |has| |#1| (-1039 (-567))) (((-1176)) |has| |#1| (-1039 (-1176))) ((|#1|) . T))
+((((-567) |#2|) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((((-567)) |has| |#1| (-887 (-567))) (((-381)) |has| |#1| (-887 (-381))))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
+(((|#1|) . T))
+((($) . T) (((-567)) . T))
+((((-645 |#4|)) . T) (((-863)) . T))
+((((-539)) |has| |#4| (-615 (-539))))
+((((-539)) |has| |#4| (-615 (-539))))
+((((-863)) . T) (((-645 |#4|)) . T))
+((($) |has| |#1| (-849)))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
+((((-567)) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-1100))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))))
+(((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
+((((-645 |#4|)) . T) (((-863)) . T))
+((((-539)) |has| |#4| (-615 (-539))))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
+(((|#1|) . T))
+((((-1176)) |has| (-410 |#2|) (-901 (-1176))))
+(((|#2|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((#0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($) . T))
+((($) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-863)) -2909 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-614 (-863))) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)) (|has| |#3| (-1100))) (((-1266 |#3|)) . T))
+((((-567) |#2|) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(((|#2| |#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($ $) |has| |#2| (-172)))
+(((|#2|) . T) (((-567)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((|#2|) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-1158) (-1176) (-567) (-225) (-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-863)) . T))
+((((-567) (-112)) . T))
+(((|#1|) . T))
+((((-863)) . T))
((((-112)) . T))
((((-112)) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-863)) . T))
+((((-863)) . T))
((((-112)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((($) . T) (((-409 (-566))) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172)))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((($) . T) (((-410 (-567))) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172)))
(|has| $ (-147))
-((((-409 |#2|)) . T))
-((((-409 (-566))) |has| #0=(-409 |#2|) (-1038 (-409 (-566)))) (((-566)) |has| #0# (-1038 (-566))) ((#0#) . T))
+((((-410 |#2|)) . T))
+((((-410 (-567))) |has| #0=(-410 |#2|) (-1039 (-410 (-567)))) (((-567)) |has| #0# (-1039 (-567))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-172)))
(|has| |#2| (-145))
@@ -1480,206 +1480,206 @@
(((|#3|) |has| |#3| (-172)))
(|has| |#1| (-147))
(|has| |#1| (-145))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
(((|#1|) . T))
(|has| |#2| (-233))
(((|#2|) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-1175) (-52)) . T))
-((((-862)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-1176) (-52)) . T))
+((((-863)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
(((|#1| |#1|) . T))
-((((-1175)) |has| |#2| (-900 (-1175))))
+((((-1176)) |has| |#2| (-901 (-1176))))
((((-129)) . T))
-((((-893 |#1|)) . T) ((|#2|) . T) (((-566)) . T) (((-819 |#1|)) . T))
-((((-566) (-112)) . T))
-(|has| |#1| (-558))
+((((-894 |#1|)) . T) ((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T))
+((((-567) (-112)) . T))
+(|has| |#1| (-559))
(((|#2|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-566)) . T) (((-819 (-1175))) . T))
+(((|#1|) . T) (((-567)) . T) (((-820 (-1176))) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
(((|#3|) . T))
-(|has| |#1| (-38 (-409 (-566))))
-((((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))))
-(((|#1|) . T))
-((((-1004 2)) . T) (((-409 (-566))) . T) (((-862)) . T))
-((((-538)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-999 |#1|)) . T) ((|#1|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1171 |#1|)) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
+(|has| |#1| (-38 (-410 (-567))))
+((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))))
+(((|#1|) . T))
+((((-1005 2)) . T) (((-410 (-567))) . T) (((-863)) . T))
+((((-539)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-1000 |#1|)) . T) ((|#1|) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1172 |#1|)) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-850))
-(((|#1|) . T) (((-566)) . T) (($) . T))
-(((|#2|) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-566) |#2|) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-(((|#2|) . T))
-((((-566) |#3|) . T))
-(((|#2|) . T))
-((((-862)) . T))
-(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) #0#) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
+(|has| |#1| (-851))
+(((|#1|) . T) (((-567)) . T) (($) . T))
+(((|#2|) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-567) |#2|) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+(((|#2|) . T))
+((((-567) |#3|) . T))
+(((|#2|) . T))
+((((-863)) . T))
+(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((#0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
(((|#2| |#2|) . T))
-(|has| |#1| (-1099))
-(|has| |#1| (-38 (-409 (-566))))
+(|has| |#1| (-1100))
+(|has| |#1| (-38 (-410 (-567))))
(|has| |#2| (-365))
-(((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
+(((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-1157) (-52)) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-1158) (-52)) . T))
(((|#1|) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#2|) |has| |#2| (-172)))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))))
-((((-566) |#3|) . T))
-((((-566) (-144)) . T))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) (((-567)) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))))
+((((-567) |#3|) . T))
+((((-567) (-144)) . T))
((((-144)) . T))
-((((-862)) . T))
-((((-1180)) . T))
+((((-863)) . T))
+((((-1181)) . T))
((((-112)) . T))
(|has| |#1| (-147))
(((|#1|) . T))
(|has| |#1| (-145))
((($) . T))
-(|has| |#1| (-558))
+(|has| |#1| (-559))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1|) . T))
-(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566))))
+(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
((((-144)) . T))
-((((-862)) . T))
-((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T))
-((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T))
-((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T))
-((((-1157) (-52)) . T))
+((((-863)) . T))
+((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
+((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
+((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
+((((-1158) (-52)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1| |#2|) . T))
-((((-566) (-144)) . T))
-(((#0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) #0#) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(|has| |#1| (-850))
-(((|#2| (-771) (-1081)) . T))
+((((-567) (-144)) . T))
+(((#0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(|has| |#1| (-851))
+(((|#2| (-772) (-1082)) . T))
(((|#1| |#2|) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-558)))
-(|has| |#1| (-791))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(|has| |#1| (-792))
(((|#1|) |has| |#1| (-172)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-2676 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147))))
-(-2676 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145))))
+(-2909 (|has| |#1| (-147)) (-12 (|has| |#1| (-365)) (|has| |#2| (-147))))
+(-2909 (|has| |#1| (-145)) (-12 (|has| |#1| (-365)) (|has| |#2| (-145))))
(((|#4|) . T))
(|has| |#1| (-145))
-((((-1157) |#1|) . T))
+((((-1158) |#1|) . T))
(|has| |#1| (-147))
(((|#1|) . T))
-((((-566)) . T))
-((((-862)) . T))
+((((-567)) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
-((((-862)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((((-863)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#3|) . T))
-((((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-566)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) . T))
-((((-862)) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-(((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))) (((-958 |#1|)) . T))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-958 |#1|)) . T))
-(((|#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-365))))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365))))
+((((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)) (((-567)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) . T))
+((((-863)) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+(((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))) (((-959 |#1|)) . T))
+(|has| |#1| (-849))
+(|has| |#1| (-849))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-959 |#1|)) . T))
+(((|#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-365))))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365))))
(|has| |#2| (-365))
(((|#1|) |has| |#1| (-172)))
-(((|#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))) (($) |has| |#4| (-172)))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172)))
-(((|#2|) |has| |#2| (-1049)))
-((((-1157) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))
-(((|#2| (-893 |#1|)) . T))
-((($) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-((((-390) (-1157)) . T))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) -2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-613 (-862))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099))) (((-1265 |#2|)) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3476 (-1157)) (|:| -2484 #0#))) . T))
-(((|#1|) . T))
-((((-862)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
+(((|#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))) (($) |has| |#4| (-172)))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172)))
+(((|#2|) |has| |#2| (-1050)))
+((((-1158) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))
+(((|#2| (-894 |#1|)) . T))
+((($) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+((((-391) (-1158)) . T))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) -2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-614 (-863))) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100))) (((-1266 |#2|)) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1762 (-1158)) (|:| -3859 #0#))) . T))
+(((|#1|) . T))
+((((-863)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
((((-144)) . T))
(|has| |#2| (-145))
-((((-566)) . T))
+((((-567)) . T))
(|has| |#2| (-147))
-(|has| |#1| (-475))
-(-2676 (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))
+(|has| |#1| (-476))
+(-2909 (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)))
(|has| |#1| (-365))
-((((-862)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((($) |has| |#1| (-558)))
-((((-1180)) . T))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-((((-862)) . T))
-(((|#2|) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#2|) . T) (((-566)) . T) (((-819 |#1|)) . T))
+((((-863)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((($) |has| |#1| (-559)))
+((((-1181)) . T))
+(|has| |#1| (-849))
+(|has| |#1| (-849))
+((((-863)) . T))
+(((|#2|) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#2|) . T) (((-567)) . T) (((-820 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-1175)) |has| |#1| (-900 (-1175))))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-862)) . T))
-(|has| |#1| (-1099))
-(((|#2| (-484 (-3991 |#1|) (-771)) (-864 |#1|)) . T))
-((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#))
-(((|#1| (-533 (-1175)) (-1175)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-1176)) |has| |#1| (-901 (-1176))))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-863)) . T))
+(|has| |#1| (-1100))
+(((|#2| (-485 (-2268 |#1|) (-772)) (-865 |#1|)) . T))
+((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#))
+(((|#1| (-534 (-1176)) (-1176)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-863)) . T))
+((((-863)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1694,93 +1694,93 @@
(((|#2|) |has| |#2| (-172)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-1175) (-52)) . T))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
+((((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-1176) (-52)) . T))
((($ $) . T))
-(((|#1| (-566)) . T))
-((((-910 |#1|)) . T))
-(((|#1|) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2676 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))))
-(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-(|has| |#1| (-850))
-(|has| |#1| (-850))
-((((-566) |#2|) . T))
-((($) . T) (((-566)) . T) ((|#1|) . T))
-((((-862)) . T))
-((((-566)) . T))
-(|has| |#1| (-850))
-((((-689 |#2|)) . T) (((-862)) . T))
-((((-1257 |#1| |#2| |#3|)) -12 (|has| (-1257 |#1| |#2| |#3|) (-310 (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365))))
-((((-409 (-566))) . T) (((-566)) . T) (($) . T))
+(((|#1| (-567)) . T))
+((((-911 |#1|)) . T))
+(((|#1|) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050))) (($) -2909 (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050))))
+(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+(|has| |#1| (-851))
+(|has| |#1| (-851))
+((((-567) |#2|) . T))
+((($) . T) (((-567)) . T) ((|#1|) . T))
+((((-863)) . T))
+((((-567)) . T))
+(|has| |#1| (-851))
+((((-690 |#2|)) . T) (((-863)) . T))
+((((-1258 |#1| |#2| |#3|)) -12 (|has| (-1258 |#1| |#2| |#3|) (-310 (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+((((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-409 (-952 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
+((((-410 (-953 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
(((|#1|) |has| |#1| (-172)))
-(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365))))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(-2676 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-909)))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-((((-566) |#2|) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365))))
+(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365))))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(-2909 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-910)))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+((((-567) |#2|) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365))))
(|has| |#1| (-351))
-(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))
-(((|#2|) . T) (((-566)) . T))
-((($) . T) (((-409 (-566))) . T))
-((((-566) (-112)) . T))
-(|has| |#1| (-820))
-(|has| |#1| (-820))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-566)) . T) (($) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-1175)) |has| |#1| (-900 (-1175))) (((-1081)) . T))
-(((|#1|) . T))
-(|has| |#1| (-848))
-(((#0=(-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) #0#) |has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(|has| |#1| (-1099))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))
+(((|#2|) . T) (((-567)) . T))
+((($) . T) (((-410 (-567))) . T))
+((((-567) (-112)) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
+(|has| |#1| (-849))
+(|has| |#1| (-849))
+(|has| |#1| (-849))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-567)) . T) (($) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-1176)) |has| |#1| (-901 (-1176))) (((-1082)) . T))
+(((|#1|) . T))
+(|has| |#1| (-849))
+(((#0=(-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) #0#) |has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(|has| |#1| (-1100))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
-((((-1141 |#2| (-409 (-952 |#1|)))) . T) (((-409 (-952 |#1|))) . T) (((-566)) . T))
+((((-1142 |#2| (-410 (-953 |#1|)))) . T) (((-410 (-953 |#1|))) . T) (((-567)) . T))
(((|#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
-((($) . T) (((-566)) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T))
+((($) . T) (((-567)) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-533 |#2|) |#2|) . T))
-((((-862)) . T))
-((((-144)) . T) (((-862)) . T))
-(((|#1| (-771) (-1081)) . T))
+(((|#1| (-534 |#2|) |#2|) . T))
+((((-863)) . T))
+((((-144)) . T) (((-863)) . T))
+(((|#1| (-772) (-1082)) . T))
(((|#3|) . T))
((((-144)) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2676 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) -2909 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))) ((|#1|) . T))
(((|#1|) . T))
((((-144)) . T))
(((|#2|) |has| |#2| (-172)))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099)))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100)))
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -1789,513 +1789,513 @@
(((|#3|) |has| |#3| (-365)))
(((|#1|) . T))
(((|#2|) |has| |#1| (-365)))
-((((-862)) . T))
-(((|#2|) . T))
-(((|#1| (-1171 |#1|)) . T))
-((((-1081)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((($) . T) ((|#1|) . T) (((-409 (-566))) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((($) |has| |#1| (-558)))
-(((|#2|) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)))
-((($) |has| |#1| (-848)))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(|has| |#1| (-909))
-((((-1175)) . T))
-((((-862)) . T))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((((-863)) . T))
+(((|#2|) . T))
+(((|#1| (-1172 |#1|)) . T))
+((((-1082)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((($) . T) ((|#1|) . T) (((-410 (-567))) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((($) |has| |#1| (-559)))
+(((|#2|) . T))
+((((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)))
+((($) |has| |#1| (-849)))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(|has| |#1| (-910))
+((((-1176)) . T))
+((((-863)) . T))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((#0=(-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) #0#) |has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-909)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-909)))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((#0=(-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) #0#) |has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-910)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-910)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365))))
-(|has| |#1| (-850))
-(|has| |#1| (-558))
-((((-583 |#1|)) . T))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365))))
+(|has| |#1| (-851))
+(|has| |#1| (-559))
+((((-584 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-2676 (-12 (|has| |#1| (-365)) (|has| |#2| (-820))) (-12 (|has| |#1| (-365)) (|has| |#2| (-850))))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-((((-910 |#1|)) . T))
-(((|#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) . T))
+(-2909 (-12 (|has| |#1| (-365)) (|has| |#2| (-821))) (-12 (|has| |#1| (-365)) (|has| |#2| (-851))))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+((((-911 |#1|)) . T))
+(((|#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-771)) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-672 |#1|)) . T))
+(((|#1| (-772)) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-673 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-538)) . T))
-((((-862)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-862)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((((-1180)) . T))
-((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T) (((-566)) . T))
-(((|#3|) . T) (((-566)) . T) (((-612 $)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-(((|#2|) . T))
-(-2676 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099)))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T))
-(|has| |#1| (-1200))
-(|has| |#1| (-1200))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099)))
-(|has| |#1| (-1200))
-(|has| |#1| (-1200))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T) ((#1=(-409 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((($) . T) (((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-539)) . T))
+((((-863)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-863)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((((-1181)) . T))
+((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-567)) . T))
+(((|#3|) . T) (((-567)) . T) (((-613 $)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+(((|#2|) . T))
+(-2909 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)) (|has| |#3| (-1100)))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T))
+(|has| |#1| (-1201))
+(|has| |#1| (-1201))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100)))
+(|has| |#1| (-1201))
+(|has| |#1| (-1201))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-410 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((($) . T) (((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#3|) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((((-1157) (-52)) . T))
-(|has| |#1| (-1099))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((((-1158) (-52)) . T))
+(|has| |#1| (-1100))
(((|#1|) |has| |#1| (-172)) (($) . T))
-(-2676 (|has| |#2| (-820)) (|has| |#2| (-850)))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-566)) . T) (($) . T))
-((((-771)) . T))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-862)) . T))
-((($) . T) (((-566)) . T))
-((($) . T))
-(|has| |#2| (-909))
+(-2909 (|has| |#2| (-821)) (|has| |#2| (-851)))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-567)) . T) (($) . T))
+((((-772)) . T))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-863)) . T))
+((($) . T) (((-567)) . T))
+((($) . T))
+(|has| |#2| (-910))
(|has| |#1| (-365))
-(((|#2|) |has| |#2| (-1099)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-538)) . T) (((-409 (-1171 (-566)))) . T) (((-225)) . T) (((-381)) . T))
-((((-381)) . T) (((-225)) . T) (((-862)) . T))
-(|has| |#1| (-909))
-(|has| |#1| (-909))
-(|has| |#1| (-909))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-909)))
-((($) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
+(((|#2|) |has| |#2| (-1100)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-539)) . T) (((-410 (-1172 (-567)))) . T) (((-225)) . T) (((-381)) . T))
+((((-381)) . T) (((-225)) . T) (((-863)) . T))
+(|has| |#1| (-910))
+(|has| |#1| (-910))
+(|has| |#1| (-910))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-910)))
+((($) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
((($) . T) ((|#2|) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365))))
-((((-1173 |#1| |#2| |#3|)) -12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909)))
-(((|#1|) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172)))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
-((((-862)) . T))
-((((-862)) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365))))
+((((-1174 |#1| |#2| |#3|)) -12 (|has| (-1174 |#1| |#2| |#3|) (-310 (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365))))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-910)))
+(((|#1|) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172)))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
+((((-863)) . T))
+((((-863)) . T))
((($ $) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
((($ $) . T))
-((((-566) (-112)) . T))
+((((-567) (-112)) . T))
((($) . T))
(((|#1|) . T))
-((((-566)) . T))
+((((-567)) . T))
((((-112)) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558)))
-(|has| |#1| (-38 (-409 (-566))))
-(((|#1| (-566)) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559)))
+(|has| |#1| (-38 (-410 (-567))))
+(((|#1| (-567)) . T))
((($) . T))
-(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566))))
-((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T))
+(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
+((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
(((|#1|) . T))
-((((-566)) . T))
+((((-567)) . T))
(((|#1| |#2|) . T))
-((((-1175)) |has| |#1| (-1049)))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
+((((-1176)) |has| |#1| (-1050)))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
(((|#1|) . T))
-((((-862)) . T))
-(((|#1| (-566)) . T))
-(((|#1| (-1257 |#1| |#2| |#3|)) . T))
+((((-863)) . T))
+(((|#1| (-567)) . T))
+(((|#1| (-1258 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-409 (-566))) . T))
-(((|#1| (-1229 |#1| |#2| |#3|)) . T))
-(((|#1| (-771)) . T))
+(((|#1| (-410 (-567))) . T))
+(((|#1| (-1230 |#1| |#2| |#3|)) . T))
+(((|#1| (-772)) . T))
(((|#1|) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-862)) . T))
-(|has| |#1| (-1099))
-((((-1157) |#1|) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-863)) . T))
+(|has| |#1| (-1100))
+((((-1158) |#1|) . T))
((($) . T))
(|has| |#2| (-147))
(|has| |#2| (-145))
-(((|#1| (-533 (-818 (-1175))) (-818 (-1175))) . T))
-((((-862)) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-1049)))
-((((-566) (-112)) . T))
-((((-862)) |has| |#1| (-1099)))
-(((|#1|) . T) (((-566)) . T) (($) . T))
+(((|#1| (-534 (-819 (-1176))) (-819 (-1176))) . T))
+((((-863)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-1050)))
+((((-567) (-112)) . T))
+((((-863)) |has| |#1| (-1100)))
+(((|#1|) . T) (((-567)) . T) (($) . T))
(|has| |#2| (-172))
-((((-566)) . T))
-(|has| |#2| (-848))
+((((-567)) . T))
+(|has| |#2| (-849))
(((|#1|) . T))
-((((-566)) . T))
-((((-862)) . T))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-351)))
-((((-862)) . T))
+((((-567)) . T))
+((((-863)) . T))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-351)))
+((((-863)) . T))
(|has| |#1| (-147))
(((|#3|) . T))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-((((-862)) . T))
-((((-1250 |#2| |#3| |#4|)) . T) (((-1251 |#1| |#2| |#3| |#4|)) . T))
-((((-862)) . T))
-((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-612 $)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) -2676 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+((((-863)) . T))
+((((-1251 |#2| |#3| |#4|)) . T) (((-1252 |#1| |#2| |#3| |#4|)) . T))
+((((-863)) . T))
+((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (((-613 $)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) -2909 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-410 (-953 |#1|))) |has| |#1| (-559)) (((-953 |#1|)) |has| |#1| (-1050)) (((-1176)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-771)) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+(((|#1| (-772)) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(((|#1|) |has| |#1| (-310 |#1|)))
-((((-1251 |#1| |#2| |#3| |#4|)) . T))
-((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381))))
-(((|#1|) . T))
-(|has| |#1| (-558))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-(((|#1|) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
+((((-1252 |#1| |#2| |#3| |#4|)) . T))
+((((-567)) |has| |#1| (-887 (-567))) (((-381)) |has| |#1| (-887 (-381))))
+(((|#1|) . T))
+(|has| |#1| (-559))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+(((|#1|) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) |has| |#1| (-172)))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)) ((|#1|) . T))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
(((|#1|) |has| |#1| (-172)))
-((((-862)) . T))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
-(((|#1|) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (((-566)) . T) (($) . T))
-(((|#3|) |has| |#3| (-1099)))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365))))
-((((-1250 |#2| |#3| |#4|)) . T))
+((((-863)) . T))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
+(((|#1|) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
+(((|#3|) |has| |#3| (-1100)))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365))))
+((((-1251 |#2| |#3| |#4|)) . T))
((((-112)) . T))
-(|has| |#1| (-820))
-(|has| |#1| (-820))
-(((|#1| (-566) (-1081)) . T))
+(|has| |#1| (-821))
+(|has| |#1| (-821))
+(((|#1| (-567) (-1082)) . T))
((($) |has| |#1| (-310 $)) ((|#1|) |has| |#1| (-310 |#1|)))
-(|has| |#1| (-848))
-(|has| |#1| (-848))
-(((|#1| (-566) (-1081)) . T))
-(-2676 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(((|#1| (-409 (-566)) (-1081)) . T))
-(((|#1| (-771) (-1081)) . T))
-(|has| |#1| (-850))
-(((#0=(-910 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T))
+(|has| |#1| (-849))
+(|has| |#1| (-849))
+(((|#1| (-567) (-1082)) . T))
+(-2909 (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(((|#1| (-410 (-567)) (-1082)) . T))
+(((|#1| (-772) (-1082)) . T))
+(|has| |#1| (-851))
+(((#0=(-911 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
(((|#2|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(|has| |#1| (-1099))
-((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-(|has| |#1| (-1099))
-((((-409 (-566))) |has| |#2| (-365)) (($) . T) (((-566)) . T))
-((((-566)) -2676 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))))
-(((|#1|) . T))
-(|has| |#1| (-1099))
-((((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-639 (-566)))) ((|#2|) |has| |#1| (-365)))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099)))
-((((-689 (-341 (-2738) (-2738 (QUOTE X) (QUOTE HESS)) (-699)))) . T))
+(|has| |#1| (-1100))
+((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+(|has| |#1| (-1100))
+((((-410 (-567))) |has| |#2| (-365)) (($) . T) (((-567)) . T))
+((((-567)) -2909 (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050))))
+(((|#1|) . T))
+(|has| |#1| (-1100))
+((((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((|#2|) |has| |#1| (-365)))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100)))
+((((-690 (-341 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-700)))) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-((((-862)) . T))
-(|has| |#3| (-848))
-((((-862)) . T))
-((((-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
-((((-862)) . T))
-(((|#1| |#1|) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))))
-(((|#1|) . T))
-((((-566)) . T))
-((((-566)) . T))
-(((|#1|) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+((((-863)) . T))
+(|has| |#3| (-849))
+((((-863)) . T))
+((((-1251 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
+((((-863)) . T))
+(((|#1| |#1|) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050))))
+(((|#1|) . T))
+((((-567)) . T))
+((((-567)) . T))
+(((|#1|) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050))))
(((|#2|) |has| |#2| (-365)))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-365)))
-(|has| |#1| (-850))
-(((|#1|) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(((|#1|) . T) (((-566)) . T))
-(((|#2|) . T))
-((((-566)) . T) ((|#3|) . T))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) |has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-909)))
-(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566))))
-((((-862)) . T))
-((((-862)) . T))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))))
-((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
-((((-862)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
+((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
+(|has| |#1| (-851))
+(((|#1|) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(((|#1|) . T) (((-567)) . T))
+(((|#2|) . T))
+((((-567)) . T) ((|#3|) . T))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) |has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-910)))
+(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
+((((-863)) . T))
+((((-863)) . T))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) (((-567)) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))))
+((((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
+((((-863)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
(|has| |#1| (-233))
(((|#1|) . T) (($) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-(|has| |#1| (-848))
-(((|#1| (-566)) . T))
+(|has| |#1| (-849))
+(((|#1| (-567)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1| (-1173 |#1| |#2| |#3|)) . T))
+(((|#1| (-1174 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-409 (-566))) . T))
-(((|#1| (-1166 |#1| |#2| |#3|)) . T))
+(((|#1| (-410 (-567))) . T))
+(((|#1| (-1167 |#1| |#2| |#3|)) . T))
(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
-(((|#1| (-771)) . T))
+(((|#1| (-772)) . T))
(((|#1|) . T))
-((((-409 (-952 |#1|))) . T))
+((((-410 (-953 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
-((((-409 (-952 |#1|))) . T))
+((((-410 (-953 |#1|))) . T))
(((|#1|) |has| |#1| (-172)))
(|has| |#1| (-145))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) |has| |#1| (-172)))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-566)) . T) ((|#1|) . T) (($) . T) (((-409 (-566))) . T) (((-1175)) |has| |#1| (-1038 (-1175))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-567)) . T) ((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-1176)) |has| |#1| (-1039 (-1176))))
(((|#1| |#2|) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) -2676 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))) ((|#1|) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) -2909 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))) ((|#1|) . T))
((((-144)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(((|#1|) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) . T) (($ $) . T))
-(((|#2|) . T) ((|#1|) . T) (((-566)) . T))
-((((-862)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(((|#1|) . T))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T))
+(((|#2|) . T) ((|#1|) . T) (((-567)) . T))
+((((-863)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
(|has| |#1| (-365))
(|has| |#1| (-365))
-(|has| (-409 |#2|) (-233))
-((((-644 |#1|)) . T))
-(|has| |#1| (-909))
-(((|#2|) |has| |#2| (-1049)))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
+(|has| (-410 |#2|) (-233))
+((((-645 |#1|)) . T))
+(|has| |#1| (-910))
+(((|#2|) |has| |#2| (-1050)))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
(|has| |#1| (-365))
(((|#1|) |has| |#1| (-172)))
(((|#1| |#1|) . T))
-((((-870 |#1|)) . T))
-((((-862)) . T))
+((((-871 |#1|)) . T))
+((((-863)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1099)))
+(((|#2|) |has| |#2| (-1100)))
(((|#1|) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-((((-644 $)) . T) (((-1157)) . T) (((-1175)) . T) (((-566)) . T) (((-225)) . T) (((-862)) . T))
-((($) -2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) (((-566)) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))))
-((((-409 (-566))) . T) (((-566)) . T) (((-612 $)) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+((((-645 $)) . T) (((-1158)) . T) (((-1176)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T))
+((($) -2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) (((-567)) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1050))) ((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))))
+((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T))
(((|#1|) . T))
-((((-862)) . T))
+((((-863)) . T))
((($) . T))
-(((|#1| (-533 |#2|) |#2|) . T))
-((((-862)) . T))
-(((|#1| (-566) (-1081)) . T))
-(((|#1| (-409 (-566)) (-1081)) . T))
-((((-910 |#1|)) . T))
-((((-862)) . T))
+(((|#1| (-534 |#2|) |#2|) . T))
+((((-863)) . T))
+(((|#1| (-567) (-1082)) . T))
+(((|#1| (-410 (-567)) (-1082)) . T))
+((((-911 |#1|)) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-771) (-1081)) . T))
-(((#0=(-409 |#2|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-566)) -2676 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) . T))
-(((|#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) . T))
+(((|#1| (-772) (-1082)) . T))
+(((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-567)) -2909 (|has| (-410 (-567)) (-1039 (-567))) (|has| |#1| (-1039 (-567)))) (((-410 (-567))) . T))
+(((|#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
(|has| |#2| (-233))
-(((|#2| (-533 (-864 |#1|)) (-864 |#1|)) . T))
-((((-862)) . T))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) . T))
+(((|#2| (-534 (-865 |#1|)) (-865 |#1|)) . T))
+((((-863)) . T))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T))
(((|#1| |#3|) . T))
-((((-862)) . T))
-(((|#1|) |has| |#1| (-172)) (((-952 |#1|)) . T) (((-566)) . T))
+((((-863)) . T))
+(((|#1|) |has| |#1| (-172)) (((-953 |#1|)) . T) (((-567)) . T))
(((|#1|) |has| |#1| (-172)))
-((((-699)) . T))
-((((-699)) . T))
+((((-700)) . T))
+((((-700)) . T))
(((|#2|) |has| |#2| (-172)))
-(|has| |#2| (-848))
-((((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))))
-((((-112)) |has| |#1| (-1099)) (((-862)) -2676 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099))))
+(|has| |#2| (-849))
+((((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))))
+((((-112)) |has| |#1| (-1100)) (((-863)) -2909 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)) (|has| |#1| (-1112)) (|has| |#1| (-1100))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-699)) . T) (((-409 (-566))) . T) (((-566)) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-700)) . T) (((-410 (-567))) . T) (((-567)) . T))
(((|#1| |#1|) |has| |#1| (-172)))
(((|#2|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-566) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-567) |#1|) . T))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
((((-381)) . T))
-((((-699)) . T))
-((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#))
+((((-700)) . T))
+((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#))
(((|#1|) |has| |#1| (-172)))
-((((-409 (-952 |#1|))) . T))
+((((-410 (-953 |#1|))) . T))
(((|#2| |#2|) . T))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#3|) |has| |#3| (-1049)))
-(|has| |#2| (-909))
-(|has| |#1| (-909))
+(((|#3|) |has| |#3| (-1050)))
+(|has| |#2| (-910))
+(|has| |#1| (-910))
(|has| |#1| (-365))
-((((-1175)) |has| |#2| (-900 (-1175))))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-475))
+((((-1176)) |has| |#2| (-901 (-1176))))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-476))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-365))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-475)) (|has| |#1| (-558)) (|has| |#1| (-1049)) (|has| |#1| (-1111)))
-(|has| |#1| (-38 (-409 (-566))))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-476)) (|has| |#1| (-559)) (|has| |#1| (-1050)) (|has| |#1| (-1112)))
+(|has| |#1| (-38 (-410 (-567))))
((((-116 |#1|)) . T))
((((-116 |#1|)) . T))
(|has| |#1| (-351))
((((-144)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-((($) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(((|#2|) . T) (((-862)) . T))
-(((|#2|) . T) (((-862)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-850))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
+(|has| |#1| (-38 (-410 (-567))))
+((($) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(((|#2|) . T) (((-863)) . T))
+(((|#2|) . T) (((-863)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-851))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-566)) . T))
+((($) . T) (((-567)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) ((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
(((|#2|) . T))
(((|#3|) . T))
((((-116 |#1|)) . T))
(|has| |#1| (-370))
-(|has| |#1| (-850))
-(((|#2|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T))
+(|has| |#1| (-851))
+(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T))
((((-116 |#1|)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#2|) |has| |#2| (-172)))
(((|#1|) . T))
(((|#1|) . T))
-((((-566)) . T))
+((((-567)) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
-((((-862)) . T))
-((((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))) (((-381)) . #0=(|has| |#1| (-1022))) (((-225)) . #0#))
+((((-863)) . T))
+((((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))) (((-381)) . #0=(|has| |#1| (-1023))) (((-225)) . #0#))
(((|#1|) |has| |#1| (-365)))
-((((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((($ $) . T) (((-612 $) $) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-((($) . T) (((-1251 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T))
-((($) -2676 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558)))
-((($) . T) (((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T))
+((((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((($ $) . T) (((-613 $) $) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+((($) . T) (((-1252 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T))
+((($) -2909 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)))
+((($) . T) (((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
(|has| |#1| (-365))
-((((-381)) . T) (((-566)) . T) (((-409 (-566))) . T))
-((((-644 (-780 |#1| (-864 |#2|)))) . T) (((-862)) . T))
-((((-538)) |has| (-780 |#1| (-864 |#2|)) (-614 (-538))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((((-381)) . T) (((-567)) . T) (((-410 (-567))) . T))
+((((-645 (-781 |#1| (-865 |#2|)))) . T) (((-863)) . T))
+((((-539)) |has| (-781 |#1| (-865 |#2|)) (-615 (-539))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
((((-381)) . T))
(((|#1|) |has| |#1| (-172)))
-(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))
+(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))
(((|#1|) |has| |#1| (-172)))
-((((-862)) . T))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-909)))
-(((|#1|) . T))
-((($) |has| |#1| (-558)) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
-((((-771)) . T))
-(|has| |#1| (-1099))
-((($) -2676 (|has| |#2| (-172)) (|has| |#2| (-848)) (|has| |#2| (-1049))) (((-566)) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049))) ((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))))
-((((-862)) . T))
-((((-1175)) . T) (((-862)) . T))
-((((-566)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
-((((-409 (-566))) . T) (((-566)) . T) (((-612 $)) . T))
+((((-863)) . T))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-910)))
+(((|#1|) . T))
+((($) |has| |#1| (-559)) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
+((((-772)) . T))
+(|has| |#1| (-1100))
+((($) -2909 (|has| |#2| (-172)) (|has| |#2| (-849)) (|has| |#2| (-1050))) (((-567)) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050))) ((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))))
+((((-863)) . T))
+((((-1176)) . T) (((-863)) . T))
+((((-567)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
+((((-410 (-567))) . T) (((-567)) . T) (((-613 $)) . T))
(|has| |#1| (-145))
(|has| |#1| (-147))
-((((-566)) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(((#0=(-1250 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))) (($) . T))
-((((-566)) . T))
+((((-567)) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(((#0=(-1251 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (($) . T))
+((((-567)) . T))
(|has| |#1| (-365))
-(-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
-(-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
+(-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
+(-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
(|has| |#1| (-365))
(|has| |#1| (-145))
(|has| |#1| (-147))
@@ -2304,932 +2304,932 @@
(|has| |#1| (-233))
(|has| |#1| (-365))
(((|#3|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-566)) |has| |#2| (-639 (-566))) ((|#2|) . T))
-(((|#2|) . T) (($) . T) (((-566)) . T))
-(((|#2|) . T))
-((((-409 (-566))) . #0=(|has| |#2| (-365))) (($) . #0#))
-((((-409 (-566))) |has| |#2| (-365)) (($) . T))
-(|has| |#1| (-1099))
-((((-1141 |#2| |#1|)) . T) ((|#1|) . T) (((-566)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-567)) |has| |#2| (-640 (-567))) ((|#2|) . T))
+(((|#2|) . T) (($) . T) (((-567)) . T))
+(((|#2|) . T))
+((((-410 (-567))) . #0=(|has| |#2| (-365))) (($) . #0#))
+((((-410 (-567))) |has| |#2| (-365)) (($) . T))
+(|has| |#1| (-1100))
+((((-1142 |#2| |#1|)) . T) ((|#1|) . T) (((-567)) . T))
(((|#1| |#2|) . T))
-((((-566)) . T) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))
-(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566))))
+((((-567)) . T) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))
+(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
(((|#3|) |has| |#3| (-172)))
-(((|#2|) . T) (($) . T) (((-566)) . T))
-(((|#1|) . T) (($) . T) (((-566)) . T))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099)))
-((((-862)) . T))
-((((-566)) . T))
+(((|#2|) . T) (($) . T) (((-567)) . T))
+(((|#1|) . T) (($) . T) (((-567)) . T))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100)))
+((((-863)) . T))
+((((-567)) . T))
(((|#1| $) |has| |#1| (-287 |#1| |#1|)))
-((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T))
-((((-952 |#1|)) . T) (((-862)) . T))
+((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T))
+((((-953 |#1|)) . T) (((-863)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-409 (-566)) #0#) |has| |#1| (-365)))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
-((((-952 |#1|)) . T))
-((($) . T))
-((((-566) |#1|) . T))
-((((-1175)) |has| (-409 |#2|) (-900 (-1175))))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365)))
-((((-538)) |has| |#2| (-614 (-538))))
-((((-689 |#2|)) . T) (((-862)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-((((-870 |#1|)) . T))
+(((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-291)) (|has| |#1| (-365))) ((#0=(-410 (-567)) #0#) |has| |#1| (-365)))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
+((((-953 |#1|)) . T))
+((($) . T))
+((((-567) |#1|) . T))
+((((-1176)) |has| (-410 |#2|) (-901 (-1176))))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365)))
+((((-539)) |has| |#2| (-615 (-539))))
+((((-690 |#2|)) . T) (((-863)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+((((-871 |#1|)) . T))
(((|#1|) |has| |#1| (-172)))
-(-2676 (|has| |#4| (-793)) (|has| |#4| (-848)))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1|) . T))
-((($) . T) (((-566)) . T) ((|#2|) . T))
-(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365))))
-(((|#2|) |has| |#2| (-1049)))
+(-2909 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1|) . T))
+((($) . T) (((-567)) . T) ((|#2|) . T))
+(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365))))
+(((|#2|) |has| |#2| (-1050)))
(((|#3|) . T))
(((|#1|) . T))
-((((-409 |#2|)) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365))))
-(((|#1|) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172)))
-(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))
-((((-566) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) . T) (($) . T))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-1219)))
-((($) . T))
-((((-409 (-566))) |has| #0=(-409 |#2|) (-1038 (-409 (-566)))) (((-566)) |has| #0# (-1038 (-566))) ((#0#) . T))
-(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566))))
-(((|#1| (-771)) . T))
-(|has| |#1| (-850))
-(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566))))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-566)) . T))
-(|has| |#1| (-38 (-409 (-566))))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) |has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(|has| |#1| (-848))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
+((((-410 |#2|)) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365))))
+(((|#1|) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172)))
+(((|#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))
+((((-567) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-1220)))
+((($) . T))
+((((-410 (-567))) |has| #0=(-410 |#2|) (-1039 (-410 (-567)))) (((-567)) |has| #0# (-1039 (-567))) ((#0#) . T))
+(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
+(((|#1| (-772)) . T))
+(|has| |#1| (-851))
+(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-567)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) |has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(|has| |#1| (-849))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-351))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-1157)) . T) (((-508)) . T) (((-225)) . T) (((-566)) . T))
-((((-862)) . T))
-(((|#2|) . T) (((-566)) . T) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-1158)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T))
+((((-863)) . T))
+(((|#2|) . T) (((-567)) . T) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1082)) . T) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))
(((|#1| |#2|) . T))
((((-144)) . T))
-((((-780 |#1| (-864 |#2|))) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-(|has| |#1| (-1200))
-((((-862)) . T))
-(((|#1|) . T))
-(-2676 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-726)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)) (|has| |#3| (-1099)))
-((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)))
-(((|#2|) . T))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-((((-910 |#1|)) . T))
-((($) . T))
-((((-409 (-952 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-538)) |has| |#4| (-614 (-538))))
-((((-862)) . T) (((-644 |#4|)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-848))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) |has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))))
-(|has| |#1| (-1099))
+((((-781 |#1| (-865 |#2|))) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+(|has| |#1| (-1201))
+((((-863)) . T))
+(((|#1|) . T))
+(-2909 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-370)) (|has| |#3| (-727)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)) (|has| |#3| (-1100)))
+((((-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)))
+(((|#2|) . T))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((((-911 |#1|)) . T))
+((($) . T))
+((((-410 (-953 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-539)) |has| |#4| (-615 (-539))))
+((((-863)) . T) (((-645 |#4|)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(((|#1|) . T))
+(|has| |#1| (-849))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) |has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))))
+(|has| |#1| (-1100))
(|has| |#1| (-365))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365))))
-((((-672 |#1|)) . T))
-(((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))) (($) |has| |#3| (-172)))
-((($) . T) (((-409 (-566))) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365))))
+((((-673 |#1|)) . T))
+(((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))) (($) |has| |#3| (-172)))
+((($) . T) (((-410 (-567))) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
(|has| |#1| (-145))
(|has| |#1| (-147))
-(-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
-(-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
+(-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-147)) (|has| |#1| (-365))) (|has| |#1| (-147)))
+(-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145)))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(|has| |#1| (-848))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(|has| |#1| (-849))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566))))
-((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-1099))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T) (((-566)) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
+((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-1100))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T) (((-567)) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T))
(|has| |#2| (-145))
(|has| |#2| (-147))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-1099))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-1100))
(((|#2|) |has| |#2| (-172)))
-((((-566)) . T) ((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-566)) . T))
+((((-567)) . T) ((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-567)) . T))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#3|) |has| |#3| (-365)))
-((((-409 |#2|)) . T))
-((((-862)) . T))
-(((|#1|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-566)) . T) (($) . T) (((-409 (-566))) . T))
-((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
-(((|#1|) -2676 (|has| |#1| (-172)) (|has| |#1| (-365))))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
+((((-410 |#2|)) . T))
+((((-863)) . T))
+(((|#1|) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-567)) . T) (($) . T) (((-410 (-567))) . T))
+((((-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+(((|#1|) -2909 (|has| |#1| (-172)) (|has| |#1| (-365))))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
((((-317 |#1|)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#2|) |has| |#2| (-365)))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-(((|#2|) . T))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((#0=(-780 |#1| (-864 |#2|)) #0#) |has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))))
-((((-566)) . T) (($) . T))
-((((-864 |#1|)) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+(((|#2|) . T))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((#0=(-781 |#1| (-865 |#2|)) #0#) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))))
+((((-567)) . T) (($) . T))
+((((-865 |#1|)) . T))
(((|#2|) |has| |#2| (-172)))
(((|#1|) |has| |#1| (-172)))
(((|#2|) . T))
-((((-1175)) |has| |#1| (-900 (-1175))) (((-1081)) . T))
-((((-1175)) |has| |#1| (-900 (-1175))) (((-1087 (-1175))) . T))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
-((((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(|has| |#1| (-38 (-409 (-566))))
-(((|#4|) |has| |#4| (-1049)) (((-566)) -12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))))
-(((|#3|) |has| |#3| (-1049)) (((-566)) -12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))))
+((((-1176)) |has| |#1| (-901 (-1176))) (((-1082)) . T))
+((((-1176)) |has| |#1| (-901 (-1176))) (((-1088 (-1176))) . T))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
+((((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(|has| |#1| (-38 (-410 (-567))))
+(((|#4|) |has| |#4| (-1050)) (((-567)) -12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))))
+(((|#3|) |has| |#3| (-1050)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))))
(|has| |#1| (-145))
(|has| |#1| (-147))
((($ $) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099)))
-(|has| |#1| (-558))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)) (|has| |#1| (-1112)) (|has| |#1| (-1100)))
+(|has| |#1| (-559))
(((|#2|) . T))
-((((-566)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+((((-567)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#1|) . T))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050)))
(((|#1| (-59 |#1|) (-59 |#1|)) . T))
-((((-583 |#1|)) . T))
+((((-584 |#1|)) . T))
((($) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-862)) . T))
-(((|#2|) |has| |#2| (-6 (-4417 "*"))))
+((((-863)) . T))
+(((|#2|) |has| |#2| (-6 (-4418 "*"))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#3|) . T))
((($) . T))
-(((|#2|) . T) (((-566)) . T) (($) . T))
+(((|#2|) . T) (((-567)) . T) (($) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) . T) (((-566)) . T))
-((((-1250 |#2| |#3| |#4|)) . T) (((-566)) . T) (((-1251 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T))
-((((-48)) -12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (((-566)) -2676 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))) ((|#1|) . T) (((-612 $)) . T) (($) |has| |#1| (-558)) (((-409 (-566))) -2676 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566))))) (((-409 (-952 |#1|))) |has| |#1| (-558)) (((-952 |#1|)) |has| |#1| (-1049)) (((-1175)) . T))
-((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T))
-((($) . T) (((-116 |#1|)) . T) (((-409 (-566))) . T))
-((((-1124 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((((-1171 |#1|)) . T) (((-1081)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((((-1124 |#1| (-1175))) . T) (((-1087 (-1175))) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-1175)) . T))
-(|has| |#1| (-1099))
+(((|#3|) . T) (((-567)) . T))
+((((-1251 |#2| |#3| |#4|)) . T) (((-567)) . T) (((-1252 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-48)) -12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (((-567)) -2909 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))) (|has| |#1| (-1050))) ((|#1|) . T) (((-613 $)) . T) (($) |has| |#1| (-559)) (((-410 (-567))) -2909 (|has| |#1| (-559)) (|has| |#1| (-1039 (-410 (-567))))) (((-410 (-953 |#1|))) |has| |#1| (-559)) (((-953 |#1|)) |has| |#1| (-1050)) (((-1176)) . T))
+((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T))
+((($) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T))
+((((-1125 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((((-1172 |#1|)) . T) (((-1082)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((((-1125 |#1| (-1176))) . T) (((-1088 (-1176))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-1176)) . T))
+(|has| |#1| (-1100))
((($) . T))
-(|has| |#1| (-1099))
-((((-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))) (((-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381)))))
+(|has| |#1| (-1100))
+((((-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567)))) (((-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381)))))
(((|#1| |#2|) . T))
-((((-1175) |#1|) . T))
+((((-1176) |#1|) . T))
(((|#4|) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1175) (-52)) . T))
-((((-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T))
-((((-862)) . T))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-726)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)) (|has| |#2| (-1099)))
-(((#0=(-1251 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-409 (-566)) #0#) |has| |#1| (-558)) (($ $) |has| |#1| (-558)))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1176) (-52)) . T))
+((((-1251 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T))
+((((-863)) . T))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-370)) (|has| |#2| (-727)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)) (|has| |#2| (-1100)))
+(((#0=(-1252 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-410 (-567)) #0#) |has| |#1| (-559)) (($ $) |has| |#1| (-559)))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#1| $) |has| |#1| (-287 |#1| |#1|)))
-((((-1251 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558)) (($) |has| |#1| (-558)))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559)))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
(|has| |#1| (-365))
-((($) |has| |#1| (-848)) (((-566)) -2676 (|has| |#1| (-21)) (|has| |#1| (-848))))
+((($) |has| |#1| (-849)) (((-567)) -2909 (|has| |#1| (-21)) (|has| |#1| (-849))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((((-409 (-566))) . T) (($) . T))
+((((-410 (-567))) . T) (($) . T))
(((|#3|) |has| |#3| (-365)))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
-((((-1175)) . T))
-((($) . T) (((-1250 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| (-1250 |#2| |#3| |#4|) (-38 (-409 (-566)))) (((-566)) . T))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
+((((-1176)) . T))
+((($) . T) (((-1251 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| (-1251 |#2| |#3| |#4|) (-38 (-410 (-567)))) (((-567)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
(((|#2| |#3|) . T))
-(-2676 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(((|#1| (-533 |#2|)) . T))
-(((|#1| (-771)) . T))
-(((|#1| (-533 (-1087 (-1175)))) . T))
+(-2909 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(((|#1| (-534 |#2|)) . T))
+(((|#1| (-772)) . T))
+(((|#1| (-534 (-1088 (-1176)))) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(|has| |#2| (-909))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-((((-862)) . T))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365))))
-(((|#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1049))) (($) |has| |#2| (-172)))
-((($ $) . T) ((#0=(-1250 |#2| |#3| |#4|) #0#) . T) ((#1=(-409 (-566)) #1#) |has| #0# (-38 (-409 (-566)))))
-((((-910 |#1|)) . T))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-820)))
-((($) . T) (((-409 (-566))) . T))
-((((-862)) . T))
+(|has| |#2| (-910))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+((((-863)) . T))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365))))
+(((|#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-1050))) (($) |has| |#2| (-172)))
+((($ $) . T) ((#0=(-1251 |#2| |#3| |#4|) #0#) . T) ((#1=(-410 (-567)) #1#) |has| #0# (-38 (-410 (-567)))))
+((((-911 |#1|)) . T))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
+((($) . T) (((-410 (-567))) . T))
+((((-863)) . T))
((($) . T))
((($) . T))
-(-2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-558)))
+(-2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)) (|has| |#1| (-559)))
(|has| |#1| (-365))
(|has| |#1| (-365))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1250 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365)) (|has| |#1| (-351)))
-(-2676 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)))
-((((-566)) |has| |#1| (-639 (-566))) ((|#1|) . T))
+((($) . T) ((#0=(-1251 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+((((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2909 (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)))
+((((-567)) |has| |#1| (-640 (-567))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-863)) . T))
+((((-863)) . T))
((((-112)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) . T))
+(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T))
(((|#2|) . T))
(|has| |#2| (-365))
-(|has| |#1| (-850))
+(|has| |#1| (-851))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-566)) . T))
+((((-567)) . T))
(((|#1|) . T))
-((((-862)) . T))
+((((-863)) . T))
(((|#2|) |has| |#2| (-172)))
-(|has| |#1| (-1099))
+(|has| |#1| (-1100))
(((|#1|) |has| |#1| (-172)))
(((|#2|) . T))
(((|#1|) . T))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T) (((-566)) . T) (($) . T))
-(((|#3|) . T) (((-566)) . T) (($) . T))
-((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-820))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T) (((-567)) . T) (($) . T))
+(((|#3|) . T) (((-567)) . T) (($) . T))
+((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-821))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-862)) . T))
-(((|#1| (-533 (-1175))) . T))
+((((-863)) . T))
+(((|#1| (-534 (-1176))) . T))
(((|#1|) |has| |#1| (-172)))
-((((-862)) . T))
+((((-863)) . T))
(((|#2|) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
+(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
(((|#2|) . T))
-(((|#2|) -2676 (|has| |#2| (-6 (-4417 "*"))) (|has| |#2| (-172))))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(|has| |#2| (-909))
-(|has| |#1| (-909))
+(((|#2|) -2909 (|has| |#2| (-6 (-4418 "*"))) (|has| |#2| (-172))))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(|has| |#2| (-910))
+(|has| |#1| (-910))
(((|#2|) |has| |#2| (-172)))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((((-862)) . T))
-((((-862)) . T))
-((((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-863)) . T))
+((((-863)) . T))
+((((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-566)) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) . T))
+((($) . T) (((-567)) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) . T))
(((|#1|) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-862)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
-((($) . T) (((-566)) . T))
-(((|#1| (-409 (-566))) . T))
+((($) . T) (((-567)) . T))
+(((|#1| (-410 (-567))) . T))
(((|#1|) . T))
-(-2676 (|has| |#1| (-291)) (|has| |#1| (-365)))
+(-2909 (|has| |#1| (-291)) (|has| |#1| (-365)))
((((-144)) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-848))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-849))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-187)) . T) (((-862)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-187)) . T) (((-863)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))) (((-892 (-566))) |has| |#1| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#1| (-614 (-892 (-381)))))
-((((-1175) (-52)) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-644 (-144))) . T) (((-1157)) . T))
-((((-862)) . T))
-((((-1157)) . T))
-((((-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-(|has| |#1| (-850))
-((((-862)) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))) (((-893 (-567))) |has| |#1| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#1| (-615 (-893 (-381)))))
+((((-1176) (-52)) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-645 (-144))) . T) (((-1158)) . T))
+((((-863)) . T))
+((((-1158)) . T))
+((((-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((|#1| |#1|) |has| |#1| (-310 |#1|)))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+(|has| |#1| (-851))
+((((-863)) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) . T))
(((|#2|) |has| |#2| (-365)))
-((((-862)) . T))
-((((-538)) |has| |#4| (-614 (-538))))
-((((-862)) . T) (((-644 |#4|)) . T))
-(((|#2|) . T))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T) (((-612 $)) . T))
-(-2676 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049)))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-((((-1175) (-52)) . T))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(|has| |#1| (-909))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-(|has| |#1| (-909))
-(((|#1|) . T) (((-566)) . T) (((-409 (-566))) . T) (($) . T))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-862)) . T))
-((((-566)) . T))
-(((#0=(-409 (-566)) #0#) . T) (($ $) . T))
-((((-409 (-566))) . T) (($) . T))
-(((|#1| (-409 (-566)) (-1081)) . T))
-(|has| |#1| (-1099))
-(|has| |#1| (-558))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(|has| |#1| (-820))
-(((#0=(-910 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T))
-((((-409 |#2|)) . T))
-(|has| |#1| (-848))
-((((-1201 |#1|)) . T) (((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-(((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) . T) ((#1=(-566) #1#) . T) (($ $) . T))
-((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049))))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
+((((-863)) . T))
+((((-539)) |has| |#4| (-615 (-539))))
+((((-863)) . T) (((-645 |#4|)) . T))
+(((|#2|) . T))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T))
+(-2909 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1050)))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+((((-1176) (-52)) . T))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(|has| |#1| (-910))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+(|has| |#1| (-910))
+(((|#1|) . T) (((-567)) . T) (((-410 (-567))) . T) (($) . T))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-863)) . T))
+((((-567)) . T))
+(((#0=(-410 (-567)) #0#) . T) (($ $) . T))
+((((-410 (-567))) . T) (($) . T))
+(((|#1| (-410 (-567)) (-1082)) . T))
+(|has| |#1| (-1100))
+(|has| |#1| (-559))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(|has| |#1| (-821))
+(((#0=(-911 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T))
+((((-410 |#2|)) . T))
+(|has| |#1| (-849))
+((((-1202 |#1|)) . T) (((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+(((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) . T) ((#1=(-567) #1#) . T) (($ $) . T))
+((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#2|) |has| |#2| (-1050)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050))))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
(((|#2|) . T))
-((((-862)) . T))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T) (((-566)) . T))
+((((-863)) . T))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T) (((-567)) . T))
(((|#1|) |has| |#1| (-172)))
(((|#2|) |has| |#2| (-172)))
(((|#1|) . T))
(((|#2|) . T))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
-(((#0=(-52)) . T) (((-2 (|:| -3476 (-1175)) (|:| -2484 #0#))) . T))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
+(((#0=(-52)) . T) (((-2 (|:| -1762 (-1176)) (|:| -3859 #0#))) . T))
(|has| |#1| (-351))
-((((-566)) . T))
-((((-862)) . T))
+((((-567)) . T))
+((((-863)) . T))
(((|#1|) . T))
-(((#0=(-1251 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#)))
+(((#0=(-1252 |#1| |#2| |#3| |#4|) $) |has| #0# (-287 #0# #0#)))
(|has| |#1| (-365))
-(((|#1|) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))) (($) -2676 (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))) (((-566)) -2676 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049))))
-(((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-(((#0=(-409 (-566)) #0#) . T) ((#1=(-699) #1#) . T) (($ $) . T))
+(((|#1|) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050))) (($) -2909 (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050))) (((-567)) -2909 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050))))
+(((#0=(-1082) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(((#0=(-410 (-567)) #0#) . T) ((#1=(-700) #1#) . T) (($ $) . T))
((((-317 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-365)))
-((((-862)) . T))
-(|has| |#1| (-1099))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
+((((-863)) . T))
+(|has| |#1| (-1100))
(((|#1|) . T))
-(((|#1|) -2676 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|))))
-(((|#1|) -2676 (|has| |#2| (-369 |#1|)) (|has| |#2| (-419 |#1|))))
+(((|#1|) -2909 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|))))
+(((|#1|) -2909 (|has| |#2| (-369 |#1|)) (|has| |#2| (-420 |#1|))))
(((|#2|) . T))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T))
-((((-581)) . T))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T))
+((((-582)) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-233))
-((((-864 |#1|)) . T))
-((((-1175)) |has| |#1| (-900 (-1175))) ((|#3|) . T))
-((((-644 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-1022)))
-((((-409 (-566))) . T) (($) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((($) . T) (((-409 (-566))) . T))
-((((-862)) . T))
+((((-865 |#1|)) . T))
+((((-1176)) |has| |#1| (-901 (-1176))) ((|#3|) . T))
+((((-645 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-1023)))
+((((-410 (-567))) . T) (($) . T))
+((((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((($) . T) (((-410 (-567))) . T))
+((((-863)) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
-((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T))
-((((-566)) . T) (((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((((-566)) . T))
+((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T))
+((((-567)) . T) (((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-567)) . T))
(((|#3|) . T))
-(|has| |#1| (-1099))
+(|has| |#1| (-1100))
(((|#2|) . T))
(((|#1|) . T))
-((((-566)) . T))
-(((|#2|) . T) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (($) . T) (((-566)) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566))))
+((((-567)) . T))
+(((|#2|) . T) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (($) . T) (((-567)) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
(((|#1| |#2|) . T))
((($) . T))
-((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((($) . T) (((-409 (-566))) . T))
+((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((($) . T) (((-410 (-567))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1|) . T) (((-566)) . T))
-(((|#1|) . T) (((-566)) . T))
-(((|#1| (-1265 |#1|) (-1265 |#1|)) . T))
+(((|#1|) . T) (((-567)) . T))
+(((|#1|) . T) (((-567)) . T))
+(((|#1| (-1266 |#1|) (-1266 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#2|) . T))
-((((-862)) . T))
-((((-862)) . T))
+((((-863)) . T))
+((((-863)) . T))
(((|#2|) . T))
(((|#3|) . T))
-(((#0=(-116 |#1|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
-((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T))
-((((-1124 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#2|) . T))
+(((#0=(-116 |#1|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
+((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T))
+((((-1125 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#3|) . T))
((($ $) . T))
-((((-672 |#1|)) . T))
-((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-((((-116 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) (((-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))))
+((((-673 |#1|)) . T))
+((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+((((-116 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) (((-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) (($) . T))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) (($) . T))
((((-144)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-381)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-381)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(((|#1|) . T))
-(|has| |#2| (-909))
-(|has| |#1| (-909))
-(|has| |#1| (-909))
+(|has| |#2| (-910))
+(|has| |#1| (-910))
+(|has| |#1| (-910))
(((|#4|) . T))
-(|has| |#2| (-1022))
+(|has| |#2| (-1023))
((($) . T))
-(|has| |#1| (-909))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+(|has| |#1| (-910))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
(|has| |#1| (-365))
-((((-910 |#1|)) . T))
-((($) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) |has| |#1| (-848)) (((-566)) -2676 (|has| |#1| (-21)) (|has| |#1| (-848))))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-(-2676 (|has| |#1| (-370)) (|has| |#1| (-850)))
-(((|#1|) . T))
-((((-771)) . T))
-((((-862)) . T))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))))
-((((-409 |#2|) |#3|) . T))
-((($) . T) (((-409 (-566))) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T) (((-612 $)) . T))
-((((-566)) . T) (($) . T))
-((((-566)) . T) (($) . T))
-((((-771) |#1|) . T))
-(((|#2| (-240 (-3991 |#1|) (-771))) . T))
-(((|#1| (-533 |#3|)) . T))
-((((-409 (-566))) . T))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-1157)) . T) (((-862)) . T))
-(((#0=(-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) #0#) |has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))))
-((((-1157)) . T))
-(|has| |#1| (-909))
+((((-911 |#1|)) . T))
+((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) |has| |#1| (-849)) (((-567)) -2909 (|has| |#1| (-21)) (|has| |#1| (-849))))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+(-2909 (|has| |#1| (-370)) (|has| |#1| (-851)))
+(((|#1|) . T))
+((((-772)) . T))
+((((-863)) . T))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176)))))
+((((-410 |#2|) |#3|) . T))
+((($) . T) (((-410 (-567))) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T) (((-613 $)) . T))
+((((-567)) . T) (($) . T))
+((((-567)) . T) (($) . T))
+((((-772) |#1|) . T))
+(((|#2| (-240 (-2268 |#1|) (-772))) . T))
+(((|#1| (-534 |#3|)) . T))
+((((-410 (-567))) . T))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-1158)) . T) (((-863)) . T))
+(((#0=(-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) #0#) |has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))))
+((((-1158)) . T))
+(|has| |#1| (-910))
(|has| |#2| (-365))
-(((|#1|) . T) (($) . T) (((-566)) . T))
-(-2676 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
+(((|#1|) . T) (($) . T) (((-567)) . T))
+(-2909 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T))
-((((-862)) . T))
+((((-863)) . T))
(((|#1|) . T))
-((((-381)) . T) (((-566)) . T))
-(((#0=(-409 (-566)) #0#) . T) (($ $) . T))
+((((-381)) . T) (((-567)) . T))
+(((#0=(-410 (-567)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-862)) . T))
-(|has| |#1| (-558))
-((((-409 (-566))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-(-2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
-(|has| |#1| (-38 (-409 (-566))))
-(-12 (|has| |#1| (-547)) (|has| |#1| (-828)))
-((((-862)) . T))
-((((-1175)) -2676 (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175))))))
+((((-863)) . T))
+(|has| |#1| (-559))
+((((-410 (-567))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+(-2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
+(|has| |#1| (-38 (-410 (-567))))
+(-12 (|has| |#1| (-548)) (|has| |#1| (-829)))
+((((-863)) . T))
+((((-1176)) -2909 (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))) (-12 (|has| |#1| (-365)) (|has| |#2| (-901 (-1176))))))
(|has| |#1| (-365))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176)))))
(|has| |#1| (-365))
-((((-409 (-566))) . T) (($) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((((-566) |#1|) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((((-567) |#1|) . T))
(((|#1|) . T))
(((|#2|) |has| |#1| (-365)))
(((|#2|) |has| |#1| (-365)))
-((((-566)) . T) (($) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+((((-567)) . T) (($) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
-(((|#2|) . T) (((-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) (((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) (((-409 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))))
+(((|#2|) . T) (((-1176)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1176)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567)))) (((-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567)))))
(((|#2|) . T))
-((((-1175) #0=(-1251 |#1| |#2| |#3| |#4|)) |has| #0# (-516 (-1175) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
-((((-409 (-566))) . T) (($) . T) (((-409 |#1|)) . T) ((|#1|) . T))
-((((-612 $) $) . T) (($ $) . T))
-((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1171 (-699))) . T) (((-892 (-381))) . T))
+((((-1176) #0=(-1252 |#1| |#2| |#3| |#4|)) |has| #0# (-517 (-1176) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
+((((-410 (-567))) . T) (($) . T) (((-410 |#1|)) . T) ((|#1|) . T))
+((((-613 $) $) . T) (($ $) . T))
+((((-169 (-225))) . T) (((-169 (-381))) . T) (((-1172 (-700))) . T) (((-893 (-381))) . T))
(((|#3|) . T))
-(|has| |#1| (-558))
-(|has| (-409 |#2|) (-233))
-(((|#1| (-409 (-566))) . T))
-((($) . T) (((-409 (-566))) . T) (((-409 |#1|)) . T) ((|#1|) . T))
+(|has| |#1| (-559))
+(|has| (-410 |#2|) (-233))
+(((|#1| (-410 (-567))) . T))
+((($) . T) (((-410 (-567))) . T) (((-410 |#1|)) . T) ((|#1|) . T))
(((|#3|) . T))
-(|has| |#1| (-558))
-((((-862)) . T))
+(|has| |#1| (-559))
+((((-863)) . T))
((($ $) . T))
((($) . T))
-((((-862)) . T))
-((((-1175)) |has| |#2| (-900 (-1175))))
-((((-409 (-566))) . T) (($) . T))
-(((|#1|) |has| |#1| (-172)) (($) . T) (((-566)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-862)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((((-863)) . T))
+((((-1176)) |has| |#2| (-901 (-1176))))
+((((-410 (-567))) . T) (($) . T))
+(((|#1|) |has| |#1| (-172)) (($) . T) (((-567)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-863)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#2|) |has| |#1| (-365)))
-((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-381)))) (((-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-566)))))
+((((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-381)))) (((-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-567)))))
(|has| |#1| (-365))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-365))
(((|#1|) . T))
-((($) . T) (((-566)) . T) ((|#2|) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
+((($) . T) (((-567)) . T) ((|#2|) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-365))
(((|#3|) . T))
-((((-1157)) . T) (((-508)) . T) (((-225)) . T) (((-566)) . T))
+((((-1158)) . T) (((-509)) . T) (((-225)) . T) (((-567)) . T))
(((|#1|) . T))
-(|has| |#1| (-558))
-(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-(-2676 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
+(|has| |#1| (-559))
+(((|#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+(-2909 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
(((|#2|) . T))
(((|#2|) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(|has| |#1| (-38 (-409 (-566))))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(|has| |#1| (-38 (-410 (-567))))
(((|#1| |#2|) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(|has| |#1| (-38 (-410 (-567))))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
((($) . T))
-((((-1157) |#1|) . T))
+((((-1158) |#1|) . T))
(|has| |#1| (-147))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
(|has| |#1| (-147))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))
((($) . T))
(|has| |#1| (-147))
-((((-583 |#1|)) . T))
+((((-584 |#1|)) . T))
((($) . T))
-(|has| |#1| (-558))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
+(|has| |#1| (-559))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
((($) . T))
((($) . T))
-((((-409 |#2|)) . T))
-((((-409 (-566))) |has| |#2| (-1038 (-566))) (((-566)) |has| |#2| (-1038 (-566))) (((-1175)) |has| |#2| (-1038 (-1175))) ((|#2|) . T))
-(((#0=(-409 |#2|) #0#) . T) ((#1=(-409 (-566)) #1#) . T) (($ $) . T))
+((((-410 |#2|)) . T))
+((((-410 (-567))) |has| |#2| (-1039 (-567))) (((-567)) |has| |#2| (-1039 (-567))) (((-1176)) |has| |#2| (-1039 (-1176))) ((|#2|) . T))
+(((#0=(-410 |#2|) #0#) . T) ((#1=(-410 (-567)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-351)))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-351)))
(|has| |#1| (-147))
-((((-862)) . T))
+((((-863)) . T))
((($) . T))
-((((-1139 |#1| |#2|)) . T))
-(((|#1| (-566)) . T))
-(((|#1| (-409 (-566))) . T))
-((((-566)) |has| |#2| (-886 (-566))) (((-381)) |has| |#2| (-886 (-381))))
+((((-1140 |#1| |#2|)) . T))
+(((|#1| (-567)) . T))
+(((|#1| (-410 (-567))) . T))
+((((-567)) |has| |#2| (-887 (-567))) (((-381)) |has| |#2| (-887 (-381))))
(((|#2|) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
((((-112)) . T))
(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-862)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-1175) (-52)) . T))
-((((-409 |#2|)) . T))
-((((-862)) . T))
-(((|#1|) . T))
-(|has| |#1| (-1099))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-((((-862)) . T))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
+((((-863)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-1176) (-52)) . T))
+((((-410 |#2|)) . T))
+((((-863)) . T))
+(((|#1|) . T))
+(|has| |#1| (-1100))
+(|has| |#1| (-792))
+(|has| |#1| (-792))
+((((-863)) . T))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
((((-114)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-225)) . T) (((-381)) . T) (((-892 (-381))) . T))
-((((-862)) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-566))) |has| |#1| (-558)))
-((((-862)) . T))
-((((-862)) . T))
+((((-225)) . T) (((-381)) . T) (((-893 (-381))) . T))
+((((-863)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559)))
+((((-863)) . T))
+((((-863)) . T))
(((|#2|) . T))
-((((-862)) . T))
-(((#0=(-910 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T))
+((((-863)) . T))
+(((#0=(-911 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
+((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
(|has| |#1| (-365))
-((((-862)) . T))
+((((-863)) . T))
(((|#2|) . T))
-((((-566)) . T))
-((((-862)) . T))
-((((-566)) . T))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
+((((-567)) . T))
+((((-863)) . T))
+((((-567)) . T))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
((((-169 (-381))) . T) (((-225)) . T) (((-381)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-1157)) . T) (((-538)) . T) (((-566)) . T) (((-892 (-566))) . T) (((-381)) . T) (((-225)) . T))
-((((-862)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-1158)) . T) (((-539)) . T) (((-567)) . T) (((-893 (-567))) . T) (((-381)) . T) (((-225)) . T))
+((((-863)) . T))
(|has| |#1| (-147))
(|has| |#1| (-145))
-((($) . T) ((#0=(-1250 |#2| |#3| |#4|)) |has| #0# (-172)) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
+((($) . T) ((#0=(-1251 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-475)) (|has| |#1| (-726)) (|has| |#1| (-900 (-1175))) (|has| |#1| (-1049)) (|has| |#1| (-1111)) (|has| |#1| (-1099)))
-(|has| |#1| (-1150))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((((-566) |#1|) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-476)) (|has| |#1| (-727)) (|has| |#1| (-901 (-1176))) (|has| |#1| (-1050)) (|has| |#1| (-1112)) (|has| |#1| (-1100)))
+(|has| |#1| (-1151))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-567) |#1|) . T))
(((|#1|) . T))
(((#0=(-116 |#1|) $) |has| #0# (-287 #0# #0#)))
(((|#1|) |has| |#1| (-172)))
-((((-317 |#1|)) . T) (((-566)) . T))
+((((-317 |#1|)) . T) (((-567)) . T))
(((|#1|) . T))
-((((-862)) . T))
+((((-863)) . T))
((((-114)) . T) ((|#1|) . T))
-((((-862)) . T))
+((((-863)) . T))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-310 |#1|)))
-((((-566) |#1|) . T))
-((((-1175) |#1|) . T))
-(((|#1|) -2676 (|has| |#1| (-172)) (|has| |#1| (-365))))
+((((-567) |#1|) . T))
+((((-1176) |#1|) . T))
+(((|#1|) -2909 (|has| |#1| (-172)) (|has| |#1| (-365))))
(((|#1|) . T))
-(((|#1|) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1049))))
-((((-566)) . T) (((-409 (-566))) . T))
+(((|#1|) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-1050))))
+((((-567)) . T) (((-410 (-567))) . T))
(((|#1|) . T))
-(|has| |#1| (-558))
-((($) . T) (((-566)) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-365)))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
+(|has| |#1| (-559))
+((($) . T) (((-567)) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
((((-381)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-365))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
(|has| |#1| (-365))
-(|has| |#1| (-558))
-(|has| |#1| (-1099))
-((((-780 |#1| (-864 |#2|))) |has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
+(|has| |#1| (-559))
+(|has| |#1| (-1100))
+((((-781 |#1| (-865 |#2|))) |has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
-(|has| |#2| (-909))
-(((|#1| (-533 |#2|)) . T))
-(((|#1| (-771)) . T))
+(|has| |#2| (-910))
+(((|#1| (-534 |#2|)) . T))
+(((|#1| (-772)) . T))
(|has| |#1| (-233))
-(((|#1| (-533 (-1087 (-1175)))) . T))
+(((|#1| (-534 (-1088 (-1176)))) . T))
(|has| |#2| (-365))
-((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) . T))
+((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-566)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-862)) . T))
-((((-862)) . T))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
-((((-862)) . T))
-((((-1119)) . T) (((-862)) . T))
-((((-538)) . T) (((-862)) . T))
+(((|#1|) . T) (((-567)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-863)) . T))
+((((-863)) . T))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
+((((-863)) . T))
+((((-1120)) . T) (((-863)) . T))
+((((-539)) . T) (((-863)) . T))
(((|#1|) . T))
-((($ $) . T) (((-612 $) $) . T))
+((($ $) . T) (((-613 $) $) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-566)) . T))
+((((-567)) . T))
(((|#3|) . T))
-((((-862)) . T))
-(-2676 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-566)) . T) (((-409 (-566))) -2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T))
-((((-1124 |#1| |#2|)) . T) ((|#2|) . T) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-566)) . T))
-((((-1171 |#1|)) . T) (((-566)) . T) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) (((-1081)) . T) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))
-(-2676 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049)))
-((((-1124 |#1| (-1175))) . T) (((-566)) . T) (((-1087 (-1175))) . T) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) (((-1175)) . T))
-(((#0=(-583 |#1|) #0#) . T) (($ $) . T) ((#1=(-409 (-566)) #1#) . T))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T))
+((((-863)) . T))
+(-2909 (|has| |#1| (-308)) (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-567)) . T) (((-410 (-567))) -2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T))
+((((-1125 |#1| |#2|)) . T) ((|#2|) . T) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-567)) . T))
+((((-1172 |#1|)) . T) (((-567)) . T) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) (((-1082)) . T) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))
+(-2909 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050)))
+((((-1125 |#1| (-1176))) . T) (((-567)) . T) (((-1088 (-1176))) . T) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) (((-1176)) . T))
+(((#0=(-584 |#1|) #0#) . T) (($ $) . T) ((#1=(-410 (-567)) #1#) . T))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(((|#1|) |has| |#1| (-172)))
-(((|#1| (-1265 |#1|) (-1265 |#1|)) . T))
-((((-583 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((($) . T) (((-409 (-566))) . T))
+(((|#1| (-1266 |#1|) (-1266 |#1|)) . T))
+((((-584 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((($) . T) (((-410 (-567))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-409 (-566))) . T))
-(((|#2|) |has| |#2| (-6 (-4417 "*"))))
+((($) . T) (((-410 (-567))) . T))
+(((|#2|) |has| |#2| (-6 (-4418 "*"))))
(((|#1|) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((|#1|) . T) (((-566)) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((|#1|) . T) (((-567)) . T))
(((|#1|) . T))
-((((-862)) . T))
+((((-863)) . T))
((((-295 |#3|)) . T))
-(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
+((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
(((|#2|) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) . T))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(|has| |#2| (-909))
-(|has| |#1| (-909))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) . T))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(|has| |#2| (-910))
+(|has| |#1| (-910))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T))
(((|#1|) . T))
-((((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) . T))
+((((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1099))
+(|has| |#1| (-1100))
(((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-((((-1175)) . T) ((|#1|) . T))
-((((-862)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-566)) . T) (($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))
-(((#0=(-409 (-566)) #0#) . T))
-((((-409 (-566))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+((((-1176)) . T) ((|#1|) . T))
+((((-863)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-567)) . T) (($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))
+(((#0=(-410 (-567)) #0#) . T))
+((((-410 (-567))) . T))
(((|#1|) |has| |#1| (-172)))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(((|#1|) . T))
-((((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-538)) . T))
-((((-862)) . T))
-((((-566)) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((((-1175)) |has| |#2| (-900 (-1175))) (((-1081)) . T))
-((((-862)) . T))
-((((-1250 |#2| |#3| |#4|)) . T))
-((((-910 |#1|)) . T))
-((($) . T) (((-409 (-566))) . T))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-820)))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-820)))
-((((-862)) . T))
-(|has| |#1| (-1219))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-((((-1175)) |has| |#1| (-900 (-1175))))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) . T))
-(((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))) ((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-((($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049))))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-558))))
-(|has| |#1| (-558))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(((|#1|) . T))
+((((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-539)) . T))
+((((-863)) . T))
+((((-567)) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((((-1176)) |has| |#2| (-901 (-1176))) (((-1082)) . T))
+((((-863)) . T))
+((((-1251 |#2| |#3| |#4|)) . T))
+((((-911 |#1|)) . T))
+((($) . T) (((-410 (-567))) . T))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
+((((-863)) . T))
+(|has| |#1| (-1220))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+((((-1176)) |has| |#1| (-901 (-1176))))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) . T))
+(((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))) ((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+((($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#2|) |has| |#2| (-1050)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050))))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-559))))
+(|has| |#1| (-559))
(((|#1|) |has| |#1| (-365)))
-((((-566)) . T))
-(|has| |#1| (-791))
-(|has| |#1| (-791))
-((((-1175) #0=(-116 |#1|)) |has| #0# (-516 (-1175) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
-(((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))))
-((((-1081)) . T) ((|#2|) . T) (((-566)) |has| |#2| (-1038 (-566))) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))))
+((((-567)) . T))
+(|has| |#1| (-792))
+(|has| |#1| (-792))
+((((-1176) #0=(-116 |#1|)) |has| #0# (-517 (-1176) #0#)) ((#0# #0#) |has| #0# (-310 #0#)))
+(((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))))
+((((-1082)) . T) ((|#2|) . T) (((-567)) |has| |#2| (-1039 (-567))) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-566)) . T) (($) . T))
-((((-566) (-771)) . T) ((|#3| (-771)) . T))
+(((|#1|) . T) (((-567)) . T) (($) . T))
+((((-567) (-772)) . T) ((|#3| (-772)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-862)) . T))
-(|has| |#2| (-820))
-(|has| |#2| (-820))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((((-566)) |has| |#1| (-886 (-566))) (((-381)) |has| |#1| (-886 (-381))))
-(((|#1|) . T))
-((((-870 |#1|)) . T))
-((((-870 |#1|)) . T))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-909)))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-863)) . T))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((((-567)) |has| |#1| (-887 (-567))) (((-381)) |has| |#1| (-887 (-381))))
+(((|#1|) . T))
+((((-871 |#1|)) . T))
+((((-871 |#1|)) . T))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-910)))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T))
(((|#1|) |has| |#1| (-172)))
(|has| |#1| (-365))
(|has| |#1| (-365))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-172)))
-(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-(((|#2|) -2676 (|has| |#2| (-6 (-4417 "*"))) (|has| |#2| (-172))))
+(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+(((|#2|) -2909 (|has| |#2| (-6 (-4418 "*"))) (|has| |#2| (-172))))
(((|#2|) . T))
(|has| |#1| (-365))
(((|#2|) . T))
@@ -3237,683 +3237,683 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-864 |#1|)) . T))
+((((-865 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-771)) . T))
-((((-1175)) . T))
-((((-870 |#1|)) . T))
-(-2676 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-((((-862)) . T))
+(((|#2| (-772)) . T))
+((((-1176)) . T))
+((((-871 |#1|)) . T))
+(-2909 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+((((-863)) . T))
(((|#1|) . T))
-(-2676 (|has| |#2| (-793)) (|has| |#2| (-848)))
-(-2676 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850))))
-((((-870 |#1|)) . T))
+(-2909 (|has| |#2| (-794)) (|has| |#2| (-849)))
+(-2909 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851))))
+((((-871 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
-((($ $) . T) (((-612 $) $) . T))
-((($) . T))
-((((-862)) . T))
-((((-566)) . T))
-(((|#2|) . T))
-((((-862)) . T))
-((($) . T) (((-566)) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-365)))
-((((-862)) . T))
-(((|#1|) . T))
-((((-862)) . T))
-((($) . T) ((|#2|) . T) (((-409 (-566))) . T))
-(|has| |#1| (-1099))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-862)) . T))
-(|has| |#2| (-909))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
-((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566)))))
-((((-862)) . T))
-((((-862)) . T))
-(((|#3|) |has| |#3| (-1049)) (((-566)) -12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))))
-((((-1124 |#1| |#2|)) . T) (((-952 |#1|)) |has| |#2| (-614 (-1175))) (((-862)) . T))
-((((-952 |#1|)) |has| |#2| (-614 (-1175))) (((-1157)) -12 (|has| |#1| (-1038 (-566))) (|has| |#2| (-614 (-1175)))) (((-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566))))) (((-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381))))) (((-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))))
-((((-1171 |#1|)) . T) (((-862)) . T))
-((((-862)) . T))
-((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T) (((-1175)) . T))
-((((-862)) . T))
-((((-566)) . T))
-(((|#1|) . T))
-((($) . T))
-((((-381)) |has| |#1| (-886 (-381))) (((-566)) |has| |#1| (-886 (-566))))
-((((-566)) . T))
-(((|#1|) . T))
-((((-862)) . T))
-(((|#1|) . T))
-((((-862)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-644 |#1|)) . T))
-((($) . T) (((-566)) . T) (((-1251 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T))
-((((-566)) -2676 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) (($) -2676 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-558)) (|has| |#1| (-1049))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558)))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-566)) . T) (((-409 (-566))) . T))
-((((-1180)) . T))
+((($ $) . T) (((-613 $) $) . T))
+((($) . T))
+((((-863)) . T))
+((((-567)) . T))
+(((|#2|) . T))
+((((-863)) . T))
+((($) . T) (((-567)) . T))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
+((((-863)) . T))
+(((|#1|) . T))
+((((-863)) . T))
+((($) . T) ((|#2|) . T) (((-410 (-567))) . T))
+(|has| |#1| (-1100))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-863)) . T))
+(|has| |#2| (-910))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
+((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567)))))
+((((-863)) . T))
+((((-863)) . T))
+(((|#3|) |has| |#3| (-1050)) (((-567)) -12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))))
+((((-1125 |#1| |#2|)) . T) (((-953 |#1|)) |has| |#2| (-615 (-1176))) (((-863)) . T))
+((((-953 |#1|)) |has| |#2| (-615 (-1176))) (((-1158)) -12 (|has| |#1| (-1039 (-567))) (|has| |#2| (-615 (-1176)))) (((-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567))))) (((-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))
+((((-1172 |#1|)) . T) (((-863)) . T))
+((((-863)) . T))
+((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T) (((-1176)) . T))
+((((-863)) . T))
+((((-567)) . T))
+(((|#1|) . T))
+((($) . T))
+((((-381)) |has| |#1| (-887 (-381))) (((-567)) |has| |#1| (-887 (-567))))
+((((-567)) . T))
+(((|#1|) . T))
+((((-863)) . T))
+(((|#1|) . T))
+((((-863)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-645 |#1|)) . T))
+((($) . T) (((-567)) . T) (((-1252 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T))
+((((-567)) -2909 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) (($) -2909 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-559)) (|has| |#1| (-1050))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-567)) . T) (((-410 (-567))) . T))
+((((-1181)) . T))
(((|#1|) |has| |#1| (-172)) (($) . T))
(((|#1|) |has| |#1| (-310 |#1|)))
((((-381)) . T))
-((((-862)) . T))
+((((-863)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-862)) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-409 |#2|) |#3|) . T))
+((((-863)) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-410 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1099))
-(((|#2| (-484 (-3991 |#1|) (-771))) . T))
-((((-566) |#1|) . T))
-((((-1157)) . T) (((-862)) . T))
+(|has| |#1| (-1100))
+(((|#2| (-485 (-2268 |#1|) (-772))) . T))
+((((-567) |#1|) . T))
+((((-1158)) . T) (((-863)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-533 (-1175))) . T))
-(-2676 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((((-566)) . T))
+(((|#1| (-534 (-1176))) . T))
+(-2909 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((((-567)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1175)) |has| |#1| (-900 (-1175))) (((-1081)) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-639 (-566))))
-(|has| |#1| (-558))
-(((#0=(-1250 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))) (((-566)) . T) (($) . T))
-((($) . T) (((-409 (-566))) . T))
+((((-1176)) |has| |#1| (-901 (-1176))) (((-1082)) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-640 (-567))))
+(|has| |#1| (-559))
+(((#0=(-1251 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))) (((-567)) . T) (($) . T))
+((($) . T) (((-410 (-567))) . T))
((($) . T))
((($) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
(((|#1|) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-862)) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-863)) . T))
((((-144)) . T))
-(((|#1|) . T) (((-409 (-566))) . T))
+(((|#1|) . T) (((-410 (-567))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-862)) . T))
+((((-863)) . T))
(((|#1|) . T))
-(|has| |#1| (-1150))
-(((|#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) . T))
+(|has| |#1| (-1151))
+(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T))
(((|#1|) . T))
-((((-409 $) (-409 $)) |has| |#1| (-558)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((((-862)) . T))
-((((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-566)) |has| |#1| (-1038 (-566))) ((|#1|) . T) ((|#2|) . T))
-((((-1081)) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))))
-((((-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381)))) (((-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))
-((((-1251 |#1| |#2| |#3| |#4|)) . T))
-((((-566) |#1|) . T))
+((((-410 $) (-410 $)) |has| |#1| (-559)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((((-863)) . T))
+((((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-567)) |has| |#1| (-1039 (-567))) ((|#1|) . T) ((|#2|) . T))
+((((-1082)) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))))
+((((-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381)))) (((-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567)))))
+((((-1252 |#1| |#2| |#3| |#4|)) . T))
+((((-567) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-172)) (($) . T))
((($) . T))
-((((-699)) . T))
-((((-780 |#1| (-864 |#2|))) . T))
-((((-566)) . T) (($) . T))
+((((-700)) . T))
+((((-781 |#1| (-865 |#2|))) . T))
+((((-567)) . T) (($) . T))
((($) . T))
-(((|#1|) . T) (((-409 (-566))) |has| |#1| (-365)))
-((((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-1099))
-(|has| |#1| (-1099))
+(((|#1|) . T) (((-410 (-567))) |has| |#1| (-365)))
+((((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-1100))
+(|has| |#1| (-1100))
(|has| |#2| (-365))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-409 (-566))) |has| |#1| (-365)))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-291)) (|has| |#1| (-365))) (((-410 (-567))) |has| |#1| (-365)))
(|has| |#1| (-365))
(|has| |#1| (-365))
-(|has| |#1| (-38 (-409 (-566))))
-((((-566)) . T))
-((((-1175)) -12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049))))
-((((-1175)) -12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-567)) . T))
+((((-1176)) -12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050))))
+((((-1176)) -12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050))))
(((|#1|) . T))
(|has| |#1| (-233))
-(((|#2| (-240 (-3991 |#1|) (-771))) . T))
-(((|#1| (-533 |#3|)) . T))
+(((|#2| (-240 (-2268 |#1|) (-772))) . T))
+(((|#1| (-534 |#3|)) . T))
(|has| |#1| (-370))
(|has| |#1| (-370))
(|has| |#1| (-370))
(((|#1|) . T) (($) . T))
-(((|#1| (-533 |#2|)) . T))
-(-2676 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(((|#1| (-771)) . T))
-(|has| |#1| (-558))
-(-2676 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
+(((|#1| (-534 |#2|)) . T))
+(-2909 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(((|#1| (-772)) . T))
+(|has| |#1| (-559))
+(-2909 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-862)) . T))
-((((-566)) . T) (((-409 (-566))) . T) (($) . T))
-(-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))
-(-2676 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
+((((-863)) . T))
+((((-567)) . T) (((-410 (-567))) . T) (($) . T))
+(-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
+(-2909 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
(((|#1|) |has| |#1| (-172)))
-(((|#4|) |has| |#4| (-1049)))
-(((|#3|) |has| |#3| (-1049)))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-820)))
-(-12 (|has| |#1| (-365)) (|has| |#2| (-820)))
-((((-566)) . T) (((-409 (-566))) -2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))) ((|#2|) . T) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-864 |#1|)) . T))
-((((-1124 |#1| |#2|)) . T) (((-566)) . T) ((|#3|) . T) (($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))) ((|#2|) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (($) . T) (((-566)) . T))
-((((-1180)) . T))
-((((-672 |#1|)) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (($) . T))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-((((-862)) . T))
-((((-644 $)) . T) (((-1157)) . T) (((-1175)) . T) (((-566)) . T) (((-225)) . T) (((-862)) . T))
-((($) . T) (((-409 (-566))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1099)) (((-566)) -12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (((-409 (-566))) -12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))
-(((|#3|) |has| |#3| (-1099)) (((-566)) -12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (((-409 (-566))) -12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))
+(((|#4|) |has| |#4| (-1050)))
+(((|#3|) |has| |#3| (-1050)))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
+(-12 (|has| |#1| (-365)) (|has| |#2| (-821)))
+((((-567)) . T) (((-410 (-567))) -2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))) ((|#2|) . T) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-865 |#1|)) . T))
+((((-1125 |#1| |#2|)) . T) (((-567)) . T) ((|#3|) . T) (($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))) ((|#2|) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (($) . T) (((-567)) . T))
+((((-1181)) . T))
+((((-673 |#1|)) . T))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (($) . T))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+((((-863)) . T))
+((((-645 $)) . T) (((-1158)) . T) (((-1176)) . T) (((-567)) . T) (((-225)) . T) (((-863)) . T))
+((($) . T) (((-410 (-567))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1100)) (((-567)) -12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1100))) (((-410 (-567))) -12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1100))))
+(((|#3|) |has| |#3| (-1100)) (((-567)) -12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100))) (((-410 (-567))) -12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100))))
(|has| |#2| (-365))
-(((|#2|) |has| |#2| (-1049)) (((-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049))))
+(((|#2|) |has| |#2| (-1050)) (((-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050))))
(((|#1|) . T))
(|has| |#2| (-365))
-(((#0=(-409 (-566)) #0#) |has| |#2| (-38 (-409 (-566)))) ((|#2| |#2|) . T) (($ $) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1| |#1|) . T) ((#0=(-409 (-566)) #0#) |has| |#1| (-38 (-409 (-566)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-409 (-566)) #0#) . T))
+(((#0=(-410 (-567)) #0#) |has| |#2| (-38 (-410 (-567)))) ((|#2| |#2|) . T) (($ $) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1| |#1|) . T) ((#0=(-410 (-567)) #0#) |has| |#1| (-38 (-410 (-567)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-410 (-567)) #0#) . T))
(((|#2| |#2|) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T) (($) -2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) . T) (($) . T) (((-409 (-566))) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T) (($) -2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) . T) (($) . T) (((-410 (-567))) . T))
(((|#2|) . T))
-((((-862)) |has| |#1| (-1099)))
+((((-863)) |has| |#1| (-1100)))
((($) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-820))
-(|has| |#2| (-820))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
+(|has| |#2| (-821))
+(|has| |#2| (-821))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
(|has| |#1| (-365))
(|has| |#1| (-365))
-(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))
+(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#1|) |has| |#2| (-419 |#1|)))
-(((|#1|) |has| |#2| (-419 |#1|)))
-((((-1157)) . T))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-644 |#1|)) . T) (((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-644 |#1|)) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-862)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1214)) . T) (((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) |has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-((((-566) |#1|) . T))
-((((-566) |#1|) . T))
-((((-566) |#1|) . T))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-566) |#1|) . T))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
-((((-1175)) |has| |#1| (-900 (-1175))) (((-818 (-1175))) . T))
-(-2676 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-793)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-((((-819 |#1|)) . T))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#1|) |has| |#2| (-420 |#1|)))
+(((|#1|) |has| |#2| (-420 |#1|)))
+((((-1158)) . T))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-645 |#1|)) . T) (((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-645 |#1|)) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-863)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1215)) . T) (((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) |has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+((((-567) |#1|) . T))
+((((-567) |#1|) . T))
+((((-567) |#1|) . T))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-567) |#1|) . T))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#1|) |has| |#1| (-172)))
+((((-1176)) |has| |#1| (-901 (-1176))) (((-819 (-1176))) . T))
+(-2909 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-794)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+((((-820 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-862)) . T))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
+((((-863)) . T))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
(((|#1| |#2|) . T))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-(|has| |#1| (-38 (-409 (-566))))
-((((-862)) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-566))) |has| |#1| (-558)))
-(((|#2|) . T) (((-566)) |has| |#2| (-639 (-566))))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+(|has| |#1| (-38 (-410 (-567))))
+((((-863)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559)))
+(((|#2|) . T) (((-567)) |has| |#2| (-640 (-567))))
(|has| |#1| (-365))
-(-2676 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233))))
-(|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))
+(-2909 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (-12 (|has| |#1| (-365)) (|has| |#2| (-233))))
+(|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))
(|has| |#1| (-365))
(((|#1|) . T))
-(((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1| |#1|) . T))
-((((-566) |#1|) . T))
+(((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1| |#1|) . T))
+((((-567) |#1|) . T))
((((-317 |#1|)) . T))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((#0=(-699) (-1171 #0#)) . T))
-((((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((|#1|) . T))
-(((|#1|) . T) (($) . T) (((-566)) . T) (((-409 (-566))) . T))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((#0=(-700) (-1172 #0#)) . T))
+((((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((|#1|) . T))
+(((|#1|) . T) (($) . T) (((-567)) . T) (((-410 (-567))) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-848))
-(((|#2|) . T) (((-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))) (((-566)) . T) ((|#1|) |has| |#1| (-172)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) (((-566)) . T) (($) -2676 (|has| |#1| (-365)) (|has| |#1| (-558))))
-((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1124 |#1| (-1175))) . T) (((-818 (-1175))) . T) ((|#1|) . T) (((-566)) |has| |#1| (-1038 (-566))) (((-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) (((-1175)) . T))
+(|has| |#1| (-849))
+(((|#2|) . T) (((-1176)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1176)))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))) (((-567)) . T) ((|#1|) |has| |#1| (-172)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) (((-567)) . T) (($) -2909 (|has| |#1| (-365)) (|has| |#1| (-559))))
+((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1125 |#1| (-1176))) . T) (((-819 (-1176))) . T) ((|#1|) . T) (((-567)) |has| |#1| (-1039 (-567))) (((-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) (((-1176)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1081) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1175) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1087 (-1175)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1082) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1176) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1088 (-1176)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))))
-(|has| |#2| (-909))
-((($) . T) ((#0=(-1250 |#2| |#3| |#4|)) |has| #0# (-172)) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))))
+((($) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))))
+(|has| |#2| (-910))
+((($) . T) ((#0=(-1251 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
(((|#1|) |has| |#1| (-172)))
-((((-566) |#1|) . T))
+((((-567) |#1|) . T))
(((|#1|) . T))
-((((-1180)) . T))
-(((#0=(-1251 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#)))
+((((-1181)) . T))
+(((#0=(-1252 |#1| |#2| |#3| |#4|)) |has| #0# (-310 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) ((#0=(-409 (-566)) #0#) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
+((($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2| |#2|) |has| |#1| (-365)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) ((#0=(-410 (-567)) #0#) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
(|has| |#2| (-233))
(|has| $ (-147))
-((((-862)) . T))
-((($) . T) (((-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
-((((-862)) . T))
-(|has| |#1| (-848))
+((((-863)) . T))
+((($) . T) (((-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-351))) ((|#1|) . T))
+((((-863)) . T))
+(|has| |#1| (-849))
((((-129)) . T))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T) (((-566)) . T))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T) (((-567)) . T))
(((|#1|) . T))
((((-129)) . T))
-((((-409 |#2|) |#3|) . T))
-((((-862)) . T))
-(-12 (|has| |#1| (-308)) (|has| |#1| (-909)))
-(((|#2| (-672 |#1|)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+((((-410 |#2|) |#3|) . T))
+((((-863)) . T))
+(-12 (|has| |#1| (-308)) (|has| |#1| (-910)))
+(((|#2| (-673 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#4|) . T))
-(|has| |#1| (-558))
-((($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
-((((-1175)) -2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))
-(((|#1|) . T) (($) -2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-558))) (((-409 (-566))) -2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-365))))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175)))))
-(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))
-((((-566) |#1|) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(((|#1|) . T))
-(((|#1| (-533 (-818 (-1175)))) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((((-566)) . T) ((|#2|) . T) (($) . T) (((-409 (-566))) . T) (((-1175)) |has| |#2| (-1038 (-1175))))
-(((|#1|) . T))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-(((|#1|) . T))
-(-2676 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))
-((((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((($) . T) (((-870 |#1|)) . T) (((-409 (-566))) . T))
-((((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(|has| |#1| (-558))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-409 |#2|)) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-409 (-566)) #0#) . T) (($ $) . T))
-((((-566)) . T))
-(((|#2|) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((($) . T))
-((((-583 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-((((-862)) . T))
-((((-409 (-566))) . T) (($) . T))
-((((-566) |#1|) . T))
-((($) . T))
-((((-862)) . T))
-((($ $) . T) (((-1175) $) . T))
-((((-538)) |has| |#2| (-614 (-538))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566)))))
-((((-862)) . T))
-((((-862)) . T))
-((((-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) (((-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) (((-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1|) . T) (((-862)) . T) (((-1180)) . T))
-((((-862)) . T))
-((((-1180)) . T))
-((((-114)) . T) ((|#1|) . T) (((-566)) . T))
-(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) . T))
+(|has| |#1| (-559))
+((($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))) ((|#2|) |has| |#1| (-365)) ((|#1|) . T))
+((((-1176)) -2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))
+(((|#1|) . T) (($) -2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-559))) (((-410 (-567))) -2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-365))))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176)))))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176)))))
+(((|#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))
+((((-567) |#1|) . T))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(((|#1|) . T))
+(((|#1| (-534 (-819 (-1176)))) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((((-567)) . T) ((|#2|) . T) (($) . T) (((-410 (-567))) . T) (((-1176)) |has| |#2| (-1039 (-1176))))
+(((|#1|) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+(((|#1|) . T))
+(-2909 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
+((((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((($) . T) (((-871 |#1|)) . T) (((-410 (-567))) . T))
+((((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(|has| |#1| (-559))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-410 |#2|)) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-410 (-567)) #0#) . T) (($ $) . T))
+((((-567)) . T))
+(((|#2|) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((($) . T))
+((((-584 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+((((-863)) . T))
+((((-410 (-567))) . T) (($) . T))
+((((-567) |#1|) . T))
+((($) . T))
+((((-863)) . T))
+((($ $) . T) (((-1176) $) . T))
+((((-539)) |has| |#2| (-615 (-539))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567)))))
+((((-863)) . T))
+((((-863)) . T))
+((((-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) (((-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) (((-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1|) . T) (((-863)) . T) (((-1181)) . T))
+((((-863)) . T))
+((((-1181)) . T))
+((((-114)) . T) ((|#1|) . T) (((-567)) . T))
+(((|#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) . T))
(((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T))
((((-129)) . T))
-((($) . T) (((-566)) . T) (((-116 |#1|)) . T) (((-409 (-566))) . T))
-((((-862)) . T))
-((((-1257 |#1| |#2| |#3|)) . T))
-((((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) |has| |#2| (-172)) (($) -2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))))
+((($) . T) (((-567)) . T) (((-116 |#1|)) . T) (((-410 (-567))) . T))
+((((-863)) . T))
+((((-1258 |#1| |#2| |#3|)) . T))
+((((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) |has| |#2| (-172)) (($) -2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-409 (-566))) |has| |#2| (-38 (-409 (-566)))) ((|#2|) . T))
-((($) . T) (((-566)) . T))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-1103)) . T))
-((((-862)) . T))
-((($) -2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((($) . T))
-((($) -2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909))) ((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-((((-1257 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((($) . T) (((-410 (-567))) |has| |#2| (-38 (-410 (-567)))) ((|#2|) . T))
+((($) . T) (((-567)) . T))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-1104)) . T))
+((((-863)) . T))
+((($) -2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((($) . T))
+((($) -2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910))) ((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+((((-1258 |#1| |#2| |#3|)) |has| |#1| (-365)))
(|has| |#1| (-365))
-((((-1257 |#1| |#2| |#3|)) . T) (((-1229 |#1| |#2| |#3|)) . T))
-((((-1175)) . T) (((-862)) . T))
-(|has| |#2| (-909))
+((((-1258 |#1| |#2| |#3|)) . T) (((-1230 |#1| |#2| |#3|)) . T))
+((((-1176)) . T) (((-863)) . T))
+(|has| |#2| (-910))
(((|#1|) . T))
-(|has| |#1| (-909))
+(|has| |#1| (-910))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-172)))
-((((-699)) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-1180)) . T))
+((((-700)) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-1181)) . T))
(((|#1|) |has| |#1| (-172)))
-((((-1180)) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)) (((-409 (-566))) |has| |#1| (-558)))
-((((-1180)) . T))
-((((-1251 |#1| |#2| |#3| |#4|)) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1|) |has| |#1| (-172)) (((-409 (-566))) |has| |#1| (-558)) (($) |has| |#1| (-558)))
-((((-409 (-566))) . T) (($) . T))
-(((|#1| (-566)) . T))
+((((-1181)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)) (((-410 (-567))) |has| |#1| (-559)))
+((((-1181)) . T))
+((((-1252 |#1| |#2| |#3| |#4|)) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1|) |has| |#1| (-172)) (((-410 (-567))) |has| |#1| (-559)) (($) |has| |#1| (-559)))
+((((-410 (-567))) . T) (($) . T))
+(((|#1| (-567)) . T))
(((|#1|) |has| |#1| (-172)))
-((((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1180)) . T))
-((((-1180)) . T))
+((((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1181)) . T))
+((((-1181)) . T))
(|has| |#1| (-365))
(|has| |#1| (-365))
-(-2676 (|has| |#1| (-172)) (|has| |#1| (-558)))
-(((|#1| (-566)) . T))
-(((|#1| (-409 (-566))) . T))
-(((|#1| (-771)) . T))
-((((-409 (-566))) . T))
-(((|#1| (-533 |#2|) |#2|) . T))
-((((-566) |#1|) . T))
-((((-566) |#1|) . T))
-(|has| |#1| (-1099))
-((((-566) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-892 (-381))) . T) (((-892 (-566))) . T) (((-1175)) . T) (((-538)) . T))
-(((|#1|) . T))
-((((-862)) . T))
-(-2676 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-793)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-(-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))
-((((-566)) . T))
-((((-566)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
+(-2909 (|has| |#1| (-172)) (|has| |#1| (-559)))
+(((|#1| (-567)) . T))
+(((|#1| (-410 (-567))) . T))
+(((|#1| (-772)) . T))
+((((-410 (-567))) . T))
+(((|#1| (-534 |#2|) |#2|) . T))
+((((-567) |#1|) . T))
+((((-567) |#1|) . T))
+(|has| |#1| (-1100))
+((((-567) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-893 (-381))) . T) (((-893 (-567))) . T) (((-1176)) . T) (((-539)) . T))
+(((|#1|) . T))
+((((-863)) . T))
+(-2909 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-365)) (|has| |#2| (-794)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+(-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))
+((((-567)) . T))
+((((-567)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-2676 (|has| |#2| (-172)) (|has| |#2| (-726)) (|has| |#2| (-848)) (|has| |#2| (-1049)))
-((((-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049))))
-(-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))
+(-2909 (|has| |#2| (-172)) (|has| |#2| (-727)) (|has| |#2| (-849)) (|has| |#2| (-1050)))
+((((-1176)) -12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050))))
+(-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))
(|has| |#1| (-145))
(|has| |#1| (-147))
(|has| |#1| (-365))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((($) . T) ((#0=(-1250 |#2| |#3| |#4|)) |has| #0# (-172)) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))))
+((($) . T) ((#0=(-1251 |#2| |#3| |#4|)) |has| #0# (-172)) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
(|has| |#1| (-233))
-((($) . T) (((-566)) . T) (((-409 (-566))) . T))
-((($) . T) (((-566)) . T))
-((($) . T) (((-566)) . T))
-((($) . T) ((#0=(-1250 |#2| |#3| |#4|)) . T) (((-409 (-566))) |has| #0# (-38 (-409 (-566)))))
-((((-862)) . T))
-(((|#1| (-771) (-1081)) . T))
-((((-566) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-566) |#1|) . T))
-((((-566) |#1|) . T))
+((($) . T) (((-567)) . T) (((-410 (-567))) . T))
+((($) . T) (((-567)) . T))
+((($) . T) (((-567)) . T))
+((($) . T) ((#0=(-1251 |#2| |#3| |#4|)) . T) (((-410 (-567))) |has| #0# (-38 (-410 (-567)))))
+((((-863)) . T))
+(((|#1| (-772) (-1082)) . T))
+((((-567) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-567) |#1|) . T))
+((((-567) |#1|) . T))
((((-116 |#1|)) . T))
-((((-409 (-566))) . T) (((-566)) . T))
-(((|#2|) |has| |#2| (-1049)))
-((((-409 (-566))) . T) (($) . T))
-(((|#2|) . T))
-((((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-558)))
-((((-566)) . T))
-((((-566)) . T))
-((((-1157) (-1175) (-566) (-225) (-862)) . T))
+((((-410 (-567))) . T) (((-567)) . T))
+(((|#2|) |has| |#2| (-1050)))
+((((-410 (-567))) . T) (($) . T))
+(((|#2|) . T))
+((((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-559)))
+((((-567)) . T))
+((((-567)) . T))
+((((-1158) (-1176) (-567) (-225) (-863)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-566)) . T) ((|#2|) |has| |#2| (-172)))
-((((-114)) . T) ((|#1|) . T) (((-566)) . T))
-(-2676 (|has| |#1| (-351)) (|has| |#1| (-370)))
+((((-567)) . T) ((|#2|) |has| |#2| (-172)))
+((((-114)) . T) ((|#1|) . T) (((-567)) . T))
+(-2909 (|has| |#1| (-351)) (|has| |#1| (-370)))
(((|#1| |#2|) . T))
((((-225)) . T))
-((((-409 (-566))) . T) (($) . T) (((-566)) . T))
-((((-862)) . T))
+((((-410 (-567))) . T) (($) . T) (((-567)) . T))
+((((-863)) . T))
((($) . T) ((|#1|) . T))
-((($) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-409 (-566))) |has| |#1| (-38 (-409 (-566)))))
-(((|#2|) |has| |#2| (-1099)) (((-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (((-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-538)) |has| |#1| (-614 (-538))))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-850)) (|has| |#1| (-1099))))
-((($) . T) (((-409 (-566))) . T))
-(|has| |#1| (-909))
-(|has| |#1| (-909))
-((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) (((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) (((-892 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-381))))) (((-892 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-566))))) (((-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-538)))))
-((((-862)) . T))
-((((-862)) . T))
+((($) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-410 (-567))) |has| |#1| (-38 (-410 (-567)))))
+(((|#2|) |has| |#2| (-1100)) (((-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (((-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-539)) |has| |#1| (-615 (-539))))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-851)) (|has| |#1| (-1100))))
+((($) . T) (((-410 (-567))) . T))
+(|has| |#1| (-910))
+(|has| |#1| (-910))
+((((-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) (((-893 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-381))))) (((-893 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-567))))) (((-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539)))))
+((((-863)) . T))
+((((-863)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-172)))
-(((|#1|) . T) (((-566)) . T))
-((((-1180)) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-558)))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
+(((|#1|) . T) (((-567)) . T))
+((((-1181)) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-559)))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
(((|#2|) . T))
-(-2676 (|has| |#1| (-21)) (|has| |#1| (-848)))
+(-2909 (|has| |#1| (-21)) (|has| |#1| (-849)))
(((|#1|) |has| |#1| (-172)))
(((|#1|) . T))
(((|#1|) . T))
-((((-862)) -2676 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))
-((((-409 |#2|) |#3|) . T))
-((((-409 (-566))) . T) (($) . T))
-(|has| |#1| (-38 (-409 (-566))))
+((((-863)) -2909 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1100)) (|has| |#2| (-1100)))))
+((((-410 |#2|) |#3|) . T))
+((((-410 (-567))) . T) (($) . T))
+(|has| |#1| (-38 (-410 (-567))))
(|has| |#1| (-365))
-((($ $) . T) ((#0=(-409 (-566)) #0#) . T))
-((($) . T) (((-566)) . T))
-(|has| (-409 |#2|) (-147))
-(|has| (-409 |#2|) (-145))
-((($) . T))
-((((-699)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((#0=(-566) #0#) . T))
-((($) . T) (((-409 (-566))) . T))
-(-2676 (|has| |#4| (-172)) (|has| |#4| (-726)) (|has| |#4| (-848)) (|has| |#4| (-1049)))
-(-2676 (|has| |#3| (-172)) (|has| |#3| (-726)) (|has| |#3| (-848)) (|has| |#3| (-1049)))
-((((-862)) . T) (((-1180)) . T))
-(|has| |#4| (-793))
-(-2676 (|has| |#4| (-793)) (|has| |#4| (-848)))
-(|has| |#4| (-848))
-(|has| |#3| (-793))
-((((-1180)) . T))
-(-2676 (|has| |#3| (-793)) (|has| |#3| (-848)))
-(|has| |#3| (-848))
-((((-566)) . T))
-(((|#2|) . T))
-((((-1175)) -2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))))
-((((-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175)))))
+((($ $) . T) ((#0=(-410 (-567)) #0#) . T))
+((($) . T) (((-567)) . T))
+(|has| (-410 |#2|) (-147))
+(|has| (-410 |#2|) (-145))
+((($) . T))
+((((-700)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((#0=(-567) #0#) . T))
+((($) . T) (((-410 (-567))) . T))
+(-2909 (|has| |#4| (-172)) (|has| |#4| (-727)) (|has| |#4| (-849)) (|has| |#4| (-1050)))
+(-2909 (|has| |#3| (-172)) (|has| |#3| (-727)) (|has| |#3| (-849)) (|has| |#3| (-1050)))
+((((-863)) . T) (((-1181)) . T))
+(|has| |#4| (-794))
+(-2909 (|has| |#4| (-794)) (|has| |#4| (-849)))
+(|has| |#4| (-849))
+(|has| |#3| (-794))
+((((-1181)) . T))
+(-2909 (|has| |#3| (-794)) (|has| |#3| (-849)))
+(|has| |#3| (-849))
+((((-567)) . T))
+(((|#2|) . T))
+((((-1176)) -2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176)))))
+((((-1176)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-864 |#1|)) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)))
-((((-1139 |#1| |#2|)) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)))
-(((|#2|) . T) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
-((($) . T))
-(|has| |#1| (-1022))
-(((|#2|) . T) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-((((-862)) . T))
-((((-538)) |has| |#2| (-614 (-538))) (((-892 (-566))) |has| |#2| (-614 (-892 (-566)))) (((-892 (-381))) |has| |#2| (-614 (-892 (-381)))) (((-381)) . #0=(|has| |#2| (-1022))) (((-225)) . #0#))
+((((-865 |#1|)) . T))
+((((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-1140 |#1| |#2|)) . T))
+((((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)))
+(((|#2|) . T) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
+((($) . T))
+(|has| |#1| (-1023))
+(((|#2|) . T) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+((((-863)) . T))
+((((-539)) |has| |#2| (-615 (-539))) (((-893 (-567))) |has| |#2| (-615 (-893 (-567)))) (((-893 (-381))) |has| |#2| (-615 (-893 (-381)))) (((-381)) . #0=(|has| |#2| (-1023))) (((-225)) . #0#))
((((-295 |#3|)) . T))
-((((-1175) (-52)) . T))
+((((-1176) (-52)) . T))
(((|#1|) . T))
-(|has| |#1| (-38 (-409 (-566))))
-(|has| |#1| (-38 (-409 (-566))))
-((((-862)) . T))
+(|has| |#1| (-38 (-410 (-567))))
+(|has| |#1| (-38 (-410 (-567))))
+((((-863)) . T))
(((|#2|) . T))
-((((-862)) . T))
+((((-863)) . T))
((($ $) . T))
-((((-409 |#2|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-409 (-566))) . T) (((-699)) . T) (($) . T))
-((((-1173 |#1| |#2| |#3|)) . T))
-((((-1173 |#1| |#2| |#3|)) . T) (((-1166 |#1| |#2| |#3|)) . T))
-((((-862)) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-566) |#1|) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-365)))
+((((-410 |#2|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-410 (-567))) . T) (((-700)) . T) (($) . T))
+((((-1174 |#1| |#2| |#3|)) . T))
+((((-1174 |#1| |#2| |#3|)) . T) (((-1167 |#1| |#2| |#3|)) . T))
+((((-863)) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-567) |#1|) . T))
+((((-1174 |#1| |#2| |#3|)) |has| |#1| (-365)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-365))
-(((|#3|) . T) ((|#2|) . T) (($) -2676 (|has| |#4| (-172)) (|has| |#4| (-848)) (|has| |#4| (-1049))) ((|#4|) -2676 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1049))))
-(((|#2|) . T) (($) -2676 (|has| |#3| (-172)) (|has| |#3| (-848)) (|has| |#3| (-1049))) ((|#3|) -2676 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1049))))
+(((|#3|) . T) ((|#2|) . T) (($) -2909 (|has| |#4| (-172)) (|has| |#4| (-849)) (|has| |#4| (-1050))) ((|#4|) -2909 (|has| |#4| (-172)) (|has| |#4| (-365)) (|has| |#4| (-1050))))
+(((|#2|) . T) (($) -2909 (|has| |#3| (-172)) (|has| |#3| (-849)) (|has| |#3| (-1050))) ((|#3|) -2909 (|has| |#3| (-172)) (|has| |#3| (-365)) (|has| |#3| (-1050))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-365))
((((-116 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) (((-566)) |has| |#2| (-1038 (-566))) ((|#2|) . T) (((-864 |#1|)) . T))
-((((-1175)) . T) ((|#1|) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-((((-187)) . T) (((-862)) . T))
-((((-862)) . T))
+((((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) (((-567)) |has| |#2| (-1039 (-567))) ((|#2|) . T) (((-865 |#1|)) . T))
+((((-1176)) . T) ((|#1|) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+((((-187)) . T) (((-863)) . T))
+((((-863)) . T))
(((|#1|) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-((((-129)) . T) (((-862)) . T))
-((((-566) |#1|) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+((((-129)) . T) (((-863)) . T))
+((((-567) |#1|) . T))
((((-129)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-454)) (|has| |#1| (-909)))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-((((-862)) . T))
-((((-862)) . T))
-((((-862)) . T))
-(((|#1| (-533 |#2|)) . T))
-((((-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) . T))
-((((-566) (-129)) . T))
-(((|#1| (-566)) . T))
-(((|#1| (-409 (-566))) . T))
-(((|#1| (-771)) . T))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-116 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-((((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-(-2676 (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909)))
-(-2676 (|has| |#1| (-454)) (|has| |#1| (-558)) (|has| |#1| (-909)))
-((($) . T))
-(((|#2| (-533 (-864 |#1|))) . T))
-((((-1180)) . T))
-((((-1180)) . T))
-((((-566) |#1|) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-(((|#2|) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-862)) . T) (((-1180)) . T))
-((((-1180)) . T))
-((((-862)) -2676 (|has| |#1| (-613 (-862))) (|has| |#1| (-1099))))
-(((|#1|) . T))
-(((|#2| (-771)) . T))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-455)) (|has| |#1| (-910)))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+((((-863)) . T))
+((((-863)) . T))
+((((-863)) . T))
+(((|#1| (-534 |#2|)) . T))
+((((-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) . T))
+((((-567) (-129)) . T))
+(((|#1| (-567)) . T))
+(((|#1| (-410 (-567))) . T))
+(((|#1| (-772)) . T))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-116 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+((((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+(-2909 (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910)))
+(-2909 (|has| |#1| (-455)) (|has| |#1| (-559)) (|has| |#1| (-910)))
+((($) . T))
+(((|#2| (-534 (-865 |#1|))) . T))
+((((-1181)) . T))
+((((-1181)) . T))
+((((-567) |#1|) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+(((|#2|) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-863)) . T) (((-1181)) . T))
+((((-1181)) . T))
+((((-863)) -2909 (|has| |#1| (-614 (-863))) (|has| |#1| (-1100))))
+(((|#1|) . T))
+(((|#2| (-772)) . T))
(((|#1| |#2|) . T))
-((((-1157) |#1|) . T))
-((((-409 |#2|)) . T))
-((((-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T))
-(|has| |#1| (-558))
-(|has| |#1| (-558))
+((((-1158) |#1|) . T))
+((((-410 |#2|)) . T))
+((((-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T))
+(|has| |#1| (-559))
+(|has| |#1| (-559))
((($) . T) ((|#2|) . T))
-((($) . T) (((-409 (-566))) . T))
-((((-409 (-566))) . T) (($) . T))
+((($) . T) (((-410 (-567))) . T))
+((((-410 (-567))) . T) (($) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-566)) . T) (($) . T))
+((((-567)) . T) (($) . T))
(((|#2| $) |has| |#2| (-287 |#2| |#2|)))
-(((|#1| (-644 |#1|)) |has| |#1| (-848)))
-(-2676 (|has| |#1| (-233)) (|has| |#1| (-351)))
-(-2676 (|has| |#1| (-365)) (|has| |#1| (-351)))
-((((-1261 |#1|)) . T) (((-566)) . T) ((|#2|) . T) (((-409 (-566))) |has| |#2| (-1038 (-409 (-566)))))
-(|has| |#1| (-1099))
-(((|#1|) . T))
-((((-1261 |#1|)) . T) (((-566)) . T) (($) -2676 (|has| |#2| (-365)) (|has| |#2| (-454)) (|has| |#2| (-558)) (|has| |#2| (-909))) (((-1081)) . T) ((|#2|) . T) (((-409 (-566))) -2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))))
-((((-409 (-566))) . T) (($) . T))
-((((-999 |#1|)) . T) ((|#1|) . T) (((-566)) -2676 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566)))) (((-409 (-566))) -2676 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))
-((((-910 |#1|)) . T) (((-409 (-566))) . T) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-1175)) |has| |#1| (-900 (-1175))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-((((-910 |#1|)) . T) (($) . T) (((-409 (-566))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))
-(((|#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
-(((|#1|) . T))
-(((|#1|) . T) (((-409 (-566))) . T) (((-566)) . T) (($) . T))
+(((|#1| (-645 |#1|)) |has| |#1| (-849)))
+(-2909 (|has| |#1| (-233)) (|has| |#1| (-351)))
+(-2909 (|has| |#1| (-365)) (|has| |#1| (-351)))
+((((-1262 |#1|)) . T) (((-567)) . T) ((|#2|) . T) (((-410 (-567))) |has| |#2| (-1039 (-410 (-567)))))
+(|has| |#1| (-1100))
+(((|#1|) . T))
+((((-1262 |#1|)) . T) (((-567)) . T) (($) -2909 (|has| |#2| (-365)) (|has| |#2| (-455)) (|has| |#2| (-559)) (|has| |#2| (-910))) (((-1082)) . T) ((|#2|) . T) (((-410 (-567))) -2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))))
+((((-410 (-567))) . T) (($) . T))
+((((-1000 |#1|)) . T) ((|#1|) . T) (((-567)) -2909 (|has| (-1000 |#1|) (-1039 (-567))) (|has| |#1| (-1039 (-567)))) (((-410 (-567))) -2909 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))
+((((-911 |#1|)) . T) (((-410 (-567))) . T) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-1176)) |has| |#1| (-901 (-1176))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+((((-911 |#1|)) . T) (($) . T) (((-410 (-567))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))
+(((|#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
+(((|#1|) . T))
+(((|#1|) . T) (((-410 (-567))) . T) (((-567)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1139 |#1| |#2|) #0#) |has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))))
+(((#0=(-1140 |#1| |#2|) #0#) |has| (-1140 |#1| |#2|) (-310 (-1140 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((#0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) #0#) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((#0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) #0#) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))))
(((#0=(-116 |#1|)) |has| #0# (-310 #0#)))
((($ $) . T))
-(-2676 (|has| |#1| (-850)) (|has| |#1| (-1099)))
-((($ $) . T) ((#0=(-864 |#1|) $) . T) ((#0# |#2|) . T))
+(-2909 (|has| |#1| (-851)) (|has| |#1| (-1100)))
+((($ $) . T) ((#0=(-865 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-480 . -1099) T) ((-265 . -516) 187938) ((-247 . -516) 187881) ((-245 . -1099) 187831) ((-573 . -111) 187816) ((-533 . -23) T) ((-137 . -1099) T) ((-133 . -1099) T) ((-117 . -310) 187773) ((-138 . -1099) T) ((-481 . -516) 187565) ((-677 . -616) 187549) ((-694 . -102) T) ((-1140 . -516) 187468) ((-392 . -131) T) ((-1278 . -976) 187437) ((-1024 . -1051) 187374) ((-31 . -93) T) ((-602 . -491) 187358) ((-1024 . -640) 187295) ((-621 . -131) T) ((-819 . -846) T) ((-525 . -57) 187245) ((-521 . -516) 187178) ((-356 . -1051) 187123) ((-59 . -516) 187056) ((-518 . -516) 186989) ((-420 . -900) 186948) ((-169 . -1049) T) ((-499 . -516) 186881) ((-498 . -516) 186814) ((-356 . -640) 186759) ((-799 . -1038) 186542) ((-699 . -38) 186507) ((-1238 . -616) 186255) ((-345 . -351) T) ((-1093 . -1092) 186239) ((-1093 . -1099) 186217) ((-855 . -616) 186114) ((-169 . -243) 186065) ((-169 . -233) 186016) ((-1093 . -1094) 185974) ((-872 . -287) 185932) ((-225 . -795) T) ((-225 . -792) T) ((-694 . -285) NIL) ((-573 . -616) 185904) ((-1149 . -1191) 185883) ((-409 . -992) 185867) ((-48 . -1051) 185832) ((-701 . -21) T) ((-701 . -25) T) ((-48 . -640) 185797) ((-1280 . -648) 185771) ((-317 . -160) 185750) ((-317 . -143) 185729) ((-1149 . -107) 185679) ((-116 . -21) T) ((-40 . -231) 185656) ((-134 . -25) T) ((-116 . -25) T) ((-608 . -289) 185632) ((-477 . -289) 185611) ((-1238 . -327) 185588) ((-1238 . -1049) T) ((-855 . -1049) T) ((-799 . -340) 185572) ((-139 . -185) T) ((-117 . -1150) NIL) ((-91 . -613) 185504) ((-479 . -131) T) ((-1238 . -233) T) ((-1095 . -492) 185485) ((-1095 . -613) 185451) ((-1089 . -492) 185432) ((-1089 . -613) 185398) ((-594 . -1215) T) ((-1072 . -492) 185379) ((-573 . -1049) T) ((-1072 . -613) 185345) ((-662 . -717) 185329) ((-1065 . -492) 185310) ((-1065 . -613) 185276) ((-958 . -289) 185253) ((-60 . -34) T) ((-1061 . -795) T) ((-1061 . -792) T) ((-1036 . -492) 185234) ((-1019 . -492) 185215) ((-816 . -726) T) ((-731 . -47) 185180) ((-623 . -38) 185167) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185098) ((-247 . -291) 185029) ((-1036 . -613) 184995) ((-1024 . -102) T) ((-1019 . -613) 184961) ((-626 . -492) 184942) ((-415 . -726) T) ((-117 . -38) 184887) ((-485 . -492) 184868) ((-626 . -613) 184834) ((-415 . -475) T) ((-218 . -492) 184815) ((-485 . -613) 184781) ((-356 . -102) T) ((-218 . -613) 184747) ((-1209 . -1057) T) ((-345 . -646) 184677) ((-711 . -1057) T) ((-1173 . -47) 184654) ((-1172 . -47) 184624) ((-1166 . -47) 184601) ((-128 . -289) 184576) ((-1035 . -151) 184522) ((-910 . -291) T) ((-1125 . -47) 184494) ((-694 . -310) NIL) ((-517 . -613) 184476) ((-512 . -613) 184458) ((-510 . -613) 184440) ((-328 . -1099) 184390) ((-712 . -454) 184321) ((-48 . -102) T) ((-1249 . -287) 184306) ((-1228 . -287) 184226) ((-644 . -666) 184210) ((-644 . -651) 184194) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-644 . -375) 184178) ((-605 . -492) 184160) ((-602 . -287) 184137) ((-605 . -613) 184104) ((-390 . -102) T) ((-1119 . -143) T) ((-126 . -613) 184036) ((-874 . -1099) T) ((-658 . -413) 184020) ((-714 . -613) 184002) ((-249 . -613) 183969) ((-187 . -613) 183951) ((-162 . -613) 183933) ((-157 . -613) 183915) ((-1280 . -726) T) ((-1101 . -34) T) ((-871 . -795) NIL) ((-871 . -792) NIL) ((-858 . -850) T) ((-731 . -886) NIL) ((-1289 . -131) T) ((-383 . -131) T) ((-892 . -616) 183883) ((-904 . -102) T) ((-731 . -1038) 183759) ((-533 . -131) T) ((-1086 . -413) 183743) ((-1000 . -491) 183727) ((-117 . -402) 183704) ((-1166 . -1215) 183683) ((-782 . -413) 183667) ((-780 . -413) 183651) ((-943 . -34) T) ((-694 . -1150) NIL) ((-252 . -648) 183486) ((-251 . -648) 183308) ((-817 . -920) 183287) ((-456 . -413) 183271) ((-602 . -19) 183255) ((-1145 . -1208) 183224) ((-1166 . -886) NIL) ((-1166 . -884) 183176) ((-602 . -604) 183153) ((-1201 . -613) 183085) ((-1174 . -613) 183067) ((-62 . -397) T) ((-1172 . -1038) 183002) ((-1166 . -1038) 182968) ((-694 . -38) 182918) ((-40 . -646) 182848) ((-476 . -287) 182833) ((-1221 . -613) 182815) ((-731 . -379) 182799) ((-838 . -613) 182781) ((-658 . -1057) T) ((-1249 . -1002) 182747) ((-1228 . -1002) 182713) ((-1087 . -616) 182697) ((-1062 . -1191) 182672) ((-1075 . -616) 182649) ((-872 . -614) 182456) ((-872 . -613) 182438) ((-1188 . -491) 182375) ((-420 . -1022) 182353) ((-48 . -310) 182340) ((-1062 . -107) 182286) ((-481 . -491) 182223) ((-522 . -1215) T) ((-1166 . -340) 182175) ((-1140 . -491) 182146) ((-1166 . -379) 182098) ((-1086 . -1057) T) ((-439 . -102) T) ((-183 . -1099) T) ((-252 . -34) T) ((-251 . -34) T) ((-782 . -1057) T) ((-780 . -1057) T) ((-731 . -900) 182075) ((-456 . -1057) T) ((-59 . -491) 182059) ((-1034 . -1056) 182033) ((-521 . -491) 182017) ((-518 . -491) 182001) ((-499 . -491) 181985) ((-498 . -491) 181969) ((-245 . -516) 181902) ((-1034 . -111) 181869) ((-1173 . -900) 181782) ((-1172 . -900) 181688) ((-1166 . -900) 181521) ((-1125 . -900) 181505) ((-670 . -1111) T) ((-356 . -1150) T) ((-645 . -93) T) ((-323 . -1056) 181487) ((-252 . -791) 181466) ((-252 . -794) 181417) ((-31 . -492) 181398) ((-252 . -793) 181377) ((-251 . -791) 181356) ((-251 . -794) 181307) ((-251 . -793) 181286) ((-31 . -613) 181252) ((-50 . -1057) T) ((-252 . -726) 181162) ((-251 . -726) 181072) ((-1209 . -1099) T) ((-670 . -23) T) ((-583 . -1057) T) ((-520 . -1057) T) ((-381 . -1056) 181037) ((-323 . -111) 181012) ((-73 . -385) T) ((-73 . -397) T) ((-1024 . -38) 180949) ((-694 . -402) 180931) ((-99 . -102) T) ((-711 . -1099) T) ((-1293 . -1051) 180918) ((-1003 . -145) 180890) ((-1003 . -147) 180862) ((-870 . -646) 180834) ((-381 . -111) 180790) ((-320 . -1219) 180769) ((-476 . -1002) 180735) ((-356 . -38) 180700) ((-40 . -372) 180672) ((-873 . -613) 180544) ((-127 . -125) 180528) ((-121 . -125) 180512) ((-836 . -1056) 180482) ((-833 . -21) 180434) ((-827 . -1056) 180418) ((-833 . -25) 180370) ((-320 . -558) 180321) ((-519 . -616) 180302) ((-566 . -828) T) ((-240 . -1215) T) ((-1034 . -616) 180271) ((-836 . -111) 180236) ((-827 . -111) 180215) ((-1249 . -613) 180197) ((-1228 . -613) 180179) ((-1228 . -614) 179850) ((-1171 . -909) 179829) ((-1124 . -909) 179808) ((-48 . -38) 179773) ((-1287 . -1111) T) ((-602 . -613) 179685) ((-602 . -614) 179646) ((-1285 . -1111) T) ((-363 . -616) 179630) ((-323 . -616) 179614) ((-240 . -1038) 179441) ((-1171 . -648) 179366) ((-1124 . -648) 179291) ((-854 . -648) 179265) ((-718 . -613) 179247) ((-548 . -370) T) ((-1287 . -23) T) ((-1285 . -23) T) ((-493 . -1099) T) ((-381 . -616) 179197) ((-381 . -618) 179179) ((-1034 . -1049) T) ((-865 . -102) T) ((-1188 . -287) 179158) ((-169 . -370) 179109) ((-1004 . -1215) T) ((-836 . -616) 179063) ((-827 . -616) 179018) ((-44 . -23) T) ((-481 . -287) 178997) ((-587 . -1099) T) ((-1145 . -1108) 178966) ((-1103 . -1102) 178918) ((-392 . -21) T) ((-392 . -25) T) ((-152 . -1111) T) ((-1293 . -102) T) ((-1004 . -884) 178900) ((-1004 . -886) 178882) ((-1209 . -717) 178779) ((-623 . -231) 178763) ((-621 . -21) T) ((-290 . -558) T) ((-621 . -25) T) ((-1195 . -1099) T) ((-711 . -717) 178728) ((-240 . -379) 178697) ((-1004 . -1038) 178657) ((-381 . -1049) T) ((-223 . -1057) T) ((-117 . -231) 178634) ((-59 . -287) 178611) ((-152 . -23) T) ((-518 . -287) 178588) ((-328 . -516) 178521) ((-498 . -287) 178498) ((-381 . -243) T) ((-381 . -233) T) ((-836 . -1049) T) ((-827 . -1049) T) ((-712 . -949) 178467) ((-701 . -850) T) ((-476 . -613) 178449) ((-1251 . -1051) 178354) ((-582 . -646) 178326) ((-566 . -646) 178298) ((-497 . -646) 178248) ((-827 . -233) 178227) ((-134 . -850) T) ((-1251 . -640) 178119) ((-658 . -1099) T) ((-1188 . -604) 178098) ((-552 . -1191) 178077) ((-338 . -1099) T) ((-320 . -365) 178056) ((-409 . -147) 178035) ((-409 . -145) 178014) ((-964 . -1111) 177913) ((-240 . -900) 177845) ((-815 . -1111) 177755) ((-654 . -852) 177739) ((-481 . -604) 177718) ((-552 . -107) 177668) ((-1004 . -379) 177650) ((-1004 . -340) 177632) ((-97 . -1099) T) ((-964 . -23) 177443) ((-479 . -21) T) ((-479 . -25) T) ((-815 . -23) 177313) ((-1175 . -613) 177295) ((-59 . -19) 177279) ((-1175 . -614) 177201) ((-1171 . -726) T) ((-1124 . -726) T) ((-518 . -19) 177185) ((-498 . -19) 177169) ((-59 . -604) 177146) ((-1086 . -1099) T) ((-901 . -102) 177124) ((-854 . -726) T) ((-782 . -1099) T) ((-518 . -604) 177101) ((-498 . -604) 177078) ((-780 . -1099) T) ((-780 . -1064) 177045) ((-463 . -1099) T) ((-456 . -1099) T) ((-587 . -717) 177020) ((-649 . -1099) T) ((-1257 . -47) 176997) ((-1251 . -102) T) ((-1250 . -47) 176967) ((-1229 . -47) 176944) ((-1209 . -172) 176895) ((-1172 . -308) 176874) ((-1166 . -308) 176853) ((-1095 . -616) 176834) ((-1089 . -616) 176815) ((-1079 . -558) 176766) ((-1004 . -900) NIL) ((-1079 . -1219) 176717) ((-670 . -131) T) ((-627 . -1111) T) ((-1072 . -616) 176698) ((-1065 . -616) 176679) ((-1036 . -616) 176660) ((-1019 . -616) 176641) ((-699 . -646) 176591) ((-276 . -1099) T) ((-85 . -443) T) ((-85 . -397) T) ((-714 . -1056) 176561) ((-711 . -172) T) ((-50 . -1099) T) ((-596 . -47) 176538) ((-225 . -648) 176503) ((-583 . -1099) T) ((-520 . -1099) T) ((-489 . -820) T) ((-489 . -920) T) ((-361 . -1219) T) ((-355 . -1219) T) ((-347 . -1219) T) ((-320 . -1111) T) ((-317 . -1051) 176413) ((-314 . -1051) 176342) ((-108 . -1219) T) ((-626 . -616) 176323) ((-361 . -558) T) ((-217 . -920) T) ((-217 . -820) T) ((-317 . -640) 176233) ((-314 . -640) 176162) ((-355 . -558) T) ((-347 . -558) T) ((-485 . -616) 176143) ((-108 . -558) T) ((-658 . -717) 176113) ((-1166 . -1022) NIL) ((-218 . -616) 176094) ((-320 . -23) T) ((-67 . -1215) T) ((-1000 . -613) 176026) ((-694 . -231) 176008) ((-714 . -111) 175973) ((-644 . -34) T) ((-245 . -491) 175957) ((-1101 . -1097) 175941) ((-171 . -1099) T) ((-952 . -909) 175920) ((-1293 . -1150) T) ((-1289 . -21) T) ((-517 . -616) 175904) ((-1289 . -25) T) ((-1287 . -131) T) ((-1285 . -131) T) ((-483 . -909) 175883) ((-1278 . -102) T) ((-1261 . -613) 175849) ((-1250 . -1038) 175784) ((-1229 . -1215) 175763) ((-1229 . -886) NIL) ((-1229 . -884) 175715) ((-1086 . -717) 175564) ((-1061 . -648) 175551) ((-952 . -648) 175476) ((-782 . -717) 175305) ((-538 . -613) 175287) ((-538 . -614) 175268) ((-780 . -717) 175117) ((-1076 . -102) T) ((-383 . -25) T) ((-623 . -646) 175089) ((-383 . -21) T) ((-483 . -648) 175014) ((-463 . -717) 174985) ((-456 . -717) 174834) ((-987 . -102) T) ((-1229 . -1038) 174800) ((-1188 . -614) NIL) ((-1188 . -613) 174782) ((-737 . -102) T) ((-117 . -646) 174712) ((-605 . -616) 174694) ((-1141 . -1122) 174639) ((-1046 . -1208) 174568) ((-533 . -25) T) ((-901 . -310) 174506) ((-714 . -616) 174460) ((-681 . -93) T) ((-645 . -492) 174441) ((-141 . -102) T) ((-44 . -131) T) ((-676 . -93) T) ((-664 . -613) 174423) ((-345 . -1057) T) ((-290 . -1111) T) ((-645 . -613) 174376) ((-480 . -93) T) ((-357 . -613) 174358) ((-354 . -613) 174340) ((-346 . -613) 174322) ((-265 . -614) 174070) ((-265 . -613) 174052) ((-247 . -613) 174034) ((-247 . -614) 173895) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1209 . -516) 173862) ((-1140 . -613) 173844) ((-1119 . -640) 173831) ((-819 . -857) T) ((-819 . -726) T) ((-602 . -289) 173808) ((-583 . -717) 173773) ((-481 . -614) NIL) ((-481 . -613) 173755) ((-520 . -717) 173700) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1119 . -1051) 173687) ((-910 . -613) 173669) ((-388 . -726) T) ((-872 . -1056) 173621) ((-910 . -614) 173603) ((-872 . -111) 173541) ((-714 . -1049) T) ((-712 . -1241) 173525) ((-694 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-521 . -613) 173457) ((-381 . -795) T) ((-223 . -1099) T) ((-381 . -792) T) ((-225 . -794) T) ((-225 . -791) T) ((-59 . -614) 173418) ((-59 . -613) 173330) ((-225 . -726) T) ((-518 . -614) 173291) ((-518 . -613) 173203) ((-499 . -613) 173135) ((-498 . -614) 173096) ((-498 . -613) 173008) ((-1079 . -365) 172959) ((-40 . -413) 172936) ((-77 . -1215) T) ((-871 . -909) NIL) ((-361 . -330) 172920) ((-361 . -365) T) ((-355 . -330) 172904) ((-355 . -365) T) ((-347 . -330) 172888) ((-347 . -365) T) ((-317 . -285) 172867) ((-108 . -365) T) ((-70 . -1215) T) ((-1229 . -340) 172819) ((-871 . -648) 172764) ((-1229 . -379) 172716) ((-964 . -131) 172571) ((-815 . -131) 172441) ((-958 . -651) 172425) ((-1086 . -172) 172336) ((-958 . -375) 172320) ((-1061 . -794) T) ((-1061 . -791) T) ((-872 . -616) 172218) ((-782 . -172) 172109) ((-780 . -172) 172020) ((-816 . -47) 171982) ((-1061 . -726) T) ((-328 . -491) 171966) ((-952 . -726) T) ((-456 . -172) 171877) ((-245 . -287) 171854) ((-1278 . -310) 171792) ((-1257 . -900) 171705) ((-1250 . -900) 171611) ((-483 . -726) T) ((-1249 . -1056) 171446) ((-1229 . -900) 171279) ((-1228 . -1056) 171087) ((-1209 . -291) 171066) ((-1185 . -1215) T) ((-1182 . -370) T) ((-1181 . -370) T) ((-1145 . -151) 171050) ((-1119 . -102) T) ((-1117 . -1099) T) ((-1079 . -23) T) ((-1079 . -1111) T) ((-1074 . -102) T) ((-927 . -955) T) ((-737 . -310) 170988) ((-75 . -1215) T) ((-664 . -384) 170960) ((-169 . -909) 170913) ((-30 . -955) T) ((-112 . -844) T) ((-1 . -613) 170895) ((-1003 . -411) 170867) ((-128 . -651) 170849) ((-50 . -620) 170833) ((-694 . -646) 170768) ((-596 . -900) 170681) ((-440 . -102) T) ((-128 . -375) 170663) ((-141 . -310) NIL) ((-872 . -1049) T) ((-833 . -850) 170642) ((-81 . -1215) T) ((-711 . -291) T) ((-40 . -1057) T) ((-583 . -172) T) ((-520 . -172) T) ((-513 . -613) 170624) ((-169 . -648) 170534) ((-509 . -613) 170516) ((-353 . -147) 170498) ((-353 . -145) T) ((-361 . -1111) T) ((-355 . -1111) T) ((-347 . -1111) T) ((-1004 . -308) T) ((-914 . -308) T) ((-872 . -243) T) ((-108 . -1111) T) ((-872 . -233) 170477) ((-1249 . -111) 170298) ((-1228 . -111) 170087) ((-245 . -1253) 170071) ((-566 . -848) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170058) ((-314 . -310) 169999) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1004 . -1022) T) ((-31 . -616) 169980) ((-108 . -23) T) ((-654 . -1051) 169964) ((-245 . -604) 169941) ((-334 . -1099) T) ((-654 . -640) 169911) ((-1251 . -38) 169803) ((-1238 . -909) 169782) ((-112 . -1099) T) ((-1035 . -102) T) ((-1238 . -648) 169707) ((-871 . -794) NIL) ((-855 . -648) 169681) ((-871 . -791) NIL) ((-816 . -886) NIL) ((-871 . -726) T) ((-1086 . -516) 169554) ((-782 . -516) 169501) ((-780 . -516) 169453) ((-573 . -648) 169440) ((-816 . -1038) 169268) ((-456 . -516) 169211) ((-390 . -391) T) ((-1249 . -616) 169024) ((-1228 . -616) 168772) ((-60 . -1215) T) ((-621 . -850) 168751) ((-502 . -661) T) ((-1145 . -976) 168720) ((-1024 . -646) 168657) ((-1003 . -454) T) ((-699 . -848) T) ((-512 . -792) T) ((-476 . -1056) 168492) ((-345 . -1099) T) ((-314 . -1150) NIL) ((-290 . -131) T) ((-396 . -1099) T) ((-870 . -1057) T) ((-694 . -372) 168459) ((-356 . -646) 168389) ((-223 . -620) 168366) ((-328 . -287) 168343) ((-476 . -111) 168164) ((-1249 . -1049) T) ((-1228 . -1049) T) ((-816 . -379) 168148) ((-169 . -726) T) ((-654 . -102) T) ((-1249 . -243) 168127) ((-1249 . -233) 168079) ((-1228 . -233) 167984) ((-1228 . -243) 167963) ((-1003 . -404) NIL) ((-670 . -639) 167911) ((-317 . -38) 167821) ((-314 . -38) 167750) ((-69 . -613) 167732) ((-320 . -495) 167698) ((-48 . -646) 167648) ((-1188 . -289) 167627) ((-1223 . -850) T) ((-1112 . -1111) 167537) ((-83 . -1215) T) ((-61 . -613) 167519) ((-481 . -289) 167498) ((-1280 . -1038) 167475) ((-1163 . -1099) T) ((-1112 . -23) 167345) ((-816 . -900) 167281) ((-1238 . -726) T) ((-1101 . -1215) T) ((-476 . -616) 167107) ((-1086 . -291) 167038) ((-966 . -1099) T) ((-893 . -102) T) ((-782 . -291) 166949) ((-328 . -19) 166933) ((-59 . -289) 166910) ((-780 . -291) 166841) ((-855 . -726) T) ((-117 . -848) NIL) ((-518 . -289) 166818) ((-328 . -604) 166795) ((-498 . -289) 166772) ((-456 . -291) 166703) ((-1035 . -310) 166554) ((-681 . -492) 166535) ((-573 . -726) T) ((-676 . -492) 166516) ((-681 . -613) 166466) ((-676 . -613) 166432) ((-662 . -613) 166414) ((-480 . -492) 166395) ((-480 . -613) 166361) ((-245 . -614) 166322) ((-245 . -492) 166299) ((-138 . -492) 166280) ((-137 . -492) 166261) ((-133 . -492) 166242) ((-245 . -613) 166134) ((-213 . -102) T) ((-138 . -613) 166100) ((-137 . -613) 166066) ((-133 . -613) 166032) ((-1146 . -34) T) ((-943 . -1215) T) ((-345 . -717) 165977) ((-670 . -25) T) ((-670 . -21) T) ((-1175 . -616) 165958) ((-476 . -1049) T) ((-635 . -419) 165923) ((-607 . -419) 165888) ((-1119 . -1150) T) ((-712 . -1051) 165711) ((-583 . -291) T) ((-520 . -291) T) ((-1250 . -308) 165690) ((-476 . -233) 165642) ((-476 . -243) 165621) ((-1229 . -308) 165600) ((-712 . -640) 165429) ((-1229 . -1022) NIL) ((-1079 . -131) T) ((-872 . -795) 165408) ((-144 . -102) T) ((-40 . -1099) T) ((-872 . -792) 165387) ((-644 . -1010) 165371) ((-582 . -1057) T) ((-566 . -1057) T) ((-497 . -1057) T) ((-409 . -454) T) ((-361 . -131) T) ((-317 . -402) 165355) ((-314 . -402) 165316) ((-355 . -131) T) ((-347 . -131) T) ((-1180 . -1099) T) ((-1119 . -38) 165303) ((-1093 . -613) 165270) ((-108 . -131) T) ((-954 . -1099) T) ((-921 . -1099) T) ((-771 . -1099) T) ((-672 . -1099) T) ((-701 . -147) T) ((-116 . -147) T) ((-1287 . -21) T) ((-1287 . -25) T) ((-1285 . -21) T) ((-1285 . -25) T) ((-664 . -1056) 165254) ((-533 . -850) T) ((-502 . -850) T) ((-357 . -1056) 165206) ((-354 . -1056) 165158) ((-346 . -1056) 165110) ((-252 . -1215) T) ((-251 . -1215) T) ((-265 . -1056) 164953) ((-247 . -1056) 164796) ((-664 . -111) 164775) ((-549 . -844) T) ((-357 . -111) 164713) ((-354 . -111) 164651) ((-346 . -111) 164589) ((-265 . -111) 164418) ((-247 . -111) 164247) ((-817 . -1219) 164226) ((-623 . -413) 164210) ((-44 . -21) T) ((-44 . -25) T) ((-815 . -639) 164116) ((-817 . -558) 164095) ((-252 . -1038) 163922) ((-251 . -1038) 163749) ((-126 . -119) 163733) ((-910 . -1056) 163698) ((-712 . -102) T) ((-699 . -1057) T) ((-538 . -618) 163601) ((-345 . -172) T) ((-88 . -613) 163583) ((-152 . -21) T) ((-152 . -25) T) ((-910 . -111) 163539) ((-40 . -717) 163484) ((-870 . -1099) T) ((-664 . -616) 163461) ((-645 . -616) 163442) ((-357 . -616) 163379) ((-354 . -616) 163316) ((-549 . -1099) T) ((-346 . -616) 163253) ((-328 . -614) 163214) ((-328 . -613) 163126) ((-265 . -616) 162879) ((-247 . -616) 162664) ((-1228 . -792) 162617) ((-1228 . -795) 162570) ((-252 . -379) 162539) ((-251 . -379) 162508) ((-654 . -38) 162478) ((-608 . -34) T) ((-484 . -1111) 162388) ((-477 . -34) T) ((-1112 . -131) 162258) ((-964 . -25) 162069) ((-910 . -616) 162019) ((-874 . -613) 162001) ((-964 . -21) 161956) ((-815 . -21) 161866) ((-815 . -25) 161717) ((-1221 . -370) T) ((-623 . -1057) T) ((-1177 . -558) 161696) ((-1171 . -47) 161673) ((-357 . -1049) T) ((-354 . -1049) T) ((-484 . -23) 161543) ((-346 . -1049) T) ((-265 . -1049) T) ((-247 . -1049) T) ((-1124 . -47) 161515) ((-117 . -1057) T) ((-1034 . -648) 161489) ((-958 . -34) T) ((-357 . -233) 161468) ((-357 . -243) T) ((-354 . -233) 161447) ((-354 . -243) T) ((-346 . -233) 161426) ((-346 . -243) T) ((-265 . -327) 161398) ((-247 . -327) 161355) ((-265 . -233) 161334) ((-1155 . -151) 161318) ((-252 . -900) 161250) ((-251 . -900) 161182) ((-1081 . -850) T) ((-416 . -1111) T) ((-1054 . -23) T) ((-910 . -1049) T) ((-323 . -648) 161164) ((-1024 . -848) T) ((-1209 . -1002) 161130) ((-1172 . -920) 161109) ((-1166 . -920) 161088) ((-1166 . -820) NIL) ((-999 . -1051) 160984) ((-910 . -243) T) ((-817 . -365) 160963) ((-387 . -23) T) ((-127 . -1099) 160941) ((-121 . -1099) 160919) ((-910 . -233) T) ((-128 . -34) T) ((-381 . -648) 160884) ((-999 . -640) 160832) ((-870 . -717) 160819) ((-1293 . -646) 160791) ((-1046 . -151) 160756) ((-40 . -172) T) ((-694 . -413) 160738) ((-712 . -310) 160725) ((-836 . -648) 160685) ((-827 . -648) 160659) ((-320 . -25) T) ((-320 . -21) T) ((-658 . -287) 160638) ((-582 . -1099) T) ((-566 . -1099) T) ((-497 . -1099) T) ((-245 . -289) 160615) ((-314 . -231) 160576) ((-1171 . -886) NIL) ((-55 . -1099) T) ((-1124 . -886) 160435) ((-129 . -850) T) ((-1171 . -1038) 160315) ((-1124 . -1038) 160198) ((-183 . -613) 160180) ((-854 . -1038) 160076) ((-782 . -287) 160003) ((-817 . -1111) T) ((-1034 . -726) T) ((-602 . -651) 159987) ((-1046 . -976) 159916) ((-999 . -102) T) ((-817 . -23) T) ((-712 . -1150) 159894) ((-694 . -1057) T) ((-602 . -375) 159878) ((-353 . -454) T) ((-345 . -291) T) ((-1266 . -1099) T) ((-248 . -1099) T) ((-401 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -726) T) ((-710 . -1099) T) ((-699 . -1099) T) ((-363 . -475) T) ((-1209 . -613) 159860) ((-1171 . -379) 159844) ((-1124 . -379) 159828) ((-1024 . -413) 159790) ((-141 . -229) 159772) ((-381 . -794) T) ((-381 . -791) T) ((-870 . -172) T) ((-381 . -726) T) ((-711 . -613) 159754) ((-712 . -38) 159583) ((-1265 . -1263) 159567) ((-353 . -404) T) ((-1265 . -1099) 159517) ((-582 . -717) 159504) ((-566 . -717) 159491) ((-497 . -717) 159456) ((-1251 . -646) 159346) ((-317 . -629) 159325) ((-836 . -726) T) ((-827 . -726) T) ((-644 . -1215) T) ((-1079 . -639) 159273) ((-1171 . -900) 159216) ((-1124 . -900) 159200) ((-662 . -1056) 159184) ((-108 . -639) 159166) ((-484 . -131) 159036) ((-1177 . -1111) T) ((-952 . -47) 159005) ((-623 . -1099) T) ((-662 . -111) 158984) ((-493 . -613) 158950) ((-328 . -289) 158927) ((-483 . -47) 158884) ((-1177 . -23) T) ((-117 . -1099) T) ((-103 . -102) 158862) ((-1277 . -1111) T) ((-550 . -850) T) ((-1054 . -131) T) ((-1024 . -1057) T) ((-819 . -1038) 158846) ((-1003 . -724) 158818) ((-1277 . -23) T) ((-699 . -717) 158783) ((-587 . -613) 158765) ((-388 . -1038) 158749) ((-356 . -1057) T) ((-387 . -131) T) ((-325 . -1038) 158733) ((-1195 . -613) 158715) ((-1119 . -828) T) ((-225 . -886) 158697) ((-1004 . -920) T) ((-91 . -34) T) ((-1004 . -820) T) ((-914 . -920) T) ((-1104 . -1099) T) ((-1079 . -21) T) ((-489 . -1219) T) ((-1079 . -25) T) ((-999 . -310) 158662) ((-714 . -648) 158622) ((-217 . -1219) T) ((-681 . -616) 158603) ((-225 . -1038) 158563) ((-40 . -291) T) ((-676 . -616) 158544) ((-489 . -558) T) ((-480 . -616) 158525) ((-317 . -646) 158209) ((-314 . -646) 158123) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -558) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -616) 158100) ((-138 . -616) 158081) ((-137 . -616) 158062) ((-133 . -616) 158043) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1057) T) ((-582 . -172) T) ((-566 . -172) T) ((-497 . -172) T) ((-658 . -613) 158025) ((-737 . -736) 158009) ((-338 . -613) 157991) ((-68 . -385) T) ((-68 . -397) T) ((-1101 . -107) 157975) ((-1061 . -886) 157957) ((-952 . -886) 157882) ((-653 . -1111) T) ((-623 . -717) 157869) ((-483 . -886) NIL) ((-1145 . -102) T) ((-1093 . -618) 157853) ((-1061 . -1038) 157835) ((-97 . -613) 157817) ((-479 . -147) T) ((-952 . -1038) 157697) ((-117 . -717) 157642) ((-653 . -23) T) ((-483 . -1038) 157518) ((-1086 . -614) NIL) ((-1086 . -613) 157500) ((-782 . -614) NIL) ((-782 . -613) 157461) ((-780 . -614) 157095) ((-780 . -613) 157009) ((-1112 . -639) 156915) ((-463 . -613) 156897) ((-456 . -613) 156879) ((-456 . -614) 156740) ((-1035 . -229) 156686) ((-872 . -909) 156665) ((-126 . -34) T) ((-817 . -131) T) ((-649 . -613) 156647) ((-580 . -102) T) ((-357 . -1284) 156631) ((-354 . -1284) 156615) ((-346 . -1284) 156599) ((-127 . -516) 156532) ((-121 . -516) 156465) ((-513 . -792) T) ((-513 . -795) T) ((-512 . -794) T) ((-103 . -310) 156403) ((-222 . -102) 156381) ((-699 . -172) T) ((-694 . -1099) T) ((-872 . -648) 156333) ((-65 . -386) T) ((-276 . -613) 156315) ((-65 . -397) T) ((-952 . -379) 156299) ((-870 . -291) T) ((-50 . -613) 156281) ((-999 . -38) 156229) ((-1119 . -646) 156201) ((-583 . -613) 156183) ((-483 . -379) 156167) ((-583 . -614) 156149) ((-520 . -613) 156131) ((-910 . -1284) 156118) ((-871 . -1215) T) ((-701 . -454) T) ((-497 . -516) 156084) ((-489 . -365) T) ((-357 . -370) 156063) ((-354 . -370) 156042) ((-346 . -370) 156021) ((-714 . -726) T) ((-217 . -365) T) ((-116 . -454) T) ((-1288 . -1279) 156005) ((-871 . -884) 155982) ((-871 . -886) NIL) ((-964 . -850) 155881) ((-815 . -850) 155832) ((-1222 . -102) T) ((-654 . -656) 155816) ((-1201 . -34) T) ((-171 . -613) 155798) ((-1112 . -21) 155708) ((-1112 . -25) 155559) ((-871 . -1038) 155536) ((-952 . -900) 155517) ((-1238 . -47) 155494) ((-910 . -370) T) ((-59 . -651) 155478) ((-518 . -651) 155462) ((-483 . -900) 155439) ((-71 . -443) T) ((-71 . -397) T) ((-498 . -651) 155423) ((-59 . -375) 155407) ((-623 . -172) T) ((-518 . -375) 155391) ((-498 . -375) 155375) ((-827 . -708) 155359) ((-1171 . -308) 155338) ((-1177 . -131) T) ((-1141 . -1051) 155322) ((-117 . -172) T) ((-1141 . -640) 155254) ((-1145 . -310) 155192) ((-169 . -1215) T) ((-1277 . -131) T) ((-866 . -1051) 155162) ((-635 . -744) 155146) ((-607 . -744) 155130) ((-1250 . -920) 155109) ((-1229 . -920) 155088) ((-1229 . -820) NIL) ((-866 . -640) 155058) ((-694 . -717) 155008) ((-1228 . -909) 154961) ((-1024 . -1099) T) ((-871 . -379) 154938) ((-871 . -340) 154915) ((-905 . -1111) T) ((-169 . -884) 154899) ((-169 . -886) 154824) ((-489 . -1111) T) ((-356 . -1099) T) ((-217 . -1111) T) ((-76 . -443) T) ((-76 . -397) T) ((-169 . -1038) 154720) ((-320 . -850) T) ((-1265 . -516) 154653) ((-1249 . -648) 154550) ((-1228 . -648) 154420) ((-872 . -794) 154399) ((-872 . -791) 154378) ((-872 . -726) T) ((-489 . -23) T) ((-223 . -613) 154360) ((-174 . -454) T) ((-222 . -310) 154298) ((-86 . -443) T) ((-86 . -397) T) ((-217 . -23) T) ((-1289 . -1282) 154277) ((-677 . -1038) 154261) ((-582 . -291) T) ((-566 . -291) T) ((-497 . -291) T) ((-136 . -472) 154216) ((-654 . -646) 154175) ((-48 . -1099) T) ((-712 . -231) 154159) ((-871 . -900) NIL) ((-1238 . -886) NIL) ((-889 . -102) T) ((-885 . -102) T) ((-390 . -1099) T) ((-169 . -379) 154143) ((-169 . -340) 154127) ((-1238 . -1038) 154007) ((-855 . -1038) 153903) ((-1141 . -102) T) ((-653 . -131) T) ((-117 . -516) 153811) ((-662 . -792) 153790) ((-662 . -795) 153769) ((-573 . -1038) 153751) ((-295 . -1272) 153721) ((-866 . -102) T) ((-963 . -558) 153700) ((-1209 . -1056) 153583) ((-1003 . -1051) 153528) ((-484 . -639) 153434) ((-904 . -1099) T) ((-1024 . -717) 153371) ((-711 . -1056) 153336) ((-1003 . -640) 153281) ((-617 . -102) T) ((-602 . -34) T) ((-1146 . -1215) T) ((-1209 . -111) 153150) ((-476 . -648) 153047) ((-356 . -717) 152992) ((-169 . -900) 152951) ((-699 . -291) T) ((-694 . -172) T) ((-711 . -111) 152907) ((-1293 . -1057) T) ((-1238 . -379) 152891) ((-420 . -1219) 152869) ((-1117 . -613) 152851) ((-314 . -848) NIL) ((-420 . -558) T) ((-225 . -308) T) ((-1228 . -791) 152804) ((-1228 . -794) 152757) ((-1249 . -726) T) ((-1228 . -726) T) ((-48 . -717) 152722) ((-225 . -1022) T) ((-353 . -1272) 152699) ((-1251 . -413) 152665) ((-718 . -726) T) ((-334 . -613) 152647) ((-1238 . -900) 152590) ((-1209 . -616) 152472) ((-112 . -613) 152454) ((-112 . -614) 152436) ((-718 . -475) T) ((-711 . -616) 152386) ((-1288 . -1051) 152370) ((-484 . -21) 152280) ((-127 . -491) 152264) ((-121 . -491) 152248) ((-484 . -25) 152099) ((-1288 . -640) 152069) ((-623 . -291) T) ((-587 . -1056) 152044) ((-439 . -1099) T) ((-1061 . -308) T) ((-117 . -291) T) ((-1103 . -102) T) ((-1003 . -102) T) ((-587 . -111) 152012) ((-1141 . -310) 151950) ((-1209 . -1049) T) ((-1061 . -1022) T) ((-66 . -1215) T) ((-1054 . -25) T) ((-1054 . -21) T) ((-711 . -1049) T) ((-387 . -21) T) ((-387 . -25) T) ((-694 . -516) NIL) ((-1024 . -172) T) ((-711 . -243) T) ((-1061 . -547) T) ((-712 . -646) 151860) ((-508 . -102) T) ((-504 . -102) T) ((-356 . -172) T) ((-345 . -613) 151842) ((-409 . -1051) 151794) ((-396 . -613) 151776) ((-1119 . -848) T) ((-476 . -726) T) ((-892 . -1038) 151744) ((-409 . -640) 151696) ((-108 . -850) T) ((-658 . -1056) 151680) ((-489 . -131) T) ((-1251 . -1057) T) ((-217 . -131) T) ((-1155 . -102) 151658) ((-99 . -1099) T) ((-245 . -666) 151642) ((-245 . -651) 151626) ((-658 . -111) 151605) ((-587 . -616) 151589) ((-317 . -413) 151573) ((-245 . -375) 151557) ((-1158 . -235) 151504) ((-999 . -231) 151488) ((-74 . -1215) T) ((-48 . -172) T) ((-701 . -389) T) ((-701 . -143) T) ((-1288 . -102) T) ((-1195 . -616) 151470) ((-1086 . -1056) 151313) ((-265 . -909) 151292) ((-247 . -909) 151271) ((-782 . -1056) 151094) ((-780 . -1056) 150937) ((-608 . -1215) T) ((-1163 . -613) 150919) ((-1086 . -111) 150748) ((-1046 . -102) T) ((-477 . -1215) T) ((-463 . -1056) 150719) ((-456 . -1056) 150562) ((-664 . -648) 150546) ((-871 . -308) T) ((-782 . -111) 150355) ((-780 . -111) 150184) ((-357 . -648) 150136) ((-354 . -648) 150088) ((-346 . -648) 150040) ((-265 . -648) 149965) ((-247 . -648) 149890) ((-1157 . -850) T) ((-1087 . -1038) 149874) ((-463 . -111) 149835) ((-456 . -111) 149664) ((-1075 . -1038) 149641) ((-1000 . -34) T) ((-966 . -613) 149623) ((-958 . -1215) T) ((-126 . -1010) 149607) ((-963 . -1111) T) ((-871 . -1022) NIL) ((-735 . -1111) T) ((-715 . -1111) T) ((-658 . -616) 149525) ((-1265 . -491) 149509) ((-1141 . -38) 149469) ((-963 . -23) T) ((-910 . -648) 149434) ((-865 . -1099) T) ((-843 . -102) T) ((-817 . -21) T) ((-635 . -1051) 149418) ((-607 . -1051) 149402) ((-817 . -25) T) ((-735 . -23) T) ((-715 . -23) T) ((-635 . -640) 149386) ((-110 . -661) T) ((-607 . -640) 149370) ((-583 . -1056) 149335) ((-520 . -1056) 149280) ((-227 . -57) 149238) ((-455 . -23) T) ((-409 . -102) T) ((-264 . -102) T) ((-694 . -291) T) ((-866 . -38) 149208) ((-583 . -111) 149164) ((-520 . -111) 149093) ((-1086 . -616) 148829) ((-420 . -1111) T) ((-317 . -1057) 148719) ((-314 . -1057) T) ((-128 . -1215) T) ((-782 . -616) 148467) ((-780 . -616) 148233) ((-658 . -1049) T) ((-1293 . -1099) T) ((-456 . -616) 148018) ((-169 . -308) 147949) ((-420 . -23) T) ((-40 . -613) 147931) ((-40 . -614) 147915) ((-108 . -992) 147897) ((-116 . -869) 147881) ((-649 . -616) 147865) ((-48 . -516) 147831) ((-1201 . -1010) 147815) ((-1180 . -613) 147782) ((-1188 . -34) T) ((-954 . -613) 147748) ((-921 . -613) 147730) ((-1112 . -850) 147681) ((-771 . -613) 147663) ((-672 . -613) 147645) ((-1155 . -310) 147583) ((-481 . -34) T) ((-1091 . -1215) T) ((-479 . -454) T) ((-1140 . -34) T) ((-1086 . -1049) T) ((-50 . -616) 147552) ((-782 . -1049) T) ((-780 . -1049) T) ((-647 . -235) 147536) ((-632 . -235) 147482) ((-583 . -616) 147432) ((-520 . -616) 147362) ((-1238 . -308) 147341) ((-1086 . -327) 147302) ((-456 . -1049) T) ((-1177 . -21) T) ((-1086 . -233) 147281) ((-782 . -327) 147258) ((-782 . -233) T) ((-780 . -327) 147230) ((-731 . -1219) 147209) ((-328 . -651) 147193) ((-1177 . -25) T) ((-59 . -34) T) ((-521 . -34) T) ((-518 . -34) T) ((-456 . -327) 147172) ((-328 . -375) 147156) ((-499 . -34) T) ((-498 . -34) T) ((-1003 . -1150) NIL) ((-731 . -558) 147087) ((-635 . -102) T) ((-607 . -102) T) ((-357 . -726) T) ((-354 . -726) T) ((-346 . -726) T) ((-265 . -726) T) ((-247 . -726) T) ((-1046 . -310) 146995) ((-901 . -1099) 146973) ((-50 . -1049) T) ((-1277 . -21) T) ((-1277 . -25) T) ((-1173 . -558) 146952) ((-1172 . -1219) 146931) ((-1172 . -558) 146882) ((-583 . -1049) T) ((-520 . -1049) T) ((-1166 . -1219) 146861) ((-363 . -1038) 146845) ((-323 . -1038) 146829) ((-1024 . -291) T) ((-381 . -886) 146811) ((-1166 . -558) 146762) ((-1003 . -38) 146707) ((-999 . -646) 146630) ((-799 . -1111) T) ((-910 . -726) T) ((-583 . -243) T) ((-583 . -233) T) ((-520 . -233) T) ((-520 . -243) T) ((-1125 . -558) 146609) ((-356 . -291) T) ((-647 . -695) 146593) ((-381 . -1038) 146553) ((-295 . -1051) 146474) ((-1119 . -1057) T) ((-103 . -125) 146458) ((-295 . -640) 146400) ((-799 . -23) T) ((-1287 . -1282) 146376) ((-1265 . -287) 146353) ((-409 . -310) 146318) ((-1285 . -1282) 146297) ((-1251 . -1099) T) ((-870 . -613) 146279) ((-836 . -1038) 146248) ((-203 . -787) T) ((-202 . -787) T) ((-201 . -787) T) ((-200 . -787) T) ((-199 . -787) T) ((-198 . -787) T) ((-197 . -787) T) ((-196 . -787) T) ((-195 . -787) T) ((-194 . -787) T) ((-549 . -613) 146230) ((-497 . -1002) T) ((-275 . -839) T) ((-274 . -839) T) ((-273 . -839) T) ((-272 . -839) T) ((-48 . -291) T) ((-271 . -839) T) ((-270 . -839) T) ((-269 . -839) T) ((-193 . -787) T) ((-612 . -850) T) ((-654 . -413) 146214) ((-223 . -616) 146176) ((-110 . -850) T) ((-653 . -21) T) ((-653 . -25) T) ((-1288 . -38) 146146) ((-117 . -287) 146097) ((-1265 . -19) 146081) ((-1265 . -604) 146058) ((-1278 . -1099) T) ((-353 . -1051) 146003) ((-1076 . -1099) T) ((-987 . -1099) T) ((-963 . -131) T) ((-737 . -1099) T) ((-353 . -640) 145948) ((-735 . -131) T) ((-715 . -131) T) ((-513 . -793) T) ((-513 . -794) T) ((-455 . -131) T) ((-409 . -1150) 145926) ((-223 . -1049) T) ((-295 . -102) 145708) ((-141 . -1099) T) ((-699 . -1002) T) ((-91 . -1215) T) ((-127 . -613) 145640) ((-121 . -613) 145572) ((-1293 . -172) T) ((-1172 . -365) 145551) ((-1166 . -365) 145530) ((-317 . -1099) T) ((-420 . -131) T) ((-314 . -1099) T) ((-409 . -38) 145482) ((-1132 . -102) T) ((-1251 . -717) 145374) ((-654 . -1057) T) ((-1134 . -1260) T) ((-320 . -145) 145353) ((-320 . -147) 145332) ((-136 . -1099) T) ((-139 . -1099) T) ((-114 . -1099) T) ((-858 . -102) T) ((-582 . -613) 145314) ((-566 . -614) 145213) ((-566 . -613) 145195) ((-497 . -613) 145177) ((-497 . -614) 145122) ((-487 . -23) T) ((-484 . -850) 145073) ((-489 . -639) 145055) ((-965 . -613) 145037) ((-217 . -639) 145019) ((-225 . -406) T) ((-662 . -648) 145003) ((-55 . -613) 144985) ((-1171 . -920) 144964) ((-731 . -1111) T) ((-353 . -102) T) ((-1214 . -1082) T) ((-1119 . -844) T) ((-818 . -850) T) ((-731 . -23) T) ((-345 . -1056) 144909) ((-1157 . -1156) T) ((-1146 . -107) 144893) ((-1173 . -1111) T) ((-1172 . -1111) T) ((-517 . -1038) 144877) ((-1166 . -1111) T) ((-1125 . -1111) T) ((-345 . -111) 144806) ((-1004 . -1219) T) ((-126 . -1215) T) ((-914 . -1219) T) ((-694 . -287) NIL) ((-1266 . -613) 144788) ((-1173 . -23) T) ((-1172 . -23) T) ((-1166 . -23) T) ((-1004 . -558) T) ((-1141 . -231) 144772) ((-914 . -558) T) ((-1125 . -23) T) ((-248 . -613) 144754) ((-1074 . -1099) T) ((-799 . -131) T) ((-710 . -613) 144736) ((-317 . -717) 144646) ((-314 . -717) 144575) ((-699 . -613) 144557) ((-699 . -614) 144502) ((-409 . -402) 144486) ((-440 . -1099) T) ((-489 . -25) T) ((-489 . -21) T) ((-1119 . -1099) T) ((-217 . -25) T) ((-217 . -21) T) ((-712 . -413) 144470) ((-714 . -1038) 144439) ((-1265 . -613) 144351) ((-1265 . -614) 144312) ((-1251 . -172) T) ((-245 . -34) T) ((-345 . -616) 144242) ((-396 . -616) 144224) ((-926 . -974) T) ((-1201 . -1215) T) ((-662 . -791) 144203) ((-662 . -794) 144182) ((-400 . -397) T) ((-525 . -102) 144160) ((-1035 . -1099) T) ((-222 . -995) 144144) ((-506 . -102) T) ((-623 . -613) 144126) ((-45 . -850) NIL) ((-623 . -614) 144103) ((-1035 . -610) 144078) ((-901 . -516) 144011) ((-345 . -1049) T) ((-117 . -614) NIL) ((-117 . -613) 143993) ((-872 . -1215) T) ((-670 . -419) 143977) ((-670 . -1122) 143922) ((-502 . -151) 143904) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1056) 143849) ((-872 . -884) 143833) ((-872 . -886) 143758) ((-712 . -1057) T) ((-694 . -1002) NIL) ((-1249 . -47) 143728) ((-1228 . -47) 143705) ((-1140 . -1010) 143676) ((-3 . |UnionCategory|) T) ((-1119 . -717) 143663) ((-1104 . -613) 143645) ((-1079 . -147) 143624) ((-1079 . -145) 143575) ((-966 . -616) 143559) ((-225 . -920) T) ((-40 . -111) 143488) ((-872 . -1038) 143352) ((-1004 . -365) T) ((-1003 . -231) 143329) ((-701 . -1051) 143316) ((-914 . -365) T) ((-701 . -640) 143303) ((-320 . -1203) 143269) ((-381 . -308) T) ((-320 . -1200) 143235) ((-317 . -172) 143214) ((-314 . -172) T) ((-583 . -1284) 143201) ((-520 . -1284) 143178) ((-361 . -147) 143157) ((-116 . -1051) 143144) ((-361 . -145) 143095) ((-355 . -147) 143074) ((-355 . -145) 143025) ((-347 . -147) 143004) ((-608 . -1191) 142980) ((-116 . -640) 142967) ((-347 . -145) 142918) ((-320 . -35) 142884) ((-477 . -1191) 142863) ((0 . |EnumerationCategory|) T) ((-320 . -95) 142829) ((-381 . -1022) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142779) ((-654 . -1099) T) ((-608 . -107) 142726) ((-487 . -131) T) ((-477 . -107) 142676) ((-240 . -1111) 142586) ((-872 . -379) 142570) ((-872 . -340) 142554) ((-240 . -23) 142424) ((-40 . -616) 142354) ((-1061 . -920) T) ((-1061 . -820) T) ((-583 . -370) T) ((-520 . -370) T) ((-1278 . -516) 142287) ((-1257 . -558) 142266) ((-353 . -1150) T) ((-328 . -34) T) ((-44 . -419) 142250) ((-1180 . -616) 142186) ((-873 . -1215) T) ((-392 . -744) 142170) ((-1250 . -1219) 142149) ((-1250 . -558) 142100) ((-1141 . -646) 142059) ((-731 . -131) T) ((-672 . -616) 142043) ((-1229 . -1219) 142022) ((-1229 . -558) 141973) ((-1228 . -1215) 141952) ((-1228 . -886) 141825) ((-1228 . -884) 141795) ((-1173 . -131) T) ((-312 . -1082) T) ((-1172 . -131) T) ((-737 . -516) 141728) ((-1166 . -131) T) ((-1125 . -131) T) ((-893 . -1099) T) ((-144 . -844) T) ((-1024 . -1002) T) ((-691 . -613) 141710) ((-1004 . -23) T) ((-525 . -310) 141648) ((-1004 . -1111) T) ((-141 . -516) NIL) ((-866 . -646) 141593) ((-1003 . -351) NIL) ((-971 . -23) T) ((-914 . -1111) T) ((-353 . -38) 141558) ((-914 . -23) T) ((-872 . -900) 141517) ((-82 . -613) 141499) ((-40 . -1049) T) ((-870 . -1056) 141486) ((-870 . -111) 141471) ((-701 . -102) T) ((-694 . -613) 141453) ((-602 . -1215) T) ((-597 . -558) 141432) ((-429 . -1111) T) ((-341 . -1051) 141416) ((-213 . -1099) T) ((-174 . -1051) 141348) ((-476 . -47) 141318) ((-134 . -102) T) ((-40 . -233) 141290) ((-40 . -243) T) ((-116 . -102) T) ((-596 . -558) 141269) ((-341 . -640) 141253) ((-694 . -614) 141161) ((-317 . -516) 141127) ((-174 . -640) 141059) ((-314 . -516) 140951) ((-1249 . -1038) 140935) ((-1228 . -1038) 140721) ((-999 . -413) 140705) ((-429 . -23) T) ((-1119 . -172) T) ((-1251 . -291) T) ((-654 . -717) 140675) ((-144 . -1099) T) ((-48 . -1002) T) ((-409 . -231) 140659) ((-296 . -235) 140609) ((-871 . -920) T) ((-871 . -820) NIL) ((-870 . -616) 140581) ((-864 . -850) T) ((-1228 . -340) 140551) ((-1228 . -379) 140521) ((-222 . -1120) 140505) ((-1265 . -289) 140482) ((-1209 . -648) 140407) ((-1003 . -646) 140337) ((-963 . -21) T) ((-963 . -25) T) ((-735 . -21) T) ((-735 . -25) T) ((-715 . -21) T) ((-715 . -25) T) ((-711 . -648) 140302) ((-455 . -21) T) ((-455 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-999 . -1057) T) ((-870 . -1049) T) ((-774 . -102) T) ((-1250 . -365) 140281) ((-1249 . -900) 140187) ((-1229 . -365) 140166) ((-1228 . -900) 140017) ((-1024 . -613) 139999) ((-409 . -828) 139952) ((-1173 . -495) 139918) ((-169 . -920) 139849) ((-1172 . -495) 139815) ((-1166 . -495) 139781) ((-712 . -1099) T) ((-1125 . -495) 139747) ((-582 . -1056) 139734) ((-566 . -1056) 139721) ((-497 . -1056) 139686) ((-317 . -291) 139665) ((-314 . -291) T) ((-356 . -613) 139647) ((-420 . -25) T) ((-420 . -21) T) ((-99 . -287) 139626) ((-582 . -111) 139611) ((-566 . -111) 139596) ((-497 . -111) 139552) ((-1175 . -886) 139519) ((-901 . -491) 139503) ((-48 . -613) 139485) ((-48 . -614) 139430) ((-240 . -131) 139300) ((-1288 . -646) 139259) ((-1238 . -920) 139238) ((-816 . -1219) 139217) ((-390 . -492) 139198) ((-1035 . -516) 139042) ((-390 . -613) 139008) ((-816 . -558) 138939) ((-587 . -648) 138914) ((-265 . -47) 138886) ((-247 . -47) 138843) ((-533 . -511) 138820) ((-582 . -616) 138792) ((-566 . -616) 138764) ((-497 . -616) 138697) ((-1073 . -1215) T) ((-1000 . -1215) T) ((-1257 . -23) T) ((-699 . -1056) 138662) ((-1257 . -1111) T) ((-1250 . -1111) T) ((-1250 . -23) T) ((-1229 . -1111) T) ((-1229 . -23) T) ((-1003 . -372) 138634) ((-112 . -370) T) ((-476 . -900) 138540) ((-1209 . -726) T) ((-904 . -613) 138522) ((-55 . -616) 138504) ((-91 . -107) 138488) ((-1119 . -291) T) ((-905 . -850) 138439) ((-701 . -1150) T) ((-699 . -111) 138395) ((-843 . -646) 138312) ((-597 . -1111) T) ((-596 . -1111) T) ((-712 . -717) 138141) ((-711 . -726) T) ((-1004 . -131) T) ((-971 . -131) T) ((-489 . -850) T) ((-914 . -131) T) ((-799 . -25) T) ((-799 . -21) T) ((-217 . -850) T) ((-409 . -646) 138078) ((-582 . -1049) T) ((-566 . -1049) T) ((-497 . -1049) T) ((-597 . -23) T) ((-345 . -1284) 138055) ((-320 . -454) 138034) ((-341 . -310) 138021) ((-596 . -23) T) ((-429 . -131) T) ((-658 . -648) 137995) ((-245 . -1010) 137979) ((-872 . -308) T) ((-1289 . -1279) 137963) ((-771 . -792) T) ((-771 . -795) T) ((-701 . -38) 137950) ((-566 . -233) T) ((-497 . -243) T) ((-497 . -233) T) ((-1149 . -235) 137900) ((-1086 . -909) 137879) ((-116 . -38) 137866) ((-209 . -800) T) ((-208 . -800) T) ((-207 . -800) T) ((-206 . -800) T) ((-872 . -1022) 137844) ((-1278 . -491) 137828) ((-782 . -909) 137807) ((-780 . -909) 137786) ((-1188 . -1215) T) ((-456 . -909) 137765) ((-737 . -491) 137749) ((-1086 . -648) 137674) ((-699 . -616) 137609) ((-782 . -648) 137534) ((-623 . -1056) 137521) ((-481 . -1215) T) ((-345 . -370) T) ((-141 . -491) 137503) ((-780 . -648) 137428) ((-1140 . -1215) T) ((-551 . -850) T) ((-463 . -648) 137399) ((-265 . -886) 137258) ((-247 . -886) NIL) ((-117 . -1056) 137203) ((-456 . -648) 137128) ((-664 . -1038) 137105) ((-623 . -111) 137090) ((-392 . -1051) 137074) ((-357 . -1038) 137058) ((-354 . -1038) 137042) ((-346 . -1038) 137026) ((-265 . -1038) 136870) ((-247 . -1038) 136746) ((-117 . -111) 136675) ((-59 . -1215) T) ((-392 . -640) 136659) ((-621 . -1051) 136643) ((-521 . -1215) T) ((-518 . -1215) T) ((-499 . -1215) T) ((-498 . -1215) T) ((-439 . -613) 136625) ((-436 . -613) 136607) ((-621 . -640) 136591) ((-3 . -102) T) ((-1027 . -1208) 136560) ((-833 . -102) T) ((-689 . -57) 136518) ((-699 . -1049) T) ((-635 . -646) 136487) ((-607 . -646) 136456) ((-50 . -648) 136430) ((-290 . -454) T) ((-478 . -1208) 136399) ((0 . -102) T) ((-583 . -648) 136364) ((-520 . -648) 136309) ((-49 . -102) T) ((-910 . -1038) 136296) ((-699 . -243) T) ((-1079 . -411) 136275) ((-731 . -639) 136223) ((-999 . -1099) T) ((-712 . -172) 136114) ((-623 . -616) 136009) ((-489 . -992) 135991) ((-265 . -379) 135975) ((-247 . -379) 135959) ((-401 . -1099) T) ((-1026 . -102) 135937) ((-341 . -38) 135921) ((-217 . -992) 135903) ((-117 . -616) 135833) ((-174 . -38) 135765) ((-1249 . -308) 135744) ((-1228 . -308) 135723) ((-658 . -726) T) ((-99 . -613) 135705) ((-479 . -1051) 135670) ((-1166 . -639) 135622) ((-479 . -640) 135587) ((-487 . -25) T) ((-487 . -21) T) ((-1228 . -1022) 135539) ((-623 . -1049) T) ((-381 . -406) T) ((-392 . -102) T) ((-1104 . -618) 135454) ((-265 . -900) 135400) ((-247 . -900) 135377) ((-117 . -1049) T) ((-816 . -1111) T) ((-1086 . -726) T) ((-623 . -233) 135356) ((-621 . -102) T) ((-782 . -726) T) ((-780 . -726) T) ((-415 . -1111) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1220 . -850) T) ((-456 . -726) T) ((-816 . -23) T) ((-731 . -25) T) ((-731 . -21) T) ((-1076 . -287) 135335) ((-78 . -398) T) ((-78 . -397) T) ((-535 . -767) 135317) ((-694 . -1056) 135267) ((-1257 . -131) T) ((-1250 . -131) T) ((-1229 . -131) T) ((-1173 . -25) T) ((-1141 . -413) 135251) ((-635 . -369) 135183) ((-607 . -369) 135115) ((-1155 . -1148) 135099) ((-103 . -1099) 135077) ((-1173 . -21) T) ((-1172 . -21) T) ((-865 . -613) 135059) ((-999 . -717) 135007) ((-223 . -648) 134974) ((-694 . -111) 134908) ((-50 . -726) T) ((-1172 . -25) T) ((-353 . -351) T) ((-1166 . -21) T) ((-1079 . -454) 134859) ((-1166 . -25) T) ((-712 . -516) 134806) ((-583 . -726) T) ((-520 . -726) T) ((-1125 . -21) T) ((-1125 . -25) T) ((-597 . -131) T) ((-295 . -646) 134541) ((-596 . -131) T) ((-361 . -454) T) ((-355 . -454) T) ((-347 . -454) T) ((-476 . -308) 134520) ((-1223 . -102) T) ((-314 . -287) 134455) ((-108 . -454) T) ((-79 . -443) T) ((-79 . -397) T) ((-479 . -102) T) ((-691 . -616) 134439) ((-1293 . -613) 134421) ((-1293 . -614) 134403) ((-1079 . -404) 134382) ((-1035 . -491) 134313) ((-566 . -795) T) ((-566 . -792) T) ((-1062 . -235) 134259) ((-361 . -404) 134210) ((-355 . -404) 134161) ((-347 . -404) 134112) ((-1280 . -1111) T) ((-1289 . -1051) 134096) ((-383 . -1051) 134080) ((-1289 . -640) 134050) ((-383 . -640) 134020) ((-694 . -616) 133955) ((-1280 . -23) T) ((-1267 . -102) T) ((-175 . -613) 133937) ((-1141 . -1057) T) ((-549 . -370) T) ((-670 . -744) 133921) ((-1177 . -145) 133900) ((-1177 . -147) 133879) ((-1145 . -1099) T) ((-1145 . -1070) 133848) ((-69 . -1215) T) ((-1024 . -1056) 133785) ((-353 . -646) 133715) ((-866 . -1057) T) ((-240 . -639) 133621) ((-694 . -1049) T) ((-356 . -1056) 133566) ((-61 . -1215) T) ((-1024 . -111) 133482) ((-901 . -613) 133393) ((-694 . -243) T) ((-694 . -233) NIL) ((-843 . -848) 133372) ((-699 . -795) T) ((-699 . -792) T) ((-1003 . -413) 133349) ((-356 . -111) 133278) ((-381 . -920) T) ((-409 . -848) 133257) ((-712 . -291) 133168) ((-223 . -726) T) ((-1257 . -495) 133134) ((-1250 . -495) 133100) ((-1229 . -495) 133066) ((-580 . -1099) T) ((-317 . -1002) 133045) ((-222 . -1099) 133023) ((-1222 . -844) T) ((-320 . -973) 132985) ((-105 . -102) T) ((-48 . -1056) 132950) ((-1289 . -102) T) ((-383 . -102) T) ((-48 . -111) 132906) ((-1004 . -639) 132888) ((-1251 . -613) 132870) ((-533 . -102) T) ((-502 . -102) T) ((-1132 . -1133) 132854) ((-152 . -1272) 132838) ((-245 . -1215) T) ((-1214 . -102) T) ((-1024 . -616) 132775) ((-1171 . -1219) 132754) ((-356 . -616) 132684) ((-1124 . -1219) 132663) ((-240 . -21) 132573) ((-240 . -25) 132424) ((-127 . -119) 132408) ((-121 . -119) 132392) ((-44 . -744) 132376) ((-1171 . -558) 132287) ((-1124 . -558) 132218) ((-1222 . -1099) T) ((-1035 . -287) 132193) ((-1165 . -1082) T) ((-994 . -1082) T) ((-816 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1111) 132103) ((-251 . -1111) 132013) ((-1024 . -1049) T) ((-1003 . -1057) T) ((-48 . -616) 131946) ((-345 . -648) 131891) ((-621 . -38) 131875) ((-1278 . -613) 131837) ((-1278 . -614) 131798) ((-1076 . -613) 131780) ((-1024 . -243) T) ((-356 . -1049) T) ((-815 . -1272) 131750) ((-252 . -23) T) ((-251 . -23) T) ((-987 . -613) 131732) ((-737 . -614) 131693) ((-737 . -613) 131675) ((-799 . -850) 131654) ((-1158 . -151) 131601) ((-999 . -516) 131513) ((-356 . -233) T) ((-356 . -243) T) ((-390 . -616) 131494) ((-1004 . -25) T) ((-141 . -613) 131476) ((-141 . -614) 131435) ((-910 . -308) T) ((-1004 . -21) T) ((-971 . -25) T) ((-914 . -21) T) ((-914 . -25) T) ((-429 . -21) T) ((-429 . -25) T) ((-843 . -413) 131419) ((-48 . -1049) T) ((-1287 . -1279) 131403) ((-1285 . -1279) 131387) ((-1035 . -604) 131362) ((-317 . -614) 131223) ((-317 . -613) 131205) ((-314 . -614) NIL) ((-314 . -613) 131187) ((-48 . -243) T) ((-48 . -233) T) ((-654 . -287) 131148) ((-552 . -235) 131098) ((-139 . -613) 131065) ((-136 . -613) 131047) ((-114 . -613) 131029) ((-479 . -38) 130994) ((-1289 . -1286) 130973) ((-1280 . -131) T) ((-1288 . -1057) T) ((-1081 . -102) T) ((-88 . -1215) T) ((-502 . -310) NIL) ((-1000 . -107) 130957) ((-889 . -1099) T) ((-885 . -1099) T) ((-1265 . -651) 130941) ((-1265 . -375) 130925) ((-328 . -1215) T) ((-594 . -850) T) ((-1141 . -1099) T) ((-1141 . -1053) 130865) ((-103 . -516) 130798) ((-927 . -613) 130780) ((-345 . -726) T) ((-30 . -613) 130762) ((-866 . -1099) T) ((-843 . -1057) 130741) ((-40 . -648) 130686) ((-225 . -1219) T) ((-409 . -1057) T) ((-1157 . -151) 130668) ((-999 . -291) 130619) ((-617 . -1099) T) ((-225 . -558) T) ((-320 . -1246) 130603) ((-320 . -1243) 130573) ((-701 . -646) 130545) ((-1188 . -1191) 130524) ((-1074 . -613) 130506) ((-1188 . -107) 130456) ((-647 . -151) 130440) ((-632 . -151) 130386) ((-116 . -646) 130358) ((-481 . -1191) 130337) ((-489 . -147) T) ((-489 . -145) NIL) ((-1119 . -614) 130252) ((-440 . -613) 130234) ((-217 . -147) T) ((-217 . -145) NIL) ((-1119 . -613) 130216) ((-129 . -102) T) ((-52 . -102) T) ((-1229 . -639) 130168) ((-481 . -107) 130118) ((-993 . -23) T) ((-1289 . -38) 130088) ((-1171 . -1111) T) ((-1124 . -1111) T) ((-1061 . -1219) T) ((-312 . -102) T) ((-854 . -1111) T) ((-952 . -1219) 130067) ((-483 . -1219) 130046) ((-1061 . -558) T) ((-952 . -558) 129977) ((-1171 . -23) T) ((-1124 . -23) T) ((-854 . -23) T) ((-483 . -558) 129908) ((-1141 . -717) 129840) ((-670 . -1051) 129824) ((-1145 . -516) 129757) ((-670 . -640) 129741) ((-1035 . -614) NIL) ((-1035 . -613) 129723) ((-96 . -1082) T) ((-866 . -717) 129693) ((-1209 . -47) 129662) ((-252 . -131) T) ((-251 . -131) T) ((-1103 . -1099) T) ((-1003 . -1099) T) ((-62 . -613) 129644) ((-1166 . -850) NIL) ((-1024 . -792) T) ((-1024 . -795) T) ((-1293 . -1056) 129631) ((-1293 . -111) 129616) ((-1257 . -25) T) ((-1257 . -21) T) ((-870 . -648) 129603) ((-1250 . -21) T) ((-1250 . -25) T) ((-1229 . -21) T) ((-1229 . -25) T) ((-1027 . -151) 129587) ((-872 . -820) 129566) ((-872 . -920) T) ((-712 . -287) 129493) ((-597 . -21) T) ((-341 . -646) 129452) ((-597 . -25) T) ((-596 . -21) T) ((-174 . -646) 129369) ((-40 . -726) T) ((-222 . -516) 129302) ((-596 . -25) T) ((-478 . -151) 129286) ((-465 . -151) 129270) ((-921 . -794) T) ((-921 . -726) T) ((-771 . -793) T) ((-771 . -794) T) ((-508 . -1099) T) ((-504 . -1099) T) ((-771 . -726) T) ((-225 . -365) T) ((-1287 . -1051) 129254) ((-1285 . -1051) 129238) ((-1287 . -640) 129208) ((-1155 . -1099) 129186) ((-871 . -1219) T) ((-1285 . -640) 129156) ((-654 . -613) 129138) ((-871 . -558) T) ((-694 . -370) NIL) ((-44 . -1051) 129122) ((-1293 . -616) 129104) ((-1288 . -1099) T) ((-670 . -102) T) ((-361 . -1272) 129088) ((-355 . -1272) 129072) ((-44 . -640) 129056) ((-347 . -1272) 129040) ((-550 . -102) T) ((-522 . -850) 129019) ((-1046 . -1099) T) ((-817 . -454) 128998) ((-152 . -1051) 128982) ((-1046 . -1070) 128911) ((-1027 . -976) 128880) ((-819 . -1111) T) ((-1003 . -717) 128825) ((-152 . -640) 128809) ((-388 . -1111) T) ((-478 . -976) 128778) ((-465 . -976) 128747) ((-110 . -151) 128729) ((-73 . -613) 128711) ((-893 . -613) 128693) ((-1079 . -724) 128672) ((-1293 . -1049) T) ((-816 . -639) 128620) ((-295 . -1057) 128562) ((-169 . -1219) 128467) ((-225 . -1111) T) ((-325 . -23) T) ((-1166 . -992) 128419) ((-843 . -1099) T) ((-1251 . -1056) 128324) ((-1125 . -740) 128303) ((-1249 . -920) 128282) ((-1228 . -920) 128261) ((-870 . -726) T) ((-169 . -558) 128172) ((-582 . -648) 128159) ((-566 . -648) 128146) ((-409 . -1099) T) ((-264 . -1099) T) ((-213 . -613) 128128) ((-497 . -648) 128093) ((-225 . -23) T) ((-1228 . -820) 128046) ((-1287 . -102) T) ((-356 . -1284) 128023) ((-1285 . -102) T) ((-1251 . -111) 127915) ((-815 . -1051) 127812) ((-815 . -640) 127754) ((-144 . -613) 127736) ((-993 . -131) T) ((-44 . -102) T) ((-240 . -850) 127687) ((-1238 . -1219) 127666) ((-103 . -491) 127650) ((-1288 . -717) 127620) ((-1086 . -47) 127581) ((-1061 . -1111) T) ((-952 . -1111) T) ((-127 . -34) T) ((-121 . -34) T) ((-782 . -47) 127558) ((-780 . -47) 127530) ((-1238 . -558) 127441) ((-356 . -370) T) ((-483 . -1111) T) ((-1171 . -131) T) ((-1124 . -131) T) ((-456 . -47) 127420) ((-871 . -365) T) ((-854 . -131) T) ((-152 . -102) T) ((-1061 . -23) T) ((-952 . -23) T) ((-573 . -558) T) ((-816 . -25) T) ((-816 . -21) T) ((-1141 . -516) 127353) ((-593 . -1082) T) ((-587 . -1038) 127337) ((-1251 . -616) 127211) ((-483 . -23) T) ((-353 . -1057) T) ((-1209 . -900) 127192) ((-670 . -310) 127130) ((-1112 . -1272) 127100) ((-699 . -648) 127065) ((-1003 . -172) T) ((-963 . -145) 127044) ((-635 . -1099) T) ((-607 . -1099) T) ((-963 . -147) 127023) ((-1004 . -850) T) ((-735 . -147) 127002) ((-735 . -145) 126981) ((-971 . -850) T) ((-833 . -646) 126898) ((-476 . -920) 126877) ((-320 . -1051) 126712) ((-317 . -1056) 126622) ((-314 . -1056) 126551) ((-999 . -287) 126509) ((-409 . -717) 126461) ((-320 . -640) 126302) ((-701 . -848) T) ((-1251 . -1049) T) ((-317 . -111) 126198) ((-314 . -111) 126111) ((-964 . -102) T) ((-815 . -102) 125901) ((-712 . -614) NIL) ((-712 . -613) 125883) ((-658 . -1038) 125779) ((-1251 . -327) 125723) ((-1035 . -289) 125698) ((-582 . -726) T) ((-566 . -794) T) ((-169 . -365) 125649) ((-566 . -791) T) ((-566 . -726) T) ((-497 . -726) T) ((-1145 . -491) 125633) ((-1086 . -886) NIL) ((-871 . -1111) T) ((-117 . -909) NIL) ((-1287 . -1286) 125609) ((-1285 . -1286) 125588) ((-782 . -886) NIL) ((-780 . -886) 125447) ((-1280 . -25) T) ((-1280 . -21) T) ((-1212 . -102) 125425) ((-1105 . -397) T) ((-623 . -648) 125412) ((-456 . -886) NIL) ((-675 . -102) 125390) ((-1086 . -1038) 125217) ((-871 . -23) T) ((-782 . -1038) 125076) ((-780 . -1038) 124933) ((-117 . -648) 124878) ((-456 . -1038) 124754) ((-317 . -616) 124318) ((-314 . -616) 124201) ((-392 . -646) 124170) ((-649 . -1038) 124154) ((-627 . -102) T) ((-222 . -491) 124138) ((-1265 . -34) T) ((-621 . -646) 124097) ((-290 . -1051) 124084) ((-136 . -616) 124068) ((-290 . -640) 124055) ((-635 . -717) 124039) ((-607 . -717) 124023) ((-670 . -38) 123983) ((-320 . -102) T) ((-85 . -613) 123965) ((-50 . -1038) 123949) ((-1119 . -1056) 123936) ((-1086 . -379) 123920) ((-782 . -379) 123904) ((-699 . -726) T) ((-699 . -794) T) ((-699 . -791) T) ((-583 . -1038) 123891) ((-520 . -1038) 123868) ((-60 . -57) 123830) ((-325 . -131) T) ((-317 . -1049) 123720) ((-314 . -1049) T) ((-169 . -1111) T) ((-780 . -379) 123704) ((-45 . -151) 123654) ((-1004 . -992) 123636) ((-456 . -379) 123620) ((-409 . -172) T) ((-317 . -243) 123599) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1099) 123381) ((-225 . -131) T) ((-1119 . -111) 123366) ((-169 . -23) T) ((-799 . -147) 123345) ((-799 . -145) 123324) ((-252 . -639) 123230) ((-251 . -639) 123136) ((-320 . -285) 123102) ((-1155 . -516) 123035) ((-479 . -646) 122985) ((-1132 . -1099) T) ((-225 . -1059) T) ((-815 . -310) 122923) ((-1086 . -900) 122858) ((-782 . -900) 122801) ((-780 . -900) 122785) ((-1287 . -38) 122755) ((-1285 . -38) 122725) ((-1238 . -1111) T) ((-855 . -1111) T) ((-456 . -900) 122702) ((-858 . -1099) T) ((-1238 . -23) T) ((-1119 . -616) 122674) ((-573 . -1111) T) ((-855 . -23) T) ((-623 . -726) T) ((-357 . -920) T) ((-354 . -920) T) ((-290 . -102) T) ((-346 . -920) T) ((-1061 . -131) T) ((-970 . -1082) T) ((-952 . -131) T) ((-117 . -794) NIL) ((-117 . -791) NIL) ((-117 . -726) T) ((-694 . -909) NIL) ((-1046 . -516) 122575) ((-483 . -131) T) ((-573 . -23) T) ((-675 . -310) 122513) ((-635 . -761) T) ((-607 . -761) T) ((-1229 . -850) NIL) ((-1079 . -1051) 122423) ((-1003 . -291) T) ((-694 . -648) 122373) ((-252 . -21) T) ((-353 . -1099) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122357) ((-2 . -102) T) ((-910 . -920) T) ((-1079 . -640) 122225) ((-484 . -1272) 122195) ((-1119 . -1049) T) ((-711 . -308) T) ((-361 . -1051) 122147) ((-355 . -1051) 122099) ((-347 . -1051) 122051) ((-361 . -640) 122003) ((-223 . -1038) 121980) ((-355 . -640) 121932) ((-108 . -1051) 121882) ((-347 . -640) 121834) ((-295 . -717) 121776) ((-701 . -1057) T) ((-489 . -454) T) ((-409 . -516) 121688) ((-108 . -640) 121638) ((-217 . -454) T) ((-1119 . -233) T) ((-296 . -151) 121588) ((-999 . -614) 121549) ((-999 . -613) 121531) ((-989 . -613) 121513) ((-116 . -1057) T) ((-654 . -1056) 121497) ((-225 . -495) T) ((-401 . -613) 121479) ((-401 . -614) 121456) ((-1054 . -1272) 121426) ((-654 . -111) 121405) ((-1141 . -491) 121389) ((-1289 . -646) 121348) ((-383 . -646) 121317) ((-815 . -38) 121287) ((-63 . -443) T) ((-63 . -397) T) ((-1158 . -102) T) ((-871 . -131) T) ((-486 . -102) 121265) ((-1293 . -370) T) ((-1079 . -102) T) ((-1060 . -102) T) ((-353 . -717) 121210) ((-731 . -147) 121189) ((-731 . -145) 121168) ((-654 . -616) 121086) ((-1024 . -648) 121023) ((-525 . -1099) 121001) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-506 . -1099) T) ((-356 . -648) 120946) ((-1171 . -639) 120894) ((-1124 . -639) 120842) ((-387 . -511) 120821) ((-833 . -848) 120800) ((-381 . -1219) T) ((-694 . -726) T) ((-341 . -1057) T) ((-1229 . -992) 120752) ((-174 . -1057) T) ((-103 . -613) 120684) ((-1173 . -145) 120663) ((-1173 . -147) 120642) ((-381 . -558) T) ((-1172 . -147) 120621) ((-1172 . -145) 120600) ((-1166 . -145) 120507) ((-409 . -291) T) ((-1166 . -147) 120414) ((-1125 . -147) 120393) ((-1125 . -145) 120372) ((-320 . -38) 120213) ((-169 . -131) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-654 . -1049) T) ((-48 . -648) 120178) ((-1112 . -1051) 120075) ((-893 . -616) 120052) ((-1112 . -640) 119994) ((-1165 . -102) T) ((-994 . -102) T) ((-993 . -21) T) ((-127 . -1010) 119978) ((-121 . -1010) 119962) ((-993 . -25) T) ((-901 . -119) 119946) ((-1157 . -102) T) ((-1238 . -131) T) ((-1171 . -25) T) ((-1171 . -21) T) ((-855 . -131) T) ((-1124 . -25) T) ((-1124 . -21) T) ((-854 . -25) T) ((-854 . -21) T) ((-782 . -308) 119925) ((-647 . -102) 119903) ((-632 . -102) T) ((-1158 . -310) 119698) ((-573 . -131) T) ((-621 . -848) 119677) ((-1155 . -491) 119661) ((-1149 . -151) 119611) ((-1145 . -613) 119573) ((-1145 . -614) 119534) ((-1024 . -791) T) ((-1024 . -794) T) ((-1024 . -726) T) ((-712 . -1056) 119357) ((-486 . -310) 119295) ((-455 . -419) 119265) ((-353 . -172) T) ((-290 . -38) 119252) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1038) 119229) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -726) T) ((-712 . -111) 119038) ((-670 . -231) 119022) ((-583 . -308) T) ((-520 . -308) T) ((-295 . -516) 118971) ((-108 . -310) NIL) ((-72 . -397) T) ((-1112 . -102) 118761) ((-833 . -413) 118745) ((-1119 . -795) T) ((-1119 . -792) T) ((-701 . -1099) T) ((-580 . -613) 118727) ((-381 . -365) T) ((-169 . -495) 118705) ((-222 . -613) 118637) ((-134 . -1099) T) ((-116 . -1099) T) ((-48 . -726) T) ((-1046 . -491) 118602) ((-141 . -427) 118584) ((-141 . -370) T) ((-1027 . -102) T) ((-514 . -511) 118563) ((-712 . -616) 118319) ((-478 . -102) T) ((-465 . -102) T) ((-1034 . -1111) T) ((-1222 . -613) 118301) ((-1180 . -1038) 118237) ((-1173 . -35) 118203) ((-1173 . -95) 118169) ((-1173 . -1203) 118135) ((-1173 . -1200) 118101) ((-1157 . -310) NIL) ((-89 . -398) T) ((-89 . -397) T) ((-1079 . -1150) 118080) ((-1172 . -1200) 118046) ((-1172 . -1203) 118012) ((-1034 . -23) T) ((-1172 . -95) 117978) ((-573 . -495) T) ((-1172 . -35) 117944) ((-1166 . -1200) 117910) ((-1166 . -1203) 117876) ((-1166 . -95) 117842) ((-363 . -1111) T) ((-361 . -1150) 117821) ((-355 . -1150) 117800) ((-347 . -1150) 117779) ((-1166 . -35) 117745) ((-1125 . -35) 117711) ((-1125 . -95) 117677) ((-108 . -1150) T) ((-1125 . -1203) 117643) ((-833 . -1057) 117622) ((-647 . -310) 117560) ((-632 . -310) 117411) ((-1125 . -1200) 117377) ((-712 . -1049) T) ((-1061 . -639) 117359) ((-1079 . -38) 117227) ((-952 . -639) 117175) ((-1004 . -147) T) ((-1004 . -145) NIL) ((-381 . -1111) T) ((-325 . -25) T) ((-323 . -23) T) ((-943 . -850) 117154) ((-712 . -327) 117131) ((-483 . -639) 117079) ((-40 . -1038) 116967) ((-712 . -233) T) ((-701 . -717) 116954) ((-341 . -1099) T) ((-174 . -1099) T) ((-332 . -850) T) ((-420 . -454) 116904) ((-381 . -23) T) ((-361 . -38) 116869) ((-355 . -38) 116834) ((-347 . -38) 116799) ((-80 . -443) T) ((-80 . -397) T) ((-225 . -25) T) ((-225 . -21) T) ((-836 . -1111) T) ((-108 . -38) 116749) ((-827 . -1111) T) ((-774 . -1099) T) ((-116 . -717) 116736) ((-672 . -1038) 116720) ((-612 . -102) T) ((-836 . -23) T) ((-827 . -23) T) ((-1155 . -287) 116697) ((-1112 . -310) 116635) ((-484 . -1051) 116532) ((-1101 . -235) 116516) ((-64 . -398) T) ((-64 . -397) T) ((-110 . -102) T) ((-484 . -640) 116458) ((-40 . -379) 116435) ((-96 . -102) T) ((-653 . -852) 116419) ((-1134 . -1082) T) ((-1061 . -21) T) ((-1061 . -25) T) ((-1054 . -1051) 116403) ((-815 . -231) 116372) ((-952 . -25) T) ((-952 . -21) T) ((-1054 . -640) 116314) ((-621 . -1057) T) ((-1119 . -370) T) ((-1027 . -310) 116252) ((-670 . -646) 116211) ((-483 . -25) T) ((-483 . -21) T) ((-387 . -1051) 116195) ((-889 . -613) 116177) ((-885 . -613) 116159) ((-525 . -516) 116092) ((-252 . -850) 116043) ((-251 . -850) 115994) ((-387 . -640) 115964) ((-871 . -639) 115941) ((-478 . -310) 115879) ((-465 . -310) 115817) ((-353 . -291) T) ((-1155 . -1253) 115801) ((-1141 . -613) 115763) ((-1141 . -614) 115724) ((-1139 . -102) T) ((-999 . -1056) 115620) ((-40 . -900) 115572) ((-1155 . -604) 115549) ((-1293 . -648) 115536) ((-866 . -492) 115513) ((-1062 . -151) 115459) ((-872 . -1219) T) ((-999 . -111) 115341) ((-341 . -717) 115325) ((-866 . -613) 115287) ((-174 . -717) 115219) ((-409 . -287) 115177) ((-872 . -558) T) ((-108 . -402) 115159) ((-84 . -386) T) ((-84 . -397) T) ((-701 . -172) T) ((-617 . -613) 115141) ((-99 . -726) T) ((-484 . -102) 114931) ((-99 . -475) T) ((-116 . -172) T) ((-1287 . -646) 114890) ((-1285 . -646) 114849) ((-1112 . -38) 114819) ((-169 . -639) 114767) ((-1054 . -102) T) ((-999 . -616) 114657) ((-871 . -25) T) ((-815 . -238) 114636) ((-871 . -21) T) ((-818 . -102) T) ((-44 . -646) 114579) ((-416 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114557) ((-127 . -1215) T) ((-121 . -1215) T) ((-817 . -1051) 114508) ((-817 . -640) 114450) ((-1034 . -131) T) ((-670 . -369) 114434) ((-152 . -646) 114393) ((-999 . -1049) T) ((-1238 . -639) 114341) ((-1103 . -613) 114323) ((-1003 . -613) 114305) ((-517 . -23) T) ((-512 . -23) T) ((-345 . -308) T) ((-510 . -23) T) ((-323 . -131) T) ((-3 . -1099) T) ((-1003 . -614) 114289) ((-999 . -243) 114268) ((-999 . -233) 114247) ((-1293 . -726) T) ((-1257 . -145) 114226) ((-833 . -1099) T) ((-1257 . -147) 114205) ((-1250 . -147) 114184) ((-1250 . -145) 114163) ((-1249 . -1219) 114142) ((-1229 . -145) 114049) ((-1229 . -147) 113956) ((-1228 . -1219) 113935) ((-381 . -131) T) ((-566 . -886) 113917) ((0 . -1099) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1099) T) ((-1251 . -648) 113822) ((-1249 . -558) 113773) ((-714 . -1111) T) ((-1228 . -558) 113724) ((-566 . -1038) 113706) ((-596 . -147) 113685) ((-596 . -145) 113664) ((-497 . -1038) 113607) ((-1134 . -1136) T) ((-87 . -386) T) ((-87 . -397) T) ((-872 . -365) T) ((-836 . -131) T) ((-827 . -131) T) ((-964 . -646) 113551) ((-714 . -23) T) ((-508 . -613) 113517) ((-504 . -613) 113499) ((-815 . -646) 113249) ((-1289 . -1057) T) ((-381 . -1059) T) ((-1026 . -1099) 113227) ((-55 . -1038) 113209) ((-901 . -34) T) ((-484 . -310) 113147) ((-593 . -102) T) ((-1155 . -614) 113108) ((-1155 . -613) 113040) ((-1177 . -1051) 112923) ((-45 . -102) T) ((-817 . -102) T) ((-1177 . -640) 112820) ((-1238 . -25) T) ((-1238 . -21) T) ((-855 . -25) T) ((-44 . -369) 112804) ((-855 . -21) T) ((-731 . -454) 112755) ((-1288 . -613) 112737) ((-1277 . -1051) 112707) ((-1054 . -310) 112645) ((-671 . -1082) T) ((-606 . -1082) T) ((-392 . -1099) T) ((-573 . -25) T) ((-573 . -21) T) ((-180 . -1082) T) ((-161 . -1082) T) ((-156 . -1082) T) ((-154 . -1082) T) ((-1277 . -640) 112615) ((-621 . -1099) T) ((-699 . -886) 112597) ((-1265 . -1215) T) ((-227 . -310) 112535) ((-144 . -370) T) ((-1046 . -614) 112477) ((-1046 . -613) 112420) ((-314 . -909) NIL) ((-1223 . -844) T) ((-699 . -1038) 112365) ((-711 . -920) T) ((-476 . -1219) 112344) ((-1172 . -454) 112323) ((-1166 . -454) 112302) ((-331 . -102) T) ((-872 . -1111) T) ((-320 . -646) 112184) ((-317 . -648) 112005) ((-314 . -648) 111934) ((-476 . -558) 111885) ((-341 . -516) 111851) ((-552 . -151) 111801) ((-40 . -308) T) ((-843 . -613) 111783) ((-701 . -291) T) ((-872 . -23) T) ((-381 . -495) T) ((-1079 . -231) 111753) ((-514 . -102) T) ((-409 . -614) 111560) ((-409 . -613) 111542) ((-264 . -613) 111524) ((-116 . -291) T) ((-1251 . -726) T) ((-1249 . -365) 111503) ((-1228 . -365) 111482) ((-1278 . -34) T) ((-1223 . -1099) T) ((-117 . -1215) T) ((-108 . -231) 111464) ((-1177 . -102) T) ((-479 . -1099) T) ((-525 . -491) 111448) ((-737 . -34) T) ((-653 . -1051) 111432) ((-484 . -38) 111402) ((-653 . -640) 111372) ((-141 . -34) T) ((-117 . -884) 111349) ((-117 . -886) NIL) ((-623 . -1038) 111232) ((-644 . -850) 111211) ((-1277 . -102) T) ((-296 . -102) T) ((-712 . -370) 111190) ((-117 . -1038) 111167) ((-392 . -717) 111151) ((-621 . -717) 111135) ((-45 . -310) 110939) ((-816 . -145) 110918) ((-816 . -147) 110897) ((-290 . -646) 110869) ((-1288 . -384) 110848) ((-819 . -850) T) ((-1267 . -1099) T) ((-1158 . -229) 110795) ((-388 . -850) 110774) ((-1257 . -1203) 110740) ((-1257 . -1200) 110706) ((-1250 . -1200) 110672) ((-517 . -131) T) ((-1250 . -1203) 110638) ((-1229 . -1200) 110604) ((-1229 . -1203) 110570) ((-1257 . -35) 110536) ((-1257 . -95) 110502) ((-635 . -613) 110471) ((-607 . -613) 110440) ((-225 . -850) T) ((-1250 . -95) 110406) ((-1250 . -35) 110372) ((-1249 . -1111) T) ((-1119 . -648) 110359) ((-1229 . -95) 110325) ((-1228 . -1111) T) ((-594 . -151) 110307) ((-1079 . -351) 110286) ((-174 . -291) T) ((-117 . -379) 110263) ((-117 . -340) 110240) ((-1229 . -35) 110206) ((-870 . -308) T) ((-314 . -794) NIL) ((-314 . -791) NIL) ((-317 . -726) 110055) ((-314 . -726) T) ((-476 . -365) 110034) ((-361 . -351) 110013) ((-355 . -351) 109992) ((-347 . -351) 109971) ((-317 . -475) 109950) ((-1249 . -23) T) ((-1228 . -23) T) ((-718 . -1111) T) ((-714 . -131) T) ((-653 . -102) T) ((-479 . -717) 109915) ((-45 . -283) 109865) ((-105 . -1099) T) ((-68 . -613) 109847) ((-970 . -102) T) ((-864 . -102) T) ((-623 . -900) 109806) ((-1289 . -1099) T) ((-383 . -1099) T) ((-82 . -1215) T) ((-1214 . -1099) T) ((-1061 . -850) T) ((-117 . -900) NIL) ((-782 . -920) 109785) ((-713 . -850) T) ((-533 . -1099) T) ((-502 . -1099) T) ((-357 . -1219) T) ((-354 . -1219) T) ((-346 . -1219) T) ((-265 . -1219) 109764) ((-247 . -1219) 109743) ((-535 . -860) T) ((-1112 . -231) 109712) ((-1157 . -828) T) ((-1141 . -1056) 109696) ((-392 . -761) T) ((-694 . -1215) T) ((-691 . -1038) 109680) ((-357 . -558) T) ((-354 . -558) T) ((-346 . -558) T) ((-265 . -558) 109611) ((-247 . -558) 109542) ((-527 . -1082) T) ((-1141 . -111) 109521) ((-455 . -744) 109491) ((-866 . -1056) 109461) ((-817 . -38) 109403) ((-694 . -884) 109385) ((-694 . -886) 109367) ((-296 . -310) 109171) ((-910 . -1219) T) ((-1155 . -289) 109148) ((-1079 . -646) 109043) ((-670 . -413) 109027) ((-866 . -111) 108992) ((-1004 . -454) T) ((-694 . -1038) 108937) ((-910 . -558) T) ((-535 . -613) 108919) ((-583 . -920) T) ((-489 . -1051) 108869) ((-476 . -1111) T) ((-520 . -920) T) ((-914 . -454) T) ((-65 . -613) 108851) ((-217 . -1051) 108801) ((-489 . -640) 108751) ((-361 . -646) 108688) ((-355 . -646) 108625) ((-347 . -646) 108562) ((-632 . -229) 108508) ((-217 . -640) 108458) ((-108 . -646) 108408) ((-476 . -23) T) ((-1119 . -794) T) ((-872 . -131) T) ((-1119 . -791) T) ((-1280 . -1282) 108387) ((-1119 . -726) T) ((-654 . -648) 108361) ((-295 . -613) 108102) ((-1141 . -616) 108020) ((-1035 . -34) T) ((-815 . -848) 107999) ((-582 . -308) T) ((-566 . -308) T) ((-497 . -308) T) ((-1289 . -717) 107969) ((-694 . -379) 107951) ((-694 . -340) 107933) ((-479 . -172) T) ((-383 . -717) 107903) ((-866 . -616) 107838) ((-871 . -850) NIL) ((-566 . -1022) T) ((-497 . -1022) T) ((-1132 . -613) 107820) ((-1112 . -238) 107799) ((-214 . -102) T) ((-1149 . -102) T) ((-71 . -613) 107781) ((-1141 . -1049) T) ((-1177 . -38) 107678) ((-858 . -613) 107660) ((-566 . -547) T) ((-670 . -1057) T) ((-731 . -949) 107613) ((-1141 . -233) 107592) ((-1081 . -1099) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-1003 . -1056) 107537) ((-905 . -102) T) ((-866 . -1049) T) ((-694 . -900) NIL) ((-357 . -330) 107521) ((-357 . -365) T) ((-354 . -330) 107505) ((-354 . -365) T) ((-346 . -330) 107489) ((-346 . -365) T) ((-489 . -102) T) ((-1277 . -38) 107459) ((-548 . -850) T) ((-525 . -687) 107409) ((-217 . -102) T) ((-1024 . -1038) 107289) ((-1003 . -111) 107218) ((-1173 . -973) 107187) ((-522 . -151) 107171) ((-1079 . -372) 107150) ((-353 . -613) 107132) ((-323 . -21) T) ((-356 . -1038) 107109) ((-323 . -25) T) ((-1172 . -973) 107071) ((-1166 . -973) 107040) ((-76 . -613) 107022) ((-1125 . -973) 106989) ((-699 . -308) T) ((-129 . -844) T) ((-910 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-910 . -330) 106976) ((-86 . -613) 106958) ((-699 . -1022) T) ((-677 . -850) T) ((-1249 . -131) T) ((-1228 . -131) T) ((-901 . -1010) 106942) ((-836 . -21) T) ((-48 . -1038) 106885) ((-836 . -25) T) ((-827 . -25) T) ((-827 . -21) T) ((-1112 . -646) 106635) ((-1287 . -1057) T) ((-551 . -102) T) ((-1285 . -1057) T) ((-654 . -726) T) ((-1103 . -618) 106538) ((-1003 . -616) 106468) ((-1288 . -1056) 106452) ((-815 . -413) 106421) ((-103 . -119) 106405) ((-129 . -1099) T) ((-52 . -1099) T) ((-926 . -613) 106387) ((-871 . -992) 106364) ((-823 . -102) T) ((-1288 . -111) 106343) ((-653 . -38) 106313) ((-573 . -850) T) ((-357 . -1111) T) ((-354 . -1111) T) ((-346 . -1111) T) ((-265 . -1111) T) ((-247 . -1111) T) ((-623 . -308) 106292) ((-1149 . -310) 106096) ((-664 . -23) T) ((-526 . -1082) T) ((-312 . -1099) T) ((-484 . -231) 106065) ((-152 . -1057) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1003 . -1049) T) ((-712 . -909) 106044) ((-1155 . -616) 106021) ((-1003 . -233) 105993) ((-1003 . -243) T) ((-117 . -1022) NIL) ((-910 . -1111) T) ((-1250 . -454) 105972) ((-1229 . -454) 105951) ((-525 . -613) 105883) ((-712 . -648) 105808) ((-409 . -1056) 105760) ((-506 . -613) 105742) ((-910 . -23) T) ((-489 . -310) NIL) ((-1288 . -616) 105698) ((-476 . -131) T) ((-217 . -310) NIL) ((-409 . -111) 105636) ((-815 . -1057) 105566) ((-737 . -1097) 105550) ((-1249 . -495) 105516) ((-1228 . -495) 105482) ((-550 . -844) T) ((-141 . -1097) 105464) ((-479 . -291) T) ((-1288 . -1049) T) ((-1220 . -102) T) ((-1062 . -102) T) ((-843 . -616) 105332) ((-502 . -516) NIL) ((-484 . -238) 105311) ((-409 . -616) 105209) ((-963 . -1051) 105092) ((-735 . -1051) 105062) ((-963 . -640) 104959) ((-1171 . -145) 104938) ((-735 . -640) 104908) ((-455 . -1051) 104878) ((-1171 . -147) 104857) ((-1124 . -147) 104836) ((-1124 . -145) 104815) ((-635 . -1056) 104799) ((-607 . -1056) 104783) ((-455 . -640) 104753) ((-1173 . -1256) 104737) ((-1173 . -1243) 104714) ((-670 . -1099) T) ((-670 . -1053) 104654) ((-1172 . -1248) 104615) ((-550 . -1099) T) ((-489 . -1150) T) ((-1172 . -1243) 104585) ((-1172 . -1246) 104569) ((-1166 . -1227) 104530) ((-217 . -1150) T) ((-345 . -920) T) ((-818 . -267) 104514) ((-635 . -111) 104493) ((-607 . -111) 104472) ((-1166 . -1243) 104449) ((-843 . -1049) 104428) ((-1166 . -1225) 104412) ((-517 . -25) T) ((-497 . -303) T) ((-513 . -23) T) ((-512 . -25) T) ((-510 . -25) T) ((-509 . -23) T) ((-420 . -1051) 104386) ((-409 . -1049) T) ((-320 . -1057) T) ((-694 . -308) T) ((-420 . -640) 104360) ((-108 . -848) T) ((-712 . -726) T) ((-409 . -243) T) ((-409 . -233) 104339) ((-489 . -38) 104289) ((-217 . -38) 104239) ((-476 . -495) 104205) ((-1222 . -370) T) ((-1157 . -1143) T) ((-1100 . -102) T) ((-701 . -613) 104187) ((-701 . -614) 104102) ((-714 . -21) T) ((-714 . -25) T) ((-1134 . -102) T) ((-484 . -646) 103852) ((-134 . -613) 103834) ((-116 . -613) 103816) ((-157 . -25) T) ((-1287 . -1099) T) ((-872 . -639) 103764) ((-1285 . -1099) T) ((-963 . -102) T) ((-735 . -102) T) ((-715 . -102) T) ((-455 . -102) T) ((-816 . -454) 103715) ((-44 . -1099) T) ((-1087 . -850) T) ((-1062 . -310) 103566) ((-664 . -131) T) ((-1054 . -646) 103535) ((-670 . -717) 103519) ((-290 . -1057) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -646) 103488) ((-420 . -102) T) ((-152 . -1099) T) ((-45 . -229) 103438) ((-799 . -1051) 103422) ((-958 . -850) 103401) ((-999 . -648) 103339) ((-799 . -640) 103323) ((-240 . -1272) 103293) ((-1024 . -308) T) ((-295 . -1056) 103214) ((-910 . -131) T) ((-40 . -920) T) ((-489 . -402) 103196) ((-356 . -308) T) ((-217 . -402) 103178) ((-1079 . -413) 103162) ((-295 . -111) 103078) ((-1182 . -850) T) ((-1181 . -850) T) ((-872 . -25) T) ((-872 . -21) T) ((-341 . -613) 103060) ((-1251 . -47) 103004) ((-225 . -147) T) ((-174 . -613) 102986) ((-1112 . -848) 102965) ((-774 . -613) 102947) ((-128 . -850) T) ((-608 . -235) 102894) ((-477 . -235) 102844) ((-1287 . -717) 102814) ((-48 . -308) T) ((-1285 . -717) 102784) ((-65 . -616) 102713) ((-964 . -1099) T) ((-815 . -1099) 102503) ((-313 . -102) T) ((-901 . -1215) T) ((-48 . -1022) T) ((-1228 . -639) 102411) ((-689 . -102) 102389) ((-44 . -717) 102373) ((-552 . -102) T) ((-295 . -616) 102304) ((-67 . -385) T) ((-67 . -397) T) ((-662 . -23) T) ((-817 . -646) 102240) ((-670 . -761) T) ((-1212 . -1099) 102218) ((-353 . -1056) 102163) ((-675 . -1099) 102141) ((-1061 . -147) T) ((-952 . -147) 102120) ((-952 . -145) 102099) ((-799 . -102) T) ((-152 . -717) 102083) ((-483 . -147) 102062) ((-483 . -145) 102041) ((-353 . -111) 101970) ((-1079 . -1057) T) ((-323 . -850) 101949) ((-1257 . -973) 101918) ((-627 . -1099) T) ((-1250 . -973) 101880) ((-513 . -131) T) ((-509 . -131) T) ((-296 . -229) 101830) ((-361 . -1057) T) ((-355 . -1057) T) ((-347 . -1057) T) ((-295 . -1049) 101772) ((-1229 . -973) 101741) ((-381 . -850) T) ((-108 . -1057) T) ((-999 . -726) T) ((-870 . -920) T) ((-843 . -795) 101720) ((-843 . -792) 101699) ((-420 . -310) 101638) ((-470 . -102) T) ((-596 . -973) 101607) ((-320 . -1099) T) ((-409 . -795) 101586) ((-409 . -792) 101565) ((-502 . -491) 101547) ((-1251 . -1038) 101513) ((-1249 . -21) T) ((-1249 . -25) T) ((-1228 . -21) T) ((-1228 . -25) T) ((-815 . -717) 101455) ((-353 . -616) 101385) ((-699 . -406) T) ((-1278 . -1215) T) ((-606 . -102) T) ((-1112 . -413) 101354) ((-1003 . -370) NIL) ((-671 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1177 . -646) 101264) ((-737 . -1215) T) ((-731 . -1051) 101107) ((-44 . -761) T) ((-731 . -640) 100956) ((-594 . -102) T) ((-77 . -398) T) ((-77 . -397) T) ((-653 . -656) 100940) ((-141 . -1215) T) ((-871 . -147) T) ((-871 . -145) NIL) ((-1214 . -93) T) ((-353 . -1049) T) ((-70 . -385) T) ((-70 . -397) T) ((-1164 . -102) T) ((-670 . -516) 100873) ((-1277 . -646) 100818) ((-689 . -310) 100756) ((-963 . -38) 100653) ((-1179 . -613) 100635) ((-735 . -38) 100605) ((-552 . -310) 100409) ((-1173 . -1051) 100292) ((-317 . -1215) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1215) T) ((-290 . -1099) T) ((-1172 . -1051) 100127) ((-1166 . -1051) 99917) ((-1125 . -1051) 99800) ((-1173 . -640) 99697) ((-1172 . -640) 99538) ((-711 . -1219) T) ((-1166 . -640) 99334) ((-1155 . -651) 99318) ((-1125 . -640) 99215) ((-1209 . -558) 99194) ((-711 . -558) T) ((-317 . -884) 99178) ((-317 . -886) 99103) ((-314 . -884) 99064) ((-314 . -886) NIL) ((-799 . -310) 99029) ((-320 . -717) 98870) ((-325 . -324) 98847) ((-487 . -102) T) ((-476 . -25) T) ((-476 . -21) T) ((-420 . -38) 98821) ((-317 . -1038) 98484) ((-225 . -1200) T) ((-225 . -1203) T) ((-3 . -613) 98466) ((-314 . -1038) 98396) ((-2 . -1099) T) ((-2 . |RecordCategory|) T) ((-833 . -613) 98378) ((-1112 . -1057) 98308) ((-582 . -920) T) ((-566 . -820) T) ((-566 . -920) T) ((-497 . -920) T) ((-136 . -1038) 98292) ((-225 . -95) T) ((-169 . -147) 98271) ((-75 . -443) T) ((0 . -613) 98253) ((-75 . -397) T) ((-169 . -145) 98204) ((-225 . -35) T) ((-49 . -613) 98186) ((-479 . -1057) T) ((-489 . -231) 98168) ((-486 . -968) 98152) ((-484 . -848) 98131) ((-217 . -231) 98113) ((-81 . -443) T) ((-81 . -397) T) ((-1145 . -34) T) ((-815 . -172) 98092) ((-731 . -102) T) ((-653 . -646) 98051) ((-1026 . -613) 98018) ((-502 . -287) 97993) ((-317 . -379) 97962) ((-314 . -379) 97923) ((-314 . -340) 97884) ((-1084 . -613) 97866) ((-816 . -949) 97813) ((-662 . -131) T) ((-1238 . -145) 97792) ((-1238 . -147) 97771) ((-1173 . -102) T) ((-1172 . -102) T) ((-1166 . -102) T) ((-1158 . -1099) T) ((-1125 . -102) T) ((-222 . -34) T) ((-290 . -717) 97758) ((-1158 . -610) 97734) ((-594 . -310) NIL) ((-486 . -1099) 97712) ((-392 . -613) 97694) ((-512 . -850) T) ((-1149 . -229) 97644) ((-1257 . -1256) 97628) ((-1257 . -1243) 97605) ((-1250 . -1248) 97566) ((-1250 . -1243) 97536) ((-1250 . -1246) 97520) ((-1229 . -1227) 97481) ((-1229 . -1243) 97458) ((-621 . -613) 97440) ((-1229 . -1225) 97424) ((-699 . -920) T) ((-1173 . -285) 97390) ((-1172 . -285) 97356) ((-1166 . -285) 97322) ((-1079 . -1099) T) ((-1060 . -1099) T) ((-48 . -303) T) ((-317 . -900) 97288) ((-314 . -900) NIL) ((-1060 . -1067) 97267) ((-1119 . -886) 97249) ((-799 . -38) 97233) ((-265 . -639) 97181) ((-247 . -639) 97129) ((-701 . -1056) 97116) ((-596 . -1243) 97093) ((-1125 . -285) 97059) ((-320 . -172) 96990) ((-361 . -1099) T) ((-355 . -1099) T) ((-347 . -1099) T) ((-502 . -19) 96972) ((-1119 . -1038) 96954) ((-1101 . -151) 96938) ((-108 . -1099) T) ((-116 . -1056) 96925) ((-711 . -365) T) ((-502 . -604) 96900) ((-701 . -111) 96885) ((-438 . -102) T) ((-250 . -102) T) ((-45 . -1148) 96835) ((-116 . -111) 96820) ((-635 . -720) T) ((-607 . -720) T) ((-1267 . -613) 96802) ((-1223 . -613) 96784) ((-1221 . -850) T) ((-815 . -516) 96717) ((-1035 . -1215) T) ((-240 . -1051) 96614) ((-1209 . -1111) T) ((-1209 . -23) T) ((-943 . -151) 96598) ((-1171 . -454) 96529) ((-1166 . -310) 96414) ((-240 . -640) 96356) ((-1165 . -1099) T) ((-1157 . -1099) T) ((-1141 . -648) 96330) ((-527 . -102) T) ((-522 . -102) 96280) ((-1125 . -310) 96267) ((-1124 . -454) 96218) ((-1086 . -1219) 96197) ((-782 . -1219) 96176) ((-780 . -1219) 96155) ((-62 . -1215) T) ((-479 . -613) 96107) ((-479 . -614) 96029) ((-1086 . -558) 95960) ((-994 . -1099) T) ((-782 . -558) 95871) ((-780 . -558) 95802) ((-484 . -413) 95771) ((-623 . -920) 95750) ((-456 . -1219) 95729) ((-731 . -310) 95716) ((-701 . -616) 95688) ((-400 . -613) 95670) ((-675 . -516) 95603) ((-664 . -25) T) ((-664 . -21) T) ((-456 . -558) 95534) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -920) T) ((-117 . -820) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -397) T) ((-134 . -616) 95516) ((-116 . -616) 95488) ((-1079 . -717) 95356) ((-1004 . -1051) 95306) ((-1004 . -640) 95256) ((-943 . -980) 95240) ((-914 . -640) 95192) ((-914 . -1051) 95144) ((-910 . -21) T) ((-910 . -25) T) ((-872 . -850) 95095) ((-866 . -648) 95055) ((-711 . -1111) T) ((-711 . -23) T) ((-290 . -172) T) ((-701 . -1049) T) ((-312 . -93) T) ((-701 . -233) T) ((-647 . -1099) 95033) ((-632 . -610) 95008) ((-632 . -1099) T) ((-583 . -1219) T) ((-583 . -558) T) ((-520 . -1219) T) ((-520 . -558) T) ((-489 . -646) 94958) ((-429 . -1051) 94942) ((-429 . -640) 94926) ((-361 . -717) 94878) ((-355 . -717) 94830) ((-341 . -1056) 94814) ((-347 . -717) 94766) ((-341 . -111) 94745) ((-174 . -1056) 94677) ((-217 . -646) 94627) ((-174 . -111) 94538) ((-108 . -717) 94488) ((-275 . -1099) T) ((-274 . -1099) T) ((-273 . -1099) T) ((-272 . -1099) T) ((-271 . -1099) T) ((-270 . -1099) T) ((-269 . -1099) T) ((-212 . -1099) T) ((-211 . -1099) T) ((-169 . -1203) 94466) ((-169 . -1200) 94444) ((-209 . -1099) T) ((-208 . -1099) T) ((-116 . -1049) T) ((-207 . -1099) T) ((-206 . -1099) T) ((-203 . -1099) T) ((-202 . -1099) T) ((-201 . -1099) T) ((-200 . -1099) T) ((-199 . -1099) T) ((-198 . -1099) T) ((-197 . -1099) T) ((-196 . -1099) T) ((-195 . -1099) T) ((-194 . -1099) T) ((-193 . -1099) T) ((-240 . -102) 94234) ((-169 . -35) 94212) ((-169 . -95) 94190) ((-654 . -1038) 94086) ((-484 . -1057) 94016) ((-1112 . -1099) 93806) ((-1141 . -34) T) ((-670 . -491) 93790) ((-73 . -1215) T) ((-105 . -613) 93772) ((-1289 . -613) 93754) ((-383 . -613) 93736) ((-341 . -616) 93688) ((-174 . -616) 93605) ((-1214 . -492) 93586) ((-731 . -38) 93435) ((-573 . -1203) T) ((-573 . -1200) T) ((-533 . -613) 93417) ((-522 . -310) 93355) ((-502 . -613) 93337) ((-502 . -614) 93319) ((-1214 . -613) 93285) ((-1166 . -1150) NIL) ((-1027 . -1070) 93254) ((-1027 . -1099) T) ((-1004 . -102) T) ((-971 . -102) T) ((-914 . -102) T) ((-893 . -1038) 93231) ((-1141 . -726) T) ((-1003 . -648) 93176) ((-478 . -1099) T) ((-465 . -1099) T) ((-587 . -23) T) ((-573 . -35) T) ((-573 . -95) T) ((-429 . -102) T) ((-1062 . -229) 93122) ((-1173 . -38) 93019) ((-866 . -726) T) ((-694 . -920) T) ((-513 . -25) T) ((-509 . -21) T) ((-509 . -25) T) ((-1172 . -38) 92860) ((-341 . -1049) T) ((-1166 . -38) 92656) ((-1079 . -172) T) ((-174 . -1049) T) ((-1125 . -38) 92553) ((-712 . -47) 92530) ((-361 . -172) T) ((-355 . -172) T) ((-521 . -57) 92504) ((-499 . -57) 92454) ((-353 . -1284) 92431) ((-225 . -454) T) ((-320 . -291) 92382) ((-347 . -172) T) ((-174 . -243) T) ((-1228 . -850) 92281) ((-108 . -172) T) ((-872 . -992) 92265) ((-658 . -1111) T) ((-583 . -365) T) ((-583 . -330) 92252) ((-520 . -330) 92229) ((-520 . -365) T) ((-317 . -308) 92208) ((-314 . -308) T) ((-602 . -850) 92187) ((-1112 . -717) 92129) ((-522 . -283) 92113) ((-658 . -23) T) ((-420 . -231) 92097) ((-314 . -1022) NIL) ((-338 . -23) T) ((-103 . -1010) 92081) ((-45 . -36) 92060) ((-612 . -1099) T) ((-353 . -370) T) ((-526 . -102) T) ((-497 . -27) T) ((-240 . -310) 91998) ((-1086 . -1111) T) ((-1288 . -648) 91972) ((-782 . -1111) T) ((-780 . -1111) T) ((-456 . -1111) T) ((-1061 . -454) T) ((-952 . -454) 91923) ((-1114 . -1082) T) ((-110 . -1099) T) ((-1086 . -23) T) ((-817 . -1057) T) ((-782 . -23) T) ((-780 . -23) T) ((-483 . -454) 91874) ((-1158 . -516) 91657) ((-383 . -384) 91636) ((-1177 . -413) 91620) ((-463 . -23) T) ((-456 . -23) T) ((-96 . -1099) T) ((-486 . -516) 91553) ((-1257 . -1051) 91436) ((-1257 . -640) 91333) ((-1250 . -640) 91174) ((-1250 . -1051) 91009) ((-290 . -291) T) ((-1229 . -1051) 90799) ((-1081 . -613) 90781) ((-1081 . -614) 90762) ((-409 . -909) 90741) ((-1229 . -640) 90537) ((-50 . -1111) T) ((-1209 . -131) T) ((-1024 . -920) T) ((-1003 . -726) T) ((-843 . -648) 90510) ((-712 . -886) NIL) ((-597 . -1051) 90483) ((-583 . -1111) T) ((-520 . -1111) T) ((-596 . -1051) 90366) ((-1166 . -402) 90318) ((-1004 . -310) NIL) ((-815 . -491) 90302) ((-597 . -640) 90275) ((-356 . -920) T) ((-596 . -640) 90172) ((-1155 . -34) T) ((-409 . -648) 90124) ((-50 . -23) T) ((-711 . -131) T) ((-712 . -1038) 90004) ((-583 . -23) T) ((-108 . -516) NIL) ((-520 . -23) T) ((-169 . -411) 89975) ((-1139 . -1099) T) ((-1280 . -1279) 89959) ((-701 . -795) T) ((-701 . -792) T) ((-1119 . -308) T) ((-381 . -147) T) ((-281 . -613) 89941) ((-1228 . -992) 89911) ((-48 . -920) T) ((-675 . -491) 89895) ((-252 . -1272) 89865) ((-251 . -1272) 89835) ((-1175 . -850) T) ((-1112 . -172) 89814) ((-1119 . -1022) T) ((-1046 . -34) T) ((-836 . -147) 89793) ((-836 . -145) 89772) ((-737 . -107) 89756) ((-612 . -132) T) ((-484 . -1099) 89546) ((-1177 . -1057) T) ((-871 . -454) T) ((-85 . -1215) T) ((-240 . -38) 89516) ((-141 . -107) 89498) ((-712 . -379) 89482) ((-833 . -616) 89350) ((-1288 . -726) T) ((-1277 . -1057) T) ((-1119 . -547) T) ((-581 . -102) T) ((-129 . -492) 89332) ((-1257 . -102) T) ((-392 . -1056) 89316) ((-1250 . -102) T) ((-1171 . -949) 89285) ((-129 . -613) 89252) ((-52 . -613) 89234) ((-1124 . -949) 89201) ((-653 . -413) 89185) ((-1229 . -102) T) ((-1157 . -516) NIL) ((-621 . -1056) 89169) ((-662 . -25) T) ((-662 . -21) T) ((-963 . -646) 89079) ((-735 . -646) 89024) ((-715 . -646) 88996) ((-392 . -111) 88975) ((-222 . -255) 88959) ((-1054 . -1053) 88899) ((-1054 . -1099) T) ((-1004 . -1150) T) ((-818 . -1099) T) ((-455 . -646) 88814) ((-345 . -1219) T) ((-635 . -648) 88798) ((-621 . -111) 88777) ((-607 . -648) 88761) ((-597 . -102) T) ((-312 . -492) 88742) ((-587 . -131) T) ((-596 . -102) T) ((-416 . -1099) T) ((-387 . -1099) T) ((-312 . -613) 88708) ((-227 . -1099) 88686) ((-647 . -516) 88619) ((-632 . -516) 88463) ((-833 . -1049) 88442) ((-644 . -151) 88426) ((-345 . -558) T) ((-712 . -900) 88369) ((-552 . -229) 88319) ((-1257 . -285) 88285) ((-1250 . -285) 88251) ((-1079 . -291) 88202) ((-489 . -848) T) ((-223 . -1111) T) ((-1229 . -285) 88168) ((-1209 . -495) 88134) ((-1004 . -38) 88084) ((-217 . -848) T) ((-420 . -646) 88043) ((-914 . -38) 87995) ((-843 . -794) 87974) ((-843 . -791) 87953) ((-843 . -726) 87932) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -454) 87863) ((-429 . -38) 87847) ((-108 . -291) T) ((-223 . -23) T) ((-409 . -794) 87826) ((-409 . -791) 87805) ((-409 . -726) T) ((-502 . -289) 87780) ((-479 . -1056) 87745) ((-658 . -131) T) ((-621 . -616) 87714) ((-1112 . -516) 87647) ((-338 . -131) T) ((-169 . -404) 87626) ((-484 . -717) 87568) ((-815 . -287) 87545) ((-479 . -111) 87501) ((-653 . -1057) T) ((-816 . -1051) 87344) ((-1276 . -1082) T) ((-1238 . -454) 87275) ((-816 . -640) 87124) ((-1275 . -1082) T) ((-1086 . -131) T) ((-1054 . -717) 87066) ((-782 . -131) T) ((-780 . -131) T) ((-573 . -454) T) ((-1027 . -516) 86999) ((-621 . -1049) T) ((-593 . -1099) T) ((-535 . -173) T) ((-463 . -131) T) ((-456 . -131) T) ((-45 . -1099) T) ((-387 . -717) 86969) ((-817 . -1099) T) ((-478 . -516) 86902) ((-465 . -516) 86835) ((-455 . -369) 86805) ((-45 . -610) 86784) ((-317 . -303) T) ((-479 . -616) 86734) ((-1229 . -310) 86619) ((-670 . -613) 86581) ((-59 . -850) 86560) ((-1004 . -402) 86542) ((-550 . -613) 86524) ((-799 . -646) 86483) ((-815 . -604) 86460) ((-518 . -850) 86439) ((-498 . -850) 86418) ((-40 . -1219) T) ((-999 . -1038) 86314) ((-50 . -131) T) ((-583 . -131) T) ((-520 . -131) T) ((-295 . -648) 86174) ((-345 . -330) 86151) ((-345 . -365) T) ((-323 . -324) 86128) ((-320 . -287) 86113) ((-40 . -558) T) ((-381 . -1200) T) ((-381 . -1203) T) ((-1035 . -1191) 86088) ((-1188 . -235) 86038) ((-1166 . -231) 85990) ((-331 . -1099) T) ((-381 . -95) T) ((-381 . -35) T) ((-1035 . -107) 85936) ((-479 . -1049) T) ((-1289 . -1056) 85920) ((-481 . -235) 85870) ((-1158 . -491) 85804) ((-1280 . -1051) 85788) ((-383 . -1056) 85772) ((-1280 . -640) 85742) ((-479 . -243) T) ((-816 . -102) T) ((-714 . -147) 85721) ((-714 . -145) 85700) ((-486 . -491) 85684) ((-487 . -337) 85653) ((-1289 . -111) 85632) ((-514 . -1099) T) ((-484 . -172) 85611) ((-999 . -379) 85595) ((-415 . -102) T) ((-383 . -111) 85574) ((-999 . -340) 85558) ((-280 . -983) 85542) ((-279 . -983) 85526) ((-1287 . -613) 85508) ((-1285 . -613) 85490) ((-110 . -516) NIL) ((-1171 . -1241) 85474) ((-854 . -852) 85458) ((-1177 . -1099) T) ((-103 . -1215) T) ((-952 . -949) 85419) ((-817 . -717) 85361) ((-1229 . -1150) NIL) ((-483 . -949) 85306) ((-1061 . -143) T) ((-60 . -102) 85284) ((-44 . -613) 85266) ((-78 . -613) 85248) ((-353 . -648) 85193) ((-1277 . -1099) T) ((-513 . -850) T) ((-345 . -1111) T) ((-296 . -1099) T) ((-999 . -900) 85152) ((-296 . -610) 85131) ((-1289 . -616) 85080) ((-1257 . -38) 84977) ((-1250 . -38) 84818) ((-1229 . -38) 84614) ((-489 . -1057) T) ((-383 . -616) 84598) ((-217 . -1057) T) ((-345 . -23) T) ((-152 . -613) 84580) ((-833 . -795) 84559) ((-833 . -792) 84538) ((-1214 . -616) 84519) ((-597 . -38) 84492) ((-596 . -38) 84389) ((-870 . -558) T) ((-223 . -131) T) ((-320 . -1002) 84355) ((-79 . -613) 84337) ((-712 . -308) 84316) ((-295 . -726) 84218) ((-824 . -102) T) ((-864 . -844) T) ((-295 . -475) 84197) ((-1280 . -102) T) ((-40 . -365) T) ((-872 . -147) 84176) ((-487 . -646) 84158) ((-872 . -145) 84137) ((-1157 . -491) 84119) ((-1289 . -1049) T) ((-484 . -516) 84052) ((-1145 . -1215) T) ((-964 . -613) 84034) ((-647 . -491) 84018) ((-632 . -491) 83949) ((-815 . -613) 83680) ((-48 . -27) T) ((-1177 . -717) 83577) ((-653 . -1099) T) ((-861 . -860) T) ((-438 . -366) 83551) ((-731 . -646) 83461) ((-1101 . -102) T) ((-970 . -1099) T) ((-864 . -1099) T) ((-816 . -310) 83448) ((-535 . -529) T) ((-535 . -578) T) ((-1285 . -384) 83420) ((-1054 . -516) 83353) ((-1158 . -287) 83329) ((-240 . -231) 83298) ((-252 . -1051) 83195) ((-251 . -1051) 83092) ((-1277 . -717) 83062) ((-1165 . -93) T) ((-994 . -93) T) ((-817 . -172) 83041) ((-252 . -640) 82983) ((-251 . -640) 82925) ((-1212 . -492) 82902) ((-227 . -516) 82835) ((-621 . -795) 82814) ((-621 . -792) 82793) ((-1212 . -613) 82705) ((-222 . -1215) T) ((-675 . -613) 82637) ((-1173 . -646) 82547) ((-1155 . -1010) 82531) ((-943 . -102) 82481) ((-353 . -726) T) ((-861 . -613) 82463) ((-1172 . -646) 82345) ((-1166 . -646) 82182) ((-1125 . -646) 82092) ((-1229 . -402) 82044) ((-1112 . -491) 82028) ((-60 . -310) 81966) ((-332 . -102) T) ((-1209 . -21) T) ((-1209 . -25) T) ((-40 . -1111) T) ((-711 . -21) T) ((-627 . -613) 81948) ((-517 . -324) 81927) ((-711 . -25) T) ((-441 . -102) T) ((-108 . -287) NIL) ((-921 . -1111) T) ((-40 . -23) T) ((-771 . -1111) T) ((-566 . -1219) T) ((-497 . -1219) T) ((-320 . -613) 81909) ((-1004 . -231) 81891) ((-169 . -166) 81875) ((-582 . -558) T) ((-566 . -558) T) ((-497 . -558) T) ((-771 . -23) T) ((-1249 . -147) 81854) ((-1158 . -604) 81830) ((-1249 . -145) 81809) ((-1027 . -491) 81793) ((-1228 . -145) 81718) ((-1228 . -147) 81643) ((-1280 . -1286) 81622) ((-478 . -491) 81606) ((-465 . -491) 81590) ((-525 . -34) T) ((-653 . -717) 81560) ((-112 . -967) T) ((-662 . -850) 81539) ((-1177 . -172) 81490) ((-367 . -102) T) ((-240 . -238) 81469) ((-252 . -102) T) ((-251 . -102) T) ((-1238 . -949) 81438) ((-245 . -850) 81417) ((-816 . -38) 81266) ((-45 . -516) 81058) ((-1157 . -287) 81033) ((-214 . -1099) T) ((-1149 . -1099) T) ((-1149 . -610) 81012) ((-587 . -25) T) ((-587 . -21) T) ((-1101 . -310) 80950) ((-963 . -413) 80934) ((-699 . -1219) T) ((-632 . -287) 80909) ((-1086 . -639) 80857) ((-782 . -639) 80805) ((-780 . -639) 80753) ((-345 . -131) T) ((-290 . -613) 80735) ((-905 . -1099) T) ((-699 . -558) T) ((-129 . -616) 80717) ((-870 . -1111) T) ((-456 . -639) 80665) ((-905 . -903) 80649) ((-381 . -454) T) ((-489 . -1099) T) ((-943 . -310) 80587) ((-701 . -648) 80574) ((-551 . -844) T) ((-217 . -1099) T) ((-317 . -920) 80553) ((-314 . -920) T) ((-314 . -820) NIL) ((-392 . -720) T) ((-870 . -23) T) ((-116 . -648) 80540) ((-476 . -145) 80519) ((-420 . -413) 80503) ((-476 . -147) 80482) ((-110 . -491) 80464) ((-312 . -616) 80445) ((-2 . -613) 80427) ((-186 . -102) T) ((-1157 . -19) 80409) ((-1157 . -604) 80384) ((-658 . -21) T) ((-658 . -25) T) ((-594 . -1143) T) ((-1112 . -287) 80361) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -646) 80111) ((-497 . -365) T) ((-1280 . -38) 80081) ((-1171 . -1051) 79904) ((-1141 . -1215) T) ((-1124 . -1051) 79747) ((-854 . -1051) 79731) ((-632 . -604) 79706) ((-1171 . -640) 79535) ((-1124 . -640) 79384) ((-854 . -640) 79354) ((-1287 . -1056) 79338) ((-1285 . -1056) 79322) ((-551 . -1099) T) ((-1086 . -25) T) ((-1086 . -21) T) ((-533 . -792) T) ((-533 . -795) T) ((-117 . -1219) T) ((-963 . -1057) T) ((-623 . -558) T) ((-782 . -25) T) ((-782 . -21) T) ((-780 . -21) T) ((-780 . -25) T) ((-735 . -1057) T) ((-715 . -1057) T) ((-670 . -1056) 79306) ((-519 . -1082) T) ((-463 . -25) T) ((-117 . -558) T) ((-463 . -21) T) ((-456 . -25) T) ((-456 . -21) T) ((-1249 . -1200) 79272) ((-1249 . -1203) 79238) ((-1141 . -1038) 79134) ((-817 . -291) 79113) ((-1249 . -95) 79079) ((-823 . -1099) T) ((-1232 . -102) 79057) ((-966 . -967) T) ((-670 . -111) 79036) ((-296 . -516) 78828) ((-1229 . -231) 78780) ((-1228 . -1200) 78746) ((-1228 . -1203) 78712) ((-252 . -310) 78650) ((-251 . -310) 78588) ((-1223 . -370) T) ((-1158 . -614) NIL) ((-1158 . -613) 78570) ((-1220 . -844) T) ((-1141 . -379) 78554) ((-1119 . -820) T) ((-96 . -93) T) ((-1119 . -920) T) ((-1112 . -604) 78531) ((-1079 . -614) 78515) ((-1004 . -646) 78465) ((-914 . -646) 78402) ((-815 . -289) 78379) ((-486 . -613) 78311) ((-608 . -151) 78258) ((-489 . -717) 78208) ((-420 . -1057) T) ((-484 . -491) 78192) ((-429 . -646) 78151) ((-328 . -850) 78130) ((-341 . -648) 78104) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -717) 78054) ((-169 . -724) 78025) ((-174 . -648) 77957) ((-583 . -21) T) ((-583 . -25) T) ((-520 . -25) T) ((-520 . -21) T) ((-477 . -151) 77907) ((-1079 . -613) 77889) ((-1060 . -613) 77871) ((-993 . -102) T) ((-862 . -102) T) ((-799 . -413) 77835) ((-40 . -131) T) ((-699 . -365) T) ((-701 . -726) T) ((-701 . -794) T) ((-701 . -791) T) ((-212 . -895) T) ((-582 . -1111) T) ((-566 . -1111) T) ((-497 . -1111) T) ((-361 . -613) 77817) ((-355 . -613) 77799) ((-347 . -613) 77781) ((-66 . -398) T) ((-66 . -397) T) ((-108 . -614) 77711) ((-108 . -613) 77653) ((-211 . -895) T) ((-958 . -151) 77637) ((-771 . -131) T) ((-670 . -616) 77555) ((-134 . -726) T) ((-116 . -726) T) ((-1249 . -35) 77521) ((-1054 . -491) 77505) ((-582 . -23) T) ((-566 . -23) T) ((-497 . -23) T) ((-1228 . -95) 77471) ((-1228 . -35) 77437) ((-1171 . -102) T) ((-1124 . -102) T) ((-854 . -102) T) ((-227 . -491) 77421) ((-1287 . -111) 77400) ((-1285 . -111) 77379) ((-44 . -1056) 77363) ((-1287 . -616) 77309) ((-1238 . -1241) 77293) ((-855 . -852) 77277) ((-1287 . -1049) T) ((-1177 . -291) 77256) ((-110 . -287) 77231) ((-1285 . -616) 77160) ((-128 . -151) 77142) ((-1141 . -900) 77101) ((-44 . -111) 77080) ((-1220 . -1099) T) ((-1180 . -1260) T) ((-1165 . -492) 77061) ((-1165 . -613) 77027) ((-670 . -1049) T) ((-1157 . -614) NIL) ((-1157 . -613) 77009) ((-1062 . -610) 76984) ((-1062 . -1099) T) ((-994 . -492) 76965) ((-74 . -443) T) ((-74 . -397) T) ((-994 . -613) 76931) ((-152 . -1056) 76915) ((-670 . -233) 76894) ((-573 . -556) 76878) ((-357 . -147) 76857) ((-357 . -145) 76808) ((-354 . -147) 76787) ((-354 . -145) 76738) ((-346 . -147) 76717) ((-346 . -145) 76668) ((-265 . -145) 76647) ((-265 . -147) 76626) ((-252 . -38) 76596) ((-247 . -147) 76575) ((-117 . -365) T) ((-247 . -145) 76554) ((-251 . -38) 76524) ((-152 . -111) 76503) ((-1003 . -1038) 76391) ((-1166 . -848) NIL) ((-694 . -1219) T) ((-799 . -1057) T) ((-699 . -1111) T) ((-1285 . -1049) T) ((-1155 . -1215) T) ((-1003 . -379) 76368) ((-910 . -145) T) ((-910 . -147) 76350) ((-870 . -131) T) ((-815 . -1056) 76247) ((-699 . -23) T) ((-694 . -558) T) ((-225 . -1051) 76212) ((-647 . -613) 76144) ((-647 . -614) 76105) ((-632 . -614) NIL) ((-632 . -613) 76087) ((-489 . -172) T) ((-225 . -640) 76052) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-476 . -1203) 76018) ((-476 . -1200) 75984) ((-275 . -613) 75966) ((-274 . -613) 75948) ((-273 . -613) 75930) ((-272 . -613) 75912) ((-271 . -613) 75894) ((-502 . -651) 75876) ((-270 . -613) 75858) ((-341 . -726) T) ((-269 . -613) 75840) ((-110 . -19) 75822) ((-174 . -726) T) ((-502 . -375) 75804) ((-212 . -613) 75786) ((-522 . -1148) 75770) ((-502 . -123) T) ((-110 . -604) 75745) ((-211 . -613) 75727) ((-476 . -35) 75693) ((-476 . -95) 75659) ((-209 . -613) 75641) ((-208 . -613) 75623) ((-207 . -613) 75605) ((-206 . -613) 75587) ((-203 . -613) 75569) ((-202 . -613) 75551) ((-201 . -613) 75533) ((-200 . -613) 75515) ((-199 . -613) 75497) ((-198 . -613) 75479) ((-197 . -613) 75461) ((-538 . -1102) 75413) ((-196 . -613) 75395) ((-195 . -613) 75377) ((-45 . -491) 75314) ((-194 . -613) 75296) ((-193 . -613) 75278) ((-152 . -616) 75247) ((-1114 . -102) T) ((-815 . -111) 75137) ((-644 . -102) 75087) ((-484 . -287) 75064) ((-1112 . -613) 74795) ((-1100 . -1099) T) ((-1046 . -1215) T) ((-1288 . -1038) 74779) ((-1061 . -1051) 74766) ((-1171 . -310) 74753) ((-952 . -1051) 74596) ((-1134 . -1099) T) ((-1124 . -310) 74583) ((-623 . -1111) T) ((-1061 . -640) 74570) ((-1095 . -1082) T) ((-952 . -640) 74419) ((-1089 . -1082) T) ((-483 . -1051) 74262) ((-1072 . -1082) T) ((-1065 . -1082) T) ((-1036 . -1082) T) ((-1019 . -1082) T) ((-117 . -1111) T) ((-483 . -640) 74111) ((-819 . -102) T) ((-626 . -1082) T) ((-623 . -23) T) ((-1149 . -516) 73903) ((-485 . -1082) T) ((-388 . -102) T) ((-325 . -102) T) ((-218 . -1082) T) ((-963 . -1099) T) ((-152 . -1049) T) ((-731 . -413) 73887) ((-117 . -23) T) ((-1003 . -900) 73839) ((-735 . -1099) T) ((-715 . -1099) T) ((-455 . -1099) T) ((-409 . -1215) T) ((-317 . -432) 73823) ((-593 . -93) T) ((-1257 . -646) 73733) ((-1027 . -614) 73694) ((-1024 . -1219) T) ((-225 . -102) T) ((-1027 . -613) 73656) ((-1250 . -646) 73538) ((-816 . -231) 73522) ((-815 . -616) 73252) ((-1229 . -646) 73089) ((-1024 . -558) T) ((-833 . -648) 73062) ((-356 . -1219) T) ((-478 . -613) 73024) ((-478 . -614) 72985) ((-465 . -614) 72946) ((-465 . -613) 72908) ((-597 . -646) 72880) ((-409 . -884) 72864) ((-320 . -1056) 72699) ((-409 . -886) 72624) ((-596 . -646) 72534) ((-843 . -1038) 72430) ((-489 . -516) NIL) ((-484 . -604) 72407) ((-356 . -558) T) ((-217 . -516) NIL) ((-872 . -454) T) ((-420 . -1099) T) ((-409 . -1038) 72271) ((-320 . -111) 72092) ((-694 . -365) T) ((-225 . -285) T) ((-1212 . -616) 72069) ((-48 . -1219) T) ((-815 . -1049) 71999) ((-1171 . -1150) 71977) ((-582 . -131) T) ((-566 . -131) T) ((-497 . -131) T) ((-1158 . -289) 71953) ((-48 . -558) T) ((-1061 . -102) T) ((-952 . -102) T) ((-871 . -1051) 71898) ((-317 . -27) 71877) ((-815 . -233) 71829) ((-249 . -835) 71811) ((-240 . -848) 71790) ((-187 . -835) 71772) ((-713 . -102) T) ((-296 . -491) 71709) ((-871 . -640) 71654) ((-483 . -102) T) ((-731 . -1057) T) ((-612 . -613) 71636) ((-612 . -614) 71497) ((-409 . -379) 71481) ((-409 . -340) 71465) ((-320 . -616) 71291) ((-1171 . -38) 71120) ((-1124 . -38) 70969) ((-854 . -38) 70939) ((-392 . -648) 70923) ((-644 . -310) 70861) ((-963 . -717) 70758) ((-735 . -717) 70728) ((-222 . -107) 70712) ((-45 . -287) 70637) ((-621 . -648) 70611) ((-313 . -1099) T) ((-290 . -1056) 70598) ((-110 . -613) 70580) ((-110 . -614) 70562) ((-455 . -717) 70532) ((-816 . -254) 70471) ((-689 . -1099) 70449) ((-552 . -1099) T) ((-1173 . -1057) T) ((-1172 . -1057) T) ((-96 . -492) 70430) ((-1166 . -1057) T) ((-290 . -111) 70415) ((-1125 . -1057) T) ((-552 . -610) 70394) ((-96 . -613) 70360) ((-1004 . -848) T) ((-227 . -687) 70318) ((-694 . -1111) T) ((-1209 . -740) 70294) ((-1024 . -365) T) ((-838 . -835) 70276) ((-833 . -794) 70255) ((-409 . -900) 70214) ((-320 . -1049) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1051) 70124) ((-68 . -1215) T) ((-833 . -791) 70103) ((-420 . -717) 70077) ((-799 . -1099) T) ((-712 . -920) 70056) ((-699 . -131) T) ((-169 . -640) 69884) ((-694 . -23) T) ((-489 . -291) T) ((-833 . -726) 69863) ((-320 . -233) 69815) ((-320 . -243) 69794) ((-217 . -291) T) ((-129 . -370) T) ((-1249 . -454) 69773) ((-1228 . -454) 69752) ((-356 . -330) 69729) ((-356 . -365) T) ((-1139 . -613) 69711) ((-45 . -1253) 69661) ((-871 . -102) T) ((-644 . -283) 69645) ((-699 . -1059) T) ((-1276 . -102) T) ((-1275 . -102) T) ((-479 . -648) 69610) ((-470 . -1099) T) ((-45 . -604) 69535) ((-1157 . -289) 69510) ((-290 . -616) 69482) ((-40 . -639) 69421) ((-1238 . -1051) 69244) ((-855 . -1051) 69228) ((-48 . -365) T) ((-1105 . -613) 69210) ((-1238 . -640) 69039) ((-855 . -640) 69009) ((-632 . -289) 68984) ((-816 . -646) 68894) ((-573 . -1051) 68881) ((-484 . -613) 68612) ((-240 . -413) 68581) ((-952 . -310) 68568) ((-573 . -640) 68555) ((-65 . -1215) T) ((-1062 . -516) 68399) ((-671 . -1099) T) ((-623 . -131) T) ((-483 . -310) 68386) ((-606 . -1099) T) ((-548 . -102) T) ((-117 . -131) T) ((-290 . -1049) T) ((-180 . -1099) T) ((-161 . -1099) T) ((-156 . -1099) T) ((-154 . -1099) T) ((-455 . -761) T) ((-31 . -1082) T) ((-963 . -172) 68337) ((-970 . -93) T) ((-1079 . -1056) 68247) ((-621 . -794) 68226) ((-594 . -1099) T) ((-621 . -791) 68205) ((-621 . -726) T) ((-296 . -287) 68184) ((-295 . -1215) T) ((-1054 . -613) 68146) ((-1054 . -614) 68107) ((-1024 . -1111) T) ((-169 . -102) T) ((-276 . -850) T) ((-1164 . -1099) T) ((-818 . -613) 68089) ((-1112 . -289) 68066) ((-1101 . -229) 68050) ((-1003 . -308) T) ((-799 . -717) 68034) ((-361 . -1056) 67986) ((-356 . -1111) T) ((-355 . -1056) 67938) ((-416 . -613) 67920) ((-387 . -613) 67902) ((-347 . -1056) 67854) ((-227 . -613) 67786) ((-1079 . -111) 67682) ((-1024 . -23) T) ((-108 . -1056) 67632) ((-898 . -102) T) ((-841 . -102) T) ((-808 . -102) T) ((-769 . -102) T) ((-677 . -102) T) ((-476 . -454) 67611) ((-420 . -172) T) ((-361 . -111) 67549) ((-355 . -111) 67487) ((-347 . -111) 67425) ((-252 . -231) 67394) ((-251 . -231) 67363) ((-356 . -23) T) ((-71 . -1215) T) ((-225 . -38) 67328) ((-108 . -111) 67262) ((-40 . -25) T) ((-40 . -21) T) ((-670 . -720) T) ((-169 . -285) 67240) ((-48 . -1111) T) ((-921 . -25) T) ((-771 . -25) T) ((-1289 . -648) 67214) ((-1149 . -491) 67151) ((-487 . -1099) T) ((-1280 . -646) 67110) ((-1238 . -102) T) ((-1061 . -1150) T) ((-855 . -102) T) ((-240 . -1057) 67040) ((-964 . -792) 66993) ((-964 . -795) 66946) ((-383 . -648) 66930) ((-48 . -23) T) ((-815 . -795) 66881) ((-815 . -792) 66832) ((-550 . -370) T) ((-296 . -604) 66811) ((-479 . -726) T) ((-573 . -102) T) ((-1079 . -616) 66629) ((-249 . -185) T) ((-187 . -185) T) ((-871 . -310) 66586) ((-653 . -287) 66565) ((-112 . -661) T) ((-361 . -616) 66502) ((-355 . -616) 66439) ((-347 . -616) 66376) ((-76 . -1215) T) ((-108 . -616) 66326) ((-1061 . -38) 66313) ((-664 . -376) 66292) ((-952 . -38) 66141) ((-731 . -1099) T) ((-483 . -38) 65990) ((-86 . -1215) T) ((-593 . -492) 65971) ((-573 . -285) T) ((-1229 . -848) NIL) ((-593 . -613) 65937) ((-1173 . -1099) T) ((-1172 . -1099) T) ((-1079 . -1049) T) ((-353 . -1038) 65914) ((-817 . -492) 65898) ((-1004 . -1057) T) ((-45 . -613) 65880) ((-45 . -614) NIL) ((-914 . -1057) T) ((-817 . -613) 65849) ((-1166 . -1099) T) ((-1146 . -102) 65827) ((-1079 . -243) 65778) ((-429 . -1057) T) ((-361 . -1049) T) ((-367 . -366) 65755) ((-355 . -1049) T) ((-347 . -1049) T) ((-252 . -238) 65734) ((-251 . -238) 65713) ((-1079 . -233) 65638) ((-1125 . -1099) T) ((-295 . -900) 65597) ((-108 . -1049) T) ((-694 . -131) T) ((-420 . -516) 65439) ((-361 . -233) 65418) ((-361 . -243) T) ((-44 . -720) T) ((-355 . -233) 65397) ((-355 . -243) T) ((-347 . -233) 65376) ((-347 . -243) T) ((-1165 . -616) 65357) ((-169 . -310) 65322) ((-108 . -243) T) ((-108 . -233) T) ((-994 . -616) 65303) ((-320 . -792) T) ((-870 . -21) T) ((-870 . -25) T) ((-409 . -308) T) ((-502 . -34) T) ((-110 . -289) 65278) ((-1112 . -1056) 65175) ((-871 . -1150) NIL) ((-331 . -613) 65157) ((-409 . -1022) 65135) ((-1112 . -111) 65025) ((-691 . -1260) T) ((-438 . -1099) T) ((-250 . -1099) T) ((-1289 . -726) T) ((-63 . -613) 65007) ((-871 . -38) 64952) ((-525 . -1215) T) ((-602 . -151) 64936) ((-514 . -613) 64918) ((-1238 . -310) 64905) ((-731 . -717) 64754) ((-533 . -793) T) ((-533 . -794) T) ((-566 . -639) 64736) ((-497 . -639) 64696) ((-357 . -454) T) ((-354 . -454) T) ((-346 . -454) T) ((-265 . -454) 64647) ((-527 . -1099) T) ((-522 . -1099) 64597) ((-247 . -454) 64548) ((-1149 . -287) 64527) ((-1177 . -613) 64509) ((-689 . -516) 64442) ((-963 . -291) 64421) ((-552 . -516) 64213) ((-252 . -646) 64033) ((-251 . -646) 63840) ((-1277 . -613) 63809) ((-1171 . -231) 63793) ((-1112 . -616) 63523) ((-169 . -1150) 63502) ((-1277 . -492) 63486) ((-1173 . -717) 63383) ((-1172 . -717) 63224) ((-892 . -102) T) ((-1166 . -717) 63020) ((-1125 . -717) 62917) ((-1155 . -674) 62901) ((-357 . -404) 62852) ((-354 . -404) 62803) ((-346 . -404) 62754) ((-1024 . -131) T) ((-799 . -516) 62666) ((-296 . -614) NIL) ((-296 . -613) 62648) ((-910 . -454) T) ((-964 . -370) 62601) ((-815 . -370) 62580) ((-512 . -511) 62559) ((-510 . -511) 62538) ((-489 . -287) NIL) ((-484 . -289) 62515) ((-420 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-694 . -495) NIL) ((-99 . -1111) T) ((-169 . -38) 62343) ((-1249 . -973) 62305) ((-1146 . -310) 62243) ((-1228 . -973) 62212) ((-910 . -404) T) ((-1112 . -1049) 62142) ((-1251 . -558) T) ((-1149 . -604) 62121) ((-112 . -850) T) ((-1062 . -491) 62052) ((-582 . -21) T) ((-582 . -25) T) ((-566 . -21) T) ((-566 . -25) T) ((-497 . -25) T) ((-497 . -21) T) ((-1238 . -1150) 62030) ((-1112 . -233) 61982) ((-48 . -131) T) ((-1196 . -102) T) ((-240 . -1099) 61772) ((-871 . -402) 61749) ((-1087 . -102) T) ((-1075 . -102) T) ((-608 . -102) T) ((-477 . -102) T) ((-1238 . -38) 61578) ((-855 . -38) 61548) ((-1034 . -1051) 61522) ((-731 . -172) 61433) ((-653 . -613) 61415) ((-645 . -1082) T) ((-1034 . -640) 61399) ((-573 . -38) 61386) ((-970 . -492) 61367) ((-970 . -613) 61333) ((-958 . -102) 61283) ((-864 . -613) 61265) ((-864 . -614) 61187) ((-594 . -516) NIL) ((-1257 . -1057) T) ((-1250 . -1057) T) ((-323 . -1051) 61169) ((-1229 . -1057) T) ((-1293 . -1111) T) ((-323 . -640) 61151) ((-1209 . -147) 61130) ((-1209 . -145) 61109) ((-1183 . -102) T) ((-1182 . -102) T) ((-1181 . -102) T) ((-597 . -1057) T) ((-596 . -1057) T) ((-1173 . -172) 61060) ((-1172 . -172) 60991) ((-381 . -1051) 60956) ((-1166 . -172) 60887) ((-1125 . -172) 60838) ((-1004 . -1099) T) ((-971 . -1099) T) ((-914 . -1099) T) ((-381 . -640) 60803) ((-799 . -797) 60787) ((-699 . -25) T) ((-699 . -21) T) ((-117 . -639) 60764) ((-701 . -886) 60746) ((-429 . -1099) T) ((-317 . -1219) 60725) ((-314 . -1219) T) ((-169 . -402) 60709) ((-836 . -1051) 60679) ((-476 . -973) 60641) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -613) 60623) ((-827 . -1051) 60607) ((-108 . -795) T) ((-108 . -792) T) ((-701 . -1038) 60589) ((-317 . -558) 60568) ((-314 . -558) T) ((-836 . -640) 60538) ((-827 . -640) 60508) ((-1293 . -23) T) ((-134 . -1038) 60490) ((-96 . -616) 60471) ((-993 . -646) 60453) ((-484 . -1056) 60350) ((-45 . -289) 60275) ((-240 . -717) 60217) ((-519 . -102) T) ((-484 . -111) 60107) ((-1091 . -102) 60085) ((-1034 . -102) T) ((-1171 . -646) 59995) ((-1124 . -646) 59905) ((-854 . -646) 59864) ((-644 . -828) 59843) ((-731 . -516) 59786) ((-1054 . -1056) 59770) ((-1134 . -93) T) ((-1062 . -287) 59745) ((-623 . -21) T) ((-623 . -25) T) ((-526 . -1099) T) ((-670 . -648) 59719) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1056) 59703) ((-1054 . -111) 59682) ((-816 . -413) 59666) ((-117 . -25) T) ((-89 . -613) 59648) ((-117 . -21) T) ((-608 . -310) 59443) ((-477 . -310) 59247) ((-1149 . -614) NIL) ((-387 . -111) 59226) ((-381 . -102) T) ((-214 . -613) 59208) ((-1149 . -613) 59190) ((-1166 . -516) 58959) ((-1004 . -717) 58909) ((-1125 . -516) 58879) ((-914 . -717) 58831) ((-484 . -616) 58561) ((-353 . -308) T) ((-1188 . -151) 58511) ((-958 . -310) 58449) ((-836 . -102) T) ((-429 . -717) 58433) ((-225 . -828) T) ((-827 . -102) T) ((-825 . -102) T) ((-481 . -151) 58383) ((-1249 . -1248) 58362) ((-1119 . -1219) T) ((-341 . -1038) 58329) ((-1249 . -1243) 58299) ((-1249 . -1246) 58283) ((-1228 . -1227) 58262) ((-80 . -613) 58244) ((-905 . -613) 58226) ((-1228 . -1243) 58203) ((-1119 . -558) T) ((-921 . -850) T) ((-771 . -850) T) ((-672 . -850) T) ((-489 . -614) 58133) ((-489 . -613) 58074) ((-381 . -285) T) ((-1228 . -1225) 58058) ((-1251 . -1111) T) ((-217 . -614) 57988) ((-217 . -613) 57929) ((-1287 . -648) 57903) ((-1062 . -604) 57878) ((-818 . -616) 57862) ((-59 . -151) 57846) ((-518 . -151) 57830) ((-498 . -151) 57814) ((-361 . -1284) 57798) ((-355 . -1284) 57782) ((-347 . -1284) 57766) ((-317 . -365) 57745) ((-314 . -365) T) ((-484 . -1049) 57675) ((-694 . -639) 57657) ((-1285 . -648) 57631) ((-128 . -310) NIL) ((-1251 . -23) T) ((-689 . -491) 57615) ((-64 . -613) 57597) ((-1112 . -795) 57548) ((-1112 . -792) 57499) ((-552 . -491) 57436) ((-670 . -34) T) ((-484 . -233) 57388) ((-296 . -289) 57367) ((-240 . -172) 57346) ((-816 . -1057) T) ((-44 . -648) 57304) ((-1079 . -370) 57255) ((-731 . -291) 57186) ((-522 . -516) 57119) ((-817 . -1056) 57070) ((-1086 . -145) 57049) ((-551 . -613) 57031) ((-361 . -370) 57010) ((-355 . -370) 56989) ((-347 . -370) 56968) ((-1086 . -147) 56947) ((-871 . -231) 56924) ((-817 . -111) 56866) ((-782 . -145) 56845) ((-782 . -147) 56824) ((-265 . -949) 56791) ((-252 . -848) 56770) ((-247 . -949) 56715) ((-251 . -848) 56694) ((-780 . -145) 56673) ((-780 . -147) 56652) ((-152 . -648) 56626) ((-581 . -1099) T) ((-456 . -147) 56605) ((-456 . -145) 56584) ((-670 . -726) T) ((-823 . -613) 56566) ((-1257 . -1099) T) ((-1250 . -1099) T) ((-1229 . -1099) T) ((-1209 . -1203) 56532) ((-1209 . -1200) 56498) ((-1173 . -291) 56477) ((-1172 . -291) 56428) ((-1166 . -291) 56379) ((-1125 . -291) 56358) ((-341 . -900) 56339) ((-1004 . -172) T) ((-914 . -172) T) ((-694 . -21) T) ((-694 . -25) T) ((-225 . -646) 56289) ((-597 . -1099) T) ((-596 . -1099) T) ((-476 . -1246) 56273) ((-476 . -1243) 56243) ((-420 . -287) 56171) ((-549 . -850) T) ((-317 . -1111) 56020) ((-314 . -1111) T) ((-1209 . -35) 55986) ((-1209 . -95) 55952) ((-84 . -613) 55934) ((-91 . -102) 55912) ((-1293 . -131) T) ((-714 . -1051) 55882) ((-593 . -616) 55863) ((-583 . -145) T) ((-583 . -147) 55845) ((-520 . -147) 55827) ((-520 . -145) T) ((-714 . -640) 55797) ((-317 . -23) 55649) ((-40 . -344) 55623) ((-314 . -23) T) ((-817 . -616) 55537) ((-1157 . -651) 55519) ((-1280 . -1057) T) ((-1157 . -375) 55501) ((-815 . -648) 55349) ((-1095 . -102) T) ((-1089 . -102) T) ((-1072 . -102) T) ((-169 . -231) 55333) ((-1065 . -102) T) ((-1036 . -102) T) ((-1019 . -102) T) ((-594 . -491) 55315) ((-626 . -102) T) ((-240 . -516) 55248) ((-485 . -102) T) ((-1287 . -726) T) ((-1285 . -726) T) ((-218 . -102) T) ((-1177 . -1056) 55131) ((-1061 . -646) 55103) ((-952 . -646) 55013) ((-1177 . -111) 54882) ((-483 . -646) 54792) ((-861 . -173) T) ((-817 . -1049) T) ((-681 . -1082) T) ((-676 . -1082) T) ((-517 . -102) T) ((-512 . -102) T) ((-48 . -639) 54752) ((-510 . -102) T) ((-480 . -1082) T) ((-1277 . -1056) 54722) ((-138 . -1082) T) ((-137 . -1082) T) ((-133 . -1082) T) ((-1034 . -38) 54706) ((-817 . -233) T) ((-817 . -243) 54685) ((-1277 . -111) 54650) ((-1257 . -717) 54547) ((-1250 . -717) 54388) ((-552 . -287) 54367) ((-1238 . -231) 54351) ((-1220 . -613) 54333) ((-606 . -93) T) ((-1062 . -614) NIL) ((-1062 . -613) 54315) ((-671 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1229 . -717) 54111) ((-1003 . -920) T) ((-152 . -726) T) ((-1177 . -616) 53964) ((-1112 . -370) 53943) ((-1024 . -25) T) ((-1004 . -516) NIL) ((-252 . -413) 53912) ((-251 . -413) 53881) ((-1024 . -21) T) ((-872 . -1051) 53833) ((-597 . -717) 53806) ((-596 . -717) 53703) ((-799 . -287) 53661) ((-126 . -102) 53639) ((-833 . -1038) 53535) ((-169 . -828) 53514) ((-320 . -648) 53411) ((-815 . -34) T) ((-714 . -102) T) ((-1119 . -1111) T) ((-1026 . -1215) T) ((-872 . -640) 53363) ((-381 . -38) 53328) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1272) 53312) ((-354 . -1272) 53296) ((-346 . -1272) 53280) ((-169 . -351) 53259) ((-566 . -850) T) ((-1119 . -23) T) ((-87 . -613) 53241) ((-701 . -308) T) ((-836 . -38) 53211) ((-827 . -38) 53181) ((-1277 . -616) 53123) ((-1251 . -131) T) ((-1149 . -289) 53102) ((-964 . -726) 53001) ((-964 . -793) 52954) ((-964 . -794) 52907) ((-815 . -791) 52886) ((-116 . -308) T) ((-91 . -310) 52824) ((-675 . -34) T) ((-552 . -604) 52803) ((-48 . -25) T) ((-48 . -21) T) ((-815 . -794) 52754) ((-815 . -793) 52733) ((-701 . -1022) T) ((-653 . -1056) 52717) ((-871 . -646) 52647) ((-815 . -726) 52557) ((-964 . -475) 52510) ((-484 . -795) 52461) ((-484 . -792) 52412) ((-910 . -1272) 52399) ((-1177 . -1049) T) ((-653 . -111) 52378) ((-1177 . -327) 52355) ((-1201 . -102) 52333) ((-1100 . -613) 52315) ((-701 . -547) T) ((-816 . -1099) T) ((-1277 . -1049) T) ((-1134 . -492) 52296) ((-1221 . -102) T) ((-415 . -1099) T) ((-1134 . -613) 52262) ((-252 . -1057) 52192) ((-251 . -1057) 52122) ((-838 . -102) T) ((-290 . -648) 52109) ((-594 . -287) 52084) ((-689 . -687) 52042) ((-963 . -613) 52024) ((-872 . -102) T) ((-735 . -613) 52006) ((-715 . -613) 51988) ((-1257 . -172) 51939) ((-1250 . -172) 51870) ((-1229 . -172) 51801) ((-699 . -850) T) ((-1004 . -291) T) ((-455 . -613) 51783) ((-627 . -726) T) ((-60 . -1099) 51761) ((-245 . -151) 51745) ((-914 . -291) T) ((-1024 . -1012) T) ((-627 . -475) T) ((-712 . -1219) 51724) ((-653 . -616) 51642) ((-169 . -646) 51537) ((-1265 . -850) 51516) ((-597 . -172) 51495) ((-596 . -172) 51446) ((-1249 . -640) 51287) ((-1249 . -1051) 51122) ((-1228 . -640) 50936) ((-1228 . -1051) 50744) ((-712 . -558) 50655) ((-409 . -920) T) ((-409 . -820) 50634) ((-320 . -794) T) ((-970 . -616) 50615) ((-320 . -726) T) ((-420 . -613) 50597) ((-420 . -614) 50504) ((-644 . -1148) 50488) ((-110 . -651) 50470) ((-174 . -308) T) ((-126 . -310) 50408) ((-110 . -375) 50390) ((-400 . -1215) T) ((-317 . -131) 50261) ((-314 . -131) T) ((-69 . -397) T) ((-110 . -123) T) ((-522 . -491) 50245) ((-654 . -1111) T) ((-594 . -19) 50227) ((-61 . -443) T) ((-61 . -397) T) ((-824 . -1099) T) ((-594 . -604) 50202) ((-479 . -1038) 50162) ((-653 . -1049) T) ((-654 . -23) T) ((-1280 . -1099) T) ((-31 . -102) T) ((-1238 . -646) 50072) ((-855 . -646) 50031) ((-816 . -717) 49880) ((-579 . -860) T) ((-573 . -646) 49852) ((-117 . -850) NIL) ((-1171 . -413) 49836) ((-1124 . -413) 49820) ((-854 . -413) 49804) ((-873 . -102) 49755) ((-1249 . -102) T) ((-1229 . -516) 49524) ((-1228 . -102) T) ((-1201 . -310) 49462) ((-1173 . -287) 49447) ((-1172 . -287) 49432) ((-527 . -93) T) ((-1166 . -287) 49280) ((-313 . -613) 49262) ((-1101 . -1099) T) ((-1079 . -648) 49172) ((-711 . -454) T) ((-689 . -613) 49104) ((-290 . -726) T) ((-108 . -909) NIL) ((-689 . -614) 49065) ((-601 . -613) 49047) ((-579 . -613) 49029) ((-552 . -614) NIL) ((-552 . -613) 49011) ((-531 . -613) 48993) ((-513 . -511) 48972) ((-489 . -1056) 48922) ((-476 . -1051) 48757) ((-509 . -511) 48736) ((-476 . -640) 48577) ((-217 . -1056) 48527) ((-361 . -648) 48479) ((-355 . -648) 48431) ((-225 . -848) T) ((-347 . -648) 48383) ((-602 . -102) 48333) ((-484 . -370) 48312) ((-108 . -648) 48262) ((-489 . -111) 48196) ((-240 . -491) 48180) ((-345 . -147) 48162) ((-345 . -145) T) ((-169 . -372) 48133) ((-943 . -1263) 48117) ((-217 . -111) 48051) ((-872 . -310) 48016) ((-943 . -1099) 47966) ((-799 . -614) 47927) ((-799 . -613) 47909) ((-718 . -102) T) ((-332 . -1099) T) ((-214 . -616) 47886) ((-1119 . -131) T) ((-714 . -38) 47856) ((-317 . -495) 47835) ((-502 . -1215) T) ((-1249 . -285) 47801) ((-1228 . -285) 47767) ((-328 . -151) 47751) ((-441 . -1099) T) ((-1062 . -289) 47726) ((-1280 . -717) 47696) ((-1158 . -34) T) ((-1289 . -1038) 47673) ((-470 . -613) 47655) ((-486 . -34) T) ((-383 . -1038) 47639) ((-1171 . -1057) T) ((-1124 . -1057) T) ((-854 . -1057) T) ((-1061 . -848) T) ((-489 . -616) 47589) ((-217 . -616) 47539) ((-816 . -172) 47450) ((-522 . -287) 47427) ((-1257 . -291) 47406) ((-1196 . -366) 47380) ((-1087 . -267) 47364) ((-671 . -492) 47345) ((-671 . -613) 47311) ((-606 . -492) 47292) ((-117 . -992) 47269) ((-606 . -613) 47219) ((-476 . -102) T) ((-180 . -492) 47200) ((-180 . -613) 47166) ((-161 . -492) 47147) ((-156 . -492) 47128) ((-154 . -492) 47109) ((-161 . -613) 47075) ((-156 . -613) 47041) ((-367 . -1099) T) ((-252 . -1099) T) ((-251 . -1099) T) ((-154 . -613) 47007) ((-1250 . -291) 46958) ((-1229 . -291) 46909) ((-872 . -1150) 46887) ((-1173 . -1002) 46853) ((-608 . -366) 46793) ((-1172 . -1002) 46759) ((-608 . -229) 46706) ((-694 . -850) T) ((-594 . -613) 46688) ((-594 . -614) NIL) ((-477 . -229) 46638) ((-489 . -1049) T) ((-1166 . -1002) 46604) ((-88 . -442) T) ((-88 . -397) T) ((-217 . -1049) T) ((-1125 . -1002) 46570) ((-1079 . -726) T) ((-712 . -1111) T) ((-597 . -291) 46549) ((-596 . -291) 46528) ((-489 . -243) T) ((-489 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1164 . -613) 46510) ((-872 . -38) 46462) ((-361 . -726) T) ((-355 . -726) T) ((-347 . -726) T) ((-108 . -794) T) ((-108 . -791) T) ((-712 . -23) T) ((-108 . -726) T) ((-522 . -1253) 46446) ((-1293 . -25) T) ((-476 . -285) 46412) ((-1293 . -21) T) ((-1228 . -310) 46351) ((-1175 . -102) T) ((-40 . -145) 46323) ((-40 . -147) 46295) ((-522 . -604) 46272) ((-1112 . -648) 46120) ((-602 . -310) 46058) ((-45 . -651) 46008) ((-45 . -666) 45958) ((-45 . -375) 45908) ((-1157 . -34) T) ((-871 . -848) NIL) ((-654 . -131) T) ((-487 . -613) 45890) ((-240 . -287) 45867) ((-186 . -1099) T) ((-1086 . -454) 45818) ((-816 . -516) 45692) ((-664 . -1051) 45676) ((-647 . -34) T) ((-632 . -34) T) ((-782 . -454) 45607) ((-664 . -640) 45591) ((-357 . -1051) 45543) ((-354 . -1051) 45495) ((-346 . -1051) 45447) ((-265 . -1051) 45290) ((-247 . -1051) 45133) ((-780 . -454) 45084) ((-357 . -640) 45036) ((-354 . -640) 44988) ((-346 . -640) 44940) ((-265 . -640) 44789) ((-247 . -640) 44638) ((-456 . -454) 44589) ((-952 . -413) 44573) ((-731 . -613) 44555) ((-252 . -717) 44497) ((-251 . -717) 44439) ((-731 . -614) 44300) ((-483 . -413) 44284) ((-341 . -303) T) ((-526 . -93) T) ((-353 . -920) T) ((-1000 . -102) 44262) ((-910 . -1051) 44227) ((-1024 . -850) T) ((-60 . -516) 44160) ((-910 . -640) 44125) ((-1228 . -1150) 44077) ((-1004 . -287) NIL) ((-225 . -1057) T) ((-381 . -828) T) ((-1112 . -34) T) ((-583 . -454) T) ((-520 . -454) T) ((-1232 . -1092) 44061) ((-1232 . -1099) 44039) ((-240 . -604) 44016) ((-1232 . -1094) 43973) ((-1173 . -613) 43955) ((-1172 . -613) 43937) ((-1166 . -613) 43919) ((-1166 . -614) NIL) ((-1125 . -613) 43901) ((-872 . -402) 43885) ((-538 . -102) T) ((-1249 . -38) 43726) ((-1228 . -38) 43540) ((-870 . -147) T) ((-583 . -404) T) ((-520 . -404) T) ((-1261 . -102) T) ((-1251 . -21) T) ((-1251 . -25) T) ((-1112 . -791) 43519) ((-1112 . -794) 43470) ((-1112 . -793) 43449) ((-993 . -1099) T) ((-1027 . -34) T) ((-862 . -1099) T) ((-1112 . -726) 43359) ((-664 . -102) T) ((-645 . -102) T) ((-552 . -289) 43338) ((-1188 . -102) T) ((-478 . -34) T) ((-465 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-479 . -308) T) ((-1061 . -1057) T) ((-952 . -1057) T) ((-317 . -639) 43244) ((-314 . -639) 43205) ((-1171 . -1099) T) ((-483 . -1057) T) ((-481 . -102) T) ((-438 . -613) 43187) ((-1124 . -1099) T) ((-250 . -613) 43169) ((-854 . -1099) T) ((-1140 . -102) T) ((-816 . -291) 43100) ((-963 . -1056) 42983) ((-479 . -1022) T) ((-735 . -1056) 42953) ((-1034 . -646) 42912) ((-455 . -1056) 42882) ((-1146 . -1120) 42866) ((-1101 . -516) 42799) ((-963 . -111) 42668) ((-910 . -102) T) ((-735 . -111) 42633) ((-527 . -492) 42614) ((-527 . -613) 42580) ((-59 . -102) 42530) ((-522 . -614) 42491) ((-522 . -613) 42403) ((-521 . -102) 42381) ((-518 . -102) 42331) ((-499 . -102) 42309) ((-498 . -102) 42259) ((-455 . -111) 42222) ((-252 . -172) 42201) ((-251 . -172) 42180) ((-323 . -646) 42162) ((-420 . -1056) 42136) ((-1209 . -973) 42098) ((-999 . -1111) T) ((-381 . -646) 42048) ((-1134 . -616) 42029) ((-943 . -516) 41962) ((-489 . -795) T) ((-476 . -38) 41803) ((-420 . -111) 41770) ((-489 . -792) T) ((-1000 . -310) 41708) ((-217 . -795) T) ((-217 . -792) T) ((-999 . -23) T) ((-712 . -131) T) ((-1228 . -402) 41678) ((-836 . -646) 41623) ((-827 . -646) 41582) ((-317 . -25) 41434) ((-169 . -413) 41418) ((-317 . -21) 41289) ((-314 . -25) T) ((-314 . -21) T) ((-864 . -370) T) ((-963 . -616) 41142) ((-110 . -34) T) ((-735 . -616) 41098) ((-715 . -616) 41080) ((-484 . -648) 40928) ((-871 . -1057) T) ((-594 . -289) 40903) ((-582 . -147) T) ((-566 . -147) T) ((-497 . -147) T) ((-1171 . -717) 40732) ((-1124 . -717) 40581) ((-1119 . -639) 40563) ((-854 . -717) 40533) ((-670 . -1215) T) ((-1 . -102) T) ((-420 . -616) 40441) ((-240 . -613) 40172) ((-1114 . -1099) T) ((-1238 . -413) 40156) ((-1188 . -310) 39960) ((-963 . -1049) T) ((-735 . -1049) T) ((-715 . -1049) T) ((-644 . -1099) 39910) ((-1054 . -648) 39894) ((-855 . -413) 39878) ((-513 . -102) T) ((-509 . -102) T) ((-265 . -310) 39865) ((-247 . -310) 39852) ((-963 . -327) 39831) ((-387 . -648) 39815) ((-670 . -1038) 39711) ((-481 . -310) 39515) ((-252 . -516) 39448) ((-251 . -516) 39381) ((-1140 . -310) 39307) ((-819 . -1099) T) ((-799 . -1056) 39291) ((-1257 . -287) 39276) ((-1250 . -287) 39261) ((-1229 . -287) 39109) ((-388 . -1099) T) ((-325 . -1099) T) ((-420 . -1049) T) ((-169 . -1057) T) ((-59 . -310) 39047) ((-799 . -111) 39026) ((-596 . -287) 39011) ((-521 . -310) 38949) ((-518 . -310) 38887) ((-499 . -310) 38825) ((-498 . -310) 38763) ((-420 . -233) 38742) ((-484 . -34) T) ((-1004 . -614) 38672) ((-225 . -1099) T) ((-1004 . -613) 38632) ((-971 . -613) 38592) ((-971 . -614) 38567) ((-914 . -613) 38549) ((-699 . -147) T) ((-701 . -920) T) ((-701 . -820) T) ((-429 . -613) 38531) ((-1119 . -21) T) ((-1119 . -25) T) ((-670 . -379) 38515) ((-116 . -920) T) ((-872 . -231) 38499) ((-78 . -1215) T) ((-126 . -125) 38483) ((-1054 . -34) T) ((-1287 . -1038) 38457) ((-1285 . -1038) 38414) ((-1238 . -1057) T) ((-855 . -1057) T) ((-484 . -791) 38393) ((-357 . -1150) 38372) ((-354 . -1150) 38351) ((-346 . -1150) 38330) ((-484 . -794) 38281) ((-484 . -793) 38260) ((-227 . -34) T) ((-484 . -726) 38170) ((-799 . -616) 38018) ((-662 . -1051) 38002) ((-60 . -491) 37986) ((-573 . -1057) T) ((-662 . -640) 37970) ((-1171 . -172) 37861) ((-1124 . -172) 37772) ((-1061 . -1099) T) ((-1086 . -949) 37717) ((-952 . -1099) T) ((-817 . -648) 37668) ((-782 . -949) 37637) ((-713 . -1099) T) ((-780 . -949) 37604) ((-518 . -283) 37588) ((-670 . -900) 37547) ((-483 . -1099) T) ((-456 . -949) 37514) ((-79 . -1215) T) ((-357 . -38) 37479) ((-354 . -38) 37444) ((-346 . -38) 37409) ((-265 . -38) 37258) ((-247 . -38) 37107) ((-910 . -1150) T) ((-526 . -492) 37088) ((-623 . -147) 37067) ((-623 . -145) 37046) ((-526 . -613) 37012) ((-117 . -147) T) ((-117 . -145) NIL) ((-416 . -726) T) ((-799 . -1049) T) ((-345 . -454) T) ((-1257 . -1002) 36978) ((-1250 . -1002) 36944) ((-1229 . -1002) 36910) ((-910 . -38) 36875) ((-225 . -717) 36840) ((-320 . -47) 36810) ((-40 . -411) 36782) ((-140 . -613) 36764) ((-999 . -131) T) ((-815 . -1215) T) ((-174 . -920) T) ((-551 . -370) T) ((-606 . -616) 36745) ((-345 . -404) T) ((-714 . -646) 36690) ((-671 . -616) 36671) ((-180 . -616) 36652) ((-161 . -616) 36633) ((-156 . -616) 36614) ((-154 . -616) 36595) ((-522 . -289) 36572) ((-1228 . -231) 36542) ((-815 . -1038) 36369) ((-45 . -34) T) ((-681 . -102) T) ((-676 . -102) T) ((-662 . -102) T) ((-654 . -21) T) ((-654 . -25) T) ((-1101 . -491) 36353) ((-675 . -1215) T) ((-480 . -102) T) ((-245 . -102) 36303) ((-548 . -844) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-871 . -1099) T) ((-1177 . -648) 36228) ((-1061 . -717) 36215) ((-731 . -1056) 36058) ((-1171 . -516) 36005) ((-952 . -717) 35854) ((-1124 . -516) 35806) ((-1276 . -1099) T) ((-1275 . -1099) T) ((-483 . -717) 35655) ((-67 . -613) 35637) ((-731 . -111) 35466) ((-943 . -491) 35450) ((-1277 . -648) 35410) ((-817 . -726) T) ((-1173 . -1056) 35293) ((-1172 . -1056) 35128) ((-1166 . -1056) 34918) ((-1125 . -1056) 34801) ((-1003 . -1219) T) ((-1093 . -102) 34779) ((-815 . -379) 34748) ((-581 . -613) 34730) ((-548 . -1099) T) ((-1003 . -558) T) ((-1173 . -111) 34599) ((-1172 . -111) 34420) ((-1166 . -111) 34189) ((-1125 . -111) 34058) ((-1104 . -1102) 34022) ((-381 . -848) T) ((-1257 . -613) 34004) ((-1250 . -613) 33986) ((-872 . -646) 33923) ((-1229 . -613) 33905) ((-1229 . -614) NIL) ((-240 . -289) 33882) ((-40 . -454) T) ((-225 . -172) T) ((-169 . -1099) T) ((-731 . -616) 33667) ((-694 . -147) T) ((-694 . -145) NIL) ((-597 . -613) 33649) ((-596 . -613) 33631) ((-898 . -1099) T) ((-841 . -1099) T) ((-808 . -1099) T) ((-769 . -1099) T) ((-658 . -852) 33615) ((-677 . -1099) T) ((-815 . -900) 33547) ((-1220 . -370) T) ((-40 . -404) NIL) ((-1173 . -616) 33429) ((-1119 . -661) T) ((-871 . -717) 33374) ((-252 . -491) 33358) ((-251 . -491) 33342) ((-1172 . -616) 33085) ((-1166 . -616) 32880) ((-712 . -639) 32828) ((-653 . -648) 32802) ((-1125 . -616) 32684) ((-296 . -34) T) ((-731 . -1049) T) ((-583 . -1272) 32671) ((-520 . -1272) 32648) ((-1238 . -1099) T) ((-1171 . -291) 32559) ((-1124 . -291) 32490) ((-1061 . -172) T) ((-855 . -1099) T) ((-952 . -172) 32401) ((-782 . -1241) 32385) ((-644 . -516) 32318) ((-77 . -613) 32300) ((-731 . -327) 32265) ((-1177 . -726) T) ((-573 . -1099) T) ((-483 . -172) 32176) ((-245 . -310) 32114) ((-1141 . -1111) T) ((-70 . -613) 32096) ((-1277 . -726) T) ((-1173 . -1049) T) ((-1172 . -1049) T) ((-328 . -102) 32046) ((-1166 . -1049) T) ((-1141 . -23) T) ((-1125 . -1049) T) ((-91 . -1120) 32030) ((-866 . -1111) T) ((-1173 . -233) 31989) ((-1172 . -243) 31968) ((-1172 . -233) 31920) ((-1166 . -233) 31807) ((-1166 . -243) 31786) ((-320 . -900) 31692) ((-866 . -23) T) ((-169 . -717) 31520) ((-409 . -1219) T) ((-1100 . -370) T) ((-1003 . -365) T) ((-870 . -454) T) ((-1024 . -147) T) ((-943 . -287) 31497) ((-314 . -850) NIL) ((-1249 . -646) 31379) ((-874 . -102) T) ((-1228 . -646) 31234) ((-712 . -25) T) ((-409 . -558) T) ((-712 . -21) T) ((-527 . -616) 31215) ((-356 . -147) 31197) ((-356 . -145) T) ((-1146 . -1099) 31175) ((-455 . -720) T) ((-75 . -613) 31157) ((-114 . -850) T) ((-245 . -283) 31141) ((-240 . -1056) 31038) ((-81 . -613) 31020) ((-735 . -370) 30973) ((-1175 . -828) T) ((-737 . -235) 30957) ((-1158 . -1215) T) ((-141 . -235) 30939) ((-240 . -111) 30829) ((-1238 . -717) 30658) ((-48 . -147) T) ((-871 . -172) T) ((-855 . -717) 30628) ((-486 . -1215) T) ((-952 . -516) 30575) ((-653 . -726) T) ((-573 . -717) 30562) ((-1034 . -1057) T) ((-483 . -516) 30505) ((-943 . -19) 30489) ((-943 . -604) 30466) ((-816 . -614) NIL) ((-816 . -613) 30448) ((-1209 . -1051) 30331) ((-1004 . -1056) 30281) ((-415 . -613) 30263) ((-252 . -287) 30240) ((-251 . -287) 30217) ((-489 . -909) NIL) ((-317 . -29) 30187) ((-108 . -1215) T) ((-1003 . -1111) T) ((-217 . -909) NIL) ((-1209 . -640) 30084) ((-914 . -1056) 30036) ((-1079 . -1038) 29932) ((-1004 . -111) 29866) ((-711 . -1051) 29831) ((-1003 . -23) T) ((-914 . -111) 29769) ((-737 . -695) 29753) ((-711 . -640) 29718) ((-265 . -231) 29702) ((-429 . -1056) 29686) ((-381 . -1057) T) ((-240 . -616) 29416) ((-694 . -1203) NIL) ((-489 . -648) 29366) ((-476 . -646) 29248) ((-108 . -884) 29230) ((-108 . -886) 29212) ((-694 . -1200) NIL) ((-217 . -648) 29162) ((-361 . -1038) 29146) ((-355 . -1038) 29130) ((-328 . -310) 29068) ((-347 . -1038) 29052) ((-225 . -291) T) ((-429 . -111) 29031) ((-60 . -613) 28963) ((-169 . -172) T) ((-1119 . -850) T) ((-108 . -1038) 28923) ((-892 . -1099) T) ((-836 . -1057) T) ((-827 . -1057) T) ((-694 . -35) NIL) ((-694 . -95) NIL) ((-314 . -992) 28884) ((-183 . -102) T) ((-582 . -454) T) ((-566 . -454) T) ((-497 . -454) T) ((-409 . -365) T) ((-240 . -1049) 28814) ((-1149 . -34) T) ((-479 . -920) T) ((-999 . -639) 28762) ((-252 . -604) 28739) ((-251 . -604) 28716) ((-1079 . -379) 28700) ((-871 . -516) 28608) ((-240 . -233) 28560) ((-1157 . -1215) T) ((-1004 . -616) 28510) ((-914 . -616) 28447) ((-824 . -613) 28429) ((-1288 . -1111) T) ((-1280 . -613) 28411) ((-1238 . -172) 28302) ((-429 . -616) 28271) ((-108 . -379) 28253) ((-108 . -340) 28235) ((-1061 . -291) T) ((-952 . -291) 28166) ((-799 . -370) 28145) ((-647 . -1215) T) ((-632 . -1215) T) ((-587 . -1051) 28120) ((-483 . -291) 28051) ((-573 . -172) T) ((-328 . -283) 28035) ((-1288 . -23) T) ((-1209 . -102) T) ((-1196 . -1099) T) ((-1087 . -1099) T) ((-1075 . -1099) T) ((-587 . -640) 28010) ((-83 . -613) 27992) ((-1182 . -844) T) ((-1181 . -844) T) ((-711 . -102) T) ((-357 . -351) 27971) ((-608 . -1099) T) ((-354 . -351) 27950) ((-346 . -351) 27929) ((-477 . -1099) T) ((-1188 . -229) 27879) ((-265 . -254) 27841) ((-1141 . -131) T) ((-608 . -610) 27817) ((-1079 . -900) 27750) ((-1004 . -1049) T) ((-914 . -1049) T) ((-477 . -610) 27729) ((-1166 . -792) NIL) ((-1166 . -795) NIL) ((-1101 . -614) 27690) ((-481 . -229) 27640) ((-1101 . -613) 27622) ((-1004 . -243) T) ((-1004 . -233) T) ((-429 . -1049) T) ((-958 . -1099) 27572) ((-914 . -243) T) ((-866 . -131) T) ((-699 . -454) T) ((-843 . -1111) 27551) ((-108 . -900) NIL) ((-1209 . -285) 27517) ((-872 . -848) 27496) ((-1112 . -1215) T) ((-905 . -726) T) ((-169 . -516) 27408) ((-999 . -25) T) ((-905 . -475) T) ((-409 . -1111) T) ((-489 . -794) T) ((-489 . -791) T) ((-910 . -351) T) ((-489 . -726) T) ((-217 . -794) T) ((-217 . -791) T) ((-999 . -21) T) ((-217 . -726) T) ((-843 . -23) 27360) ((-1183 . -1099) T) ((-658 . -1051) 27344) ((-1182 . -1099) T) ((-526 . -616) 27325) ((-1181 . -1099) T) ((-320 . -308) 27304) ((-1035 . -235) 27250) ((-658 . -640) 27220) ((-409 . -23) T) ((-943 . -614) 27181) ((-943 . -613) 27093) ((-644 . -491) 27077) ((-45 . -1010) 27027) ((-617 . -967) T) ((-493 . -102) T) ((-332 . -613) 27009) ((-1112 . -1038) 26836) ((-594 . -651) 26818) ((-130 . -1099) T) ((-128 . -1099) T) ((-594 . -375) 26800) ((-345 . -1272) 26777) ((-441 . -613) 26759) ((-1238 . -516) 26706) ((-1086 . -1051) 26549) ((-1027 . -1215) T) ((-871 . -291) T) ((-1171 . -287) 26476) ((-1086 . -640) 26325) ((-1000 . -995) 26309) ((-782 . -1051) 26132) ((-780 . -1051) 25975) ((-782 . -640) 25804) ((-780 . -640) 25653) ((-478 . -1215) T) ((-465 . -1215) T) ((-587 . -102) T) ((-463 . -1051) 25624) ((-456 . -1051) 25467) ((-664 . -646) 25436) ((-623 . -454) 25415) ((-463 . -640) 25386) ((-456 . -640) 25235) ((-357 . -646) 25172) ((-354 . -646) 25109) ((-346 . -646) 25046) ((-265 . -646) 24956) ((-247 . -646) 24866) ((-1280 . -384) 24838) ((-519 . -1099) T) ((-117 . -454) T) ((-1195 . -102) T) ((-1091 . -1099) 24816) ((-1034 . -1099) T) ((-1114 . -93) T) ((-893 . -850) T) ((-1257 . -111) 24685) ((-353 . -1219) T) ((-1257 . -1056) 24568) ((-1112 . -379) 24537) ((-1250 . -1056) 24372) ((-1229 . -1056) 24162) ((-1250 . -111) 23983) ((-1229 . -111) 23752) ((-1209 . -310) 23739) ((-1003 . -131) T) ((-910 . -646) 23689) ((-367 . -613) 23671) ((-353 . -558) T) ((-290 . -308) T) ((-597 . -1056) 23644) ((-596 . -1056) 23527) ((-583 . -1051) 23492) ((-520 . -1051) 23437) ((-363 . -1099) T) ((-323 . -1099) T) ((-252 . -613) 23398) ((-251 . -613) 23359) ((-583 . -640) 23324) ((-520 . -640) 23269) ((-694 . -411) 23236) ((-635 . -23) T) ((-607 . -23) T) ((-658 . -102) T) ((-597 . -111) 23207) ((-596 . -111) 23076) ((-381 . -1099) T) ((-338 . -102) T) ((-169 . -291) 22987) ((-1228 . -848) 22940) ((-714 . -1057) T) ((-1146 . -516) 22873) ((-1112 . -900) 22805) ((-836 . -1099) T) ((-827 . -1099) T) ((-825 . -1099) T) ((-97 . -102) T) ((-144 . -850) T) ((-612 . -884) 22789) ((-110 . -1215) T) ((-1086 . -102) T) ((-1062 . -34) T) ((-782 . -102) T) ((-780 . -102) T) ((-1257 . -616) 22671) ((-1250 . -616) 22414) ((-463 . -102) T) ((-456 . -102) T) ((-1229 . -616) 22209) ((-240 . -795) 22160) ((-240 . -792) 22111) ((-649 . -102) T) ((-597 . -616) 22069) ((-596 . -616) 21951) ((-1238 . -291) 21862) ((-664 . -634) 21846) ((-186 . -613) 21828) ((-644 . -287) 21805) ((-1034 . -717) 21789) ((-573 . -291) T) ((-963 . -648) 21714) ((-1288 . -131) T) ((-735 . -648) 21674) ((-715 . -648) 21661) ((-276 . -102) T) ((-455 . -648) 21591) ((-50 . -102) T) ((-583 . -102) T) ((-520 . -102) T) ((-1257 . -1049) T) ((-1250 . -1049) T) ((-1229 . -1049) T) ((-509 . -646) 21573) ((-323 . -717) 21555) ((-1257 . -233) 21514) ((-1250 . -243) 21493) ((-1250 . -233) 21445) ((-1229 . -233) 21332) ((-1229 . -243) 21311) ((-1209 . -38) 21208) ((-597 . -1049) T) ((-596 . -1049) T) ((-1004 . -795) T) ((-1004 . -792) T) ((-971 . -795) T) ((-971 . -792) T) ((-872 . -1057) T) ((-109 . -613) 21190) ((-694 . -454) T) ((-381 . -717) 21155) ((-420 . -648) 21129) ((-870 . -869) 21113) ((-711 . -38) 21078) ((-596 . -233) 21037) ((-40 . -724) 21009) ((-353 . -330) 20986) ((-353 . -365) T) ((-1079 . -308) 20937) ((-295 . -1111) 20818) ((-1105 . -1215) T) ((-171 . -102) T) ((-1232 . -613) 20785) ((-843 . -131) 20737) ((-644 . -1253) 20721) ((-836 . -717) 20691) ((-827 . -717) 20661) ((-484 . -1215) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-644 . -604) 20638) ((-409 . -131) T) ((-522 . -666) 20622) ((-108 . -308) T) ((-295 . -23) 20505) ((-522 . -651) 20489) ((-694 . -404) NIL) ((-522 . -375) 20473) ((-292 . -613) 20455) ((-91 . -1099) 20433) ((-108 . -1022) T) ((-566 . -143) T) ((-1265 . -151) 20417) ((-484 . -1038) 20244) ((-1251 . -145) 20205) ((-1251 . -147) 20166) ((-1054 . -1215) T) ((-993 . -613) 20148) ((-862 . -613) 20130) ((-816 . -1056) 19973) ((-1276 . -93) T) ((-1275 . -93) T) ((-1171 . -614) NIL) ((-1095 . -1099) T) ((-1089 . -1099) T) ((-1086 . -310) 19960) ((-1072 . -1099) T) ((-227 . -1215) T) ((-1065 . -1099) T) ((-1036 . -1099) T) ((-1019 . -1099) T) ((-782 . -310) 19947) ((-780 . -310) 19934) ((-1171 . -613) 19916) ((-816 . -111) 19745) ((-1124 . -613) 19727) ((-626 . -1099) T) ((-579 . -173) T) ((-531 . -173) T) ((-456 . -310) 19714) ((-485 . -1099) T) ((-1124 . -614) 19462) ((-1034 . -172) T) ((-943 . -289) 19439) ((-218 . -1099) T) ((-854 . -613) 19421) ((-608 . -516) 19204) ((-81 . -616) 19145) ((-818 . -1038) 19129) ((-477 . -516) 18921) ((-963 . -726) T) ((-735 . -726) T) ((-715 . -726) T) ((-353 . -1111) T) ((-1178 . -613) 18903) ((-223 . -102) T) ((-484 . -379) 18872) ((-517 . -1099) T) ((-512 . -1099) T) ((-510 . -1099) T) ((-799 . -648) 18846) ((-1024 . -454) T) ((-958 . -516) 18779) ((-353 . -23) T) ((-635 . -131) T) ((-607 . -131) T) ((-356 . -454) T) ((-240 . -370) 18758) ((-381 . -172) T) ((-1249 . -1057) T) ((-1228 . -1057) T) ((-225 . -1002) T) ((-816 . -616) 18495) ((-699 . -389) T) ((-420 . -726) T) ((-701 . -1219) T) ((-1141 . -639) 18443) ((-582 . -869) 18427) ((-1280 . -1056) 18411) ((-1158 . -1191) 18387) ((-701 . -558) T) ((-126 . -1099) 18365) ((-714 . -1099) T) ((-484 . -900) 18297) ((-249 . -1099) T) ((-187 . -1099) T) ((-658 . -38) 18267) ((-356 . -404) T) ((-317 . -147) 18246) ((-317 . -145) 18225) ((-128 . -516) NIL) ((-116 . -558) T) ((-314 . -147) 18181) ((-314 . -145) 18137) ((-48 . -454) T) ((-162 . -1099) T) ((-157 . -1099) T) ((-1158 . -107) 18084) ((-782 . -1150) 18062) ((-689 . -34) T) ((-1280 . -111) 18041) ((-552 . -34) T) ((-486 . -107) 18025) ((-252 . -289) 18002) ((-251 . -289) 17979) ((-871 . -287) 17930) ((-45 . -1215) T) ((-1221 . -844) T) ((-816 . -1049) T) ((-662 . -646) 17899) ((-1177 . -47) 17876) ((-816 . -327) 17838) ((-1086 . -38) 17687) ((-816 . -233) 17666) ((-782 . -38) 17495) ((-780 . -38) 17344) ((-1114 . -492) 17325) ((-456 . -38) 17174) ((-1114 . -613) 17140) ((-1117 . -102) T) ((-644 . -614) 17101) ((-644 . -613) 17013) ((-583 . -1150) T) ((-520 . -1150) T) ((-1146 . -491) 16997) ((-345 . -1051) 16942) ((-1201 . -1099) 16920) ((-1141 . -25) T) ((-1141 . -21) T) ((-345 . -640) 16865) ((-1280 . -616) 16814) ((-476 . -1057) T) ((-1221 . -1099) T) ((-1229 . -792) NIL) ((-1229 . -795) NIL) ((-999 . -850) 16793) ((-838 . -1099) T) ((-819 . -613) 16775) ((-866 . -21) T) ((-866 . -25) T) ((-799 . -726) T) ((-174 . -1219) T) ((-583 . -38) 16740) ((-520 . -38) 16705) ((-388 . -613) 16687) ((-334 . -102) T) ((-325 . -613) 16669) ((-169 . -287) 16627) ((-63 . -1215) T) ((-112 . -102) T) ((-872 . -1099) T) ((-174 . -558) T) ((-714 . -717) 16597) ((-295 . -131) 16480) ((-225 . -613) 16462) ((-225 . -614) 16392) ((-1003 . -639) 16331) ((-1280 . -1049) T) ((-1119 . -147) T) ((-632 . -1191) 16306) ((-731 . -909) 16285) ((-594 . -34) T) ((-647 . -107) 16269) ((-632 . -107) 16215) ((-1238 . -287) 16142) ((-731 . -648) 16067) ((-296 . -1215) T) ((-1177 . -1038) 15963) ((-943 . -618) 15940) ((-579 . -578) T) ((-579 . -529) T) ((-531 . -529) T) ((-1166 . -909) NIL) ((-1061 . -614) 15855) ((-1061 . -613) 15837) ((-952 . -613) 15819) ((-713 . -492) 15769) ((-345 . -102) T) ((-252 . -1056) 15666) ((-251 . -1056) 15563) ((-396 . -102) T) ((-31 . -1099) T) ((-952 . -614) 15424) ((-713 . -613) 15359) ((-1278 . -1208) 15328) ((-483 . -613) 15310) ((-483 . -614) 15171) ((-265 . -413) 15155) ((-247 . -413) 15139) ((-252 . -111) 15029) ((-251 . -111) 14919) ((-1173 . -648) 14844) ((-1172 . -648) 14741) ((-1166 . -648) 14593) ((-1125 . -648) 14518) ((-353 . -131) T) ((-82 . -443) T) ((-82 . -397) T) ((-1003 . -25) T) ((-1003 . -21) T) ((-873 . -1099) 14469) ((-40 . -1051) 14414) ((-872 . -717) 14366) ((-40 . -640) 14311) ((-381 . -291) T) ((-169 . -1002) 14262) ((-694 . -389) T) ((-999 . -997) 14246) ((-701 . -1111) T) ((-694 . -166) 14228) ((-1249 . -1099) T) ((-1228 . -1099) T) ((-317 . -1200) 14207) ((-317 . -1203) 14186) ((-1163 . -102) T) ((-317 . -959) 14165) ((-134 . -1111) T) ((-116 . -1111) T) ((-602 . -1263) 14149) ((-701 . -23) T) ((-602 . -1099) 14099) ((-317 . -95) 14078) ((-91 . -516) 14011) ((-174 . -365) T) ((-252 . -616) 13741) ((-251 . -616) 13471) ((-317 . -35) 13450) ((-608 . -491) 13384) ((-134 . -23) T) ((-116 . -23) T) ((-966 . -102) T) ((-718 . -1099) T) ((-477 . -491) 13321) ((-409 . -639) 13269) ((-653 . -1038) 13165) ((-958 . -491) 13149) ((-357 . -1057) T) ((-354 . -1057) T) ((-346 . -1057) T) ((-265 . -1057) T) ((-247 . -1057) T) ((-871 . -614) NIL) ((-871 . -613) 13131) ((-1276 . -492) 13112) ((-1275 . -492) 13093) ((-1288 . -21) T) ((-1276 . -613) 13059) ((-1275 . -613) 13025) ((-573 . -1002) T) ((-731 . -726) T) ((-1288 . -25) T) ((-252 . -1049) 12955) ((-251 . -1049) 12885) ((-72 . -1215) T) ((-252 . -233) 12837) ((-251 . -233) 12789) ((-40 . -102) T) ((-910 . -1057) T) ((-1180 . -102) T) ((-128 . -491) 12771) ((-1173 . -726) T) ((-1172 . -726) T) ((-1166 . -726) T) ((-1166 . -791) NIL) ((-1166 . -794) NIL) ((-954 . -102) T) ((-921 . -102) T) ((-870 . -1051) 12758) ((-1125 . -726) T) ((-771 . -102) T) ((-672 . -102) T) ((-870 . -640) 12745) ((-548 . -613) 12727) ((-476 . -1099) T) ((-341 . -1111) T) ((-174 . -1111) T) ((-320 . -920) 12706) ((-1249 . -717) 12547) ((-872 . -172) T) ((-1228 . -717) 12361) ((-843 . -21) 12313) ((-843 . -25) 12265) ((-245 . -1148) 12249) ((-126 . -516) 12182) ((-409 . -25) T) ((-409 . -21) T) ((-341 . -23) T) ((-169 . -614) 11948) ((-169 . -613) 11930) ((-174 . -23) T) ((-644 . -289) 11907) ((-522 . -34) T) ((-898 . -613) 11889) ((-89 . -1215) T) ((-841 . -613) 11871) ((-808 . -613) 11853) ((-769 . -613) 11835) ((-677 . -613) 11817) ((-240 . -648) 11665) ((-1175 . -1099) T) ((-1171 . -1056) 11488) ((-1149 . -1215) T) ((-1124 . -1056) 11331) ((-854 . -1056) 11315) ((-1232 . -618) 11299) ((-1171 . -111) 11108) ((-1124 . -111) 10937) ((-854 . -111) 10916) ((-1222 . -850) T) ((-1238 . -614) NIL) ((-1238 . -613) 10898) ((-345 . -1150) T) ((-855 . -613) 10880) ((-1075 . -287) 10859) ((-80 . -1215) T) ((-1004 . -909) NIL) ((-608 . -287) 10835) ((-1201 . -516) 10768) ((-489 . -1215) T) ((-573 . -613) 10750) ((-477 . -287) 10729) ((-1209 . -646) 10639) ((-519 . -93) T) ((-1086 . -231) 10623) ((-217 . -1215) T) ((-1004 . -648) 10573) ((-958 . -287) 10550) ((-290 . -920) T) ((-817 . -308) 10529) ((-870 . -102) T) ((-782 . -231) 10513) ((-914 . -648) 10465) ((-711 . -646) 10415) ((-694 . -724) 10382) ((-635 . -21) T) ((-635 . -25) T) ((-607 . -21) T) ((-549 . -102) T) ((-345 . -38) 10347) ((-489 . -884) 10329) ((-489 . -886) 10311) ((-476 . -717) 10152) ((-217 . -884) 10134) ((-64 . -1215) T) ((-217 . -886) 10116) ((-607 . -25) T) ((-429 . -648) 10090) ((-1171 . -616) 9859) ((-489 . -1038) 9819) ((-872 . -516) 9731) ((-1124 . -616) 9523) ((-854 . -616) 9441) ((-217 . -1038) 9401) ((-240 . -34) T) ((-1000 . -1099) 9379) ((-582 . -1051) 9366) ((-566 . -1051) 9353) ((-497 . -1051) 9318) ((-1249 . -172) 9249) ((-1228 . -172) 9180) ((-582 . -640) 9167) ((-566 . -640) 9154) ((-497 . -640) 9119) ((-712 . -145) 9098) ((-712 . -147) 9077) ((-701 . -131) T) ((-136 . -467) 9054) ((-1146 . -613) 8986) ((-658 . -656) 8970) ((-128 . -287) 8945) ((-116 . -131) T) ((-479 . -1219) T) ((-608 . -604) 8921) ((-477 . -604) 8900) ((-338 . -337) 8869) ((-538 . -1099) T) ((-479 . -558) T) ((-1171 . -1049) T) ((-1124 . -1049) T) ((-854 . -1049) T) ((-240 . -791) 8848) ((-240 . -794) 8799) ((-240 . -793) 8778) ((-1171 . -327) 8755) ((-240 . -726) 8665) ((-958 . -19) 8649) ((-489 . -379) 8631) ((-489 . -340) 8613) ((-1124 . -327) 8585) ((-356 . -1272) 8562) ((-217 . -379) 8544) ((-217 . -340) 8526) ((-958 . -604) 8503) ((-1171 . -233) T) ((-1261 . -1099) T) ((-664 . -1099) T) ((-645 . -1099) T) ((-1188 . -1099) T) ((-1086 . -254) 8440) ((-587 . -646) 8400) ((-357 . -1099) T) ((-354 . -1099) T) ((-346 . -1099) T) ((-265 . -1099) T) ((-247 . -1099) T) ((-84 . -1215) T) ((-127 . -102) 8378) ((-121 . -102) 8356) ((-1188 . -610) 8335) ((-1228 . -516) 8195) ((-1140 . -1099) T) ((-1114 . -616) 8176) ((-481 . -1099) T) ((-1079 . -920) 8127) ((-1004 . -794) T) ((-481 . -610) 8106) ((-252 . -795) 8057) ((-252 . -792) 8008) ((-251 . -795) 7959) ((-40 . -1150) NIL) ((-251 . -792) 7910) ((-1004 . -791) T) ((-128 . -19) 7892) ((-1004 . -726) T) ((-699 . -1051) 7857) ((-971 . -794) T) ((-914 . -726) T) ((-910 . -1099) T) ((-128 . -604) 7832) ((-699 . -640) 7797) ((-91 . -491) 7781) ((-489 . -900) NIL) ((-892 . -613) 7763) ((-225 . -1056) 7728) ((-872 . -291) T) ((-217 . -900) NIL) ((-833 . -1111) 7707) ((-59 . -1099) 7657) ((-521 . -1099) 7635) ((-518 . -1099) 7585) ((-499 . -1099) 7563) ((-498 . -1099) 7513) ((-582 . -102) T) ((-566 . -102) T) ((-497 . -102) T) ((-476 . -172) 7444) ((-361 . -920) T) ((-355 . -920) T) ((-347 . -920) T) ((-225 . -111) 7400) ((-833 . -23) 7352) ((-429 . -726) T) ((-108 . -920) T) ((-40 . -38) 7297) ((-108 . -820) T) ((-583 . -351) T) ((-520 . -351) T) ((-836 . -287) 7276) ((-317 . -454) 7255) ((-314 . -454) T) ((-658 . -646) 7214) ((-602 . -516) 7147) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 7011) ((-295 . -21) 6894) ((-45 . -1191) 6873) ((-66 . -613) 6855) ((-55 . -102) T) ((-338 . -646) 6837) ((-45 . -107) 6787) ((-819 . -616) 6771) ((-1266 . -102) T) ((-1265 . -102) 6721) ((-1257 . -648) 6646) ((-1250 . -648) 6543) ((-1101 . -427) 6527) ((-1101 . -370) 6506) ((-388 . -616) 6490) ((-325 . -616) 6474) ((-1229 . -648) 6326) ((-1229 . -909) NIL) ((-1062 . -1215) T) ((-1086 . -646) 6236) ((-1061 . -1056) 6223) ((-1061 . -111) 6208) ((-952 . -1056) 6051) ((-952 . -111) 5880) ((-782 . -646) 5790) ((-780 . -646) 5700) ((-623 . -1051) 5687) ((-664 . -717) 5671) ((-623 . -640) 5658) ((-483 . -1056) 5501) ((-479 . -365) T) ((-463 . -646) 5457) ((-456 . -646) 5367) ((-225 . -616) 5317) ((-357 . -717) 5269) ((-354 . -717) 5221) ((-117 . -1051) 5166) ((-346 . -717) 5118) ((-265 . -717) 4967) ((-247 . -717) 4816) ((-1196 . -613) 4798) ((-1095 . -93) T) ((-117 . -640) 4743) ((-1089 . -93) T) ((-943 . -651) 4727) ((-1072 . -93) T) ((-483 . -111) 4556) ((-1065 . -93) T) ((-1036 . -93) T) ((-943 . -375) 4540) ((-248 . -102) T) ((-1019 . -93) T) ((-74 . -613) 4522) ((-963 . -47) 4501) ((-710 . -102) T) ((-699 . -102) T) ((-1 . -1099) T) ((-621 . -1111) T) ((-1087 . -613) 4483) ((-626 . -93) T) ((-1075 . -613) 4465) ((-910 . -717) 4430) ((-126 . -491) 4414) ((-485 . -93) T) ((-621 . -23) T) ((-392 . -23) T) ((-87 . -1215) T) ((-218 . -93) T) ((-608 . -613) 4396) ((-608 . -614) NIL) ((-477 . -614) NIL) ((-477 . -613) 4378) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -646) 4337) ((-513 . -1099) T) ((-509 . -1099) T) ((-127 . -310) 4275) ((-121 . -310) 4213) ((-597 . -648) 4200) ((-596 . -648) 4125) ((-583 . -646) 4075) ((-225 . -1049) T) ((-520 . -646) 4005) ((-381 . -1002) T) ((-225 . -243) T) ((-225 . -233) T) ((-1061 . -616) 3977) ((-1061 . -618) 3958) ((-958 . -614) 3919) ((-958 . -613) 3831) ((-952 . -616) 3620) ((-870 . -38) 3607) ((-713 . -616) 3557) ((-1249 . -291) 3508) ((-1228 . -291) 3459) ((-483 . -616) 3244) ((-1119 . -454) T) ((-504 . -850) T) ((-317 . -1138) 3223) ((-999 . -147) 3202) ((-999 . -145) 3181) ((-497 . -310) 3168) ((-296 . -1191) 3147) ((-1183 . -613) 3129) ((-1182 . -613) 3111) ((-1181 . -613) 3093) ((-871 . -1056) 3038) ((-479 . -1111) T) ((-139 . -835) 3020) ((-114 . -835) 3001) ((-623 . -102) T) ((-1201 . -491) 2985) ((-252 . -370) 2964) ((-251 . -370) 2943) ((-1061 . -1049) T) ((-296 . -107) 2893) ((-130 . -613) 2875) ((-128 . -614) NIL) ((-128 . -613) 2819) ((-117 . -102) T) ((-952 . -1049) T) ((-871 . -111) 2748) ((-479 . -23) T) ((-483 . -1049) T) ((-1061 . -233) T) ((-952 . -327) 2717) ((-483 . -327) 2674) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2585) ((-247 . -172) 2496) ((-963 . -1038) 2392) ((-519 . -492) 2373) ((-735 . -1038) 2344) ((-519 . -613) 2310) ((-1104 . -102) T) ((-1091 . -613) 2277) ((-1034 . -613) 2259) ((-694 . -1051) 2209) ((-1278 . -151) 2193) ((-1276 . -616) 2174) ((-1275 . -616) 2155) ((-1270 . -613) 2137) ((-1257 . -726) T) ((-694 . -640) 2087) ((-1250 . -726) T) ((-1229 . -791) NIL) ((-1229 . -794) NIL) ((-169 . -1056) 1997) ((-910 . -172) T) ((-871 . -616) 1927) ((-1229 . -726) T) ((-1003 . -344) 1901) ((-223 . -646) 1853) ((-1000 . -516) 1786) ((-843 . -850) 1765) ((-566 . -1150) T) ((-476 . -291) 1716) ((-597 . -726) T) ((-363 . -613) 1698) ((-323 . -613) 1680) ((-420 . -1038) 1576) ((-596 . -726) T) ((-409 . -850) 1527) ((-169 . -111) 1423) ((-833 . -131) 1375) ((-737 . -151) 1359) ((-1265 . -310) 1297) ((-489 . -308) T) ((-381 . -613) 1264) ((-522 . -1010) 1248) ((-381 . -614) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-714 . -287) 1123) ((-489 . -1022) T) ((-582 . -38) 1110) ((-566 . -38) 1097) ((-497 . -38) 1062) ((-217 . -1022) T) ((-871 . -1049) T) ((-836 . -613) 1044) ((-827 . -613) 1026) ((-825 . -613) 1008) ((-816 . -909) 987) ((-1289 . -1111) T) ((-1238 . -1056) 810) ((-855 . -1056) 794) ((-871 . -243) T) ((-871 . -233) NIL) ((-689 . -1215) T) ((-1289 . -23) T) ((-816 . -648) 719) ((-552 . -1215) T) ((-420 . -340) 703) ((-573 . -1056) 690) ((-1238 . -111) 499) ((-701 . -639) 481) ((-855 . -111) 460) ((-383 . -23) T) ((-169 . -616) 238) ((-1188 . -516) 30) ((-681 . -1099) T) ((-676 . -1099) T) ((-662 . -1099) T)) \ No newline at end of file
+(((-481 . -1100) T) ((-265 . -517) 187944) ((-247 . -517) 187887) ((-245 . -1100) 187837) ((-574 . -111) 187822) ((-534 . -23) T) ((-137 . -1100) T) ((-133 . -1100) T) ((-117 . -310) 187779) ((-138 . -1100) T) ((-482 . -517) 187571) ((-678 . -617) 187555) ((-695 . -102) T) ((-1141 . -517) 187474) ((-393 . -131) T) ((-1279 . -977) 187443) ((-1025 . -1052) 187380) ((-31 . -93) T) ((-603 . -492) 187364) ((-1025 . -641) 187301) ((-622 . -131) T) ((-820 . -847) T) ((-526 . -57) 187251) ((-522 . -517) 187184) ((-356 . -1052) 187129) ((-59 . -517) 187062) ((-519 . -517) 186995) ((-421 . -901) 186954) ((-169 . -1050) T) ((-500 . -517) 186887) ((-499 . -517) 186820) ((-356 . -641) 186765) ((-800 . -1039) 186545) ((-700 . -38) 186510) ((-1239 . -617) 186258) ((-345 . -351) T) ((-1094 . -1093) 186242) ((-1094 . -1100) 186220) ((-856 . -617) 186117) ((-169 . -243) 186068) ((-169 . -233) 186019) ((-1094 . -1095) 185977) ((-873 . -287) 185935) ((-225 . -796) T) ((-225 . -793) T) ((-695 . -285) NIL) ((-574 . -617) 185907) ((-1150 . -1192) 185886) ((-410 . -993) 185870) ((-48 . -1052) 185835) ((-702 . -21) T) ((-702 . -25) T) ((-48 . -641) 185800) ((-1281 . -649) 185774) ((-317 . -160) 185753) ((-317 . -143) 185732) ((-1150 . -107) 185682) ((-116 . -21) T) ((-40 . -231) 185659) ((-134 . -25) T) ((-116 . -25) T) ((-609 . -289) 185635) ((-478 . -289) 185614) ((-1239 . -327) 185591) ((-1239 . -1050) T) ((-856 . -1050) T) ((-800 . -340) 185575) ((-139 . -185) T) ((-117 . -1151) NIL) ((-91 . -614) 185507) ((-480 . -131) T) ((-1239 . -233) T) ((-1096 . -493) 185488) ((-1096 . -614) 185454) ((-1090 . -493) 185435) ((-1090 . -614) 185401) ((-595 . -1216) T) ((-1073 . -493) 185382) ((-574 . -1050) T) ((-1073 . -614) 185348) ((-663 . -718) 185332) ((-1066 . -493) 185313) ((-1066 . -614) 185279) ((-959 . -289) 185256) ((-60 . -34) T) ((-1062 . -796) T) ((-1062 . -793) T) ((-1037 . -493) 185237) ((-1020 . -493) 185218) ((-817 . -727) T) ((-732 . -47) 185183) ((-624 . -38) 185170) ((-357 . -291) T) ((-354 . -291) T) ((-346 . -291) T) ((-265 . -291) 185101) ((-247 . -291) 185032) ((-1037 . -614) 184998) ((-1025 . -102) T) ((-1020 . -614) 184964) ((-627 . -493) 184945) ((-416 . -727) T) ((-117 . -38) 184890) ((-486 . -493) 184871) ((-627 . -614) 184837) ((-416 . -476) T) ((-218 . -493) 184818) ((-486 . -614) 184784) ((-356 . -102) T) ((-218 . -614) 184750) ((-1210 . -1058) T) ((-345 . -647) 184680) ((-712 . -1058) T) ((-1174 . -47) 184657) ((-1173 . -47) 184627) ((-1167 . -47) 184604) ((-128 . -289) 184579) ((-1036 . -151) 184525) ((-911 . -291) T) ((-1126 . -47) 184497) ((-695 . -310) NIL) ((-518 . -614) 184479) ((-513 . -614) 184461) ((-511 . -614) 184443) ((-328 . -1100) 184393) ((-713 . -455) 184324) ((-48 . -102) T) ((-1250 . -287) 184309) ((-1229 . -287) 184229) ((-645 . -667) 184213) ((-645 . -652) 184197) ((-341 . -21) T) ((-341 . -25) T) ((-40 . -351) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-645 . -375) 184181) ((-606 . -493) 184163) ((-603 . -287) 184140) ((-606 . -614) 184107) ((-391 . -102) T) ((-1120 . -143) T) ((-126 . -614) 184039) ((-875 . -1100) T) ((-659 . -414) 184023) ((-715 . -614) 184005) ((-249 . -614) 183972) ((-187 . -614) 183954) ((-162 . -614) 183936) ((-157 . -614) 183918) ((-1281 . -727) T) ((-1102 . -34) T) ((-872 . -796) NIL) ((-872 . -793) NIL) ((-859 . -851) T) ((-732 . -887) NIL) ((-1290 . -131) T) ((-383 . -131) T) ((-893 . -617) 183886) ((-905 . -102) T) ((-732 . -1039) 183762) ((-534 . -131) T) ((-1087 . -414) 183746) ((-1001 . -492) 183730) ((-117 . -403) 183707) ((-1167 . -1216) 183686) ((-783 . -414) 183670) ((-781 . -414) 183654) ((-944 . -34) T) ((-695 . -1151) NIL) ((-252 . -649) 183489) ((-251 . -649) 183311) ((-818 . -921) 183290) ((-457 . -414) 183274) ((-603 . -19) 183258) ((-1146 . -1209) 183227) ((-1167 . -887) NIL) ((-1167 . -885) 183179) ((-603 . -605) 183156) ((-1202 . -614) 183088) ((-1175 . -614) 183070) ((-62 . -398) T) ((-1173 . -1039) 183005) ((-1167 . -1039) 182971) ((-695 . -38) 182921) ((-40 . -647) 182851) ((-477 . -287) 182836) ((-1222 . -614) 182818) ((-732 . -379) 182802) ((-839 . -614) 182784) ((-659 . -1058) T) ((-1250 . -1003) 182750) ((-1229 . -1003) 182716) ((-1088 . -617) 182700) ((-1063 . -1192) 182675) ((-1076 . -617) 182652) ((-873 . -615) 182459) ((-873 . -614) 182441) ((-1189 . -492) 182378) ((-421 . -1023) 182356) ((-48 . -310) 182343) ((-1063 . -107) 182289) ((-482 . -492) 182226) ((-523 . -1216) T) ((-1167 . -340) 182178) ((-1141 . -492) 182149) ((-1167 . -379) 182101) ((-1087 . -1058) T) ((-440 . -102) T) ((-183 . -1100) T) ((-252 . -34) T) ((-251 . -34) T) ((-783 . -1058) T) ((-781 . -1058) T) ((-732 . -901) 182078) ((-457 . -1058) T) ((-59 . -492) 182062) ((-1035 . -1057) 182036) ((-522 . -492) 182020) ((-519 . -492) 182004) ((-500 . -492) 181988) ((-499 . -492) 181972) ((-245 . -517) 181905) ((-1035 . -111) 181872) ((-1174 . -901) 181785) ((-1173 . -901) 181691) ((-1167 . -901) 181524) ((-1126 . -901) 181508) ((-671 . -1112) T) ((-356 . -1151) T) ((-646 . -93) T) ((-323 . -1057) 181490) ((-252 . -792) 181469) ((-252 . -795) 181420) ((-31 . -493) 181401) ((-252 . -794) 181380) ((-251 . -792) 181359) ((-251 . -795) 181310) ((-251 . -794) 181289) ((-31 . -614) 181255) ((-50 . -1058) T) ((-252 . -727) 181165) ((-251 . -727) 181075) ((-1210 . -1100) T) ((-671 . -23) T) ((-584 . -1058) T) ((-521 . -1058) T) ((-381 . -1057) 181040) ((-323 . -111) 181015) ((-73 . -385) T) ((-73 . -398) T) ((-1025 . -38) 180952) ((-695 . -403) 180934) ((-99 . -102) T) ((-712 . -1100) T) ((-1294 . -1052) 180921) ((-1004 . -145) 180893) ((-1004 . -147) 180865) ((-871 . -647) 180837) ((-381 . -111) 180793) ((-320 . -1220) 180772) ((-477 . -1003) 180738) ((-356 . -38) 180703) ((-40 . -372) 180675) ((-874 . -614) 180547) ((-127 . -125) 180531) ((-121 . -125) 180515) ((-837 . -1057) 180485) ((-834 . -21) 180437) ((-828 . -1057) 180421) ((-834 . -25) 180373) ((-320 . -559) 180324) ((-520 . -617) 180305) ((-567 . -829) T) ((-240 . -1216) T) ((-1035 . -617) 180274) ((-837 . -111) 180239) ((-828 . -111) 180218) ((-1250 . -614) 180200) ((-1229 . -614) 180182) ((-1229 . -615) 179853) ((-1172 . -910) 179832) ((-1125 . -910) 179811) ((-48 . -38) 179776) ((-1288 . -1112) T) ((-603 . -614) 179688) ((-603 . -615) 179649) ((-1286 . -1112) T) ((-363 . -617) 179633) ((-323 . -617) 179617) ((-240 . -1039) 179444) ((-1172 . -649) 179369) ((-1125 . -649) 179294) ((-855 . -649) 179268) ((-719 . -614) 179250) ((-549 . -370) T) ((-1288 . -23) T) ((-1286 . -23) T) ((-494 . -1100) T) ((-381 . -617) 179200) ((-381 . -619) 179182) ((-1035 . -1050) T) ((-866 . -102) T) ((-1189 . -287) 179161) ((-169 . -370) 179112) ((-1005 . -1216) T) ((-837 . -617) 179066) ((-828 . -617) 179021) ((-44 . -23) T) ((-482 . -287) 179000) ((-588 . -1100) T) ((-1146 . -1109) 178969) ((-1104 . -1103) 178921) ((-393 . -21) T) ((-393 . -25) T) ((-152 . -1112) T) ((-1294 . -102) T) ((-1005 . -885) 178903) ((-1005 . -887) 178885) ((-1210 . -718) 178782) ((-624 . -231) 178766) ((-622 . -21) T) ((-290 . -559) T) ((-622 . -25) T) ((-1196 . -1100) T) ((-712 . -718) 178731) ((-240 . -379) 178700) ((-1005 . -1039) 178660) ((-381 . -1050) T) ((-223 . -1058) T) ((-117 . -231) 178637) ((-59 . -287) 178614) ((-152 . -23) T) ((-519 . -287) 178591) ((-328 . -517) 178524) ((-499 . -287) 178501) ((-381 . -243) T) ((-381 . -233) T) ((-837 . -1050) T) ((-828 . -1050) T) ((-713 . -950) 178470) ((-702 . -851) T) ((-477 . -614) 178452) ((-1252 . -1052) 178357) ((-583 . -647) 178329) ((-567 . -647) 178301) ((-498 . -647) 178251) ((-828 . -233) 178230) ((-134 . -851) T) ((-1252 . -641) 178122) ((-659 . -1100) T) ((-1189 . -605) 178101) ((-553 . -1192) 178080) ((-338 . -1100) T) ((-320 . -365) 178059) ((-410 . -147) 178038) ((-410 . -145) 178017) ((-965 . -1112) 177916) ((-240 . -901) 177848) ((-816 . -1112) 177758) ((-655 . -853) 177742) ((-482 . -605) 177721) ((-553 . -107) 177671) ((-1005 . -379) 177653) ((-1005 . -340) 177635) ((-97 . -1100) T) ((-965 . -23) 177446) ((-480 . -21) T) ((-480 . -25) T) ((-816 . -23) 177316) ((-1176 . -614) 177298) ((-59 . -19) 177282) ((-1176 . -615) 177204) ((-1172 . -727) T) ((-1125 . -727) T) ((-519 . -19) 177188) ((-499 . -19) 177172) ((-59 . -605) 177149) ((-1087 . -1100) T) ((-902 . -102) 177127) ((-855 . -727) T) ((-783 . -1100) T) ((-519 . -605) 177104) ((-499 . -605) 177081) ((-781 . -1100) T) ((-781 . -1065) 177048) ((-464 . -1100) T) ((-457 . -1100) T) ((-588 . -718) 177023) ((-650 . -1100) T) ((-1258 . -47) 177000) ((-1252 . -102) T) ((-1251 . -47) 176970) ((-1230 . -47) 176947) ((-1210 . -172) 176898) ((-1173 . -308) 176877) ((-1167 . -308) 176856) ((-1096 . -617) 176837) ((-1090 . -617) 176818) ((-1080 . -559) 176769) ((-1005 . -901) NIL) ((-1080 . -1220) 176720) ((-671 . -131) T) ((-628 . -1112) T) ((-1073 . -617) 176701) ((-1066 . -617) 176682) ((-1037 . -617) 176663) ((-1020 . -617) 176644) ((-700 . -647) 176594) ((-276 . -1100) T) ((-85 . -444) T) ((-85 . -398) T) ((-715 . -1057) 176564) ((-712 . -172) T) ((-50 . -1100) T) ((-597 . -47) 176541) ((-225 . -649) 176506) ((-584 . -1100) T) ((-521 . -1100) T) ((-490 . -821) T) ((-490 . -921) T) ((-361 . -1220) T) ((-355 . -1220) T) ((-347 . -1220) T) ((-320 . -1112) T) ((-317 . -1052) 176416) ((-314 . -1052) 176345) ((-108 . -1220) T) ((-627 . -617) 176326) ((-361 . -559) T) ((-217 . -921) T) ((-217 . -821) T) ((-317 . -641) 176236) ((-314 . -641) 176165) ((-355 . -559) T) ((-347 . -559) T) ((-486 . -617) 176146) ((-108 . -559) T) ((-659 . -718) 176116) ((-1167 . -1023) NIL) ((-218 . -617) 176097) ((-320 . -23) T) ((-67 . -1216) T) ((-1001 . -614) 176029) ((-695 . -231) 176011) ((-715 . -111) 175976) ((-645 . -34) T) ((-245 . -492) 175960) ((-1102 . -1098) 175944) ((-171 . -1100) T) ((-953 . -910) 175923) ((-1294 . -1151) T) ((-1290 . -21) T) ((-518 . -617) 175907) ((-1290 . -25) T) ((-1288 . -131) T) ((-1286 . -131) T) ((-484 . -910) 175886) ((-1279 . -102) T) ((-1262 . -614) 175852) ((-1251 . -1039) 175787) ((-1230 . -1216) 175766) ((-1230 . -887) NIL) ((-1230 . -885) 175718) ((-1087 . -718) 175567) ((-1062 . -649) 175554) ((-953 . -649) 175479) ((-783 . -718) 175308) ((-539 . -614) 175290) ((-539 . -615) 175271) ((-781 . -718) 175120) ((-1077 . -102) T) ((-383 . -25) T) ((-624 . -647) 175092) ((-383 . -21) T) ((-484 . -649) 175017) ((-464 . -718) 174988) ((-457 . -718) 174837) ((-988 . -102) T) ((-1230 . -1039) 174803) ((-1189 . -615) NIL) ((-1189 . -614) 174785) ((-738 . -102) T) ((-117 . -647) 174715) ((-606 . -617) 174697) ((-1142 . -1123) 174642) ((-1047 . -1209) 174571) ((-534 . -25) T) ((-902 . -310) 174509) ((-715 . -617) 174463) ((-682 . -93) T) ((-646 . -493) 174444) ((-141 . -102) T) ((-44 . -131) T) ((-677 . -93) T) ((-665 . -614) 174426) ((-345 . -1058) T) ((-290 . -1112) T) ((-646 . -614) 174379) ((-481 . -93) T) ((-357 . -614) 174361) ((-354 . -614) 174343) ((-346 . -614) 174325) ((-265 . -615) 174073) ((-265 . -614) 174055) ((-247 . -614) 174037) ((-247 . -615) 173898) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1210 . -517) 173865) ((-1141 . -614) 173847) ((-1120 . -641) 173834) ((-820 . -858) T) ((-820 . -727) T) ((-603 . -289) 173811) ((-584 . -718) 173776) ((-482 . -615) NIL) ((-482 . -614) 173758) ((-521 . -718) 173703) ((-317 . -102) T) ((-314 . -102) T) ((-290 . -23) T) ((-152 . -131) T) ((-1120 . -1052) 173690) ((-911 . -614) 173672) ((-389 . -727) T) ((-873 . -1057) 173624) ((-911 . -615) 173606) ((-873 . -111) 173544) ((-715 . -1050) T) ((-713 . -1242) 173528) ((-695 . -351) NIL) ((-136 . -102) T) ((-114 . -102) T) ((-139 . -102) T) ((-522 . -614) 173460) ((-381 . -796) T) ((-223 . -1100) T) ((-381 . -793) T) ((-225 . -795) T) ((-225 . -792) T) ((-59 . -615) 173421) ((-59 . -614) 173333) ((-225 . -727) T) ((-519 . -615) 173294) ((-519 . -614) 173206) ((-500 . -614) 173138) ((-499 . -615) 173099) ((-499 . -614) 173011) ((-1080 . -365) 172962) ((-40 . -414) 172939) ((-77 . -1216) T) ((-872 . -910) NIL) ((-361 . -330) 172923) ((-361 . -365) T) ((-355 . -330) 172907) ((-355 . -365) T) ((-347 . -330) 172891) ((-347 . -365) T) ((-317 . -285) 172870) ((-108 . -365) T) ((-70 . -1216) T) ((-1230 . -340) 172822) ((-872 . -649) 172767) ((-1230 . -379) 172719) ((-965 . -131) 172574) ((-816 . -131) 172444) ((-959 . -652) 172428) ((-1087 . -172) 172339) ((-959 . -375) 172323) ((-1062 . -795) T) ((-1062 . -792) T) ((-873 . -617) 172221) ((-783 . -172) 172112) ((-781 . -172) 172023) ((-817 . -47) 171985) ((-1062 . -727) T) ((-328 . -492) 171969) ((-953 . -727) T) ((-457 . -172) 171880) ((-245 . -287) 171857) ((-1279 . -310) 171795) ((-1258 . -901) 171708) ((-1251 . -901) 171614) ((-484 . -727) T) ((-1250 . -1057) 171449) ((-1230 . -901) 171282) ((-1229 . -1057) 171090) ((-1210 . -291) 171069) ((-1186 . -1216) T) ((-1183 . -370) T) ((-1182 . -370) T) ((-1146 . -151) 171053) ((-1120 . -102) T) ((-1118 . -1100) T) ((-1080 . -23) T) ((-1080 . -1112) T) ((-1075 . -102) T) ((-928 . -956) T) ((-738 . -310) 170991) ((-75 . -1216) T) ((-665 . -384) 170963) ((-169 . -910) 170916) ((-30 . -956) T) ((-112 . -845) T) ((-1 . -614) 170898) ((-1004 . -412) 170870) ((-128 . -652) 170852) ((-50 . -621) 170836) ((-695 . -647) 170771) ((-597 . -901) 170684) ((-441 . -102) T) ((-128 . -375) 170666) ((-141 . -310) NIL) ((-873 . -1050) T) ((-834 . -851) 170645) ((-81 . -1216) T) ((-712 . -291) T) ((-40 . -1058) T) ((-584 . -172) T) ((-521 . -172) T) ((-514 . -614) 170627) ((-169 . -649) 170537) ((-510 . -614) 170519) ((-353 . -147) 170501) ((-353 . -145) T) ((-361 . -1112) T) ((-355 . -1112) T) ((-347 . -1112) T) ((-1005 . -308) T) ((-915 . -308) T) ((-873 . -243) T) ((-108 . -1112) T) ((-873 . -233) 170480) ((-1250 . -111) 170301) ((-1229 . -111) 170090) ((-245 . -1254) 170074) ((-567 . -849) T) ((-361 . -23) T) ((-356 . -351) T) ((-317 . -310) 170061) ((-314 . -310) 170002) ((-355 . -23) T) ((-320 . -131) T) ((-347 . -23) T) ((-1005 . -1023) T) ((-31 . -617) 169983) ((-108 . -23) T) ((-655 . -1052) 169967) ((-245 . -605) 169944) ((-334 . -1100) T) ((-655 . -641) 169914) ((-1252 . -38) 169806) ((-1239 . -910) 169785) ((-112 . -1100) T) ((-1036 . -102) T) ((-1239 . -649) 169710) ((-872 . -795) NIL) ((-856 . -649) 169684) ((-872 . -792) NIL) ((-817 . -887) NIL) ((-872 . -727) T) ((-1087 . -517) 169557) ((-783 . -517) 169504) ((-781 . -517) 169456) ((-574 . -649) 169443) ((-817 . -1039) 169271) ((-457 . -517) 169214) ((-391 . -392) T) ((-1250 . -617) 169027) ((-1229 . -617) 168775) ((-60 . -1216) T) ((-622 . -851) 168754) ((-503 . -662) T) ((-1146 . -977) 168723) ((-1025 . -647) 168660) ((-1004 . -455) T) ((-700 . -849) T) ((-513 . -793) T) ((-477 . -1057) 168495) ((-345 . -1100) T) ((-314 . -1151) NIL) ((-290 . -131) T) ((-397 . -1100) T) ((-871 . -1058) T) ((-695 . -372) 168462) ((-356 . -647) 168392) ((-223 . -621) 168369) ((-328 . -287) 168346) ((-477 . -111) 168167) ((-1250 . -1050) T) ((-1229 . -1050) T) ((-817 . -379) 168151) ((-169 . -727) T) ((-655 . -102) T) ((-1250 . -243) 168130) ((-1250 . -233) 168082) ((-1229 . -233) 167987) ((-1229 . -243) 167966) ((-1004 . -405) NIL) ((-671 . -640) 167914) ((-317 . -38) 167824) ((-314 . -38) 167753) ((-69 . -614) 167735) ((-320 . -496) 167701) ((-48 . -647) 167651) ((-1189 . -289) 167630) ((-1224 . -851) T) ((-1113 . -1112) 167540) ((-83 . -1216) T) ((-61 . -614) 167522) ((-482 . -289) 167501) ((-1281 . -1039) 167478) ((-1164 . -1100) T) ((-1113 . -23) 167348) ((-817 . -901) 167284) ((-1239 . -727) T) ((-1102 . -1216) T) ((-477 . -617) 167110) ((-1087 . -291) 167041) ((-967 . -1100) T) ((-894 . -102) T) ((-783 . -291) 166952) ((-328 . -19) 166936) ((-59 . -289) 166913) ((-781 . -291) 166844) ((-856 . -727) T) ((-117 . -849) NIL) ((-519 . -289) 166821) ((-328 . -605) 166798) ((-499 . -289) 166775) ((-457 . -291) 166706) ((-1036 . -310) 166557) ((-682 . -493) 166538) ((-574 . -727) T) ((-677 . -493) 166519) ((-682 . -614) 166469) ((-677 . -614) 166435) ((-663 . -614) 166417) ((-481 . -493) 166398) ((-481 . -614) 166364) ((-245 . -615) 166325) ((-245 . -493) 166302) ((-138 . -493) 166283) ((-137 . -493) 166264) ((-133 . -493) 166245) ((-245 . -614) 166137) ((-213 . -102) T) ((-138 . -614) 166103) ((-137 . -614) 166069) ((-133 . -614) 166035) ((-1147 . -34) T) ((-944 . -1216) T) ((-345 . -718) 165980) ((-671 . -25) T) ((-671 . -21) T) ((-1176 . -617) 165961) ((-477 . -1050) T) ((-636 . -420) 165926) ((-608 . -420) 165891) ((-1120 . -1151) T) ((-713 . -1052) 165714) ((-584 . -291) T) ((-521 . -291) T) ((-1251 . -308) 165693) ((-477 . -233) 165645) ((-477 . -243) 165624) ((-1230 . -308) 165603) ((-713 . -641) 165432) ((-1230 . -1023) NIL) ((-1080 . -131) T) ((-873 . -796) 165411) ((-144 . -102) T) ((-40 . -1100) T) ((-873 . -793) 165390) ((-645 . -1011) 165374) ((-583 . -1058) T) ((-567 . -1058) T) ((-498 . -1058) T) ((-410 . -455) T) ((-361 . -131) T) ((-317 . -403) 165358) ((-314 . -403) 165319) ((-355 . -131) T) ((-347 . -131) T) ((-1181 . -1100) T) ((-1120 . -38) 165306) ((-1094 . -614) 165273) ((-108 . -131) T) ((-955 . -1100) T) ((-922 . -1100) T) ((-772 . -1100) T) ((-673 . -1100) T) ((-702 . -147) T) ((-116 . -147) T) ((-1288 . -21) T) ((-1288 . -25) T) ((-1286 . -21) T) ((-1286 . -25) T) ((-665 . -1057) 165257) ((-534 . -851) T) ((-503 . -851) T) ((-357 . -1057) 165209) ((-354 . -1057) 165161) ((-346 . -1057) 165113) ((-252 . -1216) T) ((-251 . -1216) T) ((-265 . -1057) 164956) ((-247 . -1057) 164799) ((-665 . -111) 164778) ((-550 . -845) T) ((-357 . -111) 164716) ((-354 . -111) 164654) ((-346 . -111) 164592) ((-265 . -111) 164421) ((-247 . -111) 164250) ((-818 . -1220) 164229) ((-624 . -414) 164213) ((-44 . -21) T) ((-44 . -25) T) ((-816 . -640) 164119) ((-818 . -559) 164098) ((-252 . -1039) 163925) ((-251 . -1039) 163752) ((-126 . -119) 163736) ((-911 . -1057) 163701) ((-713 . -102) T) ((-700 . -1058) T) ((-539 . -619) 163604) ((-345 . -172) T) ((-88 . -614) 163586) ((-152 . -21) T) ((-152 . -25) T) ((-911 . -111) 163542) ((-40 . -718) 163487) ((-871 . -1100) T) ((-665 . -617) 163464) ((-646 . -617) 163445) ((-357 . -617) 163382) ((-354 . -617) 163319) ((-550 . -1100) T) ((-346 . -617) 163256) ((-328 . -615) 163217) ((-328 . -614) 163129) ((-265 . -617) 162882) ((-247 . -617) 162667) ((-1229 . -793) 162620) ((-1229 . -796) 162573) ((-252 . -379) 162542) ((-251 . -379) 162511) ((-655 . -38) 162481) ((-609 . -34) T) ((-485 . -1112) 162391) ((-478 . -34) T) ((-1113 . -131) 162261) ((-965 . -25) 162072) ((-911 . -617) 162022) ((-875 . -614) 162004) ((-965 . -21) 161959) ((-816 . -21) 161869) ((-816 . -25) 161720) ((-1222 . -370) T) ((-624 . -1058) T) ((-1178 . -559) 161699) ((-1172 . -47) 161676) ((-357 . -1050) T) ((-354 . -1050) T) ((-485 . -23) 161546) ((-346 . -1050) T) ((-265 . -1050) T) ((-247 . -1050) T) ((-1125 . -47) 161518) ((-117 . -1058) T) ((-1035 . -649) 161492) ((-959 . -34) T) ((-357 . -233) 161471) ((-357 . -243) T) ((-354 . -233) 161450) ((-354 . -243) T) ((-346 . -233) 161429) ((-346 . -243) T) ((-265 . -327) 161401) ((-247 . -327) 161358) ((-265 . -233) 161337) ((-1156 . -151) 161321) ((-252 . -901) 161253) ((-251 . -901) 161185) ((-1082 . -851) T) ((-417 . -1112) T) ((-1055 . -23) T) ((-911 . -1050) T) ((-323 . -649) 161167) ((-1025 . -849) T) ((-1210 . -1003) 161133) ((-1173 . -921) 161112) ((-1167 . -921) 161091) ((-1167 . -821) NIL) ((-1000 . -1052) 160987) ((-911 . -243) T) ((-818 . -365) 160966) ((-387 . -23) T) ((-127 . -1100) 160944) ((-121 . -1100) 160922) ((-911 . -233) T) ((-128 . -34) T) ((-381 . -649) 160887) ((-1000 . -641) 160835) ((-871 . -718) 160822) ((-1294 . -647) 160794) ((-1047 . -151) 160759) ((-40 . -172) T) ((-695 . -414) 160741) ((-713 . -310) 160728) ((-837 . -649) 160688) ((-828 . -649) 160662) ((-320 . -25) T) ((-320 . -21) T) ((-659 . -287) 160641) ((-583 . -1100) T) ((-567 . -1100) T) ((-498 . -1100) T) ((-245 . -289) 160618) ((-314 . -231) 160579) ((-1172 . -887) NIL) ((-55 . -1100) T) ((-1125 . -887) 160438) ((-129 . -851) T) ((-1172 . -1039) 160318) ((-1125 . -1039) 160201) ((-183 . -614) 160183) ((-855 . -1039) 160079) ((-783 . -287) 160006) ((-818 . -1112) T) ((-1035 . -727) T) ((-603 . -652) 159990) ((-1047 . -977) 159919) ((-1000 . -102) T) ((-818 . -23) T) ((-713 . -1151) 159897) ((-695 . -1058) T) ((-603 . -375) 159881) ((-353 . -455) T) ((-345 . -291) T) ((-1267 . -1100) T) ((-248 . -1100) T) ((-402 . -102) T) ((-290 . -21) T) ((-290 . -25) T) ((-363 . -727) T) ((-711 . -1100) T) ((-700 . -1100) T) ((-363 . -476) T) ((-1210 . -614) 159863) ((-1172 . -379) 159847) ((-1125 . -379) 159831) ((-1025 . -414) 159793) ((-141 . -229) 159775) ((-381 . -795) T) ((-381 . -792) T) ((-871 . -172) T) ((-381 . -727) T) ((-712 . -614) 159757) ((-713 . -38) 159586) ((-1266 . -1264) 159570) ((-353 . -405) T) ((-1266 . -1100) 159520) ((-583 . -718) 159507) ((-567 . -718) 159494) ((-498 . -718) 159459) ((-1252 . -647) 159349) ((-317 . -630) 159328) ((-837 . -727) T) ((-828 . -727) T) ((-645 . -1216) T) ((-1080 . -640) 159276) ((-1172 . -901) 159219) ((-1125 . -901) 159203) ((-663 . -1057) 159187) ((-108 . -640) 159169) ((-485 . -131) 159039) ((-1178 . -1112) T) ((-953 . -47) 159008) ((-624 . -1100) T) ((-663 . -111) 158987) ((-494 . -614) 158953) ((-328 . -289) 158930) ((-484 . -47) 158887) ((-1178 . -23) T) ((-117 . -1100) T) ((-103 . -102) 158865) ((-1278 . -1112) T) ((-551 . -851) T) ((-1055 . -131) T) ((-1025 . -1058) T) ((-820 . -1039) 158849) ((-1004 . -725) 158821) ((-1278 . -23) T) ((-700 . -718) 158786) ((-588 . -614) 158768) ((-389 . -1039) 158752) ((-356 . -1058) T) ((-387 . -131) T) ((-325 . -1039) 158736) ((-1196 . -614) 158718) ((-1120 . -829) T) ((-225 . -887) 158700) ((-1005 . -921) T) ((-91 . -34) T) ((-1005 . -821) T) ((-915 . -921) T) ((-1105 . -1100) T) ((-1080 . -21) T) ((-490 . -1220) T) ((-1080 . -25) T) ((-1000 . -310) 158665) ((-715 . -649) 158625) ((-217 . -1220) T) ((-682 . -617) 158606) ((-225 . -1039) 158566) ((-40 . -291) T) ((-677 . -617) 158547) ((-490 . -559) T) ((-481 . -617) 158528) ((-317 . -647) 158212) ((-314 . -647) 158126) ((-361 . -25) T) ((-361 . -21) T) ((-355 . -25) T) ((-217 . -559) T) ((-355 . -21) T) ((-347 . -25) T) ((-347 . -21) T) ((-245 . -617) 158103) ((-138 . -617) 158084) ((-137 . -617) 158065) ((-133 . -617) 158046) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1058) T) ((-583 . -172) T) ((-567 . -172) T) ((-498 . -172) T) ((-659 . -614) 158028) ((-738 . -737) 158012) ((-338 . -614) 157994) ((-68 . -385) T) ((-68 . -398) T) ((-1102 . -107) 157978) ((-1062 . -887) 157960) ((-953 . -887) 157885) ((-654 . -1112) T) ((-624 . -718) 157872) ((-484 . -887) NIL) ((-1146 . -102) T) ((-1094 . -619) 157856) ((-1062 . -1039) 157838) ((-97 . -614) 157820) ((-480 . -147) T) ((-953 . -1039) 157700) ((-117 . -718) 157645) ((-654 . -23) T) ((-484 . -1039) 157521) ((-1087 . -615) NIL) ((-1087 . -614) 157503) ((-783 . -615) NIL) ((-783 . -614) 157464) ((-781 . -615) 157098) ((-781 . -614) 157012) ((-1113 . -640) 156918) ((-464 . -614) 156900) ((-457 . -614) 156882) ((-457 . -615) 156743) ((-1036 . -229) 156689) ((-873 . -910) 156668) ((-126 . -34) T) ((-818 . -131) T) ((-650 . -614) 156650) ((-581 . -102) T) ((-357 . -1285) 156634) ((-354 . -1285) 156618) ((-346 . -1285) 156602) ((-127 . -517) 156535) ((-121 . -517) 156468) ((-514 . -793) T) ((-514 . -796) T) ((-513 . -795) T) ((-103 . -310) 156406) ((-222 . -102) 156384) ((-700 . -172) T) ((-695 . -1100) T) ((-873 . -649) 156336) ((-65 . -386) T) ((-276 . -614) 156318) ((-65 . -398) T) ((-953 . -379) 156302) ((-871 . -291) T) ((-50 . -614) 156284) ((-1000 . -38) 156232) ((-1120 . -647) 156204) ((-584 . -614) 156186) ((-484 . -379) 156170) ((-584 . -615) 156152) ((-521 . -614) 156134) ((-911 . -1285) 156121) ((-872 . -1216) T) ((-702 . -455) T) ((-498 . -517) 156087) ((-490 . -365) T) ((-357 . -370) 156066) ((-354 . -370) 156045) ((-346 . -370) 156024) ((-715 . -727) T) ((-217 . -365) T) ((-116 . -455) T) ((-1289 . -1280) 156008) ((-872 . -885) 155985) ((-872 . -887) NIL) ((-965 . -851) 155884) ((-816 . -851) 155835) ((-1223 . -102) T) ((-655 . -657) 155819) ((-1202 . -34) T) ((-171 . -614) 155801) ((-1113 . -21) 155711) ((-1113 . -25) 155562) ((-872 . -1039) 155539) ((-953 . -901) 155520) ((-1239 . -47) 155497) ((-911 . -370) T) ((-59 . -652) 155481) ((-519 . -652) 155465) ((-484 . -901) 155442) ((-71 . -444) T) ((-71 . -398) T) ((-499 . -652) 155426) ((-59 . -375) 155410) ((-624 . -172) T) ((-519 . -375) 155394) ((-499 . -375) 155378) ((-828 . -709) 155362) ((-1172 . -308) 155341) ((-1178 . -131) T) ((-1142 . -1052) 155325) ((-117 . -172) T) ((-1142 . -641) 155257) ((-1146 . -310) 155195) ((-169 . -1216) T) ((-1278 . -131) T) ((-867 . -1052) 155165) ((-636 . -745) 155149) ((-608 . -745) 155133) ((-1251 . -921) 155112) ((-1230 . -921) 155091) ((-1230 . -821) NIL) ((-867 . -641) 155061) ((-695 . -718) 155011) ((-1229 . -910) 154964) ((-1025 . -1100) T) ((-872 . -379) 154941) ((-872 . -340) 154918) ((-906 . -1112) T) ((-169 . -885) 154902) ((-169 . -887) 154827) ((-490 . -1112) T) ((-356 . -1100) T) ((-217 . -1112) T) ((-76 . -444) T) ((-76 . -398) T) ((-169 . -1039) 154723) ((-320 . -851) T) ((-1266 . -517) 154656) ((-1250 . -649) 154553) ((-1229 . -649) 154423) ((-873 . -795) 154402) ((-873 . -792) 154381) ((-873 . -727) T) ((-490 . -23) T) ((-223 . -614) 154363) ((-174 . -455) T) ((-222 . -310) 154301) ((-86 . -444) T) ((-86 . -398) T) ((-217 . -23) T) ((-1290 . -1283) 154280) ((-678 . -1039) 154264) ((-583 . -291) T) ((-567 . -291) T) ((-498 . -291) T) ((-136 . -473) 154219) ((-655 . -647) 154178) ((-48 . -1100) T) ((-713 . -231) 154162) ((-872 . -901) NIL) ((-1239 . -887) NIL) ((-890 . -102) T) ((-886 . -102) T) ((-391 . -1100) T) ((-169 . -379) 154146) ((-169 . -340) 154130) ((-1239 . -1039) 154010) ((-856 . -1039) 153906) ((-1142 . -102) T) ((-654 . -131) T) ((-117 . -517) 153814) ((-663 . -793) 153793) ((-663 . -796) 153772) ((-574 . -1039) 153754) ((-295 . -1273) 153724) ((-867 . -102) T) ((-964 . -559) 153703) ((-1210 . -1057) 153586) ((-1004 . -1052) 153531) ((-485 . -640) 153437) ((-905 . -1100) T) ((-1025 . -718) 153374) ((-712 . -1057) 153339) ((-1004 . -641) 153284) ((-618 . -102) T) ((-603 . -34) T) ((-1147 . -1216) T) ((-1210 . -111) 153153) ((-477 . -649) 153050) ((-356 . -718) 152995) ((-169 . -901) 152954) ((-700 . -291) T) ((-695 . -172) T) ((-712 . -111) 152910) ((-1294 . -1058) T) ((-1239 . -379) 152894) ((-421 . -1220) 152872) ((-1118 . -614) 152854) ((-314 . -849) NIL) ((-421 . -559) T) ((-225 . -308) T) ((-1229 . -792) 152807) ((-1229 . -795) 152760) ((-1250 . -727) T) ((-1229 . -727) T) ((-48 . -718) 152725) ((-225 . -1023) T) ((-353 . -1273) 152702) ((-1252 . -414) 152668) ((-719 . -727) T) ((-334 . -614) 152650) ((-1239 . -901) 152593) ((-1210 . -617) 152475) ((-112 . -614) 152457) ((-112 . -615) 152439) ((-719 . -476) T) ((-712 . -617) 152389) ((-1289 . -1052) 152373) ((-485 . -21) 152283) ((-127 . -492) 152267) ((-121 . -492) 152251) ((-485 . -25) 152102) ((-1289 . -641) 152072) ((-624 . -291) T) ((-588 . -1057) 152047) ((-440 . -1100) T) ((-1062 . -308) T) ((-117 . -291) T) ((-1104 . -102) T) ((-1004 . -102) T) ((-588 . -111) 152015) ((-1142 . -310) 151953) ((-1210 . -1050) T) ((-1062 . -1023) T) ((-66 . -1216) T) ((-1055 . -25) T) ((-1055 . -21) T) ((-712 . -1050) T) ((-387 . -21) T) ((-387 . -25) T) ((-695 . -517) NIL) ((-1025 . -172) T) ((-712 . -243) T) ((-1062 . -548) T) ((-713 . -647) 151863) ((-509 . -102) T) ((-505 . -102) T) ((-356 . -172) T) ((-345 . -614) 151845) ((-410 . -1052) 151797) ((-397 . -614) 151779) ((-1120 . -849) T) ((-477 . -727) T) ((-893 . -1039) 151747) ((-410 . -641) 151699) ((-108 . -851) T) ((-659 . -1057) 151683) ((-490 . -131) T) ((-1252 . -1058) T) ((-217 . -131) T) ((-1156 . -102) 151661) ((-99 . -1100) T) ((-245 . -667) 151645) ((-245 . -652) 151629) ((-659 . -111) 151608) ((-588 . -617) 151592) ((-317 . -414) 151576) ((-245 . -375) 151560) ((-1159 . -235) 151507) ((-1000 . -231) 151491) ((-74 . -1216) T) ((-48 . -172) T) ((-702 . -390) T) ((-702 . -143) T) ((-1289 . -102) T) ((-1196 . -617) 151473) ((-1087 . -1057) 151316) ((-265 . -910) 151295) ((-247 . -910) 151274) ((-783 . -1057) 151097) ((-781 . -1057) 150940) ((-609 . -1216) T) ((-1164 . -614) 150922) ((-1087 . -111) 150751) ((-1047 . -102) T) ((-478 . -1216) T) ((-464 . -1057) 150722) ((-457 . -1057) 150565) ((-665 . -649) 150549) ((-872 . -308) T) ((-783 . -111) 150358) ((-781 . -111) 150187) ((-357 . -649) 150139) ((-354 . -649) 150091) ((-346 . -649) 150043) ((-265 . -649) 149968) ((-247 . -649) 149893) ((-1158 . -851) T) ((-1088 . -1039) 149877) ((-464 . -111) 149838) ((-457 . -111) 149667) ((-1076 . -1039) 149644) ((-1001 . -34) T) ((-967 . -614) 149626) ((-959 . -1216) T) ((-126 . -1011) 149610) ((-964 . -1112) T) ((-872 . -1023) NIL) ((-736 . -1112) T) ((-716 . -1112) T) ((-659 . -617) 149528) ((-1266 . -492) 149512) ((-1142 . -38) 149472) ((-964 . -23) T) ((-911 . -649) 149437) ((-866 . -1100) T) ((-844 . -102) T) ((-818 . -21) T) ((-636 . -1052) 149421) ((-608 . -1052) 149405) ((-818 . -25) T) ((-736 . -23) T) ((-716 . -23) T) ((-636 . -641) 149389) ((-110 . -662) T) ((-608 . -641) 149373) ((-584 . -1057) 149338) ((-521 . -1057) 149283) ((-227 . -57) 149241) ((-456 . -23) T) ((-410 . -102) T) ((-264 . -102) T) ((-695 . -291) T) ((-867 . -38) 149211) ((-584 . -111) 149167) ((-521 . -111) 149096) ((-1087 . -617) 148832) ((-421 . -1112) T) ((-317 . -1058) 148722) ((-314 . -1058) T) ((-128 . -1216) T) ((-783 . -617) 148470) ((-781 . -617) 148236) ((-659 . -1050) T) ((-1294 . -1100) T) ((-457 . -617) 148021) ((-169 . -308) 147952) ((-421 . -23) T) ((-40 . -614) 147934) ((-40 . -615) 147918) ((-108 . -993) 147900) ((-116 . -870) 147884) ((-650 . -617) 147868) ((-48 . -517) 147834) ((-1202 . -1011) 147818) ((-1181 . -614) 147785) ((-1189 . -34) T) ((-955 . -614) 147751) ((-922 . -614) 147733) ((-1113 . -851) 147684) ((-772 . -614) 147666) ((-673 . -614) 147648) ((-1156 . -310) 147586) ((-482 . -34) T) ((-1092 . -1216) T) ((-480 . -455) T) ((-1141 . -34) T) ((-1087 . -1050) T) ((-50 . -617) 147555) ((-783 . -1050) T) ((-781 . -1050) T) ((-648 . -235) 147539) ((-633 . -235) 147485) ((-584 . -617) 147435) ((-521 . -617) 147365) ((-1239 . -308) 147344) ((-1087 . -327) 147305) ((-457 . -1050) T) ((-1178 . -21) T) ((-1087 . -233) 147284) ((-783 . -327) 147261) ((-783 . -233) T) ((-781 . -327) 147233) ((-732 . -1220) 147212) ((-328 . -652) 147196) ((-1178 . -25) T) ((-59 . -34) T) ((-522 . -34) T) ((-519 . -34) T) ((-457 . -327) 147175) ((-328 . -375) 147159) ((-500 . -34) T) ((-499 . -34) T) ((-1004 . -1151) NIL) ((-732 . -559) 147090) ((-636 . -102) T) ((-608 . -102) T) ((-357 . -727) T) ((-354 . -727) T) ((-346 . -727) T) ((-265 . -727) T) ((-247 . -727) T) ((-1047 . -310) 146998) ((-902 . -1100) 146976) ((-50 . -1050) T) ((-1278 . -21) T) ((-1278 . -25) T) ((-1174 . -559) 146955) ((-1173 . -1220) 146934) ((-1173 . -559) 146885) ((-584 . -1050) T) ((-521 . -1050) T) ((-1167 . -1220) 146864) ((-363 . -1039) 146848) ((-323 . -1039) 146832) ((-1025 . -291) T) ((-381 . -887) 146814) ((-1167 . -559) 146765) ((-1004 . -38) 146710) ((-1000 . -647) 146633) ((-800 . -1112) T) ((-911 . -727) T) ((-584 . -243) T) ((-584 . -233) T) ((-521 . -233) T) ((-521 . -243) T) ((-1126 . -559) 146612) ((-356 . -291) T) ((-648 . -696) 146596) ((-381 . -1039) 146556) ((-295 . -1052) 146477) ((-1120 . -1058) T) ((-103 . -125) 146461) ((-295 . -641) 146403) ((-800 . -23) T) ((-1288 . -1283) 146379) ((-1266 . -287) 146356) ((-410 . -310) 146321) ((-1286 . -1283) 146300) ((-1252 . -1100) T) ((-871 . -614) 146282) ((-837 . -1039) 146251) ((-203 . -788) T) ((-202 . -788) T) ((-201 . -788) T) ((-200 . -788) T) ((-199 . -788) T) ((-198 . -788) T) ((-197 . -788) T) ((-196 . -788) T) ((-195 . -788) T) ((-194 . -788) T) ((-550 . -614) 146233) ((-498 . -1003) T) ((-275 . -840) T) ((-274 . -840) T) ((-273 . -840) T) ((-272 . -840) T) ((-48 . -291) T) ((-271 . -840) T) ((-270 . -840) T) ((-269 . -840) T) ((-193 . -788) T) ((-613 . -851) T) ((-655 . -414) 146217) ((-223 . -617) 146179) ((-110 . -851) T) ((-654 . -21) T) ((-654 . -25) T) ((-1289 . -38) 146149) ((-117 . -287) 146100) ((-1266 . -19) 146084) ((-1266 . -605) 146061) ((-1279 . -1100) T) ((-353 . -1052) 146006) ((-1077 . -1100) T) ((-988 . -1100) T) ((-964 . -131) T) ((-738 . -1100) T) ((-353 . -641) 145951) ((-736 . -131) T) ((-716 . -131) T) ((-514 . -794) T) ((-514 . -795) T) ((-456 . -131) T) ((-410 . -1151) 145929) ((-223 . -1050) T) ((-295 . -102) 145711) ((-141 . -1100) T) ((-700 . -1003) T) ((-91 . -1216) T) ((-127 . -614) 145643) ((-121 . -614) 145575) ((-1294 . -172) T) ((-1173 . -365) 145554) ((-1167 . -365) 145533) ((-317 . -1100) T) ((-421 . -131) T) ((-314 . -1100) T) ((-410 . -38) 145485) ((-1133 . -102) T) ((-1252 . -718) 145377) ((-655 . -1058) T) ((-1135 . -1261) T) ((-320 . -145) 145356) ((-320 . -147) 145335) ((-136 . -1100) T) ((-139 . -1100) T) ((-114 . -1100) T) ((-859 . -102) T) ((-583 . -614) 145317) ((-567 . -615) 145216) ((-567 . -614) 145198) ((-498 . -614) 145180) ((-498 . -615) 145125) ((-488 . -23) T) ((-485 . -851) 145076) ((-490 . -640) 145058) ((-966 . -614) 145040) ((-217 . -640) 145022) ((-225 . -407) T) ((-663 . -649) 145006) ((-55 . -614) 144988) ((-1172 . -921) 144967) ((-732 . -1112) T) ((-353 . -102) T) ((-1215 . -1083) T) ((-1120 . -845) T) ((-819 . -851) T) ((-732 . -23) T) ((-345 . -1057) 144912) ((-1158 . -1157) T) ((-1147 . -107) 144896) ((-1174 . -1112) T) ((-1173 . -1112) T) ((-518 . -1039) 144880) ((-1167 . -1112) T) ((-1126 . -1112) T) ((-345 . -111) 144809) ((-1005 . -1220) T) ((-126 . -1216) T) ((-915 . -1220) T) ((-695 . -287) NIL) ((-1267 . -614) 144791) ((-1174 . -23) T) ((-1173 . -23) T) ((-1167 . -23) T) ((-1005 . -559) T) ((-1142 . -231) 144775) ((-915 . -559) T) ((-1126 . -23) T) ((-248 . -614) 144757) ((-1075 . -1100) T) ((-800 . -131) T) ((-711 . -614) 144739) ((-317 . -718) 144649) ((-314 . -718) 144578) ((-700 . -614) 144560) ((-700 . -615) 144505) ((-410 . -403) 144489) ((-441 . -1100) T) ((-490 . -25) T) ((-490 . -21) T) ((-1120 . -1100) T) ((-217 . -25) T) ((-217 . -21) T) ((-713 . -414) 144473) ((-715 . -1039) 144442) ((-1266 . -614) 144354) ((-1266 . -615) 144315) ((-1252 . -172) T) ((-245 . -34) T) ((-345 . -617) 144245) ((-397 . -617) 144227) ((-927 . -975) T) ((-1202 . -1216) T) ((-663 . -792) 144206) ((-663 . -795) 144185) ((-401 . -398) T) ((-526 . -102) 144163) ((-1036 . -1100) T) ((-222 . -996) 144147) ((-507 . -102) T) ((-624 . -614) 144129) ((-45 . -851) NIL) ((-624 . -615) 144106) ((-1036 . -611) 144081) ((-902 . -517) 144014) ((-345 . -1050) T) ((-117 . -615) NIL) ((-117 . -614) 143996) ((-873 . -1216) T) ((-671 . -420) 143980) ((-671 . -1123) 143925) ((-503 . -151) 143907) ((-345 . -233) T) ((-345 . -243) T) ((-40 . -1057) 143852) ((-873 . -885) 143836) ((-873 . -887) 143761) ((-713 . -1058) T) ((-695 . -1003) NIL) ((-1250 . -47) 143731) ((-1229 . -47) 143708) ((-1141 . -1011) 143679) ((-3 . |UnionCategory|) T) ((-1120 . -718) 143666) ((-1105 . -614) 143648) ((-1080 . -147) 143627) ((-1080 . -145) 143578) ((-967 . -617) 143562) ((-225 . -921) T) ((-40 . -111) 143491) ((-873 . -1039) 143355) ((-1005 . -365) T) ((-1004 . -231) 143332) ((-702 . -1052) 143319) ((-915 . -365) T) ((-702 . -641) 143306) ((-320 . -1204) 143272) ((-381 . -308) T) ((-320 . -1201) 143238) ((-317 . -172) 143217) ((-314 . -172) T) ((-584 . -1285) 143204) ((-521 . -1285) 143181) ((-361 . -147) 143160) ((-116 . -1052) 143147) ((-361 . -145) 143098) ((-355 . -147) 143077) ((-355 . -145) 143028) ((-347 . -147) 143007) ((-609 . -1192) 142983) ((-116 . -641) 142970) ((-347 . -145) 142921) ((-320 . -35) 142887) ((-478 . -1192) 142866) ((0 . |EnumerationCategory|) T) ((-320 . -95) 142832) ((-381 . -1023) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 142782) ((-655 . -1100) T) ((-609 . -107) 142729) ((-488 . -131) T) ((-478 . -107) 142679) ((-240 . -1112) 142589) ((-873 . -379) 142573) ((-873 . -340) 142557) ((-240 . -23) 142427) ((-40 . -617) 142357) ((-1062 . -921) T) ((-1062 . -821) T) ((-584 . -370) T) ((-521 . -370) T) ((-1279 . -517) 142290) ((-1258 . -559) 142269) ((-353 . -1151) T) ((-328 . -34) T) ((-44 . -420) 142253) ((-1181 . -617) 142189) ((-874 . -1216) T) ((-393 . -745) 142173) ((-1251 . -1220) 142152) ((-1251 . -559) 142103) ((-1142 . -647) 142062) ((-732 . -131) T) ((-673 . -617) 142046) ((-1230 . -1220) 142025) ((-1230 . -559) 141976) ((-1229 . -1216) 141955) ((-1229 . -887) 141828) ((-1229 . -885) 141798) ((-1174 . -131) T) ((-312 . -1083) T) ((-1173 . -131) T) ((-738 . -517) 141731) ((-1167 . -131) T) ((-1126 . -131) T) ((-894 . -1100) T) ((-144 . -845) T) ((-1025 . -1003) T) ((-692 . -614) 141713) ((-1005 . -23) T) ((-526 . -310) 141651) ((-1005 . -1112) T) ((-141 . -517) NIL) ((-867 . -647) 141596) ((-1004 . -351) NIL) ((-972 . -23) T) ((-915 . -1112) T) ((-353 . -38) 141561) ((-915 . -23) T) ((-873 . -901) 141520) ((-82 . -614) 141502) ((-40 . -1050) T) ((-871 . -1057) 141489) ((-871 . -111) 141474) ((-702 . -102) T) ((-695 . -614) 141456) ((-603 . -1216) T) ((-598 . -559) 141435) ((-430 . -1112) T) ((-341 . -1052) 141419) ((-213 . -1100) T) ((-174 . -1052) 141351) ((-477 . -47) 141321) ((-134 . -102) T) ((-40 . -233) 141293) ((-40 . -243) T) ((-116 . -102) T) ((-597 . -559) 141272) ((-341 . -641) 141256) ((-695 . -615) 141164) ((-317 . -517) 141130) ((-174 . -641) 141062) ((-314 . -517) 140954) ((-1250 . -1039) 140938) ((-1229 . -1039) 140724) ((-1000 . -414) 140708) ((-430 . -23) T) ((-1120 . -172) T) ((-1252 . -291) T) ((-655 . -718) 140678) ((-144 . -1100) T) ((-48 . -1003) T) ((-410 . -231) 140662) ((-296 . -235) 140612) ((-872 . -921) T) ((-872 . -821) NIL) ((-871 . -617) 140584) ((-865 . -851) T) ((-1229 . -340) 140554) ((-1229 . -379) 140524) ((-222 . -1121) 140508) ((-1266 . -289) 140485) ((-1210 . -649) 140410) ((-1004 . -647) 140340) ((-964 . -21) T) ((-964 . -25) T) ((-736 . -21) T) ((-736 . -25) T) ((-716 . -21) T) ((-716 . -25) T) ((-712 . -649) 140305) ((-456 . -21) T) ((-456 . -25) T) ((-341 . -102) T) ((-174 . -102) T) ((-1000 . -1058) T) ((-871 . -1050) T) ((-775 . -102) T) ((-1251 . -365) 140284) ((-1250 . -901) 140190) ((-1230 . -365) 140169) ((-1229 . -901) 140020) ((-1025 . -614) 140002) ((-410 . -829) 139955) ((-1174 . -496) 139921) ((-169 . -921) 139852) ((-1173 . -496) 139818) ((-1167 . -496) 139784) ((-713 . -1100) T) ((-1126 . -496) 139750) ((-583 . -1057) 139737) ((-567 . -1057) 139724) ((-498 . -1057) 139689) ((-317 . -291) 139668) ((-314 . -291) T) ((-356 . -614) 139650) ((-421 . -25) T) ((-421 . -21) T) ((-99 . -287) 139629) ((-583 . -111) 139614) ((-567 . -111) 139599) ((-498 . -111) 139555) ((-1176 . -887) 139522) ((-902 . -492) 139506) ((-48 . -614) 139488) ((-48 . -615) 139433) ((-240 . -131) 139303) ((-1289 . -647) 139262) ((-1239 . -921) 139241) ((-817 . -1220) 139220) ((-391 . -493) 139201) ((-1036 . -517) 139045) ((-391 . -614) 139011) ((-817 . -559) 138942) ((-588 . -649) 138917) ((-265 . -47) 138889) ((-247 . -47) 138846) ((-534 . -512) 138823) ((-583 . -617) 138795) ((-567 . -617) 138767) ((-498 . -617) 138700) ((-1074 . -1216) T) ((-1001 . -1216) T) ((-1258 . -23) T) ((-700 . -1057) 138665) ((-1258 . -1112) T) ((-1251 . -1112) T) ((-1251 . -23) T) ((-1230 . -1112) T) ((-1230 . -23) T) ((-1004 . -372) 138637) ((-112 . -370) T) ((-477 . -901) 138543) ((-1210 . -727) T) ((-905 . -614) 138525) ((-55 . -617) 138507) ((-91 . -107) 138491) ((-1120 . -291) T) ((-906 . -851) 138442) ((-702 . -1151) T) ((-700 . -111) 138398) ((-844 . -647) 138315) ((-598 . -1112) T) ((-597 . -1112) T) ((-713 . -718) 138144) ((-712 . -727) T) ((-1005 . -131) T) ((-972 . -131) T) ((-490 . -851) T) ((-915 . -131) T) ((-800 . -25) T) ((-800 . -21) T) ((-217 . -851) T) ((-410 . -647) 138081) ((-583 . -1050) T) ((-567 . -1050) T) ((-498 . -1050) T) ((-598 . -23) T) ((-345 . -1285) 138058) ((-320 . -455) 138037) ((-341 . -310) 138024) ((-597 . -23) T) ((-430 . -131) T) ((-659 . -649) 137998) ((-245 . -1011) 137982) ((-873 . -308) T) ((-1290 . -1280) 137966) ((-772 . -793) T) ((-772 . -796) T) ((-702 . -38) 137953) ((-567 . -233) T) ((-498 . -243) T) ((-498 . -233) T) ((-1150 . -235) 137903) ((-1087 . -910) 137882) ((-116 . -38) 137869) ((-209 . -801) T) ((-208 . -801) T) ((-207 . -801) T) ((-206 . -801) T) ((-873 . -1023) 137847) ((-1279 . -492) 137831) ((-783 . -910) 137810) ((-781 . -910) 137789) ((-1189 . -1216) T) ((-457 . -910) 137768) ((-738 . -492) 137752) ((-1087 . -649) 137677) ((-700 . -617) 137612) ((-783 . -649) 137537) ((-624 . -1057) 137524) ((-482 . -1216) T) ((-345 . -370) T) ((-141 . -492) 137506) ((-781 . -649) 137431) ((-1141 . -1216) T) ((-552 . -851) T) ((-464 . -649) 137402) ((-265 . -887) 137261) ((-247 . -887) NIL) ((-117 . -1057) 137206) ((-457 . -649) 137131) ((-665 . -1039) 137108) ((-624 . -111) 137093) ((-393 . -1052) 137077) ((-357 . -1039) 137061) ((-354 . -1039) 137045) ((-346 . -1039) 137029) ((-265 . -1039) 136873) ((-247 . -1039) 136749) ((-117 . -111) 136678) ((-59 . -1216) T) ((-393 . -641) 136662) ((-622 . -1052) 136646) ((-522 . -1216) T) ((-519 . -1216) T) ((-500 . -1216) T) ((-499 . -1216) T) ((-440 . -614) 136628) ((-437 . -614) 136610) ((-622 . -641) 136594) ((-3 . -102) T) ((-1028 . -1209) 136563) ((-834 . -102) T) ((-690 . -57) 136521) ((-700 . -1050) T) ((-636 . -647) 136490) ((-608 . -647) 136459) ((-50 . -649) 136433) ((-290 . -455) T) ((-479 . -1209) 136402) ((0 . -102) T) ((-584 . -649) 136367) ((-521 . -649) 136312) ((-49 . -102) T) ((-911 . -1039) 136299) ((-700 . -243) T) ((-1080 . -412) 136278) ((-732 . -640) 136226) ((-1000 . -1100) T) ((-713 . -172) 136117) ((-624 . -617) 136012) ((-490 . -993) 135994) ((-265 . -379) 135978) ((-247 . -379) 135962) ((-402 . -1100) T) ((-1027 . -102) 135940) ((-341 . -38) 135924) ((-217 . -993) 135906) ((-117 . -617) 135836) ((-174 . -38) 135768) ((-1250 . -308) 135747) ((-1229 . -308) 135726) ((-659 . -727) T) ((-99 . -614) 135708) ((-480 . -1052) 135673) ((-1167 . -640) 135625) ((-480 . -641) 135590) ((-488 . -25) T) ((-488 . -21) T) ((-1229 . -1023) 135542) ((-624 . -1050) T) ((-381 . -407) T) ((-393 . -102) T) ((-1105 . -619) 135457) ((-265 . -901) 135403) ((-247 . -901) 135380) ((-117 . -1050) T) ((-817 . -1112) T) ((-1087 . -727) T) ((-624 . -233) 135359) ((-622 . -102) T) ((-783 . -727) T) ((-781 . -727) T) ((-416 . -1112) T) ((-117 . -243) T) ((-40 . -370) NIL) ((-117 . -233) NIL) ((-1221 . -851) T) ((-457 . -727) T) ((-817 . -23) T) ((-732 . -25) T) ((-732 . -21) T) ((-1077 . -287) 135338) ((-78 . -399) T) ((-78 . -398) T) ((-536 . -768) 135320) ((-695 . -1057) 135270) ((-1258 . -131) T) ((-1251 . -131) T) ((-1230 . -131) T) ((-1174 . -25) T) ((-1142 . -414) 135254) ((-636 . -369) 135186) ((-608 . -369) 135118) ((-1156 . -1149) 135102) ((-103 . -1100) 135080) ((-1174 . -21) T) ((-1173 . -21) T) ((-866 . -614) 135062) ((-1000 . -718) 135010) ((-223 . -649) 134977) ((-695 . -111) 134911) ((-50 . -727) T) ((-1173 . -25) T) ((-353 . -351) T) ((-1167 . -21) T) ((-1080 . -455) 134862) ((-1167 . -25) T) ((-713 . -517) 134809) ((-584 . -727) T) ((-521 . -727) T) ((-1126 . -21) T) ((-1126 . -25) T) ((-598 . -131) T) ((-295 . -647) 134544) ((-597 . -131) T) ((-361 . -455) T) ((-355 . -455) T) ((-347 . -455) T) ((-477 . -308) 134523) ((-1224 . -102) T) ((-314 . -287) 134458) ((-108 . -455) T) ((-79 . -444) T) ((-79 . -398) T) ((-480 . -102) T) ((-692 . -617) 134442) ((-1294 . -614) 134424) ((-1294 . -615) 134406) ((-1080 . -405) 134385) ((-1036 . -492) 134316) ((-567 . -796) T) ((-567 . -793) T) ((-1063 . -235) 134262) ((-361 . -405) 134213) ((-355 . -405) 134164) ((-347 . -405) 134115) ((-1281 . -1112) T) ((-1290 . -1052) 134099) ((-383 . -1052) 134083) ((-1290 . -641) 134053) ((-383 . -641) 134023) ((-695 . -617) 133958) ((-1281 . -23) T) ((-1268 . -102) T) ((-175 . -614) 133940) ((-1142 . -1058) T) ((-550 . -370) T) ((-671 . -745) 133924) ((-1178 . -145) 133903) ((-1178 . -147) 133882) ((-1146 . -1100) T) ((-1146 . -1071) 133851) ((-69 . -1216) T) ((-1025 . -1057) 133788) ((-353 . -647) 133718) ((-867 . -1058) T) ((-240 . -640) 133624) ((-695 . -1050) T) ((-356 . -1057) 133569) ((-61 . -1216) T) ((-1025 . -111) 133485) ((-902 . -614) 133396) ((-695 . -243) T) ((-695 . -233) NIL) ((-844 . -849) 133375) ((-700 . -796) T) ((-700 . -793) T) ((-1004 . -414) 133352) ((-356 . -111) 133281) ((-381 . -921) T) ((-410 . -849) 133260) ((-713 . -291) 133171) ((-223 . -727) T) ((-1258 . -496) 133137) ((-1251 . -496) 133103) ((-1230 . -496) 133069) ((-581 . -1100) T) ((-317 . -1003) 133048) ((-222 . -1100) 133026) ((-1223 . -845) T) ((-320 . -974) 132988) ((-105 . -102) T) ((-48 . -1057) 132953) ((-1290 . -102) T) ((-383 . -102) T) ((-48 . -111) 132909) ((-1005 . -640) 132891) ((-1252 . -614) 132873) ((-534 . -102) T) ((-503 . -102) T) ((-1133 . -1134) 132857) ((-152 . -1273) 132841) ((-245 . -1216) T) ((-1215 . -102) T) ((-1025 . -617) 132778) ((-1172 . -1220) 132757) ((-356 . -617) 132687) ((-1125 . -1220) 132666) ((-240 . -21) 132576) ((-240 . -25) 132427) ((-127 . -119) 132411) ((-121 . -119) 132395) ((-44 . -745) 132379) ((-1172 . -559) 132290) ((-1125 . -559) 132221) ((-1223 . -1100) T) ((-1036 . -287) 132196) ((-1166 . -1083) T) ((-995 . -1083) T) ((-817 . -131) T) ((-117 . -796) NIL) ((-117 . -793) NIL) ((-357 . -308) T) ((-354 . -308) T) ((-346 . -308) T) ((-252 . -1112) 132106) ((-251 . -1112) 132016) ((-1025 . -1050) T) ((-1004 . -1058) T) ((-48 . -617) 131949) ((-345 . -649) 131894) ((-622 . -38) 131878) ((-1279 . -614) 131840) ((-1279 . -615) 131801) ((-1077 . -614) 131783) ((-1025 . -243) T) ((-356 . -1050) T) ((-816 . -1273) 131753) ((-252 . -23) T) ((-251 . -23) T) ((-988 . -614) 131735) ((-738 . -615) 131696) ((-738 . -614) 131678) ((-800 . -851) 131657) ((-1159 . -151) 131604) ((-1000 . -517) 131516) ((-356 . -233) T) ((-356 . -243) T) ((-391 . -617) 131497) ((-1005 . -25) T) ((-141 . -614) 131479) ((-141 . -615) 131438) ((-911 . -308) T) ((-1005 . -21) T) ((-972 . -25) T) ((-915 . -21) T) ((-915 . -25) T) ((-430 . -21) T) ((-430 . -25) T) ((-844 . -414) 131422) ((-48 . -1050) T) ((-1288 . -1280) 131406) ((-1286 . -1280) 131390) ((-1036 . -605) 131365) ((-317 . -615) 131226) ((-317 . -614) 131208) ((-314 . -615) NIL) ((-314 . -614) 131190) ((-48 . -243) T) ((-48 . -233) T) ((-655 . -287) 131151) ((-553 . -235) 131101) ((-139 . -614) 131068) ((-136 . -614) 131050) ((-114 . -614) 131032) ((-480 . -38) 130997) ((-1290 . -1287) 130976) ((-1281 . -131) T) ((-1289 . -1058) T) ((-1082 . -102) T) ((-88 . -1216) T) ((-503 . -310) NIL) ((-1001 . -107) 130960) ((-890 . -1100) T) ((-886 . -1100) T) ((-1266 . -652) 130944) ((-1266 . -375) 130928) ((-328 . -1216) T) ((-595 . -851) T) ((-1142 . -1100) T) ((-1142 . -1054) 130868) ((-103 . -517) 130801) ((-928 . -614) 130783) ((-345 . -727) T) ((-30 . -614) 130765) ((-867 . -1100) T) ((-844 . -1058) 130744) ((-40 . -649) 130689) ((-225 . -1220) T) ((-410 . -1058) T) ((-1158 . -151) 130671) ((-1000 . -291) 130622) ((-618 . -1100) T) ((-225 . -559) T) ((-320 . -1247) 130606) ((-320 . -1244) 130576) ((-702 . -647) 130548) ((-1189 . -1192) 130527) ((-1075 . -614) 130509) ((-1189 . -107) 130459) ((-648 . -151) 130443) ((-633 . -151) 130389) ((-116 . -647) 130361) ((-482 . -1192) 130340) ((-490 . -147) T) ((-490 . -145) NIL) ((-1120 . -615) 130255) ((-441 . -614) 130237) ((-217 . -147) T) ((-217 . -145) NIL) ((-1120 . -614) 130219) ((-129 . -102) T) ((-52 . -102) T) ((-1230 . -640) 130171) ((-482 . -107) 130121) ((-994 . -23) T) ((-1290 . -38) 130091) ((-1172 . -1112) T) ((-1125 . -1112) T) ((-1062 . -1220) T) ((-312 . -102) T) ((-855 . -1112) T) ((-953 . -1220) 130070) ((-484 . -1220) 130049) ((-1062 . -559) T) ((-953 . -559) 129980) ((-1172 . -23) T) ((-1125 . -23) T) ((-855 . -23) T) ((-484 . -559) 129911) ((-1142 . -718) 129843) ((-671 . -1052) 129827) ((-1146 . -517) 129760) ((-671 . -641) 129744) ((-1036 . -615) NIL) ((-1036 . -614) 129726) ((-96 . -1083) T) ((-867 . -718) 129696) ((-1210 . -47) 129665) ((-252 . -131) T) ((-251 . -131) T) ((-1104 . -1100) T) ((-1004 . -1100) T) ((-62 . -614) 129647) ((-1167 . -851) NIL) ((-1025 . -793) T) ((-1025 . -796) T) ((-1294 . -1057) 129634) ((-1294 . -111) 129619) ((-1258 . -25) T) ((-1258 . -21) T) ((-871 . -649) 129606) ((-1251 . -21) T) ((-1251 . -25) T) ((-1230 . -21) T) ((-1230 . -25) T) ((-1028 . -151) 129590) ((-873 . -821) 129569) ((-873 . -921) T) ((-713 . -287) 129496) ((-598 . -21) T) ((-341 . -647) 129455) ((-598 . -25) T) ((-597 . -21) T) ((-174 . -647) 129372) ((-40 . -727) T) ((-222 . -517) 129305) ((-597 . -25) T) ((-479 . -151) 129289) ((-466 . -151) 129273) ((-922 . -795) T) ((-922 . -727) T) ((-772 . -794) T) ((-772 . -795) T) ((-509 . -1100) T) ((-505 . -1100) T) ((-772 . -727) T) ((-225 . -365) T) ((-1288 . -1052) 129257) ((-1286 . -1052) 129241) ((-1288 . -641) 129211) ((-1156 . -1100) 129189) ((-872 . -1220) T) ((-1286 . -641) 129159) ((-655 . -614) 129141) ((-872 . -559) T) ((-695 . -370) NIL) ((-44 . -1052) 129125) ((-1294 . -617) 129107) ((-1289 . -1100) T) ((-671 . -102) T) ((-361 . -1273) 129091) ((-355 . -1273) 129075) ((-44 . -641) 129059) ((-347 . -1273) 129043) ((-551 . -102) T) ((-523 . -851) 129022) ((-1047 . -1100) T) ((-818 . -455) 129001) ((-152 . -1052) 128985) ((-1047 . -1071) 128914) ((-1028 . -977) 128883) ((-820 . -1112) T) ((-1004 . -718) 128828) ((-152 . -641) 128812) ((-389 . -1112) T) ((-479 . -977) 128781) ((-466 . -977) 128750) ((-110 . -151) 128732) ((-73 . -614) 128714) ((-894 . -614) 128696) ((-1080 . -725) 128675) ((-1294 . -1050) T) ((-817 . -640) 128623) ((-295 . -1058) 128565) ((-169 . -1220) 128470) ((-225 . -1112) T) ((-325 . -23) T) ((-1167 . -993) 128422) ((-844 . -1100) T) ((-1252 . -1057) 128327) ((-1126 . -741) 128306) ((-1250 . -921) 128285) ((-1229 . -921) 128264) ((-871 . -727) T) ((-169 . -559) 128175) ((-583 . -649) 128162) ((-567 . -649) 128149) ((-410 . -1100) T) ((-264 . -1100) T) ((-213 . -614) 128131) ((-498 . -649) 128096) ((-225 . -23) T) ((-1229 . -821) 128049) ((-1288 . -102) T) ((-356 . -1285) 128026) ((-1286 . -102) T) ((-1252 . -111) 127918) ((-816 . -1052) 127815) ((-816 . -641) 127757) ((-144 . -614) 127739) ((-994 . -131) T) ((-44 . -102) T) ((-240 . -851) 127690) ((-1239 . -1220) 127669) ((-103 . -492) 127653) ((-1289 . -718) 127623) ((-1087 . -47) 127584) ((-1062 . -1112) T) ((-953 . -1112) T) ((-127 . -34) T) ((-121 . -34) T) ((-783 . -47) 127561) ((-781 . -47) 127533) ((-1239 . -559) 127444) ((-356 . -370) T) ((-484 . -1112) T) ((-1172 . -131) T) ((-1125 . -131) T) ((-457 . -47) 127423) ((-872 . -365) T) ((-855 . -131) T) ((-152 . -102) T) ((-1062 . -23) T) ((-953 . -23) T) ((-574 . -559) T) ((-817 . -25) T) ((-817 . -21) T) ((-1142 . -517) 127356) ((-594 . -1083) T) ((-588 . -1039) 127340) ((-1252 . -617) 127214) ((-484 . -23) T) ((-353 . -1058) T) ((-1210 . -901) 127195) ((-671 . -310) 127133) ((-1113 . -1273) 127103) ((-700 . -649) 127068) ((-1004 . -172) T) ((-964 . -145) 127047) ((-636 . -1100) T) ((-608 . -1100) T) ((-964 . -147) 127026) ((-1005 . -851) T) ((-736 . -147) 127005) ((-736 . -145) 126984) ((-972 . -851) T) ((-834 . -647) 126901) ((-477 . -921) 126880) ((-320 . -1052) 126715) ((-317 . -1057) 126625) ((-314 . -1057) 126554) ((-1000 . -287) 126512) ((-410 . -718) 126464) ((-320 . -641) 126305) ((-702 . -849) T) ((-1252 . -1050) T) ((-317 . -111) 126201) ((-314 . -111) 126114) ((-965 . -102) T) ((-816 . -102) 125904) ((-713 . -615) NIL) ((-713 . -614) 125886) ((-659 . -1039) 125782) ((-1252 . -327) 125726) ((-1036 . -289) 125701) ((-583 . -727) T) ((-567 . -795) T) ((-169 . -365) 125652) ((-567 . -792) T) ((-567 . -727) T) ((-498 . -727) T) ((-1146 . -492) 125636) ((-1087 . -887) NIL) ((-872 . -1112) T) ((-117 . -910) NIL) ((-1288 . -1287) 125612) ((-1286 . -1287) 125591) ((-783 . -887) NIL) ((-781 . -887) 125450) ((-1281 . -25) T) ((-1281 . -21) T) ((-1213 . -102) 125428) ((-1106 . -398) T) ((-624 . -649) 125415) ((-457 . -887) NIL) ((-676 . -102) 125393) ((-1087 . -1039) 125220) ((-872 . -23) T) ((-783 . -1039) 125079) ((-781 . -1039) 124936) ((-117 . -649) 124881) ((-457 . -1039) 124757) ((-317 . -617) 124321) ((-314 . -617) 124204) ((-393 . -647) 124173) ((-650 . -1039) 124157) ((-628 . -102) T) ((-222 . -492) 124141) ((-1266 . -34) T) ((-622 . -647) 124100) ((-290 . -1052) 124087) ((-136 . -617) 124071) ((-290 . -641) 124058) ((-636 . -718) 124042) ((-608 . -718) 124026) ((-671 . -38) 123986) ((-320 . -102) T) ((-85 . -614) 123968) ((-50 . -1039) 123952) ((-1120 . -1057) 123939) ((-1087 . -379) 123923) ((-783 . -379) 123907) ((-700 . -727) T) ((-700 . -795) T) ((-700 . -792) T) ((-584 . -1039) 123894) ((-521 . -1039) 123871) ((-60 . -57) 123833) ((-325 . -131) T) ((-317 . -1050) 123723) ((-314 . -1050) T) ((-169 . -1112) T) ((-781 . -379) 123707) ((-45 . -151) 123657) ((-1005 . -993) 123639) ((-457 . -379) 123623) ((-410 . -172) T) ((-317 . -243) 123602) ((-314 . -243) T) ((-314 . -233) NIL) ((-295 . -1100) 123384) ((-225 . -131) T) ((-1120 . -111) 123369) ((-169 . -23) T) ((-800 . -147) 123348) ((-800 . -145) 123327) ((-252 . -640) 123233) ((-251 . -640) 123139) ((-320 . -285) 123105) ((-1156 . -517) 123038) ((-480 . -647) 122988) ((-1133 . -1100) T) ((-225 . -1060) T) ((-816 . -310) 122926) ((-1087 . -901) 122861) ((-783 . -901) 122804) ((-781 . -901) 122788) ((-1288 . -38) 122758) ((-1286 . -38) 122728) ((-1239 . -1112) T) ((-856 . -1112) T) ((-457 . -901) 122705) ((-859 . -1100) T) ((-1239 . -23) T) ((-1120 . -617) 122677) ((-574 . -1112) T) ((-856 . -23) T) ((-624 . -727) T) ((-357 . -921) T) ((-354 . -921) T) ((-290 . -102) T) ((-346 . -921) T) ((-1062 . -131) T) ((-971 . -1083) T) ((-953 . -131) T) ((-117 . -795) NIL) ((-117 . -792) NIL) ((-117 . -727) T) ((-695 . -910) NIL) ((-1047 . -517) 122578) ((-484 . -131) T) ((-574 . -23) T) ((-676 . -310) 122516) ((-636 . -762) T) ((-608 . -762) T) ((-1230 . -851) NIL) ((-1080 . -1052) 122426) ((-1004 . -291) T) ((-695 . -649) 122376) ((-252 . -21) T) ((-353 . -1100) T) ((-252 . -25) T) ((-251 . -21) T) ((-251 . -25) T) ((-152 . -38) 122360) ((-2 . -102) T) ((-911 . -921) T) ((-1080 . -641) 122228) ((-485 . -1273) 122198) ((-1120 . -1050) T) ((-712 . -308) T) ((-361 . -1052) 122150) ((-355 . -1052) 122102) ((-347 . -1052) 122054) ((-361 . -641) 122006) ((-223 . -1039) 121983) ((-355 . -641) 121935) ((-108 . -1052) 121885) ((-347 . -641) 121837) ((-295 . -718) 121779) ((-702 . -1058) T) ((-490 . -455) T) ((-410 . -517) 121691) ((-108 . -641) 121641) ((-217 . -455) T) ((-1120 . -233) T) ((-296 . -151) 121591) ((-1000 . -615) 121552) ((-1000 . -614) 121534) ((-990 . -614) 121516) ((-116 . -1058) T) ((-655 . -1057) 121500) ((-225 . -496) T) ((-402 . -614) 121482) ((-402 . -615) 121459) ((-1055 . -1273) 121429) ((-655 . -111) 121408) ((-1142 . -492) 121392) ((-1290 . -647) 121351) ((-383 . -647) 121320) ((-816 . -38) 121290) ((-63 . -444) T) ((-63 . -398) T) ((-1159 . -102) T) ((-872 . -131) T) ((-487 . -102) 121268) ((-1294 . -370) T) ((-1080 . -102) T) ((-1061 . -102) T) ((-353 . -718) 121213) ((-732 . -147) 121192) ((-732 . -145) 121171) ((-655 . -617) 121089) ((-1025 . -649) 121026) ((-526 . -1100) 121004) ((-361 . -102) T) ((-355 . -102) T) ((-347 . -102) T) ((-108 . -102) T) ((-507 . -1100) T) ((-356 . -649) 120949) ((-1172 . -640) 120897) ((-1125 . -640) 120845) ((-387 . -512) 120824) ((-834 . -849) 120803) ((-381 . -1220) T) ((-695 . -727) T) ((-341 . -1058) T) ((-1230 . -993) 120755) ((-174 . -1058) T) ((-103 . -614) 120687) ((-1174 . -145) 120666) ((-1174 . -147) 120645) ((-381 . -559) T) ((-1173 . -147) 120624) ((-1173 . -145) 120603) ((-1167 . -145) 120510) ((-410 . -291) T) ((-1167 . -147) 120417) ((-1126 . -147) 120396) ((-1126 . -145) 120375) ((-320 . -38) 120216) ((-169 . -131) T) ((-314 . -796) NIL) ((-314 . -793) NIL) ((-655 . -1050) T) ((-48 . -649) 120181) ((-1113 . -1052) 120078) ((-894 . -617) 120055) ((-1113 . -641) 119997) ((-1166 . -102) T) ((-995 . -102) T) ((-994 . -21) T) ((-127 . -1011) 119981) ((-121 . -1011) 119965) ((-994 . -25) T) ((-902 . -119) 119949) ((-1158 . -102) T) ((-1239 . -131) T) ((-1172 . -25) T) ((-1172 . -21) T) ((-856 . -131) T) ((-1125 . -25) T) ((-1125 . -21) T) ((-855 . -25) T) ((-855 . -21) T) ((-783 . -308) 119928) ((-648 . -102) 119906) ((-633 . -102) T) ((-1159 . -310) 119701) ((-574 . -131) T) ((-622 . -849) 119680) ((-1156 . -492) 119664) ((-1150 . -151) 119614) ((-1146 . -614) 119576) ((-1146 . -615) 119537) ((-1025 . -792) T) ((-1025 . -795) T) ((-1025 . -727) T) ((-713 . -1057) 119360) ((-487 . -310) 119298) ((-456 . -420) 119268) ((-353 . -172) T) ((-290 . -38) 119255) ((-275 . -102) T) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-345 . -1039) 119232) ((-269 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-356 . -727) T) ((-713 . -111) 119041) ((-671 . -231) 119025) ((-584 . -308) T) ((-521 . -308) T) ((-295 . -517) 118974) ((-108 . -310) NIL) ((-72 . -398) T) ((-1113 . -102) 118764) ((-834 . -414) 118748) ((-1120 . -796) T) ((-1120 . -793) T) ((-702 . -1100) T) ((-581 . -614) 118730) ((-381 . -365) T) ((-169 . -496) 118708) ((-222 . -614) 118640) ((-134 . -1100) T) ((-116 . -1100) T) ((-48 . -727) T) ((-1047 . -492) 118605) ((-141 . -428) 118587) ((-141 . -370) T) ((-1028 . -102) T) ((-515 . -512) 118566) ((-713 . -617) 118322) ((-479 . -102) T) ((-466 . -102) T) ((-1035 . -1112) T) ((-1223 . -614) 118304) ((-1181 . -1039) 118240) ((-1174 . -35) 118206) ((-1174 . -95) 118172) ((-1174 . -1204) 118138) ((-1174 . -1201) 118104) ((-1158 . -310) NIL) ((-89 . -399) T) ((-89 . -398) T) ((-1080 . -1151) 118083) ((-1173 . -1201) 118049) ((-1173 . -1204) 118015) ((-1035 . -23) T) ((-1173 . -95) 117981) ((-574 . -496) T) ((-1173 . -35) 117947) ((-1167 . -1201) 117913) ((-1167 . -1204) 117879) ((-1167 . -95) 117845) ((-363 . -1112) T) ((-361 . -1151) 117824) ((-355 . -1151) 117803) ((-347 . -1151) 117782) ((-1167 . -35) 117748) ((-1126 . -35) 117714) ((-1126 . -95) 117680) ((-108 . -1151) T) ((-1126 . -1204) 117646) ((-834 . -1058) 117625) ((-648 . -310) 117563) ((-633 . -310) 117414) ((-1126 . -1201) 117380) ((-713 . -1050) T) ((-1062 . -640) 117362) ((-1080 . -38) 117230) ((-953 . -640) 117178) ((-1005 . -147) T) ((-1005 . -145) NIL) ((-381 . -1112) T) ((-325 . -25) T) ((-323 . -23) T) ((-944 . -851) 117157) ((-713 . -327) 117134) ((-484 . -640) 117082) ((-40 . -1039) 116970) ((-713 . -233) T) ((-702 . -718) 116957) ((-341 . -1100) T) ((-174 . -1100) T) ((-332 . -851) T) ((-421 . -455) 116907) ((-381 . -23) T) ((-361 . -38) 116872) ((-355 . -38) 116837) ((-347 . -38) 116802) ((-80 . -444) T) ((-80 . -398) T) ((-225 . -25) T) ((-225 . -21) T) ((-837 . -1112) T) ((-108 . -38) 116752) ((-828 . -1112) T) ((-775 . -1100) T) ((-116 . -718) 116739) ((-673 . -1039) 116723) ((-613 . -102) T) ((-837 . -23) T) ((-828 . -23) T) ((-1156 . -287) 116700) ((-1113 . -310) 116638) ((-485 . -1052) 116535) ((-1102 . -235) 116519) ((-64 . -399) T) ((-64 . -398) T) ((-110 . -102) T) ((-485 . -641) 116461) ((-40 . -379) 116438) ((-96 . -102) T) ((-654 . -853) 116422) ((-1135 . -1083) T) ((-1062 . -21) T) ((-1062 . -25) T) ((-1055 . -1052) 116406) ((-816 . -231) 116375) ((-953 . -25) T) ((-953 . -21) T) ((-1055 . -641) 116317) ((-622 . -1058) T) ((-1120 . -370) T) ((-1028 . -310) 116255) ((-671 . -647) 116214) ((-484 . -25) T) ((-484 . -21) T) ((-387 . -1052) 116198) ((-890 . -614) 116180) ((-886 . -614) 116162) ((-526 . -517) 116095) ((-252 . -851) 116046) ((-251 . -851) 115997) ((-387 . -641) 115967) ((-872 . -640) 115944) ((-479 . -310) 115882) ((-466 . -310) 115820) ((-353 . -291) T) ((-1156 . -1254) 115804) ((-1142 . -614) 115766) ((-1142 . -615) 115727) ((-1140 . -102) T) ((-1000 . -1057) 115623) ((-40 . -901) 115575) ((-1156 . -605) 115552) ((-1294 . -649) 115539) ((-867 . -493) 115516) ((-1063 . -151) 115462) ((-873 . -1220) T) ((-1000 . -111) 115344) ((-341 . -718) 115328) ((-867 . -614) 115290) ((-174 . -718) 115222) ((-410 . -287) 115180) ((-873 . -559) T) ((-108 . -403) 115162) ((-84 . -386) T) ((-84 . -398) T) ((-702 . -172) T) ((-618 . -614) 115144) ((-99 . -727) T) ((-485 . -102) 114934) ((-99 . -476) T) ((-116 . -172) T) ((-1288 . -647) 114893) ((-1286 . -647) 114852) ((-1113 . -38) 114822) ((-169 . -640) 114770) ((-1055 . -102) T) ((-1000 . -617) 114660) ((-872 . -25) T) ((-816 . -238) 114639) ((-872 . -21) T) ((-819 . -102) T) ((-44 . -647) 114582) ((-417 . -102) T) ((-387 . -102) T) ((-110 . -310) NIL) ((-227 . -102) 114560) ((-127 . -1216) T) ((-121 . -1216) T) ((-818 . -1052) 114511) ((-818 . -641) 114453) ((-1035 . -131) T) ((-671 . -369) 114437) ((-152 . -647) 114396) ((-1000 . -1050) T) ((-1239 . -640) 114344) ((-1104 . -614) 114326) ((-1004 . -614) 114308) ((-518 . -23) T) ((-513 . -23) T) ((-345 . -308) T) ((-511 . -23) T) ((-323 . -131) T) ((-3 . -1100) T) ((-1004 . -615) 114292) ((-1000 . -243) 114271) ((-1000 . -233) 114250) ((-1294 . -727) T) ((-1258 . -145) 114229) ((-834 . -1100) T) ((-1258 . -147) 114208) ((-1251 . -147) 114187) ((-1251 . -145) 114166) ((-1250 . -1220) 114145) ((-1230 . -145) 114052) ((-1230 . -147) 113959) ((-1229 . -1220) 113938) ((-381 . -131) T) ((-567 . -887) 113920) ((0 . -1100) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1100) T) ((-1252 . -649) 113825) ((-1250 . -559) 113776) ((-715 . -1112) T) ((-1229 . -559) 113727) ((-567 . -1039) 113709) ((-597 . -147) 113688) ((-597 . -145) 113667) ((-498 . -1039) 113610) ((-1135 . -1137) T) ((-87 . -386) T) ((-87 . -398) T) ((-873 . -365) T) ((-837 . -131) T) ((-828 . -131) T) ((-965 . -647) 113554) ((-715 . -23) T) ((-509 . -614) 113520) ((-505 . -614) 113502) ((-816 . -647) 113252) ((-1290 . -1058) T) ((-381 . -1060) T) ((-1027 . -1100) 113230) ((-55 . -1039) 113212) ((-902 . -34) T) ((-485 . -310) 113150) ((-594 . -102) T) ((-1156 . -615) 113111) ((-1156 . -614) 113043) ((-1178 . -1052) 112926) ((-45 . -102) T) ((-818 . -102) T) ((-1178 . -641) 112823) ((-1239 . -25) T) ((-1239 . -21) T) ((-856 . -25) T) ((-44 . -369) 112807) ((-856 . -21) T) ((-732 . -455) 112758) ((-1289 . -614) 112740) ((-1278 . -1052) 112710) ((-1055 . -310) 112648) ((-672 . -1083) T) ((-607 . -1083) T) ((-393 . -1100) T) ((-574 . -25) T) ((-574 . -21) T) ((-180 . -1083) T) ((-161 . -1083) T) ((-156 . -1083) T) ((-154 . -1083) T) ((-1278 . -641) 112618) ((-622 . -1100) T) ((-700 . -887) 112600) ((-1266 . -1216) T) ((-227 . -310) 112538) ((-144 . -370) T) ((-1047 . -615) 112480) ((-1047 . -614) 112423) ((-314 . -910) NIL) ((-1224 . -845) T) ((-700 . -1039) 112368) ((-712 . -921) T) ((-477 . -1220) 112347) ((-1173 . -455) 112326) ((-1167 . -455) 112305) ((-331 . -102) T) ((-873 . -1112) T) ((-320 . -647) 112187) ((-317 . -649) 112008) ((-314 . -649) 111937) ((-477 . -559) 111888) ((-341 . -517) 111854) ((-553 . -151) 111804) ((-40 . -308) T) ((-844 . -614) 111786) ((-702 . -291) T) ((-873 . -23) T) ((-381 . -496) T) ((-1080 . -231) 111756) ((-515 . -102) T) ((-410 . -615) 111563) ((-410 . -614) 111545) ((-264 . -614) 111527) ((-116 . -291) T) ((-1252 . -727) T) ((-1250 . -365) 111506) ((-1229 . -365) 111485) ((-1279 . -34) T) ((-1224 . -1100) T) ((-117 . -1216) T) ((-108 . -231) 111467) ((-1178 . -102) T) ((-480 . -1100) T) ((-526 . -492) 111451) ((-738 . -34) T) ((-654 . -1052) 111435) ((-485 . -38) 111405) ((-654 . -641) 111375) ((-141 . -34) T) ((-117 . -885) 111352) ((-117 . -887) NIL) ((-624 . -1039) 111235) ((-645 . -851) 111214) ((-1278 . -102) T) ((-296 . -102) T) ((-713 . -370) 111193) ((-117 . -1039) 111170) ((-393 . -718) 111154) ((-622 . -718) 111138) ((-45 . -310) 110942) ((-817 . -145) 110921) ((-817 . -147) 110900) ((-290 . -647) 110872) ((-1289 . -384) 110851) ((-820 . -851) T) ((-1268 . -1100) T) ((-1159 . -229) 110798) ((-389 . -851) 110777) ((-1258 . -1204) 110743) ((-1258 . -1201) 110709) ((-1251 . -1201) 110675) ((-518 . -131) T) ((-1251 . -1204) 110641) ((-1230 . -1201) 110607) ((-1230 . -1204) 110573) ((-1258 . -35) 110539) ((-1258 . -95) 110505) ((-636 . -614) 110474) ((-608 . -614) 110443) ((-225 . -851) T) ((-1251 . -95) 110409) ((-1251 . -35) 110375) ((-1250 . -1112) T) ((-1120 . -649) 110362) ((-1230 . -95) 110328) ((-1229 . -1112) T) ((-595 . -151) 110310) ((-1080 . -351) 110289) ((-174 . -291) T) ((-117 . -379) 110266) ((-117 . -340) 110243) ((-1230 . -35) 110209) ((-871 . -308) T) ((-314 . -795) NIL) ((-314 . -792) NIL) ((-317 . -727) 110058) ((-314 . -727) T) ((-477 . -365) 110037) ((-361 . -351) 110016) ((-355 . -351) 109995) ((-347 . -351) 109974) ((-317 . -476) 109953) ((-1250 . -23) T) ((-1229 . -23) T) ((-719 . -1112) T) ((-715 . -131) T) ((-654 . -102) T) ((-480 . -718) 109918) ((-45 . -283) 109868) ((-105 . -1100) T) ((-68 . -614) 109850) ((-971 . -102) T) ((-865 . -102) T) ((-624 . -901) 109809) ((-1290 . -1100) T) ((-383 . -1100) T) ((-82 . -1216) T) ((-1215 . -1100) T) ((-1062 . -851) T) ((-117 . -901) NIL) ((-783 . -921) 109788) ((-714 . -851) T) ((-534 . -1100) T) ((-503 . -1100) T) ((-357 . -1220) T) ((-354 . -1220) T) ((-346 . -1220) T) ((-265 . -1220) 109767) ((-247 . -1220) 109746) ((-536 . -861) T) ((-1113 . -231) 109715) ((-1158 . -829) T) ((-1142 . -1057) 109699) ((-393 . -762) T) ((-695 . -1216) T) ((-692 . -1039) 109683) ((-357 . -559) T) ((-354 . -559) T) ((-346 . -559) T) ((-265 . -559) 109614) ((-247 . -559) 109545) ((-528 . -1083) T) ((-1142 . -111) 109524) ((-456 . -745) 109494) ((-867 . -1057) 109464) ((-818 . -38) 109406) ((-695 . -885) 109388) ((-695 . -887) 109370) ((-296 . -310) 109174) ((-911 . -1220) T) ((-1156 . -289) 109151) ((-1080 . -647) 109046) ((-671 . -414) 109030) ((-867 . -111) 108995) ((-1005 . -455) T) ((-695 . -1039) 108940) ((-911 . -559) T) ((-536 . -614) 108922) ((-584 . -921) T) ((-490 . -1052) 108872) ((-477 . -1112) T) ((-521 . -921) T) ((-915 . -455) T) ((-65 . -614) 108854) ((-217 . -1052) 108804) ((-490 . -641) 108754) ((-361 . -647) 108691) ((-355 . -647) 108628) ((-347 . -647) 108565) ((-633 . -229) 108511) ((-217 . -641) 108461) ((-108 . -647) 108411) ((-477 . -23) T) ((-1120 . -795) T) ((-873 . -131) T) ((-1120 . -792) T) ((-1281 . -1283) 108390) ((-1120 . -727) T) ((-655 . -649) 108364) ((-295 . -614) 108105) ((-1142 . -617) 108023) ((-1036 . -34) T) ((-816 . -849) 108002) ((-583 . -308) T) ((-567 . -308) T) ((-498 . -308) T) ((-1290 . -718) 107972) ((-695 . -379) 107954) ((-695 . -340) 107936) ((-480 . -172) T) ((-383 . -718) 107906) ((-867 . -617) 107841) ((-872 . -851) NIL) ((-567 . -1023) T) ((-498 . -1023) T) ((-1133 . -614) 107823) ((-1113 . -238) 107802) ((-214 . -102) T) ((-1150 . -102) T) ((-71 . -614) 107784) ((-1142 . -1050) T) ((-1178 . -38) 107681) ((-859 . -614) 107663) ((-567 . -548) T) ((-671 . -1058) T) ((-732 . -950) 107616) ((-1142 . -233) 107595) ((-1082 . -1100) T) ((-1035 . -25) T) ((-1035 . -21) T) ((-1004 . -1057) 107540) ((-906 . -102) T) ((-867 . -1050) T) ((-695 . -901) NIL) ((-357 . -330) 107524) ((-357 . -365) T) ((-354 . -330) 107508) ((-354 . -365) T) ((-346 . -330) 107492) ((-346 . -365) T) ((-490 . -102) T) ((-1278 . -38) 107462) ((-549 . -851) T) ((-526 . -688) 107412) ((-217 . -102) T) ((-1025 . -1039) 107292) ((-1004 . -111) 107221) ((-1174 . -974) 107190) ((-523 . -151) 107174) ((-1080 . -372) 107153) ((-353 . -614) 107135) ((-323 . -21) T) ((-356 . -1039) 107112) ((-323 . -25) T) ((-1173 . -974) 107074) ((-1167 . -974) 107043) ((-76 . -614) 107025) ((-1126 . -974) 106992) ((-700 . -308) T) ((-129 . -845) T) ((-911 . -365) T) ((-381 . -25) T) ((-381 . -21) T) ((-911 . -330) 106979) ((-86 . -614) 106961) ((-700 . -1023) T) ((-678 . -851) T) ((-1250 . -131) T) ((-1229 . -131) T) ((-902 . -1011) 106945) ((-837 . -21) T) ((-48 . -1039) 106888) ((-837 . -25) T) ((-828 . -25) T) ((-828 . -21) T) ((-1113 . -647) 106638) ((-1288 . -1058) T) ((-552 . -102) T) ((-1286 . -1058) T) ((-655 . -727) T) ((-1104 . -619) 106541) ((-1004 . -617) 106471) ((-1289 . -1057) 106455) ((-816 . -414) 106424) ((-103 . -119) 106408) ((-129 . -1100) T) ((-52 . -1100) T) ((-927 . -614) 106390) ((-872 . -993) 106367) ((-824 . -102) T) ((-1289 . -111) 106346) ((-654 . -38) 106316) ((-574 . -851) T) ((-357 . -1112) T) ((-354 . -1112) T) ((-346 . -1112) T) ((-265 . -1112) T) ((-247 . -1112) T) ((-624 . -308) 106295) ((-1150 . -310) 106099) ((-665 . -23) T) ((-527 . -1083) T) ((-312 . -1100) T) ((-485 . -231) 106068) ((-152 . -1058) T) ((-357 . -23) T) ((-354 . -23) T) ((-346 . -23) T) ((-117 . -308) T) ((-265 . -23) T) ((-247 . -23) T) ((-1004 . -1050) T) ((-713 . -910) 106047) ((-1156 . -617) 106024) ((-1004 . -233) 105996) ((-1004 . -243) T) ((-117 . -1023) NIL) ((-911 . -1112) T) ((-1251 . -455) 105975) ((-1230 . -455) 105954) ((-526 . -614) 105886) ((-713 . -649) 105811) ((-410 . -1057) 105763) ((-507 . -614) 105745) ((-911 . -23) T) ((-490 . -310) NIL) ((-1289 . -617) 105701) ((-477 . -131) T) ((-217 . -310) NIL) ((-410 . -111) 105639) ((-816 . -1058) 105569) ((-738 . -1098) 105553) ((-1250 . -496) 105519) ((-1229 . -496) 105485) ((-551 . -845) T) ((-141 . -1098) 105467) ((-480 . -291) T) ((-1289 . -1050) T) ((-1221 . -102) T) ((-1063 . -102) T) ((-844 . -617) 105335) ((-503 . -517) NIL) ((-485 . -238) 105314) ((-410 . -617) 105212) ((-964 . -1052) 105095) ((-736 . -1052) 105065) ((-964 . -641) 104962) ((-1172 . -145) 104941) ((-736 . -641) 104911) ((-456 . -1052) 104881) ((-1172 . -147) 104860) ((-1125 . -147) 104839) ((-1125 . -145) 104818) ((-636 . -1057) 104802) ((-608 . -1057) 104786) ((-456 . -641) 104756) ((-1174 . -1257) 104740) ((-1174 . -1244) 104717) ((-671 . -1100) T) ((-671 . -1054) 104657) ((-1173 . -1249) 104618) ((-551 . -1100) T) ((-490 . -1151) T) ((-1173 . -1244) 104588) ((-1173 . -1247) 104572) ((-1167 . -1228) 104533) ((-217 . -1151) T) ((-345 . -921) T) ((-819 . -267) 104517) ((-636 . -111) 104496) ((-608 . -111) 104475) ((-1167 . -1244) 104452) ((-844 . -1050) 104431) ((-1167 . -1226) 104415) ((-518 . -25) T) ((-498 . -303) T) ((-514 . -23) T) ((-513 . -25) T) ((-511 . -25) T) ((-510 . -23) T) ((-421 . -1052) 104389) ((-410 . -1050) T) ((-320 . -1058) T) ((-695 . -308) T) ((-421 . -641) 104363) ((-108 . -849) T) ((-713 . -727) T) ((-410 . -243) T) ((-410 . -233) 104342) ((-490 . -38) 104292) ((-217 . -38) 104242) ((-477 . -496) 104208) ((-1223 . -370) T) ((-1158 . -1144) T) ((-1101 . -102) T) ((-702 . -614) 104190) ((-702 . -615) 104105) ((-715 . -21) T) ((-715 . -25) T) ((-1135 . -102) T) ((-485 . -647) 103855) ((-134 . -614) 103837) ((-116 . -614) 103819) ((-157 . -25) T) ((-1288 . -1100) T) ((-873 . -640) 103767) ((-1286 . -1100) T) ((-964 . -102) T) ((-736 . -102) T) ((-716 . -102) T) ((-456 . -102) T) ((-817 . -455) 103718) ((-44 . -1100) T) ((-1088 . -851) T) ((-1063 . -310) 103569) ((-665 . -131) T) ((-1055 . -647) 103538) ((-671 . -718) 103522) ((-290 . -1058) T) ((-357 . -131) T) ((-354 . -131) T) ((-346 . -131) T) ((-265 . -131) T) ((-247 . -131) T) ((-387 . -647) 103491) ((-421 . -102) T) ((-152 . -1100) T) ((-45 . -229) 103441) ((-800 . -1052) 103425) ((-959 . -851) 103404) ((-1000 . -649) 103342) ((-800 . -641) 103326) ((-240 . -1273) 103296) ((-1025 . -308) T) ((-295 . -1057) 103217) ((-911 . -131) T) ((-40 . -921) T) ((-490 . -403) 103199) ((-356 . -308) T) ((-217 . -403) 103181) ((-1080 . -414) 103165) ((-295 . -111) 103081) ((-1183 . -851) T) ((-1182 . -851) T) ((-873 . -25) T) ((-873 . -21) T) ((-341 . -614) 103063) ((-1252 . -47) 103007) ((-225 . -147) T) ((-174 . -614) 102989) ((-1113 . -849) 102968) ((-775 . -614) 102950) ((-128 . -851) T) ((-609 . -235) 102897) ((-478 . -235) 102847) ((-1288 . -718) 102817) ((-48 . -308) T) ((-1286 . -718) 102787) ((-65 . -617) 102716) ((-965 . -1100) T) ((-816 . -1100) 102506) ((-313 . -102) T) ((-902 . -1216) T) ((-48 . -1023) T) ((-1229 . -640) 102414) ((-690 . -102) 102392) ((-44 . -718) 102376) ((-553 . -102) T) ((-295 . -617) 102307) ((-67 . -385) T) ((-67 . -398) T) ((-663 . -23) T) ((-818 . -647) 102243) ((-671 . -762) T) ((-1213 . -1100) 102221) ((-353 . -1057) 102166) ((-676 . -1100) 102144) ((-1062 . -147) T) ((-953 . -147) 102123) ((-953 . -145) 102102) ((-800 . -102) T) ((-152 . -718) 102086) ((-484 . -147) 102065) ((-484 . -145) 102044) ((-353 . -111) 101973) ((-1080 . -1058) T) ((-323 . -851) 101952) ((-1258 . -974) 101921) ((-628 . -1100) T) ((-1251 . -974) 101883) ((-514 . -131) T) ((-510 . -131) T) ((-296 . -229) 101833) ((-361 . -1058) T) ((-355 . -1058) T) ((-347 . -1058) T) ((-295 . -1050) 101775) ((-1230 . -974) 101744) ((-381 . -851) T) ((-108 . -1058) T) ((-1000 . -727) T) ((-871 . -921) T) ((-844 . -796) 101723) ((-844 . -793) 101702) ((-421 . -310) 101641) ((-471 . -102) T) ((-597 . -974) 101610) ((-320 . -1100) T) ((-410 . -796) 101589) ((-410 . -793) 101568) ((-503 . -492) 101550) ((-1252 . -1039) 101516) ((-1250 . -21) T) ((-1250 . -25) T) ((-1229 . -21) T) ((-1229 . -25) T) ((-816 . -718) 101458) ((-353 . -617) 101388) ((-700 . -407) T) ((-1279 . -1216) T) ((-607 . -102) T) ((-1113 . -414) 101357) ((-1004 . -370) NIL) ((-672 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-1178 . -647) 101267) ((-738 . -1216) T) ((-732 . -1052) 101110) ((-44 . -762) T) ((-732 . -641) 100959) ((-595 . -102) T) ((-77 . -399) T) ((-77 . -398) T) ((-654 . -657) 100943) ((-141 . -1216) T) ((-872 . -147) T) ((-872 . -145) NIL) ((-1215 . -93) T) ((-353 . -1050) T) ((-70 . -385) T) ((-70 . -398) T) ((-1165 . -102) T) ((-671 . -517) 100876) ((-1278 . -647) 100821) ((-690 . -310) 100759) ((-964 . -38) 100656) ((-1180 . -614) 100638) ((-736 . -38) 100608) ((-553 . -310) 100412) ((-1174 . -1052) 100295) ((-317 . -1216) T) ((-353 . -233) T) ((-353 . -243) T) ((-314 . -1216) T) ((-290 . -1100) T) ((-1173 . -1052) 100130) ((-1167 . -1052) 99920) ((-1126 . -1052) 99803) ((-1174 . -641) 99700) ((-1173 . -641) 99541) ((-712 . -1220) T) ((-1167 . -641) 99337) ((-1156 . -652) 99321) ((-1126 . -641) 99218) ((-1210 . -559) 99197) ((-712 . -559) T) ((-317 . -885) 99181) ((-317 . -887) 99106) ((-314 . -885) 99067) ((-314 . -887) NIL) ((-800 . -310) 99032) ((-320 . -718) 98873) ((-325 . -324) 98850) ((-488 . -102) T) ((-477 . -25) T) ((-477 . -21) T) ((-421 . -38) 98824) ((-317 . -1039) 98487) ((-225 . -1201) T) ((-225 . -1204) T) ((-3 . -614) 98469) ((-314 . -1039) 98399) ((-2 . -1100) T) ((-2 . |RecordCategory|) T) ((-834 . -614) 98381) ((-1113 . -1058) 98311) ((-583 . -921) T) ((-567 . -821) T) ((-567 . -921) T) ((-498 . -921) T) ((-136 . -1039) 98295) ((-225 . -95) T) ((-169 . -147) 98274) ((-75 . -444) T) ((0 . -614) 98256) ((-75 . -398) T) ((-169 . -145) 98207) ((-225 . -35) T) ((-49 . -614) 98189) ((-480 . -1058) T) ((-490 . -231) 98171) ((-487 . -969) 98155) ((-485 . -849) 98134) ((-217 . -231) 98116) ((-81 . -444) T) ((-81 . -398) T) ((-1146 . -34) T) ((-816 . -172) 98095) ((-732 . -102) T) ((-654 . -647) 98054) ((-1027 . -614) 98021) ((-503 . -287) 97996) ((-317 . -379) 97965) ((-314 . -379) 97926) ((-314 . -340) 97887) ((-1085 . -614) 97869) ((-817 . -950) 97816) ((-663 . -131) T) ((-1239 . -145) 97795) ((-1239 . -147) 97774) ((-1174 . -102) T) ((-1173 . -102) T) ((-1167 . -102) T) ((-1159 . -1100) T) ((-1126 . -102) T) ((-222 . -34) T) ((-290 . -718) 97761) ((-1159 . -611) 97737) ((-595 . -310) NIL) ((-487 . -1100) 97715) ((-393 . -614) 97697) ((-513 . -851) T) ((-1150 . -229) 97647) ((-1258 . -1257) 97631) ((-1258 . -1244) 97608) ((-1251 . -1249) 97569) ((-1251 . -1244) 97539) ((-1251 . -1247) 97523) ((-1230 . -1228) 97484) ((-1230 . -1244) 97461) ((-622 . -614) 97443) ((-1230 . -1226) 97427) ((-700 . -921) T) ((-1174 . -285) 97393) ((-1173 . -285) 97359) ((-1167 . -285) 97325) ((-1080 . -1100) T) ((-1061 . -1100) T) ((-48 . -303) T) ((-317 . -901) 97291) ((-314 . -901) NIL) ((-1061 . -1068) 97270) ((-1120 . -887) 97252) ((-800 . -38) 97236) ((-265 . -640) 97184) ((-247 . -640) 97132) ((-702 . -1057) 97119) ((-597 . -1244) 97096) ((-1126 . -285) 97062) ((-320 . -172) 96993) ((-361 . -1100) T) ((-355 . -1100) T) ((-347 . -1100) T) ((-503 . -19) 96975) ((-1120 . -1039) 96957) ((-1102 . -151) 96941) ((-108 . -1100) T) ((-116 . -1057) 96928) ((-712 . -365) T) ((-503 . -605) 96903) ((-702 . -111) 96888) ((-439 . -102) T) ((-250 . -102) T) ((-45 . -1149) 96838) ((-116 . -111) 96823) ((-636 . -721) T) ((-608 . -721) T) ((-1268 . -614) 96805) ((-1224 . -614) 96787) ((-1222 . -851) T) ((-816 . -517) 96720) ((-1036 . -1216) T) ((-240 . -1052) 96617) ((-1210 . -1112) T) ((-1210 . -23) T) ((-944 . -151) 96601) ((-1172 . -455) 96532) ((-1167 . -310) 96417) ((-240 . -641) 96359) ((-1166 . -1100) T) ((-1158 . -1100) T) ((-1142 . -649) 96333) ((-528 . -102) T) ((-523 . -102) 96283) ((-1126 . -310) 96270) ((-1125 . -455) 96221) ((-1087 . -1220) 96200) ((-783 . -1220) 96179) ((-781 . -1220) 96158) ((-62 . -1216) T) ((-480 . -614) 96110) ((-480 . -615) 96032) ((-1087 . -559) 95963) ((-995 . -1100) T) ((-783 . -559) 95874) ((-781 . -559) 95805) ((-485 . -414) 95774) ((-624 . -921) 95753) ((-457 . -1220) 95732) ((-732 . -310) 95719) ((-702 . -617) 95691) ((-401 . -614) 95673) ((-676 . -517) 95606) ((-665 . -25) T) ((-665 . -21) T) ((-457 . -559) 95537) ((-357 . -25) T) ((-357 . -21) T) ((-117 . -921) T) ((-117 . -821) NIL) ((-354 . -25) T) ((-354 . -21) T) ((-346 . -25) T) ((-346 . -21) T) ((-265 . -25) T) ((-265 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -386) T) ((-83 . -398) T) ((-134 . -617) 95519) ((-116 . -617) 95491) ((-1080 . -718) 95359) ((-1005 . -1052) 95309) ((-1005 . -641) 95259) ((-944 . -981) 95243) ((-915 . -641) 95195) ((-915 . -1052) 95147) ((-911 . -21) T) ((-911 . -25) T) ((-873 . -851) 95098) ((-867 . -649) 95058) ((-712 . -1112) T) ((-712 . -23) T) ((-290 . -172) T) ((-702 . -1050) T) ((-312 . -93) T) ((-702 . -233) T) ((-648 . -1100) 95036) ((-633 . -611) 95011) ((-633 . -1100) T) ((-584 . -1220) T) ((-584 . -559) T) ((-521 . -1220) T) ((-521 . -559) T) ((-490 . -647) 94961) ((-430 . -1052) 94945) ((-430 . -641) 94929) ((-361 . -718) 94881) ((-355 . -718) 94833) ((-341 . -1057) 94817) ((-347 . -718) 94769) ((-341 . -111) 94748) ((-174 . -1057) 94680) ((-217 . -647) 94630) ((-174 . -111) 94541) ((-108 . -718) 94491) ((-275 . -1100) T) ((-274 . -1100) T) ((-273 . -1100) T) ((-272 . -1100) T) ((-271 . -1100) T) ((-270 . -1100) T) ((-269 . -1100) T) ((-212 . -1100) T) ((-211 . -1100) T) ((-169 . -1204) 94469) ((-169 . -1201) 94447) ((-209 . -1100) T) ((-208 . -1100) T) ((-116 . -1050) T) ((-207 . -1100) T) ((-206 . -1100) T) ((-203 . -1100) T) ((-202 . -1100) T) ((-201 . -1100) T) ((-200 . -1100) T) ((-199 . -1100) T) ((-198 . -1100) T) ((-197 . -1100) T) ((-196 . -1100) T) ((-195 . -1100) T) ((-194 . -1100) T) ((-193 . -1100) T) ((-240 . -102) 94237) ((-169 . -35) 94215) ((-169 . -95) 94193) ((-655 . -1039) 94089) ((-485 . -1058) 94019) ((-1113 . -1100) 93809) ((-1142 . -34) T) ((-671 . -492) 93793) ((-73 . -1216) T) ((-105 . -614) 93775) ((-1290 . -614) 93757) ((-383 . -614) 93739) ((-341 . -617) 93691) ((-174 . -617) 93608) ((-1215 . -493) 93589) ((-732 . -38) 93438) ((-574 . -1204) T) ((-574 . -1201) T) ((-534 . -614) 93420) ((-523 . -310) 93358) ((-503 . -614) 93340) ((-503 . -615) 93322) ((-1215 . -614) 93288) ((-1167 . -1151) NIL) ((-1028 . -1071) 93257) ((-1028 . -1100) T) ((-1005 . -102) T) ((-972 . -102) T) ((-915 . -102) T) ((-894 . -1039) 93234) ((-1142 . -727) T) ((-1004 . -649) 93179) ((-479 . -1100) T) ((-466 . -1100) T) ((-588 . -23) T) ((-574 . -35) T) ((-574 . -95) T) ((-430 . -102) T) ((-1063 . -229) 93125) ((-1174 . -38) 93022) ((-867 . -727) T) ((-695 . -921) T) ((-514 . -25) T) ((-510 . -21) T) ((-510 . -25) T) ((-1173 . -38) 92863) ((-341 . -1050) T) ((-1167 . -38) 92659) ((-1080 . -172) T) ((-174 . -1050) T) ((-1126 . -38) 92556) ((-713 . -47) 92533) ((-361 . -172) T) ((-355 . -172) T) ((-522 . -57) 92507) ((-500 . -57) 92457) ((-353 . -1285) 92434) ((-225 . -455) T) ((-320 . -291) 92385) ((-347 . -172) T) ((-174 . -243) T) ((-1229 . -851) 92284) ((-108 . -172) T) ((-873 . -993) 92268) ((-659 . -1112) T) ((-584 . -365) T) ((-584 . -330) 92255) ((-521 . -330) 92232) ((-521 . -365) T) ((-317 . -308) 92211) ((-314 . -308) T) ((-603 . -851) 92190) ((-1113 . -718) 92132) ((-523 . -283) 92116) ((-659 . -23) T) ((-421 . -231) 92100) ((-314 . -1023) NIL) ((-338 . -23) T) ((-103 . -1011) 92084) ((-45 . -36) 92063) ((-613 . -1100) T) ((-353 . -370) T) ((-527 . -102) T) ((-498 . -27) T) ((-240 . -310) 92001) ((-1087 . -1112) T) ((-1289 . -649) 91975) ((-783 . -1112) T) ((-781 . -1112) T) ((-457 . -1112) T) ((-1062 . -455) T) ((-953 . -455) 91926) ((-1115 . -1083) T) ((-110 . -1100) T) ((-1087 . -23) T) ((-818 . -1058) T) ((-783 . -23) T) ((-781 . -23) T) ((-484 . -455) 91877) ((-1159 . -517) 91660) ((-383 . -384) 91639) ((-1178 . -414) 91623) ((-464 . -23) T) ((-457 . -23) T) ((-96 . -1100) T) ((-487 . -517) 91556) ((-1258 . -1052) 91439) ((-1258 . -641) 91336) ((-1251 . -641) 91177) ((-1251 . -1052) 91012) ((-290 . -291) T) ((-1230 . -1052) 90802) ((-1082 . -614) 90784) ((-1082 . -615) 90765) ((-410 . -910) 90744) ((-1230 . -641) 90540) ((-50 . -1112) T) ((-1210 . -131) T) ((-1025 . -921) T) ((-1004 . -727) T) ((-844 . -649) 90513) ((-713 . -887) NIL) ((-598 . -1052) 90486) ((-584 . -1112) T) ((-521 . -1112) T) ((-597 . -1052) 90369) ((-1167 . -403) 90321) ((-1005 . -310) NIL) ((-816 . -492) 90305) ((-598 . -641) 90278) ((-356 . -921) T) ((-597 . -641) 90175) ((-1156 . -34) T) ((-410 . -649) 90127) ((-50 . -23) T) ((-712 . -131) T) ((-713 . -1039) 90007) ((-584 . -23) T) ((-108 . -517) NIL) ((-521 . -23) T) ((-169 . -412) 89978) ((-1140 . -1100) T) ((-1281 . -1280) 89962) ((-702 . -796) T) ((-702 . -793) T) ((-1120 . -308) T) ((-381 . -147) T) ((-281 . -614) 89944) ((-1229 . -993) 89914) ((-48 . -921) T) ((-676 . -492) 89898) ((-252 . -1273) 89868) ((-251 . -1273) 89838) ((-1176 . -851) T) ((-1113 . -172) 89817) ((-1120 . -1023) T) ((-1047 . -34) T) ((-837 . -147) 89796) ((-837 . -145) 89775) ((-738 . -107) 89759) ((-613 . -132) T) ((-485 . -1100) 89549) ((-1178 . -1058) T) ((-872 . -455) T) ((-85 . -1216) T) ((-240 . -38) 89519) ((-141 . -107) 89501) ((-713 . -379) 89485) ((-834 . -617) 89353) ((-1289 . -727) T) ((-1278 . -1058) T) ((-1120 . -548) T) ((-582 . -102) T) ((-129 . -493) 89335) ((-1258 . -102) T) ((-393 . -1057) 89319) ((-1251 . -102) T) ((-1172 . -950) 89288) ((-129 . -614) 89255) ((-52 . -614) 89237) ((-1125 . -950) 89204) ((-654 . -414) 89188) ((-1230 . -102) T) ((-1158 . -517) NIL) ((-622 . -1057) 89172) ((-663 . -25) T) ((-663 . -21) T) ((-964 . -647) 89082) ((-736 . -647) 89027) ((-716 . -647) 88999) ((-393 . -111) 88978) ((-222 . -255) 88962) ((-1055 . -1054) 88902) ((-1055 . -1100) T) ((-1005 . -1151) T) ((-819 . -1100) T) ((-456 . -647) 88817) ((-345 . -1220) T) ((-636 . -649) 88801) ((-622 . -111) 88780) ((-608 . -649) 88764) ((-598 . -102) T) ((-312 . -493) 88745) ((-588 . -131) T) ((-597 . -102) T) ((-417 . -1100) T) ((-387 . -1100) T) ((-312 . -614) 88711) ((-227 . -1100) 88689) ((-648 . -517) 88622) ((-633 . -517) 88466) ((-834 . -1050) 88445) ((-645 . -151) 88429) ((-345 . -559) T) ((-713 . -901) 88372) ((-553 . -229) 88322) ((-1258 . -285) 88288) ((-1251 . -285) 88254) ((-1080 . -291) 88205) ((-490 . -849) T) ((-223 . -1112) T) ((-1230 . -285) 88171) ((-1210 . -496) 88137) ((-1005 . -38) 88087) ((-217 . -849) T) ((-421 . -647) 88046) ((-915 . -38) 87998) ((-844 . -795) 87977) ((-844 . -792) 87956) ((-844 . -727) 87935) ((-361 . -291) T) ((-355 . -291) T) ((-347 . -291) T) ((-169 . -455) 87866) ((-430 . -38) 87850) ((-108 . -291) T) ((-223 . -23) T) ((-410 . -795) 87829) ((-410 . -792) 87808) ((-410 . -727) T) ((-503 . -289) 87783) ((-480 . -1057) 87748) ((-659 . -131) T) ((-622 . -617) 87717) ((-1113 . -517) 87650) ((-338 . -131) T) ((-169 . -405) 87629) ((-485 . -718) 87571) ((-816 . -287) 87548) ((-480 . -111) 87504) ((-654 . -1058) T) ((-817 . -1052) 87347) ((-1277 . -1083) T) ((-1239 . -455) 87278) ((-817 . -641) 87127) ((-1276 . -1083) T) ((-1087 . -131) T) ((-1055 . -718) 87069) ((-783 . -131) T) ((-781 . -131) T) ((-574 . -455) T) ((-1028 . -517) 87002) ((-622 . -1050) T) ((-594 . -1100) T) ((-536 . -173) T) ((-464 . -131) T) ((-457 . -131) T) ((-45 . -1100) T) ((-387 . -718) 86972) ((-818 . -1100) T) ((-479 . -517) 86905) ((-466 . -517) 86838) ((-456 . -369) 86808) ((-45 . -611) 86787) ((-317 . -303) T) ((-480 . -617) 86737) ((-1230 . -310) 86622) ((-671 . -614) 86584) ((-59 . -851) 86563) ((-1005 . -403) 86545) ((-551 . -614) 86527) ((-800 . -647) 86486) ((-816 . -605) 86463) ((-519 . -851) 86442) ((-499 . -851) 86421) ((-40 . -1220) T) ((-1000 . -1039) 86317) ((-50 . -131) T) ((-584 . -131) T) ((-521 . -131) T) ((-295 . -649) 86177) ((-345 . -330) 86154) ((-345 . -365) T) ((-323 . -324) 86131) ((-320 . -287) 86116) ((-40 . -559) T) ((-381 . -1201) T) ((-381 . -1204) T) ((-1036 . -1192) 86091) ((-1189 . -235) 86041) ((-1167 . -231) 85993) ((-331 . -1100) T) ((-381 . -95) T) ((-381 . -35) T) ((-1036 . -107) 85939) ((-480 . -1050) T) ((-1290 . -1057) 85923) ((-482 . -235) 85873) ((-1159 . -492) 85807) ((-1281 . -1052) 85791) ((-383 . -1057) 85775) ((-1281 . -641) 85745) ((-480 . -243) T) ((-817 . -102) T) ((-715 . -147) 85724) ((-715 . -145) 85703) ((-487 . -492) 85687) ((-488 . -337) 85656) ((-1290 . -111) 85635) ((-515 . -1100) T) ((-485 . -172) 85614) ((-1000 . -379) 85598) ((-416 . -102) T) ((-383 . -111) 85577) ((-1000 . -340) 85561) ((-280 . -984) 85545) ((-279 . -984) 85529) ((-1288 . -614) 85511) ((-1286 . -614) 85493) ((-110 . -517) NIL) ((-1172 . -1242) 85477) ((-855 . -853) 85461) ((-1178 . -1100) T) ((-103 . -1216) T) ((-953 . -950) 85422) ((-818 . -718) 85364) ((-1230 . -1151) NIL) ((-484 . -950) 85309) ((-1062 . -143) T) ((-60 . -102) 85287) ((-44 . -614) 85269) ((-78 . -614) 85251) ((-353 . -649) 85196) ((-1278 . -1100) T) ((-514 . -851) T) ((-345 . -1112) T) ((-296 . -1100) T) ((-1000 . -901) 85155) ((-296 . -611) 85134) ((-1290 . -617) 85083) ((-1258 . -38) 84980) ((-1251 . -38) 84821) ((-1230 . -38) 84617) ((-490 . -1058) T) ((-383 . -617) 84601) ((-217 . -1058) T) ((-345 . -23) T) ((-152 . -614) 84583) ((-834 . -796) 84562) ((-834 . -793) 84541) ((-1215 . -617) 84522) ((-598 . -38) 84495) ((-597 . -38) 84392) ((-871 . -559) T) ((-223 . -131) T) ((-320 . -1003) 84358) ((-79 . -614) 84340) ((-713 . -308) 84319) ((-295 . -727) 84221) ((-825 . -102) T) ((-865 . -845) T) ((-295 . -476) 84200) ((-1281 . -102) T) ((-40 . -365) T) ((-873 . -147) 84179) ((-488 . -647) 84161) ((-873 . -145) 84140) ((-1158 . -492) 84122) ((-1290 . -1050) T) ((-485 . -517) 84055) ((-1146 . -1216) T) ((-965 . -614) 84037) ((-648 . -492) 84021) ((-633 . -492) 83952) ((-816 . -614) 83683) ((-48 . -27) T) ((-1178 . -718) 83580) ((-654 . -1100) T) ((-862 . -861) T) ((-439 . -366) 83554) ((-732 . -647) 83464) ((-1102 . -102) T) ((-971 . -1100) T) ((-865 . -1100) T) ((-817 . -310) 83451) ((-536 . -530) T) ((-536 . -579) T) ((-1286 . -384) 83423) ((-1055 . -517) 83356) ((-1159 . -287) 83332) ((-240 . -231) 83301) ((-252 . -1052) 83198) ((-251 . -1052) 83095) ((-1278 . -718) 83065) ((-1166 . -93) T) ((-995 . -93) T) ((-818 . -172) 83044) ((-252 . -641) 82986) ((-251 . -641) 82928) ((-1213 . -493) 82905) ((-227 . -517) 82838) ((-622 . -796) 82817) ((-622 . -793) 82796) ((-1213 . -614) 82708) ((-222 . -1216) T) ((-676 . -614) 82640) ((-1174 . -647) 82550) ((-1156 . -1011) 82534) ((-944 . -102) 82484) ((-353 . -727) T) ((-862 . -614) 82466) ((-1173 . -647) 82348) ((-1167 . -647) 82185) ((-1126 . -647) 82095) ((-1230 . -403) 82047) ((-1113 . -492) 82031) ((-60 . -310) 81969) ((-332 . -102) T) ((-1210 . -21) T) ((-1210 . -25) T) ((-40 . -1112) T) ((-712 . -21) T) ((-628 . -614) 81951) ((-518 . -324) 81930) ((-712 . -25) T) ((-442 . -102) T) ((-108 . -287) NIL) ((-922 . -1112) T) ((-40 . -23) T) ((-772 . -1112) T) ((-567 . -1220) T) ((-498 . -1220) T) ((-320 . -614) 81912) ((-1005 . -231) 81894) ((-169 . -166) 81878) ((-583 . -559) T) ((-567 . -559) T) ((-498 . -559) T) ((-772 . -23) T) ((-1250 . -147) 81857) ((-1159 . -605) 81833) ((-1250 . -145) 81812) ((-1028 . -492) 81796) ((-1229 . -145) 81721) ((-1229 . -147) 81646) ((-1281 . -1287) 81625) ((-479 . -492) 81609) ((-466 . -492) 81593) ((-526 . -34) T) ((-654 . -718) 81563) ((-112 . -968) T) ((-663 . -851) 81542) ((-1178 . -172) 81493) ((-367 . -102) T) ((-240 . -238) 81472) ((-252 . -102) T) ((-251 . -102) T) ((-1239 . -950) 81441) ((-245 . -851) 81420) ((-817 . -38) 81269) ((-45 . -517) 81061) ((-1158 . -287) 81036) ((-214 . -1100) T) ((-1150 . -1100) T) ((-1150 . -611) 81015) ((-588 . -25) T) ((-588 . -21) T) ((-1102 . -310) 80953) ((-964 . -414) 80937) ((-700 . -1220) T) ((-633 . -287) 80912) ((-1087 . -640) 80860) ((-783 . -640) 80808) ((-781 . -640) 80756) ((-345 . -131) T) ((-290 . -614) 80738) ((-906 . -1100) T) ((-700 . -559) T) ((-129 . -617) 80720) ((-871 . -1112) T) ((-457 . -640) 80668) ((-906 . -904) 80652) ((-381 . -455) T) ((-490 . -1100) T) ((-944 . -310) 80590) ((-702 . -649) 80577) ((-552 . -845) T) ((-217 . -1100) T) ((-317 . -921) 80556) ((-314 . -921) T) ((-314 . -821) NIL) ((-393 . -721) T) ((-871 . -23) T) ((-116 . -649) 80543) ((-477 . -145) 80522) ((-421 . -414) 80506) ((-477 . -147) 80485) ((-110 . -492) 80467) ((-312 . -617) 80448) ((-2 . -614) 80430) ((-186 . -102) T) ((-1158 . -19) 80412) ((-1158 . -605) 80387) ((-659 . -21) T) ((-659 . -25) T) ((-595 . -1144) T) ((-1113 . -287) 80364) ((-338 . -25) T) ((-338 . -21) T) ((-240 . -647) 80114) ((-498 . -365) T) ((-1281 . -38) 80084) ((-1172 . -1052) 79907) ((-1142 . -1216) T) ((-1125 . -1052) 79750) ((-855 . -1052) 79734) ((-633 . -605) 79709) ((-1172 . -641) 79538) ((-1125 . -641) 79387) ((-855 . -641) 79357) ((-1288 . -1057) 79341) ((-1286 . -1057) 79325) ((-552 . -1100) T) ((-1087 . -25) T) ((-1087 . -21) T) ((-534 . -793) T) ((-534 . -796) T) ((-117 . -1220) T) ((-964 . -1058) T) ((-624 . -559) T) ((-783 . -25) T) ((-783 . -21) T) ((-781 . -21) T) ((-781 . -25) T) ((-736 . -1058) T) ((-716 . -1058) T) ((-671 . -1057) 79309) ((-520 . -1083) T) ((-464 . -25) T) ((-117 . -559) T) ((-464 . -21) T) ((-457 . -25) T) ((-457 . -21) T) ((-1250 . -1201) 79275) ((-1250 . -1204) 79241) ((-1142 . -1039) 79137) ((-818 . -291) 79116) ((-1250 . -95) 79082) ((-824 . -1100) T) ((-1233 . -102) 79060) ((-967 . -968) T) ((-671 . -111) 79039) ((-296 . -517) 78831) ((-1230 . -231) 78783) ((-1229 . -1201) 78749) ((-1229 . -1204) 78715) ((-252 . -310) 78653) ((-251 . -310) 78591) ((-1224 . -370) T) ((-1159 . -615) NIL) ((-1159 . -614) 78573) ((-1221 . -845) T) ((-1142 . -379) 78557) ((-1120 . -821) T) ((-96 . -93) T) ((-1120 . -921) T) ((-1113 . -605) 78534) ((-1080 . -615) 78518) ((-1005 . -647) 78468) ((-915 . -647) 78405) ((-816 . -289) 78382) ((-487 . -614) 78314) ((-609 . -151) 78261) ((-490 . -718) 78211) ((-421 . -1058) T) ((-485 . -492) 78195) ((-430 . -647) 78154) ((-328 . -851) 78133) ((-341 . -649) 78107) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -718) 78057) ((-169 . -725) 78028) ((-174 . -649) 77960) ((-584 . -21) T) ((-584 . -25) T) ((-521 . -25) T) ((-521 . -21) T) ((-478 . -151) 77910) ((-1080 . -614) 77892) ((-1061 . -614) 77874) ((-994 . -102) T) ((-863 . -102) T) ((-800 . -414) 77837) ((-40 . -131) T) ((-700 . -365) T) ((-702 . -727) T) ((-702 . -795) T) ((-702 . -792) T) ((-212 . -896) T) ((-583 . -1112) T) ((-567 . -1112) T) ((-498 . -1112) T) ((-361 . -614) 77819) ((-355 . -614) 77801) ((-347 . -614) 77783) ((-66 . -399) T) ((-66 . -398) T) ((-108 . -615) 77713) ((-108 . -614) 77655) ((-211 . -896) T) ((-959 . -151) 77639) ((-772 . -131) T) ((-671 . -617) 77557) ((-134 . -727) T) ((-116 . -727) T) ((-1250 . -35) 77523) ((-1055 . -492) 77507) ((-583 . -23) T) ((-567 . -23) T) ((-498 . -23) T) ((-1229 . -95) 77473) ((-1229 . -35) 77439) ((-1172 . -102) T) ((-1125 . -102) T) ((-855 . -102) T) ((-227 . -492) 77423) ((-1288 . -111) 77402) ((-1286 . -111) 77381) ((-44 . -1057) 77365) ((-1288 . -617) 77311) ((-1239 . -1242) 77295) ((-856 . -853) 77279) ((-1288 . -1050) T) ((-1178 . -291) 77258) ((-110 . -287) 77233) ((-1286 . -617) 77162) ((-128 . -151) 77144) ((-1142 . -901) 77103) ((-44 . -111) 77082) ((-1221 . -1100) T) ((-1181 . -1261) T) ((-1166 . -493) 77063) ((-1166 . -614) 77029) ((-671 . -1050) T) ((-1158 . -615) NIL) ((-1158 . -614) 77011) ((-1063 . -611) 76986) ((-1063 . -1100) T) ((-995 . -493) 76967) ((-74 . -444) T) ((-74 . -398) T) ((-995 . -614) 76933) ((-152 . -1057) 76917) ((-671 . -233) 76896) ((-574 . -557) 76880) ((-357 . -147) 76859) ((-357 . -145) 76810) ((-354 . -147) 76789) ((-354 . -145) 76740) ((-346 . -147) 76719) ((-346 . -145) 76670) ((-265 . -145) 76649) ((-265 . -147) 76628) ((-252 . -38) 76598) ((-247 . -147) 76577) ((-117 . -365) T) ((-247 . -145) 76556) ((-251 . -38) 76526) ((-152 . -111) 76505) ((-1004 . -1039) 76393) ((-1167 . -849) NIL) ((-695 . -1220) T) ((-800 . -1058) T) ((-700 . -1112) T) ((-1286 . -1050) T) ((-1156 . -1216) T) ((-1004 . -379) 76370) ((-911 . -145) T) ((-911 . -147) 76352) ((-871 . -131) T) ((-816 . -1057) 76249) ((-700 . -23) T) ((-695 . -559) T) ((-225 . -1052) 76214) ((-648 . -614) 76146) ((-648 . -615) 76107) ((-633 . -615) NIL) ((-633 . -614) 76089) ((-490 . -172) T) ((-225 . -641) 76054) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-477 . -1204) 76020) ((-477 . -1201) 75986) ((-275 . -614) 75968) ((-274 . -614) 75950) ((-273 . -614) 75932) ((-272 . -614) 75914) ((-271 . -614) 75896) ((-503 . -652) 75878) ((-270 . -614) 75860) ((-341 . -727) T) ((-269 . -614) 75842) ((-110 . -19) 75824) ((-174 . -727) T) ((-503 . -375) 75806) ((-212 . -614) 75788) ((-523 . -1149) 75772) ((-503 . -123) T) ((-110 . -605) 75747) ((-211 . -614) 75729) ((-477 . -35) 75695) ((-477 . -95) 75661) ((-209 . -614) 75643) ((-208 . -614) 75625) ((-207 . -614) 75607) ((-206 . -614) 75589) ((-203 . -614) 75571) ((-202 . -614) 75553) ((-201 . -614) 75535) ((-200 . -614) 75517) ((-199 . -614) 75499) ((-198 . -614) 75481) ((-197 . -614) 75463) ((-539 . -1103) 75415) ((-196 . -614) 75397) ((-195 . -614) 75379) ((-45 . -492) 75316) ((-194 . -614) 75298) ((-193 . -614) 75280) ((-152 . -617) 75249) ((-1115 . -102) T) ((-816 . -111) 75139) ((-645 . -102) 75089) ((-485 . -287) 75066) ((-1113 . -614) 74797) ((-1101 . -1100) T) ((-1047 . -1216) T) ((-1289 . -1039) 74781) ((-1062 . -1052) 74768) ((-1172 . -310) 74755) ((-953 . -1052) 74598) ((-1135 . -1100) T) ((-1125 . -310) 74585) ((-624 . -1112) T) ((-1062 . -641) 74572) ((-1096 . -1083) T) ((-953 . -641) 74421) ((-1090 . -1083) T) ((-484 . -1052) 74264) ((-1073 . -1083) T) ((-1066 . -1083) T) ((-1037 . -1083) T) ((-1020 . -1083) T) ((-117 . -1112) T) ((-484 . -641) 74113) ((-820 . -102) T) ((-627 . -1083) T) ((-624 . -23) T) ((-1150 . -517) 73905) ((-486 . -1083) T) ((-389 . -102) T) ((-325 . -102) T) ((-218 . -1083) T) ((-964 . -1100) T) ((-152 . -1050) T) ((-732 . -414) 73889) ((-117 . -23) T) ((-1004 . -901) 73841) ((-736 . -1100) T) ((-716 . -1100) T) ((-456 . -1100) T) ((-410 . -1216) T) ((-317 . -433) 73825) ((-594 . -93) T) ((-1258 . -647) 73735) ((-1028 . -615) 73696) ((-1025 . -1220) T) ((-225 . -102) T) ((-1028 . -614) 73658) ((-1251 . -647) 73540) ((-817 . -231) 73524) ((-816 . -617) 73254) ((-1230 . -647) 73091) ((-1025 . -559) T) ((-834 . -649) 73064) ((-356 . -1220) T) ((-479 . -614) 73026) ((-479 . -615) 72987) ((-466 . -615) 72948) ((-466 . -614) 72910) ((-598 . -647) 72882) ((-410 . -885) 72866) ((-320 . -1057) 72701) ((-410 . -887) 72626) ((-597 . -647) 72536) ((-844 . -1039) 72432) ((-490 . -517) NIL) ((-485 . -605) 72409) ((-356 . -559) T) ((-217 . -517) NIL) ((-873 . -455) T) ((-421 . -1100) T) ((-410 . -1039) 72273) ((-320 . -111) 72094) ((-695 . -365) T) ((-225 . -285) T) ((-1213 . -617) 72071) ((-48 . -1220) T) ((-816 . -1050) 72001) ((-1172 . -1151) 71979) ((-583 . -131) T) ((-567 . -131) T) ((-498 . -131) T) ((-1159 . -289) 71955) ((-48 . -559) T) ((-1062 . -102) T) ((-953 . -102) T) ((-872 . -1052) 71900) ((-317 . -27) 71879) ((-816 . -233) 71831) ((-249 . -836) 71813) ((-240 . -849) 71792) ((-187 . -836) 71774) ((-714 . -102) T) ((-296 . -492) 71711) ((-872 . -641) 71656) ((-484 . -102) T) ((-732 . -1058) T) ((-613 . -614) 71638) ((-613 . -615) 71499) ((-410 . -379) 71483) ((-410 . -340) 71467) ((-320 . -617) 71293) ((-1172 . -38) 71122) ((-1125 . -38) 70971) ((-855 . -38) 70941) ((-393 . -649) 70925) ((-645 . -310) 70863) ((-964 . -718) 70760) ((-736 . -718) 70730) ((-222 . -107) 70714) ((-45 . -287) 70639) ((-622 . -649) 70613) ((-313 . -1100) T) ((-290 . -1057) 70600) ((-110 . -614) 70582) ((-110 . -615) 70564) ((-456 . -718) 70534) ((-817 . -254) 70473) ((-690 . -1100) 70451) ((-553 . -1100) T) ((-1174 . -1058) T) ((-1173 . -1058) T) ((-96 . -493) 70432) ((-1167 . -1058) T) ((-290 . -111) 70417) ((-1126 . -1058) T) ((-553 . -611) 70396) ((-96 . -614) 70362) ((-1005 . -849) T) ((-227 . -688) 70320) ((-695 . -1112) T) ((-1210 . -741) 70296) ((-1025 . -365) T) ((-839 . -836) 70278) ((-834 . -795) 70257) ((-410 . -901) 70216) ((-320 . -1050) T) ((-345 . -25) T) ((-345 . -21) T) ((-169 . -1052) 70126) ((-68 . -1216) T) ((-834 . -792) 70105) ((-421 . -718) 70079) ((-800 . -1100) T) ((-713 . -921) 70058) ((-700 . -131) T) ((-169 . -641) 69886) ((-695 . -23) T) ((-490 . -291) T) ((-834 . -727) 69865) ((-320 . -233) 69817) ((-320 . -243) 69796) ((-217 . -291) T) ((-129 . -370) T) ((-1250 . -455) 69775) ((-1229 . -455) 69754) ((-356 . -330) 69731) ((-356 . -365) T) ((-1140 . -614) 69713) ((-45 . -1254) 69663) ((-872 . -102) T) ((-645 . -283) 69647) ((-700 . -1060) T) ((-1277 . -102) T) ((-1276 . -102) T) ((-480 . -649) 69612) ((-471 . -1100) T) ((-45 . -605) 69537) ((-1158 . -289) 69512) ((-290 . -617) 69484) ((-40 . -640) 69423) ((-1239 . -1052) 69246) ((-856 . -1052) 69230) ((-48 . -365) T) ((-1106 . -614) 69212) ((-1239 . -641) 69041) ((-856 . -641) 69011) ((-633 . -289) 68986) ((-817 . -647) 68896) ((-574 . -1052) 68883) ((-485 . -614) 68614) ((-240 . -414) 68583) ((-953 . -310) 68570) ((-574 . -641) 68557) ((-65 . -1216) T) ((-1063 . -517) 68401) ((-672 . -1100) T) ((-624 . -131) T) ((-484 . -310) 68388) ((-607 . -1100) T) ((-549 . -102) T) ((-117 . -131) T) ((-290 . -1050) T) ((-180 . -1100) T) ((-161 . -1100) T) ((-156 . -1100) T) ((-154 . -1100) T) ((-456 . -762) T) ((-31 . -1083) T) ((-964 . -172) 68339) ((-971 . -93) T) ((-1080 . -1057) 68249) ((-622 . -795) 68228) ((-595 . -1100) T) ((-622 . -792) 68207) ((-622 . -727) T) ((-296 . -287) 68186) ((-295 . -1216) T) ((-1055 . -614) 68148) ((-1055 . -615) 68109) ((-1025 . -1112) T) ((-169 . -102) T) ((-276 . -851) T) ((-1165 . -1100) T) ((-819 . -614) 68091) ((-1113 . -289) 68068) ((-1102 . -229) 68052) ((-1004 . -308) T) ((-800 . -718) 68036) ((-361 . -1057) 67988) ((-356 . -1112) T) ((-355 . -1057) 67940) ((-417 . -614) 67922) ((-387 . -614) 67904) ((-347 . -1057) 67856) ((-227 . -614) 67788) ((-1080 . -111) 67684) ((-1025 . -23) T) ((-108 . -1057) 67634) ((-899 . -102) T) ((-842 . -102) T) ((-809 . -102) T) ((-770 . -102) T) ((-678 . -102) T) ((-477 . -455) 67613) ((-421 . -172) T) ((-361 . -111) 67551) ((-355 . -111) 67489) ((-347 . -111) 67427) ((-252 . -231) 67396) ((-251 . -231) 67365) ((-356 . -23) T) ((-71 . -1216) T) ((-225 . -38) 67330) ((-108 . -111) 67264) ((-40 . -25) T) ((-40 . -21) T) ((-671 . -721) T) ((-169 . -285) 67242) ((-48 . -1112) T) ((-922 . -25) T) ((-772 . -25) T) ((-1290 . -649) 67216) ((-1150 . -492) 67153) ((-488 . -1100) T) ((-1281 . -647) 67112) ((-1239 . -102) T) ((-1062 . -1151) T) ((-856 . -102) T) ((-240 . -1058) 67042) ((-965 . -793) 66995) ((-965 . -796) 66948) ((-383 . -649) 66932) ((-48 . -23) T) ((-816 . -796) 66883) ((-816 . -793) 66834) ((-551 . -370) T) ((-296 . -605) 66813) ((-480 . -727) T) ((-574 . -102) T) ((-1080 . -617) 66631) ((-249 . -185) T) ((-187 . -185) T) ((-872 . -310) 66588) ((-654 . -287) 66567) ((-112 . -662) T) ((-361 . -617) 66504) ((-355 . -617) 66441) ((-347 . -617) 66378) ((-76 . -1216) T) ((-108 . -617) 66328) ((-1062 . -38) 66315) ((-665 . -376) 66294) ((-953 . -38) 66143) ((-732 . -1100) T) ((-484 . -38) 65992) ((-86 . -1216) T) ((-594 . -493) 65973) ((-574 . -285) T) ((-1230 . -849) NIL) ((-594 . -614) 65939) ((-1174 . -1100) T) ((-1173 . -1100) T) ((-1080 . -1050) T) ((-353 . -1039) 65916) ((-818 . -493) 65900) ((-1005 . -1058) T) ((-45 . -614) 65882) ((-45 . -615) NIL) ((-915 . -1058) T) ((-818 . -614) 65851) ((-1167 . -1100) T) ((-1147 . -102) 65829) ((-1080 . -243) 65780) ((-430 . -1058) T) ((-361 . -1050) T) ((-367 . -366) 65757) ((-355 . -1050) T) ((-347 . -1050) T) ((-252 . -238) 65736) ((-251 . -238) 65715) ((-1080 . -233) 65640) ((-1126 . -1100) T) ((-295 . -901) 65599) ((-108 . -1050) T) ((-695 . -131) T) ((-421 . -517) 65441) ((-361 . -233) 65420) ((-361 . -243) T) ((-44 . -721) T) ((-355 . -233) 65399) ((-355 . -243) T) ((-347 . -233) 65378) ((-347 . -243) T) ((-1166 . -617) 65359) ((-169 . -310) 65324) ((-108 . -243) T) ((-108 . -233) T) ((-995 . -617) 65305) ((-320 . -793) T) ((-871 . -21) T) ((-871 . -25) T) ((-410 . -308) T) ((-503 . -34) T) ((-110 . -289) 65280) ((-1113 . -1057) 65177) ((-872 . -1151) NIL) ((-331 . -614) 65159) ((-410 . -1023) 65137) ((-1113 . -111) 65027) ((-692 . -1261) T) ((-439 . -1100) T) ((-250 . -1100) T) ((-1290 . -727) T) ((-63 . -614) 65009) ((-872 . -38) 64954) ((-526 . -1216) T) ((-603 . -151) 64938) ((-515 . -614) 64920) ((-1239 . -310) 64907) ((-732 . -718) 64756) ((-534 . -794) T) ((-534 . -795) T) ((-567 . -640) 64738) ((-498 . -640) 64698) ((-357 . -455) T) ((-354 . -455) T) ((-346 . -455) T) ((-265 . -455) 64649) ((-528 . -1100) T) ((-523 . -1100) 64599) ((-247 . -455) 64550) ((-1150 . -287) 64529) ((-1178 . -614) 64511) ((-690 . -517) 64444) ((-964 . -291) 64423) ((-553 . -517) 64215) ((-252 . -647) 64035) ((-251 . -647) 63842) ((-1278 . -614) 63811) ((-1172 . -231) 63795) ((-1113 . -617) 63525) ((-169 . -1151) 63504) ((-1278 . -493) 63488) ((-1174 . -718) 63385) ((-1173 . -718) 63226) ((-893 . -102) T) ((-1167 . -718) 63022) ((-1126 . -718) 62919) ((-1156 . -675) 62903) ((-357 . -405) 62854) ((-354 . -405) 62805) ((-346 . -405) 62756) ((-1025 . -131) T) ((-800 . -517) 62668) ((-296 . -615) NIL) ((-296 . -614) 62650) ((-911 . -455) T) ((-965 . -370) 62603) ((-816 . -370) 62582) ((-513 . -512) 62561) ((-511 . -512) 62540) ((-490 . -287) NIL) ((-485 . -289) 62517) ((-421 . -291) T) ((-356 . -131) T) ((-217 . -287) NIL) ((-695 . -496) NIL) ((-99 . -1112) T) ((-169 . -38) 62345) ((-1250 . -974) 62307) ((-1147 . -310) 62245) ((-1229 . -974) 62214) ((-911 . -405) T) ((-1113 . -1050) 62144) ((-1252 . -559) T) ((-1150 . -605) 62123) ((-112 . -851) T) ((-1063 . -492) 62054) ((-583 . -21) T) ((-583 . -25) T) ((-567 . -21) T) ((-567 . -25) T) ((-498 . -25) T) ((-498 . -21) T) ((-1239 . -1151) 62032) ((-1113 . -233) 61984) ((-48 . -131) T) ((-1197 . -102) T) ((-240 . -1100) 61774) ((-872 . -403) 61751) ((-1088 . -102) T) ((-1076 . -102) T) ((-609 . -102) T) ((-478 . -102) T) ((-1239 . -38) 61580) ((-856 . -38) 61550) ((-1035 . -1052) 61524) ((-732 . -172) 61435) ((-654 . -614) 61417) ((-646 . -1083) T) ((-1035 . -641) 61401) ((-574 . -38) 61388) ((-971 . -493) 61369) ((-971 . -614) 61335) ((-959 . -102) 61285) ((-865 . -614) 61267) ((-865 . -615) 61189) ((-595 . -517) NIL) ((-1258 . -1058) T) ((-1251 . -1058) T) ((-323 . -1052) 61171) ((-1230 . -1058) T) ((-1294 . -1112) T) ((-323 . -641) 61153) ((-1210 . -147) 61132) ((-1210 . -145) 61111) ((-1184 . -102) T) ((-1183 . -102) T) ((-1182 . -102) T) ((-598 . -1058) T) ((-597 . -1058) T) ((-1174 . -172) 61062) ((-1173 . -172) 60993) ((-381 . -1052) 60958) ((-1167 . -172) 60889) ((-1126 . -172) 60840) ((-1005 . -1100) T) ((-972 . -1100) T) ((-915 . -1100) T) ((-381 . -641) 60805) ((-800 . -798) 60789) ((-700 . -25) T) ((-700 . -21) T) ((-117 . -640) 60766) ((-702 . -887) 60748) ((-430 . -1100) T) ((-317 . -1220) 60727) ((-314 . -1220) T) ((-169 . -403) 60711) ((-837 . -1052) 60681) ((-477 . -974) 60643) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -614) 60625) ((-828 . -1052) 60609) ((-108 . -796) T) ((-108 . -793) T) ((-702 . -1039) 60591) ((-317 . -559) 60570) ((-314 . -559) T) ((-837 . -641) 60540) ((-828 . -641) 60510) ((-1294 . -23) T) ((-134 . -1039) 60492) ((-96 . -617) 60473) ((-994 . -647) 60455) ((-485 . -1057) 60352) ((-45 . -289) 60277) ((-240 . -718) 60219) ((-520 . -102) T) ((-485 . -111) 60109) ((-1092 . -102) 60087) ((-1035 . -102) T) ((-1172 . -647) 59997) ((-1125 . -647) 59907) ((-855 . -647) 59866) ((-645 . -829) 59845) ((-732 . -517) 59788) ((-1055 . -1057) 59772) ((-1135 . -93) T) ((-1063 . -287) 59747) ((-624 . -21) T) ((-624 . -25) T) ((-527 . -1100) T) ((-671 . -649) 59721) ((-363 . -102) T) ((-323 . -102) T) ((-387 . -1057) 59705) ((-1055 . -111) 59684) ((-817 . -414) 59668) ((-117 . -25) T) ((-89 . -614) 59650) ((-117 . -21) T) ((-609 . -310) 59445) ((-478 . -310) 59249) ((-1150 . -615) NIL) ((-387 . -111) 59228) ((-381 . -102) T) ((-214 . -614) 59210) ((-1150 . -614) 59192) ((-1167 . -517) 58961) ((-1005 . -718) 58911) ((-1126 . -517) 58881) ((-915 . -718) 58833) ((-485 . -617) 58563) ((-353 . -308) T) ((-1189 . -151) 58513) ((-959 . -310) 58451) ((-837 . -102) T) ((-430 . -718) 58435) ((-225 . -829) T) ((-828 . -102) T) ((-826 . -102) T) ((-482 . -151) 58385) ((-1250 . -1249) 58364) ((-1120 . -1220) T) ((-341 . -1039) 58331) ((-1250 . -1244) 58301) ((-1250 . -1247) 58285) ((-1229 . -1228) 58264) ((-80 . -614) 58246) ((-906 . -614) 58228) ((-1229 . -1244) 58205) ((-1120 . -559) T) ((-922 . -851) T) ((-772 . -851) T) ((-673 . -851) T) ((-490 . -615) 58135) ((-490 . -614) 58076) ((-381 . -285) T) ((-1229 . -1226) 58060) ((-1252 . -1112) T) ((-217 . -615) 57990) ((-217 . -614) 57931) ((-1288 . -649) 57905) ((-1063 . -605) 57880) ((-819 . -617) 57864) ((-59 . -151) 57848) ((-519 . -151) 57832) ((-499 . -151) 57816) ((-361 . -1285) 57800) ((-355 . -1285) 57784) ((-347 . -1285) 57768) ((-317 . -365) 57747) ((-314 . -365) T) ((-485 . -1050) 57677) ((-695 . -640) 57659) ((-1286 . -649) 57633) ((-128 . -310) NIL) ((-1252 . -23) T) ((-690 . -492) 57617) ((-64 . -614) 57599) ((-1113 . -796) 57550) ((-1113 . -793) 57501) ((-553 . -492) 57438) ((-671 . -34) T) ((-485 . -233) 57390) ((-296 . -289) 57369) ((-240 . -172) 57348) ((-817 . -1058) T) ((-44 . -649) 57306) ((-1080 . -370) 57257) ((-732 . -291) 57188) ((-523 . -517) 57121) ((-818 . -1057) 57072) ((-1087 . -145) 57051) ((-552 . -614) 57033) ((-361 . -370) 57012) ((-355 . -370) 56991) ((-347 . -370) 56970) ((-1087 . -147) 56949) ((-872 . -231) 56926) ((-818 . -111) 56868) ((-783 . -145) 56847) ((-783 . -147) 56826) ((-265 . -950) 56793) ((-252 . -849) 56772) ((-247 . -950) 56717) ((-251 . -849) 56696) ((-781 . -145) 56675) ((-781 . -147) 56654) ((-152 . -649) 56628) ((-582 . -1100) T) ((-457 . -147) 56607) ((-457 . -145) 56586) ((-671 . -727) T) ((-824 . -614) 56568) ((-1258 . -1100) T) ((-1251 . -1100) T) ((-1230 . -1100) T) ((-1210 . -1204) 56534) ((-1210 . -1201) 56500) ((-1174 . -291) 56479) ((-1173 . -291) 56430) ((-1167 . -291) 56381) ((-1126 . -291) 56360) ((-341 . -901) 56341) ((-1005 . -172) T) ((-915 . -172) T) ((-695 . -21) T) ((-695 . -25) T) ((-225 . -647) 56291) ((-598 . -1100) T) ((-597 . -1100) T) ((-477 . -1247) 56275) ((-477 . -1244) 56245) ((-421 . -287) 56173) ((-550 . -851) T) ((-317 . -1112) 56022) ((-314 . -1112) T) ((-1210 . -35) 55988) ((-1210 . -95) 55954) ((-84 . -614) 55936) ((-91 . -102) 55914) ((-1294 . -131) T) ((-715 . -1052) 55884) ((-594 . -617) 55865) ((-584 . -145) T) ((-584 . -147) 55847) ((-521 . -147) 55829) ((-521 . -145) T) ((-715 . -641) 55799) ((-317 . -23) 55651) ((-40 . -344) 55625) ((-314 . -23) T) ((-818 . -617) 55539) ((-1158 . -652) 55521) ((-1281 . -1058) T) ((-1158 . -375) 55503) ((-816 . -649) 55351) ((-1096 . -102) T) ((-1090 . -102) T) ((-1073 . -102) T) ((-169 . -231) 55335) ((-1066 . -102) T) ((-1037 . -102) T) ((-1020 . -102) T) ((-595 . -492) 55317) ((-627 . -102) T) ((-240 . -517) 55250) ((-486 . -102) T) ((-1288 . -727) T) ((-1286 . -727) T) ((-218 . -102) T) ((-1178 . -1057) 55133) ((-1062 . -647) 55105) ((-953 . -647) 55015) ((-1178 . -111) 54884) ((-484 . -647) 54794) ((-862 . -173) T) ((-818 . -1050) T) ((-682 . -1083) T) ((-677 . -1083) T) ((-518 . -102) T) ((-513 . -102) T) ((-48 . -640) 54754) ((-511 . -102) T) ((-481 . -1083) T) ((-1278 . -1057) 54724) ((-138 . -1083) T) ((-137 . -1083) T) ((-133 . -1083) T) ((-1035 . -38) 54708) ((-818 . -233) T) ((-818 . -243) 54687) ((-1278 . -111) 54652) ((-1258 . -718) 54549) ((-1251 . -718) 54390) ((-553 . -287) 54369) ((-1239 . -231) 54353) ((-1221 . -614) 54335) ((-607 . -93) T) ((-1063 . -615) NIL) ((-1063 . -614) 54317) ((-672 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1230 . -718) 54113) ((-1004 . -921) T) ((-152 . -727) T) ((-1178 . -617) 53966) ((-1113 . -370) 53945) ((-1025 . -25) T) ((-1005 . -517) NIL) ((-252 . -414) 53914) ((-251 . -414) 53883) ((-1025 . -21) T) ((-873 . -1052) 53835) ((-598 . -718) 53808) ((-597 . -718) 53705) ((-800 . -287) 53663) ((-126 . -102) 53641) ((-834 . -1039) 53537) ((-169 . -829) 53516) ((-320 . -649) 53413) ((-816 . -34) T) ((-715 . -102) T) ((-1120 . -1112) T) ((-1027 . -1216) T) ((-873 . -641) 53365) ((-381 . -38) 53330) ((-356 . -25) T) ((-356 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-357 . -1273) 53314) ((-354 . -1273) 53298) ((-346 . -1273) 53282) ((-169 . -351) 53261) ((-567 . -851) T) ((-1120 . -23) T) ((-87 . -614) 53243) ((-702 . -308) T) ((-837 . -38) 53213) ((-828 . -38) 53183) ((-1278 . -617) 53125) ((-1252 . -131) T) ((-1150 . -289) 53104) ((-965 . -727) 53003) ((-965 . -794) 52956) ((-965 . -795) 52909) ((-816 . -792) 52888) ((-116 . -308) T) ((-91 . -310) 52826) ((-676 . -34) T) ((-553 . -605) 52805) ((-48 . -25) T) ((-48 . -21) T) ((-816 . -795) 52756) ((-816 . -794) 52735) ((-702 . -1023) T) ((-654 . -1057) 52719) ((-872 . -647) 52649) ((-816 . -727) 52559) ((-965 . -476) 52512) ((-485 . -796) 52463) ((-485 . -793) 52414) ((-911 . -1273) 52401) ((-1178 . -1050) T) ((-654 . -111) 52380) ((-1178 . -327) 52357) ((-1202 . -102) 52335) ((-1101 . -614) 52317) ((-702 . -548) T) ((-817 . -1100) T) ((-1278 . -1050) T) ((-1135 . -493) 52298) ((-1222 . -102) T) ((-416 . -1100) T) ((-1135 . -614) 52264) ((-252 . -1058) 52194) ((-251 . -1058) 52124) ((-839 . -102) T) ((-290 . -649) 52111) ((-595 . -287) 52086) ((-690 . -688) 52044) ((-964 . -614) 52026) ((-873 . -102) T) ((-736 . -614) 52008) ((-716 . -614) 51990) ((-1258 . -172) 51941) ((-1251 . -172) 51872) ((-1230 . -172) 51803) ((-700 . -851) T) ((-1005 . -291) T) ((-456 . -614) 51785) ((-628 . -727) T) ((-60 . -1100) 51763) ((-245 . -151) 51747) ((-915 . -291) T) ((-1025 . -1013) T) ((-628 . -476) T) ((-713 . -1220) 51726) ((-654 . -617) 51644) ((-169 . -647) 51539) ((-1266 . -851) 51518) ((-598 . -172) 51497) ((-597 . -172) 51448) ((-1250 . -641) 51289) ((-1250 . -1052) 51124) ((-1229 . -641) 50938) ((-1229 . -1052) 50746) ((-713 . -559) 50657) ((-410 . -921) T) ((-410 . -821) 50636) ((-320 . -795) T) ((-971 . -617) 50617) ((-320 . -727) T) ((-421 . -614) 50599) ((-421 . -615) 50506) ((-645 . -1149) 50490) ((-110 . -652) 50472) ((-174 . -308) T) ((-126 . -310) 50410) ((-110 . -375) 50392) ((-401 . -1216) T) ((-317 . -131) 50263) ((-314 . -131) T) ((-69 . -398) T) ((-110 . -123) T) ((-523 . -492) 50247) ((-655 . -1112) T) ((-595 . -19) 50229) ((-61 . -444) T) ((-61 . -398) T) ((-825 . -1100) T) ((-595 . -605) 50204) ((-480 . -1039) 50164) ((-654 . -1050) T) ((-655 . -23) T) ((-1281 . -1100) T) ((-31 . -102) T) ((-1239 . -647) 50074) ((-856 . -647) 50033) ((-817 . -718) 49882) ((-580 . -861) T) ((-574 . -647) 49854) ((-117 . -851) NIL) ((-1172 . -414) 49838) ((-1125 . -414) 49822) ((-855 . -414) 49806) ((-874 . -102) 49757) ((-1250 . -102) T) ((-1230 . -517) 49526) ((-1229 . -102) T) ((-1202 . -310) 49464) ((-1174 . -287) 49449) ((-1173 . -287) 49434) ((-528 . -93) T) ((-1167 . -287) 49282) ((-313 . -614) 49264) ((-1102 . -1100) T) ((-1080 . -649) 49174) ((-712 . -455) T) ((-690 . -614) 49106) ((-290 . -727) T) ((-108 . -910) NIL) ((-690 . -615) 49067) ((-602 . -614) 49049) ((-580 . -614) 49031) ((-553 . -615) NIL) ((-553 . -614) 49013) ((-532 . -614) 48995) ((-514 . -512) 48974) ((-490 . -1057) 48924) ((-477 . -1052) 48759) ((-510 . -512) 48738) ((-477 . -641) 48579) ((-217 . -1057) 48529) ((-361 . -649) 48481) ((-355 . -649) 48433) ((-225 . -849) T) ((-347 . -649) 48385) ((-603 . -102) 48335) ((-485 . -370) 48314) ((-108 . -649) 48264) ((-490 . -111) 48198) ((-240 . -492) 48182) ((-345 . -147) 48164) ((-345 . -145) T) ((-169 . -372) 48135) ((-944 . -1264) 48119) ((-217 . -111) 48053) ((-873 . -310) 48018) ((-944 . -1100) 47968) ((-800 . -615) 47929) ((-800 . -614) 47911) ((-719 . -102) T) ((-332 . -1100) T) ((-214 . -617) 47888) ((-1120 . -131) T) ((-715 . -38) 47858) ((-317 . -496) 47837) ((-503 . -1216) T) ((-1250 . -285) 47803) ((-1229 . -285) 47769) ((-328 . -151) 47753) ((-442 . -1100) T) ((-1063 . -289) 47728) ((-1281 . -718) 47698) ((-1159 . -34) T) ((-1290 . -1039) 47675) ((-471 . -614) 47657) ((-487 . -34) T) ((-383 . -1039) 47641) ((-1172 . -1058) T) ((-1125 . -1058) T) ((-855 . -1058) T) ((-1062 . -849) T) ((-490 . -617) 47591) ((-217 . -617) 47541) ((-817 . -172) 47452) ((-523 . -287) 47429) ((-1258 . -291) 47408) ((-1197 . -366) 47382) ((-1088 . -267) 47366) ((-672 . -493) 47347) ((-672 . -614) 47313) ((-607 . -493) 47294) ((-117 . -993) 47271) ((-607 . -614) 47221) ((-477 . -102) T) ((-180 . -493) 47202) ((-180 . -614) 47168) ((-161 . -493) 47149) ((-156 . -493) 47130) ((-154 . -493) 47111) ((-161 . -614) 47077) ((-156 . -614) 47043) ((-367 . -1100) T) ((-252 . -1100) T) ((-251 . -1100) T) ((-154 . -614) 47009) ((-1251 . -291) 46960) ((-1230 . -291) 46911) ((-873 . -1151) 46889) ((-1174 . -1003) 46855) ((-609 . -366) 46795) ((-1173 . -1003) 46761) ((-609 . -229) 46708) ((-695 . -851) T) ((-595 . -614) 46690) ((-595 . -615) NIL) ((-478 . -229) 46640) ((-490 . -1050) T) ((-1167 . -1003) 46606) ((-88 . -443) T) ((-88 . -398) T) ((-217 . -1050) T) ((-1126 . -1003) 46572) ((-1080 . -727) T) ((-713 . -1112) T) ((-598 . -291) 46551) ((-597 . -291) 46530) ((-490 . -243) T) ((-490 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1165 . -614) 46512) ((-873 . -38) 46464) ((-361 . -727) T) ((-355 . -727) T) ((-347 . -727) T) ((-108 . -795) T) ((-108 . -792) T) ((-713 . -23) T) ((-108 . -727) T) ((-523 . -1254) 46448) ((-1294 . -25) T) ((-477 . -285) 46414) ((-1294 . -21) T) ((-1229 . -310) 46353) ((-1176 . -102) T) ((-40 . -145) 46325) ((-40 . -147) 46297) ((-523 . -605) 46274) ((-1113 . -649) 46122) ((-603 . -310) 46060) ((-45 . -652) 46010) ((-45 . -667) 45960) ((-45 . -375) 45910) ((-1158 . -34) T) ((-872 . -849) NIL) ((-655 . -131) T) ((-488 . -614) 45892) ((-240 . -287) 45869) ((-186 . -1100) T) ((-1087 . -455) 45820) ((-817 . -517) 45694) ((-665 . -1052) 45678) ((-648 . -34) T) ((-633 . -34) T) ((-783 . -455) 45609) ((-665 . -641) 45593) ((-357 . -1052) 45545) ((-354 . -1052) 45497) ((-346 . -1052) 45449) ((-265 . -1052) 45292) ((-247 . -1052) 45135) ((-781 . -455) 45086) ((-357 . -641) 45038) ((-354 . -641) 44990) ((-346 . -641) 44942) ((-265 . -641) 44791) ((-247 . -641) 44640) ((-457 . -455) 44591) ((-953 . -414) 44575) ((-732 . -614) 44557) ((-252 . -718) 44499) ((-251 . -718) 44441) ((-732 . -615) 44302) ((-484 . -414) 44286) ((-341 . -303) T) ((-527 . -93) T) ((-353 . -921) T) ((-1001 . -102) 44264) ((-911 . -1052) 44229) ((-1025 . -851) T) ((-60 . -517) 44162) ((-911 . -641) 44127) ((-1229 . -1151) 44079) ((-1005 . -287) NIL) ((-225 . -1058) T) ((-381 . -829) T) ((-1113 . -34) T) ((-584 . -455) T) ((-521 . -455) T) ((-1233 . -1093) 44063) ((-1233 . -1100) 44041) ((-240 . -605) 44018) ((-1233 . -1095) 43975) ((-1174 . -614) 43957) ((-1173 . -614) 43939) ((-1167 . -614) 43921) ((-1167 . -615) NIL) ((-1126 . -614) 43903) ((-873 . -403) 43887) ((-539 . -102) T) ((-1250 . -38) 43728) ((-1229 . -38) 43542) ((-871 . -147) T) ((-584 . -405) T) ((-521 . -405) T) ((-1262 . -102) T) ((-1252 . -21) T) ((-1252 . -25) T) ((-1113 . -792) 43521) ((-1113 . -795) 43472) ((-1113 . -794) 43451) ((-994 . -1100) T) ((-1028 . -34) T) ((-863 . -1100) T) ((-1113 . -727) 43361) ((-665 . -102) T) ((-646 . -102) T) ((-553 . -289) 43340) ((-1189 . -102) T) ((-479 . -34) T) ((-466 . -34) T) ((-357 . -102) T) ((-354 . -102) T) ((-346 . -102) T) ((-265 . -102) T) ((-247 . -102) T) ((-480 . -308) T) ((-1062 . -1058) T) ((-953 . -1058) T) ((-317 . -640) 43246) ((-314 . -640) 43207) ((-1172 . -1100) T) ((-484 . -1058) T) ((-482 . -102) T) ((-439 . -614) 43189) ((-1125 . -1100) T) ((-250 . -614) 43171) ((-855 . -1100) T) ((-1141 . -102) T) ((-817 . -291) 43102) ((-964 . -1057) 42985) ((-480 . -1023) T) ((-736 . -1057) 42955) ((-1035 . -647) 42914) ((-456 . -1057) 42884) ((-1147 . -1121) 42868) ((-1102 . -517) 42801) ((-964 . -111) 42670) ((-911 . -102) T) ((-736 . -111) 42635) ((-528 . -493) 42616) ((-528 . -614) 42582) ((-59 . -102) 42532) ((-523 . -615) 42493) ((-523 . -614) 42405) ((-522 . -102) 42383) ((-519 . -102) 42333) ((-500 . -102) 42311) ((-499 . -102) 42261) ((-456 . -111) 42224) ((-252 . -172) 42203) ((-251 . -172) 42182) ((-323 . -647) 42164) ((-421 . -1057) 42138) ((-1210 . -974) 42100) ((-1000 . -1112) T) ((-381 . -647) 42050) ((-1135 . -617) 42031) ((-944 . -517) 41964) ((-490 . -796) T) ((-477 . -38) 41805) ((-421 . -111) 41772) ((-490 . -793) T) ((-1001 . -310) 41710) ((-217 . -796) T) ((-217 . -793) T) ((-1000 . -23) T) ((-713 . -131) T) ((-1229 . -403) 41680) ((-837 . -647) 41625) ((-828 . -647) 41584) ((-317 . -25) 41436) ((-169 . -414) 41420) ((-317 . -21) 41291) ((-314 . -25) T) ((-314 . -21) T) ((-865 . -370) T) ((-964 . -617) 41144) ((-110 . -34) T) ((-736 . -617) 41100) ((-716 . -617) 41082) ((-485 . -649) 40930) ((-872 . -1058) T) ((-595 . -289) 40905) ((-583 . -147) T) ((-567 . -147) T) ((-498 . -147) T) ((-1172 . -718) 40734) ((-1125 . -718) 40583) ((-1120 . -640) 40565) ((-855 . -718) 40535) ((-671 . -1216) T) ((-1 . -102) T) ((-421 . -617) 40443) ((-240 . -614) 40174) ((-1115 . -1100) T) ((-1239 . -414) 40158) ((-1189 . -310) 39962) ((-964 . -1050) T) ((-736 . -1050) T) ((-716 . -1050) T) ((-645 . -1100) 39912) ((-1055 . -649) 39896) ((-856 . -414) 39880) ((-514 . -102) T) ((-510 . -102) T) ((-265 . -310) 39867) ((-247 . -310) 39854) ((-964 . -327) 39833) ((-387 . -649) 39817) ((-671 . -1039) 39713) ((-482 . -310) 39517) ((-252 . -517) 39450) ((-251 . -517) 39383) ((-1141 . -310) 39309) ((-820 . -1100) T) ((-800 . -1057) 39293) ((-1258 . -287) 39278) ((-1251 . -287) 39263) ((-1230 . -287) 39111) ((-389 . -1100) T) ((-325 . -1100) T) ((-421 . -1050) T) ((-169 . -1058) T) ((-59 . -310) 39049) ((-800 . -111) 39028) ((-597 . -287) 39013) ((-522 . -310) 38951) ((-519 . -310) 38889) ((-500 . -310) 38827) ((-499 . -310) 38765) ((-421 . -233) 38744) ((-485 . -34) T) ((-1005 . -615) 38674) ((-225 . -1100) T) ((-1005 . -614) 38634) ((-972 . -614) 38594) ((-972 . -615) 38569) ((-915 . -614) 38551) ((-700 . -147) T) ((-702 . -921) T) ((-702 . -821) T) ((-430 . -614) 38533) ((-1120 . -21) T) ((-1120 . -25) T) ((-671 . -379) 38517) ((-116 . -921) T) ((-873 . -231) 38501) ((-78 . -1216) T) ((-126 . -125) 38485) ((-1055 . -34) T) ((-1288 . -1039) 38459) ((-1286 . -1039) 38416) ((-1239 . -1058) T) ((-856 . -1058) T) ((-485 . -792) 38395) ((-357 . -1151) 38374) ((-354 . -1151) 38353) ((-346 . -1151) 38332) ((-485 . -795) 38283) ((-485 . -794) 38262) ((-227 . -34) T) ((-485 . -727) 38172) ((-800 . -617) 38018) ((-663 . -1052) 38002) ((-60 . -492) 37986) ((-574 . -1058) T) ((-663 . -641) 37970) ((-1172 . -172) 37861) ((-1125 . -172) 37772) ((-1062 . -1100) T) ((-1087 . -950) 37717) ((-953 . -1100) T) ((-818 . -649) 37668) ((-783 . -950) 37637) ((-714 . -1100) T) ((-781 . -950) 37604) ((-519 . -283) 37588) ((-671 . -901) 37547) ((-484 . -1100) T) ((-457 . -950) 37514) ((-79 . -1216) T) ((-357 . -38) 37479) ((-354 . -38) 37444) ((-346 . -38) 37409) ((-265 . -38) 37258) ((-247 . -38) 37107) ((-911 . -1151) T) ((-527 . -493) 37088) ((-624 . -147) 37067) ((-624 . -145) 37046) ((-527 . -614) 37012) ((-117 . -147) T) ((-117 . -145) NIL) ((-417 . -727) T) ((-800 . -1050) T) ((-345 . -455) T) ((-1258 . -1003) 36978) ((-1251 . -1003) 36944) ((-1230 . -1003) 36910) ((-911 . -38) 36875) ((-225 . -718) 36840) ((-320 . -47) 36810) ((-40 . -412) 36782) ((-140 . -614) 36764) ((-1000 . -131) T) ((-816 . -1216) T) ((-174 . -921) T) ((-552 . -370) T) ((-607 . -617) 36745) ((-345 . -405) T) ((-715 . -647) 36690) ((-672 . -617) 36671) ((-180 . -617) 36652) ((-161 . -617) 36633) ((-156 . -617) 36614) ((-154 . -617) 36595) ((-523 . -289) 36572) ((-1229 . -231) 36542) ((-816 . -1039) 36369) ((-45 . -34) T) ((-682 . -102) T) ((-677 . -102) T) ((-663 . -102) T) ((-655 . -21) T) ((-655 . -25) T) ((-1102 . -492) 36353) ((-676 . -1216) T) ((-481 . -102) T) ((-245 . -102) 36303) ((-549 . -845) T) ((-137 . -102) T) ((-133 . -102) T) ((-138 . -102) T) ((-872 . -1100) T) ((-1178 . -649) 36228) ((-1062 . -718) 36215) ((-732 . -1057) 36058) ((-1172 . -517) 36005) ((-953 . -718) 35854) ((-1125 . -517) 35806) ((-1277 . -1100) T) ((-1276 . -1100) T) ((-484 . -718) 35655) ((-67 . -614) 35637) ((-732 . -111) 35466) ((-944 . -492) 35450) ((-1278 . -649) 35410) ((-818 . -727) T) ((-1174 . -1057) 35293) ((-1173 . -1057) 35128) ((-1167 . -1057) 34918) ((-1126 . -1057) 34801) ((-1004 . -1220) T) ((-1094 . -102) 34779) ((-816 . -379) 34748) ((-582 . -614) 34730) ((-549 . -1100) T) ((-1004 . -559) T) ((-1174 . -111) 34599) ((-1173 . -111) 34420) ((-1167 . -111) 34189) ((-1126 . -111) 34058) ((-1105 . -1103) 34022) ((-381 . -849) T) ((-1258 . -614) 34004) ((-1251 . -614) 33986) ((-873 . -647) 33923) ((-1230 . -614) 33905) ((-1230 . -615) NIL) ((-240 . -289) 33882) ((-40 . -455) T) ((-225 . -172) T) ((-169 . -1100) T) ((-732 . -617) 33667) ((-695 . -147) T) ((-695 . -145) NIL) ((-598 . -614) 33649) ((-597 . -614) 33631) ((-899 . -1100) T) ((-842 . -1100) T) ((-809 . -1100) T) ((-770 . -1100) T) ((-659 . -853) 33615) ((-678 . -1100) T) ((-816 . -901) 33547) ((-1221 . -370) T) ((-40 . -405) NIL) ((-1174 . -617) 33429) ((-1120 . -662) T) ((-872 . -718) 33374) ((-252 . -492) 33358) ((-251 . -492) 33342) ((-1173 . -617) 33085) ((-1167 . -617) 32880) ((-713 . -640) 32828) ((-654 . -649) 32802) ((-1126 . -617) 32684) ((-296 . -34) T) ((-732 . -1050) T) ((-584 . -1273) 32671) ((-521 . -1273) 32648) ((-1239 . -1100) T) ((-1172 . -291) 32559) ((-1125 . -291) 32490) ((-1062 . -172) T) ((-856 . -1100) T) ((-953 . -172) 32401) ((-783 . -1242) 32385) ((-645 . -517) 32318) ((-77 . -614) 32300) ((-732 . -327) 32265) ((-1178 . -727) T) ((-574 . -1100) T) ((-484 . -172) 32176) ((-245 . -310) 32114) ((-1142 . -1112) T) ((-70 . -614) 32096) ((-1278 . -727) T) ((-1174 . -1050) T) ((-1173 . -1050) T) ((-328 . -102) 32046) ((-1167 . -1050) T) ((-1142 . -23) T) ((-1126 . -1050) T) ((-91 . -1121) 32030) ((-867 . -1112) T) ((-1174 . -233) 31989) ((-1173 . -243) 31968) ((-1173 . -233) 31920) ((-1167 . -233) 31807) ((-1167 . -243) 31786) ((-320 . -901) 31692) ((-867 . -23) T) ((-169 . -718) 31520) ((-410 . -1220) T) ((-1101 . -370) T) ((-1004 . -365) T) ((-871 . -455) T) ((-1025 . -147) T) ((-944 . -287) 31497) ((-314 . -851) NIL) ((-1250 . -647) 31379) ((-875 . -102) T) ((-1229 . -647) 31234) ((-713 . -25) T) ((-410 . -559) T) ((-713 . -21) T) ((-528 . -617) 31215) ((-356 . -147) 31197) ((-356 . -145) T) ((-1147 . -1100) 31175) ((-456 . -721) T) ((-75 . -614) 31157) ((-114 . -851) T) ((-245 . -283) 31141) ((-240 . -1057) 31038) ((-81 . -614) 31020) ((-736 . -370) 30973) ((-1176 . -829) T) ((-738 . -235) 30957) ((-1159 . -1216) T) ((-141 . -235) 30939) ((-240 . -111) 30829) ((-1239 . -718) 30658) ((-48 . -147) T) ((-872 . -172) T) ((-856 . -718) 30628) ((-487 . -1216) T) ((-953 . -517) 30575) ((-654 . -727) T) ((-574 . -718) 30562) ((-1035 . -1058) T) ((-484 . -517) 30505) ((-944 . -19) 30489) ((-944 . -605) 30466) ((-817 . -615) NIL) ((-817 . -614) 30448) ((-1210 . -1052) 30331) ((-1005 . -1057) 30281) ((-416 . -614) 30263) ((-252 . -287) 30240) ((-251 . -287) 30217) ((-490 . -910) NIL) ((-317 . -29) 30187) ((-108 . -1216) T) ((-1004 . -1112) T) ((-217 . -910) NIL) ((-1210 . -641) 30084) ((-915 . -1057) 30036) ((-1080 . -1039) 29932) ((-1005 . -111) 29866) ((-712 . -1052) 29831) ((-1004 . -23) T) ((-915 . -111) 29769) ((-738 . -696) 29753) ((-712 . -641) 29718) ((-265 . -231) 29702) ((-430 . -1057) 29686) ((-381 . -1058) T) ((-240 . -617) 29416) ((-695 . -1204) NIL) ((-490 . -649) 29366) ((-477 . -647) 29248) ((-108 . -885) 29230) ((-108 . -887) 29212) ((-695 . -1201) NIL) ((-217 . -649) 29162) ((-361 . -1039) 29146) ((-355 . -1039) 29130) ((-328 . -310) 29068) ((-347 . -1039) 29052) ((-225 . -291) T) ((-430 . -111) 29031) ((-60 . -614) 28963) ((-169 . -172) T) ((-1120 . -851) T) ((-108 . -1039) 28923) ((-893 . -1100) T) ((-837 . -1058) T) ((-828 . -1058) T) ((-695 . -35) NIL) ((-695 . -95) NIL) ((-314 . -993) 28884) ((-183 . -102) T) ((-583 . -455) T) ((-567 . -455) T) ((-498 . -455) T) ((-410 . -365) T) ((-240 . -1050) 28814) ((-1150 . -34) T) ((-480 . -921) T) ((-1000 . -640) 28762) ((-252 . -605) 28739) ((-251 . -605) 28716) ((-1080 . -379) 28700) ((-872 . -517) 28608) ((-240 . -233) 28560) ((-1158 . -1216) T) ((-1005 . -617) 28510) ((-915 . -617) 28447) ((-825 . -614) 28429) ((-1289 . -1112) T) ((-1281 . -614) 28411) ((-1239 . -172) 28302) ((-430 . -617) 28271) ((-108 . -379) 28253) ((-108 . -340) 28235) ((-1062 . -291) T) ((-953 . -291) 28166) ((-800 . -370) 28145) ((-648 . -1216) T) ((-633 . -1216) T) ((-588 . -1052) 28120) ((-484 . -291) 28051) ((-574 . -172) T) ((-328 . -283) 28035) ((-1289 . -23) T) ((-1210 . -102) T) ((-1197 . -1100) T) ((-1088 . -1100) T) ((-1076 . -1100) T) ((-588 . -641) 28010) ((-83 . -614) 27992) ((-1183 . -845) T) ((-1182 . -845) T) ((-712 . -102) T) ((-357 . -351) 27971) ((-609 . -1100) T) ((-354 . -351) 27950) ((-346 . -351) 27929) ((-478 . -1100) T) ((-1189 . -229) 27879) ((-265 . -254) 27841) ((-1142 . -131) T) ((-609 . -611) 27817) ((-1080 . -901) 27750) ((-1005 . -1050) T) ((-915 . -1050) T) ((-478 . -611) 27729) ((-1167 . -793) NIL) ((-1167 . -796) NIL) ((-1102 . -615) 27690) ((-482 . -229) 27640) ((-1102 . -614) 27622) ((-1005 . -243) T) ((-1005 . -233) T) ((-430 . -1050) T) ((-959 . -1100) 27572) ((-915 . -243) T) ((-867 . -131) T) ((-700 . -455) T) ((-844 . -1112) 27551) ((-108 . -901) NIL) ((-1210 . -285) 27517) ((-873 . -849) 27496) ((-1113 . -1216) T) ((-906 . -727) T) ((-169 . -517) 27408) ((-1000 . -25) T) ((-906 . -476) T) ((-410 . -1112) T) ((-490 . -795) T) ((-490 . -792) T) ((-911 . -351) T) ((-490 . -727) T) ((-217 . -795) T) ((-217 . -792) T) ((-1000 . -21) T) ((-217 . -727) T) ((-844 . -23) 27360) ((-1184 . -1100) T) ((-659 . -1052) 27344) ((-1183 . -1100) T) ((-527 . -617) 27325) ((-1182 . -1100) T) ((-320 . -308) 27304) ((-1036 . -235) 27250) ((-659 . -641) 27220) ((-410 . -23) T) ((-944 . -615) 27181) ((-944 . -614) 27093) ((-645 . -492) 27077) ((-45 . -1011) 27027) ((-618 . -968) T) ((-494 . -102) T) ((-332 . -614) 27009) ((-1113 . -1039) 26836) ((-595 . -652) 26818) ((-130 . -1100) T) ((-128 . -1100) T) ((-595 . -375) 26800) ((-345 . -1273) 26777) ((-442 . -614) 26759) ((-1239 . -517) 26706) ((-1087 . -1052) 26549) ((-1028 . -1216) T) ((-872 . -291) T) ((-1172 . -287) 26476) ((-1087 . -641) 26325) ((-1001 . -996) 26309) ((-783 . -1052) 26132) ((-781 . -1052) 25975) ((-783 . -641) 25804) ((-781 . -641) 25653) ((-479 . -1216) T) ((-466 . -1216) T) ((-588 . -102) T) ((-464 . -1052) 25624) ((-457 . -1052) 25467) ((-665 . -647) 25436) ((-624 . -455) 25415) ((-464 . -641) 25386) ((-457 . -641) 25235) ((-357 . -647) 25172) ((-354 . -647) 25109) ((-346 . -647) 25046) ((-265 . -647) 24956) ((-247 . -647) 24866) ((-1281 . -384) 24838) ((-520 . -1100) T) ((-117 . -455) T) ((-1196 . -102) T) ((-1092 . -1100) 24816) ((-1035 . -1100) T) ((-1115 . -93) T) ((-894 . -851) T) ((-1258 . -111) 24685) ((-353 . -1220) T) ((-1258 . -1057) 24568) ((-1113 . -379) 24537) ((-1251 . -1057) 24372) ((-1230 . -1057) 24162) ((-1251 . -111) 23983) ((-1230 . -111) 23752) ((-1210 . -310) 23739) ((-1004 . -131) T) ((-911 . -647) 23689) ((-367 . -614) 23671) ((-353 . -559) T) ((-290 . -308) T) ((-598 . -1057) 23644) ((-597 . -1057) 23527) ((-584 . -1052) 23492) ((-521 . -1052) 23437) ((-363 . -1100) T) ((-323 . -1100) T) ((-252 . -614) 23398) ((-251 . -614) 23359) ((-584 . -641) 23324) ((-521 . -641) 23269) ((-695 . -412) 23236) ((-636 . -23) T) ((-608 . -23) T) ((-659 . -102) T) ((-598 . -111) 23207) ((-597 . -111) 23076) ((-381 . -1100) T) ((-338 . -102) T) ((-169 . -291) 22987) ((-1229 . -849) 22940) ((-715 . -1058) T) ((-1147 . -517) 22873) ((-1113 . -901) 22805) ((-837 . -1100) T) ((-828 . -1100) T) ((-826 . -1100) T) ((-97 . -102) T) ((-144 . -851) T) ((-613 . -885) 22789) ((-110 . -1216) T) ((-1087 . -102) T) ((-1063 . -34) T) ((-783 . -102) T) ((-781 . -102) T) ((-1258 . -617) 22671) ((-1251 . -617) 22414) ((-464 . -102) T) ((-457 . -102) T) ((-1230 . -617) 22209) ((-240 . -796) 22160) ((-240 . -793) 22111) ((-650 . -102) T) ((-598 . -617) 22069) ((-597 . -617) 21951) ((-1239 . -291) 21862) ((-665 . -635) 21846) ((-186 . -614) 21828) ((-645 . -287) 21805) ((-1035 . -718) 21789) ((-574 . -291) T) ((-964 . -649) 21714) ((-1289 . -131) T) ((-736 . -649) 21674) ((-716 . -649) 21661) ((-276 . -102) T) ((-456 . -649) 21591) ((-50 . -102) T) ((-584 . -102) T) ((-521 . -102) T) ((-1258 . -1050) T) ((-1251 . -1050) T) ((-1230 . -1050) T) ((-510 . -647) 21573) ((-323 . -718) 21555) ((-1258 . -233) 21514) ((-1251 . -243) 21493) ((-1251 . -233) 21445) ((-1230 . -233) 21332) ((-1230 . -243) 21311) ((-1210 . -38) 21208) ((-598 . -1050) T) ((-597 . -1050) T) ((-1005 . -796) T) ((-1005 . -793) T) ((-972 . -796) T) ((-972 . -793) T) ((-873 . -1058) T) ((-109 . -614) 21190) ((-695 . -455) T) ((-381 . -718) 21155) ((-421 . -649) 21129) ((-871 . -870) 21113) ((-712 . -38) 21078) ((-597 . -233) 21037) ((-40 . -725) 21009) ((-353 . -330) 20986) ((-353 . -365) T) ((-1080 . -308) 20937) ((-295 . -1112) 20818) ((-1106 . -1216) T) ((-171 . -102) T) ((-1233 . -614) 20785) ((-844 . -131) 20737) ((-645 . -1254) 20721) ((-837 . -718) 20691) ((-828 . -718) 20661) ((-485 . -1216) T) ((-361 . -308) T) ((-355 . -308) T) ((-347 . -308) T) ((-645 . -605) 20638) ((-410 . -131) T) ((-523 . -667) 20622) ((-108 . -308) T) ((-295 . -23) 20505) ((-523 . -652) 20489) ((-695 . -405) NIL) ((-523 . -375) 20473) ((-292 . -614) 20455) ((-91 . -1100) 20433) ((-108 . -1023) T) ((-567 . -143) T) ((-1266 . -151) 20417) ((-485 . -1039) 20244) ((-1252 . -145) 20205) ((-1252 . -147) 20166) ((-1055 . -1216) T) ((-994 . -614) 20148) ((-863 . -614) 20130) ((-817 . -1057) 19973) ((-1277 . -93) T) ((-1276 . -93) T) ((-1172 . -615) NIL) ((-1096 . -1100) T) ((-1090 . -1100) T) ((-1087 . -310) 19960) ((-1073 . -1100) T) ((-227 . -1216) T) ((-1066 . -1100) T) ((-1037 . -1100) T) ((-1020 . -1100) T) ((-783 . -310) 19947) ((-781 . -310) 19934) ((-1172 . -614) 19916) ((-817 . -111) 19745) ((-1125 . -614) 19727) ((-627 . -1100) T) ((-580 . -173) T) ((-532 . -173) T) ((-457 . -310) 19714) ((-486 . -1100) T) ((-1125 . -615) 19462) ((-1035 . -172) T) ((-944 . -289) 19439) ((-218 . -1100) T) ((-855 . -614) 19421) ((-609 . -517) 19204) ((-81 . -617) 19145) ((-819 . -1039) 19129) ((-478 . -517) 18921) ((-964 . -727) T) ((-736 . -727) T) ((-716 . -727) T) ((-353 . -1112) T) ((-1179 . -614) 18903) ((-223 . -102) T) ((-485 . -379) 18872) ((-518 . -1100) T) ((-513 . -1100) T) ((-511 . -1100) T) ((-800 . -649) 18846) ((-1025 . -455) T) ((-959 . -517) 18779) ((-353 . -23) T) ((-636 . -131) T) ((-608 . -131) T) ((-356 . -455) T) ((-240 . -370) 18758) ((-381 . -172) T) ((-1250 . -1058) T) ((-1229 . -1058) T) ((-225 . -1003) T) ((-817 . -617) 18495) ((-700 . -390) T) ((-421 . -727) T) ((-702 . -1220) T) ((-1142 . -640) 18443) ((-583 . -870) 18427) ((-1281 . -1057) 18411) ((-1159 . -1192) 18387) ((-702 . -559) T) ((-126 . -1100) 18365) ((-715 . -1100) T) ((-485 . -901) 18297) ((-249 . -1100) T) ((-187 . -1100) T) ((-659 . -38) 18267) ((-356 . -405) T) ((-317 . -147) 18246) ((-317 . -145) 18225) ((-128 . -517) NIL) ((-116 . -559) T) ((-314 . -147) 18181) ((-314 . -145) 18137) ((-48 . -455) T) ((-162 . -1100) T) ((-157 . -1100) T) ((-1159 . -107) 18084) ((-783 . -1151) 18062) ((-690 . -34) T) ((-1281 . -111) 18041) ((-553 . -34) T) ((-487 . -107) 18025) ((-252 . -289) 18002) ((-251 . -289) 17979) ((-872 . -287) 17930) ((-45 . -1216) T) ((-1222 . -845) T) ((-817 . -1050) T) ((-663 . -647) 17899) ((-1178 . -47) 17876) ((-817 . -327) 17838) ((-1087 . -38) 17687) ((-817 . -233) 17666) ((-783 . -38) 17495) ((-781 . -38) 17344) ((-1115 . -493) 17325) ((-457 . -38) 17174) ((-1115 . -614) 17140) ((-1118 . -102) T) ((-645 . -615) 17101) ((-645 . -614) 17013) ((-584 . -1151) T) ((-521 . -1151) T) ((-1147 . -492) 16997) ((-345 . -1052) 16942) ((-1202 . -1100) 16920) ((-1142 . -25) T) ((-1142 . -21) T) ((-345 . -641) 16865) ((-1281 . -617) 16814) ((-477 . -1058) T) ((-1222 . -1100) T) ((-1230 . -793) NIL) ((-1230 . -796) NIL) ((-1000 . -851) 16793) ((-839 . -1100) T) ((-820 . -614) 16775) ((-867 . -21) T) ((-867 . -25) T) ((-800 . -727) T) ((-174 . -1220) T) ((-584 . -38) 16740) ((-521 . -38) 16705) ((-389 . -614) 16687) ((-334 . -102) T) ((-325 . -614) 16669) ((-169 . -287) 16627) ((-63 . -1216) T) ((-112 . -102) T) ((-873 . -1100) T) ((-174 . -559) T) ((-715 . -718) 16597) ((-295 . -131) 16480) ((-225 . -614) 16462) ((-225 . -615) 16392) ((-1004 . -640) 16331) ((-1281 . -1050) T) ((-1120 . -147) T) ((-633 . -1192) 16306) ((-732 . -910) 16285) ((-595 . -34) T) ((-648 . -107) 16269) ((-633 . -107) 16215) ((-1239 . -287) 16142) ((-732 . -649) 16067) ((-296 . -1216) T) ((-1178 . -1039) 15963) ((-944 . -619) 15940) ((-580 . -579) T) ((-580 . -530) T) ((-532 . -530) T) ((-1167 . -910) NIL) ((-1062 . -615) 15855) ((-1062 . -614) 15837) ((-953 . -614) 15819) ((-714 . -493) 15769) ((-345 . -102) T) ((-252 . -1057) 15666) ((-251 . -1057) 15563) ((-397 . -102) T) ((-31 . -1100) T) ((-953 . -615) 15424) ((-714 . -614) 15359) ((-1279 . -1209) 15328) ((-484 . -614) 15310) ((-484 . -615) 15171) ((-265 . -414) 15155) ((-247 . -414) 15139) ((-252 . -111) 15029) ((-251 . -111) 14919) ((-1174 . -649) 14844) ((-1173 . -649) 14741) ((-1167 . -649) 14593) ((-1126 . -649) 14518) ((-353 . -131) T) ((-82 . -444) T) ((-82 . -398) T) ((-1004 . -25) T) ((-1004 . -21) T) ((-874 . -1100) 14469) ((-40 . -1052) 14414) ((-873 . -718) 14366) ((-40 . -641) 14311) ((-381 . -291) T) ((-169 . -1003) 14262) ((-695 . -390) T) ((-1000 . -998) 14246) ((-702 . -1112) T) ((-695 . -166) 14228) ((-1250 . -1100) T) ((-1229 . -1100) T) ((-317 . -1201) 14207) ((-317 . -1204) 14186) ((-1164 . -102) T) ((-317 . -960) 14165) ((-134 . -1112) T) ((-116 . -1112) T) ((-603 . -1264) 14149) ((-702 . -23) T) ((-603 . -1100) 14099) ((-317 . -95) 14078) ((-91 . -517) 14011) ((-174 . -365) T) ((-252 . -617) 13741) ((-251 . -617) 13471) ((-317 . -35) 13450) ((-609 . -492) 13384) ((-134 . -23) T) ((-116 . -23) T) ((-967 . -102) T) ((-719 . -1100) T) ((-478 . -492) 13321) ((-410 . -640) 13269) ((-654 . -1039) 13165) ((-959 . -492) 13149) ((-357 . -1058) T) ((-354 . -1058) T) ((-346 . -1058) T) ((-265 . -1058) T) ((-247 . -1058) T) ((-872 . -615) NIL) ((-872 . -614) 13131) ((-1277 . -493) 13112) ((-1276 . -493) 13093) ((-1289 . -21) T) ((-1277 . -614) 13059) ((-1276 . -614) 13025) ((-574 . -1003) T) ((-732 . -727) T) ((-1289 . -25) T) ((-252 . -1050) 12955) ((-251 . -1050) 12885) ((-72 . -1216) T) ((-252 . -233) 12837) ((-251 . -233) 12789) ((-40 . -102) T) ((-911 . -1058) T) ((-1181 . -102) T) ((-128 . -492) 12771) ((-1174 . -727) T) ((-1173 . -727) T) ((-1167 . -727) T) ((-1167 . -792) NIL) ((-1167 . -795) NIL) ((-955 . -102) T) ((-922 . -102) T) ((-871 . -1052) 12758) ((-1126 . -727) T) ((-772 . -102) T) ((-673 . -102) T) ((-871 . -641) 12745) ((-549 . -614) 12727) ((-477 . -1100) T) ((-341 . -1112) T) ((-174 . -1112) T) ((-320 . -921) 12706) ((-1250 . -718) 12547) ((-873 . -172) T) ((-1229 . -718) 12361) ((-844 . -21) 12313) ((-844 . -25) 12265) ((-245 . -1149) 12249) ((-126 . -517) 12182) ((-410 . -25) T) ((-410 . -21) T) ((-341 . -23) T) ((-169 . -615) 11948) ((-169 . -614) 11930) ((-174 . -23) T) ((-645 . -289) 11907) ((-523 . -34) T) ((-899 . -614) 11889) ((-89 . -1216) T) ((-842 . -614) 11871) ((-809 . -614) 11853) ((-770 . -614) 11835) ((-678 . -614) 11817) ((-240 . -649) 11665) ((-1176 . -1100) T) ((-1172 . -1057) 11488) ((-1150 . -1216) T) ((-1125 . -1057) 11331) ((-855 . -1057) 11315) ((-1233 . -619) 11299) ((-1172 . -111) 11108) ((-1125 . -111) 10937) ((-855 . -111) 10916) ((-1223 . -851) T) ((-1239 . -615) NIL) ((-1239 . -614) 10898) ((-345 . -1151) T) ((-856 . -614) 10880) ((-1076 . -287) 10859) ((-80 . -1216) T) ((-1005 . -910) NIL) ((-609 . -287) 10835) ((-1202 . -517) 10768) ((-490 . -1216) T) ((-574 . -614) 10750) ((-478 . -287) 10729) ((-1210 . -647) 10639) ((-520 . -93) T) ((-1087 . -231) 10623) ((-217 . -1216) T) ((-1005 . -649) 10573) ((-959 . -287) 10550) ((-290 . -921) T) ((-818 . -308) 10529) ((-871 . -102) T) ((-783 . -231) 10513) ((-915 . -649) 10465) ((-712 . -647) 10415) ((-695 . -725) 10382) ((-636 . -21) T) ((-636 . -25) T) ((-608 . -21) T) ((-550 . -102) T) ((-345 . -38) 10347) ((-490 . -885) 10329) ((-490 . -887) 10311) ((-477 . -718) 10152) ((-217 . -885) 10134) ((-64 . -1216) T) ((-217 . -887) 10116) ((-608 . -25) T) ((-430 . -649) 10090) ((-1172 . -617) 9859) ((-490 . -1039) 9819) ((-873 . -517) 9731) ((-1125 . -617) 9523) ((-855 . -617) 9441) ((-217 . -1039) 9401) ((-240 . -34) T) ((-1001 . -1100) 9379) ((-583 . -1052) 9366) ((-567 . -1052) 9353) ((-498 . -1052) 9318) ((-1250 . -172) 9249) ((-1229 . -172) 9180) ((-583 . -641) 9167) ((-567 . -641) 9154) ((-498 . -641) 9119) ((-713 . -145) 9098) ((-713 . -147) 9077) ((-702 . -131) T) ((-136 . -468) 9054) ((-1147 . -614) 8986) ((-659 . -657) 8970) ((-128 . -287) 8945) ((-116 . -131) T) ((-480 . -1220) T) ((-609 . -605) 8921) ((-478 . -605) 8900) ((-338 . -337) 8869) ((-539 . -1100) T) ((-480 . -559) T) ((-1172 . -1050) T) ((-1125 . -1050) T) ((-855 . -1050) T) ((-240 . -792) 8848) ((-240 . -795) 8799) ((-240 . -794) 8778) ((-1172 . -327) 8755) ((-240 . -727) 8665) ((-959 . -19) 8649) ((-490 . -379) 8631) ((-490 . -340) 8613) ((-1125 . -327) 8585) ((-356 . -1273) 8562) ((-217 . -379) 8544) ((-217 . -340) 8526) ((-959 . -605) 8503) ((-1172 . -233) T) ((-1262 . -1100) T) ((-665 . -1100) T) ((-646 . -1100) T) ((-1189 . -1100) T) ((-1087 . -254) 8440) ((-588 . -647) 8400) ((-357 . -1100) T) ((-354 . -1100) T) ((-346 . -1100) T) ((-265 . -1100) T) ((-247 . -1100) T) ((-84 . -1216) T) ((-127 . -102) 8378) ((-121 . -102) 8356) ((-1189 . -611) 8335) ((-1229 . -517) 8195) ((-1141 . -1100) T) ((-1115 . -617) 8176) ((-482 . -1100) T) ((-1080 . -921) 8127) ((-1005 . -795) T) ((-482 . -611) 8106) ((-252 . -796) 8057) ((-252 . -793) 8008) ((-251 . -796) 7959) ((-40 . -1151) NIL) ((-251 . -793) 7910) ((-1005 . -792) T) ((-128 . -19) 7892) ((-1005 . -727) T) ((-700 . -1052) 7857) ((-972 . -795) T) ((-915 . -727) T) ((-911 . -1100) T) ((-128 . -605) 7832) ((-700 . -641) 7797) ((-91 . -492) 7781) ((-490 . -901) NIL) ((-893 . -614) 7763) ((-225 . -1057) 7728) ((-873 . -291) T) ((-217 . -901) NIL) ((-834 . -1112) 7707) ((-59 . -1100) 7657) ((-522 . -1100) 7635) ((-519 . -1100) 7585) ((-500 . -1100) 7563) ((-499 . -1100) 7513) ((-583 . -102) T) ((-567 . -102) T) ((-498 . -102) T) ((-477 . -172) 7444) ((-361 . -921) T) ((-355 . -921) T) ((-347 . -921) T) ((-225 . -111) 7400) ((-834 . -23) 7352) ((-430 . -727) T) ((-108 . -921) T) ((-40 . -38) 7297) ((-108 . -821) T) ((-584 . -351) T) ((-521 . -351) T) ((-837 . -287) 7276) ((-317 . -455) 7255) ((-314 . -455) T) ((-659 . -647) 7214) ((-603 . -517) 7147) ((-341 . -131) T) ((-174 . -131) T) ((-295 . -25) 7011) ((-295 . -21) 6894) ((-45 . -1192) 6873) ((-66 . -614) 6855) ((-55 . -102) T) ((-338 . -647) 6837) ((-45 . -107) 6787) ((-820 . -617) 6771) ((-1267 . -102) T) ((-1266 . -102) 6721) ((-1258 . -649) 6646) ((-1251 . -649) 6543) ((-1102 . -428) 6527) ((-1102 . -370) 6506) ((-389 . -617) 6490) ((-325 . -617) 6474) ((-1230 . -649) 6326) ((-1230 . -910) NIL) ((-1063 . -1216) T) ((-1087 . -647) 6236) ((-1062 . -1057) 6223) ((-1062 . -111) 6208) ((-953 . -1057) 6051) ((-953 . -111) 5880) ((-783 . -647) 5790) ((-781 . -647) 5700) ((-624 . -1052) 5687) ((-665 . -718) 5671) ((-624 . -641) 5658) ((-484 . -1057) 5501) ((-480 . -365) T) ((-464 . -647) 5457) ((-457 . -647) 5367) ((-225 . -617) 5317) ((-357 . -718) 5269) ((-354 . -718) 5221) ((-117 . -1052) 5166) ((-346 . -718) 5118) ((-265 . -718) 4967) ((-247 . -718) 4816) ((-1197 . -614) 4798) ((-1096 . -93) T) ((-117 . -641) 4743) ((-1090 . -93) T) ((-944 . -652) 4727) ((-1073 . -93) T) ((-484 . -111) 4556) ((-1066 . -93) T) ((-1037 . -93) T) ((-944 . -375) 4540) ((-248 . -102) T) ((-1020 . -93) T) ((-74 . -614) 4522) ((-964 . -47) 4501) ((-711 . -102) T) ((-700 . -102) T) ((-1 . -1100) T) ((-622 . -1112) T) ((-1088 . -614) 4483) ((-627 . -93) T) ((-1076 . -614) 4465) ((-911 . -718) 4430) ((-126 . -492) 4414) ((-486 . -93) T) ((-622 . -23) T) ((-393 . -23) T) ((-87 . -1216) T) ((-218 . -93) T) ((-609 . -614) 4396) ((-609 . -615) NIL) ((-478 . -615) NIL) ((-478 . -614) 4378) ((-353 . -25) T) ((-353 . -21) T) ((-50 . -647) 4337) ((-514 . -1100) T) ((-510 . -1100) T) ((-127 . -310) 4275) ((-121 . -310) 4213) ((-598 . -649) 4200) ((-597 . -649) 4125) ((-584 . -647) 4075) ((-225 . -1050) T) ((-521 . -647) 4005) ((-381 . -1003) T) ((-225 . -243) T) ((-225 . -233) T) ((-1062 . -617) 3977) ((-1062 . -619) 3958) ((-959 . -615) 3919) ((-959 . -614) 3831) ((-953 . -617) 3620) ((-871 . -38) 3607) ((-714 . -617) 3557) ((-1250 . -291) 3508) ((-1229 . -291) 3459) ((-484 . -617) 3244) ((-1120 . -455) T) ((-505 . -851) T) ((-317 . -1139) 3223) ((-1000 . -147) 3202) ((-1000 . -145) 3181) ((-498 . -310) 3168) ((-296 . -1192) 3147) ((-1184 . -614) 3129) ((-1183 . -614) 3111) ((-1182 . -614) 3093) ((-872 . -1057) 3038) ((-480 . -1112) T) ((-139 . -836) 3020) ((-114 . -836) 3001) ((-624 . -102) T) ((-1202 . -492) 2985) ((-252 . -370) 2964) ((-251 . -370) 2943) ((-1062 . -1050) T) ((-296 . -107) 2893) ((-130 . -614) 2875) ((-128 . -615) NIL) ((-128 . -614) 2819) ((-117 . -102) T) ((-953 . -1050) T) ((-872 . -111) 2748) ((-480 . -23) T) ((-484 . -1050) T) ((-1062 . -233) T) ((-953 . -327) 2717) ((-484 . -327) 2674) ((-357 . -172) T) ((-354 . -172) T) ((-346 . -172) T) ((-265 . -172) 2585) ((-247 . -172) 2496) ((-964 . -1039) 2392) ((-520 . -493) 2373) ((-736 . -1039) 2344) ((-520 . -614) 2310) ((-1105 . -102) T) ((-1092 . -614) 2277) ((-1035 . -614) 2259) ((-695 . -1052) 2209) ((-1279 . -151) 2193) ((-1277 . -617) 2174) ((-1276 . -617) 2155) ((-1271 . -614) 2137) ((-1258 . -727) T) ((-695 . -641) 2087) ((-1251 . -727) T) ((-1230 . -792) NIL) ((-1230 . -795) NIL) ((-169 . -1057) 1997) ((-911 . -172) T) ((-872 . -617) 1927) ((-1230 . -727) T) ((-1004 . -344) 1901) ((-223 . -647) 1853) ((-1001 . -517) 1786) ((-844 . -851) 1765) ((-567 . -1151) T) ((-477 . -291) 1716) ((-598 . -727) T) ((-363 . -614) 1698) ((-323 . -614) 1680) ((-421 . -1039) 1576) ((-597 . -727) T) ((-410 . -851) 1527) ((-169 . -111) 1423) ((-834 . -131) 1375) ((-738 . -151) 1359) ((-1266 . -310) 1297) ((-490 . -308) T) ((-381 . -614) 1264) ((-523 . -1011) 1248) ((-381 . -615) 1162) ((-217 . -308) T) ((-141 . -151) 1144) ((-715 . -287) 1123) ((-490 . -1023) T) ((-583 . -38) 1110) ((-567 . -38) 1097) ((-498 . -38) 1062) ((-217 . -1023) T) ((-872 . -1050) T) ((-837 . -614) 1044) ((-828 . -614) 1026) ((-826 . -614) 1008) ((-817 . -910) 987) ((-1290 . -1112) T) ((-1239 . -1057) 810) ((-856 . -1057) 794) ((-872 . -243) T) ((-872 . -233) NIL) ((-690 . -1216) T) ((-1290 . -23) T) ((-817 . -649) 719) ((-553 . -1216) T) ((-421 . -340) 703) ((-574 . -1057) 690) ((-1239 . -111) 499) ((-702 . -640) 481) ((-856 . -111) 460) ((-383 . -23) T) ((-169 . -617) 238) ((-1189 . -517) 30) ((-682 . -1100) T) ((-677 . -1100) T) ((-663 . -1100) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 0617d5d7..1f0b23ff 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3462598952)
-(4418 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3462993422)
+(4419 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -131,19 +131,20 @@
|FullyLinearlyExplicitRingOver&| |FullyLinearlyExplicitRingOver|
|FloatingComplexPackage| |Float| |FloatingRealPackage| |FreeModule1|
|FreeModuleCat| |FortranMatrixCategory|
- |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoid|
- |FortranMachineTypeCategory| |FileName| |FileNameCategory|
- |FreeNilpotentLie| |FortranOutputStackPackage| |FindOrderFinite|
- |ScriptFormulaFormat1| |ScriptFormulaFormat| |FortranProgramCategory|
- |FortranFunctionCategory| |FortranPackage| |FortranProgram|
- |FullPartialFractionExpansion| |FullyPatternMatchable|
- |FieldOfPrimeCharacteristic&| |FieldOfPrimeCharacteristic|
- |FloatingPointSystem&| |FloatingPointSystem| |FactoredFunctions2|
- |FractionFunctions2| |Fraction| |FramedAlgebra&| |FramedAlgebra|
- |FullyRetractableTo&| |FullyRetractableTo| |FractionalIdealFunctions2|
- |FractionalIdeal| |FramedModule|
- |FramedNonAssociativeAlgebraFunctions2| |FramedNonAssociativeAlgebra&|
- |FramedNonAssociativeAlgebra| |Factored| |FactoredFunctionUtilities|
+ |FortranMatrixFunctionCategory| |FreeModule| |FreeMonoidCategory|
+ |FreeMonoid| |FortranMachineTypeCategory| |FileName|
+ |FileNameCategory| |FreeNilpotentLie| |FortranOutputStackPackage|
+ |FindOrderFinite| |ScriptFormulaFormat1| |ScriptFormulaFormat|
+ |FortranProgramCategory| |FortranFunctionCategory| |FortranPackage|
+ |FortranProgram| |FullPartialFractionExpansion|
+ |FullyPatternMatchable| |FieldOfPrimeCharacteristic&|
+ |FieldOfPrimeCharacteristic| |FloatingPointSystem&|
+ |FloatingPointSystem| |FactoredFunctions2| |FractionFunctions2|
+ |Fraction| |FramedAlgebra&| |FramedAlgebra| |FullyRetractableTo&|
+ |FullyRetractableTo| |FractionalIdealFunctions2| |FractionalIdeal|
+ |FramedModule| |FramedNonAssociativeAlgebraFunctions2|
+ |FramedNonAssociativeAlgebra&| |FramedNonAssociativeAlgebra|
+ |Factored| |FactoredFunctionUtilities|
|FunctionSpaceToExponentialExpansion| |FunctionSpaceFunctions2|
|FunctionSpaceToUnivariatePowerSeries| |FiniteSetAggregateFunctions2|
|FiniteSetAggregate&| |FiniteSetAggregate|
@@ -479,658 +480,666 @@
|XPolynomial| |XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |approxSqrt| |thetaCoord| |transform| |universe|
- |delete| |measure| |integral?| |sorted?| |lambda| |debug| |directSum|
- |OMgetError| |subresultantVector| |internalInfRittWu?|
- |roughEqualIdeals?| |lazyIntegrate| |localAbs| |maxPoints3D| D |swap|
- |tanSum| |removeIrreducibleRedundantFactors| |cosh2sech|
- |removeConstantTerm| |operation| |trivialIdeal?| |lquo| |addPoint2|
- |charClass| |perfectNthPower?| |superscript| |OMbindTCP|
- |incrementKthElement| |f04adf| |kroneckerDelta| |exportedOperators|
- |interpolate| |curveColorPalette| |mapExponents| |numberOfHues|
- |boundOfCauchy| |quatern| |rename| |prem| |init| |rdregime|
- |createPrimitiveElement| |validExponential| |entry?|
- |stoseLastSubResultant| |printInfo!| |fortranLiteralLine| |sech2cosh|
- |hitherPlane| |c06fuf| |createPrimitiveNormalPoly| |host| |readable?|
- |f07aef| |points| |getPickedPoints| |ellipticCylindrical|
- |functorData| |mainForm| |relerror| |string?| |f01ref| |iiacsc|
- |compiledFunction| |deriv| |listRepresentation| |firstNumer|
- |inrootof| |frobenius| |chainSubResultants| |definingInequation|
- |solveLinearlyOverQ| |noncommutativeJordanAlgebra?| |showScalarValues|
- |sturmSequence| |s17dhf| |child?| |char| |arity| |call|
- |screenResolution3D| |padecf| |factorSquareFree| |fortranTypeOf|
- |linearDependenceOverZ| |e02ddf| |c05nbf| |latex| |subCase?|
- |initializeGroupForWordProblem| |spherical| |paraboloidal|
- |leftRemainder| |leaf?| |fullDisplay| |trapezoidalo|
- |OMUnknownSymbol?| |rCoord| |groebgen| |perspective| |print|
- |setFieldInfo| |float?| |parabolicCylindrical| |roughBase?| |polCase|
- |solve| |genericRightDiscriminant| |monicLeftDivide|
- |exprHasLogarithmicWeights| |resolve| |OMconnInDevice|
- |partialFraction| |differentialVariables| |hMonic| |e02dcf|
- |basisOfLeftNucleus| |bitTruth| |palglimint| |test| |rules|
- |zeroSetSplitIntoTriangularSystems| ** |stoseInvertible?|
- |algebraicVariables| |column| |algebraicDecompose| |rightGcd|
- |leftRegularRepresentation| |f04arf| |mainContent| |cscIfCan| |wreath|
- |derivationCoordinates| |bat| |pseudoRemainder| |setClosed| |csubst|
- |outlineRender| |taylorIfCan| |numberOfOperations|
- |primPartElseUnitCanonical!| |level| |numberOfNormalPoly| |plot|
- |seriesSolve| |float| |brillhartTrials| |eq| |represents| |quote|
- |zerosOf| |push!| |makeSin| |exponential| |constantLeft| |factorset|
- |iter| |dimensionsOf| |lambert| |viewZoomDefault| |cSec| |setleft!|
- |brillhartIrreducible?| |degreeSubResultantEuclidean| |colorFunction|
- |sylvesterSequence| |specialTrigs| |makeSketch| |extractPoint|
- |constDsolve| |prefix| |wrregime| |iisin| |repeatUntilLoop|
- |printCode| |before?| |smith| |karatsubaDivide| |rationalPower|
- |generalizedContinuumHypothesisAssumed?| |heapSort|
- |indicialEquations| |dmpToHdmp| |coerceS| |unvectorise| |eulerPhi|
- |addPoint| |quasiRegular| |f04qaf| |hexDigit| |triangular?|
- |coercePreimagesImages| |outputAsScript| |mantissa| |c06gbf|
- |primintfldpoly| |po| |computeBasis| |factors| |delete!| |divergence|
- |discriminantEuclidean| |addiag| |loopPoints| |Lazard2| |varList|
- |insert| |localUnquote| |rischDE| |build| |resultantEuclideannaif|
- |edf2ef| |comment| |linGenPos| |nil| |bezoutResultant| |primitivePart|
- |cyclicEntries| |invmultisect| |parts| |f04atf| |rootRadius|
- |rowEchLocal| |linkToFortran| |computeCycleEntry| |leftQuotient|
- |singular?| |PollardSmallFactor| |OMputEndAttr| GE |cCot| |exp|
- |multiEuclidean| |factorList| |palgLODE0| |dequeue| |topPredicate|
- |palgLODE| |lifting| |countRealRootsMultiple| GT |singRicDE| |cAcos|
- |sechIfCan| |primaryDecomp| |permutation| |middle| |approximate|
- |element?| |resultantEuclidean| LE |karatsubaOnce| |gderiv|
- |createMultiplicationMatrix| |linSolve| |isPower| |rootKerSimp|
- |complex| |reify| |toScale| |leftOne| |log| |d02ejf| LT |e04jaf| |xn|
- |phiCoord| |nextSublist| |write!| |OMopenString| |mainExpression|
- |findConstructor| |infLex?| |f02aef| |quadraticNorm| |s13acf|
- |idealiser| |rectangularMatrix| |associatedEquations|
- |nextIrreduciblePoly| |critT| |imagi| |LyndonWordsList1| |e01sef|
- |quasiMonic?| |unitsColorDefault| |quoByVar| |monomialIntegrate|
- |monicRightDivide| |getCode| |lighting| |semicolonSeparate| |newLine|
- |associates?| |pushdterm| |complexSolve| |readUInt32!| |readByte!|
- |commonDenominator| |hasSolution?| |clearCache|
- |removeSuperfluousQuasiComponents| |oddInfiniteProduct| |select!|
- |roughBasicSet| |prod| |ricDsolve| |asinIfCan| |mainMonomial|
- |extract!| |maxint| |OMgetObject| |left| |minimize| |matrixConcat3D|
- |insert!| |setProperties| |continue| |screenResolution|
- |measure2Result| |splitDenominator| |leftNorm| |bernoulli| |right|
- |mainDefiningPolynomial| |setRow!| |integralCoordinates| |OMmakeConn|
- |position!| |laurentRep| |cfirst| |iprint| |leadingCoefficientRicDE|
- |setErrorBound| |charpol| |getMeasure| |pointColor| |homogeneous?|
- |initiallyReduce| |isQuotient| |moreAlgebraic?| |splitNodeOf!|
- |showClipRegion| |iomode| |bumptab1| |makeSUP| |writeByte!|
- |partialQuotients| |scaleRoots| |length| |leftExactQuotient|
- |HenselLift| |primextintfrac| |lowerPolynomial| |cond| |hex| |isPlus|
- |makeVariable| |setright!| |f02awf| |scripts| |lastSubResultant|
- |polygamma| |lowerCase!| |normalizeIfCan| |edf2fi| |headRemainder|
- |multinomial| |binomial| |removeZero| |compdegd| |bounds| |readInt32!|
- |OMputFloat| |changeWeightLevel| |e01bff| |mdeg| |nthExpon|
- |computeInt| |iicosh| |separant| |rightAlternative?| |cardinality|
- |odd?| |makeObject| |dflist| |contours| |getCurve| |prefixRagits|
- |getProperty| |linearDependence| |height| |surface| |iitan| |linear?|
- |nullary?| |deleteRoutine!| |hasTopPredicate?| |coef| |row|
- |domainTemplate| |prinpolINFO| |taylorQuoByVar|
- |characteristicPolynomial| |systemCommand| |null?| |OMputEndApp|
- |innerEigenvectors| |bumprow| |subst| |s15adf| |dom| |nonLinearPart|
- |denominators| |deref| |polyPart| |setEpilogue!| |fixedPoints|
- |drawComplexVectorField| |cAtanh| |OMencodingBinary| |critMonD1|
- |commutator| |duplicates| |trunc| |function| |imagk| |symbol| |node|
- |purelyTranscendental?| |cap| |problemPoints| |permutations| |pow|
- |wronskianMatrix| |nextPrime| |roughUnitIdeal?| |normal|
- |mainVariable| |expression| |viewDeltaXDefault| |mapCoef| |readIfCan!|
- |insertMatch| |rootsOf| |alphabetic| |algint| |iisinh| |remove|
- |overlabel| |eval| |integer| |argumentListOf| |escape|
- |pmComplexintegrate| |rightFactorCandidate| |headAst| |bit?|
- |repeating?| |polygon?| |inverse| |characteristicSet|
- |multiEuclideanTree| |eulerE| |digit?| |setAdaptive| |upperCase?| |An|
- |title| |se2rfi| |last| |c02agf| |chiSquare1| |polyRicDE| |readInt8!|
- |maxdeg| |unitCanonical| |objects| |droot| |cRationalPower| |assoc|
- |bubbleSort!| |setTopPredicate| |extractClosed| |removeSinhSq|
- |readBytes!| |setPoly| |identity| |base| |quotedOperators| |ffactor|
- |completeHensel| |iiasec| |numericIfCan| |mapSolve| |intersect|
- |transcendentalDecompose| |factorAndSplit| |e| |withPredicates|
- |addmod| |Vectorise| |hconcat| |truncate| |isImplies|
- |extendedResultant| |iFTable| |collect| |makeprod| |prinshINFO|
- |maximumExponent| |elseBranch| |mindegTerm| |algSplitSimple|
- |mainCharacterization| |triangularSystems| |genericLeftTrace| |label|
- |d01gaf| |cos2sec| |orbit| |implies| |powmod| |clearTheIFTable|
- |tanh2trigh| |tail| |simplify| |checkRur| |parents| |separateDegrees|
- |increasePrecision| |rewriteSetByReducingWithParticularGenerators|
- |dot| |lfextendedint| |constantToUnaryFunction| |testDim| |shade|
- |internalZeroSetSplit| |createNormalPrimitivePoly| |prologue|
- |shallowExpand| |ranges| |e04naf| |rational| |completeSmith|
- |noLinearFactor?| |euclideanGroebner| |pdf2df| |directory| |lcm|
- |bandedHessian| |coleman| |child| |perfectNthRoot| |diagonalProduct|
- |sign| |bandedJacobian| |fortranLinkerArgs| |selectOrPolynomials|
- |startStats!| |less?| |univariateSolve| |nilFactor| |shiftLeft|
- |parametric?| |mapdiv| |increase| |countable?| |legendreP|
- |dictionary| |append| |generalizedInverse| |unknown| |s14aaf|
- |LazardQuotient| |integrate| |schwerpunkt| |expPot|
- |addMatchRestricted| |primitivePart!| |root| |gcd| |constructor|
- |branchIfCan| |varselect| |unaryFunction| |explicitlyFinite?|
- |identitySquareMatrix| |asimpson| |ListOfTerms| |false| |f02abf|
- |previous| |OMgetBVar| |seed| |option| |every?| |showAllElements|
- |iiasinh| |f01rdf| |lowerCase?| |lazyPquo| |s18dcf| |ocf2ocdf|
- |univariate?| |iterationVar| |cSinh| |safeCeiling|
- |multiplyCoefficients| |thenBranch| |squareFreeLexTriangular|
- |stoseInvertible?sqfreg| |complement| |cot2trig| |qqq| |distFact|
- |prime| |reverse| |pop!| |lyndonIfCan| |s17def| |aCubic| |curry|
- |mapDown!| |putColorInfo| |rational?| |result| |zeroDimPrimary?|
- |semiLastSubResultantEuclidean| |substring?| |restorePrecision|
- |rightTrim| |irreducible?| |integerIfCan| |e02baf| |genericRightTrace|
- |infinityNorm| |untab| |Aleph| |shuffle| |hash| |leftTrim|
- |buildSyntax| |push| |entries| |outputBinaryFile|
- |algebraicCoefficients?| |f02fjf| |bytes| |perfectSqrt|
- |binaryFunction| |lllip| |suffix?| |skewSFunction| |count| |janko2|
- |lazyResidueClass| |df2st| |primlimintfrac| |primitive?| |makeTerm|
- |signatureAst| |iCompose| |replaceKthElement| |prime?|
- |nextPrimitiveNormalPoly| |reverse!| |e01sbf| |f04axf| |multMonom|
- |isAbsolutelyIrreducible?| F |prefix?| |dihedralGroup| F2FG |imagK|
- |sPol| |jacobiIdentity?| |e01bgf| |slash| |pushdown|
- |removeDuplicates!| |write| |conjug| |leadingBasisTerm|
- |quadraticForm| |rubiksGroup| |iflist2Result| |lazyIrreducibleFactors|
- |save| |messagePrint| |makeCrit| |nextPartition| |extractIfCan|
- |nextPrimitivePoly| |lazyPseudoDivide| |factorGroebnerBasis|
- |explimitedint| |listBranches| |groebner?| |psolve| |writeUInt8!|
- |HermiteIntegrate| |overbar| |getMatch| |interpretString| |palgint0|
- |concat!| |cyclotomicDecomposition| |outputAsTex|
- |createNormalElement| |aromberg| |digits| |f02aff| |iifact|
- |multisect| |insertTop!| |yCoordinates| |complexExpand| |retractIfCan|
- |numberOfComposites| |sizeMultiplication| |clikeUniv| |normal01|
- |pattern| |rightRemainder| |leftExtendedGcd| |epilogue|
- |subResultantGcdEuclidean| |closed?| EQ |composite|
- |functionIsContinuousAtEndPoints| |primes| |basisOfLeftNucloid|
- |pole?| |deleteProperty!| |clipWithRanges| |pack!| |imagj| |s17dcf|
- |getButtonValue| |d01bbf| |pmintegrate| |redPol| |f02xef|
- |extractProperty| |nary?| |selectFiniteRoutines| |nil?|
- |mainVariables| |toseInvertible?| |fixPredicate| |bfEntry| |weights|
- |power!| |times!| |discriminant| |factorial| |invmod| |lexTriangular|
- |comparison| |message| |oblateSpheroidal| |sizeLess?| |exactQuotient!|
- |ratpart| |rur| |sayLength| |flexible?| |isList| |OMputApp| |infix?|
- |iicos| |errorInfo| |returnTypeOf| |f01maf| |ScanRoman|
- |RittWuCompare| |sumSquares| |addBadValue| |normalDenom| |mask|
- |LyndonBasis| |aQuartic| |tubeRadiusDefault| |genericRightNorm|
- |definingEquations| |scalarMatrix| |f07adf| |setTex!|
- |selectPDERoutines| |read!| |Si| |complexLimit| |alternatingGroup|
- |OMUnknownCD?| |map| |s20acf| |numberOfIrreduciblePoly|
- |semiResultantReduitEuclidean| |rootOfIrreduciblePoly| |Ci|
- |setMinPoints| |expandPower| |s21bcf| |minRowIndex| |asechIfCan|
- |gcdprim| |s01eaf| |patternMatch| |elColumn2!| |zeroVector|
- |headReduce| |errorKind| |ceiling| |cons| |endSubProgram| |e04fdf|
- |mindeg| |userOrdered?| |exponents| |compound?| |leadingTerm| |mr|
- |decrease| |alternating| |firstDenom| |scalarTypeOf| |evaluate|
- |youngGroup| |OMsend| |exists?| |OMgetEndObject| |recolor| |supersub|
- |category| |solveInField| |generators| |complexForm| |cotIfCan| |vark|
- |LazardQuotient2| |f02agf| |whitePoint| |polygon| |convert| |domain|
- |outerProduct| |clearDenominator| |moduleSum| |lineColorDefault|
- |getIdentifier| |categories| |gradient| |s15aef| |interReduce|
- |musserTrials| |sequence| |package| |OMputAttr| |sumOfDivisors|
- |shiftRight| |ef2edf| |currentSubProgram| |vconcat| |viewThetaDefault|
- |LyndonCoordinates| |duplicates?| |reducedContinuedFraction|
- |normalize| |baseRDEsys| |getGoodPrime| |changeMeasure| |cycleElt|
- |startTableGcd!| |e02agf| |autoReduced?| |rightOne| |source| |rotate!|
- |basisOfRightNucloid| |stosePrepareSubResAlgo| |leftAlternative?|
- |failed| |atom?| |makeGraphImage| |possiblyNewVariety?| |symmetric?|
- |getOrder| |groebnerIdeal| |linearAssociatedExp| |clipPointsDefault|
- |makingStats?| |diag| |primeFactor| |hyperelliptic| |s18aff|
- |virtualDegree| |isConnected?| |fixedPoint| |returns| |intChoose|
- |pointPlot| |writable?| |setOfMinN| |subPolSet?| |dioSolve|
- |expandTrigProducts| |nsqfree| |shellSort| |rk4a| |d01aqf| |f07fef|
- |exprHasWeightCosWXorSinWX| |f02axf| |distribute| |zeroDim?|
- |particularSolution| |rootPower| |getExplanations| |d02gaf|
- |hexDigit?| |basis| |endOfFile?| |trigs2explogs| |numberOfChildren|
- |target| |predicates| |tubePlot| |leftCharacteristicPolynomial|
- |df2mf| |primintegrate| |processTemplate| |elem?| |minIndex|
- |asecIfCan| |inverseIntegralMatrixAtInfinity| |binding| |aspFilename|
- |ScanFloatIgnoreSpaces| |lastSubResultantElseSplit| |c06ekf|
- |goodPoint| |multiplyExponents| |standardBasisOfCyclicSubmodule|
- |supDimElseRittWu?| |cycleLength| |s17agf| |makeCos|
- |factorSquareFreePolynomial| |acoshIfCan| |point?| |s19adf|
- |selectODEIVPRoutines| |zeroDimensional?| |subTriSet?| |size?|
- |basisOfMiddleNucleus| |ref| |setLength!| |cAtan| |ScanArabic|
- |magnitude| |f04mbf| |cosSinInfo| |changeName| |isMult| |prindINFO|
- |ode1| |abs| |solid?| |leadingIdeal| |iroot| |OMgetType| |depth|
- |ravel| |integralBasis| |lieAlgebra?| |integral| |plenaryPower|
- |subQuasiComponent?| |s17dlf| |s21bdf| |relationsIdeal| |symbol?|
- |integralDerivationMatrix| |reshape| |meshPar2Var| |lllp|
- |complexNumericIfCan| |generalizedEigenvector| |arbitrary|
- |pseudoQuotient| |leftMult| |hostByteOrder| |e02bbf| |complexRoots|
- |d01gbf| |halfExtendedSubResultantGcd1| |opeval| |sizePascalTriangle|
- |colorDef| |negative?| |diagonals| |rightFactorIfCan| |vspace| |floor|
- |prepareSubResAlgo| |recip| |mainVariable?| |setStatus| |rotatez|
- |character?| |jordanAdmissible?| |fortranComplex| |ReduceOrder|
- |subSet| |next| |minimalPolynomial| |recoverAfterFail| |crest|
- |updatF| |cAcosh| |formula| |chebyshevU| |iilog| |OMwrite|
- |unrankImproperPartitions0| |solveLinearPolynomialEquationByRecursion|
- |iiexp| |kmax| |nand| |leastAffineMultiple| |unitVector| |update|
- |regularRepresentation| |deepCopy| |integralAtInfinity?| |cycleRagits|
- |s18aef| |connect| |getDatabase| |showArrayValues| |OMputString|
- |setAttributeButtonStep| |solid| |ramifiedAtInfinity?|
- |collectQuasiMonic| |printStatement| |badValues| |abelianGroup| |move|
- |declare| |evaluateInverse| |moebiusMu| |sumOfKthPowerDivisors|
- |parameters| |inconsistent?| |setrest!| |clip| |euler| |isobaric?|
- |remove!| |nrows| |intcompBasis| |getRef| |makeUnit| |dualSignature|
- |nonSingularModel| |getProperties| |wholeRadix| |logGamma|
- |selectNonFiniteRoutines| |ncols| |internalIntegrate|
- |splitSquarefree| |printingInfo?| |infinite?| |quotient| |integers|
- |pomopo!| |monomialIntPoly| |imagI| |position| |d02bhf| |hostPlatform|
- |minPoly| |modTree| |outputFloating| |generalLambert| |triangSolve|
- |lowerCase| |semiResultantEuclidean2| |semiResultantEuclidean1|
- |prepareDecompose| |explicitlyEmpty?| |OMgetEndAttr|
- |numberOfVariables| |parabolic| |OMserve| |rotatey| |createZechTable|
- |simpleBounds?| |nextLatticePermutation| |ran| |squareTop| |arg1|
- |eigenvector| |s20adf| |semiDiscriminantEuclidean|
- |removeRoughlyRedundantFactorsInContents| |exp1| |setPredicates|
- |cyclic| |c05adf| |arg2| |iidsum| |subHeight| |antisymmetricTensors|
- |low| |splitLinear| |doublyTransitive?| |exprex| |linear| |more?|
- |index| |diff| |atoms| |idealSimplify| |Beta| |makeEq|
- |numberOfMonomials| |unmakeSUP| |extensionDegree| |conditions|
- |properties| |yCoord| |decompose| |s18acf| |check| |ksec| |bsolve|
- |polynomial| |OMgetEndBind| |semiSubResultantGcdEuclidean2| |hclf|
- |match| |factor1| |transpose| |e02daf| |limit| |quadratic?|
- |listYoungTableaus| |maxPoints| |pair| |complexIntegrate| |d01amf|
- |ramified?| |roman| |octon| |value| |iisec| |branchPointAtInfinity?|
- |li| |f01bsf| |e02gaf| |f04mcf| |useSingleFactorBound?| |lyndon?|
- |realElementary| |attributeData| |createRandomElement|
- |antiCommutative?| |fprindINFO| |viewDeltaYDefault| |laplacian|
- |associator| |close| |seriesToOutputForm| |entry| |mulmod|
- |OMputEndObject| UP2UTS |totalDifferential| |eigenvalues|
- |indicialEquation| |commaSeparate| |BumInSepFFE| |trapezoidal|
- |s13adf| |LagrangeInterpolation| |qfactor| |drawCurves| |display|
- |numerators| |lifting1| |cothIfCan| |tensorProduct|
- |rewriteIdealWithQuasiMonicGenerators| |complexElementary|
- |hypergeometric0F1| |swap!| |pointColorDefault| |identification|
- |purelyAlgebraicLeadingMonomial?| |argscript| |purelyAlgebraic?|
- |removeSinSq| |summation| |OMopenFile| |positiveSolve| |const|
- |GospersMethod| |fortran| |weighted| |makeSeries| |refine|
- |flagFactor| |byteBuffer| |nthExponent| |writeInt8!| |minPoints|
- |tubePointsDefault| |basisOfRightNucleus| |ParCondList| |list?|
- |hasPredicate?| |drawStyle| |currentScope| |copies|
- |linearAssociatedOrder| |generic?| |modifyPoint| |input| |tanh2coth|
- |basisOfRightAnnihilator| |gcdPrimitive| |lift| |d03faf| |isExpt|
- |cycle| |cycleEntry| |library| |viewWriteAvailable| |mkPrim|
- |completeEchelonBasis| |block| |suchThat| |reduce| |uniform01|
- |squareFree| |normalizeAtInfinity| |rewriteIdealWithHeadRemainder|
- |conjugate| |iiacsch| |e02dff| |selectOptimizationRoutines|
- |alphanumeric?| |rootOf| |swapRows!| |members| |cyclicSubmodule|
- |leftTrace| |algDsolve| |rombergo| |quoted?| |stoseInvertibleSet|
- |listexp| |create3Space| |rootDirectory| |lfunc| |generateIrredPoly|
- |unrankImproperPartitions1| |extractTop!| |setVariableOrder|
- |accuracyIF| |adaptive3D?| |partition| |set| |e01bhf| |cExp|
- |antiCommutator| |linearPart| |numeric| |toroidal| BY |kind|
- |symmetricGroup| |sin?| |rowEchelon| |halfExtendedSubResultantGcd2|
- |id| |squareFreeFactors| |simplifyPower| |factorSFBRlcUnit| |radical|
- |expandLog| |eigenvectors| |ideal| |showTheFTable| |maxIndex| |op|
- |condition| |double?| |cot2tan| |any?| |insertionSort!|
- |physicalLength| |parseString| |mesh| |e04gcf| |s17adf| |diagonal|
- |iidprod| |table| |f02wef| |sincos| |selectIntegrationRoutines|
- |c05pbf| |indicialEquationAtInfinity| |bigEndian| |diagonalMatrix|
- |palgintegrate| |e01baf| |search| |strongGenerators| |new| |mkcomm|
- |sample| |ddFact| |obj| |cylindrical| |putGraph| |script| |maxrank|
- |laurentIfCan| |exQuo| |minset| |reflect| |symmetricProduct|
- |factorials| |rootPoly| |curve| |cache| |readUInt8!| |hspace|
- |hdmpToP| |meshPar1Var| |signature| |nthFactor| |charthRoot| |matrix|
- |shiftRoots| |getStream| |lexGroebner| |functionIsFracPolynomial?|
- |red| |expIfCan| NOT |stronglyReduced?| |figureUnits| |divideIfCan|
- |chebyshevT| |inspect| |drawComplex| |numberOfCycles| |tex| |union|
- |scale| |redmat| |cosIfCan| OR |just| |reduceLODE|
- |semiIndiceSubResultantEuclidean| |byte| |bringDown| |getOperands|
- |romberg| |isTimes| |iisqrt2| |optional?| AND |sparsityIF| |modulus|
- |linearPolynomials| |numer| |factorByRecursion| |setMaxPoints|
- |e04ycf| |unexpand| |d01alf| |show| |dequeue!| |internalSubPolSet?|
- |mapmult| |rightNorm| |denom| |numFunEvals| |cyclicEqual?|
- |normInvertible?| |B1solve| |uncouplingMatrices| |drawToScale|
- |readUInt16!| |cSech| |argument| |tryFunctionalDecomposition?|
- |resetNew| |var1Steps| |wholeRagits| |appendPoint| |trace| |fi2df|
- |quickSort| |patternMatchTimes| |scanOneDimSubspaces| |pi| |generator|
- |shift| |coerce| |complexZeros| |companionBlocks|
- |halfExtendedResultant1| |vectorise| |OMlistCDs| |mapUp!| |lo|
- |sts2stst| |rationalApproximation| LODO2FUN |infinity| |center|
- |construct| |d02gbf| |firstUncouplingMatrix| |reciprocalPolynomial|
- |distdfact| |sylvesterMatrix| |perfectSquare?| |powerAssociative?|
- |sqfrFactor| |c06ecf| |nodeOf?| |sinhcosh| |rowEchelonLocal|
- |initiallyReduced?| |permutationRepresentation| |incr| |typeLists|
- |knownInfBasis| |resize| |ord| |int| |callForm?| |mapUnivariate|
- |inputOutputBinaryFile| |compile| |outputArgs| |rootProduct|
- |OMconnOutDevice| |hi| |removeRoughlyRedundantFactorsInPols| UTS2UP
- |iibinom| |kernel| |binaryTree| |pseudoDivide| |decreasePrecision|
- |conjugates| |OMgetSymbol| |composites| |cup| |rightZero| |draw|
- |palgint| |divisorCascade| |iitanh| |frst| |rightRecip| |cAcsc|
- |d02kef| * |palglimint0| |initTable!| |copy!| |cTanh| |sqfree|
- |redpps| |getGraph| |currentEnv| |complexEigenvectors|
- |numberOfComponents| |setClipValue| |outputForm| |denomLODE| |leaves|
- |chvar| |coordinates| |getMultiplicationMatrix| |numberOfDivisors|
- |OMreadStr| |froot| |separateFactors| |axes| |nthRoot| |printHeader|
- |maxrow| |f01qef| |makeop| |numberOfPrimitivePoly| |discreteLog| =
- |difference| |useSingleFactorBound| |basisOfCentroid| |coefChoose|
- |rightDiscriminant| |changeBase| |dfRange| |s19abf| |optpair|
- |belong?| |rarrow| |preprocess| |ODESolve| |quasiRegular?|
- |genericLeftNorm| < |isAnd| |fractRagits| |raisePolynomial|
- |radicalEigenvalues| |keys| |radPoly| |upperCase| |pdct| |randnum|
- |setleaves!| > |equiv| |resultantnaif| |associatorDependence|
- |symbolTable| |compose| |monicCompleteDecompose| |factorOfDegree|
- |airyBi| |setMinPoints3D| <= |create| |defineProperty|
- |fortranInteger| |setelt| |fglmIfCan| |generalSqFr| |leftUnits| |bat1|
- |unknownEndian| |iiabs| >= |doubleFloatFormat|
- |factorsOfCyclicGroupSize| |pushFortranOutputStack| |c06gsf| |zag|
- |logical?| |e02ahf| |palginfieldint| |s19acf| |characteristic|
- |popFortranOutputStack| |exprToUPS| |copy| |getSyntaxFormsFromFile|
- |definingPolynomial| |stirling2| |viewpoint| |nullity|
- |useEisensteinCriterion| |squareFreePart| |OMReadError?|
- |outputAsFortran| |expr| |initial| |overlap| |htrigs| |UnVectorise|
- |completeHermite| |interval| |digamma| |lastSubResultantEuclidean| +
- |setMaxPoints3D| |selectAndPolynomials| |subscript| |rootSimp| |cCosh|
- |f02adf| |unprotectedRemoveRedundantFactors| - |over| |pushucoef|
- |autoCoerce| |fortranLiteral| |deepestTail| |linears| |real?|
- |linearMatrix| |getBadValues| |indiceSubResultantEuclidean| / |isTerm|
- |Nul| |OMread| |unitNormal| |normalise| |showSummary| |divisors|
- |rewriteSetWithReduction| |queue| |output| |headReduced?| |variable|
- |morphism| |viewDefaults| |minimumExponent| |invertibleSet|
- |patternVariable| |plus!| |retractable?| |chineseRemainder|
- |iterators| |rk4qc| |acotIfCan| |rischNormalize| |fractionPart| |cn|
- |showAttributes| |toseInvertibleSet| |cAcsch| |s17aff| |c06eaf|
- |basisOfCommutingElements| |leadingExponent| |complex?| |totalLex|
- |maxRowIndex| |setnext!| |simplifyExp| |s18adf| |doubleComplex?|
- |newSubProgram| |showFortranOutputStack| |minrank| |primextendedint|
- |OMgetEndApp| |legendre| |doubleRank| |rangeIsFinite| |lfintegrate|
- |monomials| |transcendenceDegree| |hermite| |presub|
- |LowTriBddDenomInv| |mergeDifference| |leviCivitaSymbol|
- |algintegrate| |d01fcf| |qelt| |triangulate| |true| |expt|
- |monicRightFactorIfCan| |numberOfFactors| |qsetelt|
- |SturmHabichtMultiple| |extractSplittingLeaf| |rootNormalize|
- |edf2efi| |resultantReduitEuclidean| |rightLcm| |square?| |setvalue!|
- |mapGen| |wordsForStrongGenerators| |xRange| |simpson| |resultant|
- |linearlyDependentOverZ?| |setFormula!| |tanNa| |polynomialZeros|
- |vector| |unparse| |simplifyLog| |yRange| |univariatePolynomial|
- |transcendent?| |xCoord| |precision| |internalDecompose|
- |setPrologue!| |differentiate| |graphs| |point|
- |leftMinimalPolynomial| |palgextint0| |zRange| |e02bdf| |box|
- |mathieu11| |localIntegralBasis| |symmetricSquare| |matrixGcd|
- |enqueue!| |euclideanNormalForm| |map!| |routines| |s18def|
- |getMultiplicationTable| |taylorRep| |karatsuba| |normalElement|
- |dimensionOfIrreducibleRepresentation| |qsetelt!| |inRadical?|
- |remainder| |bipolar| |rightMinimalPolynomial| |bracket| |iisqrt3|
- |contains?| |conditionP| |series| |fortranCarriageReturn|
- |positiveRemainder| |commutativeEquality| |is?| |physicalLength!|
- |debug3D| |pleskenSplit| |d01ajf| |nthCoef| |e02aef| |mesh?|
- |OMputObject| |clipParametric| |index?| |curryRight| |finiteBound|
- |oddintegers| |OMputBVar| |internalIntegrate0| |var1StepsDefault|
- |iiatanh| |innerSolve| |mathieu23| |univariatePolynomialsGcds|
- |stirling1| |setScreenResolution| |reset| |makeFR| |jacobi| |qroot|
- |symmetricTensors| |bivariateSLPEBR| |double| |decomposeFunc| |min|
- |acsch| |order| |nextsousResultant2| |secIfCan| |elliptic| |df2fi|
- |critpOrder| |dimensions| |birth| |translate| |associative?|
- |cartesian| |saturate| |degreePartition| |constantOperator| |setOrder|
- |finite?| |cyclotomic| |contractSolve| |weight| |head| |safeFloor|
- |arguments| |open| |createGenericMatrix| |componentUpperBound|
- |biRank| |isOpen?| |generalTwoFactor| |rationalPoint?|
- |stoseInternalLastSubResultant| |consnewpol| |twoFactor| |unravel|
- |stopTableInvSet!| |bipolarCylindrical| |monicDivide| |cLog| |rk4|
- |UP2ifCan| |lazyGintegrate| |null| |modularGcd|
- |numberOfFractionalTerms| |nor| |useEisensteinCriterion?| |any|
- |fortranDouble| |repSq| |factorFraction| |uniform| |palgRDE0|
- |curryLeft| |not| |OMgetEndBVar| |nextColeman|
- |cyclotomicFactorization| |numberOfImproperPartitions| |delay|
- |intermediateResultsIF| |power| |alternative?| |largest| |c06fqf|
- |d02raf| |graeffe| |mergeFactors| |operations| |and| |high| |declare!|
- |selectMultiDimensionalRoutines| |cubic| |OMputBind| |expintegrate|
- |notelem| |minPol| |superHeight| |calcRanges| |medialSet| |dAndcExp|
- |or| |leftDiscriminant| |Ei| |radicalOfLeftTraceForm|
- |subResultantChain| |traverse| |laguerre| |lieAdmissible?|
- |expintfldpoly| |invertIfCan| |e02zaf| |cCoth| |merge!| |gethi| |xor|
- |cycles| |leastMonomial| |genus| |compactFraction| |gbasis|
- |interpret| |ipow| |rroot| |OMconnectTCP| |Gamma| |subResultantsChain|
- |rdHack1| |log10| |case| |SturmHabicht| |viewWriteDefault| |rightMult|
- |var2StepsDefault| |sort!| |SturmHabichtCoefficients| |range| |orbits|
- |bits| |pushup| |cAsinh| |showTheIFTable| |generate| |copyInto!|
- |Zero| |corrPoly| |norm| |subNodeOf?| |bitand| |bezoutMatrix| |paren|
- |convergents| |fortranReal| |numericalIntegration| |moduloP| |f04jgf|
- |reverseLex| |topFortranOutputStack| |One| |mkAnswer| |lex| |f01mcf|
- |bitior| |setprevious!| |closedCurve| |polar| |exprToGenUPS|
- |leftRankPolynomial| |setfirst!| |cCsch| |isOr| |incrementBy|
- |eisensteinIrreducible?| |removeRedundantFactors|
- |showIntensityFunctions| |tValues| |groebnerFactorize| |denominator|
- |exteriorDifferential| |e02def| |f07fdf| |generalInfiniteProduct|
- |lazyPrem| |radicalSolve| |expand| |solve1| |enterInCache| |segment|
- |rootSplit| |branchPoint?| |explicitEntries?| |moebius| |curveColor|
- |binary| |changeVar| |leftFactor| |OMsupportsSymbol?| |pointData|
- |filterWhile| |e04ucf| |atrapezoidal| |infiniteProduct| |constant?|
- |c06gcf| |nullSpace| |contract| |startTableInvSet!| |inputBinaryFile|
- |d01akf| |extendedIntegrate| |stripCommentsAndBlanks| |super|
- |filterUntil| |hdmpToDmp| |tan2trig| |iicsc| |antiAssociative?|
- |var2Steps| |evenInfiniteProduct| |createMultiplicationTable|
- |outputSpacing| |extendedint| |resetBadValues| |quasiMonicPolynomials|
- |nthr| |select| |elt| |tracePowMod| |logpart| |inHallBasis?| |unit?|
- |approxNthRoot| |sup| |att2Result| |s14abf|
- |removeRedundantFactorsInContents| |cschIfCan|
- |semiDegreeSubResultantEuclidean| |limitPlus| |OMgetEndError|
- |numFunEvals3D| |ip4Address| |printTypes| |outputGeneral| |f01qcf|
- |lSpaceBasis| |midpoints| |nextNormalPoly| |initials| |anfactor|
- |tablePow| |setProperty| |mainKernel| |trueEqual| |primlimitedint|
- |univariatePolynomials| |torsion?| |iiatan| |algebraic?| |normFactors|
- |powers| |collectUpper| |acscIfCan| |exprToXXP| |nthFractionalTerm|
- |cAcoth| |viewPhiDefault| |leadingSupport| |cTan| |doubleResultant|
- |BasicMethod| |solveid| |airyAi| |in?| |tab1| |iiasech| |s17akf|
- |reducedQPowers| |quasiAlgebraicSet| |supRittWu?|
- |internalLastSubResultant| |mapMatrixIfCan| |graphState| |leftLcm|
- |fintegrate| |swapColumns!| |color| |retract| |pointColorPalette|
- |minGbasis| |kovacic| |pToDmp| |qinterval|
- |ScanFloatIgnoreSpacesIfCan| |applyRules| |stronglyReduce| |isNot|
- |showTheRoutinesTable| |npcoef| |dark| |makeRecord| |option?|
- |increment| |c06frf| |currentCategoryFrame| |readLineIfCan!|
- |generalizedEigenvectors| |status| |createIrreduciblePoly|
- |leftScalarTimes!| |d01anf| |removeSuperfluousCases|
- |clearTheSymbolTable| |pquo| |sort| |rightTraceMatrix| |cyclicParents|
- |littleEndian| |tableForDiscreteLogarithm| |encodingDirectory|
- |c06gqf| |property| |credPol| |mainMonomials| |Is| |PDESolve|
- |sin2csc| |pr2dmp| |interactiveEnv| |setProperties!|
- |absolutelyIrreducible?| |critMTonD1| |nullary| |readLine!| |iiperm|
- |pointLists| |shallowCopy| |erf| |besselK| |padicFraction|
- |RemainderList| |goto| |f01brf| |rspace| |sinh2csch| |eof?|
- |crushedSet| |extendedEuclidean| |setAdaptive3D| |complementaryBasis|
- |coerceListOfPairs| |rowEch| Y |extractIndex| |setCondition!|
- |arrayStack| |iteratedInitials| |getOperator| |representationType|
- |OMgetAttr| |d02cjf| |findCycle| |units| |weierstrass| |categoryFrame|
- |positive?| |pushuconst| |characteristicSerie| |random| |KrullNumber|
- |polyRDE| |reduceByQuasiMonic| |exponent| |pureLex|
- |fortranCompilerName| |ratDsolve| |balancedFactorisation| |harmonic|
- |bothWays| |nextsubResultant2| |dilog| |fmecg| |integralRepresents|
- |invertibleElseSplit?| |f02akf| |prevPrime| |SturmHabichtSequence|
- |pade| |mat| |fortranCharacter| |goodnessOfFit| |rationalFunction|
- |constantCoefficientRicDE| |sin| |numerator| |meatAxe|
- |fortranDoubleComplex| |s17ahf| |rootBound| |mainPrimitivePart|
- |constantKernel| |plus| |hermiteH| |modifyPointData| |updateStatus!|
- |cos| |complexNormalize| |predicate| |OMreceive| |basicSet|
- |permutationGroup| |countRealRoots| |coord| |OMsetEncoding|
- |someBasis| |f04maf| |idealiserMatrix| |wordInStrongGenerators| |tan|
- |fixedPointExquo| |key| |whatInfinity| |setlast!| |conical| |Lazard|
- |principalIdeal| |code| |alphabetic?| |f04faf| |continuedFraction|
- |internal?| |rischDEsys| |cot| |showTheSymbolTable| |has?|
- |closedCurve?| |normalized?| |controlPanel| |tanIfCan| |outputFixed|
- |e04dgf| |setEmpty!| |OMputAtp| |randomR| |sec| |OMgetFloat| |lhs|
- |filename| |sdf2lst| |explogs2trigs| |iiacosh| |zeroSquareMatrix|
- |trace2PowMod| |clearFortranOutputStack| |leftPower| |tab| |times|
- |stFuncN| |fullPartialFraction| |csc| |rhs| |inc| |monic?| |repeating|
- |normalDeriv| |extendIfCan| |rightUnits| |symmetricRemainder| |s14baf|
- |quotientByP| |coHeight| |nlde| |asin| |ignore?| |parse| |leftUnit|
- |removeCoshSq| |atanIfCan| |name| |OMclose| |derivative| |csch2sinh|
- |probablyZeroDim?| |stopTable!| |rotatex| |acos| |zeroOf|
- |genericRightTraceForm| |setScreenResolution3D| |zero?| |body|
- |inverseColeman| |extension| |hasoln| |bitCoef| |normalForm|
- |listOfMonoms| |atan| |signAround| |bumptab| |forLoop| |doubleDisc|
- |makeMulti| |style| |delta| |traceMatrix| |monom| |leftFactorIfCan|
- |terms| |realZeros| |acot| |find| |resultantReduit| |shrinkable|
- |createThreeSpace| |beauzamyBound| |iipow|
- |removeRoughlyRedundantFactorsInPol| |backOldPos| |exactQuotient|
- |upDateBranches| |asec| |f2df| |dmp2rfi| |safetyMargin|
- |semiResultantEuclideannaif| |bivariate?| |bindings| |rule| |revert|
- |determinant| |scripted?| |mapUnivariateIfCan| |acsc| |dn| |isOp|
- |newReduc| |mainCoefficients| |irreducibleRepresentation| |common|
- |reorder| |failed?| |fill!| |zeroSetSplit| |besselJ| |sinh|
- |elementary| |matrixDimensions| |replace| |showAll?| |coerceImages|
- |infieldint| |llprop| |closeComponent| |trigs| |pastel| |cosh|
- |powerSum| |top!| |selectSumOfSquaresRoutines| |rightQuotient| |port|
- |overset?| |bag| |torsionIfCan| |iExquo| |tanh| |coefficient|
- |coefficients| |coth2tanh| |lagrange| |reindex| |viewport3D| GF2FG
- |computeCycleLength| |sequences| |createNormalPoly| |rightDivide|
- |c02aff| |coth| |reducedForm| |sncndn| |t| |solveRetract|
- |lazyPremWithDefault| |list| |listLoops| |conditionsForIdempotents|
- |radicalSimplify| |testModulus| |e02akf| |lfinfieldint| |sech|
- |sortConstraints| |getConstant| |lookupFunction| |car|
- |stoseInvertible?reg| |expressIdealMember| |getlo| |polyred|
- |coshIfCan| |csch| |stFunc2| |ldf2vmf| |cdr| |listOfLists|
- |setchildren!| |orthonormalBasis| |OMencodingSGML| |limitedIntegrate|
- |pdf2ef| |rightRankPolynomial| |invertible?| |asinh| |tube|
- |bezoutDiscriminant| |mix| |allRootsOf| |setDifference| |OMputError|
- |structuralConstants| |infix| |unary?| |OMputInteger| |blue| |acosh|
- |makeViewport2D| |operators| |nextNormalPrimitivePoly| |unitNormalize|
- |setIntersection| |pointSizeDefault| |selectsecond| |nothing|
- |quadratic| |leftRank| |resetAttributeButtons| |symbolTableOf|
- |atanhIfCan| |atanh| |highCommonTerms| |setUnion| |laguerreL|
- |normalizedAssociate| |lepol| |integerBound| |alphanumeric| |iicsch|
- |acoth| |quasiComponent| |tanQ| |extendedSubResultantGcd| |apply|
- |enumerate| |graphStates| |say| |certainlySubVariety?| |noKaratsuba|
- |vedf2vef| |commutative?| |reducedSystem| |s19aaf| |asech| |equality|
- |d01asf| |f01rcf| |eigenMatrix| |wordInGenerators| |zeroDimPrime?|
- |principalAncestors| |acosIfCan| |LyndonWordsList| |mathieu22|
- |singularAtInfinity?| |nativeModuleExtension| |genericLeftTraceForm|
- |size| |stoseInvertibleSetsqfreg| |augment| |back| |outputList|
- |multiple| |zero| |lazyVariations| |stopTableGcd!| |setelt!| |reseed|
- |central?| |iiacot| |mirror| |f02bjf| |rightUnit| |graphCurves|
- |applyQuote| |solveLinearPolynomialEquationByFractions|
- |viewSizeDefault| |groebSolve| |tree| |width| |collectUnder|
- |deepExpand| |numericalOptimization| |schema| |external?| |freeOf?|
- |symbolIfCan| |And| |ParCond| |quartic| |leader| |cCsc| |poisson|
- |principal?| |rightCharacteristicPolynomial| |first| |startPolynomial|
- |f04asf| |lazyEvaluate| |rightScalarTimes!| |Or| |linearAssociatedLog|
- |normal?| |mvar| |findBinding| |rest| |OMputEndAtp| |oddlambert|
- |mappingAst| |d02bbf| |complexEigenvalues| |Not| |ruleset| |mpsode|
- |subNode?| |tanAn| |euclideanSize| |rightRegularRepresentation|
- |substitute| |oneDimensionalArray| |printInfo| |setPosition|
- |bombieriNorm| |exptMod| |useNagFunctions| |rightPower| |checkForZero|
- |makeViewport3D| |jordanAlgebra?| |midpoint| |removeDuplicates|
- |roughSubIdeal?| |elRow2!| |mapBivariate| |cyclic?| |generalPosition|
- |subMatrix| |iiGamma| |mainSquareFreePart| |d01apf|
- |removeSquaresIfCan| |totalGroebner| |module| |monomial?|
- |checkPrecision| |qualifier| |randomLC| |algebraicOf|
- |monicDecomposeIfCan| |viewPosDefault| |region| |optimize|
- |OMreadFile| |variationOfParameters| |aQuadratic| |leadingIndex|
- |sturmVariationsOf| |optional| |startTable!| |aLinear| |FormatArabic|
- |chiSquare| |degree| |product| |setProperty!| |exponentialOrder|
- |one?| |zoom| |OMgetVariable| |enterPointData| |cAsec| |coth2trigh|
- |merge| |csc2sin| |baseRDE| |deepestInitial| |firstSubsetGray|
- |tRange| |constant| |integer?| |tableau| |approximants| |front|
- |stack| |tower| |toseSquareFreePart| |number?| |components| |e02ajf|
- |besselI| |bfKeys| |monicModulo| |recur| |nextItem| |edf2df|
- |genericLeftDiscriminant| |twist| |clearTable!| |minus!| |OMcloseConn|
- |OMgetString| |setValue!| |whileLoop| |cCos|
- |generalizedContinuumHypothesisAssumed| |flatten| |radicalEigenvector|
- |capacity| |f02ajf| |gcdcofact| |node?| |critM| |updatD| |adaptive?|
- |laplace| |plusInfinity| |imaginary| |tubeRadius| |f02aaf| |hasHi|
- |addMatch| |stoseIntegralLastSubResultant| |basisOfNucleus|
- |combineFeatureCompatibility| |createPrimitivePoly| |minusInfinity|
- |areEquivalent?| |mapExpon| |intPatternMatch| SEGMENT |empty|
- |selectPolynomials| |stoseSquareFreePart| |eyeDistance| |dim|
- |equation| |OMputVariable| |symmetricDifference| |readInt16!|
- |totalDegree| |lflimitedint| |ratPoly| |setColumn!| |rem| |multiset|
- |subResultantGcd| |hessian| |complexNumeric| |redPo| |e02bef|
- |monomRDE| |powern| |setsubMatrix!| |top| |quo| |henselFact| |key?|
- |mathieu24| |even?| |radix| |max| |dihedral| |member?| |addPointLast|
- |Frobenius| |expenseOfEvaluation| |basisOfLeftAnnihilator| |df2ef|
- |kernels| |setref| |OMgetInteger| |plotPolar| |partialDenominators|
- |ldf2lst| |OMunhandledSymbol| |separate| |bernoulliB| |yellow| |div|
- |fractRadix| |prinb| |leastPower| |singularitiesOf| |operator| |type|
- |sinIfCan| |gramschmidt| |limitedint| |extend| |complete| |lyndon|
- |exquo| |s17dgf| |UpTriBddDenomInv| |s21baf| |radicalRoots| |leftGcd|
- |Hausdorff| |digit| |realRoots| |realEigenvalues| |binomThmExpt|
- |finiteBasis| ~= |OMputSymbol| |evenlambert| |squareFreePrim|
- |univariate| |factorsOfDegree| |ode| |qPot| |cross| |diagonal?| |sn|
- |totalfract| |#| |makeFloatFunction| |split| |fixedDivisor| |round|
- |s17ajf| |badNum| |presuper| |permanent| |OMlistSymbols| ~ |elRow1!|
- |iicoth| |antisymmetric?| |decimal| |generic| |concat| |rightRank|
- |changeNameToObjf| |minPoints3D| |removeRedundantFactorsInPols|
- |coerceP| |balancedBinaryTree| |d03eef| |functionIsOscillatory|
- |rotate| |curve?| |factor| |associatedSystem| |mainValue| |compBound|
- |modularGcdPrimitive| |expint| |elliptic?| |fTable|
- |integralMatrixAtInfinity| |pile| |sqrt| |usingTable?| |logIfCan|
- |removeZeroes| |SFunction| |critBonD| |getZechTable| |gensym| |/\\|
- |normDeriv2| |makeYoungTableau| |direction| |normalizedDivide| |real|
- |binarySearchTree| |cAsin| |bottom!| |genericLeftMinimalPolynomial|
- |satisfy?| |variable?| |totolex| |\\/| |lazy?| |realEigenvectors|
- |imag| |tan2cot| |f2st| |externalList| |e01daf| |dominantTerm|
- |expextendedint| |directProduct| |rquo| |numberOfComputedEntries|
- |inR?| |indices| |OMputEndBVar| |cPower| |viewport2D| |gcdcofactprim|
- |tanhIfCan| |upperCase!| |reduceBasisAtInfinity|
- |tryFunctionalDecomposition| |nextSubsetGray| |splitConstant| |dmpToP|
- |second| |simpsono| |assign| |solveLinearPolynomialEquation| RF2UTS
- |constantOpIfCan| |setRealSteps| |unit| |cAcot| |solveLinear|
- |OMgetAtp| |minColIndex| |brace| |third| |ptree| |minimumDegree|
- |algebraicSort| |e04mbf| |trim| |integralMatrix| |linearlyDependent?|
- |connectTo| |e01sff| |mathieu12| |destruct| |removeCosSq|
- |OMgetEndAtp| |showRegion| |f02bbf| |distance| |argumentList!| |void|
- |c06fpf| |e02bcf| |stoseInvertibleSetreg| |ode2| |outputMeasure|
- |parametersOf| |subtractIfCan| |prolateSpheroidal| |bitLength| |nodes|
- |FormatRoman| |stiffnessAndStabilityOfODEIF| |lazyPseudoQuotient|
- |rationalPoints| |zeroMatrix| |makeResult| |scan| |graphImage|
- |OMputEndError| |e01bef| |writeLine!| |regime| |setButtonValue|
- |clipBoolean| |inverseIntegralMatrix| |cAsech| |constantIfCan| |sum|
- |e01saf| |rightExactQuotient| |stopMusserTrials| |lookup| |weakBiRank|
- |LiePoly| |irreducibleFactors| |fractionFreeGauss!| |padicallyExpand|
- |pol| |monomial| |asinhIfCan| |radicalEigenvectors| |modularFactor|
- |cyclicGroup| |adaptive| |mkIntegral| |scopes| |rank| |s17aef| |part?|
- |f01qdf| |multivariate| |integralBasisAtInfinity| |leftDivide|
- |cycleSplit!| |options| |createLowComplexityTable| |nthRootIfCan|
- |ptFunc| |eq?| |axesColorDefault| |fracPart|
- |semiSubResultantGcdEuclidean1| |rk4f| |variables| |clearTheFTable|
- |OMParseError?| |internalSubQuasiComponent?| |shufflein| |typeList|
- |d03edf| |tanintegrate| |space| |zCoord| |btwFact| |denomRicDE|
- |genericPosition| |primitiveElement| |acschIfCan|
- |rewriteIdealWithRemainder| |sec2cos| |sub| |lp|
- |stiffnessAndStabilityFactor| |rangePascalTriangle| |wholePart|
- |getVariableOrder| |stFunc1| |iiacoth| |heap| |acothIfCan| |bright|
- |string| |subset?| |internalAugment| |setStatus!| |children|
- |palgextint| |split!| |primeFrobenius| |component| |sumOfSquares|
- |critB| |comp| |lfextlimint| |slex| |parent| |anticoord| |pToHdmp|
- |computePowers| |integralLastSubResultant| |meshFun2Var| |elements|
- |iiasin| |leftRecip| |systemSizeIF| |inverseLaplace| |extractBottom!|
- |shanksDiscLogAlgorithm| |loadNativeModule| |iiacos|
- |trailingCoefficient| |horizConcat| |cyclicCopy| |open?| |taylor|
- |omError| |factorSquareFreeByRecursion| |divideIfCan!|
- |bivariatePolynomials| |singleFactorBound| |iisech| |leftZero|
- |imports| |lists| |nthFlag| |coordinate| |toseLastSubResultant|
- |laurent| |imagJ| |empty?| |exponential1| |printStats!| |infRittWu?|
- |localReal?| |setLabelValue| |irreducibleFactor| |fillPascalTriangle|
- |s13aaf| |postfix| |puiseux| |stop| |completeEval|
- |primPartElseUnitCanonical| FG2F |blankSeparate| |symFunc| |divisor|
- |green| |genericRightMinimalPolynomial| |degreeSubResultant| |light|
- |isEquiv| |partialNumerators| |reduction| |choosemon| |tubePoints|
- |monomRDEsys| |inGroundField?| |insertRoot!| |innerint| |error|
- |cycleTail| |imagE| |maxColIndex| |reopen!| |inv| |insertBottom!|
- |sinhIfCan| |changeThreshhold| |newTypeLists| |geometric|
- |basisOfCenter| |listConjugateBases| |ground?| |cSin| |vertConcat|
- |besselY| |resetVariableOrder| |adjoint| |assert| |rename!|
- |flexibleArray| |squareMatrix| |pascalTriangle| |divide| |dec| |rst|
- |expenseOfEvaluationIF| |optAttributes| |leftTraceMatrix| |ground|
- |infieldIntegrate| |indiceSubResultant| |s21bbf| |OMgetBind| |submod|
- |nonQsign| |factorPolynomial| |reduced?| |jacobian| |ratDenom|
- |palgRDE| |identityMatrix| |lexico| |OMsupportsCD?| |multiple?|
- |leadingMonomial| |ridHack1| |relativeApprox| |iicot| |symmetricPower|
- |myDegree| |pair?| |content| |intensity| |sh| |reducedDiscriminant|
- |leadingCoefficient| |inf| |possiblyInfinite?| |neglist| |fibonacci|
- |e02adf| |s17acf| |polarCoordinates| |log2| |packageCall|
- |gcdPolynomial| |hcrf| |primitiveMonomials| |binaryTournament|
- |setLegalFortranSourceExtensions| |c06ebf| |squareFreePolynomial|
- |halfExtendedResultant2| |subspace| |univcase| |writeBytes!|
- |OMencodingUnknown| |dimension| |rightExtendedGcd| |reductum|
- |datalist| |match?| |selectfirst| |minordet| |lintgcd| |root?|
- |OMgetApp| |clipSurface| |innerSolve1| |OMencodingXML| |hue| |lprop|
- |groebner| |mightHaveRoots| |pushNewContour| |divideExponents|
- |OMputEndBind| |diophantineSystem| |fortranLogical| |partitions|
- |constantRight| |socf2socdf| |close!| |subscriptedVariables|
- |rightTrace| |exprHasAlgebraicWeight| |LiePolyIfCan| |cyclePartition|
- |movedPoints| |rationalIfCan| |setImagSteps| |coerceL| |realSolve|
- |returnType!| |createLowComplexityNormalBasis| |lazyPseudoRemainder|
- |subresultantSequence| |nil| |infinite| |arbitraryExponent|
- |approximate| |complex| |shallowMutable| |canonical| |noetherian|
- |central| |partiallyOrderedSet| |arbitraryPrecision|
- |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
- |additiveValuation| |unitsKnown| |canonicalUnitNormal|
- |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
- |commutative|) \ No newline at end of file
+ |Record| |Union| |bitLength| |semiLastSubResultantEuclidean|
+ |enqueue!| |setPosition| |qsetelt!| |just| |maxint| |nodes|
+ |euclideanNormalForm| |restorePrecision| |bombieriNorm| |reduceLODE|
+ |OMgetObject| |reducedQPowers| |elem?| |FormatRoman| |irreducible?|
+ |routines| |fortran| |exptMod| |semiIndiceSubResultantEuclidean|
+ |minimize| |minIndex| |quasiAlgebraicSet|
+ |stiffnessAndStabilityOfODEIF| |integerIfCan| |s18def| |sech2cosh|
+ |useNagFunctions| |bringDown| |matrixConcat3D| |asecIfCan|
+ |supRittWu?| |lazyPseudoQuotient| |getMultiplicationTable| |e02baf|
+ |hitherPlane| |insert!| |inverseIntegralMatrixAtInfinity|
+ |internalLastSubResultant| |rationalPoints| |properties|
+ |genericRightTrace| |taylorRep| |listOfLists| |cycleEntry| |acsch|
+ |setProperties| |binding| |mapMatrixIfCan| |zeroMatrix| |infinityNorm|
+ |karatsuba| |setchildren!| |translate| |viewWriteAvailable|
+ |screenResolution| |aspFilename| |graphState| |makeResult|
+ |normalElement| |untab| |mkPrim| |orthonormalBasis| |measure2Result|
+ |ScanFloatIgnoreSpaces| |leftLcm| |Aleph| |open|
+ |dimensionOfIrreducibleRepresentation| |OMencodingSGML|
+ |completeEchelonBasis| |splitDenominator| |lastSubResultantElseSplit|
+ |fintegrate| |s17ajf| |nullity| |inRadical?| |shuffle| |block|
+ |limitedIntegrate| |leftNorm| |swapColumns!| |c06ekf|
+ |useEisensteinCriterion| |badNum| |null| |remainder| |buildSyntax|
+ |pdf2ef| |uniform01| |any| |goodPoint| |bernoulli| |spherical| |color|
+ |presuper| |squareFreePart| |not| |push| |bipolar|
+ |rightRankPolynomial| |squareFree| |removeConstantTerm| |paraboloidal|
+ |mainDefiningPolynomial| |pointColorPalette| |multiplyExponents|
+ |OMReadError?| |permanent| |operations| |and| |rightMinimalPolynomial|
+ |entries| |normalizeAtInfinity| |invertible?| |nonQsign|
+ |trivialIdeal?| |setRow!| |minGbasis| **
+ |standardBasisOfCyclicSubmodule| |overlap| |OMlistSymbols|
+ |leftRemainder| |or| |outputBinaryFile| |bracket|
+ |rewriteIdealWithHeadRemainder| |tube| |factorPolynomial| |lquo|
+ |integralCoordinates| |kovacic| |elRow1!| |supDimElseRittWu?| |htrigs|
+ |leaf?| |bezoutDiscriminant| |iisqrt3| |xor| |algebraicCoefficients?|
+ |script| |interpret| |conjugate| |reduced?| |addPoint2| |iicoth|
+ |OMmakeConn| |pToDmp| |cycleLength| |fullDisplay| |UnVectorise|
+ |iiacsch| |case| |contains?| |f02fjf| |log10| |mix| |charClass|
+ |jacobian| |position!| |qinterval| |s17agf| |antisymmetric?|
+ |completeHermite| |trapezoidalo| |generate| |bytes| |Zero| |e02dff|
+ |conditionP| |allRootsOf| |bitand| |ratDenom| |perfectNthPower?|
+ |decimal| |laurentRep| |makeCos| |ScanFloatIgnoreSpacesIfCan|
+ |interval| |OMUnknownSymbol?| |fortranCarriageReturn| |perfectSqrt|
+ |tex| |One| |OMputError| |selectOptimizationRoutines| |status|
+ |bitior| |palgRDE| |superscript| |applyRules| |double| |cfirst|
+ |generic| |factorSquareFreePolynomial| |digamma| |rCoord|
+ |incrementBy| |positiveRemainder| |binaryFunction| |alphanumeric?|
+ |structuralConstants| |identityMatrix| |OMbindTCP| |rightRank|
+ |iprint| |acoshIfCan| |stronglyReduce| |groebgen|
+ |lastSubResultantEuclidean| |expand| |commutativeEquality| |lllip|
+ |infix| |rootOf| |lexico| |incrementKthElement| |changeNameToObjf|
+ |erf| |leadingCoefficientRicDE| |isNot| |point?| |setMaxPoints3D|
+ |perspective| |filterWhile| |skewSFunction| |is?| |unary?| |swapRows!|
+ |f04adf| |OMsupportsCD?| |setErrorBound| |setFieldInfo| |s19adf|
+ |showTheRoutinesTable| |minPoints3D| |selectAndPolynomials|
+ |filterUntil| |physicalLength!| |janko2| |OMputInteger| |members|
+ |kroneckerDelta| |multiple?| |charpol| |npcoef| |selectODEIVPRoutines|
+ |removeRedundantFactorsInPols| |subscript| |float?| |select| |elt|
+ |debug3D| |lazyResidueClass| |cyclicSubmodule| |blue|
+ |exportedOperators| |ridHack1| |rootSimp| |zeroDimensional?|
+ |getMeasure| |dilog| |dark| |parabolicCylindrical| |coerceP|
+ |pleskenSplit| |df2st| |leftTrace| |makeViewport2D| |relativeApprox|
+ |interpolate| |balancedBinaryTree| |option?| |pointColor| |sn|
+ |subTriSet?| |sin| |cCosh| |roughBase?| |size?| |primlimintfrac|
+ |d01ajf| |operators| |algDsolve| |curveColorPalette| |iicot|
+ |homogeneous?| |increment| |polCase| |declare!| |d03eef| |cos|
+ |f02adf| |sort| |nthCoef| |primitive?| |nextNormalPrimitivePoly|
+ |rombergo| |mapExponents| |symmetricPower| |basisOfMiddleNucleus|
+ |functionIsOscillatory| |initiallyReduce| |c06frf| |tan|
+ |unprotectedRemoveRedundantFactors| |solve| |makeTerm| |e02aef|
+ |unitNormalize| |quoted?| |numberOfHues| |myDegree|
+ |genericRightDiscriminant| |ref| |moreAlgebraic?|
+ |currentCategoryFrame| |cot| |over| |rotate| |retract| |signatureAst|
+ |mesh?| |stoseInvertibleSet| |pointSizeDefault| |pair?|
+ |boundOfCauchy| |setLength!| |pushucoef| |splitNodeOf!|
+ |readLineIfCan!| |sec| |curve?| |monicLeftDivide| |makeRecord|
+ |iCompose| |OMputObject| |listexp| |selectsecond| |content| |quatern|
+ |associatedSystem| |exprHasLogarithmicWeights|
+ |generalizedEigenvectors| |showClipRegion| |cAtan| |csc|
+ |fortranLiteral| |random| |clipParametric| |replaceKthElement|
+ |quadratic| |create3Space| |intensity| |rename|
+ |createIrreduciblePoly| |property| |iomode| |ScanArabic| |asin|
+ |mainValue| |deepestTail| |OMconnInDevice| |index?| |prime?|
+ |leftRank| |rootDirectory| |sh| |prem| |compBound| |leftScalarTimes!|
+ |bumptab1| |acos| |magnitude| |linears| |partialFraction|
+ |resetAttributeButtons| |differentialVariables|
+ |nextPrimitiveNormalPoly| |relerror| |curryRight| |lfunc| |printInfo|
+ |reducedDiscriminant| |rdregime| |d01anf| |f04mbf| |arity| |makeSUP|
+ |atan| Y |modularGcdPrimitive| |real?| |finiteBound| |reverse!|
+ |generateIrredPoly| |symbolTableOf| |createPrimitiveElement| |inf|
+ |units| |string?| |removeSuperfluousCases| |writeByte!| |acot|
+ |cosSinInfo| |linearMatrix| |expint| |partialQuotients| |e01sbf|
+ |oddintegers| |atanhIfCan| |unrankImproperPartitions1|
+ |validExponential| |possiblyInfinite?| |changeName| |depth|
+ |elliptic?| |screenResolution3D| |asec| |clearTheSymbolTable|
+ |getBadValues| |symbolTable| |f04axf| |OMputBVar| |extractTop!|
+ |highCommonTerms| |neglist| |entry?| |isMult| |scaleRoots| |padecf|
+ |pquo| |acsc| |fTable| |indiceSubResultantEuclidean|
+ |internalIntegrate0| |multMonom| |laguerreL| |setVariableOrder|
+ |fibonacci| |stoseLastSubResultant| |integralMatrixAtInfinity|
+ |rightTraceMatrix| |prindINFO| |leftExactQuotient| |plus| |sinh|
+ |pushFortranOutputStack| |isTerm| |isAbsolutelyIrreducible?|
+ |var1StepsDefault| |accuracyIF| |normalizedAssociate| |e02adf| |Nul|
+ |HenselLift| |cosh| |cyclicParents| |ode1| |popFortranOutputStack|
+ |pile| |key| |iiatanh| |dihedralGroup| |lepol| |adaptive3D?| |s17acf|
+ |littleEndian| |code| |primextintfrac| |abs| |tanh| |OMread|
+ |outputAsFortran| |usingTable?| |innerSolve| F2FG |integerBound|
+ |partition| |polarCoordinates| |solid?| |lowerPolynomial|
+ |tableForDiscreteLogarithm| |coth| |unitNormal| |logIfCan| |lhs|
+ |filename| |mathieu23| |imagK| |alphanumeric| |e01bhf| |log2|
+ |encodingDirectory| |hex| |leadingIdeal| |times| |sech| |normalise|
+ |removeZeroes| |sPol| |max| |univariatePolynomialsGcds| |iicsch|
+ |cExp| |packageCall| |iroot| |isPlus| |c06gqf| |csch| |SFunction|
+ |divisors| |stirling1| |parse| |jacobiIdentity?| |antiCommutator|
+ |name| |quasiComponent| |gcdPolynomial| |makeVariable| |credPol|
+ |OMgetType| |asinh| |critBonD| |rewriteSetWithReduction| |linearPart|
+ |e01bgf| |setScreenResolution| |tanQ| |body| |hcrf| |setright!|
+ |mainMonomials| |acosh| |integralBasis| |getZechTable| |queue|
+ |makeFR| |slash| |toroidal| |extendedSubResultantGcd|
+ |binaryTournament| |lieAlgebra?| |f02awf| |monom| |Is| |atanh|
+ |gensym| |headReduced?| |jacobi| |pushdown| |symmetricGroup|
+ |enumerate| |setLegalFortranSourceExtensions| |PDESolve|
+ |lastSubResultant| |integral| |acoth| |morphism| |normDeriv2|
+ |removeDuplicates!| |qroot| |sin?| |graphStates| |c06ebf|
+ |plenaryPower| |rule| |polygamma| |asech| |sin2csc| |makeYoungTableau|
+ |viewDefaults| |conjug| |symmetricTensors| |certainlySubVariety?|
+ |rowEchelon| |squareFreePolynomial| |common| |lowerCase!| |pr2dmp|
+ |subQuasiComponent?| |minimumExponent| |direction| |leadingBasisTerm|
+ |bivariateSLPEBR| |halfExtendedSubResultantGcd2| |noKaratsuba|
+ |halfExtendedResultant2| |interactiveEnv| |normalizeIfCan| |s17dlf|
+ |multiple| |normalizedDivide| |invertibleSet| |vedf2vef|
+ |quadraticForm| |decomposeFunc| |port| |squareFreeFactors| |subspace|
+ |setProperties!| |edf2fi| |applyQuote| |s21bdf| |binarySearchTree|
+ |patternVariable| |segment| |rubiksGroup| |order| |simplifyPower|
+ |commutative?| |univcase| |absolutelyIrreducible?| |headRemainder|
+ |relationsIdeal| |cAsin| |plus!| |vector| |iflist2Result|
+ |reducedSystem| |factorSFBRlcUnit| |nextsousResultant2| |t| |list|
+ |writeBytes!| |bottom!| |critMTonD1| |symbol?| |retractable?|
+ |differentiate| |s19aaf| |lazyIrreducibleFactors| |secIfCan|
+ |expandLog| |car| |OMencodingUnknown| |cAcos|
+ |integralDerivationMatrix| |nullary| |ruleset|
+ |genericLeftMinimalPolynomial| |chineseRemainder| |equality|
+ |elliptic| |messagePrint| |eigenvectors| |cdr| |dimension| |sechIfCan|
+ |meshPar2Var| |readLine!| |rk4qc| |satisfy?| |df2fi| |makeCrit|
+ |ideal| |setDifference| |d01asf| |rightExtendedGcd| |primaryDecomp|
+ |iiperm| |lllp| |variable?| |acotIfCan| |showTheFTable|
+ |setIntersection| |f01rcf| |selectfirst| |permutation| |nothing|
+ |pointLists| |complexNumericIfCan| |suchThat| |rischNormalize|
+ |totolex| |point| |maxRowIndex| |univariateSolve| |maxIndex|
+ |setUnion| |eigenMatrix| |minordet| |middle| |generalizedEigenvector|
+ |shallowCopy| |lazy?| |fractionPart| |setnext!| |nilFactor| |double?|
+ |wordInGenerators| |apply| |say| |lintgcd| |element?| |arbitrary|
+ |besselK| |realEigenvectors| |toseInvertibleSet| |simplifyExp|
+ |shiftLeft| |zeroDimPrime?| |cot2tan| |root?| |resultantEuclidean|
+ |cAcsch| |tan2cot| |s18adf| |series| |parametric?|
+ |principalAncestors| |any?| |size| |OMgetApp|
+ |createMultiplicationTable| |karatsubaOnce| |startTableGcd!|
+ |outputList| |zero| |f2st| |s17aff| |doubleComplex?| |mapdiv|
+ |acosIfCan| |insertionSort!| |clipSurface| |gderiv| |outputSpacing|
+ |e02agf| |c06eaf| |externalList| |increase| |tree| |width|
+ |newSubProgram| |physicalLength| |LyndonWordsList| |innerSolve1|
+ |createMultiplicationMatrix| |extendedint| |autoReduced?| |And|
+ |basisOfCommutingElements| |e01daf| |countable?| |leader|
+ |showFortranOutputStack| |first| |OMencodingXML| |linSolve| |rightOne|
+ |resetBadValues| |Or| |leadingExponent| |dominantTerm| |min|
+ |legendreP| |minrank| |irreducibleRepresentation| |OMputEndObject|
+ |rest| |hue| |isPower| |quasiMonicPolynomials| |rotate!| |Not|
+ |complex?| |expextendedint| |dictionary| |primextendedint| |reorder|
+ UP2UTS |substitute| |lprop| |rootKerSimp| |basisOfRightNucloid| |nthr|
+ |totalLex| |rquo| |generalizedInverse| |OMgetEndApp|
+ |totalDifferential| |failed?| |removeDuplicates| |groebner| |reify|
+ |tracePowMod| |stosePrepareSubResAlgo| |s14aaf| |legendre|
+ |eigenvalues| |fill!| |mightHaveRoots| |toScale| |leftAlternative?|
+ |logpart| |discreteLog| |setsubMatrix!| |doubleRank| |LazardQuotient|
+ |indicialEquation| |zeroSetSplit| |optimize| |pushNewContour|
+ |leftOne| |inHallBasis?| |atom?| |difference| |henselFact|
+ |rangeIsFinite| F |optional| |integrate| |commaSeparate| |besselJ|
+ |divideExponents| |d02ejf| |makeGraphImage| |unit?|
+ |useSingleFactorBound| |key?| |schwerpunkt| |lfintegrate| |elementary|
+ |BumInSepFFE| |e04jaf| |approxNthRoot| |possiblyNewVariety?|
+ |basisOfCentroid| |mathieu24| |constant| |expPot| |monomials|
+ |matrixDimensions| |trapezoidal| |stack| |infRittWu?| |tower| |xn|
+ |sup| |symmetric?| |coefChoose| |even?| |addMatchRestricted|
+ |transcendenceDegree| |s13adf| |replace| |localReal?| |phiCoord|
+ |att2Result| |getOrder| |rightDiscriminant| |radix| |primitivePart!|
+ |hermite| |LagrangeInterpolation| |showAll?| |setLabelValue| |flatten|
+ |nextSublist| |groebnerIdeal| |s14abf| |dihedral| |changeBase|
+ |qfactor| |presub| |root| EQ |plusInfinity| |coerceImages|
+ |irreducibleFactor| |write!| |linearAssociatedExp|
+ |removeRedundantFactorsInContents| |dfRange| |member?| |infieldint|
+ |branchIfCan| |LowTriBddDenomInv| |minusInfinity| |drawCurves|
+ |fillPascalTriangle| |clipPointsDefault| |OMopenString| SEGMENT
+ |s19abf| |cschIfCan| |addPointLast| |dim| |equation| |varselect|
+ |mergeDifference| |numerators| |llprop| |s13aaf| |complexNumeric|
+ |rem| |mainExpression| |semiDegreeSubResultantEuclidean|
+ |makingStats?| |optpair| |Frobenius| |leviCivitaSymbol|
+ |unaryFunction| |lifting1| |closeComponent| |top| |postfix|
+ |findConstructor| |quo| |diag| |limitPlus| |expenseOfEvaluation|
+ |belong?| |algintegrate| |explicitlyFinite?| |cothIfCan| |trigs|
+ |completeEval| |basisOfLeftAnnihilator| |infLex?| |primeFactor|
+ |OMgetEndError| |kernels| |rarrow| |identitySquareMatrix| |d01fcf|
+ |pastel| |tensorProduct| |primPartElseUnitCanonical| |df2ef| |f02aef|
+ |div| |hyperelliptic| |numFunEvals3D| |operator| |preprocess|
+ |powerSum| |asimpson| |triangulate| |type|
+ |rewriteIdealWithQuasiMonicGenerators| FG2F |quadraticNorm| |exquo|
+ |ip4Address| |s18aff| |ODESolve| |setref| |ListOfTerms| |expt| |top!|
+ |complexElementary| |blankSeparate| |virtualDegree| |s13acf| ~=
+ |OMgetInteger| |printTypes| |univariate| |quasiRegular?| |f02abf|
+ |monicRightFactorIfCan| |hypergeometric0F1|
+ |selectSumOfSquaresRoutines| |symFunc| |idealiser| |#| |outputGeneral|
+ |isConnected?| |genericLeftNorm| |plotPolar| |numberOfFactors|
+ |OMgetBVar| |swap!| |rightQuotient| |divisor| ~ |fixedPoint|
+ |rectangularMatrix| |f01qcf| |sum| |partialDenominators| |isAnd|
+ |concat| |seed| |SturmHabichtMultiple| |overset?| |pointColorDefault|
+ |green| |associatedEquations| |ldf2lst| |returns| |lSpaceBasis|
+ |fractRagits| |factor| |every?| |extractSplittingLeaf| |bag|
+ |identification| |genericRightMinimalPolynomial| |raisePolynomial|
+ |nextIrreduciblePoly| |intChoose| |midpoints| |OMunhandledSymbol|
+ |sqrt| |category| |rootNormalize| |showAllElements| |torsionIfCan|
+ |purelyAlgebraicLeadingMonomial?| |degreeSubResultant|
+ |nextNormalPoly| |critT| |/\\| |radicalEigenvalues| |pointPlot| |real|
+ |separate| |domain| |iiasinh| |edf2efi| |iExquo| |argscript| |light|
+ |radPoly| |\\/| |imagi| |writable?| |initials| |bernoulliB| |imag|
+ |package| |f01rdf| |purelyAlgebraic?| |resultantReduitEuclidean| |lp|
+ |coefficient| |isEquiv| |yellow| |LyndonWordsList1| |anfactor|
+ |setOfMinN| |directProduct| |upperCase| |lowerCase?| |rightLcm|
+ |removeSinSq| |coefficients| |partialNumerators| |tablePow| |e01sef|
+ |pdct| |subPolSet?| |fractRadix| |second| |square?| |lazyPquo|
+ |summation| |coth2tanh| |reduction| |setProperty| |dioSolve|
+ |quasiMonic?| |prinb| |randnum| |brace| |third| |ptree| |s18dcf|
+ |setvalue!| |OMopenFile| |lagrange| |choosemon| |setleaves!|
+ |unitsColorDefault| |mainKernel| |expandTrigProducts| |leastPower|
+ |destruct| |ocf2ocdf| |mapGen| |reindex| |positiveSolve| |tubePoints|
+ |void| |quoByVar| |trueEqual| |nsqfree| |singularitiesOf| |equiv|
+ |wordsForStrongGenerators| |univariate?| |const| |viewport3D|
+ |monomRDEsys| |monomialIntegrate| |shellSort| |primlimitedint|
+ |resultantnaif| |sinIfCan| |iterationVar| |simpson| |GospersMethod|
+ GF2FG |inGroundField?| |monicRightDivide| |rk4a|
+ |univariatePolynomials| |associatorDependence| |gramschmidt| |cSinh|
+ |resultant| |computeCycleLength| |weighted| |insertRoot!| |getCode|
+ |limitedint| |d01aqf| |torsion?| |monomial| |compose| |checkPrecision|
+ |safeCeiling| |linearlyDependentOverZ?| |makeSeries| |sequences|
+ |innerint| |iiatan| |lighting| |rank| |f07fef| |multivariate|
+ |monicCompleteDecompose| |extend| |setFormula!| |c05nbf| |options|
+ |multiplyCoefficients| |createNormalPoly| |refine| |cycleTail|
+ |exprHasWeightCosWXorSinWX| |semicolonSeparate| |factorOfDegree|
+ |algebraic?| |complete| |variables| |thenBranch| |latex| |tanNa|
+ |flagFactor| |rightDivide| |imagE| |newLine| |f02axf| |normFactors|
+ |lyndon| |airyBi| |polynomialZeros| |inc| |squareFreeLexTriangular|
+ |subCase?| |byteBuffer| |c02aff| |maxColIndex| |distribute|
+ |associates?| |s17dgf| |powers| |thetaCoord| |setMinPoints3D|
+ |reducedForm| |unparse| |initializeGroupForWordProblem|
+ |stoseInvertible?sqfreg| |string| |nthExponent| |bright| |reopen!|
+ |zeroDim?| |pushdterm| |transform| |collectUpper| |create|
+ |UpTriBddDenomInv| |complement| |comp| |simplifyLog| |sncndn|
+ |writeInt8!| |insertBottom!| |complexSolve| |universe| |acscIfCan|
+ |particularSolution| |s21baf| |defineProperty| |cot2trig|
+ |univariatePolynomial| |minPoints| |solveRetract| |sinhIfCan|
+ |rootPower| |exprToXXP| |readUInt32!| |fortranInteger| |measure|
+ |radicalRoots| |taylor| |qqq| |transcendent?| |lazyPremWithDefault|
+ |tubePointsDefault| |changeThreshhold| |integral?| |readByte!|
+ |fglmIfCan| |lists| |nthFractionalTerm| |getExplanations| |leftGcd|
+ |laurent| |distFact| |xCoord| |basisOfRightNucleus| |listLoops|
+ |newTypeLists| |sorted?| |cAcoth| |commonDenominator| |d02gaf|
+ |generalSqFr| |puiseux| |Hausdorff| |prime| |internalDecompose|
+ |conditionsForIdempotents| |ParCondList| |geometric| |digit|
+ |hasSolution?| |hexDigit?| |viewPhiDefault| |leftUnits| |directSum|
+ |pop!| |setPrologue!| |radicalSimplify| |list?| |basisOfCenter|
+ |error| |realRoots| |leadingSupport|
+ |removeSuperfluousQuasiComponents| |basis| |OMgetError| |inv| |bat1|
+ |lyndonIfCan| |graphs| |testModulus| |hasPredicate?| |unknownEndian|
+ |listConjugateBases| |ground?| |cTan| |realEigenvalues|
+ |oddInfiniteProduct| |subresultantVector| |endOfFile?| |assert|
+ |showScalarValues| |leftMinimalPolynomial| |s17def| |e02akf|
+ |drawStyle| |cSin| |doubleResultant| |select!| |binomThmExpt| |ground|
+ |iiabs| |trigs2explogs| |internalInfRittWu?| |sturmSequence|
+ |palgextint0| |aCubic| |lfinfieldint| |currentScope| |vertConcat|
+ |finiteBasis| |BasicMethod| |roughEqualIdeals?| |init|
+ |numberOfChildren| |doubleFloatFormat| |leadingMonomial| |curry|
+ |e02bdf| |copies| |sortConstraints| |besselY| |delta| |rhs|
+ |karatsubaDivide| |factorsOfCyclicGroupSize| |solveid| |lazyIntegrate|
+ |predicates| |OMputSymbol| |leadingCoefficient| |mapDown!| |mathieu11|
+ |getConstant| |linearAssociatedOrder| |resetVariableOrder|
+ |rationalPower| |tubePlot| |localAbs| |c06gsf| |airyAi|
+ |primitiveMonomials| |evenlambert| |putColorInfo| |localIntegralBasis|
+ |lookupFunction| |generic?| |adjoint|
+ |generalizedContinuumHypothesisAssumed?|
+ |leftCharacteristicPolynomial| |in?| |squareFreePrim| |maxPoints3D|
+ |zag| |reductum| |datalist| |match?| |stoseInvertible?reg|
+ |modifyPoint| |rename!| |heapSort| |df2mf| |tab1| |logical?|
+ |factorsOfDegree| |addmod| |expressIdealMember| |tanh2coth|
+ |flexibleArray| |indicialEquations| |iiasech| |primintegrate| |e02ahf|
+ |ode| |Vectorise| |basisOfRightAnnihilator| |getlo| |squareMatrix|
+ |dmpToHdmp| |processTemplate| |s17akf| |qPot| |palginfieldint|
+ |hconcat| |polyred| |gcdPrimitive| |pascalTriangle| |coerceS| |s17dhf|
+ |s19acf| |cross| |truncate| |delete| |d03faf| |coshIfCan| |lambda|
+ |divide| |unvectorise| |debug| |elColumn2!| |f04jgf| |child?|
+ |diagonal?| |characteristic| |isImplies| |isExpt| |stFunc2| |rst|
+ |eulerPhi| D |zeroVector| |reverseLex| |exprToUPS| |totalfract|
+ |extendedResultant| |ldf2vmf| |cycle| |expenseOfEvaluationIF|
+ |addPoint| |topFortranOutputStack| |headReduce| |makeFloatFunction|
+ |getSyntaxFormsFromFile| |c06fuf| |iFTable| |optAttributes|
+ |quasiRegular| |mkAnswer| |errorKind| |swap| |definingPolynomial|
+ |split| |createPrimitiveNormalPoly| |collect| |cyclic| |coHeight|
+ |leftTraceMatrix| |f04qaf| |ceiling| |lex| |stirling2| |tanSum|
+ |fixedDivisor| |makeprod| |c05adf| |nlde| |infieldIntegrate|
+ |hexDigit| |f01mcf| |endSubProgram| |round| |viewpoint| |prinshINFO|
+ |iidsum| |ignore?| |indiceSubResultant| |triangular?| |setprevious!|
+ |e04fdf| |maximumExponent| |leftUnit| |subHeight| |s21bbf|
+ |coercePreimagesImages| |closedCurve| |mindeg| |e02ajf|
+ |initiallyReduced?| |elseBranch| |antisymmetricTensors| |removeCoshSq|
+ |char| |OMgetBind| |call| |outputAsScript| |polar| |userOrdered?|
+ |permutationRepresentation| |besselI| |mindegTerm| |atanIfCan| |low|
+ |submod| |c06gbf| |exponents| |exprToGenUPS| |bfKeys| |typeLists|
+ |f01ref| |splitLinear| |algSplitSimple| |comment| |OMclose|
+ |primintfldpoly| |print| |leftRankPolynomial| |compound?|
+ |knownInfBasis| |monicModulo| |iiacsc| |mainCharacterization|
+ |doublyTransitive?| |derivative| |rewriteIdealWithRemainder| |resolve|
+ |po| |leadingTerm| |setfirst!| |recur| |resize| |triangularSystems|
+ |exprex| |csch2sinh| |sec2cos| |decrease| |computeBasis| |test|
+ |cCsch| |ord| |nextItem| |genericLeftTrace| |probablyZeroDim?| |more?|
+ |sub| |factors| |alternating| |isOr| |callForm?| |edf2df| |d01gaf|
+ |diff| |stopTable!| |stiffnessAndStabilityFactor| |delete!|
+ |eisensteinIrreducible?| |level| |genericLeftDiscriminant|
+ |firstDenom| |mapUnivariate| |float| |eq| |cos2sec| |rotatex| |atoms|
+ |rangePascalTriangle| |divergence| BY |scalarTypeOf|
+ |removeRedundantFactors| |inputOutputBinaryFile| |twist| |iter|
+ |orbit| |zeroOf| |idealSimplify| |wholePart| |discriminantEuclidean|
+ |showIntensityFunctions| |evaluate| |outputArgs| |clearTable!|
+ |implies| |genericRightTraceForm| |Beta| |prefix| |getVariableOrder|
+ |addiag| |youngGroup| |tValues| |rootProduct| |minus!| |powmod|
+ |makeEq| |setScreenResolution3D| |stFunc1| |loopPoints|
+ |groebnerFactorize| |OMsend| |OMcloseConn| |OMconnOutDevice|
+ |clearTheIFTable| |numberOfMonomials| |zero?| |iiacoth| |exists?|
+ |Lazard2| |mantissa| |denominator| |OMgetString|
+ |removeRoughlyRedundantFactorsInPols| |printInfo!| |tanh2trigh|
+ |inverseColeman| |unmakeSUP| |heap| |localUnquote|
+ |exteriorDifferential| |OMgetEndObject| |varList| |setValue!| UTS2UP
+ |insert| |extension| |simplify| |fortranLiteralLine| |extensionDegree|
+ |acothIfCan| |nil| |rischDE| |recolor| |e02def| |iibinom| |whileLoop|
+ |parts| |checkRur| NOT |hasoln| |yCoord| |subset?| |binaryTree|
+ |build| |f07fdf| |supersub| |cCos| GE |separateDegrees| OR |exp|
+ |bitCoef| |decompose| |internalAugment|
+ |generalizedContinuumHypothesisAssumed| |resultantEuclideannaif|
+ |solveInField| |generalInfiniteProduct| GT |pseudoDivide|
+ |increasePrecision| AND |s18acf| |normalForm| |setStatus!| |edf2ef|
+ |decreasePrecision| |approximate| |generators| |lazyPrem|
+ |radicalEigenvector| LE |dec|
+ |rewriteSetByReducingWithParticularGenerators| |listOfMonoms| |check|
+ |children| |capacity| |complex| |linGenPos| |radicalSolve|
+ |complexForm| |log| |conjugates| LT |dot| |signAround| |ksec|
+ |palgextint| |bezoutResultant| |solve1| |cotIfCan| |f02ajf|
+ |OMgetSymbol| |lfextendedint| |bsolve| |bumptab| |split!|
+ |primitivePart| |vark| |enterInCache| |gcdcofact| |composites|
+ |constantToUnaryFunction| |forLoop| |OMgetEndBind| |primeFrobenius|
+ |cyclicEntries| |rootSplit| |LazardQuotient2| |cup| |node?| |testDim|
+ |doubleDisc| |semiSubResultantGcdEuclidean2| |component| |rightZero|
+ |invmultisect| |branchPoint?| |f02agf| |critM| |clearCache|
+ |removeIrreducibleRedundantFactors| |shade| |makeMulti| |hclf|
+ |sumOfSquares| |f04atf| |explicitEntries?| |whitePoint| |updatD|
+ |palgint| |cosh2sech| |left| |internalZeroSetSplit| |style| |factor1|
+ |continue| |critB| |rootRadius| |moebius| |polygon| |divisorCascade|
+ |adaptive?| |keys| |right| |createNormalPrimitivePoly| |traceMatrix|
+ |transpose| |lfextlimint| |rowEchLocal| |mr| |curveColor|
+ |clearDenominator| |iitanh| |laplace| |prologue| * |e02daf|
+ |leftFactorIfCan| |slex| |linkToFortran| |moduleSum| |binary|
+ |isQuotient| |imaginary| |frst| |digit?| |shallowExpand| |limit|
+ |terms| |parent| |computeCycleEntry| |tubeRadius| |changeVar|
+ |lineColorDefault| |length| |approxSqrt| |rightRecip| |cond| |ranges|
+ |quadratic?| |realZeros| |anticoord| |getIdentifier| |leftQuotient|
+ |leftFactor| |scripts| |cAcsc| |f02aaf| |find| |e04naf| =
+ |listYoungTableaus| |pToHdmp| |functorData| |singular?| |gradient|
+ |OMsupportsSymbol?| |d02kef| |hasHi| |rational| |maxPoints|
+ |resultantReduit| |computePowers| |PollardSmallFactor| |mainForm|
+ |s15aef| |pointData| |palglimint0| |addMatch| |makeObject|
+ |shrinkable| |completeSmith| |complexIntegrate| <
+ |integralLastSubResultant| |e04ucf| |OMputEndAttr| |interReduce|
+ |height| |stoseIntegralLastSubResultant| |initTable!|
+ |noLinearFactor?| |d01amf| > |createThreeSpace| |coef| |meshFun2Var|
+ |basisOfNucleus| |cCot| |musserTrials| |atrapezoidal| |copy!|
+ |systemCommand| |ramified?| |euclideanGroebner| |beauzamyBound| <=
+ |subst| |elements| |dom| |multiEuclidean| |sequence| |infiniteProduct|
+ |combineFeatureCompatibility| |cTanh| |iipow| |pdf2df| >= |roman|
+ |iiasin| |createPrimitivePoly| |factorList| |OMputAttr| |constant?|
+ |function| |sqfree| |symbol| |node| |bandedHessian| |octon|
+ |removeRoughlyRedundantFactorsInPol| |leftRecip| |palgLODE0|
+ |sumOfDivisors| |c06gcf| |redpps| |areEquivalent?| |normal|
+ |expression| |coleman| |iisec| |backOldPos| |systemSizeIF| |dequeue|
+ |mapExpon| |nullSpace| |remove| |shiftRight| |eval| |getGraph|
+ |integer| |branchPointAtInfinity?| |child| |exactQuotient| +
+ |inverseLaplace| |topPredicate| |ef2edf| |contract| |intPatternMatch|
+ |complexEigenvectors| |perfectNthRoot| |f01bsf| |upDateBranches| -
+ |extractBottom!| |palgLODE| |startTableInvSet!| |title|
+ |currentSubProgram| |last| |numberOfComponents| |empty| |f2df|
+ |e02gaf| |diagonalProduct| / |getPickedPoints|
+ |shanksDiscLogAlgorithm| |objects| |assoc| |lifting| |inputBinaryFile|
+ |vconcat| |setClipValue| |selectPolynomials| |ellipticCylindrical|
+ |sign| |f04mcf| |dmp2rfi| |iiacos| |base| |countRealRootsMultiple|
+ |d01akf| |viewThetaDefault| |stoseSquareFreePart| |outputForm|
+ |bandedJacobian| |useSingleFactorBound?| |safetyMargin| |parameters|
+ |trailingCoefficient| |e| |singRicDE| |extendedIntegrate|
+ |LyndonCoordinates| |denomLODE| |eyeDistance| |fortranLinkerArgs|
+ |lyndon?| |semiResultantEuclideannaif| |horizConcat| |duplicates?|
+ |stripCommentsAndBlanks| |chvar| |OMputVariable| |selectOrPolynomials|
+ |realElementary| |bivariate?| |label| |cyclicCopy| |hMonic|
+ |reducedContinuedFraction| |hdmpToDmp| |coordinates|
+ |symmetricDifference| |bindings| |startStats!| |attributeData| |tail|
+ |open?| |e02dcf| |parents| |getMultiplicationMatrix| |normalize|
+ |tan2trig| |readInt16!| |rules| |less?| |createRandomElement| |revert|
+ |omError| |basisOfLeftNucleus| |iicsc| |baseRDEsys| |numberOfDivisors|
+ |totalDegree| |antiCommutative?| |determinant| |factorSquareFree|
+ |factorSquareFreeByRecursion| |bitTruth| |antiAssociative?| |lcm|
+ |getGoodPrime| |lflimitedint| |OMreadStr| |permutations| |fprindINFO|
+ |scripted?| |divideIfCan!| |fortranTypeOf| |palglimint| |var2Steps|
+ |changeMeasure| |ratPoly| |froot| |pow| |mapUnivariateIfCan|
+ |viewDeltaYDefault| |bivariatePolynomials|
+ |zeroSetSplitIntoTriangularSystems| |setColumn!| |cycleElt|
+ |evenInfiniteProduct| |append| |separateFactors| |wronskianMatrix|
+ |dn| |unknown| |laplacian| |singleFactorBound| |stoseInvertible?|
+ |multiset| |gcd| |axes| |constructor| |nextPrime| |associator| |isOp|
+ |iisech| |algebraicVariables| |selectMultiDimensionalRoutines|
+ |toseInvertible?| |false| |nthRoot| |subResultantGcd|
+ |roughUnitIdeal?| |previous| |newReduc| |seriesToOutputForm| |option|
+ |leftZero| |column| |fixPredicate| |cubic| |hessian| |printHeader|
+ |mainVariable| |operation| |mulmod| |mainCoefficients| |imports|
+ |algebraicDecompose| |bfEntry| |OMputBind| |redPo| |maxrow|
+ |viewDeltaXDefault| |nthFlag| |weights| |rightGcd| |expintegrate|
+ |reverse| |e02bef| |f01qef| |mapCoef| |constantKernel| |move|
+ |coordinate| |leftRegularRepresentation| |notelem| |power!| |result|
+ |makeop| |monomRDE| |rightTrim| |readIfCan!| |evaluateInverse|
+ |hermiteH| |toseLastSubResultant| |f04arf| |minPol| |times!|
+ |numberOfPrimitivePoly| |powern| |insertMatch| |hash| |leftTrim|
+ |moebiusMu| |modifyPointData| |imagJ| |solveLinearlyOverQ|
+ |mainContent| |superHeight| |discriminant| |rootsOf| |count|
+ |sumOfKthPowerDivisors| |updateStatus!| |noncommutativeJordanAlgebra?|
+ |empty?| |factorial| |cscIfCan| |rightPower| |calcRanges|
+ |getOperands| |reset| |alphabetic| |inconsistent?| |complexNormalize|
+ |exponential1| |wreath| |invmod| |medialSet| |checkForZero| |romberg|
+ |algint| |OMreceive| |setrest!| |printStats!| |dAndcExp|
+ |derivationCoordinates| |lexTriangular| |isTimes| |write|
+ |makeViewport3D| |iisinh| |clip| |basicSet| |comparison| |bat|
+ |iisqrt2| |leftDiscriminant| |save| |jordanAlgebra?| |overlabel|
+ |permutationGroup| |euler| |scan| |lift| |pseudoRemainder|
+ |oblateSpheroidal| |Ei| |optional?| |midpoint| |argumentListOf|
+ |isobaric?| |countRealRoots| |graphImage| |reduce| |setClosed|
+ |radicalOfLeftTraceForm| |sizeLess?| |sparsityIF| |roughSubIdeal?|
+ |escape| |coord| |remove!| |OMputEndError| |elRow2!| |csubst|
+ |subResultantChain| |exactQuotient!| |modulus| |retractIfCan|
+ |pmComplexintegrate| |intcompBasis| |OMsetEncoding| |e01bef| |pattern|
+ |outlineRender| |ratpart| |traverse| |mapBivariate|
+ |linearPolynomials| |rightFactorCandidate| |someBasis| |getRef|
+ |writeLine!| |taylorIfCan| |laguerre| |rur| |factorByRecursion|
+ |cyclic?| |headAst| |makeUnit| |f04maf| |regime| |numberOfOperations|
+ |sayLength| |lieAdmissible?| |generalPosition| |setMaxPoints| |bit?|
+ |dualSignature| |idealiserMatrix| |setButtonValue|
+ |primPartElseUnitCanonical!| |flexible?| |expintfldpoly| |subMatrix|
+ |e04ycf| |repeating?| |nonSingularModel| |wordInStrongGenerators|
+ |clipBoolean| |message| |numberOfNormalPoly| |invertIfCan| |isList|
+ |iiGamma| |unexpand| |polygon?| |getProperties| |fixedPointExquo|
+ |inverseIntegralMatrix| |infix?| |plot| |e02zaf| |OMputApp| |d01alf|
+ |mainSquareFreePart| |inverse| |whatInfinity| |wholeRadix| |cAsech|
+ |mask| |seriesSolve| |iicos| |cCoth| |d01apf| |dequeue!|
+ |characteristicSet| |logGamma| |setlast!| |constantIfCan|
+ |brillhartTrials| |removeSquaresIfCan| |errorInfo| |merge!|
+ |internalSubPolSet?| |map| |multiEuclideanTree| |conical|
+ |selectNonFiniteRoutines| |e01saf| |represents| |gethi| |returnTypeOf|
+ |totalGroebner| |mapmult| |eulerE| |internalIntegrate| |Lazard|
+ |rightExactQuotient| |quote| |f01maf| |cycles| |rightNorm| |module|
+ |cons| |setAdaptive| |splitSquarefree| |principalIdeal|
+ |stopMusserTrials| |byte| |zerosOf| |ScanRoman| |leastMonomial|
+ |numFunEvals| |monomial?| |upperCase?| |alphabetic?| |printingInfo?|
+ |lookup| |push!| |genus| |RittWuCompare| |cyclicEqual?| |qualifier|
+ |An| |f04faf| |infinite?| |weakBiRank| |randomLC| |makeSin|
+ |sumSquares| |compactFraction| |normInvertible?| |convert|
+ |outerProduct| |se2rfi| |quotient| |continuedFraction| |LiePoly|
+ |gbasis| |exponential| |categories| |addBadValue| |B1solve|
+ |algebraicOf| |c02agf| |integers| |internal?| |irreducibleFactors|
+ |constantLeft| |ipow| |normalDenom| |uncouplingMatrices|
+ |monicDecomposeIfCan| |chiSquare1| |pomopo!| |rischDEsys|
+ |fractionFreeGauss!| |factorset| |LyndonBasis| |rroot| |drawToScale|
+ |viewPosDefault| |source| |polyRicDE| |monomialIntPoly|
+ |showTheSymbolTable| |padicallyExpand| |failed| |dimensionsOf|
+ |OMconnectTCP| |aQuartic| |readUInt16!| |region| |readInt8!| |has?|
+ |imagI| |pol| |int| |lambert| |Gamma| |tubeRadiusDefault| |cSech|
+ |OMreadFile| |maxdeg| |d02bhf| |closedCurve?| |asinhIfCan|
+ |viewZoomDefault| |genericRightNorm| |subResultantsChain| |argument|
+ |variationOfParameters| |unitCanonical| |hostPlatform| |normalized?|
+ |radicalEigenvectors| |cSec| |definingEquations| |rdHack1|
+ |tryFunctionalDecomposition?| |aQuadratic| |droot| |minPoly|
+ |controlPanel| |modularFactor| |setleft!| |SturmHabicht|
+ |scalarMatrix| |leadingIndex| |resetNew| |target| |cRationalPower|
+ |modTree| |tanIfCan| |cyclicGroup| |leaves| |brillhartIrreducible?|
+ |f07adf| |viewWriteDefault| |var1Steps| |sturmVariationsOf|
+ |bubbleSort!| |outputFixed| |outputFloating| |adaptive|
+ |degreeSubResultantEuclidean| |rightMult| |setTex!| |wholeRagits|
+ |startTable!| |setTopPredicate| |e04dgf| |generalLambert| |mkIntegral|
+ |colorFunction| |selectPDERoutines| |var2StepsDefault| |appendPoint|
+ |aLinear| |extractClosed| |setEmpty!| |triangSolve| |scopes|
+ |sylvesterSequence| |read!| |sort!| |fi2df| |FormatArabic|
+ |removeSinhSq| |OMputAtp| |lowerCase| |s17aef| |linearDependenceOverZ|
+ |specialTrigs| |Si| |SturmHabichtCoefficients| |quickSort| |chiSquare|
+ |ravel| |readBytes!| |randomR| |semiResultantEuclidean2| |part?|
+ |makeSketch| |range| |complexLimit| |patternMatchTimes| |degree|
+ |setPoly| |reshape| |OMgetFloat| |semiResultantEuclidean1| |f01qdf|
+ |extractPoint| |orbits| |alternatingGroup| |scanOneDimSubspaces|
+ |product| |identity| |sdf2lst| |prepareDecompose|
+ |integralBasisAtInfinity| |constDsolve| |bits| |OMUnknownCD?|
+ |complexZeros| |setProperty!| |quotedOperators| |explogs2trigs|
+ |explicitlyEmpty?| |leftDivide| |wrregime| |s20acf| |pushup|
+ |exponentialOrder| |companionBlocks| |ffactor| |iiacosh|
+ |OMgetEndAttr| |cycleSplit!| |next| |iisin| |numberOfIrreduciblePoly|
+ |cAsinh| |one?| |halfExtendedResultant1| |completeHensel|
+ |zeroSquareMatrix| |numberOfVariables| |createLowComplexityTable|
+ |repeatUntilLoop| |showTheIFTable| |semiResultantReduitEuclidean|
+ |vectorise| |zoom| |iiasec| |update| |parabolic| |trace2PowMod|
+ |nthRootIfCan| |printCode| |rootOfIrreduciblePoly| |copyInto!|
+ |OMgetVariable| |OMlistCDs| |numericIfCan| |clearFortranOutputStack|
+ |OMserve| |ptFunc| |before?| |Ci| |corrPoly| |mapUp!| |enterPointData|
+ |declare| |mapSolve| |rotatey| |leftPower| |eq?| |smith|
+ |setMinPoints| |norm| |cAsec| |sts2stst| |intersect| |createZechTable|
+ |tab| |axesColorDefault| |subNodeOf?| |expandPower|
+ |rationalApproximation| |coth2trigh| |transcendentalDecompose|
+ |simpleBounds?| |stFuncN| |fracPart| |bezoutMatrix| |s21bcf| |merge|
+ LODO2FUN |factorAndSplit| |position| |fullPartialFraction|
+ |nextLatticePermutation| |semiSubResultantGcdEuclidean1| |paren|
+ |minRowIndex| |d02gbf| |csc2sin| |ran| |withPredicates|
+ |compiledFunction| |monic?| |rk4f| |convergents| |asechIfCan|
+ |firstUncouplingMatrix| |baseRDE| |squareTop| |deriv| |repeating|
+ |clearTheFTable| |arg1| |fortranReal| |gcdprim| |reciprocalPolynomial|
+ |deepestInitial| |multinomial| |eigenvector| |normalDeriv|
+ |OMParseError?| |arg2| |s01eaf| |numericalIntegration| |distdfact|
+ |firstSubsetGray| |binomial| |s20adf| |linear| |extendIfCan|
+ |internalSubQuasiComponent?| |index| |moduloP| |patternMatch|
+ |sylvesterMatrix| |tRange| |removeZero| |rightUnits|
+ |semiDiscriminantEuclidean| |shufflein| |conditions| |perfectSquare?|
+ |integer?| |compdegd| |symmetricRemainder| |polynomial|
+ |removeRoughlyRedundantFactorsInContents| |typeList| |match|
+ |critpOrder| |nextPartition| |powerAssociative?| |tableau| |bounds|
+ |exp1| |s14baf| |d03edf| |pair| |extractIfCan| |dimensions|
+ |approximants| |sqfrFactor| |readInt32!| |value| |quotientByP|
+ |setPredicates| |tanintegrate| |li| |nextPrimitivePoly| |birth|
+ |c06ecf| |front| |OMputFloat| |space| |associative?|
+ |lazyPseudoDivide| |toseSquareFreePart| |nodeOf?| |close| |entry|
+ |changeWeightLevel| |padicFraction| |pseudoQuotient| |zCoord|
+ |cartesian| |factorGroebnerBasis| |number?| |sinhcosh| |substring?|
+ |e01bff| |leftMult| |RemainderList| |btwFact| |saturate|
+ |explimitedint| |rowEchelonLocal| |components| |display| |mdeg| |goto|
+ |hostByteOrder| |denomRicDE| |degreePartition| |listBranches|
+ |suffix?| |nthExpon| |e02bbf| |f01brf| |genericPosition|
+ |constantOperator| |groebner?| |parseString| |mathieu22| |computeInt|
+ |complexRoots| |rspace| |primitiveElement| |singularAtInfinity?|
+ |psolve| |setOrder| |e02ddf| |mesh| |prefix?| |iicosh| |d01gbf|
+ |sinh2csch| |acschIfCan| |finite?| |writeUInt8!| |e04gcf|
+ |nativeModuleExtension| |separant| |eof?|
+ |halfExtendedSubResultantGcd1| |arguments| |HermiteIntegrate|
+ |cyclotomic| |genericLeftTraceForm| |s17adf| |input|
+ |rightAlternative?| |opeval| |crushedSet| |numberOfComputedEntries|
+ |overbar| |contractSolve| |stoseInvertibleSetsqfreg| |diagonal|
+ |library| |cardinality| |extendedEuclidean| |sizePascalTriangle|
+ |inR?| |weight| |getMatch| |iidprod| |augment| |odd?| |setAdaptive3D|
+ |colorDef| |indices| |stop| |head| |interpretString| |f02wef| |back|
+ |dflist| |complementaryBasis| |negative?| |OMputEndBVar| |host|
+ |safeFloor| |palgint0| |lazyVariations| |sincos| |OMputEndBind|
+ |contours| |coerceListOfPairs| |diagonals| |cPower| |readable?|
+ |createGenericMatrix| |concat!| |selectIntegrationRoutines|
+ |stopTableGcd!| |diophantineSystem| |set| |getCurve| |rowEch|
+ |rightFactorIfCan| |numeric| |viewport2D| |kind|
+ |cyclotomicDecomposition| |componentUpperBound| |setelt!| |c05pbf|
+ |fortranLogical| |id| |prefixRagits| |vspace| |extractIndex|
+ |gcdcofactprim| |radical| |biRank| |indicialEquationAtInfinity| |op|
+ |outputAsTex| |reseed| |condition| |partitions| |getProperty| |floor|
+ |setCondition!| |tanhIfCan| |createNormalElement| |isOpen?|
+ |bigEndian| |central?| |constantRight| |linearDependence| |table|
+ |arrayStack| |prepareSubResAlgo| |upperCase!| |aromberg|
+ |generalTwoFactor| |iiacot| |diagonalMatrix| |socf2socdf| |search|
+ |surface| |new| |iteratedInitials| |recip| |reduceBasisAtInfinity|
+ |obj| |rationalPoint?| |digits| |palgintegrate| |mirror| |close!|
+ |iitan| |mainVariable?| |getOperator| |tryFunctionalDecomposition|
+ |f02aff| |cache| |stoseInternalLastSubResultant| |e01baf| |f02bjf|
+ |subscriptedVariables| |representationType| |linear?| |signature|
+ |setStatus| |matrix| |nextSubsetGray| |iifact| |consnewpol|
+ |rightUnit| |strongGenerators| |rightTrace| |nullary?| |rotatez|
+ |OMgetAttr| |splitConstant| |super| |mkcomm| |twoFactor| |multisect|
+ |union| |graphCurves| |exprHasAlgebraicWeight| |deleteRoutine!|
+ |character?| |d02cjf| |dmpToP| |unravel| |insertTop!|
+ |solveLinearPolynomialEquationByFractions| |sample| |LiePolyIfCan|
+ |hasTopPredicate?| |jordanAdmissible?| |findCycle| |simpsono| |numer|
+ |yCoordinates| |stopTableInvSet!| |ddFact| |viewSizeDefault|
+ |cyclePartition| |show| |row| |fortranComplex| |weierstrass| |assign|
+ |denom| |bipolarCylindrical| |complexExpand| |cylindrical|
+ |groebSolve| |movedPoints| |domainTemplate| |categoryFrame|
+ |ReduceOrder| |solveLinearPolynomialEquation| |numberOfComposites|
+ |monicDivide| |collectUnder| |putGraph| |rationalIfCan| |trace|
+ |prinpolINFO| |positive?| |subSet| RF2UTS |pi| |generator| |shift|
+ |coerce| |sizeMultiplication| |cLog| |deepExpand| |maxrank|
+ |setImagSteps| |constantOpIfCan| |taylorQuoByVar| |lo|
+ |minimalPolynomial| |pushuconst| |infinity| |center| |construct| |rk4|
+ |clikeUniv| |numericalOptimization| |laurentIfCan| |coerceL|
+ |listRepresentation| |characteristicPolynomial| |recoverAfterFail|
+ |characteristicSerie| |setRealSteps| |UP2ifCan| |normal01| |exQuo|
+ |schema| |firstNumer| |realSolve| |incr| |null?| |KrullNumber| |crest|
+ |unit| |external?| |rightRemainder| |lazyGintegrate| |compile|
+ |minset| |returnType!| |OMputEndApp| |hi| |updatF| |polyRDE| |cAcot|
+ |kernel| |modularGcd| |leftExtendedGcd| |reflect| |freeOf?|
+ |createLowComplexityNormalBasis| |innerEigenvectors| |cAcosh|
+ |reduceByQuasiMonic| |draw| |solveLinear| |numberOfFractionalTerms|
+ |epilogue| |symbolIfCan| |symmetricProduct| |lazyPseudoRemainder|
+ |bumprow| |exponent| |chebyshevU| |OMgetAtp| |nor|
+ |subResultantGcdEuclidean| |factorials| |ParCond| |currentEnv|
+ |subresultantSequence| |s15adf| |iilog| |pureLex| |minColIndex|
+ |useEisensteinCriterion?| |closed?| |rootPoly| |quartic| |inrootof|
+ |nonLinearPart| |fortranCompilerName| |OMwrite| |minimumDegree|
+ |fortranDouble| |composite| |cCsc| |curve| |frobenius| |denominators|
+ |ratDsolve| |unrankImproperPartitions0| |algebraicSort|
+ |functionIsContinuousAtEndPoints| |repSq| |readUInt8!| |poisson|
+ |deref| |balancedFactorisation|
+ |solveLinearPolynomialEquationByRecursion| |e04mbf| |predicate|
+ |primes| |factorFraction| |principal?| |hspace| |polyPart| |iiexp|
+ |harmonic| |trim| |basisOfLeftNucloid| |uniform|
+ |rightCharacteristicPolynomial| |hdmpToP| |setEpilogue!| |kmax|
+ |bothWays| |integralMatrix| |f07aef| |palgRDE0| |pole?|
+ |startPolynomial| |meshPar1Var| |fixedPoints| |nand|
+ |nextsubResultant2| |linearlyDependent?| |points| |setelt|
+ |deleteProperty!| |curryLeft| |f04asf| |nthFactor|
+ |drawComplexVectorField| |leastAffineMultiple| |fmecg| |connectTo|
+ |clipWithRanges| |OMgetEndBVar| |lazyEvaluate| |charthRoot| |cAtanh|
+ |integralRepresents| |unitVector| |e01sff| |copy| |pack!|
+ |nextColeman| |shiftRoots| |rightScalarTimes!| |OMencodingBinary|
+ |regularRepresentation| |invertibleElseSplit?| |mathieu12| |expr|
+ |cyclotomicFactorization| |initial| |imagj| |linearAssociatedLog|
+ |getStream| |formula| |loadNativeModule| |critMonD1| |f02akf|
+ |deepCopy| |removeCosSq| |s17dcf| |numberOfImproperPartitions|
+ |normal?| |lexGroebner| |commutator| |integralAtInfinity?| |prevPrime|
+ |OMgetEndAtp| |autoCoerce| |getButtonValue| |delay|
+ |functionIsFracPolynomial?| |mvar| |duplicates| |cycleRagits|
+ |SturmHabichtSequence| |showRegion| |intermediateResultsIF| |d01bbf|
+ |red| |findBinding| |showSummary| |s18aef| |trunc| |pade| |output|
+ |f02bbf| |variable| |pmintegrate| |power| |OMputEndAtp| |expIfCan|
+ |nrows| |imagk| |mat| |connect| |distance| |iterators| |directory|
+ |alternative?| |redPol| |stronglyReduced?| |oddlambert| |ncols| |cn|
+ |showAttributes| |purelyTranscendental?| |fortranCharacter|
+ |getDatabase| |argumentList!| |f02xef| |largest| |figureUnits|
+ |mappingAst| |cap| |goodnessOfFit| |showArrayValues| |c06fpf| |c06fqf|
+ |extractProperty| |d02bbf| |divideIfCan| |problemPoints| |OMputString|
+ |rationalFunction| |e02bcf| |nary?| |d02raf| |complexEigenvalues|
+ |chebyshevT| |setAttributeButtonStep| |constantCoefficientRicDE|
+ |stoseInvertibleSetreg| |inspect| |graeffe| |selectFiniteRoutines|
+ |qelt| |true| |mpsode| |roughBasicSet| |solid| |numerator| |ode2|
+ |qsetelt| |mergeFactors| |nil?| |drawComplex| |subNode?| |prod|
+ |ramifiedAtInfinity?| |meatAxe| |outputMeasure| |mainVariables| |high|
+ |xRange| |numberOfCycles| |tanAn| |ricDsolve| |fortranDoubleComplex|
+ |collectQuasiMonic| |parametersOf| |euclideanSize| |yRange| |scale|
+ |chainSubResultants| |asinIfCan| |precision| |printStatement| |s17ahf|
+ |subtractIfCan| |symmetricSquare| |rational?|
+ |rightRegularRepresentation| |zRange| |redmat| |definingInequation|
+ |mainMonomial| |box| |rootBound| |badValues| |prolateSpheroidal|
+ |matrixGcd| |zeroDimPrimary?| |oneDimensionalArray| |map!| |cosIfCan|
+ |extract!| |abelianGroup| |mainPrimitivePart| |nil| |infinite|
+ |arbitraryExponent| |approximate| |complex| |shallowMutable|
+ |canonical| |noetherian| |central| |partiallyOrderedSet|
+ |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
+ |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
+ |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
+ |shallowlyMutable| |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 509c3947..d0b021df 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5336 +1,5341 @@
-(3221308 . 3462598975)
-((-1305 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-3190 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2858 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-1232 (-566)) |#2|) 44)) (-1970 (($ $) 81)) (-2553 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-2388 (((-566) (-1 (-112) |#2|) $) 27) (((-566) |#2| $) NIL) (((-566) |#2| $ (-566)) 97)) (-1523 (((-644 |#2|) $) 13)) (-3848 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-3023 (($ (-1 |#2| |#2|) $) 37)) (-2101 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-1510 (($ |#2| $ (-566)) NIL) (($ $ $ (-566)) 67)) (-3567 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-1900 (((-112) (-1 (-112) |#2|) $) 23)) (-3282 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL) (($ $ (-1232 (-566))) 66)) (-1302 (($ $ (-566)) 76) (($ $ (-1232 (-566))) 75)) (-1958 (((-771) (-1 (-112) |#2|) $) 34) (((-771) |#2| $) NIL)) (-3199 (($ $ $ (-566)) 69)) (-2878 (($ $) 68)) (-2738 (($ (-644 |#2|)) 73)) (-4007 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-644 $)) 86)) (-2725 (((-862) $) 93)) (-2610 (((-112) (-1 (-112) |#2|) $) 22)) (-2817 (((-112) $ $) 96)) (-2833 (((-112) $ $) 100)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2817 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3190 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3199 (|#1| |#1| |#1| (-566))) (-15 -1305 ((-112) |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2388 ((-566) |#2| |#1| (-566))) (-15 -2388 ((-566) |#2| |#1|)) (-15 -2388 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -1305 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2858 (|#2| |#1| (-1232 (-566)) |#2|)) (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -1302 (|#1| |#1| (-1232 (-566)))) (-15 -1302 (|#1| |#1| (-566))) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4007 (|#1| (-644 |#1|))) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -3567 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3282 (|#2| |#1| (-566))) (-15 -3282 (|#2| |#1| (-566) |#2|)) (-15 -2858 (|#2| |#1| (-566) |#2|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1523 ((-644 |#2|) |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2878 (|#1| |#1|))) (-19 |#2|) (-1215)) (T -18))
+(3224499 . 3462993446)
+((-2530 (((-112) (-1 (-112) |#2| |#2|) $) 87) (((-112) $) NIL)) (-3655 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-4230 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-1233 (-567)) |#2|) 44)) (-1695 (($ $) 81)) (-3402 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50) ((|#2| (-1 |#2| |#2| |#2|) $) 49)) (-3771 (((-567) (-1 (-112) |#2|) $) 27) (((-567) |#2| $) NIL) (((-567) |#2| $ (-567)) 97)) (-2896 (((-645 |#2|) $) 13)) (-3768 (($ (-1 (-112) |#2| |#2|) $ $) 64) (($ $ $) NIL)) (-4392 (($ (-1 |#2| |#2|) $) 37)) (-3494 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 60)) (-2884 (($ |#2| $ (-567)) NIL) (($ $ $ (-567)) 67)) (-3050 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-2297 (((-112) (-1 (-112) |#2|) $) 23)) (-1552 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL) (($ $ (-1233 (-567))) 66)) (-2675 (($ $ (-567)) 76) (($ $ (-1233 (-567))) 75)) (-3349 (((-772) (-1 (-112) |#2|) $) 34) (((-772) |#2| $) NIL)) (-3732 (($ $ $ (-567)) 69)) (-4247 (($ $) 68)) (-4114 (($ (-645 |#2|)) 73)) (-2285 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 88) (($ (-645 $)) 86)) (-4101 (((-863) $) 93)) (-2012 (((-112) (-1 (-112) |#2|) $) 22)) (-3052 (((-112) $ $) 96)) (-3075 (((-112) $ $) 100)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3052 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3075 ((-112) |#1| |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -3655 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -3732 (|#1| |#1| |#1| (-567))) (-15 -2530 ((-112) |#1|)) (-15 -3768 (|#1| |#1| |#1|)) (-15 -3771 ((-567) |#2| |#1| (-567))) (-15 -3771 ((-567) |#2| |#1|)) (-15 -3771 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2530 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3768 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4230 (|#2| |#1| (-1233 (-567)) |#2|)) (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2675 (|#1| |#1| (-1233 (-567)))) (-15 -2675 (|#1| |#1| (-567))) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2285 (|#1| (-645 |#1|))) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -3050 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1552 (|#2| |#1| (-567))) (-15 -1552 (|#2| |#1| (-567) |#2|)) (-15 -4230 (|#2| |#1| (-567) |#2|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -2896 ((-645 |#2|) |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4247 (|#1| |#1|))) (-19 |#2|) (-1216)) (T -18))
NIL
-(-10 -8 (-15 -2817 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -3190 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1970 (|#1| |#1|)) (-15 -3199 (|#1| |#1| |#1| (-566))) (-15 -1305 ((-112) |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2388 ((-566) |#2| |#1| (-566))) (-15 -2388 ((-566) |#2| |#1|)) (-15 -2388 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -1305 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2858 (|#2| |#1| (-1232 (-566)) |#2|)) (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -1302 (|#1| |#1| (-1232 (-566)))) (-15 -1302 (|#1| |#1| (-566))) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4007 (|#1| (-644 |#1|))) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -3567 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3282 (|#2| |#1| (-566))) (-15 -3282 (|#2| |#1| (-566) |#2|)) (-15 -2858 (|#2| |#1| (-566) |#2|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1523 ((-644 |#2|) |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2878 (|#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4416))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4416))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 59 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1970 (($ $) 91 (|has| $ (-6 -4416)))) (-1921 (($ $) 101)) (-3806 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 52)) (-2388 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3075 (($ $ $) 88 (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3936 (($ $ $) 87 (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 43 (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3598 (($ $ |#1|) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1232 (-566))) 64)) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3199 (($ $ $ (-566)) 92 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 71)) (-4007 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2854 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-19 |#1|) (-140) (-1215)) (T -19))
+(-10 -8 (-15 -3052 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3075 ((-112) |#1| |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -3655 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1695 (|#1| |#1|)) (-15 -3732 (|#1| |#1| |#1| (-567))) (-15 -2530 ((-112) |#1|)) (-15 -3768 (|#1| |#1| |#1|)) (-15 -3771 ((-567) |#2| |#1| (-567))) (-15 -3771 ((-567) |#2| |#1|)) (-15 -3771 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2530 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3768 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -4230 (|#2| |#1| (-1233 (-567)) |#2|)) (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2675 (|#1| |#1| (-1233 (-567)))) (-15 -2675 (|#1| |#1| (-567))) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2285 (|#1| (-645 |#1|))) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -3050 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1552 (|#2| |#1| (-567))) (-15 -1552 (|#2| |#1| (-567) |#2|)) (-15 -4230 (|#2| |#1| (-567) |#2|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -2896 ((-645 |#2|) |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4247 (|#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4417))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4417))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 59 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1695 (($ $) 91 (|has| $ (-6 -4417)))) (-3315 (($ $) 101)) (-2084 (($ $) 79 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#1| $) 78 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 52)) (-3771 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-2056 (($ $ $) 88 (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-1802 (($ $ $) 87 (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 43 (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2092 (($ $ |#1|) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1233 (-567))) 64)) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3732 (($ $ $ (-567)) 92 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 71)) (-2285 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) 85 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 84 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-3098 (((-112) $ $) 86 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-19 |#1|) (-140) (-1216)) (T -19))
NIL
-(-13 (-375 |t#1|) (-10 -7 (-6 -4416)))
-(((-34) . T) ((-102) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1215) . T))
-((-4113 (((-3 $ "failed") $ $) 12)) (-2905 (($ $) NIL) (($ $ $) 9)) (* (($ (-921) $) NIL) (($ (-771) $) 16) (($ (-566) $) 26)))
-(((-20 |#1|) (-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -4113 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-21)) (T -20))
+(-13 (-375 |t#1|) (-10 -7 (-6 -4417)))
+(((-34) . T) ((-102) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1100) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-1216) . T))
+((-4377 (((-3 $ "failed") $ $) 12)) (-3156 (($ $) NIL) (($ $ $) 9)) (* (($ (-922) $) NIL) (($ (-772) $) 16) (($ (-567) $) 26)))
+(((-20 |#1|) (-10 -8 (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -4377 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -4113 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24)))
+(-10 -8 (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -4377 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24)))
(((-21) (-140)) (T -21))
-((-2905 (*1 *1 *1) (-4 *1 (-21))) (-2905 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-131) (-646 (-566)) (-10 -8 (-15 -2905 ($ $)) (-15 -2905 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1099) . T))
-((-3545 (((-112) $) 10)) (-2633 (($) 15)) (* (($ (-921) $) 14) (($ (-771) $) 19)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 -2633 (|#1|)) (-15 * (|#1| (-921) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-771) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 -2633 (|#1|)) (-15 * (|#1| (-921) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16)))
+((-3156 (*1 *1 *1) (-4 *1 (-21))) (-3156 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-131) (-647 (-567)) (-10 -8 (-15 -3156 ($ $)) (-15 -3156 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1100) . T))
+((-2865 (((-112) $) 10)) (-4061 (($) 15)) (* (($ (-922) $) 14) (($ (-772) $) 19)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2865 ((-112) |#1|)) (-15 -4061 (|#1|)) (-15 * (|#1| (-922) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-772) |#1|)) (-15 -2865 ((-112) |#1|)) (-15 -4061 (|#1|)) (-15 * (|#1| (-922) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16)))
(((-23) (-140)) (T -23))
-((-3200 (*1 *1) (-4 *1 (-23))) (-2633 (*1 *1) (-4 *1 (-23))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-771)))))
-(-13 (-25) (-10 -8 (-15 (-3200) ($) -3854) (-15 -2633 ($) -3854) (-15 -3545 ((-112) $)) (-15 * ($ (-771) $))))
-(((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((* (($ (-921) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-921) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-921) |#1|)))
-((-3979 (((-112) $ $) 7)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14)))
+((-1468 (*1 *1) (-4 *1 (-23))) (-4061 (*1 *1) (-4 *1 (-23))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772)))))
+(-13 (-25) (-10 -8 (-15 (-1468) ($) -2131) (-15 -4061 ($) -2131) (-15 -2865 ((-112) $)) (-15 * ($ (-772) $))))
+(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((* (($ (-922) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-922) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-922) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14)))
(((-25) (-140)) (T -25))
-((-2897 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-921)))))
-(-13 (-1099) (-10 -8 (-15 -2897 ($ $ $)) (-15 * ($ (-921) $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-1454 (((-644 $) (-952 $)) 32) (((-644 $) (-1171 $)) 16) (((-644 $) (-1171 $) (-1175)) 20)) (-3542 (($ (-952 $)) 30) (($ (-1171 $)) 11) (($ (-1171 $) (-1175)) 60)) (-1748 (((-644 $) (-952 $)) 33) (((-644 $) (-1171 $)) 18) (((-644 $) (-1171 $) (-1175)) 19)) (-2563 (($ (-952 $)) 31) (($ (-1171 $)) 13) (($ (-1171 $) (-1175)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -1454 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1454 ((-644 |#1|) (-1171 |#1|))) (-15 -1454 ((-644 |#1|) (-952 |#1|))) (-15 -3542 (|#1| (-1171 |#1|) (-1175))) (-15 -3542 (|#1| (-1171 |#1|))) (-15 -3542 (|#1| (-952 |#1|))) (-15 -1748 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1748 ((-644 |#1|) (-1171 |#1|))) (-15 -1748 ((-644 |#1|) (-952 |#1|))) (-15 -2563 (|#1| (-1171 |#1|) (-1175))) (-15 -2563 (|#1| (-1171 |#1|))) (-15 -2563 (|#1| (-952 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -1454 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1454 ((-644 |#1|) (-1171 |#1|))) (-15 -1454 ((-644 |#1|) (-952 |#1|))) (-15 -3542 (|#1| (-1171 |#1|) (-1175))) (-15 -3542 (|#1| (-1171 |#1|))) (-15 -3542 (|#1| (-952 |#1|))) (-15 -1748 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1748 ((-644 |#1|) (-1171 |#1|))) (-15 -1748 ((-644 |#1|) (-952 |#1|))) (-15 -2563 (|#1| (-1171 |#1|) (-1175))) (-15 -2563 (|#1| (-1171 |#1|))) (-15 -2563 (|#1| (-952 |#1|))))
-((-3979 (((-112) $ $) 7)) (-1454 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86)) (-3542 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-4028 (($ $) 100)) (-2068 (((-112) $ $) 65)) (-2633 (($) 18 T CONST)) (-1748 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92)) (-2563 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-1968 (((-112) $) 79)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 99)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 73)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75)))
+((-3146 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922)))))
+(-13 (-1100) (-10 -8 (-15 -3146 ($ $ $)) (-15 * ($ (-922) $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-3519 (((-645 $) (-953 $)) 32) (((-645 $) (-1172 $)) 16) (((-645 $) (-1172 $) (-1176)) 20)) (-2836 (($ (-953 $)) 30) (($ (-1172 $)) 11) (($ (-1172 $) (-1176)) 60)) (-3348 (((-645 $) (-953 $)) 33) (((-645 $) (-1172 $)) 18) (((-645 $) (-1172 $) (-1176)) 19)) (-1515 (($ (-953 $)) 31) (($ (-1172 $)) 13) (($ (-1172 $) (-1176)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3519 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3519 ((-645 |#1|) (-1172 |#1|))) (-15 -3519 ((-645 |#1|) (-953 |#1|))) (-15 -2836 (|#1| (-1172 |#1|) (-1176))) (-15 -2836 (|#1| (-1172 |#1|))) (-15 -2836 (|#1| (-953 |#1|))) (-15 -3348 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3348 ((-645 |#1|) (-1172 |#1|))) (-15 -3348 ((-645 |#1|) (-953 |#1|))) (-15 -1515 (|#1| (-1172 |#1|) (-1176))) (-15 -1515 (|#1| (-1172 |#1|))) (-15 -1515 (|#1| (-953 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -3519 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3519 ((-645 |#1|) (-1172 |#1|))) (-15 -3519 ((-645 |#1|) (-953 |#1|))) (-15 -2836 (|#1| (-1172 |#1|) (-1176))) (-15 -2836 (|#1| (-1172 |#1|))) (-15 -2836 (|#1| (-953 |#1|))) (-15 -3348 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3348 ((-645 |#1|) (-1172 |#1|))) (-15 -3348 ((-645 |#1|) (-953 |#1|))) (-15 -1515 (|#1| (-1172 |#1|) (-1176))) (-15 -1515 (|#1| (-1172 |#1|))) (-15 -1515 (|#1| (-953 |#1|))))
+((-2257 (((-112) $ $) 7)) (-3519 (((-645 $) (-953 $)) 88) (((-645 $) (-1172 $)) 87) (((-645 $) (-1172 $) (-1176)) 86)) (-2836 (($ (-953 $)) 91) (($ (-1172 $)) 90) (($ (-1172 $) (-1176)) 89)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-2307 (($ $) 100)) (-3405 (((-112) $ $) 65)) (-4061 (($) 18 T CONST)) (-3348 (((-645 $) (-953 $)) 94) (((-645 $) (-1172 $)) 93) (((-645 $) (-1172 $) (-1176)) 92)) (-1515 (($ (-953 $)) 97) (($ (-1172 $)) 96) (($ (-1172 $) (-1176)) 95)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-1665 (((-112) $) 79)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 99)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 73)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-27) (-140)) (T -27))
-((-2563 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-2563 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1748 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27)))) (-3542 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27)) (-5 *2 (-644 *1)))))
-(-13 (-365) (-1002) (-10 -8 (-15 -2563 ($ (-952 $))) (-15 -2563 ($ (-1171 $))) (-15 -2563 ($ (-1171 $) (-1175))) (-15 -1748 ((-644 $) (-952 $))) (-15 -1748 ((-644 $) (-1171 $))) (-15 -1748 ((-644 $) (-1171 $) (-1175))) (-15 -3542 ($ (-952 $))) (-15 -3542 ($ (-1171 $))) (-15 -3542 ($ (-1171 $) (-1175))) (-15 -1454 ((-644 $) (-952 $))) (-15 -1454 ((-644 $) (-1171 $))) (-15 -1454 ((-644 $) (-1171 $) (-1175)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1002) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T))
-((-1454 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 55) (((-644 $) $) 22) (((-644 $) $ (-1175)) 46)) (-3542 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) 57) (($ $) 20) (($ $ (-1175)) 40)) (-1748 (((-644 $) (-952 $)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 $) (-1175)) 53) (((-644 $) $) 18) (((-644 $) $ (-1175)) 48)) (-2563 (($ (-952 $)) NIL) (($ (-1171 $)) NIL) (($ (-1171 $) (-1175)) NIL) (($ $) 15) (($ $ (-1175)) 42)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -1454 ((-644 |#1|) |#1| (-1175))) (-15 -3542 (|#1| |#1| (-1175))) (-15 -1454 ((-644 |#1|) |#1|)) (-15 -3542 (|#1| |#1|)) (-15 -1748 ((-644 |#1|) |#1| (-1175))) (-15 -2563 (|#1| |#1| (-1175))) (-15 -1748 ((-644 |#1|) |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -1454 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1454 ((-644 |#1|) (-1171 |#1|))) (-15 -1454 ((-644 |#1|) (-952 |#1|))) (-15 -3542 (|#1| (-1171 |#1|) (-1175))) (-15 -3542 (|#1| (-1171 |#1|))) (-15 -3542 (|#1| (-952 |#1|))) (-15 -1748 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1748 ((-644 |#1|) (-1171 |#1|))) (-15 -1748 ((-644 |#1|) (-952 |#1|))) (-15 -2563 (|#1| (-1171 |#1|) (-1175))) (-15 -2563 (|#1| (-1171 |#1|))) (-15 -2563 (|#1| (-952 |#1|)))) (-29 |#2|) (-558)) (T -28))
-NIL
-(-10 -8 (-15 -1454 ((-644 |#1|) |#1| (-1175))) (-15 -3542 (|#1| |#1| (-1175))) (-15 -1454 ((-644 |#1|) |#1|)) (-15 -3542 (|#1| |#1|)) (-15 -1748 ((-644 |#1|) |#1| (-1175))) (-15 -2563 (|#1| |#1| (-1175))) (-15 -1748 ((-644 |#1|) |#1|)) (-15 -2563 (|#1| |#1|)) (-15 -1454 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1454 ((-644 |#1|) (-1171 |#1|))) (-15 -1454 ((-644 |#1|) (-952 |#1|))) (-15 -3542 (|#1| (-1171 |#1|) (-1175))) (-15 -3542 (|#1| (-1171 |#1|))) (-15 -3542 (|#1| (-952 |#1|))) (-15 -1748 ((-644 |#1|) (-1171 |#1|) (-1175))) (-15 -1748 ((-644 |#1|) (-1171 |#1|))) (-15 -1748 ((-644 |#1|) (-952 |#1|))) (-15 -2563 (|#1| (-1171 |#1|) (-1175))) (-15 -2563 (|#1| (-1171 |#1|))) (-15 -2563 (|#1| (-952 |#1|))))
-((-3979 (((-112) $ $) 7)) (-1454 (((-644 $) (-952 $)) 88) (((-644 $) (-1171 $)) 87) (((-644 $) (-1171 $) (-1175)) 86) (((-644 $) $) 134) (((-644 $) $ (-1175)) 132)) (-3542 (($ (-952 $)) 91) (($ (-1171 $)) 90) (($ (-1171 $) (-1175)) 89) (($ $) 135) (($ $ (-1175)) 133)) (-3545 (((-112) $) 17)) (-4170 (((-644 (-1175)) $) 203)) (-3983 (((-409 (-1171 $)) $ (-612 $)) 235 (|has| |#1| (-558)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-3860 (((-644 (-612 $)) $) 166)) (-4113 (((-3 $ "failed") $ $) 20)) (-1713 (($ $ (-644 (-612 $)) (-644 $)) 156) (($ $ (-644 (-295 $))) 155) (($ $ (-295 $)) 154)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-4028 (($ $) 100)) (-2068 (((-112) $ $) 65)) (-2633 (($) 18 T CONST)) (-1748 (((-644 $) (-952 $)) 94) (((-644 $) (-1171 $)) 93) (((-644 $) (-1171 $) (-1175)) 92) (((-644 $) $) 138) (((-644 $) $ (-1175)) 136)) (-2563 (($ (-952 $)) 97) (($ (-1171 $)) 96) (($ (-1171 $) (-1175)) 95) (($ $) 139) (($ $ (-1175)) 137)) (-2023 (((-3 (-952 |#1|) "failed") $) 253 (|has| |#1| (-1049))) (((-3 (-409 (-952 |#1|)) "failed") $) 237 (|has| |#1| (-558))) (((-3 |#1| "failed") $) 199) (((-3 (-566) "failed") $) 196 (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) 190) (((-3 (-612 $) "failed") $) 141) (((-3 (-409 (-566)) "failed") $) 130 (-2676 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-3343 (((-952 |#1|) $) 252 (|has| |#1| (-1049))) (((-409 (-952 |#1|)) $) 236 (|has| |#1| (-558))) ((|#1| $) 198) (((-566) $) 197 (|has| |#1| (-1038 (-566)))) (((-1175) $) 189) (((-612 $) $) 140) (((-409 (-566)) $) 131 (-2676 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-3919 (($ $ $) 61)) (-3717 (((-689 |#1|) (-689 $)) 243 (|has| |#1| (-1049))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 242 (|has| |#1| (-1049))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 129 (-2676 (-3144 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-3144 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (((-689 (-566)) (-689 $)) 128 (-2676 (-3144 (|has| |#1| (-1049)) (|has| |#1| (-639 (-566)))) (-3144 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-1968 (((-112) $) 79)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 195 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 194 (|has| |#1| (-886 (-566))))) (-3206 (($ (-644 $)) 160) (($ $) 159)) (-3684 (((-644 (-114)) $) 167)) (-3959 (((-114) (-114)) 168)) (-3842 (((-112) $) 35)) (-1687 (((-112) $) 188 (|has| $ (-1038 (-566))))) (-3450 (($ $) 220 (|has| |#1| (-1049)))) (-2691 (((-1124 |#1| (-612 $)) $) 219 (|has| |#1| (-1049)))) (-2810 (($ $ (-566)) 99)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2391 (((-1171 $) (-612 $)) 185 (|has| $ (-1049)))) (-2101 (($ (-1 $ $) (-612 $)) 174)) (-3308 (((-3 (-612 $) "failed") $) 164)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-3944 (((-644 (-612 $)) $) 165)) (-2770 (($ (-114) (-644 $)) 173) (($ (-114) $) 172)) (-2684 (((-3 (-644 $) "failed") $) 214 (|has| |#1| (-1111)))) (-1559 (((-3 (-2 (|:| |val| $) (|:| -3428 (-566))) "failed") $) 223 (|has| |#1| (-1049)))) (-1660 (((-3 (-644 $) "failed") $) 216 (|has| |#1| (-25)))) (-2271 (((-3 (-2 (|:| -1702 (-566)) (|:| |var| (-612 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2544 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-1175)) 222 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-114)) 221 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $) 215 (|has| |#1| (-1111)))) (-3044 (((-112) $ (-1175)) 171) (((-112) $ (-114)) 170)) (-4282 (($ $) 78)) (-1695 (((-771) $) 163)) (-1944 (((-1119) $) 11)) (-4290 (((-112) $) 201)) (-4307 ((|#1| $) 202)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-3761 (((-112) $ (-1175)) 176) (((-112) $ $) 175)) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3934 (((-112) $) 187 (|has| $ (-1038 (-566))))) (-1754 (($ $ (-1175) (-771) (-1 $ $)) 227 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 226 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 225 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 224 (|has| |#1| (-1049))) (($ $ (-644 (-114)) (-644 $) (-1175)) 213 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 212 (|has| |#1| (-614 (-538)))) (($ $) 211 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 210 (|has| |#1| (-614 (-538)))) (($ $ (-1175)) 209 (|has| |#1| (-614 (-538)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-644 $))) 183) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 182) (($ $ (-644 (-114)) (-644 (-1 $ $))) 181) (($ $ (-1175) (-1 $ $)) 180) (($ $ (-1175) (-1 $ (-644 $))) 179) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 178) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 177) (($ $ (-644 $) (-644 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-644 (-295 $))) 145) (($ $ (-644 (-612 $)) (-644 $)) 144) (($ $ (-612 $) $) 143)) (-3792 (((-771) $) 64)) (-3282 (($ (-114) (-644 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2220 (($ $ $) 162) (($ $) 161)) (-3009 (($ $ (-1175)) 251 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 250 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 249 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 248 (|has| |#1| (-1049)))) (-3233 (($ $) 230 (|has| |#1| (-558)))) (-2702 (((-1124 |#1| (-612 $)) $) 229 (|has| |#1| (-558)))) (-2880 (($ $) 186 (|has| $ (-1049)))) (-2150 (((-538) $) 257 (|has| |#1| (-614 (-538)))) (($ (-420 $)) 228 (|has| |#1| (-558))) (((-892 (-381)) $) 193 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 192 (|has| |#1| (-614 (-892 (-566)))))) (-2558 (($ $ $) 256 (|has| |#1| (-475)))) (-1726 (($ $ $) 255 (|has| |#1| (-475)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-952 |#1|)) 254 (|has| |#1| (-1049))) (($ (-409 (-952 |#1|))) 238 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 234 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 233 (|has| |#1| (-558))) (($ (-409 |#1|)) 232 (|has| |#1| (-558))) (($ (-1124 |#1| (-612 $))) 218 (|has| |#1| (-1049))) (($ |#1|) 200) (($ (-1175)) 191) (($ (-612 $)) 142)) (-2655 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-3016 (($ (-644 $)) 158) (($ $) 157)) (-2827 (((-112) (-114)) 169)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3750 (($ (-1175) (-644 $)) 208) (($ (-1175) $ $ $ $) 207) (($ (-1175) $ $ $) 206) (($ (-1175) $ $) 205) (($ (-1175) $) 204)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-1175)) 247 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 246 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 245 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) 244 (|has| |#1| (-1049)))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 73) (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 231 (|has| |#1| (-558)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 98)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172)))))
-(((-29 |#1|) (-140) (-558)) (T -29))
-((-2563 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-1748 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-1748 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))) (-3542 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))) (-1454 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))) (-3542 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558)))) (-1454 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-432 |t#1|) (-10 -8 (-15 -2563 ($ $)) (-15 -1748 ((-644 $) $)) (-15 -2563 ($ $ (-1175))) (-15 -1748 ((-644 $) $ (-1175))) (-15 -3542 ($ $)) (-15 -1454 ((-644 $) $)) (-15 -3542 ($ $ (-1175))) (-15 -1454 ((-644 $) $ (-1175)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) . T) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-432 |#1|) . T) ((-454) . T) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) . T) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) . T) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) . T) ((-1002) . T) ((-1038 (-409 (-566))) -2676 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1215) . T) ((-1219) . T))
-((-3002 (((-1093 (-225)) $) NIL)) (-2992 (((-1093 (-225)) $) NIL)) (-2521 (($ $ (-225)) 166)) (-1471 (($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566)))) 104)) (-2002 (((-644 (-644 (-943 (-225)))) $) 182)) (-2725 (((-862) $) 196)))
-(((-30) (-13 (-955) (-10 -8 (-15 -1471 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -2521 ($ $ (-225)))))) (T -30))
-((-1471 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175)) (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
-(-13 (-955) (-10 -8 (-15 -1471 ($ (-952 (-566)) (-1175) (-1175) (-1093 (-409 (-566))) (-1093 (-409 (-566))))) (-15 -2521 ($ $ (-225)))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-1134) $) 11)) (-1479 (((-112) $ $) NIL)) (-1792 (((-1134) $) 9)) (-2817 (((-112) $ $) NIL)))
-(((-31) (-13 (-1082) (-10 -8 (-15 -1792 ((-1134) $)) (-15 -3546 ((-1134) $))))) (T -31))
-((-1792 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31)))))
-(-13 (-1082) (-10 -8 (-15 -1792 ((-1134) $)) (-15 -3546 ((-1134) $))))
-((-2563 ((|#2| (-1171 |#2|) (-1175)) 41)) (-3959 (((-114) (-114)) 55)) (-2391 (((-1171 |#2|) (-612 |#2|)) 149 (|has| |#1| (-1038 (-566))))) (-2277 ((|#2| |#1| (-566)) 137 (|has| |#1| (-1038 (-566))))) (-1370 ((|#2| (-1171 |#2|) |#2|) 29)) (-1782 (((-862) (-644 |#2|)) 86)) (-2880 ((|#2| |#2|) 144 (|has| |#1| (-1038 (-566))))) (-2827 (((-112) (-114)) 17)) (** ((|#2| |#2| (-409 (-566))) 103 (|has| |#1| (-1038 (-566))))))
-(((-32 |#1| |#2|) (-10 -7 (-15 -2563 (|#2| (-1171 |#2|) (-1175))) (-15 -3959 ((-114) (-114))) (-15 -2827 ((-112) (-114))) (-15 -1370 (|#2| (-1171 |#2|) |#2|)) (-15 -1782 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -2391 ((-1171 |#2|) (-612 |#2|))) (-15 -2880 (|#2| |#2|)) (-15 -2277 (|#2| |#1| (-566)))) |%noBranch|)) (-558) (-432 |#1|)) (T -32))
-((-2277 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1038 *4)) (-4 *3 (-558)))) (-2880 (*1 *2 *2) (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2)) (-4 *2 (-432 *3)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558)) (-5 *2 (-862)) (-5 *1 (-32 *4 *5)))) (-1370 (*1 *2 *3 *2) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-32 *4 *2)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-432 *4)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4)) (-4 *4 (-432 *3)))) (-2563 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-558)))))
-(-10 -7 (-15 -2563 (|#2| (-1171 |#2|) (-1175))) (-15 -3959 ((-114) (-114))) (-15 -2827 ((-112) (-114))) (-15 -1370 (|#2| (-1171 |#2|) |#2|)) (-15 -1782 ((-862) (-644 |#2|))) (IF (|has| |#1| (-1038 (-566))) (PROGN (-15 ** (|#2| |#2| (-409 (-566)))) (-15 -2391 ((-1171 |#2|) (-612 |#2|))) (-15 -2880 (|#2| |#2|)) (-15 -2277 (|#2| |#1| (-566)))) |%noBranch|))
-((-2261 (((-112) $ (-771)) 20)) (-2633 (($) 10)) (-2429 (((-112) $ (-771)) 19)) (-1864 (((-112) $ (-771)) 17)) (-4165 (((-112) $ $) 8)) (-4246 (((-112) $) 15)))
-(((-33 |#1|) (-10 -8 (-15 -2633 (|#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771))) (-15 -4246 ((-112) |#1|)) (-15 -4165 ((-112) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -2633 (|#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771))) (-15 -4246 ((-112) |#1|)) (-15 -4165 ((-112) |#1| |#1|)))
-((-2261 (((-112) $ (-771)) 8)) (-2633 (($) 7 T CONST)) (-2429 (((-112) $ (-771)) 9)) (-1864 (((-112) $ (-771)) 10)) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-2878 (($ $) 13)) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
+((-1515 (*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-27)))) (-1515 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *1)) (-5 *3 (-1176)) (-4 *1 (-27)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3348 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1176)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-2836 (*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27)))) (-2836 (*1 *1 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-27)))) (-2836 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *1)) (-5 *3 (-1176)) (-4 *1 (-27)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1)))) (-3519 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1176)) (-4 *1 (-27)) (-5 *2 (-645 *1)))))
+(-13 (-365) (-1003) (-10 -8 (-15 -1515 ($ (-953 $))) (-15 -1515 ($ (-1172 $))) (-15 -1515 ($ (-1172 $) (-1176))) (-15 -3348 ((-645 $) (-953 $))) (-15 -3348 ((-645 $) (-1172 $))) (-15 -3348 ((-645 $) (-1172 $) (-1176))) (-15 -2836 ($ (-953 $))) (-15 -2836 ($ (-1172 $))) (-15 -2836 ($ (-1172 $) (-1176))) (-15 -3519 ((-645 $) (-953 $))) (-15 -3519 ((-645 $) (-1172 $))) (-15 -3519 ((-645 $) (-1172 $) (-1176)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1003) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T))
+((-3519 (((-645 $) (-953 $)) NIL) (((-645 $) (-1172 $)) NIL) (((-645 $) (-1172 $) (-1176)) 55) (((-645 $) $) 22) (((-645 $) $ (-1176)) 46)) (-2836 (($ (-953 $)) NIL) (($ (-1172 $)) NIL) (($ (-1172 $) (-1176)) 57) (($ $) 20) (($ $ (-1176)) 40)) (-3348 (((-645 $) (-953 $)) NIL) (((-645 $) (-1172 $)) NIL) (((-645 $) (-1172 $) (-1176)) 53) (((-645 $) $) 18) (((-645 $) $ (-1176)) 48)) (-1515 (($ (-953 $)) NIL) (($ (-1172 $)) NIL) (($ (-1172 $) (-1176)) NIL) (($ $) 15) (($ $ (-1176)) 42)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3519 ((-645 |#1|) |#1| (-1176))) (-15 -2836 (|#1| |#1| (-1176))) (-15 -3519 ((-645 |#1|) |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -3348 ((-645 |#1|) |#1| (-1176))) (-15 -1515 (|#1| |#1| (-1176))) (-15 -3348 ((-645 |#1|) |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -3519 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3519 ((-645 |#1|) (-1172 |#1|))) (-15 -3519 ((-645 |#1|) (-953 |#1|))) (-15 -2836 (|#1| (-1172 |#1|) (-1176))) (-15 -2836 (|#1| (-1172 |#1|))) (-15 -2836 (|#1| (-953 |#1|))) (-15 -3348 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3348 ((-645 |#1|) (-1172 |#1|))) (-15 -3348 ((-645 |#1|) (-953 |#1|))) (-15 -1515 (|#1| (-1172 |#1|) (-1176))) (-15 -1515 (|#1| (-1172 |#1|))) (-15 -1515 (|#1| (-953 |#1|)))) (-29 |#2|) (-559)) (T -28))
+NIL
+(-10 -8 (-15 -3519 ((-645 |#1|) |#1| (-1176))) (-15 -2836 (|#1| |#1| (-1176))) (-15 -3519 ((-645 |#1|) |#1|)) (-15 -2836 (|#1| |#1|)) (-15 -3348 ((-645 |#1|) |#1| (-1176))) (-15 -1515 (|#1| |#1| (-1176))) (-15 -3348 ((-645 |#1|) |#1|)) (-15 -1515 (|#1| |#1|)) (-15 -3519 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3519 ((-645 |#1|) (-1172 |#1|))) (-15 -3519 ((-645 |#1|) (-953 |#1|))) (-15 -2836 (|#1| (-1172 |#1|) (-1176))) (-15 -2836 (|#1| (-1172 |#1|))) (-15 -2836 (|#1| (-953 |#1|))) (-15 -3348 ((-645 |#1|) (-1172 |#1|) (-1176))) (-15 -3348 ((-645 |#1|) (-1172 |#1|))) (-15 -3348 ((-645 |#1|) (-953 |#1|))) (-15 -1515 (|#1| (-1172 |#1|) (-1176))) (-15 -1515 (|#1| (-1172 |#1|))) (-15 -1515 (|#1| (-953 |#1|))))
+((-2257 (((-112) $ $) 7)) (-3519 (((-645 $) (-953 $)) 88) (((-645 $) (-1172 $)) 87) (((-645 $) (-1172 $) (-1176)) 86) (((-645 $) $) 134) (((-645 $) $ (-1176)) 132)) (-2836 (($ (-953 $)) 91) (($ (-1172 $)) 90) (($ (-1172 $) (-1176)) 89) (($ $) 135) (($ $ (-1176)) 133)) (-2865 (((-112) $) 17)) (-2449 (((-645 (-1176)) $) 203)) (-2260 (((-410 (-1172 $)) $ (-613 $)) 235 (|has| |#1| (-559)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-2138 (((-645 (-613 $)) $) 166)) (-4377 (((-3 $ "failed") $ $) 20)) (-3099 (($ $ (-645 (-613 $)) (-645 $)) 156) (($ $ (-645 (-295 $))) 155) (($ $ (-295 $)) 154)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-2307 (($ $) 100)) (-3405 (((-112) $ $) 65)) (-4061 (($) 18 T CONST)) (-3348 (((-645 $) (-953 $)) 94) (((-645 $) (-1172 $)) 93) (((-645 $) (-1172 $) (-1176)) 92) (((-645 $) $) 138) (((-645 $) $ (-1176)) 136)) (-1515 (($ (-953 $)) 97) (($ (-1172 $)) 96) (($ (-1172 $) (-1176)) 95) (($ $) 139) (($ $ (-1176)) 137)) (-3417 (((-3 (-953 |#1|) "failed") $) 253 (|has| |#1| (-1050))) (((-3 (-410 (-953 |#1|)) "failed") $) 237 (|has| |#1| (-559))) (((-3 |#1| "failed") $) 199) (((-3 (-567) "failed") $) 196 (|has| |#1| (-1039 (-567)))) (((-3 (-1176) "failed") $) 190) (((-3 (-613 $) "failed") $) 141) (((-3 (-410 (-567)) "failed") $) 130 (-2909 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-1621 (((-953 |#1|) $) 252 (|has| |#1| (-1050))) (((-410 (-953 |#1|)) $) 236 (|has| |#1| (-559))) ((|#1| $) 198) (((-567) $) 197 (|has| |#1| (-1039 (-567)))) (((-1176) $) 189) (((-613 $) $) 140) (((-410 (-567)) $) 131 (-2909 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-2197 (($ $ $) 61)) (-1920 (((-690 |#1|) (-690 $)) 243 (|has| |#1| (-1050))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 242 (|has| |#1| (-1050))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 129 (-2909 (-1410 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (-1410 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (((-690 (-567)) (-690 $)) 128 (-2909 (-1410 (|has| |#1| (-1050)) (|has| |#1| (-640 (-567)))) (-1410 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-1665 (((-112) $) 79)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 195 (|has| |#1| (-887 (-381)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 194 (|has| |#1| (-887 (-567))))) (-3775 (($ (-645 $)) 160) (($ $) 159)) (-1583 (((-645 (-114)) $) 167)) (-2236 (((-114) (-114)) 168)) (-3714 (((-112) $) 35)) (-3937 (((-112) $) 188 (|has| $ (-1039 (-567))))) (-4349 (($ $) 220 (|has| |#1| (-1050)))) (-4067 (((-1125 |#1| (-613 $)) $) 219 (|has| |#1| (-1050)))) (-3287 (($ $ (-567)) 99)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3612 (((-1172 $) (-613 $)) 185 (|has| $ (-1050)))) (-3494 (($ (-1 $ $) (-613 $)) 174)) (-2378 (((-3 (-613 $) "failed") $) 164)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2224 (((-645 (-613 $)) $) 165)) (-4147 (($ (-114) (-645 $)) 173) (($ (-114) $) 172)) (-3376 (((-3 (-645 $) "failed") $) 214 (|has| |#1| (-1112)))) (-2063 (((-3 (-2 (|:| |val| $) (|:| -4164 (-567))) "failed") $) 223 (|has| |#1| (-1050)))) (-1808 (((-3 (-645 $) "failed") $) 216 (|has| |#1| (-25)))) (-1729 (((-3 (-2 (|:| -3087 (-567)) (|:| |var| (-613 $))) "failed") $) 217 (|has| |#1| (-25)))) (-2688 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-1176)) 222 (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-114)) 221 (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $) 215 (|has| |#1| (-1112)))) (-1527 (((-112) $ (-1176)) 171) (((-112) $ (-114)) 170)) (-2559 (($ $) 78)) (-3080 (((-772) $) 163)) (-3339 (((-1120) $) 11)) (-2567 (((-112) $) 201)) (-2583 ((|#1| $) 202)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-4151 (((-112) $ (-1176)) 176) (((-112) $ $) 175)) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-2143 (((-112) $) 187 (|has| $ (-1039 (-567))))) (-3140 (($ $ (-1176) (-772) (-1 $ $)) 227 (|has| |#1| (-1050))) (($ $ (-1176) (-772) (-1 $ (-645 $))) 226 (|has| |#1| (-1050))) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 225 (|has| |#1| (-1050))) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ $))) 224 (|has| |#1| (-1050))) (($ $ (-645 (-114)) (-645 $) (-1176)) 213 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1176)) 212 (|has| |#1| (-615 (-539)))) (($ $) 211 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1176))) 210 (|has| |#1| (-615 (-539)))) (($ $ (-1176)) 209 (|has| |#1| (-615 (-539)))) (($ $ (-114) (-1 $ $)) 184) (($ $ (-114) (-1 $ (-645 $))) 183) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 182) (($ $ (-645 (-114)) (-645 (-1 $ $))) 181) (($ $ (-1176) (-1 $ $)) 180) (($ $ (-1176) (-1 $ (-645 $))) 179) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) 178) (($ $ (-645 (-1176)) (-645 (-1 $ $))) 177) (($ $ (-645 $) (-645 $)) 148) (($ $ $ $) 147) (($ $ (-295 $)) 146) (($ $ (-645 (-295 $))) 145) (($ $ (-645 (-613 $)) (-645 $)) 144) (($ $ (-613 $) $) 143)) (-4369 (((-772) $) 64)) (-1552 (($ (-114) (-645 $)) 153) (($ (-114) $ $ $ $) 152) (($ (-114) $ $ $) 151) (($ (-114) $ $) 150) (($ (-114) $) 149)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-2468 (($ $ $) 162) (($ $) 161)) (-1930 (($ $ (-1176)) 251 (|has| |#1| (-1050))) (($ $ (-645 (-1176))) 250 (|has| |#1| (-1050))) (($ $ (-1176) (-772)) 249 (|has| |#1| (-1050))) (($ $ (-645 (-1176)) (-645 (-772))) 248 (|has| |#1| (-1050)))) (-2870 (($ $) 230 (|has| |#1| (-559)))) (-4078 (((-1125 |#1| (-613 $)) $) 229 (|has| |#1| (-559)))) (-2713 (($ $) 186 (|has| $ (-1050)))) (-3542 (((-539) $) 257 (|has| |#1| (-615 (-539)))) (($ (-421 $)) 228 (|has| |#1| (-559))) (((-893 (-381)) $) 193 (|has| |#1| (-615 (-893 (-381))))) (((-893 (-567)) $) 192 (|has| |#1| (-615 (-893 (-567)))))) (-1443 (($ $ $) 256 (|has| |#1| (-476)))) (-4272 (($ $ $) 255 (|has| |#1| (-476)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-953 |#1|)) 254 (|has| |#1| (-1050))) (($ (-410 (-953 |#1|))) 238 (|has| |#1| (-559))) (($ (-410 (-953 (-410 |#1|)))) 234 (|has| |#1| (-559))) (($ (-953 (-410 |#1|))) 233 (|has| |#1| (-559))) (($ (-410 |#1|)) 232 (|has| |#1| (-559))) (($ (-1125 |#1| (-613 $))) 218 (|has| |#1| (-1050))) (($ |#1|) 200) (($ (-1176)) 191) (($ (-613 $)) 142)) (-4242 (((-3 $ "failed") $) 241 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-4385 (($ (-645 $)) 158) (($ $) 157)) (-2214 (((-112) (-114)) 169)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1903 (($ (-1176) (-645 $)) 208) (($ (-1176) $ $ $ $) 207) (($ (-1176) $ $ $) 206) (($ (-1176) $ $) 205) (($ (-1176) $) 204)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-1176)) 247 (|has| |#1| (-1050))) (($ $ (-645 (-1176))) 246 (|has| |#1| (-1050))) (($ $ (-1176) (-772)) 245 (|has| |#1| (-1050))) (($ $ (-645 (-1176)) (-645 (-772))) 244 (|has| |#1| (-1050)))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 73) (($ (-1125 |#1| (-613 $)) (-1125 |#1| (-613 $))) 231 (|has| |#1| (-559)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 98)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 240 (|has| |#1| (-172))) (($ |#1| $) 239 (|has| |#1| (-172)))))
+(((-29 |#1|) (-140) (-559)) (T -29))
+((-1515 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-3348 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-1515 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))) (-2836 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))) (-3519 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))) (-2836 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-29 *3)) (-4 *3 (-559)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -1515 ($ $)) (-15 -3348 ((-645 $) $)) (-15 -1515 ($ $ (-1176))) (-15 -3348 ((-645 $) $ (-1176))) (-15 -2836 ($ $)) (-15 -3519 ((-645 $) $)) (-15 -2836 ($ $ (-1176))) (-15 -3519 ((-645 $) $ (-1176)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 #1=(-410 (-953 |#1|))) |has| |#1| (-559)) ((-617 (-567)) . T) ((-617 #2=(-613 $)) . T) ((-617 #3=(-953 |#1|)) |has| |#1| (-1050)) ((-617 #4=(-1176)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-243) . T) ((-291) . T) ((-308) . T) ((-310 $) . T) ((-303) . T) ((-365) . T) ((-379 |#1|) |has| |#1| (-1050)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-433 |#1|) . T) ((-455) . T) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) . T) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) ((-640 |#1|) |has| |#1| (-1050)) ((-718 #0#) . T) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) . T) ((-727) . T) ((-901 (-1176)) |has| |#1| (-1050)) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-921) . T) ((-1003) . T) ((-1039 (-410 (-567))) -2909 (|has| |#1| (-1039 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) ((-1039 #1#) |has| |#1| (-559)) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #2#) . T) ((-1039 #3#) |has| |#1| (-1050)) ((-1039 #4#) . T) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) |has| |#1| (-172)) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1216) . T) ((-1220) . T))
+((-4370 (((-1094 (-225)) $) NIL)) (-4362 (((-1094 (-225)) $) NIL)) (-2442 (($ $ (-225)) 166)) (-3673 (($ (-953 (-567)) (-1176) (-1176) (-1094 (-410 (-567))) (-1094 (-410 (-567)))) 104)) (-3883 (((-645 (-645 (-944 (-225)))) $) 182)) (-4101 (((-863) $) 196)))
+(((-30) (-13 (-956) (-10 -8 (-15 -3673 ($ (-953 (-567)) (-1176) (-1176) (-1094 (-410 (-567))) (-1094 (-410 (-567))))) (-15 -2442 ($ $ (-225)))))) (T -30))
+((-3673 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-953 (-567))) (-5 *3 (-1176)) (-5 *4 (-1094 (-410 (-567)))) (-5 *1 (-30)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))))
+(-13 (-956) (-10 -8 (-15 -3673 ($ (-953 (-567)) (-1176) (-1176) (-1094 (-410 (-567))) (-1094 (-410 (-567))))) (-15 -2442 ($ $ (-225)))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 17) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-1135) $) 11)) (-3739 (((-112) $ $) NIL)) (-3183 (((-1135) $) 9)) (-3052 (((-112) $ $) NIL)))
+(((-31) (-13 (-1083) (-10 -8 (-15 -3183 ((-1135) $)) (-15 -1830 ((-1135) $))))) (T -31))
+((-3183 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-31)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-31)))))
+(-13 (-1083) (-10 -8 (-15 -3183 ((-1135) $)) (-15 -1830 ((-1135) $))))
+((-1515 ((|#2| (-1172 |#2|) (-1176)) 41)) (-2236 (((-114) (-114)) 55)) (-3612 (((-1172 |#2|) (-613 |#2|)) 149 (|has| |#1| (-1039 (-567))))) (-1807 ((|#2| |#1| (-567)) 137 (|has| |#1| (-1039 (-567))))) (-4181 ((|#2| (-1172 |#2|) |#2|) 29)) (-3611 (((-863) (-645 |#2|)) 86)) (-2713 ((|#2| |#2|) 144 (|has| |#1| (-1039 (-567))))) (-2214 (((-112) (-114)) 17)) (** ((|#2| |#2| (-410 (-567))) 103 (|has| |#1| (-1039 (-567))))))
+(((-32 |#1| |#2|) (-10 -7 (-15 -1515 (|#2| (-1172 |#2|) (-1176))) (-15 -2236 ((-114) (-114))) (-15 -2214 ((-112) (-114))) (-15 -4181 (|#2| (-1172 |#2|) |#2|)) (-15 -3611 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1039 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -3612 ((-1172 |#2|) (-613 |#2|))) (-15 -2713 (|#2| |#2|)) (-15 -1807 (|#2| |#1| (-567)))) |%noBranch|)) (-559) (-433 |#1|)) (T -32))
+((-1807 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1039 *4)) (-4 *3 (-559)))) (-2713 (*1 *2 *2) (-12 (-4 *3 (-1039 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1039 (-567))) (-4 *4 (-559)) (-5 *2 (-1172 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1039 (-567))) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559)) (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))) (-4181 (*1 *2 *3 *2) (-12 (-5 *3 (-1172 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-32 *4 *2)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-1515 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *2)) (-5 *4 (-1176)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-559)))))
+(-10 -7 (-15 -1515 (|#2| (-1172 |#2|) (-1176))) (-15 -2236 ((-114) (-114))) (-15 -2214 ((-112) (-114))) (-15 -4181 (|#2| (-1172 |#2|) |#2|)) (-15 -3611 ((-863) (-645 |#2|))) (IF (|has| |#1| (-1039 (-567))) (PROGN (-15 ** (|#2| |#2| (-410 (-567)))) (-15 -3612 ((-1172 |#2|) (-613 |#2|))) (-15 -2713 (|#2| |#2|)) (-15 -1807 (|#2| |#1| (-567)))) |%noBranch|))
+((-1580 (((-112) $ (-772)) 20)) (-4061 (($) 10)) (-2805 (((-112) $ (-772)) 19)) (-3230 (((-112) $ (-772)) 17)) (-3748 (((-112) $ $) 8)) (-3353 (((-112) $) 15)))
+(((-33 |#1|) (-10 -8 (-15 -4061 (|#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772))) (-15 -3353 ((-112) |#1|)) (-15 -3748 ((-112) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -4061 (|#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772))) (-15 -3353 ((-112) |#1|)) (-15 -3748 ((-112) |#1| |#1|)))
+((-1580 (((-112) $ (-772)) 8)) (-4061 (($) 7 T CONST)) (-2805 (((-112) $ (-772)) 9)) (-3230 (((-112) $ (-772)) 10)) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-4247 (($ $) 13)) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
(((-34) (-140)) (T -34))
-((-4165 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2878 (*1 *1 *1) (-4 *1 (-34))) (-3906 (*1 *1) (-4 *1 (-34))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1864 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-2429 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-2261 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))) (-2633 (*1 *1) (-4 *1 (-34))) (-3991 (*1 *2 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-34)) (-5 *2 (-771)))))
-(-13 (-1215) (-10 -8 (-15 -4165 ((-112) $ $)) (-15 -2878 ($ $)) (-15 -3906 ($)) (-15 -4246 ((-112) $)) (-15 -1864 ((-112) $ (-771))) (-15 -2429 ((-112) $ (-771))) (-15 -2261 ((-112) $ (-771))) (-15 -2633 ($) -3854) (IF (|has| $ (-6 -4415)) (-15 -3991 ((-771) $)) |%noBranch|)))
-(((-1215) . T))
-((-3696 (($ $) 11)) (-3670 (($ $) 10)) (-3719 (($ $) 9)) (-3076 (($ $) 8)) (-3705 (($ $) 7)) (-3682 (($ $) 6)))
+((-3748 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-4247 (*1 *1 *1) (-4 *1 (-34))) (-3164 (*1 *1) (-4 *1 (-34))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3230 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-2805 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-1580 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))) (-4061 (*1 *1) (-4 *1 (-34))) (-2268 (*1 *2 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-34)) (-5 *2 (-772)))))
+(-13 (-1216) (-10 -8 (-15 -3748 ((-112) $ $)) (-15 -4247 ($ $)) (-15 -3164 ($)) (-15 -3353 ((-112) $)) (-15 -3230 ((-112) $ (-772))) (-15 -2805 ((-112) $ (-772))) (-15 -1580 ((-112) $ (-772))) (-15 -4061 ($) -2131) (IF (|has| $ (-6 -4416)) (-15 -2268 ((-772) $)) |%noBranch|)))
+(((-1216) . T))
+((-1847 (($ $) 11)) (-1823 (($ $) 10)) (-1869 (($ $) 9)) (-1345 (($ $) 8)) (-1858 (($ $) 7)) (-1834 (($ $) 6)))
(((-35) (-140)) (T -35))
-((-3696 (*1 *1 *1) (-4 *1 (-35))) (-3670 (*1 *1 *1) (-4 *1 (-35))) (-3719 (*1 *1 *1) (-4 *1 (-35))) (-3076 (*1 *1 *1) (-4 *1 (-35))) (-3705 (*1 *1 *1) (-4 *1 (-35))) (-3682 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -3682 ($ $)) (-15 -3705 ($ $)) (-15 -3076 ($ $)) (-15 -3719 ($ $)) (-15 -3670 ($ $)) (-15 -3696 ($ $))))
-((-3979 (((-112) $ $) 19 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2465 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 126)) (-4088 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 149)) (-1829 (($ $) 147)) (-2619 (($) 73) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 72)) (-2506 (((-1270) $ |#1| |#1|) 100 (|has| $ (-6 -4416))) (((-1270) $ (-566) (-566)) 179 (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) 160 (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3190 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 201 (|has| $ (-6 -4416))) (($ $) 200 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)) (|has| $ (-6 -4416))))) (-3370 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2261 (((-112) $ (-771)) 8)) (-2989 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 135 (|has| $ (-6 -4416)))) (-2363 (($ $ $) 156 (|has| $ (-6 -4416)))) (-3478 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 158 (|has| $ (-6 -4416)))) (-3224 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 154 (|has| $ (-6 -4416)))) (-2858 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 190 (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-1232 (-566)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 161 (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "last" (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 159 (|has| $ (-6 -4416))) (($ $ "rest" $) 157 (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "first" (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 155 (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "value" (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 134 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 133 (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 46 (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 217)) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 56 (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 176 (|has| $ (-6 -4415)))) (-4075 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 148)) (-2629 (((-3 |#2| "failed") |#1| $) 62)) (-2633 (($) 7 T CONST)) (-1970 (($ $) 202 (|has| $ (-6 -4416)))) (-1921 (($ $) 212)) (-3781 (($ $ (-771)) 143) (($ $) 141)) (-1985 (($ $) 215 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-3806 (($ $) 59 (-2676 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415))) (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 47 (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 221) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 216 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 55 (|has| $ (-6 -4415))) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 178 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 175 (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 57 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 54 (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 53 (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 177 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 174 (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 173 (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 191 (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) 89) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) 189)) (-4336 (((-112) $) 193)) (-2388 (((-566) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 209) (((-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 208 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) (((-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) 207 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 31 (|has| $ (-6 -4415))) (((-644 |#2|) $) 80 (|has| $ (-6 -4415))) (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 115 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 124)) (-3886 (((-112) $ $) 132 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-2631 (($ (-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 170)) (-2429 (((-112) $ (-771)) 9)) (-2239 ((|#1| $) 97 (|has| |#1| (-850))) (((-566) $) 181 (|has| (-566) (-850)))) (-3075 (($ $ $) 199 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3169 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3848 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 30 (|has| $ (-6 -4415))) (((-644 |#2|) $) 81 (|has| $ (-6 -4415))) (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 116 (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415)))) (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 118 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415))))) (-2605 ((|#1| $) 96 (|has| |#1| (-850))) (((-566) $) 182 (|has| (-566) (-850)))) (-3936 (($ $ $) 198 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 35 (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4416))) (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 111 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 110)) (-3641 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 226)) (-1864 (((-112) $ (-771)) 10)) (-2801 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 129)) (-1396 (((-112) $) 125)) (-1390 (((-1157) $) 22 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-1774 (($ $ (-771)) 146) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 144)) (-2838 (((-644 |#1|) $) 64)) (-3932 (((-112) |#1| $) 65)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 40)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 41) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) 220) (($ $ $ (-566)) 219)) (-1510 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) 163) (($ $ $ (-566)) 162)) (-4063 (((-644 |#1|) $) 94) (((-644 (-566)) $) 184)) (-3054 (((-112) |#1| $) 93) (((-112) (-566) $) 185)) (-1944 (((-1119) $) 21 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-3771 ((|#2| $) 98 (|has| |#1| (-850))) (($ $ (-771)) 140) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 138)) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 52) (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 172)) (-3598 (($ $ |#2|) 99 (|has| $ (-6 -4416))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 180 (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 42)) (-1890 (((-112) $) 192)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 33 (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 113 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) 27 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 26 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 25 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 24 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 122 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 121 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 120 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) 119 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 183 (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-1948 (((-644 |#2|) $) 92) (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 186)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 188) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) 187) (($ $ (-1232 (-566))) 166) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "first") 139) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "value") 127)) (-4104 (((-566) $ $) 130)) (-1873 (($) 50) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 49)) (-1503 (($ $ (-566)) 223) (($ $ (-1232 (-566))) 222)) (-1302 (($ $ (-566)) 165) (($ $ (-1232 (-566))) 164)) (-3810 (((-112) $) 128)) (-4278 (($ $) 152)) (-4160 (($ $) 153 (|has| $ (-6 -4416)))) (-2251 (((-771) $) 151)) (-2546 (($ $) 150)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 32 (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 114 (|has| $ (-6 -4415)))) (-3199 (($ $ $ (-566)) 203 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538)))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 51) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 171)) (-2011 (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 225) (($ $ $) 224)) (-4007 (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 169) (($ (-644 $)) 168) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 137) (($ $ $) 136)) (-2725 (((-862) $) 18 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862)))))) (-4202 (((-644 $) $) 123)) (-1379 (((-112) $ $) 131 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-1479 (((-112) $ $) 23 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 43)) (-1784 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") |#1| $) 109)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 34 (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 112 (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) 196 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2844 (((-112) $ $) 195 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2817 (((-112) $ $) 20 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2854 (((-112) $ $) 197 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2833 (((-112) $ $) 194 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-36 |#1| |#2|) (-140) (-1099) (-1099)) (T -36))
-((-1784 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| -3476 *3) (|:| -2484 *4))))))
-(-13 (-1191 |t#1| |t#2|) (-666 (-2 (|:| -3476 |t#1|) (|:| -2484 |t#2|))) (-10 -8 (-15 -1784 ((-3 (-2 (|:| -3476 |t#1|) (|:| -2484 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((-102) -2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850))) ((-613 (-862)) -2676 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862)))) ((-151 #1=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((-614 (-538)) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-566) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-283 #1#) . T) ((-375 #1#) . T) ((-491 #1#) . T) ((-491 |#2|) . T) ((-604 #2# #1#) . T) ((-604 |#1| |#2|) . T) ((-516 #1# #1#) -12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-651 #1#) . T) ((-666 #1#) . T) ((-850) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)) ((-1010 #1#) . T) ((-1099) -2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850))) ((-1148 #1#) . T) ((-1191 |#1| |#2|) . T) ((-1215) . T) ((-1253 #1#) . T))
-((-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-38 |#2|) (-172)) (T -37))
-NIL
-(-10 -8 (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+((-1847 (*1 *1 *1) (-4 *1 (-35))) (-1823 (*1 *1 *1) (-4 *1 (-35))) (-1869 (*1 *1 *1) (-4 *1 (-35))) (-1345 (*1 *1 *1) (-4 *1 (-35))) (-1858 (*1 *1 *1) (-4 *1 (-35))) (-1834 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -1834 ($ $)) (-15 -1858 ($ $)) (-15 -1345 ($ $)) (-15 -1869 ($ $)) (-15 -1823 ($ $)) (-15 -1847 ($ $))))
+((-2257 (((-112) $ $) 19 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3843 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 126)) (-2369 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 149)) (-3221 (($ $) 147)) (-4001 (($) 73) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 72)) (-2275 (((-1271) $ |#1| |#1|) 100 (|has| $ (-6 -4417))) (((-1271) $ (-567) (-567)) 179 (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) 160 (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 210) (((-112) $) 204 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3655 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 201 (|has| $ (-6 -4417))) (($ $) 200 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)) (|has| $ (-6 -4417))))) (-1594 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 211) (($ $) 205 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-1580 (((-112) $ (-772)) 8)) (-2372 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 135 (|has| $ (-6 -4417)))) (-3371 (($ $ $) 156 (|has| $ (-6 -4417)))) (-3487 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 158 (|has| $ (-6 -4417)))) (-2790 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 154 (|has| $ (-6 -4417)))) (-4230 ((|#2| $ |#1| |#2|) 74) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 190 (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-1233 (-567)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 161 (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "last" (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 159 (|has| $ (-6 -4417))) (($ $ "rest" $) 157 (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "first" (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 155 (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "value" (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 134 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 133 (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 46 (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 217)) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 56 (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 176 (|has| $ (-6 -4416)))) (-2357 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 148)) (-4010 (((-3 |#2| "failed") |#1| $) 62)) (-4061 (($) 7 T CONST)) (-1695 (($ $) 202 (|has| $ (-6 -4417)))) (-3315 (($ $) 212)) (-2061 (($ $ (-772)) 143) (($ $) 141)) (-1861 (($ $) 215 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-2084 (($ $) 59 (-2909 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416))) (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 47 (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) 63) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 221) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 216 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 55 (|has| $ (-6 -4416))) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 178 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 175 (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 57 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 54 (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 53 (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 177 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 174 (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 173 (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 191 (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) 89) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) 189)) (-1714 (((-112) $) 193)) (-3771 (((-567) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 209) (((-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 208 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) (((-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) 207 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 31 (|has| $ (-6 -4416))) (((-645 |#2|) $) 80 (|has| $ (-6 -4416))) (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 115 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 124)) (-2971 (((-112) $ $) 132 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-4012 (($ (-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 170)) (-2805 (((-112) $ (-772)) 9)) (-1321 ((|#1| $) 97 (|has| |#1| (-851))) (((-567) $) 181 (|has| (-567) (-851)))) (-2056 (($ $ $) 199 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3492 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ $) 218) (($ $ $) 214 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3768 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ $) 213) (($ $ $) 206 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 30 (|has| $ (-6 -4416))) (((-645 |#2|) $) 81 (|has| $ (-6 -4416))) (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 116 (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416)))) (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416))))) (-1979 ((|#1| $) 96 (|has| |#1| (-851))) (((-567) $) 182 (|has| (-567) (-851)))) (-1802 (($ $ $) 198 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 35 (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4417))) (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 111 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71) (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ $) 167) (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 110)) (-1924 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 226)) (-3230 (((-112) $ (-772)) 10)) (-3625 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 129)) (-1436 (((-112) $) 125)) (-2451 (((-1158) $) 22 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3162 (($ $ (-772)) 146) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 144)) (-3004 (((-645 |#1|) $) 64)) (-2121 (((-112) |#1| $) 65)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 40)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 41) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) 220) (($ $ $ (-567)) 219)) (-2884 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) 163) (($ $ $ (-567)) 162)) (-3940 (((-645 |#1|) $) 94) (((-645 (-567)) $) 184)) (-1664 (((-112) |#1| $) 93) (((-112) (-567) $) 185)) (-3339 (((-1120) $) 21 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-2048 ((|#2| $) 98 (|has| |#1| (-851))) (($ $ (-772)) 140) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 138)) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 52) (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 172)) (-2092 (($ $ |#2|) 99 (|has| $ (-6 -4417))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 180 (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 42)) (-2216 (((-112) $) 192)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 33 (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 113 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) 27 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 26 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 25 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 24 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 122 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 121 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 120 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) 119 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 183 (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-1412 (((-645 |#2|) $) 92) (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 186)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 188) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) 187) (($ $ (-1233 (-567))) 166) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "last") 145) (($ $ "rest") 142) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "first") 139) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "value") 127)) (-4304 (((-567) $ $) 130)) (-2069 (($) 50) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 49)) (-2816 (($ $ (-567)) 223) (($ $ (-1233 (-567))) 222)) (-2675 (($ $ (-567)) 165) (($ $ (-1233 (-567))) 164)) (-3436 (((-112) $) 128)) (-2443 (($ $) 152)) (-3709 (($ $) 153 (|has| $ (-6 -4417)))) (-1449 (((-772) $) 151)) (-1344 (($ $) 150)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 32 (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 114 (|has| $ (-6 -4416)))) (-3732 (($ $ $ (-567)) 203 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539)))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 51) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 171)) (-3962 (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 225) (($ $ $) 224)) (-2285 (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 169) (($ (-645 $)) 168) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 137) (($ $ $) 136)) (-4101 (((-863) $) 18 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863)))))) (-2936 (((-645 $) $) 123)) (-2684 (((-112) $ $) 131 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-3739 (((-112) $ $) 23 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 43)) (-3172 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") |#1| $) 109)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 34 (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 112 (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) 196 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3085 (((-112) $ $) 195 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3052 (((-112) $ $) 20 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3098 (((-112) $ $) 197 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3075 (((-112) $ $) 194 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-36 |#1| |#2|) (-140) (-1100) (-1100)) (T -36))
+((-3172 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-5 *2 (-2 (|:| -1762 *3) (|:| -3859 *4))))))
+(-13 (-1192 |t#1| |t#2|) (-667 (-2 (|:| -1762 |t#1|) (|:| -3859 |t#2|))) (-10 -8 (-15 -3172 ((-3 (-2 (|:| -1762 |t#1|) (|:| -3859 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((-102) -2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851))) ((-614 (-863)) -2909 (|has| |#2| (-1100)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863)))) ((-151 #1=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((-615 (-539)) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 #2=(-567) #1#) . T) ((-287 |#1| |#2|) . T) ((-289 #2# #1#) . T) ((-289 |#1| |#2|) . T) ((-310 #1#) -12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-283 #1#) . T) ((-375 #1#) . T) ((-492 #1#) . T) ((-492 |#2|) . T) ((-605 #2# #1#) . T) ((-605 |#1| |#2|) . T) ((-517 #1# #1#) -12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-611 |#1| |#2|) . T) ((-652 #1#) . T) ((-667 #1#) . T) ((-851) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)) ((-1011 #1#) . T) ((-1100) -2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851))) ((-1149 #1#) . T) ((-1192 |#1| |#2|) . T) ((-1216) . T) ((-1254 #1#) . T))
+((-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-38 |#2|) (-172)) (T -37))
+NIL
+(-10 -8 (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
(((-38 |#1|) (-140) (-172)) (T -38))
NIL
-(-13 (-1049) (-717 |t#1|) (-616 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3993 (((-420 |#1|) |#1|) 41)) (-4018 (((-420 |#1|) |#1|) 30) (((-420 |#1|) |#1| (-644 (-48))) 33)) (-2426 (((-112) |#1|) 59)))
-(((-39 |#1|) (-10 -7 (-15 -4018 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -3993 ((-420 |#1|) |#1|)) (-15 -2426 ((-112) |#1|))) (-1241 (-48))) (T -39))
-((-2426 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1241 (-48))))) (-3993 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1241 (-48))))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1241 (-48))))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1241 (-48))))))
-(-10 -7 (-15 -4018 ((-420 |#1|) |#1| (-644 (-48)))) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -3993 ((-420 |#1|) |#1|)) (-15 -2426 ((-112) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2021 (((-2 (|:| |num| (-1265 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-1780 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3286 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3561 (((-689 (-409 |#2|)) (-1265 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-2717 (((-409 |#2|) $) NIL)) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2555 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2068 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3733 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-3730 (((-112)) NIL)) (-1530 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-1452 (($ (-1265 (-409 |#2|)) (-1265 $)) NIL) (($ (-1265 (-409 |#2|))) 61) (($ (-1265 |#2|) |#2|) 136)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-3919 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2340 (((-689 (-409 |#2|)) $ (-1265 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-409 |#2|))) (|:| |vec| (-1265 (-409 |#2|)))) (-689 $) (-1265 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-4070 (((-1265 $) (-1265 $)) NIL)) (-2553 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-2313 (((-3 $ "failed") $) NIL)) (-4120 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-3105 (((-112) |#1| |#1|) NIL)) (-4153 (((-921)) NIL)) (-3424 (($) NIL (|has| (-409 |#2|) (-370)))) (-2351 (((-112)) NIL)) (-2462 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3930 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-1520 (($ $) NIL)) (-4183 (($) NIL (|has| (-409 |#2|) (-351)))) (-1963 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-4205 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-1968 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3077 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-3842 (((-112) $) NIL)) (-2797 (((-771)) NIL)) (-2556 (((-1265 $) (-1265 $)) 111)) (-3202 (((-409 |#2|) $) NIL)) (-2373 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-3869 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2323 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-4138 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-2542 ((|#3| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1390 (((-1157) $) NIL)) (-2755 (((-1270) (-771)) 88)) (-2241 (((-689 (-409 |#2|))) 56)) (-4131 (((-689 (-409 |#2|))) 49)) (-4282 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3438 (($ (-1265 |#2|) |#2|) 137)) (-4026 (((-689 (-409 |#2|))) 50)) (-4094 (((-689 (-409 |#2|))) 48)) (-2290 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-1630 (((-2 (|:| |num| (-1265 |#2|)) (|:| |den| |#2|)) $) 68)) (-4158 (((-1265 $)) 47)) (-2281 (((-1265 $)) 46)) (-2342 (((-112) $) NIL)) (-1304 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1342 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2430 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-2200 (((-3 |#2| "failed")) NIL)) (-1944 (((-1119) $) NIL)) (-3174 (((-771)) NIL)) (-2723 (($) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-1885 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-4018 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3792 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-3282 ((|#1| $ |#1| |#1|) NIL)) (-3080 (((-3 |#2| "failed")) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2061 (((-409 |#2|) (-1265 $)) NIL) (((-409 |#2|)) 44)) (-2816 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3009 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-1436 (((-689 (-409 |#2|)) (-1265 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-2880 ((|#3|) 55)) (-1344 (($) NIL (|has| (-409 |#2|) (-351)))) (-2803 (((-1265 (-409 |#2|)) $ (-1265 $)) NIL) (((-689 (-409 |#2|)) (-1265 $) (-1265 $)) NIL) (((-1265 (-409 |#2|)) $) 62) (((-689 (-409 |#2|)) (-1265 $)) 112)) (-2150 (((-1265 (-409 |#2|)) $) NIL) (($ (-1265 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-3405 (((-1265 $) (-1265 $)) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2676 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2655 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-1707 ((|#3| $) NIL)) (-2875 (((-771)) NIL T CONST)) (-2467 (((-112)) 42)) (-3245 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 102)) (-1597 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-1817 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3386 (((-112)) NIL)) (-3200 (($) 17 T CONST)) (-3214 (($) 27 T CONST)) (-1316 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365)))))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -2755 ((-1270) (-771))))) (-365) (-1241 |#1|) (-1241 (-409 |#2|)) |#3|) (T -40))
-((-2755 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1241 *4)) (-5 *2 (-1270)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1241 (-409 *5))) (-14 *7 *6))))
-(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -2755 ((-1270) (-771)))))
-((-3244 ((|#2| |#2|) 47)) (-2901 ((|#2| |#2|) 139 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-2764 ((|#2| |#2|) 100 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-2223 ((|#2| |#2|) 101 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-1560 ((|#2| (-114) |#2| (-771)) 135 (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-13 (-454) (-1038 (-566))))))) (-3917 (((-1171 |#2|) |#2|) 44)) (-4317 ((|#2| |#2| (-644 (-612 |#2|))) 18) ((|#2| |#2| (-644 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -3244 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -4317 (|#2| |#2| |#2|)) (-15 -4317 (|#2| |#2| (-644 |#2|))) (-15 -4317 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -3917 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-13 (-454) (-1038 (-566)))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -2223 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2901 (|#2| |#2|)) (-15 -1560 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|)) (-558) (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 |#1| (-612 $)) $)) (-15 -2702 ((-1124 |#1| (-612 $)) $)) (-15 -2725 ($ (-1124 |#1| (-612 $))))))) (T -41))
-((-1560 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)))) (-4 *5 (-558)) (-5 *1 (-41 *5 *2)) (-4 *2 (-432 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *5 (-612 $)) $)) (-15 -2702 ((-1124 *5 (-612 $)) $)) (-15 -2725 ($ (-1124 *5 (-612 $))))))))) (-2901 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $)) (-15 -2702 ((-1124 *3 (-612 $)) $)) (-15 -2725 ($ (-1124 *3 (-612 $))))))))) (-2764 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $)) (-15 -2702 ((-1124 *3 (-612 $)) $)) (-15 -2725 ($ (-1124 *3 (-612 $))))))))) (-2223 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $)) (-15 -2702 ((-1124 *3 (-612 $)) $)) (-15 -2725 ($ (-1124 *3 (-612 $))))))))) (-3917 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *4 (-612 $)) $)) (-15 -2702 ((-1124 *4 (-612 $)) $)) (-15 -2725 ($ (-1124 *4 (-612 $))))))))) (-4317 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-612 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *4 (-612 $)) $)) (-15 -2702 ((-1124 *4 (-612 $)) $)) (-15 -2725 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-4317 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *4 (-612 $)) $)) (-15 -2702 ((-1124 *4 (-612 $)) $)) (-15 -2725 ($ (-1124 *4 (-612 $))))))) (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))) (-4317 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $)) (-15 -2702 ((-1124 *3 (-612 $)) $)) (-15 -2725 ($ (-1124 *3 (-612 $))))))))) (-4317 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $)) (-15 -2702 ((-1124 *3 (-612 $)) $)) (-15 -2725 ($ (-1124 *3 (-612 $))))))))) (-3244 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $)) (-15 -2702 ((-1124 *3 (-612 $)) $)) (-15 -2725 ($ (-1124 *3 (-612 $))))))))))
-(-10 -7 (-15 -3244 (|#2| |#2|)) (-15 -4317 (|#2| |#2|)) (-15 -4317 (|#2| |#2| |#2|)) (-15 -4317 (|#2| |#2| (-644 |#2|))) (-15 -4317 (|#2| |#2| (-644 (-612 |#2|)))) (-15 -3917 ((-1171 |#2|) |#2|)) (IF (|has| |#1| (-13 (-454) (-1038 (-566)))) (IF (|has| |#2| (-432 |#1|)) (PROGN (-15 -2223 (|#2| |#2|)) (-15 -2764 (|#2| |#2|)) (-15 -2901 (|#2| |#2|)) (-15 -1560 (|#2| (-114) |#2| (-771)))) |%noBranch|) |%noBranch|))
-((-4018 (((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))) 23) (((-420 |#3|) |#3| (-644 (-48))) 19)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4018 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -4018 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48))))) (-850) (-793) (-949 (-48) |#2| |#1|)) (T -42))
-((-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5)))))
-(-10 -7 (-15 -4018 ((-420 |#3|) |#3| (-644 (-48)))) (-15 -4018 ((-420 (-1171 |#3|)) (-1171 |#3|) (-644 (-48)))))
-((-4139 (((-771) |#2|) 72)) (-4008 (((-771) |#2|) 76)) (-3160 (((-644 |#2|)) 39)) (-3692 (((-771) |#2|) 75)) (-2963 (((-771) |#2|) 71)) (-3102 (((-771) |#2|) 74)) (-2185 (((-644 (-689 |#1|))) 67)) (-2528 (((-644 |#2|)) 62)) (-2540 (((-644 |#2|) |#2|) 50)) (-3898 (((-644 |#2|)) 64)) (-2262 (((-644 |#2|)) 63)) (-2038 (((-644 (-689 |#1|))) 55)) (-1419 (((-644 |#2|)) 61)) (-3942 (((-644 |#2|) |#2|) 49)) (-2948 (((-644 |#2|)) 57)) (-2820 (((-644 (-689 |#1|))) 68)) (-4288 (((-644 |#2|)) 66)) (-2227 (((-1265 |#2|) (-1265 |#2|)) 101 (|has| |#1| (-308)))))
-(((-43 |#1| |#2|) (-10 -7 (-15 -3692 ((-771) |#2|)) (-15 -4008 ((-771) |#2|)) (-15 -2963 ((-771) |#2|)) (-15 -4139 ((-771) |#2|)) (-15 -3102 ((-771) |#2|)) (-15 -2948 ((-644 |#2|))) (-15 -3942 ((-644 |#2|) |#2|)) (-15 -2540 ((-644 |#2|) |#2|)) (-15 -1419 ((-644 |#2|))) (-15 -2528 ((-644 |#2|))) (-15 -2262 ((-644 |#2|))) (-15 -3898 ((-644 |#2|))) (-15 -4288 ((-644 |#2|))) (-15 -2038 ((-644 (-689 |#1|)))) (-15 -2185 ((-644 (-689 |#1|)))) (-15 -2820 ((-644 (-689 |#1|)))) (-15 -3160 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -2227 ((-1265 |#2|) (-1265 |#2|))) |%noBranch|)) (-558) (-419 |#1|)) (T -43))
-((-2227 (*1 *2 *2) (-12 (-5 *2 (-1265 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-43 *3 *4)))) (-3160 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2820 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2185 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2038 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-4288 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3898 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2262 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2528 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-1419 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-2540 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3942 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2948 (*1 *2) (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-419 *3)))) (-3102 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-4139 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-2963 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))) (-3692 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3)) (-4 *3 (-419 *4)))))
-(-10 -7 (-15 -3692 ((-771) |#2|)) (-15 -4008 ((-771) |#2|)) (-15 -2963 ((-771) |#2|)) (-15 -4139 ((-771) |#2|)) (-15 -3102 ((-771) |#2|)) (-15 -2948 ((-644 |#2|))) (-15 -3942 ((-644 |#2|) |#2|)) (-15 -2540 ((-644 |#2|) |#2|)) (-15 -1419 ((-644 |#2|))) (-15 -2528 ((-644 |#2|))) (-15 -2262 ((-644 |#2|))) (-15 -3898 ((-644 |#2|))) (-15 -4288 ((-644 |#2|))) (-15 -2038 ((-644 (-689 |#1|)))) (-15 -2185 ((-644 (-689 |#1|)))) (-15 -2820 ((-644 (-689 |#1|)))) (-15 -3160 ((-644 |#2|))) (IF (|has| |#1| (-308)) (-15 -2227 ((-1265 |#2|) (-1265 |#2|))) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4082 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-3677 (((-1265 (-689 |#1|)) (-1265 $)) NIL) (((-1265 (-689 |#1|))) 24)) (-3470 (((-1265 $)) 55)) (-2633 (($) NIL T CONST)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-3748 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-3371 (((-689 |#1|) (-1265 $)) NIL) (((-689 |#1|)) NIL)) (-4383 ((|#1| $) NIL)) (-3793 (((-689 |#1|) $ (-1265 $)) NIL) (((-689 |#1|) $) NIL)) (-2784 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-3668 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-3801 (($ $ (-921)) NIL)) (-2701 ((|#1| $) NIL)) (-3035 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-2822 ((|#1| (-1265 $)) NIL) ((|#1|) NIL)) (-3770 (((-1171 |#1|) $) NIL)) (-1685 (((-112)) 102)) (-1452 (($ (-1265 |#1|) (-1265 $)) NIL) (($ (-1265 |#1|)) NIL)) (-2313 (((-3 $ "failed") $) 14 (|has| |#1| (-558)))) (-4153 (((-921)) 56)) (-2745 (((-112)) NIL)) (-2284 (($ $ (-921)) NIL)) (-1375 (((-112)) NIL)) (-2282 (((-112)) NIL)) (-3164 (((-112)) 104)) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (|has| |#1| (-558)))) (-3531 (((-3 $ "failed")) NIL (|has| |#1| (-558)))) (-4306 (((-689 |#1|) (-1265 $)) NIL) (((-689 |#1|)) NIL)) (-2567 ((|#1| $) NIL)) (-1431 (((-689 |#1|) $ (-1265 $)) NIL) (((-689 |#1|) $) NIL)) (-4220 (((-3 $ "failed") $) NIL (|has| |#1| (-558)))) (-3223 (((-1171 (-952 |#1|))) NIL (|has| |#1| (-365)))) (-3510 (($ $ (-921)) NIL)) (-1625 ((|#1| $) NIL)) (-3012 (((-1171 |#1|) $) NIL (|has| |#1| (-558)))) (-3158 ((|#1| (-1265 $)) NIL) ((|#1|) NIL)) (-2234 (((-1171 |#1|) $) NIL)) (-2187 (((-112)) 101)) (-1390 (((-1157) $) NIL)) (-3804 (((-112)) 109)) (-2318 (((-112)) 108)) (-1981 (((-112)) 110)) (-1944 (((-1119) $) NIL)) (-2073 (((-112)) 103)) (-3282 ((|#1| $ (-566)) 58)) (-2803 (((-1265 |#1|) $ (-1265 $)) 53) (((-689 |#1|) (-1265 $) (-1265 $)) NIL) (((-1265 |#1|) $) 28) (((-689 |#1|) (-1265 $)) NIL)) (-2150 (((-1265 |#1|) $) NIL) (($ (-1265 |#1|)) NIL)) (-3643 (((-644 (-952 |#1|)) (-1265 $)) NIL) (((-644 (-952 |#1|))) NIL)) (-1726 (($ $ $) NIL)) (-3716 (((-112)) 98)) (-2725 (((-862) $) 75) (($ (-1265 |#1|)) 22)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 49)) (-2847 (((-644 (-1265 |#1|))) NIL (|has| |#1| (-558)))) (-2481 (($ $ $ $) NIL)) (-3086 (((-112)) 94)) (-3709 (($ (-689 |#1|) $) 18)) (-2586 (($ $ $) NIL)) (-2477 (((-112)) 100)) (-3272 (((-112)) 95)) (-3137 (((-112)) 93)) (-3200 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1141 |#2| |#1|) $) 19)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -2725 ($ (-1265 |#1|))))) (-365) (-921) (-644 (-1175)) (-1265 (-689 |#1|))) (T -44))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-365)) (-14 *6 (-1265 (-689 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))))))
-(-13 (-419 |#1|) (-648 (-1141 |#2| |#1|)) (-10 -8 (-15 -2725 ($ (-1265 |#1|)))))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2465 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-4088 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1829 (($ $) NIL)) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2506 (((-1270) $ |#1| |#1|) NIL (|has| $ (-6 -4416))) (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3190 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850))))) (-3370 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2989 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416)))) (-2363 (($ $ $) 33 (|has| $ (-6 -4416)))) (-3478 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416)))) (-3224 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 35 (|has| $ (-6 -4416)))) (-2858 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-1232 (-566)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "last" (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416))) (($ $ "rest" $) NIL (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "first" (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "value" (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-4075 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-2629 (((-3 |#2| "failed") |#1| $) 43)) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3781 (($ $ (-771)) NIL) (($ $) 29)) (-1985 (($ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4416))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) NIL)) (-4336 (((-112) $) NIL)) (-2388 (((-566) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (((-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) (((-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 20 (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415))) (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 20 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-2631 (($ (-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 38 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3169 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3848 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415))) (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2605 ((|#1| $) NIL (|has| |#1| (-850))) (((-566) $) 40 (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3641 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-2801 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-1396 (((-112) $) NIL)) (-1390 (((-1157) $) 49 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-1774 (($ $ (-771)) NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-2838 (((-644 |#1|) $) 22)) (-3932 (((-112) |#1| $) NIL)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-1510 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 |#1|) $) NIL) (((-644 (-566)) $) NIL)) (-3054 (((-112) |#1| $) NIL) (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#2| $) NIL (|has| |#1| (-850))) (($ $ (-771)) NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 27)) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1890 (((-112) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-1948 (((-644 |#2|) $) NIL) (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 19)) (-4246 (((-112) $) 18)) (-3906 (($) 14)) (-3282 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ (-566)) NIL) (($ $ (-1232 (-566))) NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "first") NIL) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $ "value") NIL)) (-4104 (((-566) $ $) NIL)) (-1873 (($) 13) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1503 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-3810 (((-112) $) NIL)) (-4278 (($ $) NIL)) (-4160 (($ $) NIL (|has| $ (-6 -4416)))) (-2251 (((-771) $) NIL)) (-2546 (($ $) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2011 (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL) (($ $ $) NIL)) (-4007 (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL) (($ (-644 $)) NIL) (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 31) (($ $ $) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1784 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") |#1| $) 51)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2854 (((-112) $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-850)))) (-3991 (((-771) $) 25 (|has| $ (-6 -4415)))))
-(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1099) (-1099)) (T -45))
+(-13 (-1050) (-718 |t#1|) (-617 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2714 (((-421 |#1|) |#1|) 41)) (-2296 (((-421 |#1|) |#1|) 30) (((-421 |#1|) |#1| (-645 (-48))) 33)) (-2784 (((-112) |#1|) 59)))
+(((-39 |#1|) (-10 -7 (-15 -2296 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -2714 ((-421 |#1|) |#1|)) (-15 -2784 ((-112) |#1|))) (-1242 (-48))) (T -39))
+((-2784 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1242 (-48))))) (-2714 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1242 (-48))))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1242 (-48))))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1242 (-48))))))
+(-10 -7 (-15 -2296 ((-421 |#1|) |#1| (-645 (-48)))) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -2714 ((-421 |#1|) |#1|)) (-15 -2784 ((-112) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4068 (((-2 (|:| |num| (-1266 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-3602 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2119 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3007 (((-690 (-410 |#2|)) (-1266 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4093 (((-410 |#2|) $) NIL)) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1401 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3405 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2013 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-3897 (((-112)) NIL)) (-3056 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3499 (($ (-1266 (-410 |#2|)) (-1266 $)) NIL) (($ (-1266 (-410 |#2|))) 61) (($ (-1266 |#2|) |#2|) 136)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2197 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4253 (((-690 (-410 |#2|)) $ (-1266 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-410 |#2|))) (|:| |vec| (-1266 (-410 |#2|)))) (-690 $) (-1266 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-4015 (((-1266 $) (-1266 $)) NIL)) (-3402 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-4014 (((-3 $ "failed") $) NIL)) (-1339 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-4017 (((-112) |#1| |#1|) NIL)) (-2432 (((-922)) NIL)) (-1649 (($) NIL (|has| (-410 |#2|) (-370)))) (-4357 (((-112)) NIL)) (-3095 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2210 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-2958 (($ $) NIL)) (-3896 (($) NIL (|has| (-410 |#2|) (-351)))) (-1596 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-2966 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-1665 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-1909 (((-922) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-351)))) (-3714 (((-112) $) NIL)) (-3163 (((-772)) NIL)) (-1413 (((-1266 $) (-1266 $)) 111)) (-3751 (((-410 |#2|) $) NIL)) (-3456 (((-645 (-953 |#1|)) (-1176)) NIL (|has| |#1| (-365)))) (-2802 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4110 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-3527 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-3392 ((|#3| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2451 (((-1158) $) NIL)) (-2780 (((-1271) (-772)) 88)) (-1337 (((-690 (-410 |#2|))) 56)) (-3468 (((-690 (-410 |#2|))) 49)) (-2559 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4244 (($ (-1266 |#2|) |#2|) 137)) (-1742 (((-690 (-410 |#2|))) 50)) (-4219 (((-690 (-410 |#2|))) 48)) (-1938 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 135)) (-1431 (((-2 (|:| |num| (-1266 |#2|)) (|:| |den| |#2|)) $) 68)) (-3691 (((-1266 $)) 47)) (-1835 (((-1266 $)) 46)) (-4273 (((-112) $) NIL)) (-2517 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2596 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3811 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-2234 (((-3 |#2| "failed")) NIL)) (-3339 (((-1120) $) NIL)) (-3529 (((-772)) NIL)) (-4099 (($) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| (-410 |#2|) (-365)))) (-3276 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2296 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2245 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4369 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1552 ((|#1| $ |#1| |#1|) NIL)) (-1944 (((-3 |#2| "failed")) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3347 (((-410 |#2|) (-1266 $)) NIL) (((-410 |#2|)) 44)) (-2097 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1930 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 131) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-772)) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3374 (((-690 (-410 |#2|)) (-1266 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-2713 ((|#3|) 55)) (-1698 (($) NIL (|has| (-410 |#2|) (-351)))) (-3216 (((-1266 (-410 |#2|)) $ (-1266 $)) NIL) (((-690 (-410 |#2|)) (-1266 $) (-1266 $)) NIL) (((-1266 (-410 |#2|)) $) 62) (((-690 (-410 |#2|)) (-1266 $)) 112)) (-3542 (((-1266 (-410 |#2|)) $) NIL) (($ (-1266 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-3947 (((-1266 $) (-1266 $)) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2909 (|has| (-410 |#2|) (-1039 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4242 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-4121 ((|#3| $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3143 (((-112)) 42)) (-2978 (((-112) |#1|) 54) (((-112) |#2|) 143)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 102)) (-2469 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2773 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1913 (((-112)) NIL)) (-1468 (($) 17 T CONST)) (-1484 (($) 27 T CONST)) (-2692 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-772)) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365)))))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-1271) (-772))))) (-365) (-1242 |#1|) (-1242 (-410 |#2|)) |#3|) (T -40))
+((-2780 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1242 *4)) (-5 *2 (-1271)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1242 (-410 *5))) (-14 *7 *6))))
+(-13 (-344 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-1271) (-772)))))
+((-2968 ((|#2| |#2|) 47)) (-1559 ((|#2| |#2|) 139 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-2852 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-2505 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-2075 ((|#2| (-114) |#2| (-772)) 135 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-455) (-1039 (-567))))))) (-3257 (((-1172 |#2|) |#2|) 44)) (-1473 ((|#2| |#2| (-645 (-613 |#2|))) 18) ((|#2| |#2| (-645 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -2968 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1473 (|#2| |#2| |#2|)) (-15 -1473 (|#2| |#2| (-645 |#2|))) (-15 -1473 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -3257 ((-1172 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1039 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -2505 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -2075 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|)) (-559) (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 |#1| (-613 $)) $)) (-15 -4078 ((-1125 |#1| (-613 $)) $)) (-15 -4101 ($ (-1125 |#1| (-613 $))))))) (T -41))
+((-2075 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1039 (-567)))) (-4 *5 (-559)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *5 (-613 $)) $)) (-15 -4078 ((-1125 *5 (-613 $)) $)) (-15 -4101 ($ (-1125 *5 (-613 $))))))))) (-1559 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $)) (-15 -4078 ((-1125 *3 (-613 $)) $)) (-15 -4101 ($ (-1125 *3 (-613 $))))))))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $)) (-15 -4078 ((-1125 *3 (-613 $)) $)) (-15 -4101 ($ (-1125 *3 (-613 $))))))))) (-2505 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $)) (-15 -4078 ((-1125 *3 (-613 $)) $)) (-15 -4101 ($ (-1125 *3 (-613 $))))))))) (-3257 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1172 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *4 (-613 $)) $)) (-15 -4078 ((-1125 *4 (-613 $)) $)) (-15 -4101 ($ (-1125 *4 (-613 $))))))))) (-1473 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-613 *2))) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *4 (-613 $)) $)) (-15 -4078 ((-1125 *4 (-613 $)) $)) (-15 -4101 ($ (-1125 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-1473 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *4 (-613 $)) $)) (-15 -4078 ((-1125 *4 (-613 $)) $)) (-15 -4101 ($ (-1125 *4 (-613 $))))))) (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))) (-1473 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $)) (-15 -4078 ((-1125 *3 (-613 $)) $)) (-15 -4101 ($ (-1125 *3 (-613 $))))))))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $)) (-15 -4078 ((-1125 *3 (-613 $)) $)) (-15 -4101 ($ (-1125 *3 (-613 $))))))))) (-2968 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-365) (-303) (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $)) (-15 -4078 ((-1125 *3 (-613 $)) $)) (-15 -4101 ($ (-1125 *3 (-613 $))))))))))
+(-10 -7 (-15 -2968 (|#2| |#2|)) (-15 -1473 (|#2| |#2|)) (-15 -1473 (|#2| |#2| |#2|)) (-15 -1473 (|#2| |#2| (-645 |#2|))) (-15 -1473 (|#2| |#2| (-645 (-613 |#2|)))) (-15 -3257 ((-1172 |#2|) |#2|)) (IF (|has| |#1| (-13 (-455) (-1039 (-567)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -2505 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -2075 (|#2| (-114) |#2| (-772)))) |%noBranch|) |%noBranch|))
+((-2296 (((-421 (-1172 |#3|)) (-1172 |#3|) (-645 (-48))) 23) (((-421 |#3|) |#3| (-645 (-48))) 19)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2296 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2296 ((-421 (-1172 |#3|)) (-1172 |#3|) (-645 (-48))))) (-851) (-794) (-950 (-48) |#2| |#1|)) (T -42))
+((-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *7 (-950 (-48) *6 *5)) (-5 *2 (-421 (-1172 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1172 *7)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-950 (-48) *6 *5)))))
+(-10 -7 (-15 -2296 ((-421 |#3|) |#3| (-645 (-48)))) (-15 -2296 ((-421 (-1172 |#3|)) (-1172 |#3|) (-645 (-48)))))
+((-3536 (((-772) |#2|) 72)) (-1505 (((-772) |#2|) 76)) (-3404 (((-645 |#2|)) 39)) (-1666 (((-772) |#2|) 75)) (-2099 (((-772) |#2|) 71)) (-3984 (((-772) |#2|) 74)) (-2076 (((-645 (-690 |#1|))) 67)) (-2527 (((-645 |#2|)) 62)) (-2658 (((-645 |#2|) |#2|) 50)) (-3089 (((-645 |#2|)) 64)) (-1601 (((-645 |#2|)) 63)) (-4212 (((-645 (-690 |#1|))) 55)) (-3234 (((-645 |#2|)) 61)) (-2220 (((-645 |#2|) |#2|) 49)) (-2043 (((-645 |#2|)) 57)) (-2129 (((-645 (-690 |#1|))) 68)) (-2552 (((-645 |#2|)) 66)) (-2557 (((-1266 |#2|) (-1266 |#2|)) 101 (|has| |#1| (-308)))))
+(((-43 |#1| |#2|) (-10 -7 (-15 -1666 ((-772) |#2|)) (-15 -1505 ((-772) |#2|)) (-15 -2099 ((-772) |#2|)) (-15 -3536 ((-772) |#2|)) (-15 -3984 ((-772) |#2|)) (-15 -2043 ((-645 |#2|))) (-15 -2220 ((-645 |#2|) |#2|)) (-15 -2658 ((-645 |#2|) |#2|)) (-15 -3234 ((-645 |#2|))) (-15 -2527 ((-645 |#2|))) (-15 -1601 ((-645 |#2|))) (-15 -3089 ((-645 |#2|))) (-15 -2552 ((-645 |#2|))) (-15 -4212 ((-645 (-690 |#1|)))) (-15 -2076 ((-645 (-690 |#1|)))) (-15 -2129 ((-645 (-690 |#1|)))) (-15 -3404 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2557 ((-1266 |#2|) (-1266 |#2|))) |%noBranch|)) (-559) (-420 |#1|)) (T -43))
+((-2557 (*1 *2 *2) (-12 (-5 *2 (-1266 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-43 *3 *4)))) (-3404 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2129 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2076 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-4212 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2552 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3089 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-1601 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2527 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3234 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-2658 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2220 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2043 (*1 *2) (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-420 *3)))) (-3984 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-3536 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-2099 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-1505 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))) (-1666 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3)) (-4 *3 (-420 *4)))))
+(-10 -7 (-15 -1666 ((-772) |#2|)) (-15 -1505 ((-772) |#2|)) (-15 -2099 ((-772) |#2|)) (-15 -3536 ((-772) |#2|)) (-15 -3984 ((-772) |#2|)) (-15 -2043 ((-645 |#2|))) (-15 -2220 ((-645 |#2|) |#2|)) (-15 -2658 ((-645 |#2|) |#2|)) (-15 -3234 ((-645 |#2|))) (-15 -2527 ((-645 |#2|))) (-15 -1601 ((-645 |#2|))) (-15 -3089 ((-645 |#2|))) (-15 -2552 ((-645 |#2|))) (-15 -4212 ((-645 (-690 |#1|)))) (-15 -2076 ((-645 (-690 |#1|)))) (-15 -2129 ((-645 (-690 |#1|)))) (-15 -3404 ((-645 |#2|))) (IF (|has| |#1| (-308)) (-15 -2557 ((-1266 |#2|) (-1266 |#2|))) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4135 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1502 (((-1266 (-690 |#1|)) (-1266 $)) NIL) (((-1266 (-690 |#1|))) 24)) (-3429 (((-1266 $)) 55)) (-4061 (($) NIL T CONST)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-4040 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-1743 (((-690 |#1|) (-1266 $)) NIL) (((-690 |#1|)) NIL)) (-4042 ((|#1| $) NIL)) (-4380 (((-690 |#1|) $ (-1266 $)) NIL) (((-690 |#1|) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-1400 (((-1172 (-953 |#1|))) NIL (|has| |#1| (-365)))) (-3356 (($ $ (-922)) NIL)) (-3511 ((|#1| $) NIL)) (-1411 (((-1172 |#1|) $) NIL (|has| |#1| (-559)))) (-2152 ((|#1| (-1266 $)) NIL) ((|#1|) NIL)) (-4214 (((-1172 |#1|) $) NIL)) (-3920 (((-112)) 102)) (-3499 (($ (-1266 |#1|) (-1266 $)) NIL) (($ (-1266 |#1|)) NIL)) (-4014 (((-3 $ "failed") $) 14 (|has| |#1| (-559)))) (-2432 (((-922)) 56)) (-3831 (((-112)) NIL)) (-1866 (($ $ (-922)) NIL)) (-3352 (((-112)) NIL)) (-1843 (((-112)) NIL)) (-3443 (((-112)) 104)) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (|has| |#1| (-559)))) (-2743 (((-3 $ "failed")) NIL (|has| |#1| (-559)))) (-2719 (((-690 |#1|) (-1266 $)) NIL) (((-690 |#1|)) NIL)) (-1568 ((|#1| $) NIL)) (-3322 (((-690 |#1|) $ (-1266 $)) NIL) (((-690 |#1|) $) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#1| (-559)))) (-2778 (((-1172 (-953 |#1|))) NIL (|has| |#1| (-365)))) (-3747 (($ $ (-922)) NIL)) (-1380 ((|#1| $) NIL)) (-2575 (((-1172 |#1|) $) NIL (|has| |#1| (-559)))) (-3385 ((|#1| (-1266 $)) NIL) ((|#1|) NIL)) (-2632 (((-1172 |#1|) $) NIL)) (-2095 (((-112)) 101)) (-2451 (((-1158) $) NIL)) (-3387 (((-112)) 109)) (-4064 (((-112)) 108)) (-1815 (((-112)) 110)) (-3339 (((-1120) $) NIL)) (-3451 (((-112)) 103)) (-1552 ((|#1| $ (-567)) 58)) (-3216 (((-1266 |#1|) $ (-1266 $)) 53) (((-690 |#1|) (-1266 $) (-1266 $)) NIL) (((-1266 |#1|) $) 28) (((-690 |#1|) (-1266 $)) NIL)) (-3542 (((-1266 |#1|) $) NIL) (($ (-1266 |#1|)) NIL)) (-2539 (((-645 (-953 |#1|)) (-1266 $)) NIL) (((-645 (-953 |#1|))) NIL)) (-4272 (($ $ $) NIL)) (-1911 (((-112)) 98)) (-4101 (((-863) $) 75) (($ (-1266 |#1|)) 22)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 49)) (-2411 (((-645 (-1266 |#1|))) NIL (|has| |#1| (-559)))) (-3280 (($ $ $ $) NIL)) (-3854 (((-112)) 94)) (-1992 (($ (-690 |#1|) $) 18)) (-1816 (($ $ $) NIL)) (-3239 (((-112)) 100)) (-3244 (((-112)) 95)) (-4307 (((-112)) 93)) (-1468 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1142 |#2| |#1|) $) 19)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-420 |#1|) (-649 (-1142 |#2| |#1|)) (-10 -8 (-15 -4101 ($ (-1266 |#1|))))) (-365) (-922) (-645 (-1176)) (-1266 (-690 |#1|))) (T -44))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-365)) (-14 *6 (-1266 (-690 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))))))
+(-13 (-420 |#1|) (-649 (-1142 |#2| |#1|)) (-10 -8 (-15 -4101 ($ (-1266 |#1|)))))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3843 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2369 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3221 (($ $) NIL)) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2275 (((-1271) $ |#1| |#1|) NIL (|has| $ (-6 -4417))) (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3655 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851))))) (-1594 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-2372 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417)))) (-3371 (($ $ $) 33 (|has| $ (-6 -4417)))) (-3487 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417)))) (-2790 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 35 (|has| $ (-6 -4417)))) (-4230 ((|#2| $ |#1| |#2|) 53) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-1233 (-567)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "last" (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417))) (($ $ "rest" $) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "first" (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "value" (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-2357 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-4010 (((-3 |#2| "failed") |#1| $) 43)) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2061 (($ $ (-772)) NIL) (($ $) 29)) (-1861 (($ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) 56) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4417))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) NIL)) (-1714 (((-112) $) NIL)) (-3771 (((-567) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (((-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) (((-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 20 (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416))) (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 20 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-4012 (($ (-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 38 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3492 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3768 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416))) (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-1979 ((|#1| $) NIL (|has| |#1| (-851))) (((-567) $) 40 (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-1924 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3625 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-1436 (((-112) $) NIL)) (-2451 (((-1158) $) 49 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3162 (($ $ (-772)) NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3004 (((-645 |#1|) $) 22)) (-2121 (((-112) |#1| $) NIL)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-2884 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 |#1|) $) NIL) (((-645 (-567)) $) NIL)) (-1664 (((-112) |#1| $) NIL) (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#2| $) NIL (|has| |#1| (-851))) (($ $ (-772)) NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 27)) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2216 (((-112) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-1412 (((-645 |#2|) $) NIL) (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 19)) (-3353 (((-112) $) 18)) (-3164 (($) 14)) (-1552 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ (-567)) NIL) (($ $ (-1233 (-567))) NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "first") NIL) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $ "value") NIL)) (-4304 (((-567) $ $) NIL)) (-2069 (($) 13) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2816 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3436 (((-112) $) NIL)) (-2443 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4417)))) (-1449 (((-772) $) NIL)) (-1344 (($ $) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3962 (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL) (($ $ $) NIL)) (-2285 (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL) (($ (-645 $)) NIL) (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 31) (($ $ $) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3172 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") |#1| $) 51)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3098 (((-112) $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-851)))) (-2268 (((-772) $) 25 (|has| $ (-6 -4416)))))
+(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1100) (-1100)) (T -45))
NIL
(-36 |#1| |#2|)
-((-3819 (((-112) $) 12)) (-2101 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-409 (-566)) $) 25) (($ $ (-409 (-566))) NIL)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3819 ((-112) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-47 |#2| |#3|) (-1049) (-792)) (T -46))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -3819 ((-112) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-3819 (((-112) $) 74)) (-4145 (($ |#1| |#2|) 73)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3838 ((|#2| $) 76)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3623 ((|#1| $ |#2|) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-47 |#1| |#2|) (-140) (-1049) (-792)) (T -47))
-((-4334 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-4323 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-4145 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3623 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-2916 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-365)))))
-(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (-15 -4334 (|t#1| $)) (-15 -4323 ($ $)) (-15 -3838 (|t#2| $)) (-15 -2101 ($ (-1 |t#1| |t#1|) $)) (-15 -3819 ((-112) $)) (-15 -4145 ($ |t#1| |t#2|)) (-15 -4358 ($ $)) (-15 -3623 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -2916 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-558)) (-6 (-558)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-6 (-38 (-409 (-566)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-1454 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3542 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-3545 (((-112) $) 11)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3860 (((-644 (-612 $)) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-1713 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4028 (($ $) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-1748 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-2563 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2023 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-3343 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-3919 (($ $ $) NIL)) (-3717 (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-409 (-566)))) (|:| |vec| (-1265 (-409 (-566))))) (-689 $) (-1265 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-2553 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3206 (($ $) NIL) (($ (-644 $)) NIL)) (-3684 (((-644 (-114)) $) NIL)) (-3959 (((-114) (-114)) NIL)) (-3842 (((-112) $) 14)) (-1687 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2691 (((-1124 (-566) (-612 $)) $) NIL)) (-2810 (($ $ (-566)) NIL)) (-3202 (((-1171 $) (-1171 $) (-612 $)) NIL) (((-1171 $) (-1171 $) (-644 (-612 $))) NIL) (($ $ (-612 $)) NIL) (($ $ (-644 (-612 $))) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2391 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-2101 (($ (-1 $ $) (-612 $)) NIL)) (-3308 (((-3 (-612 $) "failed") $) NIL)) (-1853 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-3944 (((-644 (-612 $)) $) NIL)) (-2770 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-3044 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-4282 (($ $) NIL)) (-1695 (((-771) $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3761 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3934 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-1754 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3792 (((-771) $) NIL)) (-3282 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2220 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ (-771)) NIL) (($ $) NIL)) (-2702 (((-1124 (-566) (-612 $)) $) NIL)) (-2880 (($ $) NIL (|has| $ (-1049)))) (-2150 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-2725 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) NIL)) (-2875 (((-771)) NIL T CONST)) (-3016 (($ $) NIL) (($ (-644 $)) NIL)) (-2827 (((-112) (-114)) NIL)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) 7 T CONST)) (-3214 (($) 12 T CONST)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2817 (((-112) $ $) 16)) (-2916 (($ $ $) NIL)) (-2905 (($ $ $) 15) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) NIL) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL)))
-(((-48) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2725 ($ (-1124 (-566) (-612 $)))) (-15 -2691 ((-1124 (-566) (-612 $)) $)) (-15 -2702 ((-1124 (-566) (-612 $)) $)) (-15 -2553 ($ $)) (-15 -3202 ((-1171 $) (-1171 $) (-612 $))) (-15 -3202 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -3202 ($ $ (-612 $))) (-15 -3202 ($ $ (-644 (-612 $))))))) (T -48))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48)))) (-2553 (*1 *1 *1) (-5 *1 (-48))) (-3202 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48)))) (-3202 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48)))) (-3202 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48)))) (-3202 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48)))))
-(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2725 ($ (-1124 (-566) (-612 $)))) (-15 -2691 ((-1124 (-566) (-612 $)) $)) (-15 -2702 ((-1124 (-566) (-612 $)) $)) (-15 -2553 ($ $)) (-15 -3202 ((-1171 $) (-1171 $) (-612 $))) (-15 -3202 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -3202 ($ $ (-612 $))) (-15 -3202 ($ $ (-644 (-612 $))))))
-((-3979 (((-112) $ $) NIL)) (-2361 (((-644 (-508)) $) 17)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 7)) (-3546 (((-1180) $) 18)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-49) (-13 (-1099) (-10 -8 (-15 -2361 ((-644 (-508)) $)) (-15 -3546 ((-1180) $))))) (T -49))
-((-2361 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49)))))
-(-13 (-1099) (-10 -8 (-15 -2361 ((-644 (-508)) $)) (-15 -3546 ((-1180) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 87)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2935 (((-112) $) 30)) (-2023 (((-3 |#1| "failed") $) 33)) (-3343 ((|#1| $) 34)) (-4358 (($ $) 40)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-4334 ((|#1| $) 31)) (-1988 (($ $) 76)) (-1390 (((-1157) $) NIL)) (-1641 (((-112) $) 43)) (-1944 (((-1119) $) NIL)) (-2723 (($ (-771)) 74)) (-1535 (($ (-644 (-566))) 75)) (-3838 (((-771) $) 44)) (-2725 (((-862) $) 93) (($ (-566)) 71) (($ |#1|) 69)) (-3623 ((|#1| $ $) 28)) (-2875 (((-771)) 73 T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 45 T CONST)) (-3214 (($) 17 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
-(((-50 |#1| |#2|) (-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -4334 (|#1| $)) (-15 -1988 ($ $)) (-15 -4358 ($ $)) (-15 -3623 (|#1| $ $)) (-15 -2723 ($ (-771))) (-15 -1535 ($ (-644 (-566)))) (-15 -1641 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3838 ((-771) $)) (-15 -2101 ($ (-1 |#1| |#1|) $)))) (-1049) (-644 (-1175))) (T -50))
-((-4334 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-1988 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-4358 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))))) (-3623 (*1 *2 *1 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175))))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-1535 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049)) (-14 *4 (-644 (-1175))))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-50 *3 *4)) (-14 *4 (-644 (-1175))))))
-(-13 (-620 |#1|) (-1038 |#1|) (-10 -8 (-15 -4334 (|#1| $)) (-15 -1988 ($ $)) (-15 -4358 ($ $)) (-15 -3623 (|#1| $ $)) (-15 -2723 ($ (-771))) (-15 -1535 ($ (-644 (-566)))) (-15 -1641 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3838 ((-771) $)) (-15 -2101 ($ (-1 |#1| |#1|) $))))
-((-2935 (((-112) (-52)) 18)) (-2023 (((-3 |#1| "failed") (-52)) 20)) (-3343 ((|#1| (-52)) 21)) (-2725 (((-52) |#1|) 14)))
-(((-51 |#1|) (-10 -7 (-15 -2725 ((-52) |#1|)) (-15 -2023 ((-3 |#1| "failed") (-52))) (-15 -2935 ((-112) (-52))) (-15 -3343 (|#1| (-52)))) (-1215)) (T -51))
-((-3343 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1215)))) (-2935 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1215)))) (-2023 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1215)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1215)))))
-(-10 -7 (-15 -2725 ((-52) |#1|)) (-15 -2023 ((-3 |#1| "failed") (-52))) (-15 -2935 ((-112) (-52))) (-15 -3343 (|#1| (-52))))
-((-3979 (((-112) $ $) NIL)) (-2635 (((-774) $) 8)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1715 (((-1103) $) 10)) (-2725 (((-862) $) 15)) (-1479 (((-112) $ $) NIL)) (-3122 (($ (-1103) (-774)) 16)) (-2817 (((-112) $ $) 12)))
-(((-52) (-13 (-1099) (-10 -8 (-15 -3122 ($ (-1103) (-774))) (-15 -1715 ((-1103) $)) (-15 -2635 ((-774) $))))) (T -52))
-((-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52)))) (-2635 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52)))))
-(-13 (-1099) (-10 -8 (-15 -3122 ($ (-1103) (-774))) (-15 -1715 ((-1103) $)) (-15 -2635 ((-774) $))))
-((-3709 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3709 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1049) (-648 |#1|) (-852 |#1|)) (T -53))
-((-3709 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5)))))
-(-10 -7 (-15 -3709 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1511 ((|#3| |#3| (-644 (-1175))) 46)) (-3350 ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921)) 32) ((|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|) 31)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3350 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -3350 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -1511 (|#3| |#3| (-644 (-1175))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -54))
-((-1511 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-3350 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099)) (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5)))) (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3350 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -3350 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3|)) (-15 -3350 (|#3| (-644 (-1075 |#1| |#2| |#3|)) |#3| (-921))) (-15 -1511 (|#3| |#3| (-644 (-1175)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 14)) (-2023 (((-3 (-771) "failed") $) 34)) (-3343 (((-771) $) NIL)) (-3842 (((-112) $) 16)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) 18)) (-2725 (((-862) $) 23) (($ (-771)) 29)) (-1479 (((-112) $ $) NIL)) (-2296 (($) 11 T CONST)) (-2817 (((-112) $ $) 20)))
-(((-55) (-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -2296 ($) -3854) (-15 -3545 ((-112) $)) (-15 -3842 ((-112) $))))) (T -55))
-((-2296 (*1 *1) (-5 *1 (-55))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3842 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
-(-13 (-1099) (-1038 (-771)) (-10 -8 (-15 -2296 ($) -3854) (-15 -3545 ((-112) $)) (-15 -3842 ((-112) $))))
-((-2261 (((-112) $ (-771)) 27)) (-1629 (($ $ (-566) |#3|) 66)) (-3918 (($ $ (-566) |#4|) 70)) (-1703 ((|#3| $ (-566)) 79)) (-1523 (((-644 |#2|) $) 47)) (-2429 (((-112) $ (-771)) 31)) (-3938 (((-112) |#2| $) 74)) (-3023 (($ (-1 |#2| |#2|) $) 55)) (-2101 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-1864 (((-112) $ (-771)) 29)) (-3598 (($ $ |#2|) 52)) (-1900 (((-112) (-1 (-112) |#2|) $) 21)) (-3282 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) 35)) (-1958 (((-771) (-1 (-112) |#2|) $) 41) (((-771) |#2| $) 76)) (-2878 (($ $) 51)) (-1428 ((|#4| $ (-566)) 82)) (-2725 (((-862) $) 88)) (-2610 (((-112) (-1 (-112) |#2|) $) 20)) (-2817 (((-112) $ $) 73)) (-3991 (((-771) $) 32)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3918 (|#1| |#1| (-566) |#4|)) (-15 -1629 (|#1| |#1| (-566) |#3|)) (-15 -1523 ((-644 |#2|) |#1|)) (-15 -1428 (|#4| |#1| (-566))) (-15 -1703 (|#3| |#1| (-566))) (-15 -3282 (|#2| |#1| (-566) (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) (-566))) (-15 -3598 (|#1| |#1| |#2|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#2| |#1|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771))) (-15 -2878 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1215) (-375 |#2|) (-375 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3918 (|#1| |#1| (-566) |#4|)) (-15 -1629 (|#1| |#1| (-566) |#3|)) (-15 -1523 ((-644 |#2|) |#1|)) (-15 -1428 (|#4| |#1| (-566))) (-15 -1703 (|#3| |#1| (-566))) (-15 -3282 (|#2| |#1| (-566) (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) (-566))) (-15 -3598 (|#1| |#1| |#2|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#2| |#1|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771))) (-15 -2878 (|#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#1| $ (-566) (-566) |#1|) 45)) (-1629 (($ $ (-566) |#2|) 43)) (-3918 (($ $ (-566) |#3|) 42)) (-2633 (($) 7 T CONST)) (-1703 ((|#2| $ (-566)) 47)) (-3031 ((|#1| $ (-566) (-566) |#1|) 44)) (-2975 ((|#1| $ (-566) (-566)) 49)) (-1523 (((-644 |#1|) $) 31)) (-2368 (((-771) $) 52)) (-2631 (($ (-771) (-771) |#1|) 58)) (-2378 (((-771) $) 51)) (-2429 (((-112) $ (-771)) 9)) (-2110 (((-566) $) 56)) (-4086 (((-566) $) 54)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2952 (((-566) $) 55)) (-4280 (((-566) $) 53)) (-3023 (($ (-1 |#1| |#1|) $) 35)) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) 57)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-1428 ((|#3| $ (-566)) 46)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-57 |#1| |#2| |#3|) (-140) (-1215) (-375 |t#1|) (-375 |t#1|)) (T -57))
-((-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2631 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1215)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3598 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1215)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-566)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-771)))) (-3282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1215)))) (-2975 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1215)))) (-3282 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1215)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1703 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1215)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1215)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-1523 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 *3)))) (-2858 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1215)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-3031 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1215)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1629 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1215)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-3918 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1215)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-3023 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2101 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2101 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
-(-13 (-491 |t#1|) (-10 -8 (-6 -4416) (-6 -4415) (-15 -2631 ($ (-771) (-771) |t#1|)) (-15 -3598 ($ $ |t#1|)) (-15 -2110 ((-566) $)) (-15 -2952 ((-566) $)) (-15 -4086 ((-566) $)) (-15 -4280 ((-566) $)) (-15 -2368 ((-771) $)) (-15 -2378 ((-771) $)) (-15 -3282 (|t#1| $ (-566) (-566))) (-15 -2975 (|t#1| $ (-566) (-566))) (-15 -3282 (|t#1| $ (-566) (-566) |t#1|)) (-15 -1703 (|t#2| $ (-566))) (-15 -1428 (|t#3| $ (-566))) (-15 -1523 ((-644 |t#1|) $)) (-15 -2858 (|t#1| $ (-566) (-566) |t#1|)) (-15 -3031 (|t#1| $ (-566) (-566) |t#1|)) (-15 -1629 ($ $ (-566) |t#2|)) (-15 -3918 ($ $ (-566) |t#3|)) (-15 -2101 ($ (-1 |t#1| |t#1|) $)) (-15 -3023 ($ (-1 |t#1| |t#1|) $)) (-15 -2101 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2101 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-4123 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2553 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2101 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
-(((-58 |#1| |#2|) (-10 -7 (-15 -4123 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2101 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1215) (-1215)) (T -58))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1215)) (-4 *2 (-1215)) (-5 *1 (-58 *5 *2)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1215)) (-4 *5 (-1215)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
-(-10 -7 (-15 -4123 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2101 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3795 (($ (-644 |#1|)) 11) (($ (-771) |#1|) 14)) (-2631 (($ (-771) |#1|) 13)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 10)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3795 ($ (-644 |#1|))) (-15 -3795 ($ (-771) |#1|)))) (-1215)) (T -59))
-((-3795 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-59 *3)))) (-3795 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1215)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -3795 ($ (-644 |#1|))) (-15 -3795 ($ (-771) |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1629 (($ $ (-566) (-59 |#1|)) NIL)) (-3918 (($ $ (-566) (-59 |#1|)) NIL)) (-2633 (($) NIL T CONST)) (-1703 (((-59 |#1|) $ (-566)) NIL)) (-3031 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2975 ((|#1| $ (-566) (-566)) NIL)) (-1523 (((-644 |#1|) $) NIL)) (-2368 (((-771) $) NIL)) (-2631 (($ (-771) (-771) |#1|) NIL)) (-2378 (((-771) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2110 (((-566) $) NIL)) (-4086 (((-566) $) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2952 (((-566) $) NIL)) (-4280 (((-566) $) NIL)) (-3023 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-1428 (((-59 |#1|) $ (-566)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4416))) (-1215)) (T -60))
-NIL
-(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4416)))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 74) (((-3 $ "failed") (-1265 (-317 (-566)))) 63) (((-3 $ "failed") (-1265 (-952 (-381)))) 94) (((-3 $ "failed") (-1265 (-952 (-566)))) 84) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 52) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 39)) (-3343 (($ (-1265 (-317 (-381)))) 70) (($ (-1265 (-317 (-566)))) 59) (($ (-1265 (-952 (-381)))) 90) (($ (-1265 (-952 (-566)))) 80) (($ (-1265 (-409 (-952 (-381))))) 48) (($ (-1265 (-409 (-952 (-566))))) 32)) (-2887 (((-1270) $) 127)) (-2725 (((-862) $) 121) (($ (-644 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 101) (($ (-1265 (-341 (-2738 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2738) (-699)))) 31)))
-(((-61 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2738) (-699))))))) (-1175)) (T -61))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2738) (-699)))) (-5 *1 (-61 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2738) (-699)))))))
-((-2887 (((-1270) $) 54) (((-1270)) 55)) (-2725 (((-862) $) 51)))
-(((-62 |#1|) (-13 (-397) (-10 -7 (-15 -2887 ((-1270))))) (-1175)) (T -62))
-((-2887 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-62 *3)) (-14 *3 (-1175)))))
-(-13 (-397) (-10 -7 (-15 -2887 ((-1270)))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 154) (((-3 $ "failed") (-1265 (-317 (-566)))) 144) (((-3 $ "failed") (-1265 (-952 (-381)))) 174) (((-3 $ "failed") (-1265 (-952 (-566)))) 164) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 133) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 121)) (-3343 (($ (-1265 (-317 (-381)))) 150) (($ (-1265 (-317 (-566)))) 140) (($ (-1265 (-952 (-381)))) 170) (($ (-1265 (-952 (-566)))) 160) (($ (-1265 (-409 (-952 (-381))))) 129) (($ (-1265 (-409 (-952 (-566))))) 114)) (-2887 (((-1270) $) 107)) (-2725 (((-862) $) 101) (($ (-644 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 33) (($ (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699)))) 99)))
-(((-63 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699))))))) (-1175)) (T -63))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699)))) (-5 *1 (-63 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699)))))))
-((-2023 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-566))) 46) (((-3 $ "failed") (-952 (-381))) 50) (((-3 $ "failed") (-952 (-566))) 54) (((-3 $ "failed") (-409 (-952 (-381)))) 36) (((-3 $ "failed") (-409 (-952 (-566)))) 29)) (-3343 (($ (-317 (-381))) 39) (($ (-317 (-566))) 44) (($ (-952 (-381))) 48) (($ (-952 (-566))) 52) (($ (-409 (-952 (-381)))) 34) (($ (-409 (-952 (-566)))) 26)) (-2887 (((-1270) $) 76)) (-2725 (((-862) $) 69) (($ (-644 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 64) (($ (-341 (-2738 (QUOTE X)) (-2738) (-699))) 25)))
-(((-64 |#1|) (-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738 (QUOTE X)) (-2738) (-699)))))) (-1175)) (T -64))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-341 (-2738 (QUOTE X)) (-2738) (-699))) (-5 *1 (-64 *3)) (-14 *3 (-1175)))))
-(-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738 (QUOTE X)) (-2738) (-699))))))
-((-2023 (((-3 $ "failed") (-689 (-317 (-381)))) 114) (((-3 $ "failed") (-689 (-317 (-566)))) 102) (((-3 $ "failed") (-689 (-952 (-381)))) 136) (((-3 $ "failed") (-689 (-952 (-566)))) 125) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 90) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 76)) (-3343 (($ (-689 (-317 (-381)))) 110) (($ (-689 (-317 (-566)))) 98) (($ (-689 (-952 (-381)))) 132) (($ (-689 (-952 (-566)))) 121) (($ (-689 (-409 (-952 (-381))))) 86) (($ (-689 (-409 (-952 (-566))))) 69)) (-2887 (((-1270) $) 144)) (-2725 (((-862) $) 138) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 32) (($ (-689 (-341 (-2738) (-2738 (QUOTE X) (QUOTE HESS)) (-699)))) 59)))
-(((-65 |#1|) (-13 (-386) (-616 (-689 (-341 (-2738) (-2738 (QUOTE X) (QUOTE HESS)) (-699))))) (-1175)) (T -65))
-NIL
-(-13 (-386) (-616 (-689 (-341 (-2738) (-2738 (QUOTE X) (QUOTE HESS)) (-699)))))
-((-2023 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-566))) 65) (((-3 $ "failed") (-952 (-381))) 69) (((-3 $ "failed") (-952 (-566))) 73) (((-3 $ "failed") (-409 (-952 (-381)))) 55) (((-3 $ "failed") (-409 (-952 (-566)))) 48)) (-3343 (($ (-317 (-381))) 58) (($ (-317 (-566))) 63) (($ (-952 (-381))) 67) (($ (-952 (-566))) 71) (($ (-409 (-952 (-381)))) 53) (($ (-409 (-952 (-566)))) 45)) (-2887 (((-1270) $) 82)) (-2725 (((-862) $) 76) (($ (-644 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 32) (($ (-341 (-2738) (-2738 (QUOTE XC)) (-699))) 40)))
-(((-66 |#1|) (-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738) (-2738 (QUOTE XC)) (-699)))))) (-1175)) (T -66))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-341 (-2738) (-2738 (QUOTE XC)) (-699))) (-5 *1 (-66 *3)) (-14 *3 (-1175)))))
-(-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738) (-2738 (QUOTE XC)) (-699))))))
-((-2887 (((-1270) $) 68)) (-2725 (((-862) $) 62) (($ (-689 (-699))) 54) (($ (-644 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 58)))
-(((-67 |#1|) (-385) (-1175)) (T -67))
+((-3523 (((-112) $) 12)) (-3494 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-410 (-567)) $) 25) (($ $ (-410 (-567))) NIL)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-47 |#2| |#3|) (-1050) (-793)) (T -46))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3523 ((-112) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-3523 (((-112) $) 74)) (-2422 (($ |#1| |#2|) 73)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3677 ((|#2| $) 76)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2339 ((|#1| $ |#2|) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-47 |#1| |#2|) (-140) (-1050) (-793)) (T -47))
+((-2613 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-2599 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2422 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-2637 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-2339 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *2 (-365)))))
+(-13 (-1050) (-111 |t#1| |t#1|) (-10 -8 (-15 -2613 (|t#1| $)) (-15 -2599 ($ $)) (-15 -3677 (|t#2| $)) (-15 -3494 ($ (-1 |t#1| |t#1|) $)) (-15 -3523 ((-112) $)) (-15 -2422 ($ |t#1| |t#2|)) (-15 -2637 ($ $)) (-15 -2339 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-365)) (-15 -3168 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-559)) (-6 (-559)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-6 (-38 (-410 (-567)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-3519 (((-645 $) (-1172 $) (-1176)) NIL) (((-645 $) (-1172 $)) NIL) (((-645 $) (-953 $)) NIL)) (-2836 (($ (-1172 $) (-1176)) NIL) (($ (-1172 $)) NIL) (($ (-953 $)) NIL)) (-2865 (((-112) $) 11)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2138 (((-645 (-613 $)) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3099 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-2307 (($ $) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-3348 (((-645 $) (-1172 $) (-1176)) NIL) (((-645 $) (-1172 $)) NIL) (((-645 $) (-953 $)) NIL)) (-1515 (($ (-1172 $) (-1176)) NIL) (($ (-1172 $)) NIL) (($ (-953 $)) NIL)) (-3417 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-1621 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2197 (($ $ $) NIL)) (-1920 (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-410 (-567)))) (|:| |vec| (-1266 (-410 (-567))))) (-690 $) (-1266 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-3402 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-3775 (($ $) NIL) (($ (-645 $)) NIL)) (-1583 (((-645 (-114)) $) NIL)) (-2236 (((-114) (-114)) NIL)) (-3714 (((-112) $) 14)) (-3937 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-4067 (((-1125 (-567) (-613 $)) $) NIL)) (-3287 (($ $ (-567)) NIL)) (-3751 (((-1172 $) (-1172 $) (-613 $)) NIL) (((-1172 $) (-1172 $) (-645 (-613 $))) NIL) (($ $ (-613 $)) NIL) (($ $ (-645 (-613 $))) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3612 (((-1172 $) (-613 $)) NIL (|has| $ (-1050)))) (-3494 (($ (-1 $ $) (-613 $)) NIL)) (-2378 (((-3 (-613 $) "failed") $) NIL)) (-3245 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-2224 (((-645 (-613 $)) $) NIL)) (-4147 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1527 (((-112) $ (-114)) NIL) (((-112) $ (-1176)) NIL)) (-2559 (($ $) NIL)) (-3080 (((-772) $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ (-645 $)) NIL) (($ $ $) NIL)) (-4151 (((-112) $ $) NIL) (((-112) $ (-1176)) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2143 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-3140 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1176) (-1 $ (-645 $))) NIL) (($ $ (-1176) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4369 (((-772) $) NIL)) (-1552 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2468 (($ $) NIL) (($ $ $) NIL)) (-1930 (($ $ (-772)) NIL) (($ $) NIL)) (-4078 (((-1125 (-567) (-613 $)) $) NIL)) (-2713 (($ $) NIL (|has| $ (-1050)))) (-3542 (((-381) $) NIL) (((-225) $) NIL) (((-169 (-381)) $) NIL)) (-4101 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1125 (-567) (-613 $))) NIL)) (-2686 (((-772)) NIL T CONST)) (-4385 (($ $) NIL) (($ (-645 $)) NIL)) (-2214 (((-112) (-114)) NIL)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) 7 T CONST)) (-1484 (($) 12 T CONST)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3052 (((-112) $ $) 16)) (-3168 (($ $ $) NIL)) (-3156 (($ $ $) 15) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) NIL) (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL)))
+(((-48) (-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4101 ($ (-1125 (-567) (-613 $)))) (-15 -4067 ((-1125 (-567) (-613 $)) $)) (-15 -4078 ((-1125 (-567) (-613 $)) $)) (-15 -3402 ($ $)) (-15 -3751 ((-1172 $) (-1172 $) (-613 $))) (-15 -3751 ((-1172 $) (-1172 $) (-645 (-613 $)))) (-15 -3751 ($ $ (-613 $))) (-15 -3751 ($ $ (-645 (-613 $))))))) (T -48))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1125 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-48)))) (-5 *1 (-48)))) (-3402 (*1 *1 *1) (-5 *1 (-48))) (-3751 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48)))))
+(-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4101 ($ (-1125 (-567) (-613 $)))) (-15 -4067 ((-1125 (-567) (-613 $)) $)) (-15 -4078 ((-1125 (-567) (-613 $)) $)) (-15 -3402 ($ $)) (-15 -3751 ((-1172 $) (-1172 $) (-613 $))) (-15 -3751 ((-1172 $) (-1172 $) (-645 (-613 $)))) (-15 -3751 ($ $ (-613 $))) (-15 -3751 ($ $ (-645 (-613 $))))))
+((-2257 (((-112) $ $) NIL)) (-3192 (((-645 (-509)) $) 17)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 7)) (-1830 (((-1181) $) 18)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-49) (-13 (-1100) (-10 -8 (-15 -3192 ((-645 (-509)) $)) (-15 -1830 ((-1181) $))))) (T -49))
+((-3192 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-49)))))
+(-13 (-1100) (-10 -8 (-15 -3192 ((-645 (-509)) $)) (-15 -1830 ((-1181) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 87)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-1929 (((-112) $) 30)) (-3417 (((-3 |#1| "failed") $) 33)) (-1621 ((|#1| $) 34)) (-2637 (($ $) 40)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2613 ((|#1| $) 31)) (-1884 (($ $) 76)) (-2451 (((-1158) $) NIL)) (-1587 (((-112) $) 43)) (-3339 (((-1120) $) NIL)) (-4099 (($ (-772)) 74)) (-2910 (($ (-645 (-567))) 75)) (-3677 (((-772) $) 44)) (-4101 (((-863) $) 93) (($ (-567)) 71) (($ |#1|) 69)) (-2339 ((|#1| $ $) 28)) (-2686 (((-772)) 73 T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 45 T CONST)) (-1484 (($) 17 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 67) (($ |#1| $) 60)))
+(((-50 |#1| |#2|) (-13 (-621 |#1|) (-1039 |#1|) (-10 -8 (-15 -2613 (|#1| $)) (-15 -1884 ($ $)) (-15 -2637 ($ $)) (-15 -2339 (|#1| $ $)) (-15 -4099 ($ (-772))) (-15 -2910 ($ (-645 (-567)))) (-15 -1587 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -3677 ((-772) $)) (-15 -3494 ($ (-1 |#1| |#1|) $)))) (-1050) (-645 (-1176))) (T -50))
+((-2613 (*1 *2 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1176))))) (-1884 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1176))))) (-2637 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1176))))) (-2339 (*1 *2 *1 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1176))))) (-4099 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1176))))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1176))))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1176))))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1176))))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050)) (-14 *4 (-645 (-1176))))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-50 *3 *4)) (-14 *4 (-645 (-1176))))))
+(-13 (-621 |#1|) (-1039 |#1|) (-10 -8 (-15 -2613 (|#1| $)) (-15 -1884 ($ $)) (-15 -2637 ($ $)) (-15 -2339 (|#1| $ $)) (-15 -4099 ($ (-772))) (-15 -2910 ($ (-645 (-567)))) (-15 -1587 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -3677 ((-772) $)) (-15 -3494 ($ (-1 |#1| |#1|) $))))
+((-1929 (((-112) (-52)) 18)) (-3417 (((-3 |#1| "failed") (-52)) 20)) (-1621 ((|#1| (-52)) 21)) (-4101 (((-52) |#1|) 14)))
+(((-51 |#1|) (-10 -7 (-15 -4101 ((-52) |#1|)) (-15 -3417 ((-3 |#1| "failed") (-52))) (-15 -1929 ((-112) (-52))) (-15 -1621 (|#1| (-52)))) (-1216)) (T -51))
+((-1621 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1216)))) (-1929 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1216)))) (-3417 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1216)))) (-4101 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1216)))))
+(-10 -7 (-15 -4101 ((-52) |#1|)) (-15 -3417 ((-3 |#1| "failed") (-52))) (-15 -1929 ((-112) (-52))) (-15 -1621 (|#1| (-52))))
+((-2257 (((-112) $ $) NIL)) (-4016 (((-775) $) 8)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3101 (((-1104) $) 10)) (-4101 (((-863) $) 15)) (-3739 (((-112) $ $) NIL)) (-1390 (($ (-1104) (-775)) 16)) (-3052 (((-112) $ $) 12)))
+(((-52) (-13 (-1100) (-10 -8 (-15 -1390 ($ (-1104) (-775))) (-15 -3101 ((-1104) $)) (-15 -4016 ((-775) $))))) (T -52))
+((-1390 (*1 *1 *2 *3) (-12 (-5 *2 (-1104)) (-5 *3 (-775)) (-5 *1 (-52)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-52)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52)))))
+(-13 (-1100) (-10 -8 (-15 -1390 ($ (-1104) (-775))) (-15 -3101 ((-1104) $)) (-15 -4016 ((-775) $))))
+((-1992 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1992 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1050) (-649 |#1|) (-853 |#1|)) (T -53))
+((-1992 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1050)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5)))))
+(-10 -7 (-15 -1992 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2878 ((|#3| |#3| (-645 (-1176))) 46)) (-1491 ((|#3| (-645 (-1076 |#1| |#2| |#3|)) |#3| (-922)) 32) ((|#3| (-645 (-1076 |#1| |#2| |#3|)) |#3|) 31)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1491 (|#3| (-645 (-1076 |#1| |#2| |#3|)) |#3|)) (-15 -1491 (|#3| (-645 (-1076 |#1| |#2| |#3|)) |#3| (-922))) (-15 -2878 (|#3| |#3| (-645 (-1176))))) (-1100) (-13 (-1050) (-887 |#1|) (-615 (-893 |#1|))) (-13 (-433 |#2|) (-887 |#1|) (-615 (-893 |#1|)))) (T -54))
+((-2878 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1176))) (-4 *4 (-1100)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) (-1491 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 (-1076 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1100)) (-4 *6 (-13 (-1050) (-887 *5) (-615 (-893 *5)))) (-4 *2 (-13 (-433 *6) (-887 *5) (-615 (-893 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1491 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-1076 *4 *5 *2))) (-4 *4 (-1100)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1491 (|#3| (-645 (-1076 |#1| |#2| |#3|)) |#3|)) (-15 -1491 (|#3| (-645 (-1076 |#1| |#2| |#3|)) |#3| (-922))) (-15 -2878 (|#3| |#3| (-645 (-1176)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 14)) (-3417 (((-3 (-772) "failed") $) 34)) (-1621 (((-772) $) NIL)) (-3714 (((-112) $) 16)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) 18)) (-4101 (((-863) $) 23) (($ (-772)) 29)) (-3739 (((-112) $ $) NIL)) (-1996 (($) 11 T CONST)) (-3052 (((-112) $ $) 20)))
+(((-55) (-13 (-1100) (-1039 (-772)) (-10 -8 (-15 -1996 ($) -2131) (-15 -2865 ((-112) $)) (-15 -3714 ((-112) $))))) (T -55))
+((-1996 (*1 *1) (-5 *1 (-55))) (-2865 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))) (-3714 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55)))))
+(-13 (-1100) (-1039 (-772)) (-10 -8 (-15 -1996 ($) -2131) (-15 -2865 ((-112) $)) (-15 -3714 ((-112) $))))
+((-1580 (((-112) $ (-772)) 27)) (-1417 (($ $ (-567) |#3|) 66)) (-3264 (($ $ (-567) |#4|) 70)) (-4074 ((|#3| $ (-567)) 79)) (-2896 (((-645 |#2|) $) 47)) (-2805 (((-112) $ (-772)) 31)) (-2176 (((-112) |#2| $) 74)) (-4392 (($ (-1 |#2| |#2|) $) 55)) (-3494 (($ (-1 |#2| |#2|) $) 54) (($ (-1 |#2| |#2| |#2|) $ $) 58) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62)) (-3230 (((-112) $ (-772)) 29)) (-2092 (($ $ |#2|) 52)) (-2297 (((-112) (-1 (-112) |#2|) $) 21)) (-1552 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) 35)) (-3349 (((-772) (-1 (-112) |#2|) $) 41) (((-772) |#2| $) 76)) (-4247 (($ $) 51)) (-3295 ((|#4| $ (-567)) 82)) (-4101 (((-863) $) 88)) (-2012 (((-112) (-1 (-112) |#2|) $) 20)) (-3052 (((-112) $ $) 73)) (-2268 (((-772) $) 32)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3264 (|#1| |#1| (-567) |#4|)) (-15 -1417 (|#1| |#1| (-567) |#3|)) (-15 -2896 ((-645 |#2|) |#1|)) (-15 -3295 (|#4| |#1| (-567))) (-15 -4074 (|#3| |#1| (-567))) (-15 -1552 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) (-567))) (-15 -2092 (|#1| |#1| |#2|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2176 ((-112) |#2| |#1|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772))) (-15 -4247 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1216) (-375 |#2|) (-375 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3264 (|#1| |#1| (-567) |#4|)) (-15 -1417 (|#1| |#1| (-567) |#3|)) (-15 -2896 ((-645 |#2|) |#1|)) (-15 -3295 (|#4| |#1| (-567))) (-15 -4074 (|#3| |#1| (-567))) (-15 -1552 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) (-567))) (-15 -2092 (|#1| |#1| |#2|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2176 ((-112) |#2| |#1|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772))) (-15 -4247 (|#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#1| $ (-567) (-567) |#1|) 45)) (-1417 (($ $ (-567) |#2|) 43)) (-3264 (($ $ (-567) |#3|) 42)) (-4061 (($) 7 T CONST)) (-4074 ((|#2| $ (-567)) 47)) (-1303 ((|#1| $ (-567) (-567) |#1|) 44)) (-4344 ((|#1| $ (-567) (-567)) 49)) (-2896 (((-645 |#1|) $) 31)) (-4300 (((-772) $) 52)) (-4012 (($ (-772) (-772) |#1|) 58)) (-4311 (((-772) $) 51)) (-2805 (((-112) $ (-772)) 9)) (-3776 (((-567) $) 56)) (-4176 (((-567) $) 54)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1977 (((-567) $) 55)) (-2467 (((-567) $) 53)) (-4392 (($ (-1 |#1| |#1|) $) 35)) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) 57)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3295 ((|#3| $ (-567)) 46)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-57 |#1| |#2| |#3|) (-140) (-1216) (-375 |t#1|) (-375 |t#1|)) (T -57))
+((-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4012 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1216)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2092 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-567)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-772)))) (-1552 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1216)))) (-4344 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-1216)))) (-1552 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1216)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-4074 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1216)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-3295 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1216)) (-4 *5 (-375 *4)) (-4 *2 (-375 *4)))) (-2896 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 *3)))) (-4230 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1216)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1303 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1216)) (-4 *4 (-375 *2)) (-4 *5 (-375 *2)))) (-1417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1216)) (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))) (-3264 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1216)) (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3494 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3494 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(-13 (-492 |t#1|) (-10 -8 (-6 -4417) (-6 -4416) (-15 -4012 ($ (-772) (-772) |t#1|)) (-15 -2092 ($ $ |t#1|)) (-15 -3776 ((-567) $)) (-15 -1977 ((-567) $)) (-15 -4176 ((-567) $)) (-15 -2467 ((-567) $)) (-15 -4300 ((-772) $)) (-15 -4311 ((-772) $)) (-15 -1552 (|t#1| $ (-567) (-567))) (-15 -4344 (|t#1| $ (-567) (-567))) (-15 -1552 (|t#1| $ (-567) (-567) |t#1|)) (-15 -4074 (|t#2| $ (-567))) (-15 -3295 (|t#3| $ (-567))) (-15 -2896 ((-645 |t#1|) $)) (-15 -4230 (|t#1| $ (-567) (-567) |t#1|)) (-15 -1303 (|t#1| $ (-567) (-567) |t#1|)) (-15 -1417 ($ $ (-567) |t#2|)) (-15 -3264 ($ $ (-567) |t#3|)) (-15 -3494 ($ (-1 |t#1| |t#1|) $)) (-15 -4392 ($ (-1 |t#1| |t#1|) $)) (-15 -3494 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3494 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-3391 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-3402 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-3494 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13)))
+(((-58 |#1| |#2|) (-10 -7 (-15 -3391 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3494 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1216) (-1216)) (T -58))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1216)) (-4 *2 (-1216)) (-5 *1 (-58 *5 *2)))) (-3391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1216)) (-4 *5 (-1216)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))))
+(-10 -7 (-15 -3391 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -3494 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-4391 (($ (-645 |#1|)) 11) (($ (-772) |#1|) 14)) (-4012 (($ (-772) |#1|) 13)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 10)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4391 ($ (-645 |#1|))) (-15 -4391 ($ (-772) |#1|)))) (-1216)) (T -59))
+((-4391 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-59 *3)))) (-4391 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1216)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -4391 ($ (-645 |#1|))) (-15 -4391 ($ (-772) |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) (-567) |#1|) NIL)) (-1417 (($ $ (-567) (-59 |#1|)) NIL)) (-3264 (($ $ (-567) (-59 |#1|)) NIL)) (-4061 (($) NIL T CONST)) (-4074 (((-59 |#1|) $ (-567)) NIL)) (-1303 ((|#1| $ (-567) (-567) |#1|) NIL)) (-4344 ((|#1| $ (-567) (-567)) NIL)) (-2896 (((-645 |#1|) $) NIL)) (-4300 (((-772) $) NIL)) (-4012 (($ (-772) (-772) |#1|) NIL)) (-4311 (((-772) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-3776 (((-567) $) NIL)) (-4176 (((-567) $) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1977 (((-567) $) NIL)) (-2467 (((-567) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-3295 (((-59 |#1|) $ (-567)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4417))) (-1216)) (T -60))
+NIL
+(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4417)))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 74) (((-3 $ "failed") (-1266 (-317 (-567)))) 63) (((-3 $ "failed") (-1266 (-953 (-381)))) 94) (((-3 $ "failed") (-1266 (-953 (-567)))) 84) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 52) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 39)) (-1621 (($ (-1266 (-317 (-381)))) 70) (($ (-1266 (-317 (-567)))) 59) (($ (-1266 (-953 (-381)))) 90) (($ (-1266 (-953 (-567)))) 80) (($ (-1266 (-410 (-953 (-381))))) 48) (($ (-1266 (-410 (-953 (-567))))) 32)) (-1774 (((-1271) $) 127)) (-4101 (((-863) $) 121) (($ (-645 (-331))) 103) (($ (-331)) 97) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 101) (($ (-1266 (-341 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-700)))) 31)))
+(((-61 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-700))))))) (-1176)) (T -61))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-700)))) (-5 *1 (-61 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-4114) (-700)))))))
+((-1774 (((-1271) $) 54) (((-1271)) 55)) (-4101 (((-863) $) 51)))
+(((-62 |#1|) (-13 (-398) (-10 -7 (-15 -1774 ((-1271))))) (-1176)) (T -62))
+((-1774 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-62 *3)) (-14 *3 (-1176)))))
+(-13 (-398) (-10 -7 (-15 -1774 ((-1271)))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 154) (((-3 $ "failed") (-1266 (-317 (-567)))) 144) (((-3 $ "failed") (-1266 (-953 (-381)))) 174) (((-3 $ "failed") (-1266 (-953 (-567)))) 164) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 133) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 121)) (-1621 (($ (-1266 (-317 (-381)))) 150) (($ (-1266 (-317 (-567)))) 140) (($ (-1266 (-953 (-381)))) 170) (($ (-1266 (-953 (-567)))) 160) (($ (-1266 (-410 (-953 (-381))))) 129) (($ (-1266 (-410 (-953 (-567))))) 114)) (-1774 (((-1271) $) 107)) (-4101 (((-863) $) 101) (($ (-645 (-331))) 30) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 33) (($ (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700)))) 99)))
+(((-63 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700))))))) (-1176)) (T -63))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700)))) (-5 *1 (-63 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700)))))))
+((-3417 (((-3 $ "failed") (-317 (-381))) 41) (((-3 $ "failed") (-317 (-567))) 46) (((-3 $ "failed") (-953 (-381))) 50) (((-3 $ "failed") (-953 (-567))) 54) (((-3 $ "failed") (-410 (-953 (-381)))) 36) (((-3 $ "failed") (-410 (-953 (-567)))) 29)) (-1621 (($ (-317 (-381))) 39) (($ (-317 (-567))) 44) (($ (-953 (-381))) 48) (($ (-953 (-567))) 52) (($ (-410 (-953 (-381)))) 34) (($ (-410 (-953 (-567)))) 26)) (-1774 (((-1271) $) 76)) (-4101 (((-863) $) 69) (($ (-645 (-331))) 61) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 64) (($ (-341 (-4114 (QUOTE X)) (-4114) (-700))) 25)))
+(((-64 |#1|) (-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114 (QUOTE X)) (-4114) (-700)))))) (-1176)) (T -64))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-341 (-4114 (QUOTE X)) (-4114) (-700))) (-5 *1 (-64 *3)) (-14 *3 (-1176)))))
+(-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114 (QUOTE X)) (-4114) (-700))))))
+((-3417 (((-3 $ "failed") (-690 (-317 (-381)))) 114) (((-3 $ "failed") (-690 (-317 (-567)))) 102) (((-3 $ "failed") (-690 (-953 (-381)))) 136) (((-3 $ "failed") (-690 (-953 (-567)))) 125) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 90) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 76)) (-1621 (($ (-690 (-317 (-381)))) 110) (($ (-690 (-317 (-567)))) 98) (($ (-690 (-953 (-381)))) 132) (($ (-690 (-953 (-567)))) 121) (($ (-690 (-410 (-953 (-381))))) 86) (($ (-690 (-410 (-953 (-567))))) 69)) (-1774 (((-1271) $) 144)) (-4101 (((-863) $) 138) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 32) (($ (-690 (-341 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-700)))) 59)))
+(((-65 |#1|) (-13 (-386) (-617 (-690 (-341 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-700))))) (-1176)) (T -65))
+NIL
+(-13 (-386) (-617 (-690 (-341 (-4114) (-4114 (QUOTE X) (QUOTE HESS)) (-700)))))
+((-3417 (((-3 $ "failed") (-317 (-381))) 60) (((-3 $ "failed") (-317 (-567))) 65) (((-3 $ "failed") (-953 (-381))) 69) (((-3 $ "failed") (-953 (-567))) 73) (((-3 $ "failed") (-410 (-953 (-381)))) 55) (((-3 $ "failed") (-410 (-953 (-567)))) 48)) (-1621 (($ (-317 (-381))) 58) (($ (-317 (-567))) 63) (($ (-953 (-381))) 67) (($ (-953 (-567))) 71) (($ (-410 (-953 (-381)))) 53) (($ (-410 (-953 (-567)))) 45)) (-1774 (((-1271) $) 82)) (-4101 (((-863) $) 76) (($ (-645 (-331))) 29) (($ (-331)) 34) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 32) (($ (-341 (-4114) (-4114 (QUOTE XC)) (-700))) 40)))
+(((-66 |#1|) (-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114) (-4114 (QUOTE XC)) (-700)))))) (-1176)) (T -66))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-341 (-4114) (-4114 (QUOTE XC)) (-700))) (-5 *1 (-66 *3)) (-14 *3 (-1176)))))
+(-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114) (-4114 (QUOTE XC)) (-700))))))
+((-1774 (((-1271) $) 68)) (-4101 (((-863) $) 62) (($ (-690 (-700))) 54) (($ (-645 (-331))) 53) (($ (-331)) 60) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 58)))
+(((-67 |#1|) (-385) (-1176)) (T -67))
NIL
(-385)
-((-2887 (((-1270) $) 69)) (-2725 (((-862) $) 63) (($ (-689 (-699))) 55) (($ (-644 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 60)))
-(((-68 |#1|) (-385) (-1175)) (T -68))
+((-1774 (((-1271) $) 69)) (-4101 (((-863) $) 63) (($ (-690 (-700))) 55) (($ (-645 (-331))) 54) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 60)))
+(((-68 |#1|) (-385) (-1176)) (T -68))
NIL
(-385)
-((-2887 (((-1270) $) NIL) (((-1270)) 33)) (-2725 (((-862) $) NIL)))
-(((-69 |#1|) (-13 (-397) (-10 -7 (-15 -2887 ((-1270))))) (-1175)) (T -69))
-((-2887 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-69 *3)) (-14 *3 (-1175)))))
-(-13 (-397) (-10 -7 (-15 -2887 ((-1270)))))
-((-2887 (((-1270) $) 75)) (-2725 (((-862) $) 69) (($ (-689 (-699))) 61) (($ (-644 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 60)))
-(((-70 |#1|) (-385) (-1175)) (T -70))
+((-1774 (((-1271) $) NIL) (((-1271)) 33)) (-4101 (((-863) $) NIL)))
+(((-69 |#1|) (-13 (-398) (-10 -7 (-15 -1774 ((-1271))))) (-1176)) (T -69))
+((-1774 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-69 *3)) (-14 *3 (-1176)))))
+(-13 (-398) (-10 -7 (-15 -1774 ((-1271)))))
+((-1774 (((-1271) $) 75)) (-4101 (((-863) $) 69) (($ (-690 (-700))) 61) (($ (-645 (-331))) 63) (($ (-331)) 66) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 60)))
+(((-70 |#1|) (-385) (-1176)) (T -70))
NIL
(-385)
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 111) (((-3 $ "failed") (-1265 (-317 (-566)))) 100) (((-3 $ "failed") (-1265 (-952 (-381)))) 131) (((-3 $ "failed") (-1265 (-952 (-566)))) 121) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 76)) (-3343 (($ (-1265 (-317 (-381)))) 107) (($ (-1265 (-317 (-566)))) 96) (($ (-1265 (-952 (-381)))) 127) (($ (-1265 (-952 (-566)))) 117) (($ (-1265 (-409 (-952 (-381))))) 85) (($ (-1265 (-409 (-952 (-566))))) 69)) (-2887 (((-1270) $) 144)) (-2725 (((-862) $) 138) (($ (-644 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 61) (($ (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699)))) 62)))
-(((-71 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699))))))) (-1175)) (T -71))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699)))) (-5 *1 (-71 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699)))))))
-((-2887 (((-1270) $) 33) (((-1270)) 32)) (-2725 (((-862) $) 36)))
-(((-72 |#1|) (-13 (-397) (-10 -7 (-15 -2887 ((-1270))))) (-1175)) (T -72))
-((-2887 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-72 *3)) (-14 *3 (-1175)))))
-(-13 (-397) (-10 -7 (-15 -2887 ((-1270)))))
-((-2887 (((-1270) $) 65)) (-2725 (((-862) $) 59) (($ (-689 (-699))) 51) (($ (-644 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 50)))
-(((-73 |#1|) (-385) (-1175)) (T -73))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 111) (((-3 $ "failed") (-1266 (-317 (-567)))) 100) (((-3 $ "failed") (-1266 (-953 (-381)))) 131) (((-3 $ "failed") (-1266 (-953 (-567)))) 121) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 89) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 76)) (-1621 (($ (-1266 (-317 (-381)))) 107) (($ (-1266 (-317 (-567)))) 96) (($ (-1266 (-953 (-381)))) 127) (($ (-1266 (-953 (-567)))) 117) (($ (-1266 (-410 (-953 (-381))))) 85) (($ (-1266 (-410 (-953 (-567))))) 69)) (-1774 (((-1271) $) 144)) (-4101 (((-863) $) 138) (($ (-645 (-331))) 133) (($ (-331)) 136) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 61) (($ (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700)))) 62)))
+(((-71 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700))))))) (-1176)) (T -71))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700)))) (-5 *1 (-71 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700)))))))
+((-1774 (((-1271) $) 33) (((-1271)) 32)) (-4101 (((-863) $) 36)))
+(((-72 |#1|) (-13 (-398) (-10 -7 (-15 -1774 ((-1271))))) (-1176)) (T -72))
+((-1774 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-72 *3)) (-14 *3 (-1176)))))
+(-13 (-398) (-10 -7 (-15 -1774 ((-1271)))))
+((-1774 (((-1271) $) 65)) (-4101 (((-863) $) 59) (($ (-690 (-700))) 51) (($ (-645 (-331))) 53) (($ (-331)) 56) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 50)))
+(((-73 |#1|) (-385) (-1176)) (T -73))
NIL
(-385)
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 130) (((-3 $ "failed") (-1265 (-317 (-566)))) 120) (((-3 $ "failed") (-1265 (-952 (-381)))) 150) (((-3 $ "failed") (-1265 (-952 (-566)))) 140) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 110) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 98)) (-3343 (($ (-1265 (-317 (-381)))) 126) (($ (-1265 (-317 (-566)))) 116) (($ (-1265 (-952 (-381)))) 146) (($ (-1265 (-952 (-566)))) 136) (($ (-1265 (-409 (-952 (-381))))) 106) (($ (-1265 (-409 (-952 (-566))))) 91)) (-2887 (((-1270) $) 83)) (-2725 (((-862) $) 28) (($ (-644 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 76) (($ (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))) 70)))
-(((-74 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699))))))) (-1175)) (T -74))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))) (-5 *1 (-74 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 135) (((-3 $ "failed") (-1265 (-317 (-566)))) 124) (((-3 $ "failed") (-1265 (-952 (-381)))) 155) (((-3 $ "failed") (-1265 (-952 (-566)))) 145) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 113) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 100)) (-3343 (($ (-1265 (-317 (-381)))) 131) (($ (-1265 (-317 (-566)))) 120) (($ (-1265 (-952 (-381)))) 151) (($ (-1265 (-952 (-566)))) 141) (($ (-1265 (-409 (-952 (-381))))) 109) (($ (-1265 (-409 (-952 (-566))))) 93)) (-2887 (((-1270) $) 85)) (-2725 (((-862) $) 77) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) NIL) (($ (-1265 (-341 (-2738 (QUOTE X) (QUOTE EPS)) (-2738 (QUOTE -3408)) (-699)))) 72)))
-(((-75 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X) (QUOTE EPS)) (-2738 (QUOTE -3408)) (-699))))))) (-1175) (-1175) (-1175)) (T -75))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738 (QUOTE X) (QUOTE EPS)) (-2738 (QUOTE -3408)) (-699)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X) (QUOTE EPS)) (-2738 (QUOTE -3408)) (-699)))))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 141) (((-3 $ "failed") (-1265 (-317 (-566)))) 130) (((-3 $ "failed") (-1265 (-952 (-381)))) 161) (((-3 $ "failed") (-1265 (-952 (-566)))) 151) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 119) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 106)) (-3343 (($ (-1265 (-317 (-381)))) 137) (($ (-1265 (-317 (-566)))) 126) (($ (-1265 (-952 (-381)))) 157) (($ (-1265 (-952 (-566)))) 147) (($ (-1265 (-409 (-952 (-381))))) 115) (($ (-1265 (-409 (-952 (-566))))) 99)) (-2887 (((-1270) $) 91)) (-2725 (((-862) $) 83) (($ (-644 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) NIL) (($ (-1265 (-341 (-2738 (QUOTE EPS)) (-2738 (QUOTE YA) (QUOTE YB)) (-699)))) 78)))
-(((-76 |#1| |#2| |#3|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE EPS)) (-2738 (QUOTE YA) (QUOTE YB)) (-699))))))) (-1175) (-1175) (-1175)) (T -76))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738 (QUOTE EPS)) (-2738 (QUOTE YA) (QUOTE YB)) (-699)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175)) (-14 *5 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE EPS)) (-2738 (QUOTE YA) (QUOTE YB)) (-699)))))))
-((-2023 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-566))) 88) (((-3 $ "failed") (-952 (-381))) 92) (((-3 $ "failed") (-952 (-566))) 96) (((-3 $ "failed") (-409 (-952 (-381)))) 78) (((-3 $ "failed") (-409 (-952 (-566)))) 71)) (-3343 (($ (-317 (-381))) 81) (($ (-317 (-566))) 86) (($ (-952 (-381))) 90) (($ (-952 (-566))) 94) (($ (-409 (-952 (-381)))) 76) (($ (-409 (-952 (-566)))) 68)) (-2887 (((-1270) $) 63)) (-2725 (((-862) $) 51) (($ (-644 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 55) (($ (-341 (-2738) (-2738 (QUOTE X)) (-699))) 48)))
-(((-77 |#1|) (-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738) (-2738 (QUOTE X)) (-699)))))) (-1175)) (T -77))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-341 (-2738) (-2738 (QUOTE X)) (-699))) (-5 *1 (-77 *3)) (-14 *3 (-1175)))))
-(-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738) (-2738 (QUOTE X)) (-699))))))
-((-2023 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-566))) 52) (((-3 $ "failed") (-952 (-381))) 56) (((-3 $ "failed") (-952 (-566))) 60) (((-3 $ "failed") (-409 (-952 (-381)))) 42) (((-3 $ "failed") (-409 (-952 (-566)))) 35)) (-3343 (($ (-317 (-381))) 45) (($ (-317 (-566))) 50) (($ (-952 (-381))) 54) (($ (-952 (-566))) 58) (($ (-409 (-952 (-381)))) 40) (($ (-409 (-952 (-566)))) 32)) (-2887 (((-1270) $) 81)) (-2725 (((-862) $) 75) (($ (-644 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 70) (($ (-341 (-2738) (-2738 (QUOTE X)) (-699))) 31)))
-(((-78 |#1|) (-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738) (-2738 (QUOTE X)) (-699)))))) (-1175)) (T -78))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-341 (-2738) (-2738 (QUOTE X)) (-699))) (-5 *1 (-78 *3)) (-14 *3 (-1175)))))
-(-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738) (-2738 (QUOTE X)) (-699))))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 90) (((-3 $ "failed") (-1265 (-317 (-566)))) 79) (((-3 $ "failed") (-1265 (-952 (-381)))) 110) (((-3 $ "failed") (-1265 (-952 (-566)))) 100) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 68) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 55)) (-3343 (($ (-1265 (-317 (-381)))) 86) (($ (-1265 (-317 (-566)))) 75) (($ (-1265 (-952 (-381)))) 106) (($ (-1265 (-952 (-566)))) 96) (($ (-1265 (-409 (-952 (-381))))) 64) (($ (-1265 (-409 (-952 (-566))))) 48)) (-2887 (((-1270) $) 126)) (-2725 (((-862) $) 120) (($ (-644 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 116) (($ (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699)))) 39)))
-(((-79 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699))))))) (-1175)) (T -79))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699)))) (-5 *1 (-79 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE XC)) (-699)))))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 158) (((-3 $ "failed") (-1265 (-317 (-566)))) 148) (((-3 $ "failed") (-1265 (-952 (-381)))) 178) (((-3 $ "failed") (-1265 (-952 (-566)))) 168) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 138) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 126)) (-3343 (($ (-1265 (-317 (-381)))) 154) (($ (-1265 (-317 (-566)))) 144) (($ (-1265 (-952 (-381)))) 174) (($ (-1265 (-952 (-566)))) 164) (($ (-1265 (-409 (-952 (-381))))) 134) (($ (-1265 (-409 (-952 (-566))))) 119)) (-2887 (((-1270) $) 112)) (-2725 (((-862) $) 106) (($ (-644 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 102) (($ (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))) 98)))
-(((-80 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699))))))) (-1175)) (T -80))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))) (-5 *1 (-80 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 79) (((-3 $ "failed") (-1265 (-317 (-566)))) 68) (((-3 $ "failed") (-1265 (-952 (-381)))) 99) (((-3 $ "failed") (-1265 (-952 (-566)))) 89) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 57) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 44)) (-3343 (($ (-1265 (-317 (-381)))) 75) (($ (-1265 (-317 (-566)))) 64) (($ (-1265 (-952 (-381)))) 95) (($ (-1265 (-952 (-566)))) 85) (($ (-1265 (-409 (-952 (-381))))) 53) (($ (-1265 (-409 (-952 (-566))))) 37)) (-2887 (((-1270) $) 125)) (-2725 (((-862) $) 119) (($ (-644 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 114) (($ (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))) 36)))
-(((-81 |#1|) (-13 (-443) (-616 (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699))))) (-1175)) (T -81))
-NIL
-(-13 (-443) (-616 (-1265 (-341 (-2738) (-2738 (QUOTE X)) (-699)))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 98) (((-3 $ "failed") (-1265 (-317 (-566)))) 87) (((-3 $ "failed") (-1265 (-952 (-381)))) 118) (((-3 $ "failed") (-1265 (-952 (-566)))) 108) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 76) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 63)) (-3343 (($ (-1265 (-317 (-381)))) 94) (($ (-1265 (-317 (-566)))) 83) (($ (-1265 (-952 (-381)))) 114) (($ (-1265 (-952 (-566)))) 104) (($ (-1265 (-409 (-952 (-381))))) 72) (($ (-1265 (-409 (-952 (-566))))) 56)) (-2887 (((-1270) $) 48)) (-2725 (((-862) $) 42) (($ (-644 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 38) (($ (-1265 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699)))) 33)))
-(((-82 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699))))))) (-1175)) (T -82))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699)))) (-5 *1 (-82 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699)))))))
-((-2023 (((-3 $ "failed") (-689 (-317 (-381)))) 118) (((-3 $ "failed") (-689 (-317 (-566)))) 107) (((-3 $ "failed") (-689 (-952 (-381)))) 140) (((-3 $ "failed") (-689 (-952 (-566)))) 129) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 96) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 83)) (-3343 (($ (-689 (-317 (-381)))) 114) (($ (-689 (-317 (-566)))) 103) (($ (-689 (-952 (-381)))) 136) (($ (-689 (-952 (-566)))) 125) (($ (-689 (-409 (-952 (-381))))) 92) (($ (-689 (-409 (-952 (-566))))) 76)) (-2887 (((-1270) $) 66)) (-2725 (((-862) $) 53) (($ (-644 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 58) (($ (-689 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699)))) 50)))
-(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -2725 ($ (-689 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699))))))) (-1175)) (T -83))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699)))) (-5 *1 (-83 *3)) (-14 *3 (-1175)))))
-(-13 (-386) (-10 -8 (-15 -2725 ($ (-689 (-341 (-2738 (QUOTE X) (QUOTE -3408)) (-2738) (-699)))))))
-((-2023 (((-3 $ "failed") (-689 (-317 (-381)))) 113) (((-3 $ "failed") (-689 (-317 (-566)))) 101) (((-3 $ "failed") (-689 (-952 (-381)))) 135) (((-3 $ "failed") (-689 (-952 (-566)))) 124) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 89) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 75)) (-3343 (($ (-689 (-317 (-381)))) 109) (($ (-689 (-317 (-566)))) 97) (($ (-689 (-952 (-381)))) 131) (($ (-689 (-952 (-566)))) 120) (($ (-689 (-409 (-952 (-381))))) 85) (($ (-689 (-409 (-952 (-566))))) 68)) (-2887 (((-1270) $) 60)) (-2725 (((-862) $) 54) (($ (-644 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 45) (($ (-689 (-341 (-2738 (QUOTE X)) (-2738) (-699)))) 46)))
-(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -2725 ($ (-689 (-341 (-2738 (QUOTE X)) (-2738) (-699))))))) (-1175)) (T -84))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-2738 (QUOTE X)) (-2738) (-699)))) (-5 *1 (-84 *3)) (-14 *3 (-1175)))))
-(-13 (-386) (-10 -8 (-15 -2725 ($ (-689 (-341 (-2738 (QUOTE X)) (-2738) (-699)))))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 105) (((-3 $ "failed") (-1265 (-317 (-566)))) 94) (((-3 $ "failed") (-1265 (-952 (-381)))) 125) (((-3 $ "failed") (-1265 (-952 (-566)))) 115) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 83) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 70)) (-3343 (($ (-1265 (-317 (-381)))) 101) (($ (-1265 (-317 (-566)))) 90) (($ (-1265 (-952 (-381)))) 121) (($ (-1265 (-952 (-566)))) 111) (($ (-1265 (-409 (-952 (-381))))) 79) (($ (-1265 (-409 (-952 (-566))))) 63)) (-2887 (((-1270) $) 47)) (-2725 (((-862) $) 41) (($ (-644 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 53) (($ (-1265 (-341 (-2738 (QUOTE X)) (-2738) (-699)))) 38)))
-(((-85 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X)) (-2738) (-699))))))) (-1175)) (T -85))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738 (QUOTE X)) (-2738) (-699)))) (-5 *1 (-85 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X)) (-2738) (-699)))))))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 80) (((-3 $ "failed") (-1265 (-317 (-566)))) 69) (((-3 $ "failed") (-1265 (-952 (-381)))) 100) (((-3 $ "failed") (-1265 (-952 (-566)))) 90) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 58) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 45)) (-3343 (($ (-1265 (-317 (-381)))) 76) (($ (-1265 (-317 (-566)))) 65) (($ (-1265 (-952 (-381)))) 96) (($ (-1265 (-952 (-566)))) 86) (($ (-1265 (-409 (-952 (-381))))) 54) (($ (-1265 (-409 (-952 (-566))))) 38)) (-2887 (((-1270) $) 126)) (-2725 (((-862) $) 120) (($ (-644 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 115) (($ (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699)))) 37)))
-(((-86 |#1|) (-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699))))))) (-1175)) (T -86))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699)))) (-5 *1 (-86 *3)) (-14 *3 (-1175)))))
-(-13 (-443) (-10 -8 (-15 -2725 ($ (-1265 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699)))))))
-((-2023 (((-3 $ "failed") (-689 (-317 (-381)))) 117) (((-3 $ "failed") (-689 (-317 (-566)))) 105) (((-3 $ "failed") (-689 (-952 (-381)))) 139) (((-3 $ "failed") (-689 (-952 (-566)))) 128) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 93) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 79)) (-3343 (($ (-689 (-317 (-381)))) 113) (($ (-689 (-317 (-566)))) 101) (($ (-689 (-952 (-381)))) 135) (($ (-689 (-952 (-566)))) 124) (($ (-689 (-409 (-952 (-381))))) 89) (($ (-689 (-409 (-952 (-566))))) 72)) (-2887 (((-1270) $) 63)) (-2725 (((-862) $) 57) (($ (-644 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 52) (($ (-689 (-341 (-2738 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2738) (-699)))) 48)))
-(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -2725 ($ (-689 (-341 (-2738 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2738) (-699))))))) (-1175)) (T -87))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-689 (-341 (-2738 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2738) (-699)))) (-5 *1 (-87 *3)) (-14 *3 (-1175)))))
-(-13 (-386) (-10 -8 (-15 -2725 ($ (-689 (-341 (-2738 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2738) (-699)))))))
-((-2887 (((-1270) $) 45)) (-2725 (((-862) $) 39) (($ (-1265 (-699))) 101) (($ (-644 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 34)))
-(((-88 |#1|) (-442) (-1175)) (T -88))
-NIL
-(-442)
-((-2023 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-566))) 53) (((-3 $ "failed") (-952 (-381))) 57) (((-3 $ "failed") (-952 (-566))) 61) (((-3 $ "failed") (-409 (-952 (-381)))) 43) (((-3 $ "failed") (-409 (-952 (-566)))) 36)) (-3343 (($ (-317 (-381))) 46) (($ (-317 (-566))) 51) (($ (-952 (-381))) 55) (($ (-952 (-566))) 59) (($ (-409 (-952 (-381)))) 41) (($ (-409 (-952 (-566)))) 33)) (-2887 (((-1270) $) 91)) (-2725 (((-862) $) 85) (($ (-644 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 77) (($ (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699))) 32)))
-(((-89 |#1|) (-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699)))))) (-1175)) (T -89))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699))) (-5 *1 (-89 *3)) (-14 *3 (-1175)))))
-(-13 (-398) (-10 -8 (-15 -2725 ($ (-341 (-2738 (QUOTE X)) (-2738 (QUOTE -3408)) (-699))))))
-((-2707 (((-1265 (-689 |#1|)) (-689 |#1|)) 65)) (-4019 (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 (-644 (-921))))) |#2| (-921)) 54)) (-1582 (((-2 (|:| |minor| (-644 (-921))) (|:| -1451 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921)) 76 (|has| |#1| (-365)))))
-(((-90 |#1| |#2|) (-10 -7 (-15 -4019 ((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 (-644 (-921))))) |#2| (-921))) (-15 -2707 ((-1265 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -1582 ((-2 (|:| |minor| (-644 (-921))) (|:| -1451 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|)) (-558) (-656 |#1|)) (T -90))
-((-1582 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |minor| (-644 (-921))) (|:| -1451 *3) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5)))) (-2707 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-1265 (-689 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-689 *4)) (-4 *5 (-656 *4)))) (-4019 (*1 *2 *3 *4) (-12 (-4 *5 (-558)) (-5 *2 (-2 (|:| -3444 (-689 *5)) (|:| |vec| (-1265 (-644 (-921)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5)))))
-(-10 -7 (-15 -4019 ((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 (-644 (-921))))) |#2| (-921))) (-15 -2707 ((-1265 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-365)) (-15 -1582 ((-2 (|:| |minor| (-644 (-921))) (|:| -1451 |#2|) (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 |#2|))) |#2| (-921))) |%noBranch|))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3929 ((|#1| $) 42)) (-2261 (((-112) $ (-771)) NIL)) (-2633 (($) NIL T CONST)) (-1455 ((|#1| |#1| $) 37)) (-1922 ((|#1| $) 35)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2668 ((|#1| $) NIL)) (-1619 (($ |#1| $) 38)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1613 ((|#1| $) 36)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 18)) (-3906 (($) 46)) (-2279 (((-771) $) 33)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 17)) (-2725 (((-862) $) 32 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) NIL)) (-3411 (($ (-644 |#1|)) 44)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 15 (|has| |#1| (-1099)))) (-3991 (((-771) $) 12 (|has| $ (-6 -4415)))))
-(((-91 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -3411 ($ (-644 |#1|))))) (-1099)) (T -91))
-((-3411 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3)))))
-(-13 (-1120 |#1|) (-10 -8 (-15 -3411 ($ (-644 |#1|)))))
-((-2725 (((-862) $) 13) (($ (-1180)) 9) (((-1180) $) 8)))
-(((-92 |#1|) (-10 -8 (-15 -2725 ((-1180) |#1|)) (-15 -2725 (|#1| (-1180))) (-15 -2725 ((-862) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -2725 ((-1180) |#1|)) (-15 -2725 (|#1| (-1180))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 130) (((-3 $ "failed") (-1266 (-317 (-567)))) 120) (((-3 $ "failed") (-1266 (-953 (-381)))) 150) (((-3 $ "failed") (-1266 (-953 (-567)))) 140) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 110) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 98)) (-1621 (($ (-1266 (-317 (-381)))) 126) (($ (-1266 (-317 (-567)))) 116) (($ (-1266 (-953 (-381)))) 146) (($ (-1266 (-953 (-567)))) 136) (($ (-1266 (-410 (-953 (-381))))) 106) (($ (-1266 (-410 (-953 (-567))))) 91)) (-1774 (((-1271) $) 83)) (-4101 (((-863) $) 28) (($ (-645 (-331))) 73) (($ (-331)) 69) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 76) (($ (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))) 70)))
+(((-74 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700))))))) (-1176)) (T -74))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))) (-5 *1 (-74 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 135) (((-3 $ "failed") (-1266 (-317 (-567)))) 124) (((-3 $ "failed") (-1266 (-953 (-381)))) 155) (((-3 $ "failed") (-1266 (-953 (-567)))) 145) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 113) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 100)) (-1621 (($ (-1266 (-317 (-381)))) 131) (($ (-1266 (-317 (-567)))) 120) (($ (-1266 (-953 (-381)))) 151) (($ (-1266 (-953 (-567)))) 141) (($ (-1266 (-410 (-953 (-381))))) 109) (($ (-1266 (-410 (-953 (-567))))) 93)) (-1774 (((-1271) $) 85)) (-4101 (((-863) $) 77) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) NIL) (($ (-1266 (-341 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1691)) (-700)))) 72)))
+(((-75 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1691)) (-700))))))) (-1176) (-1176) (-1176)) (T -75))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1691)) (-700)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1176)) (-14 *4 (-1176)) (-14 *5 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X) (QUOTE EPS)) (-4114 (QUOTE -1691)) (-700)))))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 141) (((-3 $ "failed") (-1266 (-317 (-567)))) 130) (((-3 $ "failed") (-1266 (-953 (-381)))) 161) (((-3 $ "failed") (-1266 (-953 (-567)))) 151) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 119) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 106)) (-1621 (($ (-1266 (-317 (-381)))) 137) (($ (-1266 (-317 (-567)))) 126) (($ (-1266 (-953 (-381)))) 157) (($ (-1266 (-953 (-567)))) 147) (($ (-1266 (-410 (-953 (-381))))) 115) (($ (-1266 (-410 (-953 (-567))))) 99)) (-1774 (((-1271) $) 91)) (-4101 (((-863) $) 83) (($ (-645 (-331))) NIL) (($ (-331)) NIL) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) NIL) (($ (-1266 (-341 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-700)))) 78)))
+(((-76 |#1| |#2| |#3|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-700))))))) (-1176) (-1176) (-1176)) (T -76))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-700)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1176)) (-14 *4 (-1176)) (-14 *5 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE EPS)) (-4114 (QUOTE YA) (QUOTE YB)) (-700)))))))
+((-3417 (((-3 $ "failed") (-317 (-381))) 83) (((-3 $ "failed") (-317 (-567))) 88) (((-3 $ "failed") (-953 (-381))) 92) (((-3 $ "failed") (-953 (-567))) 96) (((-3 $ "failed") (-410 (-953 (-381)))) 78) (((-3 $ "failed") (-410 (-953 (-567)))) 71)) (-1621 (($ (-317 (-381))) 81) (($ (-317 (-567))) 86) (($ (-953 (-381))) 90) (($ (-953 (-567))) 94) (($ (-410 (-953 (-381)))) 76) (($ (-410 (-953 (-567)))) 68)) (-1774 (((-1271) $) 63)) (-4101 (((-863) $) 51) (($ (-645 (-331))) 47) (($ (-331)) 57) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 55) (($ (-341 (-4114) (-4114 (QUOTE X)) (-700))) 48)))
+(((-77 |#1|) (-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114) (-4114 (QUOTE X)) (-700)))))) (-1176)) (T -77))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-341 (-4114) (-4114 (QUOTE X)) (-700))) (-5 *1 (-77 *3)) (-14 *3 (-1176)))))
+(-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114) (-4114 (QUOTE X)) (-700))))))
+((-3417 (((-3 $ "failed") (-317 (-381))) 47) (((-3 $ "failed") (-317 (-567))) 52) (((-3 $ "failed") (-953 (-381))) 56) (((-3 $ "failed") (-953 (-567))) 60) (((-3 $ "failed") (-410 (-953 (-381)))) 42) (((-3 $ "failed") (-410 (-953 (-567)))) 35)) (-1621 (($ (-317 (-381))) 45) (($ (-317 (-567))) 50) (($ (-953 (-381))) 54) (($ (-953 (-567))) 58) (($ (-410 (-953 (-381)))) 40) (($ (-410 (-953 (-567)))) 32)) (-1774 (((-1271) $) 81)) (-4101 (((-863) $) 75) (($ (-645 (-331))) 67) (($ (-331)) 72) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 70) (($ (-341 (-4114) (-4114 (QUOTE X)) (-700))) 31)))
+(((-78 |#1|) (-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114) (-4114 (QUOTE X)) (-700)))))) (-1176)) (T -78))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-341 (-4114) (-4114 (QUOTE X)) (-700))) (-5 *1 (-78 *3)) (-14 *3 (-1176)))))
+(-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114) (-4114 (QUOTE X)) (-700))))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 90) (((-3 $ "failed") (-1266 (-317 (-567)))) 79) (((-3 $ "failed") (-1266 (-953 (-381)))) 110) (((-3 $ "failed") (-1266 (-953 (-567)))) 100) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 68) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 55)) (-1621 (($ (-1266 (-317 (-381)))) 86) (($ (-1266 (-317 (-567)))) 75) (($ (-1266 (-953 (-381)))) 106) (($ (-1266 (-953 (-567)))) 96) (($ (-1266 (-410 (-953 (-381))))) 64) (($ (-1266 (-410 (-953 (-567))))) 48)) (-1774 (((-1271) $) 126)) (-4101 (((-863) $) 120) (($ (-645 (-331))) 113) (($ (-331)) 38) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 116) (($ (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700)))) 39)))
+(((-79 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700))))))) (-1176)) (T -79))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700)))) (-5 *1 (-79 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE XC)) (-700)))))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 158) (((-3 $ "failed") (-1266 (-317 (-567)))) 148) (((-3 $ "failed") (-1266 (-953 (-381)))) 178) (((-3 $ "failed") (-1266 (-953 (-567)))) 168) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 138) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 126)) (-1621 (($ (-1266 (-317 (-381)))) 154) (($ (-1266 (-317 (-567)))) 144) (($ (-1266 (-953 (-381)))) 174) (($ (-1266 (-953 (-567)))) 164) (($ (-1266 (-410 (-953 (-381))))) 134) (($ (-1266 (-410 (-953 (-567))))) 119)) (-1774 (((-1271) $) 112)) (-4101 (((-863) $) 106) (($ (-645 (-331))) 97) (($ (-331)) 104) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 102) (($ (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))) 98)))
+(((-80 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700))))))) (-1176)) (T -80))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))) (-5 *1 (-80 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 79) (((-3 $ "failed") (-1266 (-317 (-567)))) 68) (((-3 $ "failed") (-1266 (-953 (-381)))) 99) (((-3 $ "failed") (-1266 (-953 (-567)))) 89) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 57) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 44)) (-1621 (($ (-1266 (-317 (-381)))) 75) (($ (-1266 (-317 (-567)))) 64) (($ (-1266 (-953 (-381)))) 95) (($ (-1266 (-953 (-567)))) 85) (($ (-1266 (-410 (-953 (-381))))) 53) (($ (-1266 (-410 (-953 (-567))))) 37)) (-1774 (((-1271) $) 125)) (-4101 (((-863) $) 119) (($ (-645 (-331))) 110) (($ (-331)) 116) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 114) (($ (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))) 36)))
+(((-81 |#1|) (-13 (-444) (-617 (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700))))) (-1176)) (T -81))
+NIL
+(-13 (-444) (-617 (-1266 (-341 (-4114) (-4114 (QUOTE X)) (-700)))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 98) (((-3 $ "failed") (-1266 (-317 (-567)))) 87) (((-3 $ "failed") (-1266 (-953 (-381)))) 118) (((-3 $ "failed") (-1266 (-953 (-567)))) 108) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 76) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 63)) (-1621 (($ (-1266 (-317 (-381)))) 94) (($ (-1266 (-317 (-567)))) 83) (($ (-1266 (-953 (-381)))) 114) (($ (-1266 (-953 (-567)))) 104) (($ (-1266 (-410 (-953 (-381))))) 72) (($ (-1266 (-410 (-953 (-567))))) 56)) (-1774 (((-1271) $) 48)) (-4101 (((-863) $) 42) (($ (-645 (-331))) 32) (($ (-331)) 35) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 38) (($ (-1266 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700)))) 33)))
+(((-82 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700))))))) (-1176)) (T -82))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700)))) (-5 *1 (-82 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700)))))))
+((-3417 (((-3 $ "failed") (-690 (-317 (-381)))) 118) (((-3 $ "failed") (-690 (-317 (-567)))) 107) (((-3 $ "failed") (-690 (-953 (-381)))) 140) (((-3 $ "failed") (-690 (-953 (-567)))) 129) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 96) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 83)) (-1621 (($ (-690 (-317 (-381)))) 114) (($ (-690 (-317 (-567)))) 103) (($ (-690 (-953 (-381)))) 136) (($ (-690 (-953 (-567)))) 125) (($ (-690 (-410 (-953 (-381))))) 92) (($ (-690 (-410 (-953 (-567))))) 76)) (-1774 (((-1271) $) 66)) (-4101 (((-863) $) 53) (($ (-645 (-331))) 60) (($ (-331)) 49) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 58) (($ (-690 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700)))) 50)))
+(((-83 |#1|) (-13 (-386) (-10 -8 (-15 -4101 ($ (-690 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700))))))) (-1176)) (T -83))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700)))) (-5 *1 (-83 *3)) (-14 *3 (-1176)))))
+(-13 (-386) (-10 -8 (-15 -4101 ($ (-690 (-341 (-4114 (QUOTE X) (QUOTE -1691)) (-4114) (-700)))))))
+((-3417 (((-3 $ "failed") (-690 (-317 (-381)))) 113) (((-3 $ "failed") (-690 (-317 (-567)))) 101) (((-3 $ "failed") (-690 (-953 (-381)))) 135) (((-3 $ "failed") (-690 (-953 (-567)))) 124) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 89) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 75)) (-1621 (($ (-690 (-317 (-381)))) 109) (($ (-690 (-317 (-567)))) 97) (($ (-690 (-953 (-381)))) 131) (($ (-690 (-953 (-567)))) 120) (($ (-690 (-410 (-953 (-381))))) 85) (($ (-690 (-410 (-953 (-567))))) 68)) (-1774 (((-1271) $) 60)) (-4101 (((-863) $) 54) (($ (-645 (-331))) 48) (($ (-331)) 51) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 45) (($ (-690 (-341 (-4114 (QUOTE X)) (-4114) (-700)))) 46)))
+(((-84 |#1|) (-13 (-386) (-10 -8 (-15 -4101 ($ (-690 (-341 (-4114 (QUOTE X)) (-4114) (-700))))))) (-1176)) (T -84))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4114 (QUOTE X)) (-4114) (-700)))) (-5 *1 (-84 *3)) (-14 *3 (-1176)))))
+(-13 (-386) (-10 -8 (-15 -4101 ($ (-690 (-341 (-4114 (QUOTE X)) (-4114) (-700)))))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 105) (((-3 $ "failed") (-1266 (-317 (-567)))) 94) (((-3 $ "failed") (-1266 (-953 (-381)))) 125) (((-3 $ "failed") (-1266 (-953 (-567)))) 115) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 83) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 70)) (-1621 (($ (-1266 (-317 (-381)))) 101) (($ (-1266 (-317 (-567)))) 90) (($ (-1266 (-953 (-381)))) 121) (($ (-1266 (-953 (-567)))) 111) (($ (-1266 (-410 (-953 (-381))))) 79) (($ (-1266 (-410 (-953 (-567))))) 63)) (-1774 (((-1271) $) 47)) (-4101 (((-863) $) 41) (($ (-645 (-331))) 50) (($ (-331)) 37) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 53) (($ (-1266 (-341 (-4114 (QUOTE X)) (-4114) (-700)))) 38)))
+(((-85 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X)) (-4114) (-700))))))) (-1176)) (T -85))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114 (QUOTE X)) (-4114) (-700)))) (-5 *1 (-85 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X)) (-4114) (-700)))))))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 80) (((-3 $ "failed") (-1266 (-317 (-567)))) 69) (((-3 $ "failed") (-1266 (-953 (-381)))) 100) (((-3 $ "failed") (-1266 (-953 (-567)))) 90) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 58) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 45)) (-1621 (($ (-1266 (-317 (-381)))) 76) (($ (-1266 (-317 (-567)))) 65) (($ (-1266 (-953 (-381)))) 96) (($ (-1266 (-953 (-567)))) 86) (($ (-1266 (-410 (-953 (-381))))) 54) (($ (-1266 (-410 (-953 (-567))))) 38)) (-1774 (((-1271) $) 126)) (-4101 (((-863) $) 120) (($ (-645 (-331))) 111) (($ (-331)) 117) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 115) (($ (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700)))) 37)))
+(((-86 |#1|) (-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700))))))) (-1176)) (T -86))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700)))) (-5 *1 (-86 *3)) (-14 *3 (-1176)))))
+(-13 (-444) (-10 -8 (-15 -4101 ($ (-1266 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700)))))))
+((-3417 (((-3 $ "failed") (-690 (-317 (-381)))) 117) (((-3 $ "failed") (-690 (-317 (-567)))) 105) (((-3 $ "failed") (-690 (-953 (-381)))) 139) (((-3 $ "failed") (-690 (-953 (-567)))) 128) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 93) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 79)) (-1621 (($ (-690 (-317 (-381)))) 113) (($ (-690 (-317 (-567)))) 101) (($ (-690 (-953 (-381)))) 135) (($ (-690 (-953 (-567)))) 124) (($ (-690 (-410 (-953 (-381))))) 89) (($ (-690 (-410 (-953 (-567))))) 72)) (-1774 (((-1271) $) 63)) (-4101 (((-863) $) 57) (($ (-645 (-331))) 47) (($ (-331)) 54) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 52) (($ (-690 (-341 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-700)))) 48)))
+(((-87 |#1|) (-13 (-386) (-10 -8 (-15 -4101 ($ (-690 (-341 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-700))))))) (-1176)) (T -87))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-690 (-341 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-700)))) (-5 *1 (-87 *3)) (-14 *3 (-1176)))))
+(-13 (-386) (-10 -8 (-15 -4101 ($ (-690 (-341 (-4114 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-4114) (-700)))))))
+((-1774 (((-1271) $) 45)) (-4101 (((-863) $) 39) (($ (-1266 (-700))) 101) (($ (-645 (-331))) 31) (($ (-331)) 36) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 34)))
+(((-88 |#1|) (-443) (-1176)) (T -88))
+NIL
+(-443)
+((-3417 (((-3 $ "failed") (-317 (-381))) 48) (((-3 $ "failed") (-317 (-567))) 53) (((-3 $ "failed") (-953 (-381))) 57) (((-3 $ "failed") (-953 (-567))) 61) (((-3 $ "failed") (-410 (-953 (-381)))) 43) (((-3 $ "failed") (-410 (-953 (-567)))) 36)) (-1621 (($ (-317 (-381))) 46) (($ (-317 (-567))) 51) (($ (-953 (-381))) 55) (($ (-953 (-567))) 59) (($ (-410 (-953 (-381)))) 41) (($ (-410 (-953 (-567)))) 33)) (-1774 (((-1271) $) 91)) (-4101 (((-863) $) 85) (($ (-645 (-331))) 79) (($ (-331)) 82) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 77) (($ (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700))) 32)))
+(((-89 |#1|) (-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700)))))) (-1176)) (T -89))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700))) (-5 *1 (-89 *3)) (-14 *3 (-1176)))))
+(-13 (-399) (-10 -8 (-15 -4101 ($ (-341 (-4114 (QUOTE X)) (-4114 (QUOTE -1691)) (-700))))))
+((-3561 (((-1266 (-690 |#1|)) (-690 |#1|)) 65)) (-1642 (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 (-645 (-922))))) |#2| (-922)) 54)) (-2291 (((-2 (|:| |minor| (-645 (-922))) (|:| -2823 |#2|) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 |#2|))) |#2| (-922)) 76 (|has| |#1| (-365)))))
+(((-90 |#1| |#2|) (-10 -7 (-15 -1642 ((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 (-645 (-922))))) |#2| (-922))) (-15 -3561 ((-1266 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2291 ((-2 (|:| |minor| (-645 (-922))) (|:| -2823 |#2|) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 |#2|))) |#2| (-922))) |%noBranch|)) (-559) (-657 |#1|)) (T -90))
+((-2291 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |minor| (-645 (-922))) (|:| -2823 *3) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5)))) (-3561 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-1266 (-690 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))) (-1642 (*1 *2 *3 *4) (-12 (-4 *5 (-559)) (-5 *2 (-2 (|:| -4302 (-690 *5)) (|:| |vec| (-1266 (-645 (-922)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5)))))
+(-10 -7 (-15 -1642 ((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 (-645 (-922))))) |#2| (-922))) (-15 -3561 ((-1266 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-365)) (-15 -2291 ((-2 (|:| |minor| (-645 (-922))) (|:| -2823 |#2|) (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 |#2|))) |#2| (-922))) |%noBranch|))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2207 ((|#1| $) 42)) (-1580 (((-112) $ (-772)) NIL)) (-4061 (($) NIL T CONST)) (-3528 ((|#1| |#1| $) 37)) (-2548 ((|#1| $) 35)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4341 ((|#1| $) NIL)) (-1336 (($ |#1| $) 38)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-4394 ((|#1| $) 36)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 18)) (-3164 (($) 46)) (-1716 (((-772) $) 33)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 17)) (-4101 (((-863) $) 32 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) NIL)) (-4002 (($ (-645 |#1|)) 44)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 15 (|has| |#1| (-1100)))) (-2268 (((-772) $) 12 (|has| $ (-6 -4416)))))
+(((-91 |#1|) (-13 (-1121 |#1|) (-10 -8 (-15 -4002 ($ (-645 |#1|))))) (-1100)) (T -91))
+((-4002 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-91 *3)))))
+(-13 (-1121 |#1|) (-10 -8 (-15 -4002 ($ (-645 |#1|)))))
+((-4101 (((-863) $) 13) (($ (-1181)) 9) (((-1181) $) 8)))
+(((-92 |#1|) (-10 -8 (-15 -4101 ((-1181) |#1|)) (-15 -4101 (|#1| (-1181))) (-15 -4101 ((-863) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -4101 ((-1181) |#1|)) (-15 -4101 (|#1| (-1181))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-1181)) 17) (((-1181) $) 16)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
(((-93) (-140)) (T -93))
NIL
-(-13 (-1099) (-492 (-1180)))
-(((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T))
-((-3577 (($ $) 10)) (-3589 (($ $) 12)))
-(((-94 |#1|) (-10 -8 (-15 -3589 (|#1| |#1|)) (-15 -3577 (|#1| |#1|))) (-95)) (T -94))
+(-13 (-1100) (-493 (-1181)))
+(((-102) . T) ((-617 #0=(-1181)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1100) . T))
+((-1719 (($ $) 10)) (-1733 (($ $) 12)))
+(((-94 |#1|) (-10 -8 (-15 -1733 (|#1| |#1|)) (-15 -1719 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -3589 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)))
-((-3553 (($ $) 11)) (-3528 (($ $) 10)) (-3577 (($ $) 9)) (-3589 (($ $) 8)) (-3566 (($ $) 7)) (-3541 (($ $) 6)))
+(-10 -8 (-15 -1733 (|#1| |#1|)) (-15 -1719 (|#1| |#1|)))
+((-1690 (($ $) 11)) (-1660 (($ $) 10)) (-1719 (($ $) 9)) (-1733 (($ $) 8)) (-1704 (($ $) 7)) (-1673 (($ $) 6)))
(((-95) (-140)) (T -95))
-((-3553 (*1 *1 *1) (-4 *1 (-95))) (-3528 (*1 *1 *1) (-4 *1 (-95))) (-3577 (*1 *1 *1) (-4 *1 (-95))) (-3589 (*1 *1 *1) (-4 *1 (-95))) (-3566 (*1 *1 *1) (-4 *1 (-95))) (-3541 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -3541 ($ $)) (-15 -3566 ($ $)) (-15 -3589 ($ $)) (-15 -3577 ($ $)) (-15 -3528 ($ $)) (-15 -3553 ($ $))))
-((-3979 (((-112) $ $) NIL)) (-3534 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-96) (-13 (-1082) (-10 -8 (-15 -3534 ((-1134) $))))) (T -96))
-((-3534 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96)))))
-(-13 (-1082) (-10 -8 (-15 -3534 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-4129 (((-381) (-1157) (-381)) 47) (((-381) (-1157) (-1157) (-381)) 45)) (-2349 (((-381) (-381)) 35)) (-3693 (((-1270)) 38)) (-1390 (((-1157) $) NIL)) (-1870 (((-381) (-1157) (-1157)) 51) (((-381) (-1157)) 53)) (-1944 (((-1119) $) NIL)) (-2045 (((-381) (-1157) (-1157)) 52)) (-2129 (((-381) (-1157) (-1157)) 54) (((-381) (-1157)) 55)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-97) (-13 (-1099) (-10 -7 (-15 -1870 ((-381) (-1157) (-1157))) (-15 -1870 ((-381) (-1157))) (-15 -2129 ((-381) (-1157) (-1157))) (-15 -2129 ((-381) (-1157))) (-15 -2045 ((-381) (-1157) (-1157))) (-15 -3693 ((-1270))) (-15 -2349 ((-381) (-381))) (-15 -4129 ((-381) (-1157) (-381))) (-15 -4129 ((-381) (-1157) (-1157) (-381))) (-6 -4415)))) (T -97))
-((-1870 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2129 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2045 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))) (-3693 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-97)))) (-2349 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-4129 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))) (-4129 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))))
-(-13 (-1099) (-10 -7 (-15 -1870 ((-381) (-1157) (-1157))) (-15 -1870 ((-381) (-1157))) (-15 -2129 ((-381) (-1157) (-1157))) (-15 -2129 ((-381) (-1157))) (-15 -2045 ((-381) (-1157) (-1157))) (-15 -3693 ((-1270))) (-15 -2349 ((-381) (-381))) (-15 -4129 ((-381) (-1157) (-381))) (-15 -4129 ((-381) (-1157) (-1157) (-381))) (-6 -4415)))
+((-1690 (*1 *1 *1) (-4 *1 (-95))) (-1660 (*1 *1 *1) (-4 *1 (-95))) (-1719 (*1 *1 *1) (-4 *1 (-95))) (-1733 (*1 *1 *1) (-4 *1 (-95))) (-1704 (*1 *1 *1) (-4 *1 (-95))) (-1673 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -1673 ($ $)) (-15 -1704 ($ $)) (-15 -1733 ($ $)) (-15 -1719 ($ $)) (-15 -1660 ($ $)) (-15 -1690 ($ $))))
+((-2257 (((-112) $ $) NIL)) (-1817 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 15) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-96) (-13 (-1083) (-10 -8 (-15 -1817 ((-1135) $))))) (T -96))
+((-1817 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-96)))))
+(-13 (-1083) (-10 -8 (-15 -1817 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-3449 (((-381) (-1158) (-381)) 47) (((-381) (-1158) (-1158) (-381)) 45)) (-4338 (((-381) (-381)) 35)) (-1677 (((-1271)) 38)) (-2451 (((-1158) $) NIL)) (-2032 (((-381) (-1158) (-1158)) 51) (((-381) (-1158)) 53)) (-3339 (((-1120) $) NIL)) (-4277 (((-381) (-1158) (-1158)) 52)) (-2797 (((-381) (-1158) (-1158)) 54) (((-381) (-1158)) 55)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-97) (-13 (-1100) (-10 -7 (-15 -2032 ((-381) (-1158) (-1158))) (-15 -2032 ((-381) (-1158))) (-15 -2797 ((-381) (-1158) (-1158))) (-15 -2797 ((-381) (-1158))) (-15 -4277 ((-381) (-1158) (-1158))) (-15 -1677 ((-1271))) (-15 -4338 ((-381) (-381))) (-15 -3449 ((-381) (-1158) (-381))) (-15 -3449 ((-381) (-1158) (-1158) (-381))) (-6 -4416)))) (T -97))
+((-2032 (*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2032 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2797 (*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))) (-4277 (*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))) (-1677 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-97)))) (-4338 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))) (-3449 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1158)) (-5 *1 (-97)))) (-3449 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1158)) (-5 *1 (-97)))))
+(-13 (-1100) (-10 -7 (-15 -2032 ((-381) (-1158) (-1158))) (-15 -2032 ((-381) (-1158))) (-15 -2797 ((-381) (-1158) (-1158))) (-15 -2797 ((-381) (-1158))) (-15 -4277 ((-381) (-1158) (-1158))) (-15 -1677 ((-1271))) (-15 -4338 ((-381) (-381))) (-15 -3449 ((-381) (-1158) (-381))) (-15 -3449 ((-381) (-1158) (-1158) (-381))) (-6 -4416)))
NIL
(((-98) (-140)) (T -98))
NIL
-(-13 (-10 -7 (-6 -4415) (-6 (-4417 "*")) (-6 -4416) (-6 -4412) (-6 -4410) (-6 -4409) (-6 -4408) (-6 -4413) (-6 -4407) (-6 -4406) (-6 -4405) (-6 -4404) (-6 -4403) (-6 -4411) (-6 -4414) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4402)))
-((-3979 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-2929 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-566))) 24)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 16)) (-1944 (((-1119) $) NIL)) (-3282 ((|#1| $ |#1|) 13)) (-2558 (($ $ $) NIL)) (-1726 (($ $ $) NIL)) (-2725 (((-862) $) 22)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 8 T CONST)) (-2817 (((-112) $ $) 10)) (-2916 (($ $ $) NIL)) (** (($ $ (-921)) 34) (($ $ (-771)) NIL) (($ $ (-566)) 18)) (* (($ $ $) 35)))
-(((-99 |#1|) (-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -2929 ($ (-1 |#1| |#1|))) (-15 -2929 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2929 ($ (-1 |#1| |#1| (-566)))))) (-1049)) (T -99))
-((-2929 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-2929 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3)))))
-(-13 (-475) (-287 |#1| |#1|) (-10 -8 (-15 -2929 ($ (-1 |#1| |#1|))) (-15 -2929 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2929 ($ (-1 |#1| |#1| (-566))))))
-((-3432 (((-420 |#2|) |#2| (-644 |#2|)) 10) (((-420 |#2|) |#2| |#2|) 11)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -3432 ((-420 |#2|) |#2| |#2|)) (-15 -3432 ((-420 |#2|) |#2| (-644 |#2|)))) (-13 (-454) (-147)) (-1241 |#1|)) (T -100))
-((-3432 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3)))) (-3432 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -3432 ((-420 |#2|) |#2| |#2|)) (-15 -3432 ((-420 |#2|) |#2| (-644 |#2|))))
-((-3979 (((-112) $ $) 10)))
-(((-101 |#1|) (-10 -8 (-15 -3979 ((-112) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -3979 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-2817 (((-112) $ $) 6)))
+(-13 (-10 -7 (-6 -4416) (-6 (-4418 "*")) (-6 -4417) (-6 -4413) (-6 -4411) (-6 -4410) (-6 -4409) (-6 -4414) (-6 -4408) (-6 -4407) (-6 -4406) (-6 -4405) (-6 -4404) (-6 -4412) (-6 -4415) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4403)))
+((-2257 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-1859 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-567))) 24)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 16)) (-3339 (((-1120) $) NIL)) (-1552 ((|#1| $ |#1|) 13)) (-1443 (($ $ $) NIL)) (-4272 (($ $ $) NIL)) (-4101 (((-863) $) 22)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 8 T CONST)) (-3052 (((-112) $ $) 10)) (-3168 (($ $ $) NIL)) (** (($ $ (-922)) 34) (($ $ (-772)) NIL) (($ $ (-567)) 18)) (* (($ $ $) 35)))
+(((-99 |#1|) (-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -1859 ($ (-1 |#1| |#1|))) (-15 -1859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1859 ($ (-1 |#1| |#1| (-567)))))) (-1050)) (T -99))
+((-1859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3)))) (-1859 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3)))) (-1859 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-99 *3)))))
+(-13 (-476) (-287 |#1| |#1|) (-10 -8 (-15 -1859 ($ (-1 |#1| |#1|))) (-15 -1859 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1859 ($ (-1 |#1| |#1| (-567))))))
+((-4200 (((-421 |#2|) |#2| (-645 |#2|)) 10) (((-421 |#2|) |#2| |#2|) 11)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -4200 ((-421 |#2|) |#2| |#2|)) (-15 -4200 ((-421 |#2|) |#2| (-645 |#2|)))) (-13 (-455) (-147)) (-1242 |#1|)) (T -100))
+((-4200 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))) (-4200 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -4200 ((-421 |#2|) |#2| |#2|)) (-15 -4200 ((-421 |#2|) |#2| (-645 |#2|))))
+((-2257 (((-112) $ $) 10)))
+(((-101 |#1|) (-10 -8 (-15 -2257 ((-112) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -2257 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-3052 (((-112) $ $) 6)))
(((-102) (-140)) (T -102))
-((-3979 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2817 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
-(-13 (-10 -8 (-15 -2817 ((-112) $ $)) (-15 -3979 ((-112) $ $))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) 24 (|has| $ (-6 -4416)))) (-1662 (($ $ $) NIL (|has| $ (-6 -4416)))) (-1465 (($ $ $) NIL (|has| $ (-6 -4416)))) (-2843 (($ $ (-644 |#1|)) 34)) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) (($ $ "left" $) NIL (|has| $ (-6 -4416))) (($ $ "right" $) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-1627 (($ $) 12)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1732 (($ $ |#1| $) 36)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2731 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-1927 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|)) 53)) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1616 (($ $) 11)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) 13)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 9)) (-3906 (($) 35)) (-3282 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4104 (((-566) $ $) NIL)) (-3810 (((-112) $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4013 (($ (-771) |#1|) 37)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4415) (-6 -4416) (-15 -4013 ($ (-771) |#1|)) (-15 -2843 ($ $ (-644 |#1|))) (-15 -2731 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2731 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1927 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1927 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|))))) (-1099)) (T -103))
-((-4013 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-2731 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099)))) (-2731 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))) (-1927 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2)))) (-1927 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4415) (-6 -4416) (-15 -4013 ($ (-771) |#1|)) (-15 -2843 ($ $ (-644 |#1|))) (-15 -2731 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2731 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1927 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1927 ($ $ |#1| (-1 (-644 |#1|) |#1| |#1| |#1|)))))
-((-2743 ((|#3| |#2| |#2|) 36)) (-1519 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4417 "*"))))) (-3205 ((|#3| |#2| |#2|) 38)) (-3672 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4417 "*"))))))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2743 (|#3| |#2| |#2|)) (-15 -3205 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4417 "*"))) (PROGN (-15 -1519 (|#1| |#2| |#2|)) (-15 -3672 (|#1| |#2|))) |%noBranch|)) (-1049) (-1241 |#1|) (-687 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104))
-((-3672 (*1 *2 *3) (-12 (|has| *2 (-6 (-4417 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1241 *2)) (-4 *4 (-687 *2 *5 *6)))) (-1519 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4417 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1241 *2)) (-4 *4 (-687 *2 *5 *6)))) (-3205 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1241 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-2743 (*1 *2 *3 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1241 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))))
-(-10 -7 (-15 -2743 (|#3| |#2| |#2|)) (-15 -3205 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4417 "*"))) (PROGN (-15 -1519 (|#1| |#2| |#2|)) (-15 -3672 (|#1| |#2|))) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-3866 (((-644 (-1175))) 37)) (-2057 (((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175)) 39)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-105) (-13 (-1099) (-10 -7 (-15 -3866 ((-644 (-1175)))) (-15 -2057 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4415)))) (T -105))
-((-3866 (*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225))))) (-5 *1 (-105)))))
-(-13 (-1099) (-10 -7 (-15 -3866 ((-644 (-1175)))) (-15 -2057 ((-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225))) (|:| |singularities| (-1155 (-225)))) (-1175))) (-6 -4415)))
-((-3619 (($ (-644 |#2|)) 11)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -3619 (|#1| (-644 |#2|)))) (-107 |#2|) (-1215)) (T -106))
-NIL
-(-10 -8 (-15 -3619 (|#1| (-644 |#2|))))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-2633 (($) 7 T CONST)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-107 |#1|) (-140) (-1215)) (T -107))
-((-3619 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-4 *1 (-107 *3)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1215)))) (-1619 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1215)))) (-2668 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1215)))))
-(-13 (-491 |t#1|) (-10 -8 (-6 -4416) (-15 -3619 ($ (-644 |t#1|))) (-15 -1613 (|t#1| $)) (-15 -1619 ($ |t#1| $)) (-15 -2668 (|t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 (((-566) $) NIL (|has| (-566) (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| (-566) (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-3343 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-566) (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| (-566) (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 (((-566) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2307 (((-112) $) NIL (|has| (-566) (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-566) (-850)))) (-2101 (($ (-1 (-566) (-566)) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-566) (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-2311 (((-566) $) NIL (|has| (-566) (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3792 (((-771) $) NIL)) (-3282 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3233 (($ $) NIL)) (-2702 (((-566) $) NIL)) (-2150 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 2) $) 10)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2875 (((-771)) NIL T CONST)) (-2119 (((-566) $) NIL (|has| (-566) (-547)))) (-3249 (($ (-409 (-566))) 9)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| (-566) (-820)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2865 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2916 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL)))
-(((-108) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -3249 ($ (-409 (-566))))))) (T -108))
-((-2941 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108)))))
-(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 2)) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -3249 ($ (-409 (-566))))))
-((-2440 (((-644 (-965)) $) 13)) (-3534 (((-508) $) 9)) (-2725 (((-862) $) 20)) (-2242 (($ (-508) (-644 (-965))) 15)))
-(((-109) (-13 (-613 (-862)) (-10 -8 (-15 -3534 ((-508) $)) (-15 -2440 ((-644 (-965)) $)) (-15 -2242 ($ (-508) (-644 (-965))))))) (T -109))
-((-3534 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109)))) (-2440 (*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109)))) (-2242 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3534 ((-508) $)) (-15 -2440 ((-644 (-965)) $)) (-15 -2242 ($ (-508) (-644 (-965))))))
-((-3979 (((-112) $ $) NIL)) (-4001 (($ $) NIL)) (-3171 (($ $ $) NIL)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3190 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-3370 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2858 (((-112) $ (-1232 (-566)) (-112)) NIL (|has| $ (-6 -4416))) (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-1752 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-2553 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-3031 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4416)))) (-2975 (((-112) $ (-566)) NIL)) (-2388 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-1523 (((-644 (-112)) $) NIL (|has| $ (-6 -4415)))) (-3157 (($ $ $) NIL)) (-3129 (($ $) NIL)) (-3120 (($ $ $) NIL)) (-2631 (($ (-771) (-112)) 10)) (-2336 (($ $ $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL)) (-3848 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2565 (((-644 (-112)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL)) (-3023 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1510 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-112) $) NIL (|has| (-566) (-850)))) (-3567 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3598 (($ $ (-112)) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-1948 (((-644 (-112)) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 (($ $ (-1232 (-566))) NIL) (((-112) $ (-566)) NIL) (((-112) $ (-566) (-112)) NIL)) (-1302 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-1958 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-2738 (($ (-644 (-112))) NIL)) (-4007 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2725 (((-862) $) NIL)) (-3194 (($ (-771) (-112)) 11)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-3144 (($ $ $) NIL)) (-4049 (($ $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-4036 (($ $ $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-110) (-13 (-123) (-10 -8 (-15 -3194 ($ (-771) (-112)))))) (T -110))
-((-3194 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110)))))
-(-13 (-123) (-10 -8 (-15 -3194 ($ (-771) (-112)))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
-(((-111 |#1| |#2|) (-140) (-1049) (-1049)) (T -111))
-NIL
-(-13 (-648 |t#1|) (-1056 |t#2|) (-10 -7 (-6 -4410) (-6 -4409)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-4001 (($ $) 13)) (-3171 (($ $ $) 18)) (-2977 (($) 7 T CONST)) (-1422 (($ $) 6)) (-3733 (((-771)) 26)) (-3424 (($) 34)) (-3157 (($ $ $) 16)) (-3129 (($ $) 9)) (-3120 (($ $ $) 19)) (-2336 (($ $ $) 20)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) 32)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) 30)) (-1825 (($ $ $) 22)) (-1944 (((-1119) $) NIL)) (-1894 (($) 8 T CONST)) (-2845 (($ $ $) 23)) (-2150 (((-538) $) 36)) (-2725 (((-862) $) 38)) (-1479 (((-112) $ $) NIL)) (-3144 (($ $ $) 14)) (-4049 (($ $ $) 17)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 21)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 24)) (-4036 (($ $ $) 15)))
-(((-112) (-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -3171 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -3120 ($ $ $)) (-15 -1422 ($ $))))) (T -112))
-((-3171 (*1 *1 *1 *1) (-5 *1 (-112))) (-2336 (*1 *1 *1 *1) (-5 *1 (-112))) (-3120 (*1 *1 *1 *1) (-5 *1 (-112))) (-1422 (*1 *1 *1) (-5 *1 (-112))))
-(-13 (-844) (-661) (-967) (-614 (-538)) (-10 -8 (-15 -3171 ($ $ $)) (-15 -2336 ($ $ $)) (-15 -3120 ($ $ $)) (-15 -1422 ($ $))))
-((-2133 (((-3 (-1 |#1| (-644 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-644 |#1|))) 11) (((-3 |#1| "failed") (-114) (-644 |#1|)) 25)) (-3536 (((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-644 (-1 |#1| (-644 |#1|)))) 30)) (-3090 (((-114) |#1|) 63)) (-4080 (((-3 |#1| "failed") (-114)) 58)))
-(((-113 |#1|) (-10 -7 (-15 -2133 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -2133 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -2133 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2133 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -3536 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3536 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3536 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -3090 ((-114) |#1|)) (-15 -4080 ((-3 |#1| "failed") (-114)))) (-1099)) (T -113))
-((-4080 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099)))) (-3090 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099)))) (-3536 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-2133 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1099)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-2133 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099)) (-5 *1 (-113 *4)))) (-2133 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1099)))))
-(-10 -7 (-15 -2133 ((-3 |#1| "failed") (-114) (-644 |#1|))) (-15 -2133 ((-114) (-114) (-1 |#1| (-644 |#1|)))) (-15 -2133 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2133 ((-3 (-1 |#1| (-644 |#1|)) "failed") (-114))) (-15 -3536 ((-114) (-114) (-644 (-1 |#1| (-644 |#1|))))) (-15 -3536 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3536 ((-3 (-644 (-1 |#1| (-644 |#1|))) "failed") (-114))) (-15 -3090 ((-114) |#1|)) (-15 -4080 ((-3 |#1| "failed") (-114))))
-((-3979 (((-112) $ $) NIL)) (-3095 (((-771) $) 91) (($ $ (-771)) 37)) (-3679 (((-112) $) 41)) (-3307 (($ $ (-1157) (-774)) 58) (($ $ (-508) (-774)) 33)) (-1620 (($ $ (-45 (-1157) (-774))) 16)) (-3377 (((-3 (-774) "failed") $ (-1157)) 27) (((-691 (-774)) $ (-508)) 32)) (-2440 (((-45 (-1157) (-774)) $) 15)) (-3959 (($ (-1175)) 20) (($ (-1175) (-771)) 23) (($ (-1175) (-55)) 24)) (-1699 (((-112) $) 39)) (-2051 (((-112) $) 43)) (-3534 (((-1175) $) 8)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-3044 (((-112) $ (-1175)) 11)) (-2538 (($ $ (-1 (-538) (-644 (-538)))) 64) (((-3 (-1 (-538) (-644 (-538))) "failed") $) 71)) (-1944 (((-1119) $) NIL)) (-3490 (((-112) $ (-508)) 36)) (-3720 (($ $ (-1 (-112) $ $)) 45)) (-2498 (((-3 (-1 (-862) (-644 (-862))) "failed") $) 69) (($ $ (-1 (-862) (-644 (-862)))) 51) (($ $ (-1 (-862) (-862))) 53)) (-2040 (($ $ (-1157)) 55) (($ $ (-508)) 56)) (-2878 (($ $) 77)) (-2065 (($ $ (-1 (-112) $ $)) 46)) (-2725 (((-862) $) 60)) (-1479 (((-112) $ $) NIL)) (-4296 (($ $ (-508)) 34)) (-1381 (((-55) $) 72)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 89)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 103)))
-(((-114) (-13 (-850) (-835 (-1175)) (-10 -8 (-15 -2440 ((-45 (-1157) (-774)) $)) (-15 -2878 ($ $)) (-15 -3959 ($ (-1175))) (-15 -3959 ($ (-1175) (-771))) (-15 -3959 ($ (-1175) (-55))) (-15 -1699 ((-112) $)) (-15 -3679 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3095 ((-771) $)) (-15 -3095 ($ $ (-771))) (-15 -3720 ($ $ (-1 (-112) $ $))) (-15 -2065 ($ $ (-1 (-112) $ $))) (-15 -2498 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -2498 ($ $ (-1 (-862) (-644 (-862))))) (-15 -2498 ($ $ (-1 (-862) (-862)))) (-15 -2538 ($ $ (-1 (-538) (-644 (-538))))) (-15 -2538 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -3490 ((-112) $ (-508))) (-15 -4296 ($ $ (-508))) (-15 -2040 ($ $ (-1157))) (-15 -2040 ($ $ (-508))) (-15 -3377 ((-3 (-774) "failed") $ (-1157))) (-15 -3377 ((-691 (-774)) $ (-508))) (-15 -3307 ($ $ (-1157) (-774))) (-15 -3307 ($ $ (-508) (-774))) (-15 -1620 ($ $ (-45 (-1157) (-774))))))) (T -114))
-((-2440 (*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114)))) (-2878 (*1 *1 *1) (-5 *1 (-114))) (-3959 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114)))) (-3959 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2051 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-3095 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114)))) (-3720 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2065 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-2498 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-2498 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114)))) (-2498 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114)))) (-2538 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-2538 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114)))) (-3490 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114)))) (-4296 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-2040 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114)))) (-2040 (*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114)))) (-3377 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114)))) (-3377 (*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114)))) (-3307 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114)))) (-3307 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114)))) (-1620 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114)))))
-(-13 (-850) (-835 (-1175)) (-10 -8 (-15 -2440 ((-45 (-1157) (-774)) $)) (-15 -2878 ($ $)) (-15 -3959 ($ (-1175))) (-15 -3959 ($ (-1175) (-771))) (-15 -3959 ($ (-1175) (-55))) (-15 -1699 ((-112) $)) (-15 -3679 ((-112) $)) (-15 -2051 ((-112) $)) (-15 -3095 ((-771) $)) (-15 -3095 ($ $ (-771))) (-15 -3720 ($ $ (-1 (-112) $ $))) (-15 -2065 ($ $ (-1 (-112) $ $))) (-15 -2498 ((-3 (-1 (-862) (-644 (-862))) "failed") $)) (-15 -2498 ($ $ (-1 (-862) (-644 (-862))))) (-15 -2498 ($ $ (-1 (-862) (-862)))) (-15 -2538 ($ $ (-1 (-538) (-644 (-538))))) (-15 -2538 ((-3 (-1 (-538) (-644 (-538))) "failed") $)) (-15 -3490 ((-112) $ (-508))) (-15 -4296 ($ $ (-508))) (-15 -2040 ($ $ (-1157))) (-15 -2040 ($ $ (-508))) (-15 -3377 ((-3 (-774) "failed") $ (-1157))) (-15 -3377 ((-691 (-774)) $ (-508))) (-15 -3307 ($ $ (-1157) (-774))) (-15 -3307 ($ $ (-508) (-774))) (-15 -1620 ($ $ (-45 (-1157) (-774))))))
-((-3702 (((-566) |#2|) 41)))
-(((-115 |#1| |#2|) (-10 -7 (-15 -3702 ((-566) |#2|))) (-13 (-365) (-1038 (-409 (-566)))) (-1241 |#1|)) (T -115))
-((-3702 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -3702 ((-566) |#2|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $ (-566)) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-1884 (($ (-1171 (-566)) (-566)) NIL)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3525 (($ $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-3077 (((-771) $) NIL)) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2689 (((-566)) NIL)) (-3210 (((-566) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3964 (($ $ (-566)) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2016 (((-1155 (-566)) $) NIL)) (-3965 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-1551 (((-566) $ (-566)) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL)))
-(((-116 |#1|) (-869 |#1|) (-566)) (T -116))
-NIL
-(-869 |#1|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| (-116 |#1|) (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-3343 (((-116 |#1|) $) NIL) (((-1175) $) NIL (|has| (-116 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-116 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-116 |#1|) (-1038 (-566))))) (-4031 (($ $) NIL) (($ (-566) $) NIL)) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-116 |#1|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-116 |#1|))) (|:| |vec| (-1265 (-116 |#1|)))) (-689 $) (-1265 $)) NIL) (((-689 (-116 |#1|)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-116 |#1|) (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-116 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-116 |#1|) (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 (((-116 |#1|) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1150)))) (-2307 (((-112) $) NIL (|has| (-116 |#1|) (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-3936 (($ $ $) NIL (|has| (-116 |#1|) (-850)))) (-2101 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-116 |#1|) (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-2311 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-116 |#1|) (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 (-116 |#1|)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-644 (-1175)) (-644 (-116 |#1|))) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|)))) (($ $ (-1175) (-116 |#1|)) NIL (|has| (-116 |#1|) (-516 (-1175) (-116 |#1|))))) (-3792 (((-771) $) NIL)) (-3282 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3233 (($ $) NIL)) (-2702 (((-116 |#1|) $) NIL)) (-2150 (((-892 (-566)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-116 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-116 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-116 |#1|) (-1022))) (((-225) $) NIL (|has| (-116 |#1|) (-1022)))) (-3485 (((-174 (-409 (-566))) $) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-116 |#1|)) NIL) (($ (-1175)) NIL (|has| (-116 |#1|) (-1038 (-1175))))) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-909))) (|has| (-116 |#1|) (-145))))) (-2875 (((-771)) NIL T CONST)) (-2119 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-1551 (((-409 (-566)) $ (-566)) NIL)) (-2274 (($ $) NIL (|has| (-116 |#1|) (-820)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-116 |#1|) (-900 (-1175)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-771)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2865 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-116 |#1|) (-850)))) (-2916 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
-(((-117 |#1|) (-13 (-992 (-116 |#1|)) (-10 -8 (-15 -1551 ((-409 (-566)) $ (-566))) (-15 -3485 ((-174 (-409 (-566))) $)) (-15 -4031 ($ $)) (-15 -4031 ($ (-566) $)))) (-566)) (T -117))
-((-1551 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566)))) (-4031 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566)))) (-4031 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2))))
-(-13 (-992 (-116 |#1|)) (-10 -8 (-15 -1551 ((-409 (-566)) $ (-566))) (-15 -3485 ((-174 (-409 (-566))) $)) (-15 -4031 ($ $)) (-15 -4031 ($ (-566) $))))
-((-2858 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-4116 (((-644 $) $) 31)) (-3886 (((-112) $ $) 36)) (-3938 (((-112) |#2| $) 40)) (-2801 (((-644 |#2|) $) 25)) (-1396 (((-112) $) 18)) (-3282 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3810 (((-112) $) 57)) (-2725 (((-862) $) 47)) (-4202 (((-644 $) $) 32)) (-2817 (((-112) $ $) 38)) (-3991 (((-771) $) 50)))
-(((-118 |#1| |#2|) (-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -2858 (|#1| |#1| "right" |#1|)) (-15 -2858 (|#1| |#1| "left" |#1|)) (-15 -3282 (|#1| |#1| "right")) (-15 -3282 (|#1| |#1| "left")) (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -3886 ((-112) |#1| |#1|)) (-15 -2801 ((-644 |#2|) |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -3282 (|#2| |#1| "value")) (-15 -1396 ((-112) |#1|)) (-15 -4116 ((-644 |#1|) |#1|)) (-15 -4202 ((-644 |#1|) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#2| |#1|)) (-15 -3991 ((-771) |#1|))) (-119 |#2|) (-1215)) (T -118))
-NIL
-(-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -2858 (|#1| |#1| "right" |#1|)) (-15 -2858 (|#1| |#1| "left" |#1|)) (-15 -3282 (|#1| |#1| "right")) (-15 -3282 (|#1| |#1| "left")) (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -3886 ((-112) |#1| |#1|)) (-15 -2801 ((-644 |#2|) |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -3282 (|#2| |#1| "value")) (-15 -1396 ((-112) |#1|)) (-15 -4116 ((-644 |#1|) |#1|)) (-15 -4202 ((-644 |#1|) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -3938 ((-112) |#2| |#1|)) (-15 -3991 ((-771) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-1662 (($ $ $) 53 (|has| $ (-6 -4416)))) (-1465 (($ $ $) 55 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416))) (($ $ "left" $) 56 (|has| $ (-6 -4416))) (($ $ "right" $) 54 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-2633 (($) 7 T CONST)) (-1627 (($ $) 58)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1616 (($ $) 60)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4104 (((-566) $ $) 45)) (-3810 (((-112) $) 47)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-119 |#1|) (-140) (-1215)) (T -119))
-((-1616 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1215)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1215)))) (-1627 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1215)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1215)))) (-2858 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4416)) (-4 *1 (-119 *3)) (-4 *3 (-1215)))) (-1465 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-119 *2)) (-4 *2 (-1215)))) (-2858 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4416)) (-4 *1 (-119 *3)) (-4 *3 (-1215)))) (-1662 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-119 *2)) (-4 *2 (-1215)))))
-(-13 (-1010 |t#1|) (-10 -8 (-15 -1616 ($ $)) (-15 -3282 ($ $ "left")) (-15 -1627 ($ $)) (-15 -3282 ($ $ "right")) (IF (|has| $ (-6 -4416)) (PROGN (-15 -2858 ($ $ "left" $)) (-15 -1465 ($ $ $)) (-15 -2858 ($ $ "right" $)) (-15 -1662 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-1849 (((-112) |#1|) 29)) (-1450 (((-771) (-771)) 28) (((-771)) 27)) (-1466 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
-(((-120 |#1|) (-10 -7 (-15 -1466 ((-112) |#1|)) (-15 -1466 ((-112) |#1| (-112))) (-15 -1450 ((-771))) (-15 -1450 ((-771) (-771))) (-15 -1849 ((-112) |#1|))) (-1241 (-566))) (T -120))
-((-1849 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))) (-1450 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))) (-1450 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))) (-1466 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))) (-1466 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))))
-(-10 -7 (-15 -1466 ((-112) |#1|)) (-15 -1466 ((-112) |#1| (-112))) (-15 -1450 ((-771))) (-15 -1450 ((-771) (-771))) (-15 -1849 ((-112) |#1|)))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) 18)) (-3993 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-1662 (($ $ $) 21 (|has| $ (-6 -4416)))) (-1465 (($ $ $) 23 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) (($ $ "left" $) NIL (|has| $ (-6 -4416))) (($ $ "right" $) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-1627 (($ $) 20)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1732 (($ $ |#1| $) 27)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1616 (($ $) 22)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4275 (($ |#1| $) 28)) (-1619 (($ |#1| $) 15)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 17)) (-3906 (($) 11)) (-3282 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4104 (((-566) $ $) NIL)) (-3810 (((-112) $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4042 (($ (-644 |#1|)) 16)) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4416) (-6 -4415) (-15 -4042 ($ (-644 |#1|))) (-15 -1619 ($ |#1| $)) (-15 -4275 ($ |#1| $)) (-15 -3993 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-850)) (T -121))
-((-4042 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3)))) (-1619 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))) (-3993 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-850)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4416) (-6 -4415) (-15 -4042 ($ (-644 |#1|))) (-15 -1619 ($ |#1| $)) (-15 -4275 ($ |#1| $)) (-15 -3993 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-4001 (($ $) 13)) (-3129 (($ $) 11)) (-3120 (($ $ $) 23)) (-2336 (($ $ $) 21)) (-4049 (($ $ $) 19)) (-4036 (($ $ $) 17)))
-(((-122 |#1|) (-10 -8 (-15 -3120 (|#1| |#1| |#1|)) (-15 -2336 (|#1| |#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4049 (|#1| |#1| |#1|))) (-123)) (T -122))
-NIL
-(-10 -8 (-15 -3120 (|#1| |#1| |#1|)) (-15 -2336 (|#1| |#1| |#1|)) (-15 -3129 (|#1| |#1|)) (-15 -4001 (|#1| |#1|)) (-15 -4036 (|#1| |#1| |#1|)) (-15 -4049 (|#1| |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-4001 (($ $) 104)) (-3171 (($ $ $) 26)) (-2506 (((-1270) $ (-566) (-566)) 67 (|has| $ (-6 -4416)))) (-1305 (((-112) $) 99 (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3190 (($ $) 103 (-12 (|has| (-112) (-850)) (|has| $ (-6 -4416)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4416)))) (-3370 (($ $) 98 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-2261 (((-112) $ (-771)) 38)) (-2858 (((-112) $ (-1232 (-566)) (-112)) 89 (|has| $ (-6 -4416))) (((-112) $ (-566) (-112)) 55 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4415)))) (-2633 (($) 39 T CONST)) (-1970 (($ $) 101 (|has| $ (-6 -4416)))) (-1921 (($ $) 91)) (-3806 (($ $) 69 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4415))) (($ (-112) $) 70 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4415))))) (-2553 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4415))))) (-3031 (((-112) $ (-566) (-112)) 54 (|has| $ (-6 -4416)))) (-2975 (((-112) $ (-566)) 56)) (-2388 (((-566) (-112) $ (-566)) 96 (|has| (-112) (-1099))) (((-566) (-112) $) 95 (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) 94)) (-1523 (((-644 (-112)) $) 46 (|has| $ (-6 -4415)))) (-3157 (($ $ $) 27)) (-3129 (($ $) 31)) (-3120 (($ $ $) 29)) (-2631 (($ (-771) (-112)) 78)) (-2336 (($ $ $) 30)) (-2429 (((-112) $ (-771)) 37)) (-2239 (((-566) $) 64 (|has| (-566) (-850)))) (-3075 (($ $ $) 14)) (-3848 (($ $ $) 97 (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-2565 (((-644 (-112)) $) 47 (|has| $ (-6 -4415)))) (-3938 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 63 (|has| (-566) (-850)))) (-3936 (($ $ $) 15)) (-3023 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-1864 (((-112) $ (-771)) 36)) (-1390 (((-1157) $) 10)) (-1510 (($ $ $ (-566)) 88) (($ (-112) $ (-566)) 87)) (-4063 (((-644 (-566)) $) 61)) (-3054 (((-112) (-566) $) 60)) (-1944 (((-1119) $) 11)) (-3771 (((-112) $) 65 (|has| (-566) (-850)))) (-3567 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-3598 (($ $ (-112)) 66 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-112)) (-644 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-4165 (((-112) $ $) 32)) (-1346 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-1948 (((-644 (-112)) $) 59)) (-4246 (((-112) $) 35)) (-3906 (($) 34)) (-3282 (($ $ (-1232 (-566))) 84) (((-112) $ (-566)) 58) (((-112) $ (-566) (-112)) 57)) (-1302 (($ $ (-1232 (-566))) 86) (($ $ (-566)) 85)) (-1958 (((-771) (-112) $) 48 (-12 (|has| (-112) (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4415)))) (-3199 (($ $ $ (-566)) 100 (|has| $ (-6 -4416)))) (-2878 (($ $) 33)) (-2150 (((-538) $) 68 (|has| (-112) (-614 (-538))))) (-2738 (($ (-644 (-112))) 77)) (-4007 (($ (-644 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2610 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4415)))) (-3144 (($ $ $) 28)) (-4049 (($ $ $) 106)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (-4036 (($ $ $) 105)) (-3991 (((-771) $) 40 (|has| $ (-6 -4415)))))
+((-2257 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-3052 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))))
+(-13 (-10 -8 (-15 -3052 ((-112) $ $)) (-15 -2257 ((-112) $ $))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) 24 (|has| $ (-6 -4417)))) (-1832 (($ $ $) NIL (|has| $ (-6 -4417)))) (-3615 (($ $ $) NIL (|has| $ (-6 -4417)))) (-2376 (($ $ (-645 |#1|)) 34)) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) (($ $ "left" $) NIL (|has| $ (-6 -4417))) (($ $ "right" $) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3005 (($ $) 12)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3119 (($ $ |#1| $) 36)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3742 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-2614 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)) 53)) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2993 (($ $) 11)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) 13)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 9)) (-3164 (($) 35)) (-1552 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4304 (((-567) $ $) NIL)) (-3436 (((-112) $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1572 (($ (-772) |#1|) 37)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4416) (-6 -4417) (-15 -1572 ($ (-772) |#1|)) (-15 -2376 ($ $ (-645 |#1|))) (-15 -3742 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3742 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2614 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2614 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|))))) (-1100)) (T -103))
+((-1572 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1100)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-103 *3)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1100)))) (-3742 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-103 *3)))) (-2614 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1100)) (-5 *1 (-103 *2)))) (-2614 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1100)) (-5 *1 (-103 *2)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4416) (-6 -4417) (-15 -1572 ($ (-772) |#1|)) (-15 -2376 ($ $ (-645 |#1|))) (-15 -3742 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3742 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2614 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2614 ($ $ |#1| (-1 (-645 |#1|) |#1| |#1| |#1|)))))
+((-3814 ((|#3| |#2| |#2|) 36)) (-2949 ((|#1| |#2| |#2|) 53 (|has| |#1| (-6 (-4418 "*"))))) (-3766 ((|#3| |#2| |#2|) 38)) (-1437 ((|#1| |#2|) 58 (|has| |#1| (-6 (-4418 "*"))))))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3814 (|#3| |#2| |#2|)) (-15 -3766 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4418 "*"))) (PROGN (-15 -2949 (|#1| |#2| |#2|)) (-15 -1437 (|#1| |#2|))) |%noBranch|)) (-1050) (-1242 |#1|) (-688 |#1| |#4| |#5|) (-375 |#1|) (-375 |#1|)) (T -104))
+((-1437 (*1 *2 *3) (-12 (|has| *2 (-6 (-4418 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1242 *2)) (-4 *4 (-688 *2 *5 *6)))) (-2949 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4418 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2)) (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1242 *2)) (-4 *4 (-688 *2 *5 *6)))) (-3766 (*1 *2 *3 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1242 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))) (-3814 (*1 *2 *3 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1242 *4)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)))))
+(-10 -7 (-15 -3814 (|#3| |#2| |#2|)) (-15 -3766 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4418 "*"))) (PROGN (-15 -2949 (|#1| |#2| |#2|)) (-15 -1437 (|#1| |#2|))) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-2769 (((-645 (-1176))) 37)) (-3306 (((-2 (|:| |zeros| (-1156 (-225))) (|:| |ones| (-1156 (-225))) (|:| |singularities| (-1156 (-225)))) (-1176)) 39)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-105) (-13 (-1100) (-10 -7 (-15 -2769 ((-645 (-1176)))) (-15 -3306 ((-2 (|:| |zeros| (-1156 (-225))) (|:| |ones| (-1156 (-225))) (|:| |singularities| (-1156 (-225)))) (-1176))) (-6 -4416)))) (T -105))
+((-2769 (*1 *2) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-105)))) (-3306 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-2 (|:| |zeros| (-1156 (-225))) (|:| |ones| (-1156 (-225))) (|:| |singularities| (-1156 (-225))))) (-5 *1 (-105)))))
+(-13 (-1100) (-10 -7 (-15 -2769 ((-645 (-1176)))) (-15 -3306 ((-2 (|:| |zeros| (-1156 (-225))) (|:| |ones| (-1156 (-225))) (|:| |singularities| (-1156 (-225)))) (-1176))) (-6 -4416)))
+((-2299 (($ (-645 |#2|)) 11)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -2299 (|#1| (-645 |#2|)))) (-107 |#2|) (-1216)) (T -106))
+NIL
+(-10 -8 (-15 -2299 (|#1| (-645 |#2|))))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-4061 (($) 7 T CONST)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-107 |#1|) (-140) (-1216)) (T -107))
+((-2299 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-4 *1 (-107 *3)))) (-4394 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1216)))) (-1336 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1216)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1216)))))
+(-13 (-492 |t#1|) (-10 -8 (-6 -4417) (-15 -2299 ($ (-645 |t#1|))) (-15 -4394 (|t#1| $)) (-15 -1336 ($ |t#1| $)) (-15 -4341 (|t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 (((-567) $) NIL (|has| (-567) (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| (-567) (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (|has| (-567) (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1039 (-567))))) (-1621 (((-567) $) NIL) (((-1176) $) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-567) (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| (-567) (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 (((-567) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| (-567) (-1151)))) (-3948 (((-112) $) NIL (|has| (-567) (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-567) (-851)))) (-3494 (($ (-1 (-567) (-567)) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-567) (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-3992 (((-567) $) NIL (|has| (-567) (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1176)) (-645 (-567))) NIL (|has| (-567) (-517 (-1176) (-567)))) (($ $ (-1176) (-567)) NIL (|has| (-567) (-517 (-1176) (-567))))) (-4369 (((-772) $) NIL)) (-1552 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2870 (($ $) NIL)) (-4078 (((-567) $) NIL)) (-3542 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1176)) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) NIL) (((-1005 2) $) 10)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-2686 (((-772)) NIL T CONST)) (-2721 (((-567) $) NIL (|has| (-567) (-548)))) (-3023 (($ (-410 (-567))) 9)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| (-567) (-821)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3109 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3168 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
+(((-108) (-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 2)) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -3023 ($ (-410 (-567))))))) (T -108))
+((-1987 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))) (-3023 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108)))))
+(-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 2)) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -3023 ($ (-410 (-567))))))
+((-1340 (((-645 (-966)) $) 13)) (-1817 (((-509) $) 9)) (-4101 (((-863) $) 20)) (-1347 (($ (-509) (-645 (-966))) 15)))
+(((-109) (-13 (-614 (-863)) (-10 -8 (-15 -1817 ((-509) $)) (-15 -1340 ((-645 (-966)) $)) (-15 -1347 ($ (-509) (-645 (-966))))))) (T -109))
+((-1817 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-645 (-966))) (-5 *1 (-109)))) (-1347 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-109)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -1817 ((-509) $)) (-15 -1340 ((-645 (-966)) $)) (-15 -1347 ($ (-509) (-645 (-966))))))
+((-2257 (((-112) $ $) NIL)) (-2278 (($ $) NIL)) (-1439 (($ $ $) NIL)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3655 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1594 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-4230 (((-112) $ (-1233 (-567)) (-112)) NIL (|has| $ (-6 -4417))) (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-3138 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-3402 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-1303 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4417)))) (-4344 (((-112) $ (-567)) NIL)) (-3771 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1100))) (((-567) (-112) $) NIL (|has| (-112) (-1100))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2896 (((-645 (-112)) $) NIL (|has| $ (-6 -4416)))) (-1424 (($ $ $) NIL)) (-1397 (($ $) NIL)) (-4167 (($ $ $) NIL)) (-4012 (($ (-772) (-112)) 10)) (-4226 (($ $ $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL)) (-3768 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1542 (((-645 (-112)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL)) (-4392 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-2884 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-112) $) NIL (|has| (-567) (-851)))) (-3050 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2092 (($ $ (-112)) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-1412 (((-645 (-112)) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 (($ $ (-1233 (-567))) NIL) (((-112) $ (-567)) NIL) (((-112) $ (-567) (-112)) NIL)) (-2675 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-3349 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4114 (($ (-645 (-112))) NIL)) (-2285 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4101 (((-863) $) NIL)) (-3693 (($ (-772) (-112)) 11)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-1410 (($ $ $) NIL)) (-2328 (($ $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-2316 (($ $ $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-110) (-13 (-123) (-10 -8 (-15 -3693 ($ (-772) (-112)))))) (T -110))
+((-3693 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110)))))
+(-13 (-123) (-10 -8 (-15 -3693 ($ (-772) (-112)))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#2|) 31)))
+(((-111 |#1| |#2|) (-140) (-1050) (-1050)) (T -111))
+NIL
+(-13 (-649 |t#1|) (-1057 |t#2|) (-10 -7 (-6 -4411) (-6 -4410)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2278 (($ $) 13)) (-1439 (($ $ $) 18)) (-4345 (($) 7 T CONST)) (-2799 (($ $) 6)) (-2013 (((-772)) 26)) (-1649 (($) 34)) (-1424 (($ $ $) 16)) (-1397 (($ $) 9)) (-4167 (($ $ $) 19)) (-4226 (($ $ $) 20)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) 32)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) 30)) (-2844 (($ $ $) 22)) (-3339 (((-1120) $) NIL)) (-3286 (($) 8 T CONST)) (-2392 (($ $ $) 23)) (-3542 (((-539) $) 36)) (-4101 (((-863) $) 38)) (-3739 (((-112) $ $) NIL)) (-1410 (($ $ $) 14)) (-2328 (($ $ $) 17)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 21)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 24)) (-2316 (($ $ $) 15)))
+(((-112) (-13 (-845) (-662) (-968) (-615 (-539)) (-10 -8 (-15 -1439 ($ $ $)) (-15 -4226 ($ $ $)) (-15 -4167 ($ $ $)) (-15 -2799 ($ $))))) (T -112))
+((-1439 (*1 *1 *1 *1) (-5 *1 (-112))) (-4226 (*1 *1 *1 *1) (-5 *1 (-112))) (-4167 (*1 *1 *1 *1) (-5 *1 (-112))) (-2799 (*1 *1 *1) (-5 *1 (-112))))
+(-13 (-845) (-662) (-968) (-615 (-539)) (-10 -8 (-15 -1439 ($ $ $)) (-15 -4226 ($ $ $)) (-15 -4167 ($ $ $)) (-15 -2799 ($ $))))
+((-2841 (((-3 (-1 |#1| (-645 |#1|)) "failed") (-114)) 23) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-645 |#1|))) 11) (((-3 |#1| "failed") (-114) (-645 |#1|)) 25)) (-2785 (((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114)) 29) (((-114) (-114) (-1 |#1| |#1|)) 33) (((-114) (-114) (-645 (-1 |#1| (-645 |#1|)))) 30)) (-3889 (((-114) |#1|) 63)) (-4107 (((-3 |#1| "failed") (-114)) 58)))
+(((-113 |#1|) (-10 -7 (-15 -2841 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -2841 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -2841 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2841 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -2785 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2785 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2785 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -3889 ((-114) |#1|)) (-15 -4107 ((-3 |#1| "failed") (-114)))) (-1100)) (T -113))
+((-4107 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1100)))) (-3889 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1100)))) (-2785 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1100)))) (-2785 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1100)) (-5 *1 (-113 *4)))) (-2785 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1100)) (-5 *1 (-113 *4)))) (-2841 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1100)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1100)) (-5 *1 (-113 *4)))) (-2841 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1100)) (-5 *1 (-113 *4)))) (-2841 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1100)))))
+(-10 -7 (-15 -2841 ((-3 |#1| "failed") (-114) (-645 |#1|))) (-15 -2841 ((-114) (-114) (-1 |#1| (-645 |#1|)))) (-15 -2841 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2841 ((-3 (-1 |#1| (-645 |#1|)) "failed") (-114))) (-15 -2785 ((-114) (-114) (-645 (-1 |#1| (-645 |#1|))))) (-15 -2785 ((-114) (-114) (-1 |#1| |#1|))) (-15 -2785 ((-3 (-645 (-1 |#1| (-645 |#1|))) "failed") (-114))) (-15 -3889 ((-114) |#1|)) (-15 -4107 ((-3 |#1| "failed") (-114))))
+((-2257 (((-112) $ $) NIL)) (-3933 (((-772) $) 91) (($ $ (-772)) 37)) (-1528 (((-112) $) 41)) (-2363 (($ $ (-1158) (-775)) 58) (($ $ (-509) (-775)) 33)) (-1346 (($ $ (-45 (-1158) (-775))) 16)) (-1657 (((-3 (-775) "failed") $ (-1158)) 27) (((-692 (-775)) $ (-509)) 32)) (-1340 (((-45 (-1158) (-775)) $) 15)) (-2236 (($ (-1176)) 20) (($ (-1176) (-772)) 23) (($ (-1176) (-55)) 24)) (-4043 (((-112) $) 39)) (-4334 (((-112) $) 43)) (-1817 (((-1176) $) 8)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-1527 (((-112) $ (-1176)) 11)) (-3919 (($ $ (-1 (-539) (-645 (-539)))) 64) (((-3 (-1 (-539) (-645 (-539))) "failed") $) 71)) (-3339 (((-1120) $) NIL)) (-3584 (((-112) $ (-509)) 36)) (-1943 (($ $ (-1 (-112) $ $)) 45)) (-3877 (((-3 (-1 (-863) (-645 (-863))) "failed") $) 69) (($ $ (-1 (-863) (-645 (-863)))) 51) (($ $ (-1 (-863) (-863))) 53)) (-4231 (($ $ (-1158)) 55) (($ $ (-509)) 56)) (-4247 (($ $) 77)) (-3382 (($ $ (-1 (-112) $ $)) 46)) (-4101 (((-863) $) 60)) (-3739 (((-112) $ $) NIL)) (-2573 (($ $ (-509)) 34)) (-1688 (((-55) $) 72)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 89)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 103)))
+(((-114) (-13 (-851) (-836 (-1176)) (-10 -8 (-15 -1340 ((-45 (-1158) (-775)) $)) (-15 -4247 ($ $)) (-15 -2236 ($ (-1176))) (-15 -2236 ($ (-1176) (-772))) (-15 -2236 ($ (-1176) (-55))) (-15 -4043 ((-112) $)) (-15 -1528 ((-112) $)) (-15 -4334 ((-112) $)) (-15 -3933 ((-772) $)) (-15 -3933 ($ $ (-772))) (-15 -1943 ($ $ (-1 (-112) $ $))) (-15 -3382 ($ $ (-1 (-112) $ $))) (-15 -3877 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -3877 ($ $ (-1 (-863) (-645 (-863))))) (-15 -3877 ($ $ (-1 (-863) (-863)))) (-15 -3919 ($ $ (-1 (-539) (-645 (-539))))) (-15 -3919 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -3584 ((-112) $ (-509))) (-15 -2573 ($ $ (-509))) (-15 -4231 ($ $ (-1158))) (-15 -4231 ($ $ (-509))) (-15 -1657 ((-3 (-775) "failed") $ (-1158))) (-15 -1657 ((-692 (-775)) $ (-509))) (-15 -2363 ($ $ (-1158) (-775))) (-15 -2363 ($ $ (-509) (-775))) (-15 -1346 ($ $ (-45 (-1158) (-775))))))) (T -114))
+((-1340 (*1 *2 *1) (-12 (-5 *2 (-45 (-1158) (-775))) (-5 *1 (-114)))) (-4247 (*1 *1 *1) (-5 *1 (-114))) (-2236 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-114)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-772)) (-5 *1 (-114)))) (-2236 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-55)) (-5 *1 (-114)))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114)))) (-1943 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3382 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3877 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114)))) (-3877 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114)))) (-3919 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-3919 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))) (-2573 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114)))) (-1657 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-775)) (-5 *1 (-114)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114)))) (-2363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-775)) (-5 *1 (-114)))) (-2363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114)))) (-1346 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1158) (-775))) (-5 *1 (-114)))))
+(-13 (-851) (-836 (-1176)) (-10 -8 (-15 -1340 ((-45 (-1158) (-775)) $)) (-15 -4247 ($ $)) (-15 -2236 ($ (-1176))) (-15 -2236 ($ (-1176) (-772))) (-15 -2236 ($ (-1176) (-55))) (-15 -4043 ((-112) $)) (-15 -1528 ((-112) $)) (-15 -4334 ((-112) $)) (-15 -3933 ((-772) $)) (-15 -3933 ($ $ (-772))) (-15 -1943 ($ $ (-1 (-112) $ $))) (-15 -3382 ($ $ (-1 (-112) $ $))) (-15 -3877 ((-3 (-1 (-863) (-645 (-863))) "failed") $)) (-15 -3877 ($ $ (-1 (-863) (-645 (-863))))) (-15 -3877 ($ $ (-1 (-863) (-863)))) (-15 -3919 ($ $ (-1 (-539) (-645 (-539))))) (-15 -3919 ((-3 (-1 (-539) (-645 (-539))) "failed") $)) (-15 -3584 ((-112) $ (-509))) (-15 -2573 ($ $ (-509))) (-15 -4231 ($ $ (-1158))) (-15 -4231 ($ $ (-509))) (-15 -1657 ((-3 (-775) "failed") $ (-1158))) (-15 -1657 ((-692 (-775)) $ (-509))) (-15 -2363 ($ $ (-1158) (-775))) (-15 -2363 ($ $ (-509) (-775))) (-15 -1346 ($ $ (-45 (-1158) (-775))))))
+((-1778 (((-567) |#2|) 41)))
+(((-115 |#1| |#2|) (-10 -7 (-15 -1778 ((-567) |#2|))) (-13 (-365) (-1039 (-410 (-567)))) (-1242 |#1|)) (T -115))
+((-1778 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-1039 (-410 *2)))) (-5 *2 (-567)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -1778 ((-567) |#2|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $ (-567)) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-2167 (($ (-1172 (-567)) (-567)) NIL)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-3844 (($ $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1909 (((-772) $) NIL)) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3416 (((-567)) NIL)) (-3812 (((-567) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2436 (($ $ (-567)) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4018 (((-1156 (-567)) $) NIL)) (-2448 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-2927 (((-567) $ (-567)) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+(((-116 |#1|) (-870 |#1|) (-567)) (T -116))
+NIL
+(-870 |#1|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-116 |#1|) (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| (-116 |#1|) (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| (-116 |#1|) (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (|has| (-116 |#1|) (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-116 |#1|) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-116 |#1|) (-1039 (-567))))) (-1621 (((-116 |#1|) $) NIL) (((-1176) $) NIL (|has| (-116 |#1|) (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| (-116 |#1|) (-1039 (-567)))) (((-567) $) NIL (|has| (-116 |#1|) (-1039 (-567))))) (-1800 (($ $) NIL) (($ (-567) $) NIL)) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-116 |#1|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-116 |#1|))) (|:| |vec| (-1266 (-116 |#1|)))) (-690 $) (-1266 $)) NIL) (((-690 (-116 |#1|)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-116 |#1|) (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-116 |#1|) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-116 |#1|) (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 (((-116 |#1|) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1151)))) (-3948 (((-112) $) NIL (|has| (-116 |#1|) (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-1802 (($ $ $) NIL (|has| (-116 |#1|) (-851)))) (-3494 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-116 |#1|) (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| (-116 |#1|) (-308)))) (-3992 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-116 |#1|) (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-116 |#1|) (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 (-116 |#1|)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-295 (-116 |#1|))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-295 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-310 (-116 |#1|)))) (($ $ (-645 (-1176)) (-645 (-116 |#1|))) NIL (|has| (-116 |#1|) (-517 (-1176) (-116 |#1|)))) (($ $ (-1176) (-116 |#1|)) NIL (|has| (-116 |#1|) (-517 (-1176) (-116 |#1|))))) (-4369 (((-772) $) NIL)) (-1552 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-287 (-116 |#1|) (-116 |#1|))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1176)) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2870 (($ $) NIL)) (-4078 (((-116 |#1|) $) NIL)) (-3542 (((-893 (-567)) $) NIL (|has| (-116 |#1|) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-116 |#1|) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-116 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-116 |#1|) (-1023))) (((-225) $) NIL (|has| (-116 |#1|) (-1023)))) (-3546 (((-174 (-410 (-567))) $) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-116 |#1|)) NIL) (($ (-1176)) NIL (|has| (-116 |#1|) (-1039 (-1176))))) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-910))) (|has| (-116 |#1|) (-145))))) (-2686 (((-772)) NIL T CONST)) (-2721 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-2927 (((-410 (-567)) $ (-567)) NIL)) (-1771 (($ $) NIL (|has| (-116 |#1|) (-821)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1176)) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-116 |#1|) (-901 (-1176)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-772)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-3109 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-116 |#1|) (-851)))) (-3168 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL)))
+(((-117 |#1|) (-13 (-993 (-116 |#1|)) (-10 -8 (-15 -2927 ((-410 (-567)) $ (-567))) (-15 -3546 ((-174 (-410 (-567))) $)) (-15 -1800 ($ $)) (-15 -1800 ($ (-567) $)))) (-567)) (T -117))
+((-2927 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567)))) (-1800 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2))))
+(-13 (-993 (-116 |#1|)) (-10 -8 (-15 -2927 ((-410 (-567)) $ (-567))) (-15 -3546 ((-174 (-410 (-567))) $)) (-15 -1800 ($ $)) (-15 -1800 ($ (-567) $))))
+((-4230 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 61) (($ $ "right" $) 63)) (-1306 (((-645 $) $) 31)) (-2971 (((-112) $ $) 36)) (-2176 (((-112) |#2| $) 40)) (-3625 (((-645 |#2|) $) 25)) (-1436 (((-112) $) 18)) (-1552 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3436 (((-112) $) 57)) (-4101 (((-863) $) 47)) (-2936 (((-645 $) $) 32)) (-3052 (((-112) $ $) 38)) (-2268 (((-772) $) 50)))
+(((-118 |#1| |#2|) (-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -4230 (|#1| |#1| "right" |#1|)) (-15 -4230 (|#1| |#1| "left" |#1|)) (-15 -1552 (|#1| |#1| "right")) (-15 -1552 (|#1| |#1| "left")) (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3625 ((-645 |#2|) |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -1552 (|#2| |#1| "value")) (-15 -1436 ((-112) |#1|)) (-15 -1306 ((-645 |#1|) |#1|)) (-15 -2936 ((-645 |#1|) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2176 ((-112) |#2| |#1|)) (-15 -2268 ((-772) |#1|))) (-119 |#2|) (-1216)) (T -118))
+NIL
+(-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -4230 (|#1| |#1| "right" |#1|)) (-15 -4230 (|#1| |#1| "left" |#1|)) (-15 -1552 (|#1| |#1| "right")) (-15 -1552 (|#1| |#1| "left")) (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3625 ((-645 |#2|) |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -1552 (|#2| |#1| "value")) (-15 -1436 ((-112) |#1|)) (-15 -1306 ((-645 |#1|) |#1|)) (-15 -2936 ((-645 |#1|) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2176 ((-112) |#2| |#1|)) (-15 -2268 ((-772) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-1832 (($ $ $) 53 (|has| $ (-6 -4417)))) (-3615 (($ $ $) 55 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417))) (($ $ "left" $) 56 (|has| $ (-6 -4417))) (($ $ "right" $) 54 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-4061 (($) 7 T CONST)) (-3005 (($ $) 58)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2993 (($ $) 60)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4304 (((-567) $ $) 45)) (-3436 (((-112) $) 47)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-119 |#1|) (-140) (-1216)) (T -119))
+((-2993 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1216)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1216)))) (-3005 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1216)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1216)))) (-4230 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4417)) (-4 *1 (-119 *3)) (-4 *3 (-1216)))) (-3615 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-119 *2)) (-4 *2 (-1216)))) (-4230 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4417)) (-4 *1 (-119 *3)) (-4 *3 (-1216)))) (-1832 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-119 *2)) (-4 *2 (-1216)))))
+(-13 (-1011 |t#1|) (-10 -8 (-15 -2993 ($ $)) (-15 -1552 ($ $ "left")) (-15 -3005 ($ $)) (-15 -1552 ($ $ "right")) (IF (|has| $ (-6 -4417)) (PROGN (-15 -4230 ($ $ "left" $)) (-15 -3615 ($ $ $)) (-15 -4230 ($ $ "right" $)) (-15 -1832 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1011 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-3083 (((-112) |#1|) 29)) (-3489 (((-772) (-772)) 28) (((-772)) 27)) (-3626 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31)))
+(((-120 |#1|) (-10 -7 (-15 -3626 ((-112) |#1|)) (-15 -3626 ((-112) |#1| (-112))) (-15 -3489 ((-772))) (-15 -3489 ((-772) (-772))) (-15 -3083 ((-112) |#1|))) (-1242 (-567))) (T -120))
+((-3083 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))) (-3489 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))) (-3489 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))) (-3626 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))) (-3626 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))))
+(-10 -7 (-15 -3626 ((-112) |#1|)) (-15 -3626 ((-112) |#1| (-112))) (-15 -3489 ((-772))) (-15 -3489 ((-772) (-772))) (-15 -3083 ((-112) |#1|)))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) 18)) (-2714 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-1832 (($ $ $) 21 (|has| $ (-6 -4417)))) (-3615 (($ $ $) 23 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) (($ $ "left" $) NIL (|has| $ (-6 -4417))) (($ $ "right" $) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3005 (($ $) 20)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3119 (($ $ |#1| $) 27)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2993 (($ $) 22)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2417 (($ |#1| $) 28)) (-1336 (($ |#1| $) 15)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 17)) (-3164 (($) 11)) (-1552 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4304 (((-567) $ $) NIL)) (-3436 (((-112) $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1905 (($ (-645 |#1|)) 16)) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4417) (-6 -4416) (-15 -1905 ($ (-645 |#1|))) (-15 -1336 ($ |#1| $)) (-15 -2417 ($ |#1| $)) (-15 -2714 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-851)) (T -121))
+((-1905 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))) (-1336 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2417 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))) (-2714 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-851)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4417) (-6 -4416) (-15 -1905 ($ (-645 |#1|))) (-15 -1336 ($ |#1| $)) (-15 -2417 ($ |#1| $)) (-15 -2714 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2278 (($ $) 13)) (-1397 (($ $) 11)) (-4167 (($ $ $) 23)) (-4226 (($ $ $) 21)) (-2328 (($ $ $) 19)) (-2316 (($ $ $) 17)))
+(((-122 |#1|) (-10 -8 (-15 -4167 (|#1| |#1| |#1|)) (-15 -4226 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -2278 (|#1| |#1|)) (-15 -2316 (|#1| |#1| |#1|)) (-15 -2328 (|#1| |#1| |#1|))) (-123)) (T -122))
+NIL
+(-10 -8 (-15 -4167 (|#1| |#1| |#1|)) (-15 -4226 (|#1| |#1| |#1|)) (-15 -1397 (|#1| |#1|)) (-15 -2278 (|#1| |#1|)) (-15 -2316 (|#1| |#1| |#1|)) (-15 -2328 (|#1| |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2278 (($ $) 104)) (-1439 (($ $ $) 26)) (-2275 (((-1271) $ (-567) (-567)) 67 (|has| $ (-6 -4417)))) (-2530 (((-112) $) 99 (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) 93)) (-3655 (($ $) 103 (-12 (|has| (-112) (-851)) (|has| $ (-6 -4417)))) (($ (-1 (-112) (-112) (-112)) $) 102 (|has| $ (-6 -4417)))) (-1594 (($ $) 98 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) 92)) (-1580 (((-112) $ (-772)) 38)) (-4230 (((-112) $ (-1233 (-567)) (-112)) 89 (|has| $ (-6 -4417))) (((-112) $ (-567) (-112)) 55 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4416)))) (-4061 (($) 39 T CONST)) (-1695 (($ $) 101 (|has| $ (-6 -4417)))) (-3315 (($ $) 91)) (-2084 (($ $) 69 (-12 (|has| (-112) (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ (-1 (-112) (-112)) $) 73 (|has| $ (-6 -4416))) (($ (-112) $) 70 (-12 (|has| (-112) (-1100)) (|has| $ (-6 -4416))))) (-3402 (((-112) (-1 (-112) (-112) (-112)) $) 75 (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 74 (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 71 (-12 (|has| (-112) (-1100)) (|has| $ (-6 -4416))))) (-1303 (((-112) $ (-567) (-112)) 54 (|has| $ (-6 -4417)))) (-4344 (((-112) $ (-567)) 56)) (-3771 (((-567) (-112) $ (-567)) 96 (|has| (-112) (-1100))) (((-567) (-112) $) 95 (|has| (-112) (-1100))) (((-567) (-1 (-112) (-112)) $) 94)) (-2896 (((-645 (-112)) $) 46 (|has| $ (-6 -4416)))) (-1424 (($ $ $) 27)) (-1397 (($ $) 31)) (-4167 (($ $ $) 29)) (-4012 (($ (-772) (-112)) 78)) (-4226 (($ $ $) 30)) (-2805 (((-112) $ (-772)) 37)) (-1321 (((-567) $) 64 (|has| (-567) (-851)))) (-2056 (($ $ $) 14)) (-3768 (($ $ $) 97 (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) 90)) (-1542 (((-645 (-112)) $) 47 (|has| $ (-6 -4416)))) (-2176 (((-112) (-112) $) 49 (-12 (|has| (-112) (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 63 (|has| (-567) (-851)))) (-1802 (($ $ $) 15)) (-4392 (($ (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-112) (-112) (-112)) $ $) 83) (($ (-1 (-112) (-112)) $) 41)) (-3230 (((-112) $ (-772)) 36)) (-2451 (((-1158) $) 10)) (-2884 (($ $ $ (-567)) 88) (($ (-112) $ (-567)) 87)) (-3940 (((-645 (-567)) $) 61)) (-1664 (((-112) (-567) $) 60)) (-3339 (((-1120) $) 11)) (-2048 (((-112) $) 65 (|has| (-567) (-851)))) (-3050 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 76)) (-2092 (($ $ (-112)) 66 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-112)) (-645 (-112))) 53 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-112) (-112)) 52 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-295 (-112))) 51 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-645 (-295 (-112)))) 50 (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100))))) (-3748 (((-112) $ $) 32)) (-1728 (((-112) (-112) $) 62 (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-1412 (((-645 (-112)) $) 59)) (-3353 (((-112) $) 35)) (-3164 (($) 34)) (-1552 (($ $ (-1233 (-567))) 84) (((-112) $ (-567)) 58) (((-112) $ (-567) (-112)) 57)) (-2675 (($ $ (-1233 (-567))) 86) (($ $ (-567)) 85)) (-3349 (((-772) (-112) $) 48 (-12 (|has| (-112) (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) (-112)) $) 45 (|has| $ (-6 -4416)))) (-3732 (($ $ $ (-567)) 100 (|has| $ (-6 -4417)))) (-4247 (($ $) 33)) (-3542 (((-539) $) 68 (|has| (-112) (-615 (-539))))) (-4114 (($ (-645 (-112))) 77)) (-2285 (($ (-645 $)) 82) (($ $ $) 81) (($ (-112) $) 80) (($ $ (-112)) 79)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-2012 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4416)))) (-1410 (($ $ $) 28)) (-2328 (($ $ $) 106)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (-2316 (($ $ $) 105)) (-2268 (((-772) $) 40 (|has| $ (-6 -4416)))))
(((-123) (-140)) (T -123))
-((-3129 (*1 *1 *1) (-4 *1 (-123))) (-2336 (*1 *1 *1 *1) (-4 *1 (-123))) (-3120 (*1 *1 *1 *1) (-4 *1 (-123))) (-3144 (*1 *1 *1 *1) (-4 *1 (-123))) (-3157 (*1 *1 *1 *1) (-4 *1 (-123))) (-3171 (*1 *1 *1 *1) (-4 *1 (-123))))
-(-13 (-850) (-661) (-19 (-112)) (-10 -8 (-15 -3129 ($ $)) (-15 -2336 ($ $ $)) (-15 -3120 ($ $ $)) (-15 -3144 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -3171 ($ $ $))))
-(((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 #0=(-112)) . T) ((-614 (-538)) |has| (-112) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))) ((-651 #0#) . T) ((-661) . T) ((-19 #0#) . T) ((-850) . T) ((-1099) . T) ((-1215) . T))
-((-3023 (($ (-1 |#2| |#2|) $) 22)) (-2878 (($ $) 16)) (-3991 (((-771) $) 25)))
-(((-124 |#1| |#2|) (-10 -8 (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2878 (|#1| |#1|))) (-125 |#2|) (-1099)) (T -124))
-NIL
-(-10 -8 (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2878 (|#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-1662 (($ $ $) 53 (|has| $ (-6 -4416)))) (-1465 (($ $ $) 55 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416))) (($ $ "left" $) 56 (|has| $ (-6 -4416))) (($ $ "right" $) 54 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-2633 (($) 7 T CONST)) (-1627 (($ $) 58)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-1732 (($ $ |#1| $) 61)) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1616 (($ $) 60)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4104 (((-566) $ $) 45)) (-3810 (((-112) $) 47)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-125 |#1|) (-140) (-1099)) (T -125))
-((-1732 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099)))))
-(-13 (-119 |t#1|) (-10 -8 (-6 -4416) (-6 -4415) (-15 -1732 ($ $ |t#1| $))))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-119 |#1|) . T) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) 18)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) 22 (|has| $ (-6 -4416)))) (-1662 (($ $ $) 23 (|has| $ (-6 -4416)))) (-1465 (($ $ $) 21 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) (($ $ "left" $) NIL (|has| $ (-6 -4416))) (($ $ "right" $) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-1627 (($ $) 24)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1732 (($ $ |#1| $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1616 (($ $) NIL)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1619 (($ |#1| $) 15)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 17)) (-3906 (($) 11)) (-3282 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4104 (((-566) $ $) NIL)) (-3810 (((-112) $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 20)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4347 (($ (-644 |#1|)) 16)) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4416) (-15 -4347 ($ (-644 |#1|))) (-15 -1619 ($ |#1| $)))) (-850)) (T -126))
-((-4347 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3)))) (-1619 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850)))))
-(-13 (-125 |#1|) (-10 -8 (-6 -4416) (-15 -4347 ($ (-644 |#1|))) (-15 -1619 ($ |#1| $))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) 30)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) 32 (|has| $ (-6 -4416)))) (-1662 (($ $ $) 36 (|has| $ (-6 -4416)))) (-1465 (($ $ $) 34 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) (($ $ "left" $) NIL (|has| $ (-6 -4416))) (($ $ "right" $) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-1627 (($ $) 23)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1732 (($ $ |#1| $) 16)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1616 (($ $) 22)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) 25)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 20)) (-3906 (($) 11)) (-3282 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4104 (((-566) $ $) NIL)) (-3810 (((-112) $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2771 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 10 (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2771 ($ |#1|)) (-15 -2771 ($ $ |#1| $)))) (-1099)) (T -127))
-((-2771 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))) (-2771 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))))
-(-13 (-125 |#1|) (-10 -8 (-15 -2771 ($ |#1|)) (-15 -2771 ($ $ |#1| $))))
-((-3979 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-850)))) (-3190 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-129) (-850))))) (-3370 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 (((-129) $ (-566) (-129)) 26 (|has| $ (-6 -4416))) (((-129) $ (-1232 (-566)) (-129)) NIL (|has| $ (-6 -4416)))) (-2264 (((-771) $ (-771)) 34)) (-3281 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-1099))))) (-1752 (($ (-129) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-1099)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-1099)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4415))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4415)))) (-3031 (((-129) $ (-566) (-129)) 25 (|has| $ (-6 -4416)))) (-2975 (((-129) $ (-566)) 20)) (-2388 (((-566) (-1 (-112) (-129)) $) NIL) (((-566) (-129) $) NIL (|has| (-129) (-1099))) (((-566) (-129) $ (-566)) NIL (|has| (-129) (-1099)))) (-1523 (((-644 (-129)) $) NIL (|has| $ (-6 -4415)))) (-2631 (($ (-771) (-129)) 14)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 27 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| (-129) (-850)))) (-3848 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-850)))) (-2565 (((-644 (-129)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-1099))))) (-2605 (((-566) $) 30 (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-129) (-850)))) (-3023 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| (-129) (-1099)))) (-1510 (($ (-129) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| (-129) (-1099)))) (-3771 (((-129) $) NIL (|has| (-566) (-850)))) (-3567 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3598 (($ $ (-129)) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099)))) (($ $ (-644 (-129)) (-644 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-1099))))) (-1948 (((-644 (-129)) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 12)) (-3282 (((-129) $ (-566) (-129)) NIL) (((-129) $ (-566)) 23) (($ $ (-1232 (-566))) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4415))) (((-771) (-129) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-129) (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-129) (-614 (-538))))) (-2738 (($ (-644 (-129))) 47)) (-4007 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-644 $)) NIL)) (-2725 (((-958 (-129)) $) 35) (((-1157) $) 44) (((-862) $) NIL (|has| (-129) (-613 (-862))))) (-3883 (((-771) $) 18)) (-2523 (($ (-771)) 8)) (-1479 (((-112) $ $) NIL (|has| (-129) (-1099)))) (-2610 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2817 (((-112) $ $) 32 (|has| (-129) (-1099)))) (-2854 (((-112) $ $) NIL (|has| (-129) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-129) (-850)))) (-3991 (((-771) $) 15 (|has| $ (-6 -4415)))))
-(((-128) (-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -2523 ($ (-771))) (-15 -3883 ((-771) $)) (-15 -2264 ((-771) $ (-771))) (-6 -4415)))) (T -128))
-((-2523 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128)))) (-2264 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128)))))
-(-13 (-19 (-129)) (-613 (-958 (-129))) (-613 (-1157)) (-10 -8 (-15 -2523 ($ (-771))) (-15 -3883 ((-771) $)) (-15 -2264 ((-771) $ (-771))) (-6 -4415)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) 27)) (-2633 (($) 12 T CONST)) (-3424 (($) 36)) (-3075 (($ $ $) NIL) (($) 25 T CONST)) (-3936 (($ $ $) NIL) (($) 26 T CONST)) (-4138 (((-921) $) 34)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) 32)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-2680 (($ (-771)) 8)) (-3218 (($ $ $) 38)) (-3204 (($ $ $) 37)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) 23)) (-2844 (((-112) $ $) 21)) (-2817 (((-112) $ $) 19)) (-2854 (((-112) $ $) 22)) (-2833 (((-112) $ $) 20)))
-(((-129) (-13 (-844) (-492 (-144)) (-10 -8 (-15 -2680 ($ (-771))) (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))) (T -129))
-((-2680 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129)))) (-3204 (*1 *1 *1 *1) (-5 *1 (-129))) (-3218 (*1 *1 *1 *1) (-5 *1 (-129))) (-2633 (*1 *1) (-5 *1 (-129))))
-(-13 (-844) (-492 (-144)) (-10 -8 (-15 -2680 ($ (-771))) (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))
+((-1397 (*1 *1 *1) (-4 *1 (-123))) (-4226 (*1 *1 *1 *1) (-4 *1 (-123))) (-4167 (*1 *1 *1 *1) (-4 *1 (-123))) (-1410 (*1 *1 *1 *1) (-4 *1 (-123))) (-1424 (*1 *1 *1 *1) (-4 *1 (-123))) (-1439 (*1 *1 *1 *1) (-4 *1 (-123))))
+(-13 (-851) (-662) (-19 (-112)) (-10 -8 (-15 -1397 ($ $)) (-15 -4226 ($ $ $)) (-15 -4167 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -1439 ($ $ $))))
+(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-112)) . T) ((-615 (-539)) |has| (-112) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100))) ((-652 #0#) . T) ((-662) . T) ((-19 #0#) . T) ((-851) . T) ((-1100) . T) ((-1216) . T))
+((-4392 (($ (-1 |#2| |#2|) $) 22)) (-4247 (($ $) 16)) (-2268 (((-772) $) 25)))
+(((-124 |#1| |#2|) (-10 -8 (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -4247 (|#1| |#1|))) (-125 |#2|) (-1100)) (T -124))
+NIL
+(-10 -8 (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -4247 (|#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-1832 (($ $ $) 53 (|has| $ (-6 -4417)))) (-3615 (($ $ $) 55 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417))) (($ $ "left" $) 56 (|has| $ (-6 -4417))) (($ $ "right" $) 54 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-4061 (($) 7 T CONST)) (-3005 (($ $) 58)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-3119 (($ $ |#1| $) 61)) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2993 (($ $) 60)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48) (($ $ "left") 59) (($ $ "right") 57)) (-4304 (((-567) $ $) 45)) (-3436 (((-112) $) 47)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-125 |#1|) (-140) (-1100)) (T -125))
+((-3119 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1100)))))
+(-13 (-119 |t#1|) (-10 -8 (-6 -4417) (-6 -4416) (-15 -3119 ($ $ |t#1| $))))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-119 |#1|) . T) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1011 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) 18)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) 22 (|has| $ (-6 -4417)))) (-1832 (($ $ $) 23 (|has| $ (-6 -4417)))) (-3615 (($ $ $) 21 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) (($ $ "left" $) NIL (|has| $ (-6 -4417))) (($ $ "right" $) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3005 (($ $) 24)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3119 (($ $ |#1| $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2993 (($ $) NIL)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-1336 (($ |#1| $) 15)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 17)) (-3164 (($) 11)) (-1552 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4304 (((-567) $ $) NIL)) (-3436 (((-112) $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 20)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1842 (($ (-645 |#1|)) 16)) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4417) (-15 -1842 ($ (-645 |#1|))) (-15 -1336 ($ |#1| $)))) (-851)) (T -126))
+((-1842 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))) (-1336 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851)))))
+(-13 (-125 |#1|) (-10 -8 (-6 -4417) (-15 -1842 ($ (-645 |#1|))) (-15 -1336 ($ |#1| $))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) 30)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) 32 (|has| $ (-6 -4417)))) (-1832 (($ $ $) 36 (|has| $ (-6 -4417)))) (-3615 (($ $ $) 34 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) (($ $ "left" $) NIL (|has| $ (-6 -4417))) (($ $ "right" $) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3005 (($ $) 23)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3119 (($ $ |#1| $) 16)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2993 (($ $) 22)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) 25)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 20)) (-3164 (($) 11)) (-1552 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4304 (((-567) $ $) NIL)) (-3436 (((-112) $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2902 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 10 (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -2902 ($ |#1|)) (-15 -2902 ($ $ |#1| $)))) (-1100)) (T -127))
+((-2902 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1100)))) (-2902 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1100)))))
+(-13 (-125 |#1|) (-10 -8 (-15 -2902 ($ |#1|)) (-15 -2902 ($ $ |#1| $))))
+((-2257 (((-112) $ $) NIL (|has| (-129) (-1100)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-851)))) (-3655 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-129) (-851))))) (-1594 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 (((-129) $ (-567) (-129)) 26 (|has| $ (-6 -4417))) (((-129) $ (-1233 (-567)) (-129)) NIL (|has| $ (-6 -4417)))) (-1628 (((-772) $ (-772)) 34)) (-1551 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-129) (-1100))))) (-3138 (($ (-129) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-129) (-1100)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4416)) (|has| (-129) (-1100)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4416))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4416)))) (-1303 (((-129) $ (-567) (-129)) 25 (|has| $ (-6 -4417)))) (-4344 (((-129) $ (-567)) 20)) (-3771 (((-567) (-1 (-112) (-129)) $) NIL) (((-567) (-129) $) NIL (|has| (-129) (-1100))) (((-567) (-129) $ (-567)) NIL (|has| (-129) (-1100)))) (-2896 (((-645 (-129)) $) NIL (|has| $ (-6 -4416)))) (-4012 (($ (-772) (-129)) 14)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 27 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| (-129) (-851)))) (-3768 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-851)))) (-1542 (((-645 (-129)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-129) (-1100))))) (-1979 (((-567) $) 30 (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-129) (-851)))) (-4392 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| (-129) (-1100)))) (-2884 (($ (-129) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| (-129) (-1100)))) (-2048 (((-129) $) NIL (|has| (-567) (-851)))) (-3050 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-2092 (($ $ (-129)) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-129)))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1100)))) (($ $ (-295 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1100)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1100)))) (($ $ (-645 (-129)) (-645 (-129))) NIL (-12 (|has| (-129) (-310 (-129))) (|has| (-129) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-129) (-1100))))) (-1412 (((-645 (-129)) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 12)) (-1552 (((-129) $ (-567) (-129)) NIL) (((-129) $ (-567)) 23) (($ $ (-1233 (-567))) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4416))) (((-772) (-129) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-129) (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-129) (-615 (-539))))) (-4114 (($ (-645 (-129))) 47)) (-2285 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-645 $)) NIL)) (-4101 (((-959 (-129)) $) 35) (((-1158) $) 44) (((-863) $) NIL (|has| (-129) (-614 (-863))))) (-2937 (((-772) $) 18)) (-2465 (($ (-772)) 8)) (-3739 (((-112) $ $) NIL (|has| (-129) (-1100)))) (-2012 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| (-129) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-129) (-851)))) (-3052 (((-112) $ $) 32 (|has| (-129) (-1100)))) (-3098 (((-112) $ $) NIL (|has| (-129) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-129) (-851)))) (-2268 (((-772) $) 15 (|has| $ (-6 -4416)))))
+(((-128) (-13 (-19 (-129)) (-614 (-959 (-129))) (-614 (-1158)) (-10 -8 (-15 -2465 ($ (-772))) (-15 -2937 ((-772) $)) (-15 -1628 ((-772) $ (-772))) (-6 -4416)))) (T -128))
+((-2465 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))) (-1628 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(-13 (-19 (-129)) (-614 (-959 (-129))) (-614 (-1158)) (-10 -8 (-15 -2465 ($ (-772))) (-15 -2937 ((-772) $)) (-15 -1628 ((-772) $ (-772))) (-6 -4416)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) 27)) (-4061 (($) 12 T CONST)) (-1649 (($) 36)) (-2056 (($ $ $) NIL) (($) 25 T CONST)) (-1802 (($ $ $) NIL) (($) 26 T CONST)) (-3527 (((-922) $) 34)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) 32)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-3518 (($ (-772)) 8)) (-1488 (($ $ $) 38)) (-1472 (($ $ $) 37)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) 23)) (-3085 (((-112) $ $) 21)) (-3052 (((-112) $ $) 19)) (-3098 (((-112) $ $) 22)) (-3075 (((-112) $ $) 20)))
+(((-129) (-13 (-845) (-493 (-144)) (-10 -8 (-15 -3518 ($ (-772))) (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))) (T -129))
+((-3518 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))) (-1472 (*1 *1 *1 *1) (-5 *1 (-129))) (-1488 (*1 *1 *1 *1) (-5 *1 (-129))) (-4061 (*1 *1) (-5 *1 (-129))))
+(-13 (-845) (-493 (-144)) (-10 -8 (-15 -3518 ($ (-772))) (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))
((|NonNegativeInteger|) (< |#1| 256))
-((-3979 (((-112) $ $) NIL)) (-2863 (($) 6 T CONST)) (-3373 (($) 7 T CONST)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 14)) (-2625 (($) 8 T CONST)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 10)))
-(((-130) (-13 (-1099) (-10 -8 (-15 -3373 ($) -3854) (-15 -2625 ($) -3854) (-15 -2863 ($) -3854)))) (T -130))
-((-3373 (*1 *1) (-5 *1 (-130))) (-2625 (*1 *1) (-5 *1 (-130))) (-2863 (*1 *1) (-5 *1 (-130))))
-(-13 (-1099) (-10 -8 (-15 -3373 ($) -3854) (-15 -2625 ($) -3854) (-15 -2863 ($) -3854)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16)))
+((-2257 (((-112) $ $) NIL)) (-2565 (($) 6 T CONST)) (-1768 (($) 7 T CONST)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 14)) (-3997 (($) 8 T CONST)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 10)))
+(((-130) (-13 (-1100) (-10 -8 (-15 -1768 ($) -2131) (-15 -3997 ($) -2131) (-15 -2565 ($) -2131)))) (T -130))
+((-1768 (*1 *1) (-5 *1 (-130))) (-3997 (*1 *1) (-5 *1 (-130))) (-2565 (*1 *1) (-5 *1 (-130))))
+(-13 (-1100) (-10 -8 (-15 -1768 ($) -2131) (-15 -3997 ($) -2131) (-15 -2565 ($) -2131)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16)))
(((-131) (-140)) (T -131))
-((-4113 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(-13 (-23) (-10 -8 (-15 -4113 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3797 (((-1270) $ (-771)) 14)) (-2388 (((-771) $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
+((-4377 (*1 *1 *1 *1) (|partial| -4 *1 (-131))))
+(-13 (-23) (-10 -8 (-15 -4377 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-1302 (((-1271) $ (-772)) 14)) (-3771 (((-772) $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
(((-132) (-140)) (T -132))
-((-2388 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771)))) (-3797 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1270)))))
-(-13 (-1099) (-10 -8 (-15 -2388 ((-771) $)) (-15 -3797 ((-1270) $ (-771)))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-644 (-1134)) $) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-133) (-13 (-1082) (-10 -8 (-15 -3546 ((-644 (-1134)) $))))) (T -133))
-((-3546 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133)))))
-(-13 (-1082) (-10 -8 (-15 -3546 ((-644 (-1134)) $))))
-((-3979 (((-112) $ $) 49)) (-3545 (((-112) $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-771) "failed") $) 58)) (-3343 (((-771) $) 56)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) 37)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1483 (((-112)) 59)) (-3880 (((-112) (-112)) 61)) (-3092 (((-112) $) 30)) (-1871 (((-112) $) 55)) (-2725 (((-862) $) 28) (($ (-771)) 20)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 18 T CONST)) (-3214 (($) 19 T CONST)) (-1942 (($ (-771)) 21)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) 40)) (-2817 (((-112) $ $) 32)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 35)) (-2905 (((-3 $ "failed") $ $) 42)) (-2897 (($ $ $) 38)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ $) 54)) (* (($ (-771) $) 48) (($ (-921) $) NIL) (($ $ $) 45)))
-(((-134) (-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4417 "*")) (-15 -2905 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1942 ($ (-771))) (-15 -3092 ((-112) $)) (-15 -1871 ((-112) $)) (-15 -1483 ((-112))) (-15 -3880 ((-112) (-112)))))) (T -134))
-((-2905 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1942 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1483 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3880 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(-13 (-850) (-23) (-726) (-1038 (-771)) (-10 -8 (-6 (-4417 "*")) (-15 -2905 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1942 ($ (-771))) (-15 -3092 ((-112) $)) (-15 -1871 ((-112) $)) (-15 -1483 ((-112))) (-15 -3880 ((-112) (-112)))))
-((-2291 (((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2101 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
-(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2291 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2101 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-566) (-771) (-172) (-172)) (T -135))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566)) (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2291 ((-136 |#1| |#2| |#4|) (-644 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2101 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
-((-3979 (((-112) $ $) NIL)) (-3109 (($ (-644 |#3|)) 64)) (-2453 (($ $) 126) (($ $ (-566) (-566)) 125)) (-2633 (($) 20)) (-2023 (((-3 |#3| "failed") $) 86)) (-3343 ((|#3| $) NIL)) (-3627 (($ $ (-644 (-566))) 127)) (-2280 (((-644 |#3|) $) 59)) (-4153 (((-771) $) 69)) (-3839 (($ $ $) 120)) (-2972 (($) 68)) (-1390 (((-1157) $) NIL)) (-1332 (($) 19)) (-1944 (((-1119) $) NIL)) (-3282 ((|#3| $) 71) ((|#3| $ (-566)) 72) ((|#3| $ (-566) (-566)) 73) ((|#3| $ (-566) (-566) (-566)) 74) ((|#3| $ (-566) (-566) (-566) (-566)) 75) ((|#3| $ (-644 (-566))) 76)) (-3838 (((-771) $) 70)) (-3261 (($ $ (-566) $ (-566)) 121) (($ $ (-566) (-566)) 123)) (-2725 (((-862) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1141 |#2| |#3|)) 105) (($ (-644 |#3|)) 77) (($ (-644 $)) 83)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 96 T CONST)) (-3214 (($) 97 T CONST)) (-2817 (((-112) $ $) 107)) (-2905 (($ $) 113) (($ $ $) 111)) (-2897 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-566)) 116) (($ (-566) $) 115) (($ $ $) 122)))
-(((-136 |#1| |#2| |#3|) (-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -2725 ($ (-240 |#2| |#3|))) (-15 -2725 ($ (-1141 |#2| |#3|))) (-15 -2725 ($ (-644 |#3|))) (-15 -2725 ($ (-644 $))) (-15 -4153 ((-771) $)) (-15 -3282 (|#3| $)) (-15 -3282 (|#3| $ (-566))) (-15 -3282 (|#3| $ (-566) (-566))) (-15 -3282 (|#3| $ (-566) (-566) (-566))) (-15 -3282 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -3282 (|#3| $ (-644 (-566)))) (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 -3261 ($ $ (-566) $ (-566))) (-15 -3261 ($ $ (-566) (-566))) (-15 -2453 ($ $)) (-15 -2453 ($ $ (-566) (-566))) (-15 -3627 ($ $ (-644 (-566)))) (-15 -1332 ($)) (-15 -2972 ($)) (-15 -2280 ((-644 |#3|) $)) (-15 -3109 ($ (-644 |#3|))) (-15 -2633 ($)))) (-566) (-771) (-172)) (T -136))
-((-3839 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1141 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-4153 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 *2) (-4 *5 (-172)))) (-3282 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566)) (-14 *4 (-771)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-3282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-3282 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-3282 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-771)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-566)) (-14 *5 (-771)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-3261 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-3261 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-2453 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2453 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-771)) (-4 *5 (-172)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-1332 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2972 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))) (-2280 (*1 *2 *1) (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172)))) (-3109 (*1 *1 *2) (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566)) (-14 *4 (-771)))) (-2633 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771)) (-4 *4 (-172)))))
-(-13 (-467 |#3| (-771)) (-472 (-566) (-771)) (-10 -8 (-15 -2725 ($ (-240 |#2| |#3|))) (-15 -2725 ($ (-1141 |#2| |#3|))) (-15 -2725 ($ (-644 |#3|))) (-15 -2725 ($ (-644 $))) (-15 -4153 ((-771) $)) (-15 -3282 (|#3| $)) (-15 -3282 (|#3| $ (-566))) (-15 -3282 (|#3| $ (-566) (-566))) (-15 -3282 (|#3| $ (-566) (-566) (-566))) (-15 -3282 (|#3| $ (-566) (-566) (-566) (-566))) (-15 -3282 (|#3| $ (-644 (-566)))) (-15 -3839 ($ $ $)) (-15 * ($ $ $)) (-15 -3261 ($ $ (-566) $ (-566))) (-15 -3261 ($ $ (-566) (-566))) (-15 -2453 ($ $)) (-15 -2453 ($ $ (-566) (-566))) (-15 -3627 ($ $ (-644 (-566)))) (-15 -1332 ($)) (-15 -2972 ($)) (-15 -2280 ((-644 |#3|) $)) (-15 -3109 ($ (-644 |#3|))) (-15 -2633 ($))))
-((-3979 (((-112) $ $) NIL)) (-3516 (((-1134) $) 11)) (-3502 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-137) (-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))) (T -137))
-((-3502 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137)))))
-(-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-2591 (((-186) $) 10)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-644 (-1134)) $) 13)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-138) (-13 (-1082) (-10 -8 (-15 -2591 ((-186) $)) (-15 -3546 ((-644 (-1134)) $))))) (T -138))
-((-2591 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138)))))
-(-13 (-1082) (-10 -8 (-15 -2591 ((-186) $)) (-15 -3546 ((-644 (-1134)) $))))
-((-3979 (((-112) $ $) NIL)) (-3143 (((-644 (-865)) $) NIL)) (-3534 (((-508) $) NIL)) (-1390 (((-1157) $) NIL)) (-2591 (((-186) $) NIL)) (-3044 (((-112) $ (-508)) NIL)) (-1944 (((-1119) $) NIL)) (-2372 (((-644 (-112)) $) NIL)) (-2725 (((-862) $) NIL) (((-187) $) 6)) (-1479 (((-112) $ $) NIL)) (-1381 (((-55) $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-139) (-13 (-185) (-613 (-187)))) (T -139))
-NIL
-(-13 (-185) (-613 (-187)))
-((-3726 (((-644 (-183 (-139))) $) 13)) (-1832 (((-644 (-183 (-139))) $) 14)) (-1333 (((-644 (-838)) $) 10)) (-1886 (((-139) $) 7)) (-2725 (((-862) $) 16)))
-(((-140) (-13 (-613 (-862)) (-10 -8 (-15 -1886 ((-139) $)) (-15 -1333 ((-644 (-838)) $)) (-15 -3726 ((-644 (-183 (-139))) $)) (-15 -1832 ((-644 (-183 (-139))) $))))) (T -140))
-((-1886 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140)))) (-3726 (*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -1886 ((-139) $)) (-15 -1333 ((-644 (-838)) $)) (-15 -3726 ((-644 (-183 (-139))) $)) (-15 -1832 ((-644 (-183 (-139))) $))))
-((-3979 (((-112) $ $) NIL)) (-2840 (($) 17 T CONST)) (-1301 (($) NIL (|has| (-144) (-370)))) (-2672 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3913 (($ $ $) NIL)) (-4199 (((-112) $ $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3733 (((-771)) NIL (|has| (-144) (-370)))) (-2583 (($) NIL) (($ (-644 (-144))) NIL)) (-1607 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-2367 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415))) (($ (-144) $) 61 (|has| $ (-6 -4415)))) (-1752 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-2553 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4415))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4415))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-3424 (($) NIL (|has| (-144) (-370)))) (-1523 (((-644 (-144)) $) 70 (|has| $ (-6 -4415)))) (-4155 (((-112) $ $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-3075 (((-144) $) NIL (|has| (-144) (-850)))) (-2565 (((-644 (-144)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-3936 (((-144) $) NIL (|has| (-144) (-850)))) (-3023 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-144) (-144)) $) 65)) (-2396 (($) 18 T CONST)) (-4138 (((-921) $) NIL (|has| (-144) (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1799 (($ $ $) 30)) (-2668 (((-144) $) 62)) (-1619 (($ (-144) $) 60)) (-2430 (($ (-921)) NIL (|has| (-144) (-370)))) (-1493 (($) 16 T CONST)) (-1944 (((-1119) $) NIL)) (-3567 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1613 (((-144) $) 63)) (-1900 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 58)) (-3974 (($) 15 T CONST)) (-2818 (($ $ $) 32) (($ $ (-144)) NIL)) (-1873 (($ (-644 (-144))) NIL) (($) NIL)) (-1958 (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099)))) (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-1157) $) 37) (((-538) $) NIL (|has| (-144) (-614 (-538)))) (((-644 (-144)) $) 35)) (-2738 (($ (-644 (-144))) NIL)) (-1916 (($ $) 33 (|has| (-144) (-370)))) (-2725 (((-862) $) 55)) (-1326 (($ (-1157)) 14) (($ (-644 (-144))) 52)) (-1686 (((-771) $) NIL)) (-4087 (($) 59) (($ (-644 (-144))) NIL)) (-1479 (((-112) $ $) NIL)) (-3619 (($ (-644 (-144))) NIL)) (-2610 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-3703 (($) 21 T CONST)) (-1749 (($) 20 T CONST)) (-2817 (((-112) $ $) 24)) (-3991 (((-771) $) 57 (|has| $ (-6 -4415)))))
-(((-141) (-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -1326 ($ (-1157))) (-15 -1326 ($ (-644 (-144)))) (-15 -3974 ($) -3854) (-15 -1493 ($) -3854) (-15 -2840 ($) -3854) (-15 -2396 ($) -3854) (-15 -1749 ($) -3854) (-15 -3703 ($) -3854)))) (T -141))
-((-1326 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141)))) (-1326 (*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141)))) (-3974 (*1 *1) (-5 *1 (-141))) (-1493 (*1 *1) (-5 *1 (-141))) (-2840 (*1 *1) (-5 *1 (-141))) (-2396 (*1 *1) (-5 *1 (-141))) (-1749 (*1 *1) (-5 *1 (-141))) (-3703 (*1 *1) (-5 *1 (-141))))
-(-13 (-1099) (-614 (-1157)) (-427 (-144)) (-614 (-644 (-144))) (-10 -8 (-15 -1326 ($ (-1157))) (-15 -1326 ($ (-644 (-144)))) (-15 -3974 ($) -3854) (-15 -1493 ($) -3854) (-15 -2840 ($) -3854) (-15 -2396 ($) -3854) (-15 -1749 ($) -3854) (-15 -3703 ($) -3854)))
-((-1624 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-1602 ((|#1| |#3|) 9)) (-2153 ((|#3| |#3|) 15)))
-(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -1624 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-375 |#2|)) (T -142))
-((-1624 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4)))))
-(-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -1624 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1549 (($ $ $) 8)) (-2062 (($ $) 7)) (-1672 (($ $ $) 6)))
+((-3771 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772)))) (-1302 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1271)))))
+(-13 (-1100) (-10 -8 (-15 -3771 ((-772) $)) (-15 -1302 ((-1271) $ (-772)))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 16) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-645 (-1135)) $) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-133) (-13 (-1083) (-10 -8 (-15 -1830 ((-645 (-1135)) $))))) (T -133))
+((-1830 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-133)))))
+(-13 (-1083) (-10 -8 (-15 -1830 ((-645 (-1135)) $))))
+((-2257 (((-112) $ $) 49)) (-2865 (((-112) $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-772) "failed") $) 58)) (-1621 (((-772) $) 56)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) 37)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2631 (((-112)) 59)) (-2914 (((-112) (-112)) 61)) (-3907 (((-112) $) 30)) (-2045 (((-112) $) 55)) (-4101 (((-863) $) 28) (($ (-772)) 20)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 18 T CONST)) (-1484 (($) 19 T CONST)) (-1366 (($ (-772)) 21)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) 40)) (-3052 (((-112) $ $) 32)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 35)) (-3156 (((-3 $ "failed") $ $) 42)) (-3146 (($ $ $) 38)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL) (($ $ $) 54)) (* (($ (-772) $) 48) (($ (-922) $) NIL) (($ $ $) 45)))
+(((-134) (-13 (-851) (-23) (-727) (-1039 (-772)) (-10 -8 (-6 (-4418 "*")) (-15 -3156 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1366 ($ (-772))) (-15 -3907 ((-112) $)) (-15 -2045 ((-112) $)) (-15 -2631 ((-112))) (-15 -2914 ((-112) (-112)))))) (T -134))
+((-3156 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2631 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(-13 (-851) (-23) (-727) (-1039 (-772)) (-10 -8 (-6 (-4418 "*")) (-15 -3156 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1366 ($ (-772))) (-15 -3907 ((-112) $)) (-15 -2045 ((-112) $)) (-15 -2631 ((-112))) (-15 -2914 ((-112) (-112)))))
+((-3679 (((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-3494 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18)))
+(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3679 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3494 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-567) (-772) (-172) (-172)) (T -135))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567)) (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3679 ((-136 |#1| |#2| |#4|) (-645 |#4|) (-136 |#1| |#2| |#3|))) (-15 -3494 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|))))
+((-2257 (((-112) $ $) NIL)) (-4058 (($ (-645 |#3|)) 64)) (-3008 (($ $) 126) (($ $ (-567) (-567)) 125)) (-4061 (($) 20)) (-3417 (((-3 |#3| "failed") $) 86)) (-1621 ((|#3| $) NIL)) (-2384 (($ $ (-645 (-567))) 127)) (-3668 (((-645 |#3|) $) 59)) (-2432 (((-772) $) 69)) (-3687 (($ $ $) 120)) (-2203 (($) 68)) (-2451 (((-1158) $) NIL)) (-1543 (($) 19)) (-3339 (((-1120) $) NIL)) (-1552 ((|#3| $) 71) ((|#3| $ (-567)) 72) ((|#3| $ (-567) (-567)) 73) ((|#3| $ (-567) (-567) (-567)) 74) ((|#3| $ (-567) (-567) (-567) (-567)) 75) ((|#3| $ (-645 (-567))) 76)) (-3677 (((-772) $) 70)) (-3150 (($ $ (-567) $ (-567)) 121) (($ $ (-567) (-567)) 123)) (-4101 (((-863) $) 94) (($ |#3|) 95) (($ (-240 |#2| |#3|)) 102) (($ (-1142 |#2| |#3|)) 105) (($ (-645 |#3|)) 77) (($ (-645 $)) 83)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 96 T CONST)) (-1484 (($) 97 T CONST)) (-3052 (((-112) $ $) 107)) (-3156 (($ $) 113) (($ $ $) 111)) (-3146 (($ $ $) 109)) (* (($ |#3| $) 118) (($ $ |#3|) 119) (($ $ (-567)) 116) (($ (-567) $) 115) (($ $ $) 122)))
+(((-136 |#1| |#2| |#3|) (-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4101 ($ (-240 |#2| |#3|))) (-15 -4101 ($ (-1142 |#2| |#3|))) (-15 -4101 ($ (-645 |#3|))) (-15 -4101 ($ (-645 $))) (-15 -2432 ((-772) $)) (-15 -1552 (|#3| $)) (-15 -1552 (|#3| $ (-567))) (-15 -1552 (|#3| $ (-567) (-567))) (-15 -1552 (|#3| $ (-567) (-567) (-567))) (-15 -1552 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1552 (|#3| $ (-645 (-567)))) (-15 -3687 ($ $ $)) (-15 * ($ $ $)) (-15 -3150 ($ $ (-567) $ (-567))) (-15 -3150 ($ $ (-567) (-567))) (-15 -3008 ($ $)) (-15 -3008 ($ $ (-567) (-567))) (-15 -2384 ($ $ (-645 (-567)))) (-15 -1543 ($)) (-15 -2203 ($)) (-15 -3668 ((-645 |#3|) $)) (-15 -4058 ($ (-645 |#3|))) (-15 -4061 ($)))) (-567) (-772) (-172)) (T -136))
+((-3687 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1142 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 *2) (-4 *5 (-172)))) (-1552 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567)) (-14 *4 (-772)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1552 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1552 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1552 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-772)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-567)) (-14 *5 (-772)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3150 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3150 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-3008 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3008 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-772)) (-4 *5 (-172)))) (-2384 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-1543 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-2203 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172)))) (-4058 (*1 *1 *2) (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567)) (-14 *4 (-772)))) (-4061 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772)) (-4 *4 (-172)))))
+(-13 (-468 |#3| (-772)) (-473 (-567) (-772)) (-10 -8 (-15 -4101 ($ (-240 |#2| |#3|))) (-15 -4101 ($ (-1142 |#2| |#3|))) (-15 -4101 ($ (-645 |#3|))) (-15 -4101 ($ (-645 $))) (-15 -2432 ((-772) $)) (-15 -1552 (|#3| $)) (-15 -1552 (|#3| $ (-567))) (-15 -1552 (|#3| $ (-567) (-567))) (-15 -1552 (|#3| $ (-567) (-567) (-567))) (-15 -1552 (|#3| $ (-567) (-567) (-567) (-567))) (-15 -1552 (|#3| $ (-645 (-567)))) (-15 -3687 ($ $ $)) (-15 * ($ $ $)) (-15 -3150 ($ $ (-567) $ (-567))) (-15 -3150 ($ $ (-567) (-567))) (-15 -3008 ($ $)) (-15 -3008 ($ $ (-567) (-567))) (-15 -2384 ($ $ (-645 (-567)))) (-15 -1543 ($)) (-15 -2203 ($)) (-15 -3668 ((-645 |#3|) $)) (-15 -4058 ($ (-645 |#3|))) (-15 -4061 ($))))
+((-2257 (((-112) $ $) NIL)) (-2606 (((-1135) $) 11)) (-1787 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 17) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-137) (-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))) (T -137))
+((-1787 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137)))))
+(-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3972 (((-186) $) 10)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 20) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-645 (-1135)) $) 13)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-138) (-13 (-1083) (-10 -8 (-15 -3972 ((-186) $)) (-15 -1830 ((-645 (-1135)) $))))) (T -138))
+((-3972 (*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-138)))))
+(-13 (-1083) (-10 -8 (-15 -3972 ((-186) $)) (-15 -1830 ((-645 (-1135)) $))))
+((-2257 (((-112) $ $) NIL)) (-1409 (((-645 (-866)) $) NIL)) (-1817 (((-509) $) NIL)) (-2451 (((-1158) $) NIL)) (-3972 (((-186) $) NIL)) (-1527 (((-112) $ (-509)) NIL)) (-3339 (((-1120) $) NIL)) (-3447 (((-645 (-112)) $) NIL)) (-4101 (((-863) $) NIL) (((-187) $) 6)) (-3739 (((-112) $ $) NIL)) (-1688 (((-55) $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-139) (-13 (-185) (-614 (-187)))) (T -139))
+NIL
+(-13 (-185) (-614 (-187)))
+((-2011 (((-645 (-183 (-139))) $) 13)) (-3224 (((-645 (-183 (-139))) $) 14)) (-1557 (((-645 (-839)) $) 10)) (-3278 (((-139) $) 7)) (-4101 (((-863) $) 16)))
+(((-140) (-13 (-614 (-863)) (-10 -8 (-15 -3278 ((-139) $)) (-15 -1557 ((-645 (-839)) $)) (-15 -2011 ((-645 (-183 (-139))) $)) (-15 -3224 ((-645 (-183 (-139))) $))))) (T -140))
+((-3278 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))) (-3224 (*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3278 ((-139) $)) (-15 -1557 ((-645 (-839)) $)) (-15 -2011 ((-645 (-183 (-139))) $)) (-15 -3224 ((-645 (-183 (-139))) $))))
+((-2257 (((-112) $ $) NIL)) (-2346 (($) 17 T CONST)) (-2495 (($) NIL (|has| (-144) (-370)))) (-4051 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-3217 (($ $ $) NIL)) (-2901 (((-112) $ $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2013 (((-772)) NIL (|has| (-144) (-370)))) (-3966 (($) NIL) (($ (-645 (-144))) NIL)) (-2581 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-3410 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416))) (($ (-144) $) 61 (|has| $ (-6 -4416)))) (-3138 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-3402 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4416))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4416))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1649 (($) NIL (|has| (-144) (-370)))) (-2896 (((-645 (-144)) $) 70 (|has| $ (-6 -4416)))) (-3672 (((-112) $ $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-2056 (((-144) $) NIL (|has| (-144) (-851)))) (-1542 (((-645 (-144)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1802 (((-144) $) NIL (|has| (-144) (-851)))) (-4392 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-144) (-144)) $) 65)) (-3660 (($) 18 T CONST)) (-3527 (((-922) $) NIL (|has| (-144) (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3754 (($ $ $) 30)) (-4341 (((-144) $) 62)) (-1336 (($ (-144) $) 60)) (-3811 (($ (-922)) NIL (|has| (-144) (-370)))) (-2730 (($) 16 T CONST)) (-3339 (((-1120) $) NIL)) (-3050 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-4394 (((-144) $) 63)) (-2297 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 58)) (-2542 (($) 15 T CONST)) (-2108 (($ $ $) 32) (($ $ (-144)) NIL)) (-2069 (($ (-645 (-144))) NIL) (($) NIL)) (-3349 (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100)))) (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-1158) $) 37) (((-539) $) NIL (|has| (-144) (-615 (-539)))) (((-645 (-144)) $) 35)) (-4114 (($ (-645 (-144))) NIL)) (-2488 (($ $) 33 (|has| (-144) (-370)))) (-4101 (((-863) $) 55)) (-1458 (($ (-1158)) 14) (($ (-645 (-144))) 52)) (-3929 (((-772) $) NIL)) (-2368 (($) 59) (($ (-645 (-144))) NIL)) (-3739 (((-112) $ $) NIL)) (-2299 (($ (-645 (-144))) NIL)) (-2012 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-1791 (($) 21 T CONST)) (-3360 (($) 20 T CONST)) (-3052 (((-112) $ $) 24)) (-2268 (((-772) $) 57 (|has| $ (-6 -4416)))))
+(((-141) (-13 (-1100) (-615 (-1158)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1458 ($ (-1158))) (-15 -1458 ($ (-645 (-144)))) (-15 -2542 ($) -2131) (-15 -2730 ($) -2131) (-15 -2346 ($) -2131) (-15 -3660 ($) -2131) (-15 -3360 ($) -2131) (-15 -1791 ($) -2131)))) (T -141))
+((-1458 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-141)))) (-1458 (*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141)))) (-2542 (*1 *1) (-5 *1 (-141))) (-2730 (*1 *1) (-5 *1 (-141))) (-2346 (*1 *1) (-5 *1 (-141))) (-3660 (*1 *1) (-5 *1 (-141))) (-3360 (*1 *1) (-5 *1 (-141))) (-1791 (*1 *1) (-5 *1 (-141))))
+(-13 (-1100) (-615 (-1158)) (-428 (-144)) (-615 (-645 (-144))) (-10 -8 (-15 -1458 ($ (-1158))) (-15 -1458 ($ (-645 (-144)))) (-15 -2542 ($) -2131) (-15 -2730 ($) -2131) (-15 -2346 ($) -2131) (-15 -3660 ($) -2131) (-15 -3360 ($) -2131) (-15 -1791 ($) -2131)))
+((-1371 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2532 ((|#1| |#3|) 9)) (-3013 ((|#3| |#3|) 15)))
+(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -2532 (|#1| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -1371 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-993 |#1|) (-375 |#2|)) (T -142))
+((-1371 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-375 *5)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-375 *4)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-375 *4)))))
+(-10 -7 (-15 -2532 (|#1| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -1371 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1969 (($ $ $) 8)) (-3354 (($ $) 7)) (-3806 (($ $ $) 6)))
(((-143) (-140)) (T -143))
-((-1549 (*1 *1 *1 *1) (-4 *1 (-143))) (-2062 (*1 *1 *1) (-4 *1 (-143))) (-1672 (*1 *1 *1 *1) (-4 *1 (-143))))
-(-13 (-10 -8 (-15 -1672 ($ $ $)) (-15 -2062 ($ $)) (-15 -1549 ($ $ $))))
-((-3979 (((-112) $ $) NIL)) (-1770 (((-112) $) 39)) (-2840 (($ $) 55)) (-4178 (($) 26 T CONST)) (-3733 (((-771)) 13)) (-3424 (($) 25)) (-1453 (($) 27 T CONST)) (-2757 (((-771) $) 21)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-1904 (((-112) $) 41)) (-2396 (($ $) 56)) (-4138 (((-921) $) 23)) (-1390 (((-1157) $) 49)) (-2430 (($ (-921)) 20)) (-2226 (((-112) $) 37)) (-1944 (((-1119) $) NIL)) (-1757 (($) 28 T CONST)) (-1768 (((-112) $) 35)) (-2725 (((-862) $) 30)) (-1380 (($ (-771)) 19) (($ (-1157)) 54)) (-1479 (((-112) $ $) NIL)) (-2562 (((-112) $) 45)) (-3483 (((-112) $) 43)) (-2865 (((-112) $ $) 11)) (-2844 (((-112) $ $) 9)) (-2817 (((-112) $ $) 7)) (-2854 (((-112) $ $) 10)) (-2833 (((-112) $ $) 8)))
-(((-144) (-13 (-844) (-10 -8 (-15 -2757 ((-771) $)) (-15 -1380 ($ (-771))) (-15 -1380 ($ (-1157))) (-15 -4178 ($) -3854) (-15 -1453 ($) -3854) (-15 -1757 ($) -3854) (-15 -2840 ($ $)) (-15 -2396 ($ $)) (-15 -1768 ((-112) $)) (-15 -2226 ((-112) $)) (-15 -3483 ((-112) $)) (-15 -1770 ((-112) $)) (-15 -1904 ((-112) $)) (-15 -2562 ((-112) $))))) (T -144))
-((-2757 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144)))) (-1380 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144)))) (-4178 (*1 *1) (-5 *1 (-144))) (-1453 (*1 *1) (-5 *1 (-144))) (-1757 (*1 *1) (-5 *1 (-144))) (-2840 (*1 *1 *1) (-5 *1 (-144))) (-2396 (*1 *1 *1) (-5 *1 (-144))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1904 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(-13 (-844) (-10 -8 (-15 -2757 ((-771) $)) (-15 -1380 ($ (-771))) (-15 -1380 ($ (-1157))) (-15 -4178 ($) -3854) (-15 -1453 ($) -3854) (-15 -1757 ($) -3854) (-15 -2840 ($ $)) (-15 -2396 ($ $)) (-15 -1768 ((-112) $)) (-15 -2226 ((-112) $)) (-15 -3483 ((-112) $)) (-15 -1770 ((-112) $)) (-15 -1904 ((-112) $)) (-15 -2562 ((-112) $))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2655 (((-3 $ "failed") $) 39)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
+((-1969 (*1 *1 *1 *1) (-4 *1 (-143))) (-3354 (*1 *1 *1) (-4 *1 (-143))) (-3806 (*1 *1 *1 *1) (-4 *1 (-143))))
+(-13 (-10 -8 (-15 -3806 ($ $ $)) (-15 -3354 ($ $)) (-15 -1969 ($ $ $))))
+((-2257 (((-112) $ $) NIL)) (-3524 (((-112) $) 39)) (-2346 (($ $) 55)) (-3853 (($) 26 T CONST)) (-2013 (((-772)) 13)) (-1649 (($) 25)) (-3508 (($) 27 T CONST)) (-2801 (((-772) $) 21)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-2347 (((-112) $) 41)) (-3660 (($ $) 56)) (-3527 (((-922) $) 23)) (-2451 (((-1158) $) 49)) (-3811 (($ (-922)) 20)) (-2544 (((-112) $) 37)) (-3339 (((-1120) $) NIL)) (-3408 (($) 28 T CONST)) (-3027 (((-112) $) 35)) (-4101 (((-863) $) 30)) (-2754 (($ (-772)) 19) (($ (-1158)) 54)) (-3739 (((-112) $ $) NIL)) (-1501 (((-112) $) 45)) (-3525 (((-112) $) 43)) (-3109 (((-112) $ $) 11)) (-3085 (((-112) $ $) 9)) (-3052 (((-112) $ $) 7)) (-3098 (((-112) $ $) 10)) (-3075 (((-112) $ $) 8)))
+(((-144) (-13 (-845) (-10 -8 (-15 -2801 ((-772) $)) (-15 -2754 ($ (-772))) (-15 -2754 ($ (-1158))) (-15 -3853 ($) -2131) (-15 -3508 ($) -2131) (-15 -3408 ($) -2131) (-15 -2346 ($ $)) (-15 -3660 ($ $)) (-15 -3027 ((-112) $)) (-15 -2544 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -3524 ((-112) $)) (-15 -2347 ((-112) $)) (-15 -1501 ((-112) $))))) (T -144))
+((-2801 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))) (-2754 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-144)))) (-3853 (*1 *1) (-5 *1 (-144))) (-3508 (*1 *1) (-5 *1 (-144))) (-3408 (*1 *1) (-5 *1 (-144))) (-2346 (*1 *1 *1) (-5 *1 (-144))) (-3660 (*1 *1 *1) (-5 *1 (-144))) (-3027 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(-13 (-845) (-10 -8 (-15 -2801 ((-772) $)) (-15 -2754 ($ (-772))) (-15 -2754 ($ (-1158))) (-15 -3853 ($) -2131) (-15 -3508 ($) -2131) (-15 -3408 ($) -2131) (-15 -2346 ($ $)) (-15 -3660 ($ $)) (-15 -3027 ((-112) $)) (-15 -2544 ((-112) $)) (-15 -3525 ((-112) $)) (-15 -3524 ((-112) $)) (-15 -2347 ((-112) $)) (-15 -1501 ((-112) $))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-4242 (((-3 $ "failed") $) 39)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-145) (-140)) (T -145))
-((-2655 (*1 *1 *1) (|partial| -4 *1 (-145))))
-(-13 (-1049) (-10 -8 (-15 -2655 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-1707 ((|#1| (-689 |#1|) |#1|) 23)))
-(((-146 |#1|) (-10 -7 (-15 -1707 (|#1| (-689 |#1|) |#1|))) (-172)) (T -146))
-((-1707 (*1 *2 *3 *2) (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
-(-10 -7 (-15 -1707 (|#1| (-689 |#1|) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
+((-4242 (*1 *1 *1) (|partial| -4 *1 (-145))))
+(-13 (-1050) (-10 -8 (-15 -4242 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-4121 ((|#1| (-690 |#1|) |#1|) 23)))
+(((-146 |#1|) (-10 -7 (-15 -4121 (|#1| (-690 |#1|) |#1|))) (-172)) (T -146))
+((-4121 (*1 *2 *3 *2) (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))))
+(-10 -7 (-15 -4121 (|#1| (-690 |#1|) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-147) (-140)) (T -147))
NIL
-(-13 (-1049))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-2646 (((-2 (|:| -3428 (-771)) (|:| -1702 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771)) 76)) (-2839 (((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|) 56)) (-4151 (((-2 (|:| -1702 (-409 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-2247 ((|#1| |#3| |#3|) 44)) (-1754 ((|#3| |#3| (-409 |#2|) (-409 |#2|)) 20)) (-2802 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|) 53)))
-(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -4151 ((-2 (|:| -1702 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2839 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -2646 ((-2 (|:| -3428 (-771)) (|:| -1702 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -2247 (|#1| |#3| |#3|)) (-15 -1754 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2802 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|))) (-1219) (-1241 |#1|) (-1241 (-409 |#2|))) (T -148))
-((-2802 (*1 *2 *3 *3) (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5)) (|:| |c2| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1241 (-409 *5))))) (-1754 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1241 *3)))) (-2247 (*1 *2 *3 *3) (-12 (-4 *4 (-1241 *2)) (-4 *2 (-1219)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1241 (-409 *4))))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *6)) (-4 *5 (-1219)) (-4 *6 (-1241 *5)) (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1241 *3)))) (-2839 (*1 *2 *3) (|partial| -12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1241 (-409 *5))))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| -1702 (-409 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1241 (-409 *5))))))
-(-10 -7 (-15 -4151 ((-2 (|:| -1702 (-409 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2839 ((-3 (-2 (|:| |radicand| (-409 |#2|)) (|:| |deg| (-771))) "failed") |#3|)) (-15 -2646 ((-2 (|:| -3428 (-771)) (|:| -1702 (-409 |#2|)) (|:| |radicand| |#2|)) (-409 |#2|) (-771))) (-15 -2247 (|#1| |#3| |#3|)) (-15 -1754 (|#3| |#3| (-409 |#2|) (-409 |#2|))) (-15 -2802 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| |deg| (-771))) |#3| |#3|)))
-((-4078 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 35)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -4078 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)))) (-547) (-166 |#1|)) (T -149))
-((-4078 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5)))))
-(-10 -7 (-15 -4078 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))))
-((-3281 (($ (-1 (-112) |#2|) $) 35)) (-3806 (($ $) 42)) (-1752 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2553 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3567 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-1900 (((-112) (-1 (-112) |#2|) $) 22)) (-1958 (((-771) (-1 (-112) |#2|) $) 18) (((-771) |#2| $) NIL)) (-2610 (((-112) (-1 (-112) |#2|) $) 21)) (-3991 (((-771) $) 12)))
-(((-150 |#1| |#2|) (-10 -8 (-15 -3806 (|#1| |#1|)) (-15 -1752 (|#1| |#2| |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3281 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3567 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3991 ((-771) |#1|))) (-151 |#2|) (-1215)) (T -150))
-NIL
-(-10 -8 (-15 -3806 (|#1| |#1|)) (-15 -1752 (|#1| |#2| |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3281 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3567 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3991 ((-771) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-3281 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-3806 (($ $) 42 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4415))) (($ |#1| $) 43 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 41 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 50)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-151 |#1|) (-140) (-1215)) (T -151))
-((-2738 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-4 *1 (-151 *3)))) (-3567 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1215)))) (-2553 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *2)) (-4 *2 (-1215)))) (-2553 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *2)) (-4 *2 (-1215)))) (-1752 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *3)) (-4 *3 (-1215)))) (-3281 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *3)) (-4 *3 (-1215)))) (-2553 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *2)) (-4 *2 (-1215)))) (-1752 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-151 *2)) (-4 *2 (-1215)) (-4 *2 (-1099)))) (-3806 (*1 *1 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-151 *2)) (-4 *2 (-1215)) (-4 *2 (-1099)))))
-(-13 (-491 |t#1|) (-10 -8 (-15 -2738 ($ (-644 |t#1|))) (-15 -3567 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4415)) (PROGN (-15 -2553 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2553 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1752 ($ (-1 (-112) |t#1|) $)) (-15 -3281 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -2553 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1752 ($ |t#1| $)) (-15 -3806 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) 114)) (-3842 (((-112) $) NIL)) (-4145 (($ |#2| (-644 (-921))) 74)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1802 (($ (-921)) 61)) (-4356 (((-134)) 26)) (-2725 (((-862) $) 89) (($ (-566)) 57) (($ |#2|) 58)) (-3623 ((|#2| $ (-644 (-921))) 77)) (-2875 (((-771)) 23 T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 51 T CONST)) (-3214 (($) 55 T CONST)) (-2817 (((-112) $ $) 37)) (-2916 (($ $ |#2|) NIL)) (-2905 (($ $) 46) (($ $ $) 44)) (-2897 (($ $ $) 42)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
-(((-152 |#1| |#2| |#3|) (-13 (-1049) (-38 |#2|) (-1272 |#2|) (-10 -8 (-15 -1802 ($ (-921))) (-15 -4145 ($ |#2| (-644 (-921)))) (-15 -3623 (|#2| $ (-644 (-921)))) (-15 -2313 ((-3 $ "failed") $)))) (-921) (-365) (-993 |#1| |#2|)) (T -152))
-((-2313 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365)) (-14 *4 (-993 *2 *3)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-993 *3 *4)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-4 *2 (-365)) (-14 *5 (-993 *4 *2)))) (-3623 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921)) (-14 *5 (-993 *4 *2)))))
-(-13 (-1049) (-38 |#2|) (-1272 |#2|) (-10 -8 (-15 -1802 ($ (-921))) (-15 -4145 ($ |#2| (-644 (-921)))) (-15 -3623 (|#2| $ (-644 (-921)))) (-15 -2313 ((-3 $ "failed") $))))
-((-2041 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-3053 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 101) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 102)) (-2364 (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225))))) 105) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225)))) 104) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566))) 96) (((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927)) 97)))
-(((-153) (-10 -7 (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3053 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -3053 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -2041 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))))))) (T -153))
-((-2364 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225))))))) (-2364 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225)))))) (-2041 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 *4)))) (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4)))) (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4)))))) (-3053 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-2364 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566))) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-927)) (-5 *2 (-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225))))) (-5 *1 (-153)))))
-(-10 -7 (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -3053 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927))) (-15 -3053 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-927) (-409 (-566)) (-409 (-566)))) (-15 -2041 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-943 (-225))))) (-15 -2364 ((-2 (|:| |brans| (-644 (-644 (-943 (-225))))) (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))) (-644 (-644 (-943 (-225)))))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-2937 (((-644 (-1134)) $) 20)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-1134) $) 9)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-154) (-13 (-1082) (-10 -8 (-15 -2937 ((-644 (-1134)) $)) (-15 -3546 ((-1134) $))))) (T -154))
-((-2937 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154)))))
-(-13 (-1082) (-10 -8 (-15 -2937 ((-644 (-1134)) $)) (-15 -3546 ((-1134) $))))
-((-2726 (((-644 (-169 |#2|)) |#1| |#2|) 50)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -2726 ((-644 (-169 |#2|)) |#1| |#2|))) (-1241 (-169 (-566))) (-13 (-365) (-848))) (T -155))
-((-2726 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1241 (-169 (-566)))) (-4 *4 (-13 (-365) (-848))))))
-(-10 -7 (-15 -2726 ((-644 (-169 |#2|)) |#1| |#2|)))
-((-3979 (((-112) $ $) NIL)) (-3516 (((-1214) $) 12)) (-3502 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-156) (-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1214) $))))) (T -156))
-((-3502 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-156)))))
-(-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1214) $))))
-((-3979 (((-112) $ $) NIL)) (-3953 (($) 41)) (-2661 (($) 40)) (-1337 (((-921)) 46)) (-1390 (((-1157) $) NIL)) (-4369 (((-566) $) 44)) (-1944 (((-1119) $) NIL)) (-4264 (($) 42)) (-3342 (($ (-566)) 47)) (-2725 (((-862) $) 53)) (-3681 (($) 43)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 38)) (-2897 (($ $ $) 35)) (* (($ (-921) $) 45) (($ (-225) $) 11)))
-(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -2897 ($ $ $)) (-15 -2661 ($)) (-15 -3953 ($)) (-15 -4264 ($)) (-15 -3681 ($)) (-15 -4369 ((-566) $)) (-15 -1337 ((-921))) (-15 -3342 ($ (-566)))))) (T -157))
-((-2897 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-2661 (*1 *1) (-5 *1 (-157))) (-3953 (*1 *1) (-5 *1 (-157))) (-4264 (*1 *1) (-5 *1 (-157))) (-3681 (*1 *1) (-5 *1 (-157))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157)))) (-1337 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157)))) (-3342 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-921) $)) (-15 * ($ (-225) $)) (-15 -2897 ($ $ $)) (-15 -2661 ($)) (-15 -3953 ($)) (-15 -4264 ($)) (-15 -3681 ($)) (-15 -4369 ((-566) $)) (-15 -1337 ((-921))) (-15 -3342 ($ (-566)))))
-((-2513 ((|#2| |#2| (-1091 |#2|)) 98) ((|#2| |#2| (-1175)) 75)) (-3839 ((|#2| |#2| (-1091 |#2|)) 97) ((|#2| |#2| (-1175)) 74)) (-1549 ((|#2| |#2| |#2|) 25)) (-3959 (((-114) (-114)) 111)) (-3178 ((|#2| (-644 |#2|)) 130)) (-3572 ((|#2| (-644 |#2|)) 152)) (-3390 ((|#2| (-644 |#2|)) 138)) (-2018 ((|#2| |#2|) 136)) (-2421 ((|#2| (-644 |#2|)) 124)) (-2618 ((|#2| (-644 |#2|)) 125)) (-2769 ((|#2| (-644 |#2|)) 150)) (-2645 ((|#2| |#2| (-1175)) 63) ((|#2| |#2|) 62)) (-2062 ((|#2| |#2|) 21)) (-1672 ((|#2| |#2| |#2|) 24)) (-2827 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1672 (|#2| |#2| |#2|)) (-15 -1549 (|#2| |#2| |#2|)) (-15 -2062 (|#2| |#2|)) (-15 -2645 (|#2| |#2|)) (-15 -2645 (|#2| |#2| (-1175))) (-15 -2513 (|#2| |#2| (-1175))) (-15 -2513 (|#2| |#2| (-1091 |#2|))) (-15 -3839 (|#2| |#2| (-1175))) (-15 -3839 (|#2| |#2| (-1091 |#2|))) (-15 -2018 (|#2| |#2|)) (-15 -2769 (|#2| (-644 |#2|))) (-15 -3390 (|#2| (-644 |#2|))) (-15 -3572 (|#2| (-644 |#2|))) (-15 -2421 (|#2| (-644 |#2|))) (-15 -2618 (|#2| (-644 |#2|))) (-15 -3178 (|#2| (-644 |#2|)))) (-558) (-432 |#1|)) (T -158))
-((-3178 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-3390 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-558)))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-3839 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-3839 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-2513 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)))) (-2513 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-2645 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2)) (-4 *2 (-432 *4)))) (-2645 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-2062 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-1549 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-1672 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4)) (-4 *4 (-432 *3)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4)))))
-(-10 -7 (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -1672 (|#2| |#2| |#2|)) (-15 -1549 (|#2| |#2| |#2|)) (-15 -2062 (|#2| |#2|)) (-15 -2645 (|#2| |#2|)) (-15 -2645 (|#2| |#2| (-1175))) (-15 -2513 (|#2| |#2| (-1175))) (-15 -2513 (|#2| |#2| (-1091 |#2|))) (-15 -3839 (|#2| |#2| (-1175))) (-15 -3839 (|#2| |#2| (-1091 |#2|))) (-15 -2018 (|#2| |#2|)) (-15 -2769 (|#2| (-644 |#2|))) (-15 -3390 (|#2| (-644 |#2|))) (-15 -3572 (|#2| (-644 |#2|))) (-15 -2421 (|#2| (-644 |#2|))) (-15 -2618 (|#2| (-644 |#2|))) (-15 -3178 (|#2| (-644 |#2|))))
-((-2881 ((|#1| |#1| |#1|) 67)) (-3065 ((|#1| |#1| |#1|) 64)) (-1549 ((|#1| |#1| |#1|) 58)) (-2582 ((|#1| |#1|) 45)) (-1671 ((|#1| |#1| (-644 |#1|)) 55)) (-2062 ((|#1| |#1|) 48)) (-1672 ((|#1| |#1| |#1|) 51)))
-(((-159 |#1|) (-10 -7 (-15 -1672 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -1671 (|#1| |#1| (-644 |#1|))) (-15 -2582 (|#1| |#1|)) (-15 -1549 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|))) (-547)) (T -159))
-((-2881 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-3065 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-1549 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-2582 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-1671 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2)))) (-2062 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))) (-1672 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))))
-(-10 -7 (-15 -1672 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -1671 (|#1| |#1| (-644 |#1|))) (-15 -2582 (|#1| |#1|)) (-15 -1549 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -2881 (|#1| |#1| |#1|)))
-((-2513 (($ $ (-1175)) 12) (($ $ (-1091 $)) 11)) (-3839 (($ $ (-1175)) 10) (($ $ (-1091 $)) 9)) (-1549 (($ $ $) 8)) (-2645 (($ $) 14) (($ $ (-1175)) 13)) (-2062 (($ $) 7)) (-1672 (($ $ $) 6)))
+(-13 (-1050))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-4179 (((-2 (|:| -4164 (-772)) (|:| -3087 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772)) 76)) (-2327 (((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|) 56)) (-3643 (((-2 (|:| -3087 (-410 |#2|)) (|:| |poly| |#3|)) |#3|) 41)) (-1391 ((|#1| |#3| |#3|) 44)) (-3140 ((|#3| |#3| (-410 |#2|) (-410 |#2|)) 20)) (-3206 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|) 53)))
+(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3643 ((-2 (|:| -3087 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2327 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -4179 ((-2 (|:| -4164 (-772)) (|:| -3087 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -1391 (|#1| |#3| |#3|)) (-15 -3140 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -3206 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|))) (-1220) (-1242 |#1|) (-1242 (-410 |#2|))) (T -148))
+((-3206 (*1 *2 *3 *3) (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5)) (|:| |c2| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1242 (-410 *5))))) (-3140 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1242 *3)))) (-1391 (*1 *2 *3 *3) (-12 (-4 *4 (-1242 *2)) (-4 *2 (-1220)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1242 (-410 *4))))) (-4179 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *6)) (-4 *5 (-1220)) (-4 *6 (-1242 *5)) (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1242 *3)))) (-2327 (*1 *2 *3) (|partial| -12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1242 (-410 *5))))) (-3643 (*1 *2 *3) (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| -3087 (-410 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1242 (-410 *5))))))
+(-10 -7 (-15 -3643 ((-2 (|:| -3087 (-410 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2327 ((-3 (-2 (|:| |radicand| (-410 |#2|)) (|:| |deg| (-772))) "failed") |#3|)) (-15 -4179 ((-2 (|:| -4164 (-772)) (|:| -3087 (-410 |#2|)) (|:| |radicand| |#2|)) (-410 |#2|) (-772))) (-15 -1391 (|#1| |#3| |#3|)) (-15 -3140 (|#3| |#3| (-410 |#2|) (-410 |#2|))) (-15 -3206 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| |deg| (-772))) |#3| |#3|)))
+((-4087 (((-3 (-645 (-1172 |#2|)) "failed") (-645 (-1172 |#2|)) (-1172 |#2|)) 35)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -4087 ((-3 (-645 (-1172 |#2|)) "failed") (-645 (-1172 |#2|)) (-1172 |#2|)))) (-548) (-166 |#1|)) (T -149))
+((-4087 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1172 *5))) (-5 *3 (-1172 *5)) (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5)))))
+(-10 -7 (-15 -4087 ((-3 (-645 (-1172 |#2|)) "failed") (-645 (-1172 |#2|)) (-1172 |#2|))))
+((-1551 (($ (-1 (-112) |#2|) $) 35)) (-2084 (($ $) 42)) (-3138 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-3402 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3050 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-2297 (((-112) (-1 (-112) |#2|) $) 22)) (-3349 (((-772) (-1 (-112) |#2|) $) 18) (((-772) |#2| $) NIL)) (-2012 (((-112) (-1 (-112) |#2|) $) 21)) (-2268 (((-772) $) 12)))
+(((-150 |#1| |#2|) (-10 -8 (-15 -2084 (|#1| |#1|)) (-15 -3138 (|#1| |#2| |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3138 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3050 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2268 ((-772) |#1|))) (-151 |#2|) (-1216)) (T -150))
+NIL
+(-10 -8 (-15 -2084 (|#1| |#1|)) (-15 -3138 (|#1| |#2| |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3138 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3050 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2268 ((-772) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-1551 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-2084 (($ $) 42 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4416))) (($ |#1| $) 43 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 49)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 41 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 50)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-151 |#1|) (-140) (-1216)) (T -151))
+((-4114 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-4 *1 (-151 *3)))) (-3050 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1216)))) (-3402 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *2)) (-4 *2 (-1216)))) (-3402 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *2)) (-4 *2 (-1216)))) (-3138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *3)) (-4 *3 (-1216)))) (-1551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *3)) (-4 *3 (-1216)))) (-3402 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1100)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *2)) (-4 *2 (-1216)))) (-3138 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-151 *2)) (-4 *2 (-1216)) (-4 *2 (-1100)))) (-2084 (*1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-151 *2)) (-4 *2 (-1216)) (-4 *2 (-1100)))))
+(-13 (-492 |t#1|) (-10 -8 (-15 -4114 ($ (-645 |t#1|))) (-15 -3050 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4416)) (PROGN (-15 -3402 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3402 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3138 ($ (-1 (-112) |t#1|) $)) (-15 -1551 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1100)) (PROGN (-15 -3402 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3138 ($ |t#1| $)) (-15 -2084 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) 114)) (-3714 (((-112) $) NIL)) (-2422 (($ |#2| (-645 (-922))) 74)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3194 (($ (-922)) 61)) (-1948 (((-134)) 26)) (-4101 (((-863) $) 89) (($ (-567)) 57) (($ |#2|) 58)) (-2339 ((|#2| $ (-645 (-922))) 77)) (-2686 (((-772)) 23 T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 51 T CONST)) (-1484 (($) 55 T CONST)) (-3052 (((-112) $ $) 37)) (-3168 (($ $ |#2|) NIL)) (-3156 (($ $) 46) (($ $ $) 44)) (-3146 (($ $ $) 42)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL)))
+(((-152 |#1| |#2| |#3|) (-13 (-1050) (-38 |#2|) (-1273 |#2|) (-10 -8 (-15 -3194 ($ (-922))) (-15 -2422 ($ |#2| (-645 (-922)))) (-15 -2339 (|#2| $ (-645 (-922)))) (-15 -4014 ((-3 $ "failed") $)))) (-922) (-365) (-994 |#1| |#2|)) (T -152))
+((-4014 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365)) (-14 *4 (-994 *2 *3)))) (-3194 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-365)) (-14 *5 (-994 *3 *4)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-4 *2 (-365)) (-14 *5 (-994 *4 *2)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922)) (-14 *5 (-994 *4 *2)))))
+(-13 (-1050) (-38 |#2|) (-1273 |#2|) (-10 -8 (-15 -3194 ($ (-922))) (-15 -2422 ($ |#2| (-645 (-922)))) (-15 -2339 (|#2| $ (-645 (-922)))) (-15 -4014 ((-3 $ "failed") $))))
+((-4239 (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-645 (-944 (-225)))) (-225) (-225) (-225) (-225)) 62)) (-1650 (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928) (-410 (-567)) (-410 (-567))) 101) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928)) 102)) (-3380 (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-645 (-944 (-225))))) 105) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-944 (-225)))) 104) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928) (-410 (-567)) (-410 (-567))) 96) (((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928)) 97)))
+(((-153) (-10 -7 (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928))) (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -1650 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928))) (-15 -1650 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -4239 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-645 (-944 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-944 (-225))))) (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-645 (-944 (-225)))))))) (T -153))
+((-3380 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 (-225))))))) (-3380 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225))))) (-5 *1 (-153)) (-5 *3 (-645 (-944 (-225)))))) (-4239 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 *4)))) (|:| |xValues| (-1094 *4)) (|:| |yValues| (-1094 *4)))) (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 *4)))))) (-1650 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225))))) (-5 *1 (-153)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225))))) (-5 *1 (-153)))) (-3380 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567))) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225))))) (-5 *1 (-153)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-928)) (-5 *2 (-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225))))) (-5 *1 (-153)))))
+(-10 -7 (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928))) (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -1650 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928))) (-15 -1650 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-928) (-410 (-567)) (-410 (-567)))) (-15 -4239 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-645 (-944 (-225)))) (-225) (-225) (-225) (-225))) (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-944 (-225))))) (-15 -3380 ((-2 (|:| |brans| (-645 (-645 (-944 (-225))))) (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))) (-645 (-645 (-944 (-225)))))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-4305 (((-645 (-1135)) $) 20)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 27) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-1135) $) 9)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-154) (-13 (-1083) (-10 -8 (-15 -4305 ((-645 (-1135)) $)) (-15 -1830 ((-1135) $))))) (T -154))
+((-4305 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-154)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-154)))))
+(-13 (-1083) (-10 -8 (-15 -4305 ((-645 (-1135)) $)) (-15 -1830 ((-1135) $))))
+((-3695 (((-645 (-169 |#2|)) |#1| |#2|) 50)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -3695 ((-645 (-169 |#2|)) |#1| |#2|))) (-1242 (-169 (-567))) (-13 (-365) (-849))) (T -155))
+((-3695 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1242 (-169 (-567)))) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -3695 ((-645 (-169 |#2|)) |#1| |#2|)))
+((-2257 (((-112) $ $) NIL)) (-2606 (((-1215) $) 12)) (-1787 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 19) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-156) (-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1215) $))))) (T -156))
+((-1787 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-156)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-156)))))
+(-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1215) $))))
+((-2257 (((-112) $ $) NIL)) (-2341 (($) 41)) (-4287 (($) 40)) (-1612 (((-922)) 46)) (-2451 (((-1158) $) NIL)) (-2062 (((-567) $) 44)) (-3339 (((-1120) $) NIL)) (-2290 (($) 42)) (-1394 (($ (-567)) 47)) (-4101 (((-863) $) 53)) (-1556 (($) 43)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 38)) (-3146 (($ $ $) 35)) (* (($ (-922) $) 45) (($ (-225) $) 11)))
+(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -3146 ($ $ $)) (-15 -4287 ($)) (-15 -2341 ($)) (-15 -2290 ($)) (-15 -1556 ($)) (-15 -2062 ((-567) $)) (-15 -1612 ((-922))) (-15 -1394 ($ (-567)))))) (T -157))
+((-3146 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-4287 (*1 *1) (-5 *1 (-157))) (-2341 (*1 *1) (-5 *1 (-157))) (-2290 (*1 *1) (-5 *1 (-157))) (-1556 (*1 *1) (-5 *1 (-157))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157)))) (-1612 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157)))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-922) $)) (-15 * ($ (-225) $)) (-15 -3146 ($ $ $)) (-15 -4287 ($)) (-15 -2341 ($)) (-15 -2290 ($)) (-15 -1556 ($)) (-15 -2062 ((-567) $)) (-15 -1612 ((-922))) (-15 -1394 ($ (-567)))))
+((-2360 ((|#2| |#2| (-1092 |#2|)) 98) ((|#2| |#2| (-1176)) 75)) (-3687 ((|#2| |#2| (-1092 |#2|)) 97) ((|#2| |#2| (-1176)) 74)) (-1969 ((|#2| |#2| |#2|) 25)) (-2236 (((-114) (-114)) 111)) (-3559 ((|#2| (-645 |#2|)) 130)) (-3107 ((|#2| (-645 |#2|)) 152)) (-1961 ((|#2| (-645 |#2|)) 138)) (-4038 ((|#2| |#2|) 136)) (-2736 ((|#2| (-645 |#2|)) 124)) (-3935 ((|#2| (-645 |#2|)) 125)) (-2894 ((|#2| (-645 |#2|)) 150)) (-4169 ((|#2| |#2| (-1176)) 63) ((|#2| |#2|) 62)) (-3354 ((|#2| |#2|) 21)) (-3806 ((|#2| |#2| |#2|) 24)) (-2214 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3806 (|#2| |#2| |#2|)) (-15 -1969 (|#2| |#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4169 (|#2| |#2| (-1176))) (-15 -2360 (|#2| |#2| (-1176))) (-15 -2360 (|#2| |#2| (-1092 |#2|))) (-15 -3687 (|#2| |#2| (-1176))) (-15 -3687 (|#2| |#2| (-1092 |#2|))) (-15 -4038 (|#2| |#2|)) (-15 -2894 (|#2| (-645 |#2|))) (-15 -1961 (|#2| (-645 |#2|))) (-15 -3107 (|#2| (-645 |#2|))) (-15 -2736 (|#2| (-645 |#2|))) (-15 -3935 (|#2| (-645 |#2|))) (-15 -3559 (|#2| (-645 |#2|)))) (-559) (-433 |#1|)) (T -158))
+((-3559 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3935 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-3107 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-2894 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-559)))) (-4038 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3687 (*1 *2 *2 *3) (-12 (-5 *3 (-1092 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-3687 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-2360 (*1 *2 *2 *3) (-12 (-5 *3 (-1092 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)))) (-2360 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-4169 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2)) (-4 *2 (-433 *4)))) (-4169 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3354 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-1969 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-3806 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4)) (-4 *4 (-433 *3)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4)))))
+(-10 -7 (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3806 (|#2| |#2| |#2|)) (-15 -1969 (|#2| |#2| |#2|)) (-15 -3354 (|#2| |#2|)) (-15 -4169 (|#2| |#2|)) (-15 -4169 (|#2| |#2| (-1176))) (-15 -2360 (|#2| |#2| (-1176))) (-15 -2360 (|#2| |#2| (-1092 |#2|))) (-15 -3687 (|#2| |#2| (-1176))) (-15 -3687 (|#2| |#2| (-1092 |#2|))) (-15 -4038 (|#2| |#2|)) (-15 -2894 (|#2| (-645 |#2|))) (-15 -1961 (|#2| (-645 |#2|))) (-15 -3107 (|#2| (-645 |#2|))) (-15 -2736 (|#2| (-645 |#2|))) (-15 -3935 (|#2| (-645 |#2|))) (-15 -3559 (|#2| (-645 |#2|))))
+((-2723 ((|#1| |#1| |#1|) 67)) (-1813 ((|#1| |#1| |#1|) 64)) (-1969 ((|#1| |#1| |#1|) 58)) (-1779 ((|#1| |#1|) 45)) (-3797 ((|#1| |#1| (-645 |#1|)) 55)) (-3354 ((|#1| |#1|) 48)) (-3806 ((|#1| |#1| |#1|) 51)))
+(((-159 |#1|) (-10 -7 (-15 -3806 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-645 |#1|))) (-15 -1779 (|#1| |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1| |#1|))) (-548)) (T -159))
+((-2723 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1969 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-1779 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3797 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))) (-3354 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))) (-3806 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(-10 -7 (-15 -3806 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -3797 (|#1| |#1| (-645 |#1|))) (-15 -1779 (|#1| |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -1813 (|#1| |#1| |#1|)) (-15 -2723 (|#1| |#1| |#1|)))
+((-2360 (($ $ (-1176)) 12) (($ $ (-1092 $)) 11)) (-3687 (($ $ (-1176)) 10) (($ $ (-1092 $)) 9)) (-1969 (($ $ $) 8)) (-4169 (($ $) 14) (($ $ (-1176)) 13)) (-3354 (($ $) 7)) (-3806 (($ $ $) 6)))
(((-160) (-140)) (T -160))
-((-2645 (*1 *1 *1) (-4 *1 (-160))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2513 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))) (-3839 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))) (-3839 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160)))))
-(-13 (-143) (-10 -8 (-15 -2645 ($ $)) (-15 -2645 ($ $ (-1175))) (-15 -2513 ($ $ (-1175))) (-15 -2513 ($ $ (-1091 $))) (-15 -3839 ($ $ (-1175))) (-15 -3839 ($ $ (-1091 $)))))
+((-4169 (*1 *1 *1) (-4 *1 (-160))) (-4169 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1176)))) (-2360 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1176)))) (-2360 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-160)))) (-3687 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1176)))) (-3687 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-160)))))
+(-13 (-143) (-10 -8 (-15 -4169 ($ $)) (-15 -4169 ($ $ (-1176))) (-15 -2360 ($ $ (-1176))) (-15 -2360 ($ $ (-1092 $))) (-15 -3687 ($ $ (-1176))) (-15 -3687 ($ $ (-1092 $)))))
(((-143) . T))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-644 (-1134)) $) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-161) (-13 (-1082) (-10 -8 (-15 -3546 ((-644 (-1134)) $))))) (T -161))
-((-3546 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161)))))
-(-13 (-1082) (-10 -8 (-15 -3546 ((-644 (-1134)) $))))
-((-3979 (((-112) $ $) NIL)) (-2632 (($ (-566)) 14) (($ $ $) 15)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 18)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 9)))
-(((-162) (-13 (-1099) (-10 -8 (-15 -2632 ($ (-566))) (-15 -2632 ($ $ $))))) (T -162))
-((-2632 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162)))) (-2632 (*1 *1 *1 *1) (-5 *1 (-162))))
-(-13 (-1099) (-10 -8 (-15 -2632 ($ (-566))) (-15 -2632 ($ $ $))))
-((-3959 (((-114) (-1175)) 102)))
-(((-163) (-10 -7 (-15 -3959 ((-114) (-1175))))) (T -163))
-((-3959 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163)))))
-(-10 -7 (-15 -3959 ((-114) (-1175))))
-((-1317 ((|#3| |#3|) 19)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1317 (|#3| |#3|))) (-1049) (-1241 |#1|) (-1241 |#2|)) (T -164))
-((-1317 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-1241 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1241 *4)))))
-(-10 -7 (-15 -1317 (|#3| |#3|)))
-((-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 223)) (-2717 ((|#2| $) 102)) (-3622 (($ $) 256)) (-3474 (($ $) 250)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 47)) (-3601 (($ $) 254)) (-3449 (($ $) 248)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-3343 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 144)) (-3919 (($ $ $) 229)) (-3717 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) 160) (((-689 |#2|) (-689 $)) 154)) (-2553 (($ (-1171 |#2|)) 125) (((-3 $ "failed") (-409 (-1171 |#2|))) NIL)) (-2313 (((-3 $ "failed") $) 214)) (-4388 (((-3 (-409 (-566)) "failed") $) 204)) (-1929 (((-112) $) 199)) (-1847 (((-409 (-566)) $) 202)) (-4153 (((-921)) 96)) (-3930 (($ $ $) 231)) (-4341 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-2722 (($) 245)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 193) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 198)) (-3202 ((|#2| $) 100)) (-2323 (((-1171 |#2|) $) 127)) (-2101 (($ (-1 |#2| |#2|) $) 108)) (-1565 (($ $) 247)) (-2542 (((-1171 |#2|) $) 126)) (-4282 (($ $) 207)) (-3892 (($) 103)) (-2254 (((-420 (-1171 $)) (-1171 $)) 95)) (-4314 (((-420 (-1171 $)) (-1171 $)) 64)) (-3967 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-1535 (($ $) 246)) (-3792 (((-771) $) 226)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 236)) (-2061 ((|#2| (-1265 $)) NIL) ((|#2|) 98)) (-3009 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-2880 (((-1171 |#2|)) 120)) (-3612 (($ $) 255)) (-3461 (($ $) 249)) (-2803 (((-1265 |#2|) $ (-1265 $)) 136) (((-689 |#2|) (-1265 $) (-1265 $)) NIL) (((-1265 |#2|) $) 116) (((-689 |#2|) (-1265 $)) NIL)) (-2150 (((-1265 |#2|) $) NIL) (($ (-1265 |#2|)) NIL) (((-1171 |#2|) $) NIL) (($ (-1171 |#2|)) NIL) (((-892 (-566)) $) 184) (((-892 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-538) $) 180)) (-2558 (($ $) 104)) (-2725 (((-862) $) 143) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-409 (-566))) NIL) (($ $) NIL)) (-1707 (((-1171 |#2|) $) 32)) (-2875 (((-771)) 106)) (-1479 (((-112) $ $) 13)) (-3696 (($ $) 259)) (-3553 (($ $) 253)) (-3670 (($ $) 257)) (-3528 (($ $) 251)) (-2711 ((|#2| $) 242)) (-3682 (($ $) 258)) (-3541 (($ $) 252)) (-2274 (($ $) 162)) (-2817 (((-112) $ $) 110)) (-2905 (($ $) 112) (($ $ $) NIL)) (-2897 (($ $ $) 111)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) 277) (($ $ $) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL)))
-(((-165 |#1| |#2|) (-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -2725 (|#1| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2920 ((-2 (|:| -4082 |#1|) (|:| -4402 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3792 ((-771) |#1|)) (-15 -4301 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -3930 (|#1| |#1| |#1|)) (-15 -3919 (|#1| |#1| |#1|)) (-15 -4282 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2150 ((-538) |#1|)) (-15 -2150 ((-169 (-225)) |#1|)) (-15 -2150 ((-169 (-381)) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3601 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2722 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -4314 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2254 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -4341 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2711 (|#2| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2558 (|#1| |#1|)) (-15 -3892 (|#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2553 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -2542 ((-1171 |#2|) |#1|)) (-15 -2150 (|#1| (-1171 |#2|))) (-15 -2553 (|#1| (-1171 |#2|))) (-15 -2880 ((-1171 |#2|))) (-15 -3717 ((-689 |#2|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2150 ((-1171 |#2|) |#1|)) (-15 -2061 (|#2|)) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -2323 ((-1171 |#2|) |#1|)) (-15 -1707 ((-1171 |#2|) |#1|)) (-15 -2061 (|#2| (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -3202 (|#2| |#1|)) (-15 -2717 (|#2| |#1|)) (-15 -4153 ((-921))) (-15 -2725 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -1479 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
-((-2875 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4153 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2061 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2880 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
-(-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -2725 (|#1| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2920 ((-2 (|:| -4082 |#1|) (|:| -4402 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3792 ((-771) |#1|)) (-15 -4301 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -3930 (|#1| |#1| |#1|)) (-15 -3919 (|#1| |#1| |#1|)) (-15 -4282 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2150 ((-538) |#1|)) (-15 -2150 ((-169 (-225)) |#1|)) (-15 -2150 ((-169 (-381)) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3601 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2722 (|#1|)) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -4314 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2254 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -4341 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2711 (|#2| |#1|)) (-15 -2274 (|#1| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2558 (|#1| |#1|)) (-15 -3892 (|#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -2553 ((-3 |#1| "failed") (-409 (-1171 |#2|)))) (-15 -2542 ((-1171 |#2|) |#1|)) (-15 -2150 (|#1| (-1171 |#2|))) (-15 -2553 (|#1| (-1171 |#2|))) (-15 -2880 ((-1171 |#2|))) (-15 -3717 ((-689 |#2|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2150 ((-1171 |#2|) |#1|)) (-15 -2061 (|#2|)) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -2323 ((-1171 |#2|) |#1|)) (-15 -1707 ((-1171 |#2|) |#1|)) (-15 -2061 (|#2| (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -3202 (|#2| |#1|)) (-15 -2717 (|#2| |#1|)) (-15 -4153 ((-921))) (-15 -2725 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -1479 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 102 (-2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-1780 (($ $) 103 (-2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3286 (((-112) $) 105 (-2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3561 (((-689 |#1|) (-1265 $)) 53) (((-689 |#1|)) 68)) (-2717 ((|#1| $) 59)) (-3622 (($ $) 229 (|has| |#1| (-1200)))) (-3474 (($ $) 212 (|has| |#1| (-1200)))) (-3374 (((-1188 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-4113 (((-3 $ "failed") $ $) 20)) (-4350 (((-420 (-1171 $)) (-1171 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2885 (($ $) 122 (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2555 (((-420 $) $) 123 (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-4028 (($ $) 242 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1200))))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2068 (((-112) $ $) 113 (|has| |#1| (-308)))) (-3733 (((-771)) 96 (|has| |#1| (-370)))) (-3601 (($ $) 228 (|has| |#1| (-1200)))) (-3449 (($ $) 213 (|has| |#1| (-1200)))) (-3648 (($ $) 227 (|has| |#1| (-1200)))) (-3500 (($ $) 214 (|has| |#1| (-1200)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-3343 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-1452 (($ (-1265 |#1|) (-1265 $)) 55) (($ (-1265 |#1|)) 71)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-3919 (($ $ $) 117 (|has| |#1| (-308)))) (-2340 (((-689 |#1|) $ (-1265 $)) 60) (((-689 |#1|) $) 66)) (-3717 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-2553 (($ (-1171 |#1|)) 166) (((-3 $ "failed") (-409 (-1171 |#1|))) 163 (|has| |#1| (-365)))) (-2313 (((-3 $ "failed") $) 37)) (-4041 ((|#1| $) 254)) (-4388 (((-3 (-409 (-566)) "failed") $) 247 (|has| |#1| (-547)))) (-1929 (((-112) $) 249 (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) 248 (|has| |#1| (-547)))) (-4153 (((-921)) 61)) (-3424 (($) 99 (|has| |#1| (-370)))) (-3930 (($ $ $) 116 (|has| |#1| (-308)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 111 (|has| |#1| (-308)))) (-4183 (($) 157 (|has| |#1| (-351)))) (-1963 (((-112) $) 158 (|has| |#1| (-351)))) (-4205 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-1968 (((-112) $) 124 (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-4341 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1059)) (|has| |#1| (-1200))))) (-2722 (($) 239 (|has| |#1| (-1200)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 262 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 261 (|has| |#1| (-886 (-381))))) (-3077 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 241 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1200))))) (-3202 ((|#1| $) 58)) (-3869 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-308)))) (-2323 (((-1171 |#1|) $) 51 (|has| |#1| (-365)))) (-2101 (($ (-1 |#1| |#1|) $) 263)) (-4138 (((-921) $) 98 (|has| |#1| (-370)))) (-1565 (($ $) 236 (|has| |#1| (-1200)))) (-2542 (((-1171 |#1|) $) 164)) (-1853 (($ (-644 $)) 109 (-2676 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 108 (-2676 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-1390 (((-1157) $) 10)) (-4282 (($ $) 125 (|has| |#1| (-365)))) (-1342 (($) 151 (|has| |#1| (-351)) CONST)) (-2430 (($ (-921)) 97 (|has| |#1| (-370)))) (-3892 (($) 258)) (-4052 ((|#1| $) 255)) (-1944 (((-1119) $) 11)) (-2723 (($) 168)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 110 (-2676 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-1885 (($ (-644 $)) 107 (-2676 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (($ $ $) 106 (-2676 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 154 (|has| |#1| (-351)))) (-2254 (((-420 (-1171 $)) (-1171 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-4314 (((-420 (-1171 $)) (-1171 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-4018 (((-420 $) $) 121 (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 118 (|has| |#1| (-308)))) (-3967 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (-2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-308)))) (-1535 (($ $) 237 (|has| |#1| (-1200)))) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 265 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 264 (|has| |#1| (-516 (-1175) |#1|)))) (-3792 (((-771) $) 114 (|has| |#1| (-308)))) (-3282 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 115 (|has| |#1| (-308)))) (-2061 ((|#1| (-1265 $)) 54) ((|#1|) 67)) (-2816 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3009 (($ $ (-1 |#1| |#1|) (-771)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-644 (-1175)) (-644 (-771))) 138 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 139 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 140 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 141 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 143 (-2676 (-3144 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3144 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2676 (-3144 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3144 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-1436 (((-689 |#1|) (-1265 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2880 (((-1171 |#1|)) 167)) (-3658 (($ $) 226 (|has| |#1| (-1200)))) (-3515 (($ $) 215 (|has| |#1| (-1200)))) (-1344 (($) 156 (|has| |#1| (-351)))) (-3635 (($ $) 225 (|has| |#1| (-1200)))) (-3488 (($ $) 216 (|has| |#1| (-1200)))) (-3612 (($ $) 224 (|has| |#1| (-1200)))) (-3461 (($ $) 217 (|has| |#1| (-1200)))) (-2803 (((-1265 |#1|) $ (-1265 $)) 57) (((-689 |#1|) (-1265 $) (-1265 $)) 56) (((-1265 |#1|) $) 73) (((-689 |#1|) (-1265 $)) 72)) (-2150 (((-1265 |#1|) $) 70) (($ (-1265 |#1|)) 69) (((-1171 |#1|) $) 179) (($ (-1171 |#1|)) 165) (((-892 (-566)) $) 260 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 259 (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1022))) (((-169 (-225)) $) 210 (|has| |#1| (-1022))) (((-538) $) 209 (|has| |#1| (-614 (-538))))) (-2558 (($ $) 257)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 153 (-2676 (-3144 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-351))))) (-1561 (($ |#1| |#1|) 256)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 95 (-2676 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) 100 (-2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-2655 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2676 (-3144 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))) (|has| |#1| (-145))))) (-1707 (((-1171 |#1|) $) 52)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-2227 (((-1265 $)) 74)) (-3696 (($ $) 235 (|has| |#1| (-1200)))) (-3553 (($ $) 223 (|has| |#1| (-1200)))) (-1597 (((-112) $ $) 104 (-2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))) (-3670 (($ $) 234 (|has| |#1| (-1200)))) (-3528 (($ $) 222 (|has| |#1| (-1200)))) (-3719 (($ $) 233 (|has| |#1| (-1200)))) (-3577 (($ $) 221 (|has| |#1| (-1200)))) (-2711 ((|#1| $) 251 (|has| |#1| (-1200)))) (-3076 (($ $) 232 (|has| |#1| (-1200)))) (-3589 (($ $) 220 (|has| |#1| (-1200)))) (-3705 (($ $) 231 (|has| |#1| (-1200)))) (-3566 (($ $) 219 (|has| |#1| (-1200)))) (-3682 (($ $) 230 (|has| |#1| (-1200)))) (-3541 (($ $) 218 (|has| |#1| (-1200)))) (-2274 (($ $) 252 (|has| |#1| (-1059)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-1 |#1| |#1|) (-771)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-644 (-1175)) (-644 (-771))) 134 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 135 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 136 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 137 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 142 (-2676 (-3144 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3144 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2676 (-3144 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3144 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 129 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-409 (-566))) 240 (-12 (|has| |#1| (-1002)) (|has| |#1| (-1200)))) (($ $ $) 238 (|has| |#1| (-1200))) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365)))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 16) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-645 (-1135)) $) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-161) (-13 (-1083) (-10 -8 (-15 -1830 ((-645 (-1135)) $))))) (T -161))
+((-1830 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-161)))))
+(-13 (-1083) (-10 -8 (-15 -1830 ((-645 (-1135)) $))))
+((-2257 (((-112) $ $) NIL)) (-4048 (($ (-567)) 14) (($ $ $) 15)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 18)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 9)))
+(((-162) (-13 (-1100) (-10 -8 (-15 -4048 ($ (-567))) (-15 -4048 ($ $ $))))) (T -162))
+((-4048 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))) (-4048 (*1 *1 *1 *1) (-5 *1 (-162))))
+(-13 (-1100) (-10 -8 (-15 -4048 ($ (-567))) (-15 -4048 ($ $ $))))
+((-2236 (((-114) (-1176)) 102)))
+(((-163) (-10 -7 (-15 -2236 ((-114) (-1176))))) (T -163))
+((-2236 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-114)) (-5 *1 (-163)))))
+(-10 -7 (-15 -2236 ((-114) (-1176))))
+((-2712 ((|#3| |#3|) 19)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -2712 (|#3| |#3|))) (-1050) (-1242 |#1|) (-1242 |#2|)) (T -164))
+((-2712 (*1 *2 *2) (-12 (-4 *3 (-1050)) (-4 *4 (-1242 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1242 *4)))))
+(-10 -7 (-15 -2712 (|#3| |#3|)))
+((-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 223)) (-4093 ((|#2| $) 102)) (-1772 (($ $) 256)) (-1605 (($ $) 250)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 47)) (-1747 (($ $) 254)) (-1577 (($ $) 248)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 146)) (-1621 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 144)) (-2197 (($ $ $) 229)) (-1920 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) 160) (((-690 |#2|) (-690 $)) 154)) (-3402 (($ (-1172 |#2|)) 125) (((-3 $ "failed") (-410 (-1172 |#2|))) NIL)) (-4014 (((-3 $ "failed") $) 214)) (-4092 (((-3 (-410 (-567)) "failed") $) 204)) (-4379 (((-112) $) 199)) (-3061 (((-410 (-567)) $) 202)) (-2432 (((-922)) 96)) (-2210 (($ $ $) 231)) (-1780 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-4098 (($) 245)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 193) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 198)) (-3751 ((|#2| $) 100)) (-4110 (((-1172 |#2|) $) 127)) (-3494 (($ (-1 |#2| |#2|) $) 108)) (-2942 (($ $) 247)) (-3392 (((-1172 |#2|) $) 126)) (-2559 (($ $) 207)) (-3025 (($) 103)) (-1495 (((-421 (-1172 $)) (-1172 $)) 95)) (-1429 (((-421 (-1172 $)) (-1172 $)) 64)) (-2245 (((-3 $ "failed") $ |#2|) 209) (((-3 $ "failed") $ $) 212)) (-2910 (($ $) 246)) (-4369 (((-772) $) 226)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 236)) (-3347 ((|#2| (-1266 $)) NIL) ((|#2|) 98)) (-1930 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 119) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-2713 (((-1172 |#2|)) 120)) (-1757 (($ $) 255)) (-1592 (($ $) 249)) (-3216 (((-1266 |#2|) $ (-1266 $)) 136) (((-690 |#2|) (-1266 $) (-1266 $)) NIL) (((-1266 |#2|) $) 116) (((-690 |#2|) (-1266 $)) NIL)) (-3542 (((-1266 |#2|) $) NIL) (($ (-1266 |#2|)) NIL) (((-1172 |#2|) $) NIL) (($ (-1172 |#2|)) NIL) (((-893 (-567)) $) 184) (((-893 (-381)) $) 188) (((-169 (-381)) $) 172) (((-169 (-225)) $) 167) (((-539) $) 180)) (-1443 (($ $) 104)) (-4101 (((-863) $) 143) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-410 (-567))) NIL) (($ $) NIL)) (-4121 (((-1172 |#2|) $) 32)) (-2686 (((-772)) 106)) (-3739 (((-112) $ $) 13)) (-1847 (($ $) 259)) (-1690 (($ $) 253)) (-1823 (($ $) 257)) (-1660 (($ $) 251)) (-3600 ((|#2| $) 242)) (-1834 (($ $) 258)) (-1673 (($ $) 252)) (-1771 (($ $) 162)) (-3052 (((-112) $ $) 110)) (-3156 (($ $) 112) (($ $ $) NIL)) (-3146 (($ $ $) 111)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) 277) (($ $ $) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 118) (($ $ $) 147) (($ $ |#2|) NIL) (($ |#2| $) 114) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL)))
+(((-165 |#1| |#2|) (-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -4101 (|#1| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1785 ((-2 (|:| -4135 |#1|) (|:| -4403 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -4369 ((-772) |#1|)) (-15 -2679 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3542 ((-539) |#1|)) (-15 -3542 ((-169 (-225)) |#1|)) (-15 -3542 ((-169 (-381)) |#1|)) (-15 -1605 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1772 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4098 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -1429 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1495 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -1780 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3600 (|#2| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1443 (|#1| |#1|)) (-15 -3025 (|#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3402 ((-3 |#1| "failed") (-410 (-1172 |#2|)))) (-15 -3392 ((-1172 |#2|) |#1|)) (-15 -3542 (|#1| (-1172 |#2|))) (-15 -3402 (|#1| (-1172 |#2|))) (-15 -2713 ((-1172 |#2|))) (-15 -1920 ((-690 |#2|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3542 ((-1172 |#2|) |#1|)) (-15 -3347 (|#2|)) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -4110 ((-1172 |#2|) |#1|)) (-15 -4121 ((-1172 |#2|) |#1|)) (-15 -3347 (|#2| (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -3751 (|#2| |#1|)) (-15 -4093 (|#2| |#1|)) (-15 -2432 ((-922))) (-15 -4101 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165))
+((-2686 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-2432 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3347 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2713 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1172 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))))
+(-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -4101 (|#1| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1785 ((-2 (|:| -4135 |#1|) (|:| -4403 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -4369 ((-772) |#1|)) (-15 -2679 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3542 ((-539) |#1|)) (-15 -3542 ((-169 (-225)) |#1|)) (-15 -3542 ((-169 (-381)) |#1|)) (-15 -1605 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1772 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4098 (|#1|)) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -1429 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1495 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -1780 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3600 (|#2| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1443 (|#1| |#1|)) (-15 -3025 (|#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3402 ((-3 |#1| "failed") (-410 (-1172 |#2|)))) (-15 -3392 ((-1172 |#2|) |#1|)) (-15 -3542 (|#1| (-1172 |#2|))) (-15 -3402 (|#1| (-1172 |#2|))) (-15 -2713 ((-1172 |#2|))) (-15 -1920 ((-690 |#2|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3542 ((-1172 |#2|) |#1|)) (-15 -3347 (|#2|)) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -4110 ((-1172 |#2|) |#1|)) (-15 -4121 ((-1172 |#2|) |#1|)) (-15 -3347 (|#2| (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -3751 (|#2| |#1|)) (-15 -4093 (|#2| |#1|)) (-15 -2432 ((-922))) (-15 -4101 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 102 (-2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-3602 (($ $) 103 (-2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-2119 (((-112) $) 105 (-2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-3007 (((-690 |#1|) (-1266 $)) 53) (((-690 |#1|)) 68)) (-4093 ((|#1| $) 59)) (-1772 (($ $) 229 (|has| |#1| (-1201)))) (-1605 (($ $) 212 (|has| |#1| (-1201)))) (-1783 (((-1189 (-922) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-4377 (((-3 $ "failed") $ $) 20)) (-1877 (((-421 (-1172 $)) (-1172 $)) 243 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-1396 (($ $) 122 (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-1401 (((-421 $) $) 123 (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-2307 (($ $) 242 (-12 (|has| |#1| (-1003)) (|has| |#1| (-1201))))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 246 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-3405 (((-112) $ $) 113 (|has| |#1| (-308)))) (-2013 (((-772)) 96 (|has| |#1| (-370)))) (-1747 (($ $) 228 (|has| |#1| (-1201)))) (-1577 (($ $) 213 (|has| |#1| (-1201)))) (-1798 (($ $) 227 (|has| |#1| (-1201)))) (-1632 (($ $) 214 (|has| |#1| (-1201)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-1621 (((-567) $) 177 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 174)) (-3499 (($ (-1266 |#1|) (-1266 $)) 55) (($ (-1266 |#1|)) 71)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2197 (($ $ $) 117 (|has| |#1| (-308)))) (-4253 (((-690 |#1|) $ (-1266 $)) 60) (((-690 |#1|) $) 66)) (-1920 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-3402 (($ (-1172 |#1|)) 166) (((-3 $ "failed") (-410 (-1172 |#1|))) 163 (|has| |#1| (-365)))) (-4014 (((-3 $ "failed") $) 37)) (-2319 ((|#1| $) 254)) (-4092 (((-3 (-410 (-567)) "failed") $) 247 (|has| |#1| (-548)))) (-4379 (((-112) $) 249 (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) 248 (|has| |#1| (-548)))) (-2432 (((-922)) 61)) (-1649 (($) 99 (|has| |#1| (-370)))) (-2210 (($ $ $) 116 (|has| |#1| (-308)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 111 (|has| |#1| (-308)))) (-3896 (($) 157 (|has| |#1| (-351)))) (-1596 (((-112) $) 158 (|has| |#1| (-351)))) (-2966 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-1665 (((-112) $) 124 (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-1780 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 250 (-12 (|has| |#1| (-1060)) (|has| |#1| (-1201))))) (-4098 (($) 239 (|has| |#1| (-1201)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 262 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 261 (|has| |#1| (-887 (-381))))) (-1909 (((-922) $) 160 (|has| |#1| (-351))) (((-834 (-922)) $) 146 (|has| |#1| (-351)))) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 241 (-12 (|has| |#1| (-1003)) (|has| |#1| (-1201))))) (-3751 ((|#1| $) 58)) (-2802 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-308)))) (-4110 (((-1172 |#1|) $) 51 (|has| |#1| (-365)))) (-3494 (($ (-1 |#1| |#1|) $) 263)) (-3527 (((-922) $) 98 (|has| |#1| (-370)))) (-2942 (($ $) 236 (|has| |#1| (-1201)))) (-3392 (((-1172 |#1|) $) 164)) (-3245 (($ (-645 $)) 109 (-2909 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (($ $ $) 108 (-2909 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-2451 (((-1158) $) 10)) (-2559 (($ $) 125 (|has| |#1| (-365)))) (-2596 (($) 151 (|has| |#1| (-351)) CONST)) (-3811 (($ (-922)) 97 (|has| |#1| (-370)))) (-3025 (($) 258)) (-2333 ((|#1| $) 255)) (-3339 (((-1120) $) 11)) (-4099 (($) 168)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 110 (-2909 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-3276 (($ (-645 $)) 107 (-2909 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (($ $ $) 106 (-2909 (|has| |#1| (-308)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 154 (|has| |#1| (-351)))) (-1495 (((-421 (-1172 $)) (-1172 $)) 245 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-1429 (((-421 (-1172 $)) (-1172 $)) 244 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-2296 (((-421 $) $) 121 (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 118 (|has| |#1| (-308)))) (-2245 (((-3 $ "failed") $ |#1|) 253 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (-2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-308)))) (-2910 (($ $) 237 (|has| |#1| (-1201)))) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) 269 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 268 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 267 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 266 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) 265 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) 264 (|has| |#1| (-517 (-1176) |#1|)))) (-4369 (((-772) $) 114 (|has| |#1| (-308)))) (-1552 (($ $ |#1|) 270 (|has| |#1| (-287 |#1| |#1|)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 115 (|has| |#1| (-308)))) (-3347 ((|#1| (-1266 $)) 54) ((|#1|) 67)) (-2097 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1930 (($ $ (-1 |#1| |#1|) (-772)) 131) (($ $ (-1 |#1| |#1|)) 130) (($ $ (-645 (-1176)) (-645 (-772))) 138 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 139 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 140 (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) 141 (|has| |#1| (-901 (-1176)))) (($ $ (-772)) 143 (-2909 (-1410 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1410 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 145 (-2909 (-1410 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1410 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3374 (((-690 |#1|) (-1266 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2713 (((-1172 |#1|)) 167)) (-1810 (($ $) 226 (|has| |#1| (-1201)))) (-1647 (($ $) 215 (|has| |#1| (-1201)))) (-1698 (($) 156 (|has| |#1| (-351)))) (-1784 (($ $) 225 (|has| |#1| (-1201)))) (-1618 (($ $) 216 (|has| |#1| (-1201)))) (-1757 (($ $) 224 (|has| |#1| (-1201)))) (-1592 (($ $) 217 (|has| |#1| (-1201)))) (-3216 (((-1266 |#1|) $ (-1266 $)) 57) (((-690 |#1|) (-1266 $) (-1266 $)) 56) (((-1266 |#1|) $) 73) (((-690 |#1|) (-1266 $)) 72)) (-3542 (((-1266 |#1|) $) 70) (($ (-1266 |#1|)) 69) (((-1172 |#1|) $) 179) (($ (-1172 |#1|)) 165) (((-893 (-567)) $) 260 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 259 (|has| |#1| (-615 (-893 (-381))))) (((-169 (-381)) $) 211 (|has| |#1| (-1023))) (((-169 (-225)) $) 210 (|has| |#1| (-1023))) (((-539) $) 209 (|has| |#1| (-615 (-539))))) (-1443 (($ $) 257)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 153 (-2909 (-1410 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (|has| |#1| (-351))))) (-2938 (($ |#1| |#1|) 256)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 95 (-2909 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) 100 (-2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-4242 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (-2909 (-1410 (|has| $ (-145)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))) (|has| |#1| (-145))))) (-4121 (((-1172 |#1|) $) 52)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2557 (((-1266 $)) 74)) (-1847 (($ $) 235 (|has| |#1| (-1201)))) (-1690 (($ $) 223 (|has| |#1| (-1201)))) (-2469 (((-112) $ $) 104 (-2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))) (-1823 (($ $) 234 (|has| |#1| (-1201)))) (-1660 (($ $) 222 (|has| |#1| (-1201)))) (-1869 (($ $) 233 (|has| |#1| (-1201)))) (-1719 (($ $) 221 (|has| |#1| (-1201)))) (-3600 ((|#1| $) 251 (|has| |#1| (-1201)))) (-1345 (($ $) 232 (|has| |#1| (-1201)))) (-1733 (($ $) 220 (|has| |#1| (-1201)))) (-1858 (($ $) 231 (|has| |#1| (-1201)))) (-1704 (($ $) 219 (|has| |#1| (-1201)))) (-1834 (($ $) 230 (|has| |#1| (-1201)))) (-1673 (($ $) 218 (|has| |#1| (-1201)))) (-1771 (($ $) 252 (|has| |#1| (-1060)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-1 |#1| |#1|) (-772)) 133) (($ $ (-1 |#1| |#1|)) 132) (($ $ (-645 (-1176)) (-645 (-772))) 134 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 135 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 136 (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) 137 (|has| |#1| (-901 (-1176)))) (($ $ (-772)) 142 (-2909 (-1410 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1410 (|has| |#1| (-233)) (|has| |#1| (-365))))) (($ $) 144 (-2909 (-1410 (|has| |#1| (-365)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-1410 (|has| |#1| (-233)) (|has| |#1| (-365)))))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 129 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-410 (-567))) 240 (-12 (|has| |#1| (-1003)) (|has| |#1| (-1201)))) (($ $ $) 238 (|has| |#1| (-1201))) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365)))))
(((-166 |#1|) (-140) (-172)) (T -166))
-((-3202 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3892 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2558 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1561 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3967 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2274 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1200)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1200)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-4388 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))))
-(-13 (-724 |t#1| (-1171 |t#1|)) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-402 |t#1|) (-884 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -1561) (-15 -3892 ($)) (-15 -2558 ($ $)) (-15 -1561 ($ |t#1| |t#1|)) (-15 -4052 (|t#1| $)) (-15 -4041 (|t#1| $)) (-15 -3202 (|t#1| $)) (IF (|has| |t#1| (-558)) (PROGN (-6 (-558)) (-15 -3967 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |t#1| (-6 -4411)) (-6 -4411) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1022)) (PROGN (-6 (-614 (-169 (-225)))) (-6 (-614 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -2274 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1200)) (PROGN (-6 (-1200)) (-15 -2711 (|t#1| $)) (IF (|has| |t#1| (-1002)) (-6 (-1002)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -4341 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-909)) (IF (|has| |t#1| (-308)) (-6 (-909)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1200)) ((-95) |has| |#1| (-1200)) ((-102) . T) ((-111 #0# #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2676 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-613 (-862)) . T) ((-172) . T) ((-614 (-169 (-225))) |has| |#1| (-1022)) ((-614 (-169 (-381))) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-614 #1=(-1171 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2676 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1200)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2676 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2676 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2676 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-411 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) -2676 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-495) |has| |#1| (-1200)) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) -2676 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-646 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-724 |#1| #1#) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) -12 (|has| |#1| (-308)) (|has| |#1| (-909))) ((-920) -2676 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1002) -12 (|has| |#1| (-1002)) (|has| |#1| (-1200))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1200) |has| |#1| (-1200)) ((-1203) |has| |#1| (-1200)) ((-1215) . T) ((-1219) -2676 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-909)))))
-((-4018 (((-420 |#2|) |#2|) 69)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -4018 ((-420 |#2|) |#2|))) (-308) (-1241 (-169 |#1|))) (T -167))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1241 (-169 *4))))))
-(-10 -7 (-15 -4018 ((-420 |#2|) |#2|)))
-((-2101 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -2101 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
-(-10 -7 (-15 -2101 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 34)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-1780 (($ $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3286 (((-112) $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3561 (((-689 |#1|) (-1265 $)) NIL) (((-689 |#1|)) NIL)) (-2717 ((|#1| $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-1200)))) (-3474 (($ $) NIL (|has| |#1| (-1200)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2885 (($ $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-2555 (((-420 $) $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-4028 (($ $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1200))))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-308)))) (-3733 (((-771)) NIL (|has| |#1| (-370)))) (-3601 (($ $) NIL (|has| |#1| (-1200)))) (-3449 (($ $) NIL (|has| |#1| (-1200)))) (-3648 (($ $) NIL (|has| |#1| (-1200)))) (-3500 (($ $) NIL (|has| |#1| (-1200)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1452 (($ (-1265 |#1|) (-1265 $)) NIL) (($ (-1265 |#1|)) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-3919 (($ $ $) NIL (|has| |#1| (-308)))) (-2340 (((-689 |#1|) $ (-1265 $)) NIL) (((-689 |#1|) $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2553 (($ (-1171 |#1|)) NIL) (((-3 $ "failed") (-409 (-1171 |#1|))) NIL (|has| |#1| (-365)))) (-2313 (((-3 $ "failed") $) NIL)) (-4041 ((|#1| $) 13)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-1929 (((-112) $) NIL (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-4153 (((-921)) NIL)) (-3424 (($) NIL (|has| |#1| (-370)))) (-3930 (($ $ $) NIL (|has| |#1| (-308)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-308)))) (-4183 (($) NIL (|has| |#1| (-351)))) (-1963 (((-112) $) NIL (|has| |#1| (-351)))) (-4205 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-1968 (((-112) $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-4341 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1059)) (|has| |#1| (-1200))))) (-2722 (($) NIL (|has| |#1| (-1200)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-3077 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-3842 (((-112) $) 36)) (-2810 (($ $ (-566)) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1200))))) (-3202 ((|#1| $) 47)) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-2323 (((-1171 |#1|) $) NIL (|has| |#1| (-365)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-4138 (((-921) $) NIL (|has| |#1| (-370)))) (-1565 (($ $) NIL (|has| |#1| (-1200)))) (-2542 (((-1171 |#1|) $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1342 (($) NIL (|has| |#1| (-351)) CONST)) (-2430 (($ (-921)) NIL (|has| |#1| (-370)))) (-3892 (($) NIL)) (-4052 ((|#1| $) 15)) (-1944 (((-1119) $) NIL)) (-2723 (($) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-308)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| |#1| (-351)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-909))))) (-4018 (((-420 $) $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-365))))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-308)))) (-3967 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 48 (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-308)))) (-1535 (($ $) NIL (|has| |#1| (-1200)))) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-3792 (((-771) $) NIL (|has| |#1| (-308)))) (-3282 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-308)))) (-2061 ((|#1| (-1265 $)) NIL) ((|#1|) NIL)) (-2816 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3009 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1436 (((-689 |#1|) (-1265 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2880 (((-1171 |#1|)) NIL)) (-3658 (($ $) NIL (|has| |#1| (-1200)))) (-3515 (($ $) NIL (|has| |#1| (-1200)))) (-1344 (($) NIL (|has| |#1| (-351)))) (-3635 (($ $) NIL (|has| |#1| (-1200)))) (-3488 (($ $) NIL (|has| |#1| (-1200)))) (-3612 (($ $) NIL (|has| |#1| (-1200)))) (-3461 (($ $) NIL (|has| |#1| (-1200)))) (-2803 (((-1265 |#1|) $ (-1265 $)) NIL) (((-689 |#1|) (-1265 $) (-1265 $)) NIL) (((-1265 |#1|) $) NIL) (((-689 |#1|) (-1265 $)) NIL)) (-2150 (((-1265 |#1|) $) NIL) (($ (-1265 |#1|)) NIL) (((-1171 |#1|) $) NIL) (($ (-1171 |#1|)) NIL) (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1022))) (((-169 (-225)) $) NIL (|has| |#1| (-1022))) (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2558 (($ $) 46)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-351))))) (-1561 (($ |#1| |#1|) 38)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 37) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-2655 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-1707 (((-1171 |#1|) $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL)) (-3696 (($ $) NIL (|has| |#1| (-1200)))) (-3553 (($ $) NIL (|has| |#1| (-1200)))) (-1597 (((-112) $ $) NIL (-2676 (-12 (|has| |#1| (-308)) (|has| |#1| (-909))) (|has| |#1| (-558))))) (-3670 (($ $) NIL (|has| |#1| (-1200)))) (-3528 (($ $) NIL (|has| |#1| (-1200)))) (-3719 (($ $) NIL (|has| |#1| (-1200)))) (-3577 (($ $) NIL (|has| |#1| (-1200)))) (-2711 ((|#1| $) NIL (|has| |#1| (-1200)))) (-3076 (($ $) NIL (|has| |#1| (-1200)))) (-3589 (($ $) NIL (|has| |#1| (-1200)))) (-3705 (($ $) NIL (|has| |#1| (-1200)))) (-3566 (($ $) NIL (|has| |#1| (-1200)))) (-3682 (($ $) NIL (|has| |#1| (-1200)))) (-3541 (($ $) NIL (|has| |#1| (-1200)))) (-2274 (($ $) NIL (|has| |#1| (-1059)))) (-3200 (($) 28 T CONST)) (-3214 (($) 30 T CONST)) (-2331 (((-1157) $) 23 (|has| |#1| (-828))) (((-1157) $ (-112)) 25 (|has| |#1| (-828))) (((-1270) (-822) $) 26 (|has| |#1| (-828))) (((-1270) (-822) $ (-112)) 27 (|has| |#1| (-828)))) (-1316 (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 40)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-409 (-566))) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1200)))) (($ $ $) NIL (|has| |#1| (-1200))) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365)))))
-(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) (-172)) (T -169))
-NIL
-(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|)))
-((-2150 (((-892 |#1|) |#3|) 22)))
-(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2150 ((-892 |#1|) |#3|))) (-1099) (-13 (-614 (-892 |#1|)) (-172)) (-166 |#2|)) (T -170))
-((-2150 (*1 *2 *3) (-12 (-4 *5 (-13 (-614 *2) (-172))) (-5 *2 (-892 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1099)) (-4 *3 (-166 *5)))))
-(-10 -7 (-15 -2150 ((-892 |#1|) |#3|)))
-((-3979 (((-112) $ $) NIL)) (-2275 (((-112) $) 9)) (-2350 (((-112) $ (-112)) 11)) (-2631 (($) 13)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2878 (($ $) 14)) (-2725 (((-862) $) 18)) (-2033 (((-112) $) 8)) (-2482 (((-112) $ (-112)) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-171) (-13 (-1099) (-10 -8 (-15 -2631 ($)) (-15 -2033 ((-112) $)) (-15 -2275 ((-112) $)) (-15 -2482 ((-112) $ (-112))) (-15 -2350 ((-112) $ (-112))) (-15 -2878 ($ $))))) (T -171))
-((-2631 (*1 *1) (-5 *1 (-171))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2482 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2350 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2878 (*1 *1 *1) (-5 *1 (-171))))
-(-13 (-1099) (-10 -8 (-15 -2631 ($)) (-15 -2033 ((-112) $)) (-15 -2275 ((-112) $)) (-15 -2482 ((-112) $ (-112))) (-15 -2350 ((-112) $ (-112))) (-15 -2878 ($ $))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
+((-3751 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3025 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1443 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2938 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2245 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-1771 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1060)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1201)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1060)) (-4 *3 (-1201)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-4092 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))))
+(-13 (-725 |t#1| (-1172 |t#1|)) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-403 |t#1|) (-885 |t#1|) (-379 |t#1|) (-172) (-10 -8 (-6 -2938) (-15 -3025 ($)) (-15 -1443 ($ $)) (-15 -2938 ($ |t#1| |t#1|)) (-15 -2333 (|t#1| $)) (-15 -2319 (|t#1| $)) (-15 -3751 (|t#1| $)) (IF (|has| |t#1| (-559)) (PROGN (-6 (-559)) (-15 -2245 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-308)) (-6 (-308)) |%noBranch|) (IF (|has| |t#1| (-6 -4415)) (-6 -4415) |%noBranch|) (IF (|has| |t#1| (-6 -4412)) (-6 -4412) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1023)) (PROGN (-6 (-615 (-169 (-225)))) (-6 (-615 (-169 (-381))))) |%noBranch|) (IF (|has| |t#1| (-1060)) (-15 -1771 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1201)) (PROGN (-6 (-1201)) (-15 -3600 (|t#1| $)) (IF (|has| |t#1| (-1003)) (-6 (-1003)) |%noBranch|) (IF (|has| |t#1| (-1060)) (-15 -1780 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-910)) (IF (|has| |t#1| (-308)) (-6 (-910)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-35) |has| |#1| (-1201)) ((-95) |has| |#1| (-1201)) ((-102) . T) ((-111 #0# #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2909 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-614 (-863)) . T) ((-172) . T) ((-615 (-169 (-225))) |has| |#1| (-1023)) ((-615 (-169 (-381))) |has| |#1| (-1023)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-615 #1=(-1172 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2909 (|has| |#1| (-351)) (|has| |#1| (-233))) ((-243) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-285) |has| |#1| (-1201)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2909 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-308) -2909 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2909 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| #1#) . T) ((-412 |#1| #1#) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) -2909 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-496) |has| |#1| (-1201)) ((-517 (-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) -2909 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-647 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-725 |#1| #1#) . T) ((-727) . T) ((-901 (-1176)) |has| |#1| (-901 (-1176))) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-910) -12 (|has| |#1| (-308)) (|has| |#1| (-910))) ((-921) -2909 (|has| |#1| (-351)) (|has| |#1| (-365)) (|has| |#1| (-308))) ((-1003) -12 (|has| |#1| (-1003)) (|has| |#1| (-1201))) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) |has| |#1| (-351)) ((-1201) |has| |#1| (-1201)) ((-1204) |has| |#1| (-1201)) ((-1216) . T) ((-1220) -2909 (|has| |#1| (-351)) (|has| |#1| (-365)) (-12 (|has| |#1| (-308)) (|has| |#1| (-910)))))
+((-2296 (((-421 |#2|) |#2|) 69)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -2296 ((-421 |#2|) |#2|))) (-308) (-1242 (-169 |#1|))) (T -167))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1242 (-169 *4))))))
+(-10 -7 (-15 -2296 ((-421 |#2|) |#2|)))
+((-3494 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -3494 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))))
+(-10 -7 (-15 -3494 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 34)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-3602 (($ $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-2119 (((-112) $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-3007 (((-690 |#1|) (-1266 $)) NIL) (((-690 |#1|)) NIL)) (-4093 ((|#1| $) NIL)) (-1772 (($ $) NIL (|has| |#1| (-1201)))) (-1605 (($ $) NIL (|has| |#1| (-1201)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-1396 (($ $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-1401 (((-421 $) $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-2307 (($ $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1201))))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-308)))) (-2013 (((-772)) NIL (|has| |#1| (-370)))) (-1747 (($ $) NIL (|has| |#1| (-1201)))) (-1577 (($ $) NIL (|has| |#1| (-1201)))) (-1798 (($ $) NIL (|has| |#1| (-1201)))) (-1632 (($ $) NIL (|has| |#1| (-1201)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3499 (($ (-1266 |#1|) (-1266 $)) NIL) (($ (-1266 |#1|)) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2197 (($ $ $) NIL (|has| |#1| (-308)))) (-4253 (((-690 |#1|) $ (-1266 $)) NIL) (((-690 |#1|) $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3402 (($ (-1172 |#1|)) NIL) (((-3 $ "failed") (-410 (-1172 |#1|))) NIL (|has| |#1| (-365)))) (-4014 (((-3 $ "failed") $) NIL)) (-2319 ((|#1| $) 13)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-4379 (((-112) $) NIL (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-2432 (((-922)) NIL)) (-1649 (($) NIL (|has| |#1| (-370)))) (-2210 (($ $ $) NIL (|has| |#1| (-308)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-308)))) (-3896 (($) NIL (|has| |#1| (-351)))) (-1596 (((-112) $) NIL (|has| |#1| (-351)))) (-2966 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-1665 (((-112) $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-1780 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1060)) (|has| |#1| (-1201))))) (-4098 (($) NIL (|has| |#1| (-1201)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| |#1| (-887 (-381))))) (-1909 (((-922) $) NIL (|has| |#1| (-351))) (((-834 (-922)) $) NIL (|has| |#1| (-351)))) (-3714 (((-112) $) 36)) (-3287 (($ $ (-567)) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1201))))) (-3751 ((|#1| $) 47)) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-4110 (((-1172 |#1|) $) NIL (|has| |#1| (-365)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3527 (((-922) $) NIL (|has| |#1| (-370)))) (-2942 (($ $) NIL (|has| |#1| (-1201)))) (-3392 (((-1172 |#1|) $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2596 (($) NIL (|has| |#1| (-351)) CONST)) (-3811 (($ (-922)) NIL (|has| |#1| (-370)))) (-3025 (($) NIL)) (-2333 ((|#1| $) 15)) (-3339 (((-1120) $) NIL)) (-4099 (($) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-308)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-308))) (($ $ $) NIL (|has| |#1| (-308)))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| |#1| (-351)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#1| (-308)) (|has| |#1| (-910))))) (-2296 (((-421 $) $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-365))))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-308)))) (-2245 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 48 (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-308)))) (-2910 (($ $) NIL (|has| |#1| (-1201)))) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-517 (-1176) |#1|)))) (-4369 (((-772) $) NIL (|has| |#1| (-308)))) (-1552 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-308)))) (-3347 ((|#1| (-1266 $)) NIL) ((|#1|) NIL)) (-2097 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1930 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3374 (((-690 |#1|) (-1266 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2713 (((-1172 |#1|)) NIL)) (-1810 (($ $) NIL (|has| |#1| (-1201)))) (-1647 (($ $) NIL (|has| |#1| (-1201)))) (-1698 (($) NIL (|has| |#1| (-351)))) (-1784 (($ $) NIL (|has| |#1| (-1201)))) (-1618 (($ $) NIL (|has| |#1| (-1201)))) (-1757 (($ $) NIL (|has| |#1| (-1201)))) (-1592 (($ $) NIL (|has| |#1| (-1201)))) (-3216 (((-1266 |#1|) $ (-1266 $)) NIL) (((-690 |#1|) (-1266 $) (-1266 $)) NIL) (((-1266 |#1|) $) NIL) (((-690 |#1|) (-1266 $)) NIL)) (-3542 (((-1266 |#1|) $) NIL) (($ (-1266 |#1|)) NIL) (((-1172 |#1|) $) NIL) (($ (-1172 |#1|)) NIL) (((-893 (-567)) $) NIL (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#1| (-615 (-893 (-381))))) (((-169 (-381)) $) NIL (|has| |#1| (-1023))) (((-169 (-225)) $) NIL (|has| |#1| (-1023))) (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1443 (($ $) 46)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-351))))) (-2938 (($ |#1| |#1|) 38)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 37) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-4242 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-4121 (((-1172 |#1|) $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL)) (-1847 (($ $) NIL (|has| |#1| (-1201)))) (-1690 (($ $) NIL (|has| |#1| (-1201)))) (-2469 (((-112) $ $) NIL (-2909 (-12 (|has| |#1| (-308)) (|has| |#1| (-910))) (|has| |#1| (-559))))) (-1823 (($ $) NIL (|has| |#1| (-1201)))) (-1660 (($ $) NIL (|has| |#1| (-1201)))) (-1869 (($ $) NIL (|has| |#1| (-1201)))) (-1719 (($ $) NIL (|has| |#1| (-1201)))) (-3600 ((|#1| $) NIL (|has| |#1| (-1201)))) (-1345 (($ $) NIL (|has| |#1| (-1201)))) (-1733 (($ $) NIL (|has| |#1| (-1201)))) (-1858 (($ $) NIL (|has| |#1| (-1201)))) (-1704 (($ $) NIL (|has| |#1| (-1201)))) (-1834 (($ $) NIL (|has| |#1| (-1201)))) (-1673 (($ $) NIL (|has| |#1| (-1201)))) (-1771 (($ $) NIL (|has| |#1| (-1060)))) (-1468 (($) 28 T CONST)) (-1484 (($) 30 T CONST)) (-4184 (((-1158) $) 23 (|has| |#1| (-829))) (((-1158) $ (-112)) 25 (|has| |#1| (-829))) (((-1271) (-823) $) 26 (|has| |#1| (-829))) (((-1271) (-823) $ (-112)) 27 (|has| |#1| (-829)))) (-2692 (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 40)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-410 (-567))) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1201)))) (($ $ $) NIL (|has| |#1| (-1201))) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365)))))
+(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-172)) (T -169))
+NIL
+(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|)))
+((-3542 (((-893 |#1|) |#3|) 22)))
+(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -3542 ((-893 |#1|) |#3|))) (-1100) (-13 (-615 (-893 |#1|)) (-172)) (-166 |#2|)) (T -170))
+((-3542 (*1 *2 *3) (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-893 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1100)) (-4 *3 (-166 *5)))))
+(-10 -7 (-15 -3542 ((-893 |#1|) |#3|)))
+((-2257 (((-112) $ $) NIL)) (-1781 (((-112) $) 9)) (-4348 (((-112) $ (-112)) 11)) (-4012 (($) 13)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4247 (($ $) 14)) (-4101 (((-863) $) 18)) (-4178 (((-112) $) 8)) (-3858 (((-112) $ (-112)) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-171) (-13 (-1100) (-10 -8 (-15 -4012 ($)) (-15 -4178 ((-112) $)) (-15 -1781 ((-112) $)) (-15 -3858 ((-112) $ (-112))) (-15 -4348 ((-112) $ (-112))) (-15 -4247 ($ $))))) (T -171))
+((-4012 (*1 *1) (-5 *1 (-171))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1781 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3858 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4348 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-4247 (*1 *1 *1) (-5 *1 (-171))))
+(-13 (-1100) (-10 -8 (-15 -4012 ($)) (-15 -4178 ((-112) $)) (-15 -1781 ((-112) $)) (-15 -3858 ((-112) $ (-112))) (-15 -4348 ((-112) $ (-112))) (-15 -4247 ($ $))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-172) (-140)) (T -172))
NIL
-(-13 (-1049) (-111 $ $) (-10 -7 (-6 (-4417 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-4381 (($ $) 6)))
+(-13 (-1050) (-111 $ $) (-10 -7 (-6 (-4418 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-4021 (($ $) 6)))
(((-173) (-140)) (T -173))
-((-4381 (*1 *1 *1) (-4 *1 (-173))))
-(-13 (-10 -8 (-15 -4381 ($ $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 ((|#1| $) 81)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) NIL)) (-3636 (($ $) 21)) (-2173 (($ |#1| (-1155 |#1|)) 50)) (-2313 (((-3 $ "failed") $) 123)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-1651 (((-1155 |#1|) $) 88)) (-4269 (((-1155 |#1|) $) 85)) (-3948 (((-1155 |#1|) $) 86)) (-3842 (((-112) $) NIL)) (-2499 (((-1155 |#1|) $) 94)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1853 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL)) (-3964 (($ $ (-566)) 97)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-1717 (((-1155 |#1|) $) 95)) (-3207 (((-1155 (-409 |#1|)) $) 14)) (-3485 (($ (-409 |#1|)) 17) (($ |#1| (-1155 |#1|) (-1155 |#1|)) 40)) (-3965 (($ $) 99)) (-2725 (((-862) $) 140) (($ (-566)) 53) (($ |#1|) 54) (($ (-409 |#1|)) 38) (($ (-409 (-566))) NIL) (($ $) NIL)) (-2875 (((-771)) 70 T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3857 (((-1155 (-409 |#1|)) $) 20)) (-3200 (($) 27 T CONST)) (-3214 (($) 30 T CONST)) (-2817 (((-112) $ $) 37)) (-2916 (($ $ $) 121)) (-2905 (($ $) 112) (($ $ $) 109)) (-2897 (($ $ $) 107)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-409 |#1|) $) 117) (($ $ (-409 |#1|)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL)))
-(((-174 |#1|) (-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -3485 ($ (-409 |#1|))) (-15 -3485 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -2173 ($ |#1| (-1155 |#1|))) (-15 -4269 ((-1155 |#1|) $)) (-15 -3948 ((-1155 |#1|) $)) (-15 -1651 ((-1155 |#1|) $)) (-15 -4191 (|#1| $)) (-15 -3636 ($ $)) (-15 -3857 ((-1155 (-409 |#1|)) $)) (-15 -3207 ((-1155 (-409 |#1|)) $)) (-15 -2499 ((-1155 |#1|) $)) (-15 -1717 ((-1155 |#1|) $)) (-15 -3964 ($ $ (-566))) (-15 -3965 ($ $)))) (-308)) (T -174))
-((-3485 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-3485 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2173 (*1 *1 *2 *3) (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1651 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4191 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-3636 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1717 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3965 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
-(-13 (-38 |#1|) (-38 (-409 |#1|)) (-365) (-10 -8 (-15 -3485 ($ (-409 |#1|))) (-15 -3485 ($ |#1| (-1155 |#1|) (-1155 |#1|))) (-15 -2173 ($ |#1| (-1155 |#1|))) (-15 -4269 ((-1155 |#1|) $)) (-15 -3948 ((-1155 |#1|) $)) (-15 -1651 ((-1155 |#1|) $)) (-15 -4191 (|#1| $)) (-15 -3636 ($ $)) (-15 -3857 ((-1155 (-409 |#1|)) $)) (-15 -3207 ((-1155 (-409 |#1|)) $)) (-15 -2499 ((-1155 |#1|) $)) (-15 -1717 ((-1155 |#1|) $)) (-15 -3964 ($ $ (-566))) (-15 -3965 ($ $))))
-((-1947 (($ (-109) $) 15)) (-3780 (((-691 (-109)) (-508) $) 14)) (-2725 (((-862) $) 18)) (-3583 (((-644 (-109)) $) 8)))
-(((-175) (-13 (-613 (-862)) (-10 -8 (-15 -3583 ((-644 (-109)) $)) (-15 -1947 ($ (-109) $)) (-15 -3780 ((-691 (-109)) (-508) $))))) (T -175))
-((-3583 (*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175)))) (-1947 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-3780 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3583 ((-644 (-109)) $)) (-15 -1947 ($ (-109) $)) (-15 -3780 ((-691 (-109)) (-508) $))))
-((-2589 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 40)) (-1393 (((-943 |#1|) (-943 |#1|)) 24)) (-4114 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 36)) (-3221 (((-943 |#1|) (-943 |#1|)) 22)) (-1394 (((-943 |#1|) (-943 |#1|)) 30)) (-1406 (((-943 |#1|) (-943 |#1|)) 29)) (-2403 (((-943 |#1|) (-943 |#1|)) 28)) (-2067 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 37)) (-1359 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 35)) (-3080 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 34)) (-2636 (((-943 |#1|) (-943 |#1|)) 23)) (-3479 (((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|) 43)) (-3087 (((-943 |#1|) (-943 |#1|)) 8)) (-3111 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 39)) (-3034 (((-1 (-943 |#1|) (-943 |#1|)) |#1|) 38)))
-(((-176 |#1|) (-10 -7 (-15 -3087 ((-943 |#1|) (-943 |#1|))) (-15 -3221 ((-943 |#1|) (-943 |#1|))) (-15 -2636 ((-943 |#1|) (-943 |#1|))) (-15 -1393 ((-943 |#1|) (-943 |#1|))) (-15 -2403 ((-943 |#1|) (-943 |#1|))) (-15 -1406 ((-943 |#1|) (-943 |#1|))) (-15 -1394 ((-943 |#1|) (-943 |#1|))) (-15 -3080 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1359 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -4114 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2067 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3034 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3111 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2589 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3479 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|))) (-13 (-365) (-1200) (-1002))) (T -176))
-((-3479 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-2589 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-3111 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-3034 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-2067 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-4114 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-1359 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-3080 (*1 *2 *3) (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))))) (-1394 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))) (-5 *1 (-176 *3)))) (-1406 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))) (-5 *1 (-176 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))) (-5 *1 (-176 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))) (-5 *1 (-176 *3)))) (-2636 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))) (-5 *1 (-176 *3)))) (-3221 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))) (-5 *1 (-176 *3)))) (-3087 (*1 *2 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002))) (-5 *1 (-176 *3)))))
-(-10 -7 (-15 -3087 ((-943 |#1|) (-943 |#1|))) (-15 -3221 ((-943 |#1|) (-943 |#1|))) (-15 -2636 ((-943 |#1|) (-943 |#1|))) (-15 -1393 ((-943 |#1|) (-943 |#1|))) (-15 -2403 ((-943 |#1|) (-943 |#1|))) (-15 -1406 ((-943 |#1|) (-943 |#1|))) (-15 -1394 ((-943 |#1|) (-943 |#1|))) (-15 -3080 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -1359 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -4114 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2067 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3034 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3111 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -2589 ((-1 (-943 |#1|) (-943 |#1|)) |#1|)) (-15 -3479 ((-1 (-943 |#1|) (-943 |#1|)) |#1| |#1|)))
-((-1707 ((|#2| |#3|) 28)))
-(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -1707 (|#2| |#3|))) (-172) (-1241 |#1|) (-724 |#1| |#2|)) (T -177))
-((-1707 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1241 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-724 *4 *2)))))
-(-10 -7 (-15 -1707 (|#2| |#3|)))
-((-2114 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 44 (|has| (-952 |#2|) (-886 |#1|)))))
-(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -2114 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|)) (-1099) (-13 (-886 |#1|) (-172)) (-166 |#2|)) (T -178))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5)) (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-952 |#2|) (-886 |#1|)) (-15 -2114 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) |%noBranch|))
-((-1766 (((-644 |#1|) (-644 |#1|) |#1|) 41)) (-2392 (((-644 |#1|) |#1| (-644 |#1|)) 20)) (-2936 (((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|)) 36) ((|#1| (-644 |#1|) (-644 |#1|)) 32)))
-(((-179 |#1|) (-10 -7 (-15 -2392 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -2936 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -2936 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -1766 ((-644 |#1|) (-644 |#1|) |#1|))) (-308)) (T -179))
-((-1766 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-2936 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-2936 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-2392 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
-(-10 -7 (-15 -2392 ((-644 |#1|) |#1| (-644 |#1|))) (-15 -2936 (|#1| (-644 |#1|) (-644 |#1|))) (-15 -2936 ((-644 |#1|) (-644 (-644 |#1|)) (-644 |#1|))) (-15 -1766 ((-644 |#1|) (-644 |#1|) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-2231 (((-1214) $) 13)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1743 (((-1134) $) 10)) (-2725 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-180) (-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -2231 ((-1214) $))))) (T -180))
-((-1743 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-180)))))
-(-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -2231 ((-1214) $))))
-((-3772 (((-2 (|:| |start| |#2|) (|:| -1502 (-420 |#2|))) |#2|) 66)) (-1637 ((|#1| |#1|) 58)) (-1880 (((-169 |#1|) |#2|) 93)) (-1525 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-2741 ((|#2| |#2|) 91)) (-3047 (((-420 |#2|) |#2| |#1|) 121) (((-420 |#2|) |#2| |#1| (-112)) 88)) (-3202 ((|#1| |#2|) 120)) (-3141 ((|#2| |#2|) 135)) (-4018 (((-420 |#2|) |#2|) 158) (((-420 |#2|) |#2| |#1|) 33) (((-420 |#2|) |#2| |#1| (-112)) 157)) (-2781 (((-644 (-2 (|:| -1502 (-644 |#2|)) (|:| -4277 |#1|))) |#2| |#2|) 156) (((-644 (-2 (|:| -1502 (-644 |#2|)) (|:| -4277 |#1|))) |#2| |#2| (-112)) 81)) (-2726 (((-644 (-169 |#1|)) |#2| |#1|) 42) (((-644 (-169 |#1|)) |#2|) 43)))
-(((-181 |#1| |#2|) (-10 -7 (-15 -2726 ((-644 (-169 |#1|)) |#2|)) (-15 -2726 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -2781 ((-644 (-2 (|:| -1502 (-644 |#2|)) (|:| -4277 |#1|))) |#2| |#2| (-112))) (-15 -2781 ((-644 (-2 (|:| -1502 (-644 |#2|)) (|:| -4277 |#1|))) |#2| |#2|)) (-15 -4018 ((-420 |#2|) |#2| |#1| (-112))) (-15 -4018 ((-420 |#2|) |#2| |#1|)) (-15 -4018 ((-420 |#2|) |#2|)) (-15 -3141 (|#2| |#2|)) (-15 -3202 (|#1| |#2|)) (-15 -3047 ((-420 |#2|) |#2| |#1| (-112))) (-15 -3047 ((-420 |#2|) |#2| |#1|)) (-15 -2741 (|#2| |#2|)) (-15 -1525 (|#1| |#2| |#1|)) (-15 -1525 (|#1| |#2|)) (-15 -1880 ((-169 |#1|) |#2|)) (-15 -1637 (|#1| |#1|)) (-15 -3772 ((-2 (|:| |start| |#2|) (|:| -1502 (-420 |#2|))) |#2|))) (-13 (-365) (-848)) (-1241 (-169 |#1|))) (T -181))
-((-3772 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-2 (|:| |start| *3) (|:| -1502 (-420 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-1637 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1241 (-169 *2))))) (-1880 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1241 *2)))) (-1525 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1241 (-169 *2))))) (-1525 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1241 (-169 *2))))) (-2741 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1241 (-169 *3))))) (-3047 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-3047 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-3202 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1241 (-169 *2))))) (-3141 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1241 (-169 *3))))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-4018 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-4018 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-2781 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -1502 (-644 *3)) (|:| -4277 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-2781 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848))) (-5 *2 (-644 (-2 (|:| -1502 (-644 *3)) (|:| -4277 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1241 (-169 *5))))) (-2726 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))) (-2726 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))))
-(-10 -7 (-15 -2726 ((-644 (-169 |#1|)) |#2|)) (-15 -2726 ((-644 (-169 |#1|)) |#2| |#1|)) (-15 -2781 ((-644 (-2 (|:| -1502 (-644 |#2|)) (|:| -4277 |#1|))) |#2| |#2| (-112))) (-15 -2781 ((-644 (-2 (|:| -1502 (-644 |#2|)) (|:| -4277 |#1|))) |#2| |#2|)) (-15 -4018 ((-420 |#2|) |#2| |#1| (-112))) (-15 -4018 ((-420 |#2|) |#2| |#1|)) (-15 -4018 ((-420 |#2|) |#2|)) (-15 -3141 (|#2| |#2|)) (-15 -3202 (|#1| |#2|)) (-15 -3047 ((-420 |#2|) |#2| |#1| (-112))) (-15 -3047 ((-420 |#2|) |#2| |#1|)) (-15 -2741 (|#2| |#2|)) (-15 -1525 (|#1| |#2| |#1|)) (-15 -1525 (|#1| |#2|)) (-15 -1880 ((-169 |#1|) |#2|)) (-15 -1637 (|#1| |#1|)) (-15 -3772 ((-2 (|:| |start| |#2|) (|:| -1502 (-420 |#2|))) |#2|)))
-((-2178 (((-3 |#2| "failed") |#2|) 20)) (-3630 (((-771) |#2|) 23)) (-1528 ((|#2| |#2| |#2|) 25)))
-(((-182 |#1| |#2|) (-10 -7 (-15 -2178 ((-3 |#2| "failed") |#2|)) (-15 -3630 ((-771) |#2|)) (-15 -1528 (|#2| |#2| |#2|))) (-1215) (-674 |#1|)) (T -182))
-((-1528 (*1 *2 *2 *2) (-12 (-4 *3 (-1215)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3)))) (-3630 (*1 *2 *3) (-12 (-4 *4 (-1215)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3)) (-4 *3 (-674 *4)))) (-2178 (*1 *2 *2) (|partial| -12 (-4 *3 (-1215)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3)))))
-(-10 -7 (-15 -2178 ((-3 |#2| "failed") |#2|)) (-15 -3630 ((-771) |#2|)) (-15 -1528 (|#2| |#2| |#2|)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1886 ((|#1| $) 7)) (-2725 (((-862) $) 14)) (-1479 (((-112) $ $) NIL)) (-3098 (((-644 (-1180)) $) 10)) (-2817 (((-112) $ $) 12)))
-(((-183 |#1|) (-13 (-1099) (-10 -8 (-15 -1886 (|#1| $)) (-15 -3098 ((-644 (-1180)) $)))) (-185)) (T -183))
-((-1886 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-3098 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
-(-13 (-1099) (-10 -8 (-15 -1886 (|#1| $)) (-15 -3098 ((-644 (-1180)) $))))
-((-3143 (((-644 (-865)) $) 16)) (-2591 (((-186) $) 8)) (-2372 (((-644 (-112)) $) 13)) (-1381 (((-55) $) 10)))
-(((-184 |#1|) (-10 -8 (-15 -3143 ((-644 (-865)) |#1|)) (-15 -2372 ((-644 (-112)) |#1|)) (-15 -2591 ((-186) |#1|)) (-15 -1381 ((-55) |#1|))) (-185)) (T -184))
-NIL
-(-10 -8 (-15 -3143 ((-644 (-865)) |#1|)) (-15 -2372 ((-644 (-112)) |#1|)) (-15 -2591 ((-186) |#1|)) (-15 -1381 ((-55) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3143 (((-644 (-865)) $) 19)) (-3534 (((-508) $) 16)) (-1390 (((-1157) $) 10)) (-2591 (((-186) $) 21)) (-3044 (((-112) $ (-508)) 14)) (-1944 (((-1119) $) 11)) (-2372 (((-644 (-112)) $) 20)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-1381 (((-55) $) 15)) (-2817 (((-112) $ $) 6)))
+((-4021 (*1 *1 *1) (-4 *1 (-173))))
+(-13 (-10 -8 (-15 -4021 ($ $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 ((|#1| $) 81)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) NIL)) (-2474 (($ $) 21)) (-3214 (($ |#1| (-1156 |#1|)) 50)) (-4014 (((-3 $ "failed") $) 123)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-1708 (((-1156 |#1|) $) 88)) (-2351 (((-1156 |#1|) $) 85)) (-2283 (((-1156 |#1|) $) 86)) (-3714 (((-112) $) NIL)) (-2193 (((-1156 |#1|) $) 94)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3245 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL)) (-2436 (($ $ (-567)) 97)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4191 (((-1156 |#1|) $) 95)) (-3784 (((-1156 (-410 |#1|)) $) 14)) (-3546 (($ (-410 |#1|)) 17) (($ |#1| (-1156 |#1|) (-1156 |#1|)) 40)) (-2448 (($ $) 99)) (-4101 (((-863) $) 140) (($ (-567)) 53) (($ |#1|) 54) (($ (-410 |#1|)) 38) (($ (-410 (-567))) NIL) (($ $) NIL)) (-2686 (((-772)) 70 T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-3840 (((-1156 (-410 |#1|)) $) 20)) (-1468 (($) 27 T CONST)) (-1484 (($) 30 T CONST)) (-3052 (((-112) $ $) 37)) (-3168 (($ $ $) 121)) (-3156 (($ $) 112) (($ $ $) 109)) (-3146 (($ $ $) 107)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 119) (($ $ $) 114) (($ $ |#1|) NIL) (($ |#1| $) 116) (($ (-410 |#1|) $) 117) (($ $ (-410 |#1|)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL)))
+(((-174 |#1|) (-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3546 ($ (-410 |#1|))) (-15 -3546 ($ |#1| (-1156 |#1|) (-1156 |#1|))) (-15 -3214 ($ |#1| (-1156 |#1|))) (-15 -2351 ((-1156 |#1|) $)) (-15 -2283 ((-1156 |#1|) $)) (-15 -1708 ((-1156 |#1|) $)) (-15 -2838 (|#1| $)) (-15 -2474 ($ $)) (-15 -3840 ((-1156 (-410 |#1|)) $)) (-15 -3784 ((-1156 (-410 |#1|)) $)) (-15 -2193 ((-1156 |#1|) $)) (-15 -4191 ((-1156 |#1|) $)) (-15 -2436 ($ $ (-567))) (-15 -2448 ($ $)))) (-308)) (T -174))
+((-3546 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3)))) (-3546 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1156 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-3214 (*1 *1 *2 *3) (-12 (-5 *3 (-1156 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2283 (*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2838 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-2474 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-1156 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-1156 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308)))) (-2448 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
+(-13 (-38 |#1|) (-38 (-410 |#1|)) (-365) (-10 -8 (-15 -3546 ($ (-410 |#1|))) (-15 -3546 ($ |#1| (-1156 |#1|) (-1156 |#1|))) (-15 -3214 ($ |#1| (-1156 |#1|))) (-15 -2351 ((-1156 |#1|) $)) (-15 -2283 ((-1156 |#1|) $)) (-15 -1708 ((-1156 |#1|) $)) (-15 -2838 (|#1| $)) (-15 -2474 ($ $)) (-15 -3840 ((-1156 (-410 |#1|)) $)) (-15 -3784 ((-1156 (-410 |#1|)) $)) (-15 -2193 ((-1156 |#1|) $)) (-15 -4191 ((-1156 |#1|) $)) (-15 -2436 ($ $ (-567))) (-15 -2448 ($ $))))
+((-1398 (($ (-109) $) 15)) (-4288 (((-692 (-109)) (-509) $) 14)) (-4101 (((-863) $) 18)) (-3218 (((-645 (-109)) $) 8)))
+(((-175) (-13 (-614 (-863)) (-10 -8 (-15 -3218 ((-645 (-109)) $)) (-15 -1398 ($ (-109) $)) (-15 -4288 ((-692 (-109)) (-509) $))))) (T -175))
+((-3218 (*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))) (-1398 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-4288 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3218 ((-645 (-109)) $)) (-15 -1398 ($ (-109) $)) (-15 -4288 ((-692 (-109)) (-509) $))))
+((-1840 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 40)) (-1393 (((-944 |#1|) (-944 |#1|)) 24)) (-4388 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 36)) (-2758 (((-944 |#1|) (-944 |#1|)) 22)) (-1403 (((-944 |#1|) (-944 |#1|)) 30)) (-1564 (((-944 |#1|) (-944 |#1|)) 29)) (-3727 (((-944 |#1|) (-944 |#1|)) 28)) (-3394 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 37)) (-3178 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 35)) (-1944 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 34)) (-4081 (((-944 |#1|) (-944 |#1|)) 23)) (-3496 (((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|) 43)) (-3864 (((-944 |#1|) (-944 |#1|)) 8)) (-4079 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 39)) (-1399 (((-1 (-944 |#1|) (-944 |#1|)) |#1|) 38)))
+(((-176 |#1|) (-10 -7 (-15 -3864 ((-944 |#1|) (-944 |#1|))) (-15 -2758 ((-944 |#1|) (-944 |#1|))) (-15 -4081 ((-944 |#1|) (-944 |#1|))) (-15 -1393 ((-944 |#1|) (-944 |#1|))) (-15 -3727 ((-944 |#1|) (-944 |#1|))) (-15 -1564 ((-944 |#1|) (-944 |#1|))) (-15 -1403 ((-944 |#1|) (-944 |#1|))) (-15 -1944 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3178 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4388 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3394 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1399 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4079 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1840 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3496 ((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|))) (-13 (-365) (-1201) (-1003))) (T -176))
+((-3496 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-1840 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-4079 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-1399 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-3394 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-4388 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-3178 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-1944 (*1 *2 *3) (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))) (-5 *1 (-176 *3)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))) (-5 *1 (-176 *3)))) (-3727 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))) (-5 *1 (-176 *3)))) (-1393 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))) (-5 *1 (-176 *3)))) (-4081 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))) (-5 *1 (-176 *3)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))) (-5 *1 (-176 *3)))) (-3864 (*1 *2 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003))) (-5 *1 (-176 *3)))))
+(-10 -7 (-15 -3864 ((-944 |#1|) (-944 |#1|))) (-15 -2758 ((-944 |#1|) (-944 |#1|))) (-15 -4081 ((-944 |#1|) (-944 |#1|))) (-15 -1393 ((-944 |#1|) (-944 |#1|))) (-15 -3727 ((-944 |#1|) (-944 |#1|))) (-15 -1564 ((-944 |#1|) (-944 |#1|))) (-15 -1403 ((-944 |#1|) (-944 |#1|))) (-15 -1944 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3178 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4388 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3394 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1399 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -4079 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -1840 ((-1 (-944 |#1|) (-944 |#1|)) |#1|)) (-15 -3496 ((-1 (-944 |#1|) (-944 |#1|)) |#1| |#1|)))
+((-4121 ((|#2| |#3|) 28)))
+(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -4121 (|#2| |#3|))) (-172) (-1242 |#1|) (-725 |#1| |#2|)) (T -177))
+((-4121 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1242 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-725 *4 *2)))))
+(-10 -7 (-15 -4121 (|#2| |#3|)))
+((-3813 (((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)) 44 (|has| (-953 |#2|) (-887 |#1|)))))
+(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-953 |#2|) (-887 |#1|)) (-15 -3813 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) |%noBranch|)) (-1100) (-13 (-887 |#1|) (-172)) (-166 |#2|)) (T -178))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-4 *3 (-166 *6)) (-4 (-953 *6) (-887 *5)) (-4 *6 (-13 (-887 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-953 |#2|) (-887 |#1|)) (-15 -3813 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) |%noBranch|))
+((-3495 (((-645 |#1|) (-645 |#1|) |#1|) 41)) (-3622 (((-645 |#1|) |#1| (-645 |#1|)) 20)) (-1942 (((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|)) 36) ((|#1| (-645 |#1|) (-645 |#1|)) 32)))
+(((-179 |#1|) (-10 -7 (-15 -3622 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -1942 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -1942 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -3495 ((-645 |#1|) (-645 |#1|) |#1|))) (-308)) (T -179))
+((-3495 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))) (-1942 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308)) (-5 *1 (-179 *4)))) (-1942 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308)))) (-3622 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
+(-10 -7 (-15 -3622 ((-645 |#1|) |#1| (-645 |#1|))) (-15 -1942 (|#1| (-645 |#1|) (-645 |#1|))) (-15 -1942 ((-645 |#1|) (-645 (-645 |#1|)) (-645 |#1|))) (-15 -3495 ((-645 |#1|) (-645 |#1|) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-3620 (((-1215) $) 13)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3130 (((-1135) $) 10)) (-4101 (((-863) $) 20) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-180) (-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -3620 ((-1215) $))))) (T -180))
+((-3130 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-180)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-180)))))
+(-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -3620 ((-1215) $))))
+((-4223 (((-2 (|:| |start| |#2|) (|:| -2807 (-421 |#2|))) |#2|) 66)) (-1532 ((|#1| |#1|) 58)) (-2122 (((-169 |#1|) |#2|) 93)) (-2999 ((|#1| |#2|) 141) ((|#1| |#2| |#1|) 90)) (-3795 ((|#2| |#2|) 91)) (-1566 (((-421 |#2|) |#2| |#1|) 121) (((-421 |#2|) |#2| |#1| (-112)) 88)) (-3751 ((|#1| |#2|) 120)) (-4342 ((|#2| |#2|) 135)) (-2296 (((-421 |#2|) |#2|) 158) (((-421 |#2|) |#2| |#1|) 33) (((-421 |#2|) |#2| |#1| (-112)) 157)) (-3002 (((-645 (-2 (|:| -2807 (-645 |#2|)) (|:| -2553 |#1|))) |#2| |#2|) 156) (((-645 (-2 (|:| -2807 (-645 |#2|)) (|:| -2553 |#1|))) |#2| |#2| (-112)) 81)) (-3695 (((-645 (-169 |#1|)) |#2| |#1|) 42) (((-645 (-169 |#1|)) |#2|) 43)))
+(((-181 |#1| |#2|) (-10 -7 (-15 -3695 ((-645 (-169 |#1|)) |#2|)) (-15 -3695 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -3002 ((-645 (-2 (|:| -2807 (-645 |#2|)) (|:| -2553 |#1|))) |#2| |#2| (-112))) (-15 -3002 ((-645 (-2 (|:| -2807 (-645 |#2|)) (|:| -2553 |#1|))) |#2| |#2|)) (-15 -2296 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2296 ((-421 |#2|) |#2| |#1|)) (-15 -2296 ((-421 |#2|) |#2|)) (-15 -4342 (|#2| |#2|)) (-15 -3751 (|#1| |#2|)) (-15 -1566 ((-421 |#2|) |#2| |#1| (-112))) (-15 -1566 ((-421 |#2|) |#2| |#1|)) (-15 -3795 (|#2| |#2|)) (-15 -2999 (|#1| |#2| |#1|)) (-15 -2999 (|#1| |#2|)) (-15 -2122 ((-169 |#1|) |#2|)) (-15 -1532 (|#1| |#1|)) (-15 -4223 ((-2 (|:| |start| |#2|) (|:| -2807 (-421 |#2|))) |#2|))) (-13 (-365) (-849)) (-1242 (-169 |#1|))) (T -181))
+((-4223 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-2 (|:| |start| *3) (|:| -2807 (-421 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-1532 (*1 *2 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1242 (-169 *2))))) (-2122 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1242 *2)))) (-2999 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1242 (-169 *2))))) (-2999 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1242 (-169 *2))))) (-3795 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1242 (-169 *3))))) (-1566 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-1566 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-3751 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1242 (-169 *2))))) (-4342 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1242 (-169 *3))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-2296 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-3002 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -2807 (-645 *3)) (|:| -2553 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-3002 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849))) (-5 *2 (-645 (-2 (|:| -2807 (-645 *3)) (|:| -2553 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1242 (-169 *5))))) (-3695 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))) (-3695 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))))
+(-10 -7 (-15 -3695 ((-645 (-169 |#1|)) |#2|)) (-15 -3695 ((-645 (-169 |#1|)) |#2| |#1|)) (-15 -3002 ((-645 (-2 (|:| -2807 (-645 |#2|)) (|:| -2553 |#1|))) |#2| |#2| (-112))) (-15 -3002 ((-645 (-2 (|:| -2807 (-645 |#2|)) (|:| -2553 |#1|))) |#2| |#2|)) (-15 -2296 ((-421 |#2|) |#2| |#1| (-112))) (-15 -2296 ((-421 |#2|) |#2| |#1|)) (-15 -2296 ((-421 |#2|) |#2|)) (-15 -4342 (|#2| |#2|)) (-15 -3751 (|#1| |#2|)) (-15 -1566 ((-421 |#2|) |#2| |#1| (-112))) (-15 -1566 ((-421 |#2|) |#2| |#1|)) (-15 -3795 (|#2| |#2|)) (-15 -2999 (|#1| |#2| |#1|)) (-15 -2999 (|#1| |#2|)) (-15 -2122 ((-169 |#1|) |#2|)) (-15 -1532 (|#1| |#1|)) (-15 -4223 ((-2 (|:| |start| |#2|) (|:| -2807 (-421 |#2|))) |#2|)))
+((-3265 (((-3 |#2| "failed") |#2|) 20)) (-2415 (((-772) |#2|) 23)) (-3032 ((|#2| |#2| |#2|) 25)))
+(((-182 |#1| |#2|) (-10 -7 (-15 -3265 ((-3 |#2| "failed") |#2|)) (-15 -2415 ((-772) |#2|)) (-15 -3032 (|#2| |#2| |#2|))) (-1216) (-675 |#1|)) (T -182))
+((-3032 (*1 *2 *2 *2) (-12 (-4 *3 (-1216)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))) (-2415 (*1 *2 *3) (-12 (-4 *4 (-1216)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3)) (-4 *3 (-675 *4)))) (-3265 (*1 *2 *2) (|partial| -12 (-4 *3 (-1216)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))))
+(-10 -7 (-15 -3265 ((-3 |#2| "failed") |#2|)) (-15 -2415 ((-772) |#2|)) (-15 -3032 (|#2| |#2| |#2|)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3278 ((|#1| $) 7)) (-4101 (((-863) $) 14)) (-3739 (((-112) $ $) NIL)) (-3914 (((-645 (-1181)) $) 10)) (-3052 (((-112) $ $) 12)))
+(((-183 |#1|) (-13 (-1100) (-10 -8 (-15 -3278 (|#1| $)) (-15 -3914 ((-645 (-1181)) $)))) (-185)) (T -183))
+((-3278 (*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
+(-13 (-1100) (-10 -8 (-15 -3278 (|#1| $)) (-15 -3914 ((-645 (-1181)) $))))
+((-1409 (((-645 (-866)) $) 16)) (-3972 (((-186) $) 8)) (-3447 (((-645 (-112)) $) 13)) (-1688 (((-55) $) 10)))
+(((-184 |#1|) (-10 -8 (-15 -1409 ((-645 (-866)) |#1|)) (-15 -3447 ((-645 (-112)) |#1|)) (-15 -3972 ((-186) |#1|)) (-15 -1688 ((-55) |#1|))) (-185)) (T -184))
+NIL
+(-10 -8 (-15 -1409 ((-645 (-866)) |#1|)) (-15 -3447 ((-645 (-112)) |#1|)) (-15 -3972 ((-186) |#1|)) (-15 -1688 ((-55) |#1|)))
+((-2257 (((-112) $ $) 7)) (-1409 (((-645 (-866)) $) 19)) (-1817 (((-509) $) 16)) (-2451 (((-1158) $) 10)) (-3972 (((-186) $) 21)) (-1527 (((-112) $ (-509)) 14)) (-3339 (((-1120) $) 11)) (-3447 (((-645 (-112)) $) 20)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1688 (((-55) $) 15)) (-3052 (((-112) $ $) 6)))
(((-185) (-140)) (T -185))
-((-2591 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112))))) (-3143 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865))))))
-(-13 (-835 (-508)) (-10 -8 (-15 -2591 ((-186) $)) (-15 -2372 ((-644 (-112)) $)) (-15 -3143 ((-644 (-865)) $))))
-(((-102) . T) ((-613 (-862)) . T) ((-835 (-508)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-8 (($) 7 T CONST)) (-2725 (((-862) $) 12)) (-9 (($) 6 T CONST)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 10)))
-(((-186) (-13 (-1099) (-10 -8 (-15 -9 ($) -3854) (-15 -8 ($) -3854) (-15 -7 ($) -3854)))) (T -186))
+((-3972 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866))))))
+(-13 (-836 (-509)) (-10 -8 (-15 -3972 ((-186) $)) (-15 -3447 ((-645 (-112)) $)) (-15 -1409 ((-645 (-866)) $))))
+(((-102) . T) ((-614 (-863)) . T) ((-836 (-509)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-8 (($) 7 T CONST)) (-4101 (((-863) $) 12)) (-9 (($) 6 T CONST)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 10)))
+(((-186) (-13 (-1100) (-10 -8 (-15 -9 ($) -2131) (-15 -8 ($) -2131) (-15 -7 ($) -2131)))) (T -186))
((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186))))
-(-13 (-1099) (-10 -8 (-15 -9 ($) -3854) (-15 -8 ($) -3854) (-15 -7 ($) -3854)))
-((-3979 (((-112) $ $) NIL)) (-3143 (((-644 (-865)) $) NIL)) (-3534 (((-508) $) 8)) (-1390 (((-1157) $) NIL)) (-2591 (((-186) $) 10)) (-3044 (((-112) $ (-508)) NIL)) (-1944 (((-1119) $) NIL)) (-1575 (((-691 $) (-508)) 17)) (-2372 (((-644 (-112)) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-1381 (((-55) $) 12)) (-2817 (((-112) $ $) NIL)))
-(((-187) (-13 (-185) (-10 -8 (-15 -1575 ((-691 $) (-508)))))) (T -187))
-((-1575 (*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187)))))
-(-13 (-185) (-10 -8 (-15 -1575 ((-691 $) (-508)))))
-((-3610 ((|#2| |#2|) 28)) (-2912 (((-112) |#2|) 19)) (-4041 (((-317 |#1|) |#2|) 12)) (-4052 (((-317 |#1|) |#2|) 14)) (-3462 ((|#2| |#2| (-1175)) 69) ((|#2| |#2|) 70)) (-2143 (((-169 (-317 |#1|)) |#2|) 10)) (-2504 ((|#2| |#2| (-1175)) 66) ((|#2| |#2|) 60)))
-(((-188 |#1| |#2|) (-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -3462 (|#2| |#2| (-1175))) (-15 -2504 (|#2| |#2|)) (-15 -2504 (|#2| |#2| (-1175))) (-15 -4041 ((-317 |#1|) |#2|)) (-15 -4052 ((-317 |#1|) |#2|)) (-15 -2912 ((-112) |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -2143 ((-169 (-317 |#1|)) |#2|))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-1200) (-432 (-169 |#1|)))) (T -188))
-((-2143 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4)))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 (-169 *3)))))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4)))))) (-4052 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4)))))) (-4041 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4)))))) (-2504 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 (-169 *4)))))) (-2504 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 (-169 *3)))))) (-3462 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 (-169 *4)))))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 (-169 *3)))))))
-(-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -3462 (|#2| |#2| (-1175))) (-15 -2504 (|#2| |#2|)) (-15 -2504 (|#2| |#2| (-1175))) (-15 -4041 ((-317 |#1|) |#2|)) (-15 -4052 ((-317 |#1|) |#2|)) (-15 -2912 ((-112) |#2|)) (-15 -3610 (|#2| |#2|)) (-15 -2143 ((-169 (-317 |#1|)) |#2|)))
-((-4012 (((-1265 (-689 (-952 |#1|))) (-1265 (-689 |#1|))) 26)) (-2725 (((-1265 (-689 (-409 (-952 |#1|)))) (-1265 (-689 |#1|))) 37)))
-(((-189 |#1|) (-10 -7 (-15 -4012 ((-1265 (-689 (-952 |#1|))) (-1265 (-689 |#1|)))) (-15 -2725 ((-1265 (-689 (-409 (-952 |#1|)))) (-1265 (-689 |#1|))))) (-172)) (T -189))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-1265 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1265 (-689 (-409 (-952 *4))))) (-5 *1 (-189 *4)))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-1265 (-689 *4))) (-4 *4 (-172)) (-5 *2 (-1265 (-689 (-952 *4)))) (-5 *1 (-189 *4)))))
-(-10 -7 (-15 -4012 ((-1265 (-689 (-952 |#1|))) (-1265 (-689 |#1|)))) (-15 -2725 ((-1265 (-689 (-409 (-952 |#1|)))) (-1265 (-689 |#1|)))))
-((-1435 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 89)) (-1957 (((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566))) 100)) (-3613 (((-1177 (-409 (-566))) (-566)) 56)) (-3010 (((-1177 (-409 (-566))) (-566)) 75)) (-1754 (((-409 (-566)) (-1177 (-409 (-566)))) 85)) (-3602 (((-1177 (-409 (-566))) (-566)) 37)) (-3937 (((-1177 (-409 (-566))) (-566)) 68)) (-2418 (((-1177 (-409 (-566))) (-566)) 62)) (-2777 (((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 83)) (-3965 (((-1177 (-409 (-566))) (-566)) 29)) (-1734 (((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566)))) 87)) (-2130 (((-1177 (-409 (-566))) (-566)) 35)) (-4032 (((-1177 (-409 (-566))) (-644 (-566))) 96)))
-(((-190) (-10 -7 (-15 -3965 ((-1177 (-409 (-566))) (-566))) (-15 -3613 ((-1177 (-409 (-566))) (-566))) (-15 -3602 ((-1177 (-409 (-566))) (-566))) (-15 -2130 ((-1177 (-409 (-566))) (-566))) (-15 -2418 ((-1177 (-409 (-566))) (-566))) (-15 -3937 ((-1177 (-409 (-566))) (-566))) (-15 -3010 ((-1177 (-409 (-566))) (-566))) (-15 -1734 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2777 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -1754 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -1435 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -4032 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -1957 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566)))))) (T -190))
-((-1957 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-1435 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-2777 (*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))) (-1734 (*1 *2 *3 *3) (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-190)))) (-3010 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3937 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2418 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-2130 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3602 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3613 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))) (-3965 (*1 *2 *3) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))))
-(-10 -7 (-15 -3965 ((-1177 (-409 (-566))) (-566))) (-15 -3613 ((-1177 (-409 (-566))) (-566))) (-15 -3602 ((-1177 (-409 (-566))) (-566))) (-15 -2130 ((-1177 (-409 (-566))) (-566))) (-15 -2418 ((-1177 (-409 (-566))) (-566))) (-15 -3937 ((-1177 (-409 (-566))) (-566))) (-15 -3010 ((-1177 (-409 (-566))) (-566))) (-15 -1734 ((-409 (-566)) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -2777 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -1754 ((-409 (-566)) (-1177 (-409 (-566))))) (-15 -1435 ((-1177 (-409 (-566))) (-1177 (-409 (-566))) (-1177 (-409 (-566))))) (-15 -4032 ((-1177 (-409 (-566))) (-644 (-566)))) (-15 -1957 ((-1177 (-409 (-566))) (-644 (-566)) (-644 (-566)))))
-((-3132 (((-420 (-1171 (-566))) (-566)) 38)) (-2012 (((-644 (-1171 (-566))) (-566)) 33)) (-3093 (((-1171 (-566)) (-566)) 28)))
-(((-191) (-10 -7 (-15 -2012 ((-644 (-1171 (-566))) (-566))) (-15 -3093 ((-1171 (-566)) (-566))) (-15 -3132 ((-420 (-1171 (-566))) (-566))))) (T -191))
-((-3132 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566)))) (-2012 (*1 *2 *3) (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566)))))
-(-10 -7 (-15 -2012 ((-644 (-1171 (-566))) (-566))) (-15 -3093 ((-1171 (-566)) (-566))) (-15 -3132 ((-420 (-1171 (-566))) (-566))))
-((-3958 (((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3504 (((-644 (-1157)) (-1155 (-225))) NIL)) (-2964 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-1735 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) NIL)) (-3949 (((-644 (-1157)) (-644 (-225))) NIL)) (-3655 (((-225) (-1093 (-843 (-225)))) 31)) (-3170 (((-225) (-1093 (-843 (-225)))) 32)) (-4015 (((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2036 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-1961 (((-1157) (-225)) NIL)) (-2491 (((-1157) (-644 (-1157))) 27)) (-2270 (((-1035) (-1175) (-1175) (-1035)) 13)))
-(((-192) (-10 -7 (-15 -2964 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2036 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3655 ((-225) (-1093 (-843 (-225))))) (-15 -3170 ((-225) (-1093 (-843 (-225))))) (-15 -4015 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1735 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -3958 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1961 ((-1157) (-225))) (-15 -3949 ((-644 (-1157)) (-644 (-225)))) (-15 -3504 ((-644 (-1157)) (-1155 (-225)))) (-15 -2491 ((-1157) (-644 (-1157)))) (-15 -2270 ((-1035) (-1175) (-1175) (-1035))))) (T -192))
-((-2270 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192)))) (-2491 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192)))) (-3958 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-192)))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192)))) (-4015 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2036 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
-(-10 -7 (-15 -2964 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2036 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3655 ((-225) (-1093 (-843 (-225))))) (-15 -3170 ((-225) (-1093 (-843 (-225))))) (-15 -4015 ((-381) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1735 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -3958 ((-1155 (-225)) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1961 ((-1157) (-225))) (-15 -3949 ((-644 (-1157)) (-644 (-225)))) (-15 -3504 ((-644 (-1157)) (-1155 (-225)))) (-15 -2491 ((-1157) (-644 (-1157)))) (-15 -2270 ((-1035) (-1175) (-1175) (-1035))))
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 61) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-193) (-787)) (T -193))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 66) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-194) (-787)) (T -194))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 81) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-195) (-787)) (T -195))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 63) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-196) (-787)) (T -196))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 75) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-197) (-787)) (T -197))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-198) (-787)) (T -198))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-199) (-787)) (T -199))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 77) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-200) (-787)) (T -200))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 78)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-201) (-787)) (T -201))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 79)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-202) (-787)) (T -202))
-NIL
-(-787)
-((-3979 (((-112) $ $) NIL)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 105) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-203) (-787)) (T -203))
-NIL
-(-787)
-((-2218 (((-3 (-2 (|:| -2606 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-1412 (((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-4384 (((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91)))
-(((-204) (-10 -7 (-15 -2218 ((-3 (-2 (|:| -2606 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4384 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1412 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
-((-1412 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-566)) (-5 *1 (-204)))) (-4384 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-204)))) (-2218 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2606 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(-10 -7 (-15 -2218 ((-3 (-2 (|:| -2606 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4384 ((-3 (-644 (-225)) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1412 ((-566) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-4221 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-4118 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-4189 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225)))) 112)) (-2688 (((-381) (-689 (-317 (-225)))) 140)) (-4316 (((-689 (-317 (-225))) (-1265 (-317 (-225))) (-644 (-1175))) 136)) (-3135 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-4304 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-1754 (((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1265 (-317 (-225)))) 125)) (-3899 (((-381) (-381) (-644 (-381))) 133) (((-381) (-381) (-381)) 128)) (-2580 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
-(((-205) (-10 -7 (-15 -3899 ((-381) (-381) (-381))) (-15 -3899 ((-381) (-381) (-644 (-381)))) (-15 -2688 ((-381) (-689 (-317 (-225))))) (-15 -4316 ((-689 (-317 (-225))) (-1265 (-317 (-225))) (-644 (-1175)))) (-15 -1754 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1265 (-317 (-225))))) (-15 -4189 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -4118 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4221 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4304 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2580 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3135 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
-((-3135 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2580 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4304 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4221 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-1754 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175))) (-5 *4 (-1265 (-317 (-225)))) (-5 *1 (-205)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3899 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3899 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))))
-(-10 -7 (-15 -3899 ((-381) (-381) (-381))) (-15 -3899 ((-381) (-381) (-644 (-381)))) (-15 -2688 ((-381) (-689 (-317 (-225))))) (-15 -4316 ((-689 (-317 (-225))) (-1265 (-317 (-225))) (-644 (-1175)))) (-15 -1754 ((-689 (-317 (-225))) (-689 (-317 (-225))) (-644 (-1175)) (-1265 (-317 (-225))))) (-15 -4189 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-689 (-317 (-225))))) (-15 -4118 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4221 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4304 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2580 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3135 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-3979 (((-112) $ $) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2830 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2817 (((-112) $ $) NIL)))
-(((-206) (-800)) (T -206))
-NIL
-(-800)
-((-3979 (((-112) $ $) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2830 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2817 (((-112) $ $) NIL)))
-(((-207) (-800)) (T -207))
-NIL
-(-800)
-((-3979 (((-112) $ $) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2830 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2817 (((-112) $ $) NIL)))
-(((-208) (-800)) (T -208))
-NIL
-(-800)
-((-3979 (((-112) $ $) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2830 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2817 (((-112) $ $) NIL)))
-(((-209) (-800)) (T -209))
-NIL
-(-800)
-((-1509 (((-644 (-1175)) (-1175) (-771)) 26)) (-4382 (((-317 (-225)) (-317 (-225))) 35)) (-4024 (((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 87)) (-3744 (((-112) (-225) (-225) (-644 (-317 (-225)))) 47)))
-(((-210) (-10 -7 (-15 -1509 ((-644 (-1175)) (-1175) (-771))) (-15 -4382 ((-317 (-225)) (-317 (-225)))) (-15 -3744 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -4024 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))) (T -210))
-((-4024 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-3744 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-4382 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210)) (-5 *3 (-1175)))))
-(-10 -7 (-15 -1509 ((-644 (-1175)) (-1175) (-771))) (-15 -4382 ((-317 (-225)) (-317 (-225)))) (-15 -3744 ((-112) (-225) (-225) (-644 (-317 (-225))))) (-15 -4024 ((-112) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))))
-((-3979 (((-112) $ $) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 28)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3381 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 70)) (-2817 (((-112) $ $) NIL)))
-(((-211) (-895)) (T -211))
-NIL
-(-895)
-((-3979 (((-112) $ $) NIL)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 24)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3381 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-212) (-895)) (T -212))
-NIL
-(-895)
-((-3979 (((-112) $ $) NIL)) (-2981 ((|#2| $ (-771) |#2|) 11)) (-2975 ((|#2| $ (-771)) 10)) (-2631 (($) 8)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 26)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 13)))
-(((-213 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -2631 ($)) (-15 -2975 (|#2| $ (-771))) (-15 -2981 (|#2| $ (-771) |#2|)))) (-921) (-1099)) (T -213))
-((-2631 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099)))) (-2975 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)))) (-2981 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921)) (-4 *2 (-1099)))))
-(-13 (-1099) (-10 -8 (-15 -2631 ($)) (-15 -2975 (|#2| $ (-771))) (-15 -2981 (|#2| $ (-771) |#2|))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1397 (((-1270) $) 37) (((-1270) $ (-921) (-921)) 44)) (-3282 (($ $ (-989)) 19) (((-245 (-1157)) $ (-1175)) 15)) (-2498 (((-1270) $) 35)) (-2725 (((-862) $) 32) (($ (-644 |#1|)) 8)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $ $) 27)) (-2897 (($ $ $) 22)))
-(((-214 |#1|) (-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -3282 ($ $ (-989))) (-15 -3282 ((-245 (-1157)) $ (-1175))) (-15 -2897 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $)) (-15 -1397 ((-1270) $ (-921) (-921))))) (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $))))) (T -214))
-((-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-989)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $))))))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ *3)) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $))))))) (-2897 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $))))))) (-2905 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $))))))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 (*2 $)) (-15 -1397 (*2 $))))))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 (*2 $)) (-15 -1397 (*2 $))))))) (-1397 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1270)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 (*2 $)) (-15 -1397 (*2 $))))))))
-(-13 (-1099) (-616 (-644 |#1|)) (-10 -8 (-15 -3282 ($ $ (-989))) (-15 -3282 ((-245 (-1157)) $ (-1175))) (-15 -2897 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $)) (-15 -1397 ((-1270) $ (-921) (-921)))))
-((-3325 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
-(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3325 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -215))
-((-3325 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1241 (-409 *2))) (-4 *2 (-1241 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6)))))
-(-10 -7 (-15 -3325 (|#2| |#4| (-1 |#2| |#2|))))
-((-3283 ((|#2| |#2| (-771) |#2|) 58)) (-3508 ((|#2| |#2| (-771) |#2|) 54)) (-2808 (((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -1609 |#2|)))) 82)) (-1833 (((-644 (-2 (|:| |deg| (-771)) (|:| -1609 |#2|))) |#2|) 76)) (-1936 (((-112) |#2|) 74)) (-1385 (((-420 |#2|) |#2|) 96)) (-4018 (((-420 |#2|) |#2|) 95)) (-3799 ((|#2| |#2| (-771) |#2|) 52)) (-2742 (((-2 (|:| |cont| |#1|) (|:| -1502 (-644 (-2 (|:| |irr| |#2|) (|:| -1737 (-566)))))) |#2| (-112)) 88)))
-(((-216 |#1| |#2|) (-10 -7 (-15 -4018 ((-420 |#2|) |#2|)) (-15 -1385 ((-420 |#2|) |#2|)) (-15 -2742 ((-2 (|:| |cont| |#1|) (|:| -1502 (-644 (-2 (|:| |irr| |#2|) (|:| -1737 (-566)))))) |#2| (-112))) (-15 -1833 ((-644 (-2 (|:| |deg| (-771)) (|:| -1609 |#2|))) |#2|)) (-15 -2808 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -1609 |#2|))))) (-15 -3799 (|#2| |#2| (-771) |#2|)) (-15 -3508 (|#2| |#2| (-771) |#2|)) (-15 -3283 (|#2| |#2| (-771) |#2|)) (-15 -1936 ((-112) |#2|))) (-351) (-1241 |#1|)) (T -216))
-((-1936 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1241 *4)))) (-3283 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1241 *4)))) (-3508 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1241 *4)))) (-3799 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1241 *4)))) (-2808 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -1609 *5)))) (-4 *5 (-1241 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5)) (-5 *1 (-216 *4 *5)))) (-1833 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -1609 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1241 *4)))) (-2742 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1241 *5)))) (-1385 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1241 *4)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -4018 ((-420 |#2|) |#2|)) (-15 -1385 ((-420 |#2|) |#2|)) (-15 -2742 ((-2 (|:| |cont| |#1|) (|:| -1502 (-644 (-2 (|:| |irr| |#2|) (|:| -1737 (-566)))))) |#2| (-112))) (-15 -1833 ((-644 (-2 (|:| |deg| (-771)) (|:| -1609 |#2|))) |#2|)) (-15 -2808 ((-644 |#2|) (-644 (-2 (|:| |deg| (-771)) (|:| -1609 |#2|))))) (-15 -3799 (|#2| |#2| (-771) |#2|)) (-15 -3508 (|#2| |#2| (-771) |#2|)) (-15 -3283 (|#2| |#2| (-771) |#2|)) (-15 -1936 ((-112) |#2|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 (((-566) $) NIL (|has| (-566) (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| (-566) (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-3343 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-566) (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| (-566) (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 (((-566) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2307 (((-112) $) NIL (|has| (-566) (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-566) (-850)))) (-2101 (($ (-1 (-566) (-566)) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-566) (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-2311 (((-566) $) NIL (|has| (-566) (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3792 (((-771) $) NIL)) (-3282 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3233 (($ $) NIL)) (-2702 (((-566) $) NIL)) (-4005 (($ (-409 (-566))) 9)) (-2150 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 10) $) 10)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2875 (((-771)) NIL T CONST)) (-2119 (((-566) $) NIL (|has| (-566) (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| (-566) (-820)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2865 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2916 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL)))
-(((-217) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -4005 ($ (-409 (-566))))))) (T -217))
-((-2941 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))) (-4005 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))))
-(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 10)) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -4005 ($ (-409 (-566))))))
-((-3979 (((-112) $ $) NIL)) (-2653 (((-1117) $) 13)) (-1390 (((-1157) $) NIL)) (-3096 (((-485) $) 10)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 23) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-1134) $) 15)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-218) (-13 (-1082) (-10 -8 (-15 -3096 ((-485) $)) (-15 -2653 ((-1117) $)) (-15 -3546 ((-1134) $))))) (T -218))
-((-3096 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218)))))
-(-13 (-1082) (-10 -8 (-15 -3096 ((-485) $)) (-15 -2653 ((-1117) $)) (-15 -3546 ((-1134) $))))
-((-1879 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157)) 29) (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|))) 25)) (-4276 (((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)) 17)))
-(((-219 |#1| |#2|) (-10 -7 (-15 -1879 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -1879 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -4276 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-959) (-29 |#1|))) (T -219))
-((-4276 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1175)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-1200) (-959) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3)))) (-1879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157)) (-4 *3 (-13 (-1200) (-959) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1200) (-959) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
-(-10 -7 (-15 -1879 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)))) (-15 -1879 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091 (-843 |#2|)) (-1157))) (-15 -4276 ((-3 (|:| |f1| (-843 |#2|)) (|:| |f2| (-644 (-843 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1175) (-843 |#2|) (-843 |#2|) (-112))))
-((-1879 (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)) 49) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|))))) 46) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157)) 50) (((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|)))) 22)))
-(((-220 |#1|) (-10 -7 (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (T -220))
-((-1879 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-1879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6)))) (-5 *5 (-1157)) (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
-(-10 -7 (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))))) (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-317 |#1|))) (-1157))) (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))))) (-15 -1879 ((-3 (|:| |f1| (-843 (-317 |#1|))) (|:| |f2| (-644 (-843 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-409 (-952 |#1|)) (-1091 (-843 (-409 (-952 |#1|)))) (-1157))))
-((-2553 (((-2 (|:| -4144 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|)) 26)) (-3240 (((-644 (-317 |#2|)) (-317 |#2|) (-921)) 54)))
-(((-221 |#1| |#2|) (-10 -7 (-15 -2553 ((-2 (|:| -4144 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -3240 ((-644 (-317 |#2|)) (-317 |#2|) (-921)))) (-1049) (-558)) (T -221))
-((-3240 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049)))) (-2553 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-2 (|:| -4144 (-1171 *4)) (|:| |deg| (-921)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558)))))
-(-10 -7 (-15 -2553 ((-2 (|:| -4144 (-1171 |#1|)) (|:| |deg| (-921))) (-1171 |#1|))) (-15 -3240 ((-644 (-317 |#2|)) (-317 |#2|) (-921))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3614 ((|#1| $) NIL)) (-3929 ((|#1| $) 30)) (-2261 (((-112) $ (-771)) NIL)) (-2633 (($) NIL T CONST)) (-2184 (($ $) NIL)) (-1970 (($ $) 39)) (-1455 ((|#1| |#1| $) NIL)) (-1922 ((|#1| $) NIL)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1653 (((-771) $) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2668 ((|#1| $) NIL)) (-2020 ((|#1| |#1| $) 35)) (-4283 ((|#1| |#1| $) 37)) (-1619 (($ |#1| $) NIL)) (-1695 (((-771) $) 33)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3858 ((|#1| $) NIL)) (-2578 ((|#1| $) 31)) (-4223 ((|#1| $) 29)) (-1613 ((|#1| $) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-3021 ((|#1| |#1| $) NIL)) (-4246 (((-112) $) 9)) (-3906 (($) NIL)) (-2698 ((|#1| $) NIL)) (-1539 (($) NIL) (($ (-644 |#1|)) 16)) (-2279 (((-771) $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-4044 ((|#1| $) 13)) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) NIL)) (-3736 ((|#1| $) NIL)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -1539 ($ (-644 |#1|))))) (-1099)) (T -222))
-((-1539 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3)))))
-(-13 (-255 |#1|) (-10 -8 (-15 -1539 ($ (-644 |#1|)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2488 (($ (-317 |#1|)) 27)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2935 (((-112) $) NIL)) (-2023 (((-3 (-317 |#1|) "failed") $) NIL)) (-3343 (((-317 |#1|) $) NIL)) (-4358 (($ $) 35)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-2101 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-4334 (((-317 |#1|) $) NIL)) (-1988 (($ $) 34)) (-1390 (((-1157) $) NIL)) (-1641 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-2723 (($ (-771)) NIL)) (-3234 (($ $) 36)) (-3838 (((-566) $) NIL)) (-2725 (((-862) $) 68) (($ (-566)) NIL) (($ (-317 |#1|)) NIL)) (-3623 (((-317 |#1|) $ $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 29 T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) 32)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22)))
-(((-223 |#1| |#2|) (-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -4334 ((-317 |#1|) $)) (-15 -1988 ($ $)) (-15 -4358 ($ $)) (-15 -3623 ((-317 |#1|) $ $)) (-15 -2723 ($ (-771))) (-15 -1641 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3838 ((-566) $)) (-15 -2101 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2488 ($ (-317 |#1|))) (-15 -3234 ($ $)))) (-13 (-1049) (-850)) (-644 (-1175))) (T -223))
-((-4334 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-1988 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-4358 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))) (-3623 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-1641 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175))))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-2488 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850))) (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))) (-3234 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850))) (-14 *3 (-644 (-1175))))))
-(-13 (-620 (-317 |#1|)) (-1038 (-317 |#1|)) (-10 -8 (-15 -4334 ((-317 |#1|) $)) (-15 -1988 ($ $)) (-15 -4358 ($ $)) (-15 -3623 ((-317 |#1|) $ $)) (-15 -2723 ($ (-771))) (-15 -1641 ((-112) $)) (-15 -2935 ((-112) $)) (-15 -3838 ((-566) $)) (-15 -2101 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2488 ($ (-317 |#1|))) (-15 -3234 ($ $))))
-((-3529 (((-112) (-1157)) 26)) (-1682 (((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112)) 35)) (-3802 (((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)) 84) (((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112)) 85)))
-(((-224 |#1| |#2|) (-10 -7 (-15 -3529 ((-112) (-1157))) (-15 -1682 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -3802 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -3802 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-29 |#1|))) (T -224))
-((-3802 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6)) (-4 *6 (-13 (-1200) (-29 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *5 *6)))) (-3802 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175)) (-5 *5 (-843 *7)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *7 (-13 (-1200) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-1682 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1200) (-29 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-224 *6 *4)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1200) (-29 *4))))))
-(-10 -7 (-15 -3529 ((-112) (-1157))) (-15 -1682 ((-3 (-843 |#2|) "failed") (-612 |#2|) |#2| (-843 |#2|) (-843 |#2|) (-112))) (-15 -3802 ((-3 (-112) "failed") (-952 |#1|) (-1175) (-843 |#2|) (-843 |#2|) (-112))) (-15 -3802 ((-3 (-112) "failed") (-1171 |#2|) (-843 |#2|) (-843 |#2|) (-112))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 100)) (-4191 (((-566) $) 36)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1807 (($ $) NIL)) (-3622 (($ $) 89)) (-3474 (($ $) 77)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4028 (($ $) 68)) (-2068 (((-112) $ $) NIL)) (-3601 (($ $) 87)) (-3449 (($ $) 75)) (-1859 (((-566) $) 130)) (-3648 (($ $) 92)) (-3500 (($ $) 79)) (-2633 (($) NIL T CONST)) (-3995 (($ $) NIL)) (-2023 (((-3 (-566) "failed") $) 129) (((-3 (-409 (-566)) "failed") $) 126)) (-3343 (((-566) $) 127) (((-409 (-566)) $) 124)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) 105)) (-2734 (((-409 (-566)) $ (-771)) 119) (((-409 (-566)) $ (-771) (-771)) 118)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3006 (((-921)) 29) (((-921) (-921)) NIL (|has| $ (-6 -4406)))) (-3421 (((-112) $) NIL)) (-2722 (($) 47)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-3077 (((-566) $) 43)) (-3842 (((-112) $) 101)) (-2810 (($ $ (-566)) NIL)) (-3202 (($ $) NIL)) (-2307 (((-112) $) 99)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) 65) (($) 39 (-12 (-3129 (|has| $ (-6 -4398))) (-3129 (|has| $ (-6 -4406)))))) (-3936 (($ $ $) 64) (($) 38 (-12 (-3129 (|has| $ (-6 -4398))) (-3129 (|has| $ (-6 -4406)))))) (-1497 (((-566) $) 27)) (-4342 (($ $) 34)) (-3184 (($ $) 69)) (-1565 (($ $) 74)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1834 (((-921) (-566)) NIL (|has| $ (-6 -4406)))) (-1944 (((-1119) $) 103)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL)) (-2311 (($ $) NIL)) (-1449 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) 112)) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3428 (((-566) $) 28)) (-2416 (($) 46)) (-1535 (($ $) 73)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2016 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4406)))) (-3009 (($ $ (-771)) NIL) (($ $) 106)) (-2773 (((-921) (-566)) NIL (|has| $ (-6 -4406)))) (-3658 (($ $) 90)) (-3515 (($ $) 80)) (-3635 (($ $) 91)) (-3488 (($ $) 78)) (-3612 (($ $) 88)) (-3461 (($ $) 76)) (-2150 (((-381) $) 115) (((-225) $) 14) (((-892 (-381)) $) NIL) (((-538) $) 53)) (-2725 (((-862) $) 50) (($ (-566)) 72) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 72) (($ (-409 (-566))) NIL)) (-2875 (((-771)) NIL T CONST)) (-2119 (($ $) NIL)) (-3194 (((-921)) 37) (((-921) (-921)) NIL (|has| $ (-6 -4406)))) (-1479 (((-112) $ $) NIL)) (-1792 (((-921)) 25)) (-3696 (($ $) 95)) (-3553 (($ $) 83) (($ $ $) 122)) (-1597 (((-112) $ $) NIL)) (-3670 (($ $) 93)) (-3528 (($ $) 81)) (-3719 (($ $) 98)) (-3577 (($ $) 86)) (-3076 (($ $) 96)) (-3589 (($ $) 84)) (-3705 (($ $) 97)) (-3566 (($ $) 85)) (-3682 (($ $) 94)) (-3541 (($ $) 82)) (-2274 (($ $) 121)) (-3200 (($) 23 T CONST)) (-3214 (($) 44 T CONST)) (-2331 (((-1157) $) 18) (((-1157) $ (-112)) 20) (((-1270) (-822) $) 21) (((-1270) (-822) $ (-112)) 22)) (-3181 (($ $) 109)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2434 (($ $ $) 111)) (-2865 (((-112) $ $) 58)) (-2844 (((-112) $ $) 55)) (-2817 (((-112) $ $) 66)) (-2854 (((-112) $ $) 57)) (-2833 (((-112) $ $) 54)) (-2916 (($ $ $) 45) (($ $ (-566)) 67)) (-2905 (($ $) 59) (($ $ $) 61)) (-2897 (($ $ $) 60)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 70) (($ $ (-409 (-566))) 154) (($ $ $) 71)) (* (($ (-921) $) 35) (($ (-771) $) NIL) (($ (-566) $) 63) (($ $ $) 62) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-225) (-13 (-406) (-233) (-828) (-1200) (-614 (-538)) (-10 -8 (-15 -2916 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2416 ($)) (-15 -4342 ($ $)) (-15 -3184 ($ $)) (-15 -3553 ($ $ $)) (-15 -3181 ($ $)) (-15 -2434 ($ $ $)) (-15 -2734 ((-409 (-566)) $ (-771))) (-15 -2734 ((-409 (-566)) $ (-771) (-771)))))) (T -225))
-((** (*1 *1 *1 *1) (-5 *1 (-225))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-225)))) (-2416 (*1 *1) (-5 *1 (-225))) (-4342 (*1 *1 *1) (-5 *1 (-225))) (-3184 (*1 *1 *1) (-5 *1 (-225))) (-3553 (*1 *1 *1 *1) (-5 *1 (-225))) (-3181 (*1 *1 *1) (-5 *1 (-225))) (-2434 (*1 *1 *1 *1) (-5 *1 (-225))) (-2734 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))) (-2734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225)))))
-(-13 (-406) (-233) (-828) (-1200) (-614 (-538)) (-10 -8 (-15 -2916 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2416 ($)) (-15 -4342 ($ $)) (-15 -3184 ($ $)) (-15 -3553 ($ $ $)) (-15 -3181 ($ $)) (-15 -2434 ($ $ $)) (-15 -2734 ((-409 (-566)) $ (-771))) (-15 -2734 ((-409 (-566)) $ (-771) (-771)))))
-((-1666 (((-169 (-225)) (-771) (-169 (-225))) 11) (((-225) (-771) (-225)) 12)) (-2376 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2505 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-2895 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-4293 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3394 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3600 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3865 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2852 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-3328 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3181 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2434 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
-(((-226) (-10 -7 (-15 -3181 ((-225) (-225))) (-15 -3181 ((-169 (-225)) (-169 (-225)))) (-15 -2434 ((-225) (-225) (-225))) (-15 -2434 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2376 ((-225) (-225))) (-15 -2376 ((-169 (-225)) (-169 (-225)))) (-15 -2895 ((-225) (-225))) (-15 -2895 ((-169 (-225)) (-169 (-225)))) (-15 -1666 ((-225) (-771) (-225))) (-15 -1666 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -3600 ((-225) (-225) (-225))) (-15 -3600 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4293 ((-225) (-225) (-225))) (-15 -4293 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3865 ((-225) (-225) (-225))) (-15 -3865 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3394 ((-225) (-225) (-225))) (-15 -3394 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3328 ((-169 (-225)) (-169 (-225)))) (-15 -3328 ((-225) (-225))) (-15 -2852 ((-225) (-225))) (-15 -2852 ((-169 (-225)) (-169 (-225)))) (-15 -2505 ((-225) (-225) (-225))) (-15 -2505 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
-((-2505 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2505 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2852 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3328 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3328 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3394 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3865 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3865 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-4293 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4293 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3600 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3600 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1666 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226)))) (-1666 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226)))) (-2895 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2895 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2376 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2434 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2434 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
-(-10 -7 (-15 -3181 ((-225) (-225))) (-15 -3181 ((-169 (-225)) (-169 (-225)))) (-15 -2434 ((-225) (-225) (-225))) (-15 -2434 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2376 ((-225) (-225))) (-15 -2376 ((-169 (-225)) (-169 (-225)))) (-15 -2895 ((-225) (-225))) (-15 -2895 ((-169 (-225)) (-169 (-225)))) (-15 -1666 ((-225) (-771) (-225))) (-15 -1666 ((-169 (-225)) (-771) (-169 (-225)))) (-15 -3600 ((-225) (-225) (-225))) (-15 -3600 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4293 ((-225) (-225) (-225))) (-15 -4293 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3865 ((-225) (-225) (-225))) (-15 -3865 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3394 ((-225) (-225) (-225))) (-15 -3394 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3328 ((-169 (-225)) (-169 (-225)))) (-15 -3328 ((-225) (-225))) (-15 -2852 ((-225) (-225))) (-15 -2852 ((-169 (-225)) (-169 (-225)))) (-15 -2505 ((-225) (-225) (-225))) (-15 -2505 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3739 (($ (-771) (-771)) NIL)) (-4292 (($ $ $) NIL)) (-2453 (($ (-1265 |#1|)) NIL) (($ $) NIL)) (-3085 (($ |#1| |#1| |#1|) 33)) (-2192 (((-112) $) NIL)) (-2564 (($ $ (-566) (-566)) NIL)) (-3341 (($ $ (-566) (-566)) NIL)) (-3812 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-2410 (($ $) NIL)) (-2988 (((-112) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3928 (($ $ (-566) (-566) $) NIL)) (-2858 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1629 (($ $ (-566) (-1265 |#1|)) NIL)) (-3918 (($ $ (-566) (-1265 |#1|)) NIL)) (-2673 (($ |#1| |#1| |#1|) 32)) (-2092 (($ (-771) |#1|) NIL)) (-2633 (($) NIL T CONST)) (-2594 (($ $) NIL (|has| |#1| (-308)))) (-1703 (((-1265 |#1|) $ (-566)) NIL)) (-2316 (($ |#1|) 31)) (-2405 (($ |#1|) 30)) (-3540 (($ |#1|) 29)) (-4153 (((-771) $) NIL (|has| |#1| (-558)))) (-3031 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2975 ((|#1| $ (-566) (-566)) NIL)) (-1523 (((-644 |#1|) $) NIL)) (-2883 (((-771) $) NIL (|has| |#1| (-558)))) (-3260 (((-644 (-1265 |#1|)) $) NIL (|has| |#1| (-558)))) (-2368 (((-771) $) NIL)) (-2631 (($ (-771) (-771) |#1|) NIL)) (-2378 (((-771) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-4362 ((|#1| $) NIL (|has| |#1| (-6 (-4417 "*"))))) (-2110 (((-566) $) NIL)) (-4086 (((-566) $) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2952 (((-566) $) NIL)) (-4280 (((-566) $) NIL)) (-2656 (($ (-644 (-644 |#1|))) 11)) (-3023 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3662 (((-644 (-644 |#1|)) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1764 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-1791 (($) 12)) (-4228 (($ $ $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) NIL)) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-2626 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-3988 (((-112) $) NIL)) (-3586 ((|#1| $) NIL (|has| |#1| (-6 (-4417 "*"))))) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-1428 (((-1265 |#1|) $ (-566)) NIL)) (-2725 (($ (-1265 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-4004 (((-112) $) NIL)) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $ $) NIL) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1265 |#1|) $ (-1265 |#1|)) 15) (((-1265 |#1|) (-1265 |#1|) $) NIL) (((-943 |#1|) $ (-943 |#1|)) 21)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-227 |#1|) (-13 (-687 |#1| (-1265 |#1|) (-1265 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -1791 ($)) (-15 -3540 ($ |#1|)) (-15 -2405 ($ |#1|)) (-15 -2316 ($ |#1|)) (-15 -2673 ($ |#1| |#1| |#1|)) (-15 -3085 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1200))) (T -227))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200))) (-5 *1 (-227 *3)))) (-1791 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))) (-3540 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))) (-2405 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))) (-2316 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))) (-2673 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))) (-3085 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))))
-(-13 (-687 |#1| (-1265 |#1|) (-1265 |#1|)) (-10 -8 (-15 * ((-943 |#1|) $ (-943 |#1|))) (-15 -1791 ($)) (-15 -3540 ($ |#1|)) (-15 -2405 ($ |#1|)) (-15 -2316 ($ |#1|)) (-15 -2673 ($ |#1| |#1| |#1|)) (-15 -3085 ($ |#1| |#1| |#1|))))
-((-1607 (($ (-1 (-112) |#2|) $) 16)) (-2367 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-1873 (($) NIL) (($ (-644 |#2|)) 11)) (-2817 (((-112) $ $) 25)))
-(((-228 |#1| |#2|) (-10 -8 (-15 -1607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2367 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2367 (|#1| |#2| |#1|)) (-15 -1873 (|#1| (-644 |#2|))) (-15 -1873 (|#1|)) (-15 -2817 ((-112) |#1| |#1|))) (-229 |#2|) (-1099)) (T -228))
-NIL
-(-10 -8 (-15 -1607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2367 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2367 (|#1| |#2| |#1|)) (-15 -1873 (|#1| (-644 |#2|))) (-15 -1873 (|#1|)) (-15 -2817 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-1607 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-3806 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ |#1| $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1873 (($) 50) (($ (-644 |#1|)) 49)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 51)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-229 |#1|) (-140) (-1099)) (T -229))
+(-13 (-1100) (-10 -8 (-15 -9 ($) -2131) (-15 -8 ($) -2131) (-15 -7 ($) -2131)))
+((-2257 (((-112) $ $) NIL)) (-1409 (((-645 (-866)) $) NIL)) (-1817 (((-509) $) 8)) (-2451 (((-1158) $) NIL)) (-3972 (((-186) $) 10)) (-1527 (((-112) $ (-509)) NIL)) (-3339 (((-1120) $) NIL)) (-2209 (((-692 $) (-509)) 17)) (-3447 (((-645 (-112)) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1688 (((-55) $) 12)) (-3052 (((-112) $ $) NIL)))
+(((-187) (-13 (-185) (-10 -8 (-15 -2209 ((-692 $) (-509)))))) (T -187))
+((-2209 (*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187)))))
+(-13 (-185) (-10 -8 (-15 -2209 ((-692 $) (-509)))))
+((-2218 ((|#2| |#2|) 28)) (-1693 (((-112) |#2|) 19)) (-2319 (((-317 |#1|) |#2|) 12)) (-2333 (((-317 |#1|) |#2|) 14)) (-3362 ((|#2| |#2| (-1176)) 69) ((|#2| |#2|) 70)) (-2941 (((-169 (-317 |#1|)) |#2|) 10)) (-2253 ((|#2| |#2| (-1176)) 66) ((|#2| |#2|) 60)))
+(((-188 |#1| |#2|) (-10 -7 (-15 -3362 (|#2| |#2|)) (-15 -3362 (|#2| |#2| (-1176))) (-15 -2253 (|#2| |#2|)) (-15 -2253 (|#2| |#2| (-1176))) (-15 -2319 ((-317 |#1|) |#2|)) (-15 -2333 ((-317 |#1|) |#2|)) (-15 -1693 ((-112) |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -2941 ((-169 (-317 |#1|)) |#2|))) (-13 (-559) (-1039 (-567))) (-13 (-27) (-1201) (-433 (-169 |#1|)))) (T -188))
+((-2941 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-169 (-317 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4)))))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 (-169 *3)))))) (-1693 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4)))))) (-2333 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4)))))) (-2319 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4)))))) (-2253 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 (-169 *4)))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 (-169 *3)))))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 (-169 *4)))))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 (-169 *3)))))))
+(-10 -7 (-15 -3362 (|#2| |#2|)) (-15 -3362 (|#2| |#2| (-1176))) (-15 -2253 (|#2| |#2|)) (-15 -2253 (|#2| |#2| (-1176))) (-15 -2319 ((-317 |#1|) |#2|)) (-15 -2333 ((-317 |#1|) |#2|)) (-15 -1693 ((-112) |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -2941 ((-169 (-317 |#1|)) |#2|)))
+((-1565 (((-1266 (-690 (-953 |#1|))) (-1266 (-690 |#1|))) 26)) (-4101 (((-1266 (-690 (-410 (-953 |#1|)))) (-1266 (-690 |#1|))) 37)))
+(((-189 |#1|) (-10 -7 (-15 -1565 ((-1266 (-690 (-953 |#1|))) (-1266 (-690 |#1|)))) (-15 -4101 ((-1266 (-690 (-410 (-953 |#1|)))) (-1266 (-690 |#1|))))) (-172)) (T -189))
+((-4101 (*1 *2 *3) (-12 (-5 *3 (-1266 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1266 (-690 (-410 (-953 *4))))) (-5 *1 (-189 *4)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-1266 (-690 *4))) (-4 *4 (-172)) (-5 *2 (-1266 (-690 (-953 *4)))) (-5 *1 (-189 *4)))))
+(-10 -7 (-15 -1565 ((-1266 (-690 (-953 |#1|))) (-1266 (-690 |#1|)))) (-15 -4101 ((-1266 (-690 (-410 (-953 |#1|)))) (-1266 (-690 |#1|)))))
+((-3364 (((-1178 (-410 (-567))) (-1178 (-410 (-567))) (-1178 (-410 (-567)))) 89)) (-1526 (((-1178 (-410 (-567))) (-645 (-567)) (-645 (-567))) 100)) (-2238 (((-1178 (-410 (-567))) (-567)) 56)) (-2562 (((-1178 (-410 (-567))) (-567)) 75)) (-3140 (((-410 (-567)) (-1178 (-410 (-567)))) 85)) (-2124 (((-1178 (-410 (-567))) (-567)) 37)) (-2163 (((-1178 (-410 (-567))) (-567)) 68)) (-2717 (((-1178 (-410 (-567))) (-567)) 62)) (-2970 (((-1178 (-410 (-567))) (-1178 (-410 (-567))) (-1178 (-410 (-567)))) 83)) (-2448 (((-1178 (-410 (-567))) (-567)) 29)) (-4322 (((-410 (-567)) (-1178 (-410 (-567))) (-1178 (-410 (-567)))) 87)) (-2808 (((-1178 (-410 (-567))) (-567)) 35)) (-1811 (((-1178 (-410 (-567))) (-645 (-567))) 96)))
+(((-190) (-10 -7 (-15 -2448 ((-1178 (-410 (-567))) (-567))) (-15 -2238 ((-1178 (-410 (-567))) (-567))) (-15 -2124 ((-1178 (-410 (-567))) (-567))) (-15 -2808 ((-1178 (-410 (-567))) (-567))) (-15 -2717 ((-1178 (-410 (-567))) (-567))) (-15 -2163 ((-1178 (-410 (-567))) (-567))) (-15 -2562 ((-1178 (-410 (-567))) (-567))) (-15 -4322 ((-410 (-567)) (-1178 (-410 (-567))) (-1178 (-410 (-567))))) (-15 -2970 ((-1178 (-410 (-567))) (-1178 (-410 (-567))) (-1178 (-410 (-567))))) (-15 -3140 ((-410 (-567)) (-1178 (-410 (-567))))) (-15 -3364 ((-1178 (-410 (-567))) (-1178 (-410 (-567))) (-1178 (-410 (-567))))) (-15 -1811 ((-1178 (-410 (-567))) (-645 (-567)))) (-15 -1526 ((-1178 (-410 (-567))) (-645 (-567)) (-645 (-567)))))) (T -190))
+((-1526 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)))) (-1811 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)))) (-3364 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)))) (-3140 (*1 *2 *3) (-12 (-5 *3 (-1178 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-2970 (*1 *2 *2 *2) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)))) (-4322 (*1 *2 *3 *3) (-12 (-5 *3 (-1178 (-410 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-190)))) (-2562 (*1 *2 *3) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2163 (*1 *2 *3) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2717 (*1 *2 *3) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2808 (*1 *2 *3) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2124 (*1 *2 *3) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2238 (*1 *2 *3) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))) (-2448 (*1 *2 *3) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(-10 -7 (-15 -2448 ((-1178 (-410 (-567))) (-567))) (-15 -2238 ((-1178 (-410 (-567))) (-567))) (-15 -2124 ((-1178 (-410 (-567))) (-567))) (-15 -2808 ((-1178 (-410 (-567))) (-567))) (-15 -2717 ((-1178 (-410 (-567))) (-567))) (-15 -2163 ((-1178 (-410 (-567))) (-567))) (-15 -2562 ((-1178 (-410 (-567))) (-567))) (-15 -4322 ((-410 (-567)) (-1178 (-410 (-567))) (-1178 (-410 (-567))))) (-15 -2970 ((-1178 (-410 (-567))) (-1178 (-410 (-567))) (-1178 (-410 (-567))))) (-15 -3140 ((-410 (-567)) (-1178 (-410 (-567))))) (-15 -3364 ((-1178 (-410 (-567))) (-1178 (-410 (-567))) (-1178 (-410 (-567))))) (-15 -1811 ((-1178 (-410 (-567))) (-645 (-567)))) (-15 -1526 ((-1178 (-410 (-567))) (-645 (-567)) (-645 (-567)))))
+((-4257 (((-421 (-1172 (-567))) (-567)) 38)) (-3973 (((-645 (-1172 (-567))) (-567)) 33)) (-3916 (((-1172 (-567)) (-567)) 28)))
+(((-191) (-10 -7 (-15 -3973 ((-645 (-1172 (-567))) (-567))) (-15 -3916 ((-1172 (-567)) (-567))) (-15 -4257 ((-421 (-1172 (-567))) (-567))))) (T -191))
+((-4257 (*1 *2 *3) (-12 (-5 *2 (-421 (-1172 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))) (-3916 (*1 *2 *3) (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-191)) (-5 *3 (-567)))) (-3973 (*1 *2 *3) (-12 (-5 *2 (-645 (-1172 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
+(-10 -7 (-15 -3973 ((-645 (-1172 (-567))) (-567))) (-15 -3916 ((-1172 (-567)) (-567))) (-15 -4257 ((-421 (-1172 (-567))) (-567))))
+((-2391 (((-1156 (-225)) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3689 (((-645 (-1158)) (-1156 (-225))) NIL)) (-2110 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-4330 (((-645 (-225)) (-317 (-225)) (-1176) (-1094 (-844 (-225)))) NIL)) (-2292 (((-645 (-1158)) (-645 (-225))) NIL)) (-2659 (((-225) (-1094 (-844 (-225)))) 31)) (-3500 (((-225) (-1094 (-844 (-225)))) 32)) (-1602 (((-381) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-4195 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-1567 (((-1158) (-225)) NIL)) (-2114 (((-1158) (-645 (-1158))) 27)) (-1715 (((-1036) (-1176) (-1176) (-1036)) 13)))
+(((-192) (-10 -7 (-15 -2110 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4195 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2659 ((-225) (-1094 (-844 (-225))))) (-15 -3500 ((-225) (-1094 (-844 (-225))))) (-15 -1602 ((-381) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4330 ((-645 (-225)) (-317 (-225)) (-1176) (-1094 (-844 (-225))))) (-15 -2391 ((-1156 (-225)) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1567 ((-1158) (-225))) (-15 -2292 ((-645 (-1158)) (-645 (-225)))) (-15 -3689 ((-645 (-1158)) (-1156 (-225)))) (-15 -2114 ((-1158) (-645 (-1158)))) (-15 -1715 ((-1036) (-1176) (-1176) (-1036))))) (T -192))
+((-1715 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1036)) (-5 *3 (-1176)) (-5 *1 (-192)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1158)) (-5 *1 (-192)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1156 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-192)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-192)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1158)) (-5 *1 (-192)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1156 (-225))) (-5 *1 (-192)))) (-4330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1176)) (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-192)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2110 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192)))))
+(-10 -7 (-15 -2110 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4195 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2659 ((-225) (-1094 (-844 (-225))))) (-15 -3500 ((-225) (-1094 (-844 (-225))))) (-15 -1602 ((-381) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4330 ((-645 (-225)) (-317 (-225)) (-1176) (-1094 (-844 (-225))))) (-15 -2391 ((-1156 (-225)) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1567 ((-1158) (-225))) (-15 -2292 ((-645 (-1158)) (-645 (-225)))) (-15 -3689 ((-645 (-1158)) (-1156 (-225)))) (-15 -2114 ((-1158) (-645 (-1158)))) (-15 -1715 ((-1036) (-1176) (-1176) (-1036))))
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 61) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-193) (-788)) (T -193))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 66) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-194) (-788)) (T -194))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 81) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-195) (-788)) (T -195))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 63) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-196) (-788)) (T -196))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 75) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-197) (-788)) (T -197))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 90) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-198) (-788)) (T -198))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 90) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-199) (-788)) (T -199))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 77) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-200) (-788)) (T -200))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 78)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-201) (-788)) (T -201))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 79)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-202) (-788)) (T -202))
+NIL
+(-788)
+((-2257 (((-112) $ $) NIL)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 105) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-203) (-788)) (T -203))
+NIL
+(-788)
+((-2444 (((-3 (-2 (|:| -3986 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-1643 (((-567) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 60)) (-4053 (((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 91)))
+(((-204) (-10 -7 (-15 -2444 ((-3 (-2 (|:| -3986 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4053 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1643 ((-567) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204))
+((-1643 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-567)) (-5 *1 (-204)))) (-4053 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-204)))) (-2444 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3986 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(-10 -7 (-15 -2444 ((-3 (-2 (|:| -3986 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4053 ((-3 (-645 (-225)) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1643 ((-567) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-3134 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-1323 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 160)) (-2815 (((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225)))) 112)) (-3406 (((-381) (-690 (-317 (-225)))) 140)) (-1459 (((-690 (-317 (-225))) (-1266 (-317 (-225))) (-645 (-1176))) 136)) (-4285 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-2700 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-3140 (((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1176)) (-1266 (-317 (-225)))) 125)) (-3105 (((-381) (-381) (-645 (-381))) 133) (((-381) (-381) (-381)) 128)) (-1752 (((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45)))
+(((-205) (-10 -7 (-15 -3105 ((-381) (-381) (-381))) (-15 -3105 ((-381) (-381) (-645 (-381)))) (-15 -3406 ((-381) (-690 (-317 (-225))))) (-15 -1459 ((-690 (-317 (-225))) (-1266 (-317 (-225))) (-645 (-1176)))) (-15 -3140 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1176)) (-1266 (-317 (-225))))) (-15 -2815 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -1323 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3134 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2700 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1752 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4285 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205))
+((-4285 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381)))) (-5 *1 (-205)))) (-3140 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1176))) (-5 *4 (-1266 (-317 (-225)))) (-5 *1 (-205)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *4 (-645 (-1176))) (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3105 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))) (-3105 (*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205)))))
+(-10 -7 (-15 -3105 ((-381) (-381) (-381))) (-15 -3105 ((-381) (-381) (-645 (-381)))) (-15 -3406 ((-381) (-690 (-317 (-225))))) (-15 -1459 ((-690 (-317 (-225))) (-1266 (-317 (-225))) (-645 (-1176)))) (-15 -3140 ((-690 (-317 (-225))) (-690 (-317 (-225))) (-645 (-1176)) (-1266 (-317 (-225))))) (-15 -2815 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-690 (-317 (-225))))) (-15 -1323 ((-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3134 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2700 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1752 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4285 ((-381) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2257 (((-112) $ $) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-2248 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-3052 (((-112) $ $) NIL)))
+(((-206) (-801)) (T -206))
+NIL
+(-801)
+((-2257 (((-112) $ $) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-2248 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-3052 (((-112) $ $) NIL)))
+(((-207) (-801)) (T -207))
+NIL
+(-801)
+((-2257 (((-112) $ $) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-2248 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-3052 (((-112) $ $) NIL)))
+(((-208) (-801)) (T -208))
+NIL
+(-801)
+((-2257 (((-112) $ $) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-2248 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-3052 (((-112) $ $) NIL)))
+(((-209) (-801)) (T -209))
+NIL
+(-801)
+((-2881 (((-645 (-1176)) (-1176) (-772)) 26)) (-4031 (((-317 (-225)) (-317 (-225))) 35)) (-1717 (((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) 87)) (-3998 (((-112) (-225) (-225) (-645 (-317 (-225)))) 47)))
+(((-210) (-10 -7 (-15 -2881 ((-645 (-1176)) (-1176) (-772))) (-15 -4031 ((-317 (-225)) (-317 (-225)))) (-15 -3998 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -1717 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))))))) (T -210))
+((-1717 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-3998 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-4031 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))) (-2881 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1176))) (-5 *1 (-210)) (-5 *3 (-1176)))))
+(-10 -7 (-15 -2881 ((-645 (-1176)) (-1176) (-772))) (-15 -4031 ((-317 (-225)) (-317 (-225)))) (-15 -3998 ((-112) (-225) (-225) (-645 (-317 (-225))))) (-15 -1717 ((-112) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))))))
+((-2257 (((-112) $ $) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) 28)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1855 (((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) 70)) (-3052 (((-112) $ $) NIL)))
+(((-211) (-896)) (T -211))
+NIL
+(-896)
+((-2257 (((-112) $ $) NIL)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) 24)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1855 (((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-212) (-896)) (T -212))
+NIL
+(-896)
+((-2257 (((-112) $ $) NIL)) (-4351 ((|#2| $ (-772) |#2|) 11)) (-4344 ((|#2| $ (-772)) 10)) (-4012 (($) 8)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 26)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 13)))
+(((-213 |#1| |#2|) (-13 (-1100) (-10 -8 (-15 -4012 ($)) (-15 -4344 (|#2| $ (-772))) (-15 -4351 (|#2| $ (-772) |#2|)))) (-922) (-1100)) (T -213))
+((-4012 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1100)))) (-4344 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-1100)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)))) (-4351 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922)) (-4 *2 (-1100)))))
+(-13 (-1100) (-10 -8 (-15 -4012 ($)) (-15 -4344 (|#2| $ (-772))) (-15 -4351 (|#2| $ (-772) |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1450 (((-1271) $) 37) (((-1271) $ (-922) (-922)) 44)) (-1552 (($ $ (-990)) 19) (((-245 (-1158)) $ (-1176)) 15)) (-3877 (((-1271) $) 35)) (-4101 (((-863) $) 32) (($ (-645 |#1|)) 8)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $ $) 27)) (-3146 (($ $ $) 22)))
+(((-214 |#1|) (-13 (-1100) (-617 (-645 |#1|)) (-10 -8 (-15 -1552 ($ $ (-990))) (-15 -1552 ((-245 (-1158)) $ (-1176))) (-15 -3146 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $)) (-15 -1450 ((-1271) $ (-922) (-922))))) (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $))))) (T -214))
+((-1552 (*1 *1 *1 *2) (-12 (-5 *2 (-990)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $))))))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-245 (-1158))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ *3)) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $))))))) (-3146 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $))))))) (-3156 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $))))))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 (*2 $)) (-15 -1450 (*2 $))))))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 (*2 $)) (-15 -1450 (*2 $))))))) (-1450 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1271)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 (*2 $)) (-15 -1450 (*2 $))))))))
+(-13 (-1100) (-617 (-645 |#1|)) (-10 -8 (-15 -1552 ($ $ (-990))) (-15 -1552 ((-245 (-1158)) $ (-1176))) (-15 -3146 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $)) (-15 -1450 ((-1271) $ (-922) (-922)))))
+((-2580 ((|#2| |#4| (-1 |#2| |#2|)) 49)))
+(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2580 (|#2| |#4| (-1 |#2| |#2|)))) (-365) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -215))
+((-2580 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1242 (-410 *2))) (-4 *2 (-1242 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-344 *5 *2 *6)))))
+(-10 -7 (-15 -2580 (|#2| |#4| (-1 |#2| |#2|))))
+((-2087 ((|#2| |#2| (-772) |#2|) 58)) (-3728 ((|#2| |#2| (-772) |#2|) 54)) (-3268 (((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -4356 |#2|)))) 82)) (-2908 (((-645 (-2 (|:| |deg| (-772)) (|:| -4356 |#2|))) |#2|) 76)) (-1315 (((-112) |#2|) 74)) (-3241 (((-421 |#2|) |#2|) 96)) (-2296 (((-421 |#2|) |#2|) 95)) (-1318 ((|#2| |#2| (-772) |#2|) 52)) (-3804 (((-2 (|:| |cont| |#1|) (|:| -2807 (-645 (-2 (|:| |irr| |#2|) (|:| -3259 (-567)))))) |#2| (-112)) 88)))
+(((-216 |#1| |#2|) (-10 -7 (-15 -2296 ((-421 |#2|) |#2|)) (-15 -3241 ((-421 |#2|) |#2|)) (-15 -3804 ((-2 (|:| |cont| |#1|) (|:| -2807 (-645 (-2 (|:| |irr| |#2|) (|:| -3259 (-567)))))) |#2| (-112))) (-15 -2908 ((-645 (-2 (|:| |deg| (-772)) (|:| -4356 |#2|))) |#2|)) (-15 -3268 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -4356 |#2|))))) (-15 -1318 (|#2| |#2| (-772) |#2|)) (-15 -3728 (|#2| |#2| (-772) |#2|)) (-15 -2087 (|#2| |#2| (-772) |#2|)) (-15 -1315 ((-112) |#2|))) (-351) (-1242 |#1|)) (T -216))
+((-1315 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1242 *4)))) (-2087 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1242 *4)))) (-3728 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1242 *4)))) (-1318 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1242 *4)))) (-3268 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -4356 *5)))) (-4 *5 (-1242 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5)) (-5 *1 (-216 *4 *5)))) (-2908 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -4356 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1242 *4)))) (-3804 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-351)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1242 *5)))) (-3241 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1242 *4)))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -2296 ((-421 |#2|) |#2|)) (-15 -3241 ((-421 |#2|) |#2|)) (-15 -3804 ((-2 (|:| |cont| |#1|) (|:| -2807 (-645 (-2 (|:| |irr| |#2|) (|:| -3259 (-567)))))) |#2| (-112))) (-15 -2908 ((-645 (-2 (|:| |deg| (-772)) (|:| -4356 |#2|))) |#2|)) (-15 -3268 ((-645 |#2|) (-645 (-2 (|:| |deg| (-772)) (|:| -4356 |#2|))))) (-15 -1318 (|#2| |#2| (-772) |#2|)) (-15 -3728 (|#2| |#2| (-772) |#2|)) (-15 -2087 (|#2| |#2| (-772) |#2|)) (-15 -1315 ((-112) |#2|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 (((-567) $) NIL (|has| (-567) (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| (-567) (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (|has| (-567) (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1039 (-567))))) (-1621 (((-567) $) NIL) (((-1176) $) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-567) (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| (-567) (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 (((-567) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| (-567) (-1151)))) (-3948 (((-112) $) NIL (|has| (-567) (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-567) (-851)))) (-3494 (($ (-1 (-567) (-567)) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-567) (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-3992 (((-567) $) NIL (|has| (-567) (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1176)) (-645 (-567))) NIL (|has| (-567) (-517 (-1176) (-567)))) (($ $ (-1176) (-567)) NIL (|has| (-567) (-517 (-1176) (-567))))) (-4369 (((-772) $) NIL)) (-1552 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2870 (($ $) NIL)) (-4078 (((-567) $) NIL)) (-1475 (($ (-410 (-567))) 9)) (-3542 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1176)) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) NIL) (((-1005 10) $) 10)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-2686 (((-772)) NIL T CONST)) (-2721 (((-567) $) NIL (|has| (-567) (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| (-567) (-821)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3109 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3168 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
+(((-217) (-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 10)) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -1475 ($ (-410 (-567))))))) (T -217))
+((-1987 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))) (-1475 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))))
+(-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 10)) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -1475 ($ (-410 (-567))))))
+((-2257 (((-112) $ $) NIL)) (-4034 (((-1118) $) 13)) (-2451 (((-1158) $) NIL)) (-3942 (((-486) $) 10)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 23) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-1135) $) 15)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-218) (-13 (-1083) (-10 -8 (-15 -3942 ((-486) $)) (-15 -4034 ((-1118) $)) (-15 -1830 ((-1135) $))))) (T -218))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-218)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-218)))))
+(-13 (-1083) (-10 -8 (-15 -3942 ((-486) $)) (-15 -4034 ((-1118) $)) (-15 -1830 ((-1135) $))))
+((-2113 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092 (-844 |#2|)) (-1158)) 29) (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092 (-844 |#2|))) 25)) (-2429 (((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1176) (-844 |#2|) (-844 |#2|) (-112)) 17)))
+(((-219 |#1| |#2|) (-10 -7 (-15 -2113 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092 (-844 |#2|)))) (-15 -2113 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092 (-844 |#2|)) (-1158))) (-15 -2429 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1176) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-960) (-29 |#1|))) (T -219))
+((-2429 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1176)) (-5 *6 (-112)) (-4 *7 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-4 *3 (-13 (-1201) (-960) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092 (-844 *3))) (-5 *5 (-1158)) (-4 *3 (-13 (-1201) (-960) (-29 *6))) (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *4 (-1092 (-844 *3))) (-4 *3 (-13 (-1201) (-960) (-29 *5))) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))))
+(-10 -7 (-15 -2113 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092 (-844 |#2|)))) (-15 -2113 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1092 (-844 |#2|)) (-1158))) (-15 -2429 ((-3 (|:| |f1| (-844 |#2|)) (|:| |f2| (-645 (-844 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1176) (-844 |#2|) (-844 |#2|) (-112))))
+((-2113 (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-410 (-953 |#1|)))) (-1158)) 49) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-410 (-953 |#1|))))) 46) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-317 |#1|))) (-1158)) 50) (((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-317 |#1|)))) 22)))
+(((-220 |#1|) (-10 -7 (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-317 |#1|))))) (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-317 |#1|))) (-1158))) (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-410 (-953 |#1|)))))) (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-410 (-953 |#1|)))) (-1158)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (T -220))
+((-2113 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092 (-844 (-410 (-953 *6))))) (-5 *5 (-1158)) (-5 *3 (-410 (-953 *6))) (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *4 (-1092 (-844 (-410 (-953 *5))))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1092 (-844 (-317 *6)))) (-5 *5 (-1158)) (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1092 (-844 (-317 *5)))) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))))
+(-10 -7 (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-317 |#1|))))) (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-317 |#1|))) (-1158))) (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-410 (-953 |#1|)))))) (-15 -2113 ((-3 (|:| |f1| (-844 (-317 |#1|))) (|:| |f2| (-645 (-844 (-317 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-410 (-953 |#1|)) (-1092 (-844 (-410 (-953 |#1|)))) (-1158))))
+((-3402 (((-2 (|:| -3586 (-1172 |#1|)) (|:| |deg| (-922))) (-1172 |#1|)) 26)) (-1511 (((-645 (-317 |#2|)) (-317 |#2|) (-922)) 54)))
+(((-221 |#1| |#2|) (-10 -7 (-15 -3402 ((-2 (|:| -3586 (-1172 |#1|)) (|:| |deg| (-922))) (-1172 |#1|))) (-15 -1511 ((-645 (-317 |#2|)) (-317 |#2|) (-922)))) (-1050) (-559)) (T -221))
+((-1511 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1050)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-2 (|:| -3586 (-1172 *4)) (|:| |deg| (-922)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1172 *4)) (-4 *5 (-559)))))
+(-10 -7 (-15 -3402 ((-2 (|:| -3586 (-1172 |#1|)) (|:| |deg| (-922))) (-1172 |#1|))) (-15 -1511 ((-645 (-317 |#2|)) (-317 |#2|) (-922))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2252 ((|#1| $) NIL)) (-2207 ((|#1| $) 30)) (-1580 (((-112) $ (-772)) NIL)) (-4061 (($) NIL T CONST)) (-2065 (($ $) NIL)) (-1695 (($ $) 39)) (-3528 ((|#1| |#1| $) NIL)) (-2548 ((|#1| $) NIL)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3036 (((-772) $) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4341 ((|#1| $) NIL)) (-4059 ((|#1| |#1| $) 35)) (-2493 ((|#1| |#1| $) 37)) (-1336 (($ |#1| $) NIL)) (-3080 (((-772) $) 33)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-3851 ((|#1| $) NIL)) (-1725 ((|#1| $) 31)) (-3157 ((|#1| $) 29)) (-4394 ((|#1| $) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1301 ((|#1| |#1| $) NIL)) (-3353 (((-112) $) 9)) (-3164 (($) NIL)) (-3484 ((|#1| $) NIL)) (-3135 (($) NIL) (($ (-645 |#1|)) 16)) (-1716 (((-772) $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-1926 ((|#1| $) 13)) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) NIL)) (-3945 ((|#1| $) NIL)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-222 |#1|) (-13 (-255 |#1|) (-10 -8 (-15 -3135 ($ (-645 |#1|))))) (-1100)) (T -222))
+((-3135 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-222 *3)))))
+(-13 (-255 |#1|) (-10 -8 (-15 -3135 ($ (-645 |#1|)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2082 (($ (-317 |#1|)) 27)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-1929 (((-112) $) NIL)) (-3417 (((-3 (-317 |#1|) "failed") $) NIL)) (-1621 (((-317 |#1|) $) NIL)) (-2637 (($ $) 35)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-3494 (($ (-1 (-317 |#1|) (-317 |#1|)) $) NIL)) (-2613 (((-317 |#1|) $) NIL)) (-1884 (($ $) 34)) (-2451 (((-1158) $) NIL)) (-1587 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-4099 (($ (-772)) NIL)) (-2879 (($ $) 36)) (-3677 (((-567) $) NIL)) (-4101 (((-863) $) 68) (($ (-567)) NIL) (($ (-317 |#1|)) NIL)) (-2339 (((-317 |#1|) $ $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 29 T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) 32)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 28) (($ (-317 |#1|) $) 22)))
+(((-223 |#1| |#2|) (-13 (-621 (-317 |#1|)) (-1039 (-317 |#1|)) (-10 -8 (-15 -2613 ((-317 |#1|) $)) (-15 -1884 ($ $)) (-15 -2637 ($ $)) (-15 -2339 ((-317 |#1|) $ $)) (-15 -4099 ($ (-772))) (-15 -1587 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -3677 ((-567) $)) (-15 -3494 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2082 ($ (-317 |#1|))) (-15 -2879 ($ $)))) (-13 (-1050) (-851)) (-645 (-1176))) (T -223))
+((-2613 (*1 *2 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176))))) (-1884 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) (-14 *3 (-645 (-1176))))) (-2637 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) (-14 *3 (-645 (-1176))))) (-2339 (*1 *2 *1 *1) (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176))))) (-4099 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176))))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176))))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176))))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176))))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1050) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1176))))) (-2082 (*1 *1 *2) (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1050) (-851))) (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1176))))) (-2879 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851))) (-14 *3 (-645 (-1176))))))
+(-13 (-621 (-317 |#1|)) (-1039 (-317 |#1|)) (-10 -8 (-15 -2613 ((-317 |#1|) $)) (-15 -1884 ($ $)) (-15 -2637 ($ $)) (-15 -2339 ((-317 |#1|) $ $)) (-15 -4099 ($ (-772))) (-15 -1587 ((-112) $)) (-15 -1929 ((-112) $)) (-15 -3677 ((-567) $)) (-15 -3494 ($ (-1 (-317 |#1|) (-317 |#1|)) $)) (-15 -2082 ($ (-317 |#1|))) (-15 -2879 ($ $))))
+((-2737 (((-112) (-1158)) 26)) (-3893 (((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112)) 35)) (-3367 (((-3 (-112) "failed") (-1172 |#2|) (-844 |#2|) (-844 |#2|) (-112)) 84) (((-3 (-112) "failed") (-953 |#1|) (-1176) (-844 |#2|) (-844 |#2|) (-112)) 85)))
+(((-224 |#1| |#2|) (-10 -7 (-15 -2737 ((-112) (-1158))) (-15 -3893 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -3367 ((-3 (-112) "failed") (-953 |#1|) (-1176) (-844 |#2|) (-844 |#2|) (-112))) (-15 -3367 ((-3 (-112) "failed") (-1172 |#2|) (-844 |#2|) (-844 |#2|) (-112)))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-29 |#1|))) (T -224))
+((-3367 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1172 *6)) (-5 *4 (-844 *6)) (-4 *6 (-13 (-1201) (-29 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-224 *5 *6)))) (-3367 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-953 *6)) (-5 *4 (-1176)) (-5 *5 (-844 *7)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *7 (-13 (-1201) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3893 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1201) (-29 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-224 *6 *4)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1201) (-29 *4))))))
+(-10 -7 (-15 -2737 ((-112) (-1158))) (-15 -3893 ((-3 (-844 |#2|) "failed") (-613 |#2|) |#2| (-844 |#2|) (-844 |#2|) (-112))) (-15 -3367 ((-3 (-112) "failed") (-953 |#1|) (-1176) (-844 |#2|) (-844 |#2|) (-112))) (-15 -3367 ((-3 (-112) "failed") (-1172 |#2|) (-844 |#2|) (-844 |#2|) (-112))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 100)) (-2838 (((-567) $) 36)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2674 (($ $) NIL)) (-1772 (($ $) 89)) (-1605 (($ $) 77)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-2307 (($ $) 68)) (-3405 (((-112) $ $) NIL)) (-1747 (($ $) 87)) (-1577 (($ $) 75)) (-3179 (((-567) $) 130)) (-1798 (($ $) 92)) (-1632 (($ $) 79)) (-4061 (($) NIL T CONST)) (-2733 (($ $) NIL)) (-3417 (((-3 (-567) "failed") $) 129) (((-3 (-410 (-567)) "failed") $) 126)) (-1621 (((-567) $) 127) (((-410 (-567)) $) 124)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) 105)) (-3760 (((-410 (-567)) $ (-772)) 119) (((-410 (-567)) $ (-772) (-772)) 118)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4374 (((-922)) 29) (((-922) (-922)) NIL (|has| $ (-6 -4407)))) (-4095 (((-112) $) NIL)) (-4098 (($) 47)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL)) (-1909 (((-567) $) 43)) (-3714 (((-112) $) 101)) (-3287 (($ $ (-567)) NIL)) (-3751 (($ $) NIL)) (-3948 (((-112) $) 99)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) 65) (($) 39 (-12 (-1397 (|has| $ (-6 -4399))) (-1397 (|has| $ (-6 -4407)))))) (-1802 (($ $ $) 64) (($) 38 (-12 (-1397 (|has| $ (-6 -4399))) (-1397 (|has| $ (-6 -4407)))))) (-2869 (((-567) $) 27)) (-1793 (($ $) 34)) (-1456 (($ $) 69)) (-2942 (($ $) 74)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2920 (((-922) (-567)) NIL (|has| $ (-6 -4407)))) (-3339 (((-1120) $) 103)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL)) (-3992 (($ $) NIL)) (-2822 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-922)) 112)) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4164 (((-567) $) 28)) (-3834 (($) 46)) (-2910 (($ $) 73)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4018 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4407)))) (-1930 (($ $ (-772)) NIL) (($ $) 106)) (-2926 (((-922) (-567)) NIL (|has| $ (-6 -4407)))) (-1810 (($ $) 90)) (-1647 (($ $) 80)) (-1784 (($ $) 91)) (-1618 (($ $) 78)) (-1757 (($ $) 88)) (-1592 (($ $) 76)) (-3542 (((-381) $) 115) (((-225) $) 14) (((-893 (-381)) $) NIL) (((-539) $) 53)) (-4101 (((-863) $) 50) (($ (-567)) 72) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 72) (($ (-410 (-567))) NIL)) (-2686 (((-772)) NIL T CONST)) (-2721 (($ $) NIL)) (-3693 (((-922)) 37) (((-922) (-922)) NIL (|has| $ (-6 -4407)))) (-3739 (((-112) $ $) NIL)) (-3183 (((-922)) 25)) (-1847 (($ $) 95)) (-1690 (($ $) 83) (($ $ $) 122)) (-2469 (((-112) $ $) NIL)) (-1823 (($ $) 93)) (-1660 (($ $) 81)) (-1869 (($ $) 98)) (-1719 (($ $) 86)) (-1345 (($ $) 96)) (-1733 (($ $) 84)) (-1858 (($ $) 97)) (-1704 (($ $) 85)) (-1834 (($ $) 94)) (-1673 (($ $) 82)) (-1771 (($ $) 121)) (-1468 (($) 23 T CONST)) (-1484 (($) 44 T CONST)) (-4184 (((-1158) $) 18) (((-1158) $ (-112)) 20) (((-1271) (-823) $) 21) (((-1271) (-823) $ (-112)) 22)) (-3589 (($ $) 109)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-2846 (($ $ $) 111)) (-3109 (((-112) $ $) 58)) (-3085 (((-112) $ $) 55)) (-3052 (((-112) $ $) 66)) (-3098 (((-112) $ $) 57)) (-3075 (((-112) $ $) 54)) (-3168 (($ $ $) 45) (($ $ (-567)) 67)) (-3156 (($ $) 59) (($ $ $) 61)) (-3146 (($ $ $) 60)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 70) (($ $ (-410 (-567))) 154) (($ $ $) 71)) (* (($ (-922) $) 35) (($ (-772) $) NIL) (($ (-567) $) 63) (($ $ $) 62) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-225) (-13 (-407) (-233) (-829) (-1201) (-615 (-539)) (-10 -8 (-15 -3168 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3834 ($)) (-15 -1793 ($ $)) (-15 -1456 ($ $)) (-15 -1690 ($ $ $)) (-15 -3589 ($ $)) (-15 -2846 ($ $ $)) (-15 -3760 ((-410 (-567)) $ (-772))) (-15 -3760 ((-410 (-567)) $ (-772) (-772)))))) (T -225))
+((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225)))) (-3834 (*1 *1) (-5 *1 (-225))) (-1793 (*1 *1 *1) (-5 *1 (-225))) (-1456 (*1 *1 *1) (-5 *1 (-225))) (-1690 (*1 *1 *1 *1) (-5 *1 (-225))) (-3589 (*1 *1 *1) (-5 *1 (-225))) (-2846 (*1 *1 *1 *1) (-5 *1 (-225))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))) (-3760 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225)))))
+(-13 (-407) (-233) (-829) (-1201) (-615 (-539)) (-10 -8 (-15 -3168 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3834 ($)) (-15 -1793 ($ $)) (-15 -1456 ($ $)) (-15 -1690 ($ $ $)) (-15 -3589 ($ $)) (-15 -2846 ($ $ $)) (-15 -3760 ((-410 (-567)) $ (-772))) (-15 -3760 ((-410 (-567)) $ (-772) (-772)))))
+((-1868 (((-169 (-225)) (-772) (-169 (-225))) 11) (((-225) (-772) (-225)) 12)) (-3486 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-2264 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1496 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-2604 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-1997 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-2115 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-2761 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2460 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2623 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3589 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2846 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31)))
+(((-226) (-10 -7 (-15 -3589 ((-225) (-225))) (-15 -3589 ((-169 (-225)) (-169 (-225)))) (-15 -2846 ((-225) (-225) (-225))) (-15 -2846 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3486 ((-225) (-225))) (-15 -3486 ((-169 (-225)) (-169 (-225)))) (-15 -1496 ((-225) (-225))) (-15 -1496 ((-169 (-225)) (-169 (-225)))) (-15 -1868 ((-225) (-772) (-225))) (-15 -1868 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -2115 ((-225) (-225) (-225))) (-15 -2115 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2604 ((-225) (-225) (-225))) (-15 -2604 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2761 ((-225) (-225) (-225))) (-15 -2761 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1997 ((-225) (-225) (-225))) (-15 -1997 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2623 ((-169 (-225)) (-169 (-225)))) (-15 -2623 ((-225) (-225))) (-15 -2460 ((-225) (-225))) (-15 -2460 ((-169 (-225)) (-169 (-225)))) (-15 -2264 ((-225) (-225) (-225))) (-15 -2264 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226))
+((-2264 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2264 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2460 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1997 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2761 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2761 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2604 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2604 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2115 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2115 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226)))) (-1496 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1496 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3486 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2846 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2846 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))))
+(-10 -7 (-15 -3589 ((-225) (-225))) (-15 -3589 ((-169 (-225)) (-169 (-225)))) (-15 -2846 ((-225) (-225) (-225))) (-15 -2846 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3486 ((-225) (-225))) (-15 -3486 ((-169 (-225)) (-169 (-225)))) (-15 -1496 ((-225) (-225))) (-15 -1496 ((-169 (-225)) (-169 (-225)))) (-15 -1868 ((-225) (-772) (-225))) (-15 -1868 ((-169 (-225)) (-772) (-169 (-225)))) (-15 -2115 ((-225) (-225) (-225))) (-15 -2115 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2604 ((-225) (-225) (-225))) (-15 -2604 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2761 ((-225) (-225) (-225))) (-15 -2761 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1997 ((-225) (-225) (-225))) (-15 -1997 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2623 ((-169 (-225)) (-169 (-225)))) (-15 -2623 ((-225) (-225))) (-15 -2460 ((-225) (-225))) (-15 -2460 ((-169 (-225)) (-169 (-225)))) (-15 -2264 ((-225) (-225) (-225))) (-15 -2264 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2019 (($ (-772) (-772)) NIL)) (-2592 (($ $ $) NIL)) (-3008 (($ (-1266 |#1|)) NIL) (($ $) NIL)) (-1353 (($ |#1| |#1| |#1|) 33)) (-2141 (((-112) $) NIL)) (-1529 (($ $ (-567) (-567)) NIL)) (-1381 (($ $ (-567) (-567)) NIL)) (-3453 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3788 (($ $) NIL)) (-2358 (((-112) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2098 (($ $ (-567) (-567) $) NIL)) (-4230 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-1417 (($ $ (-567) (-1266 |#1|)) NIL)) (-3264 (($ $ (-567) (-1266 |#1|)) NIL)) (-4371 (($ |#1| |#1| |#1|) 32)) (-3617 (($ (-772) |#1|) NIL)) (-4061 (($) NIL T CONST)) (-1876 (($ $) NIL (|has| |#1| (-308)))) (-4074 (((-1266 |#1|) $ (-567)) NIL)) (-4044 (($ |#1|) 31)) (-3746 (($ |#1|) 30)) (-2825 (($ |#1|) 29)) (-2432 (((-772) $) NIL (|has| |#1| (-559)))) (-1303 ((|#1| $ (-567) (-567) |#1|) NIL)) (-4344 ((|#1| $ (-567) (-567)) NIL)) (-2896 (((-645 |#1|) $) NIL)) (-1375 (((-772) $) NIL (|has| |#1| (-559)))) (-3137 (((-645 (-1266 |#1|)) $) NIL (|has| |#1| (-559)))) (-4300 (((-772) $) NIL)) (-4012 (($ (-772) (-772) |#1|) NIL)) (-4311 (((-772) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1982 ((|#1| $) NIL (|has| |#1| (-6 (-4418 "*"))))) (-3776 (((-567) $) NIL)) (-4176 (((-567) $) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1977 (((-567) $) NIL)) (-2467 (((-567) $) NIL)) (-4036 (($ (-645 (-645 |#1|))) 11)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1343 (((-645 (-645 |#1|)) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3475 (((-3 $ "failed") $) NIL (|has| |#1| (-365)))) (-3688 (($) 12)) (-3203 (($ $ $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) NIL)) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-4008 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-2685 (((-112) $) NIL)) (-3240 ((|#1| $) NIL (|has| |#1| (-6 (-4418 "*"))))) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-3295 (((-1266 |#1|) $ (-567)) NIL)) (-4101 (($ (-1266 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-1463 (((-112) $) NIL)) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $ $) NIL) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1266 |#1|) $ (-1266 |#1|)) 15) (((-1266 |#1|) (-1266 |#1|) $) NIL) (((-944 |#1|) $ (-944 |#1|)) 21)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-227 |#1|) (-13 (-688 |#1| (-1266 |#1|) (-1266 |#1|)) (-10 -8 (-15 * ((-944 |#1|) $ (-944 |#1|))) (-15 -3688 ($)) (-15 -2825 ($ |#1|)) (-15 -3746 ($ |#1|)) (-15 -4044 ($ |#1|)) (-15 -4371 ($ |#1| |#1| |#1|)) (-15 -1353 ($ |#1| |#1| |#1|)))) (-13 (-365) (-1201))) (T -227))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201))) (-5 *1 (-227 *3)))) (-3688 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))) (-2825 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))) (-3746 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))) (-4044 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))) (-4371 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))) (-1353 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))))
+(-13 (-688 |#1| (-1266 |#1|) (-1266 |#1|)) (-10 -8 (-15 * ((-944 |#1|) $ (-944 |#1|))) (-15 -3688 ($)) (-15 -2825 ($ |#1|)) (-15 -3746 ($ |#1|)) (-15 -4044 ($ |#1|)) (-15 -4371 ($ |#1| |#1| |#1|)) (-15 -1353 ($ |#1| |#1| |#1|))))
+((-2581 (($ (-1 (-112) |#2|) $) 16)) (-3410 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 27)) (-2069 (($) NIL) (($ (-645 |#2|)) 11)) (-3052 (((-112) $ $) 25)))
+(((-228 |#1| |#2|) (-10 -8 (-15 -2581 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3410 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3410 (|#1| |#2| |#1|)) (-15 -2069 (|#1| (-645 |#2|))) (-15 -2069 (|#1|)) (-15 -3052 ((-112) |#1| |#1|))) (-229 |#2|) (-1100)) (T -228))
+NIL
+(-10 -8 (-15 -2581 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3410 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3410 (|#1| |#2| |#1|)) (-15 -2069 (|#1| (-645 |#2|))) (-15 -2069 (|#1|)) (-15 -3052 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-2581 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-2084 (($ $) 59 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ |#1| $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) 58 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-2069 (($) 50) (($ (-645 |#1|)) 49)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 51)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-229 |#1|) (-140) (-1100)) (T -229))
NIL
(-13 (-235 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-3009 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) 14) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 22) (($ $ (-771)) NIL) (($ $) 19)) (-1316 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-771)) 17) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)))
-(((-230 |#1| |#2|) (-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -1316 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -1316 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1316 (|#1| |#1| (-1175))) (-15 -1316 (|#1| |#1| (-644 (-1175)))) (-15 -1316 (|#1| |#1| (-1175) (-771))) (-15 -1316 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1316 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1316 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1049)) (T -230))
-NIL
-(-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -1316 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -1316 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1316 (|#1| |#1| (-1175))) (-15 -1316 (|#1| |#1| (-644 (-1175)))) (-15 -1316 (|#1| |#1| (-1175) (-771))) (-15 -1316 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -1316 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1316 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3009 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#1| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-231 |#1|) (-140) (-1049)) (T -231))
-((-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-3009 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4)) (-4 *4 (-1049)))))
-(-13 (-1049) (-10 -8 (-15 -3009 ($ $ (-1 |t#1| |t#1|))) (-15 -3009 ($ $ (-1 |t#1| |t#1|) (-771))) (-15 -1316 ($ $ (-1 |t#1| |t#1|))) (-15 -1316 ($ $ (-1 |t#1| |t#1|) (-771))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-233) |has| |#1| (-233)) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3009 (($ $) NIL) (($ $ (-771)) 13)) (-1316 (($ $) 8) (($ $ (-771)) 15)))
-(((-232 |#1|) (-10 -8 (-15 -1316 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-771))) (-15 -1316 (|#1| |#1|)) (-15 -3009 (|#1| |#1|))) (-233)) (T -232))
-NIL
-(-10 -8 (-15 -1316 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-771))) (-15 -1316 (|#1| |#1|)) (-15 -3009 (|#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3009 (($ $) 42) (($ $ (-771)) 40)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $) 41) (($ $ (-771)) 39)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-1930 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) 14) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) 22) (($ $ (-772)) NIL) (($ $) 19)) (-2692 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-772)) 17) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL) (($ $ (-772)) NIL) (($ $) NIL)))
+(((-230 |#1| |#2|) (-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -2692 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -2692 (|#1| |#1| (-1176))) (-15 -2692 (|#1| |#1| (-645 (-1176)))) (-15 -2692 (|#1| |#1| (-1176) (-772))) (-15 -2692 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -2692 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2692 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1050)) (T -230))
+NIL
+(-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -2692 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -2692 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -2692 (|#1| |#1| (-1176))) (-15 -2692 (|#1| |#1| (-645 (-1176)))) (-15 -2692 (|#1| |#1| (-1176) (-772))) (-15 -2692 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -2692 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -2692 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1930 (($ $ (-1 |#1| |#1|)) 56) (($ $ (-1 |#1| |#1|) (-772)) 55) (($ $ (-645 (-1176)) (-645 (-772))) 48 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 47 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 46 (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) 45 (|has| |#1| (-901 (-1176)))) (($ $ (-772)) 43 (|has| |#1| (-233))) (($ $) 41 (|has| |#1| (-233)))) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-1 |#1| |#1|)) 54) (($ $ (-1 |#1| |#1|) (-772)) 53) (($ $ (-645 (-1176)) (-645 (-772))) 52 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 51 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 50 (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) 49 (|has| |#1| (-901 (-1176)))) (($ $ (-772)) 44 (|has| |#1| (-233))) (($ $) 42 (|has| |#1| (-233)))) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-231 |#1|) (-140) (-1050)) (T -231))
+((-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050)))) (-1930 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1050)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050)))) (-2692 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4)) (-4 *4 (-1050)))))
+(-13 (-1050) (-10 -8 (-15 -1930 ($ $ (-1 |t#1| |t#1|))) (-15 -1930 ($ $ (-1 |t#1| |t#1|) (-772))) (-15 -2692 ($ $ (-1 |t#1| |t#1|))) (-15 -2692 ($ $ (-1 |t#1| |t#1|) (-772))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-901 (-1176))) (-6 (-901 (-1176))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-233) |has| |#1| (-233)) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-901 (-1176)) |has| |#1| (-901 (-1176))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-1930 (($ $) NIL) (($ $ (-772)) 13)) (-2692 (($ $) 8) (($ $ (-772)) 15)))
+(((-232 |#1|) (-10 -8 (-15 -2692 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-772))) (-15 -2692 (|#1| |#1|)) (-15 -1930 (|#1| |#1|))) (-233)) (T -232))
+NIL
+(-10 -8 (-15 -2692 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-772))) (-15 -2692 (|#1| |#1|)) (-15 -1930 (|#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1930 (($ $) 42) (($ $ (-772)) 40)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $) 41) (($ $ (-772)) 39)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-233) (-140)) (T -233))
-((-3009 (*1 *1 *1) (-4 *1 (-233))) (-1316 (*1 *1 *1) (-4 *1 (-233))) (-3009 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))) (-1316 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771)))))
-(-13 (-1049) (-10 -8 (-15 -3009 ($ $)) (-15 -1316 ($ $)) (-15 -3009 ($ $ (-771))) (-15 -1316 ($ $ (-771)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-1873 (($) 12) (($ (-644 |#2|)) NIL)) (-2878 (($ $) 14)) (-2738 (($ (-644 |#2|)) 10)) (-2725 (((-862) $) 21)))
-(((-234 |#1| |#2|) (-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -1873 (|#1| (-644 |#2|))) (-15 -1873 (|#1|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -2878 (|#1| |#1|))) (-235 |#2|) (-1099)) (T -234))
-NIL
-(-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -1873 (|#1| (-644 |#2|))) (-15 -1873 (|#1|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -2878 (|#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-1607 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-3806 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ |#1| $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1873 (($) 50) (($ (-644 |#1|)) 49)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 51)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-235 |#1|) (-140) (-1099)) (T -235))
-((-1873 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3)))) (-2367 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-235 *2)) (-4 *2 (-1099)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-235 *3)) (-4 *3 (-1099)))) (-1607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-235 *3)) (-4 *3 (-1099)))))
-(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -1873 ($)) (-15 -1873 ($ (-644 |t#1|))) (IF (|has| $ (-6 -4415)) (PROGN (-15 -2367 ($ |t#1| $)) (-15 -2367 ($ (-1 (-112) |t#1|) $)) (-15 -1607 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-2211 (((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1265 (-771))) "failed")) (|:| |hom| (-644 (-1265 (-771))))) (-295 (-952 (-566)))) 42)))
-(((-236) (-10 -7 (-15 -2211 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1265 (-771))) "failed")) (|:| |hom| (-644 (-1265 (-771))))) (-295 (-952 (-566))))))) (T -236))
-((-2211 (*1 *2 *3) (-12 (-5 *3 (-295 (-952 (-566)))) (-5 *2 (-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1265 (-771))) "failed")) (|:| |hom| (-644 (-1265 (-771)))))) (-5 *1 (-236)))))
-(-10 -7 (-15 -2211 ((-2 (|:| |varOrder| (-644 (-1175))) (|:| |inhom| (-3 (-644 (-1265 (-771))) "failed")) (|:| |hom| (-644 (-1265 (-771))))) (-295 (-952 (-566))))))
-((-3733 (((-771)) 56)) (-3717 (((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 $) (-1265 $)) 53) (((-689 |#3|) (-689 $)) 44) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-4356 (((-134)) 62)) (-3009 (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-2725 (((-1265 |#3|) $) NIL) (($ |#3|) NIL) (((-862) $) NIL) (($ (-566)) 12) (($ (-409 (-566))) NIL)) (-2875 (((-771)) 15)) (-2916 (($ $ |#3|) 59)))
-(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)) (-15 -2875 ((-771))) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -2725 (|#1| |#3|)) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3717 ((-689 |#3|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 |#1|) (-1265 |#1|))) (-15 -3733 ((-771))) (-15 -2916 (|#1| |#1| |#3|)) (-15 -4356 ((-134))) (-15 -2725 ((-1265 |#3|) |#1|))) (-238 |#2| |#3|) (-771) (-1215)) (T -237))
-((-4356 (*1 *2) (-12 (-14 *4 (-771)) (-4 *5 (-1215)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3733 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1215)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2875 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1215)) (-5 *2 (-771)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
-(-10 -8 (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)) (-15 -2875 ((-771))) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -2725 (|#1| |#3|)) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3717 ((-689 |#3|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 |#1|) (-1265 |#1|))) (-15 -3733 ((-771))) (-15 -2916 (|#1| |#1| |#3|)) (-15 -4356 ((-134))) (-15 -2725 ((-1265 |#3|) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-3545 (((-112) $) 73 (|has| |#2| (-131)))) (-2338 (($ (-921)) 126 (|has| |#2| (-1049)))) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-3288 (($ $ $) 122 (|has| |#2| (-793)))) (-4113 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-2261 (((-112) $ (-771)) 8)) (-3733 (((-771)) 108 (|has| |#2| (-370)))) (-1859 (((-566) $) 120 (|has| |#2| (-848)))) (-2858 ((|#2| $ (-566) |#2|) 53 (|has| $ (-6 -4416)))) (-2633 (($) 7 T CONST)) (-2023 (((-3 (-566) "failed") $) 68 (-3144 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) 65 (-3144 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1099)))) (-3343 (((-566) $) 67 (-3144 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) 64 (-3144 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 63 (|has| |#2| (-1099)))) (-3717 (((-689 (-566)) (-689 $)) 107 (-3144 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 106 (-3144 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) 105 (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) 104 (|has| |#2| (-1049)))) (-2313 (((-3 $ "failed") $) 80 (|has| |#2| (-726)))) (-3424 (($) 111 (|has| |#2| (-370)))) (-3031 ((|#2| $ (-566) |#2|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#2| $ (-566)) 52)) (-3421 (((-112) $) 118 (|has| |#2| (-848)))) (-1523 (((-644 |#2|) $) 31 (|has| $ (-6 -4415)))) (-3842 (((-112) $) 82 (|has| |#2| (-726)))) (-2307 (((-112) $) 119 (|has| |#2| (-848)))) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3075 (($ $ $) 117 (-2676 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2565 (((-644 |#2|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3936 (($ $ $) 116 (-2676 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-3023 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2|) $) 36)) (-4138 (((-921) $) 110 (|has| |#2| (-370)))) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#2| (-1099)))) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-2430 (($ (-921)) 109 (|has| |#2| (-370)))) (-1944 (((-1119) $) 21 (|has| |#2| (-1099)))) (-3771 ((|#2| $) 43 (|has| (-566) (-850)))) (-3598 (($ $ |#2|) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#2| $ (-566) |#2|) 51) ((|#2| $ (-566)) 50)) (-1836 ((|#2| $ $) 125 (|has| |#2| (-1049)))) (-4059 (($ (-1265 |#2|)) 127)) (-4356 (((-134)) 124 (|has| |#2| (-365)))) (-3009 (($ $) 99 (-3144 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 97 (-3144 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 95 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 94 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 93 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 92 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 85 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1049)))) (-1958 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4415))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-1265 |#2|) $) 128) (($ (-566)) 69 (-2676 (-3144 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) 66 (-3144 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 61 (|has| |#2| (-1099))) (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-2875 (((-771)) 103 (|has| |#2| (-1049)) CONST)) (-1479 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-2610 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4415)))) (-2274 (($ $) 121 (|has| |#2| (-848)))) (-3200 (($) 72 (|has| |#2| (-131)) CONST)) (-3214 (($) 83 (|has| |#2| (-726)) CONST)) (-1316 (($ $) 98 (-3144 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) 96 (-3144 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) 91 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) 90 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) 89 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) 88 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) 87 (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1049)))) (-2865 (((-112) $ $) 114 (-2676 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2844 (((-112) $ $) 113 (-2676 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2817 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-2854 (((-112) $ $) 115 (-2676 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2833 (((-112) $ $) 112 (-2676 (|has| |#2| (-848)) (|has| |#2| (-793))))) (-2916 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-2905 (($ $ $) 102 (|has| |#2| (-1049))) (($ $) 101 (|has| |#2| (-1049)))) (-2897 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-771)) 81 (|has| |#2| (-726))) (($ $ (-921)) 78 (|has| |#2| (-726)))) (* (($ (-566) $) 100 (|has| |#2| (-1049))) (($ $ $) 79 (|has| |#2| (-726))) (($ $ |#2|) 77 (|has| |#2| (-726))) (($ |#2| $) 76 (|has| |#2| (-726))) (($ (-771) $) 74 (|has| |#2| (-131))) (($ (-921) $) 71 (|has| |#2| (-25)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-238 |#1| |#2|) (-140) (-771) (-1215)) (T -238))
-((-4059 (*1 *1 *2) (-12 (-5 *2 (-1265 *4)) (-4 *4 (-1215)) (-4 *1 (-238 *3 *4)))) (-2338 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049)) (-4 *4 (-1215)))) (-1836 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1215)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1215)) (-4 *2 (-726)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1215)) (-4 *2 (-726)))))
-(-13 (-604 (-566) |t#2|) (-613 (-1265 |t#2|)) (-10 -8 (-6 -4415) (-15 -4059 ($ (-1265 |t#2|))) (IF (|has| |t#2| (-1099)) (-6 (-413 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1049)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -2338 ($ (-921))) (-15 -1836 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-726)) (PROGN (-6 (-726)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4412)) (-6 -4412) |%noBranch|) (IF (|has| |t#2| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1272 |t#2|)) |%noBranch|)))
-(((-21) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2676 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2676 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-616 #0=(-409 (-566))) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-616 (-566)) -2676 (|has| |#2| (-1049)) (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-616 |#2|) -2676 (|has| |#2| (-1099)) (|has| |#2| (-172))) ((-613 (-862)) -2676 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-613 (-862))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-613 (-1265 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1049)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1049))) ((-287 #1=(-566) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1049)) ((-413 |#2|) |has| |#2| (-1099)) ((-491 |#2|) . T) ((-604 #1# |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 |#2|) -2676 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-646 $) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-648 |#2|) -2676 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-648 $) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-640 |#2|) -2676 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-639 (-566)) -12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049))) ((-639 |#2|) |has| |#2| (-1049)) ((-717 |#2|) -2676 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-726) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-791) |has| |#2| (-848)) ((-792) -2676 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-793) |has| |#2| (-793)) ((-794) -2676 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-795) -2676 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-848) |has| |#2| (-848)) ((-850) -2676 (|has| |#2| (-848)) (|has| |#2| (-793))) ((-900 (-1175)) -12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049))) ((-1038 #0#) -12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099))) ((-1038 (-566)) -12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) ((-1038 |#2|) |has| |#2| (-1099)) ((-1051 |#2|) -2676 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1056 |#2|) -2676 (|has| |#2| (-1049)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1056 $) |has| |#2| (-172)) ((-1049) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1057) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-172))) ((-1111) -2676 (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-726)) (|has| |#2| (-172))) ((-1099) -2676 (|has| |#2| (-1099)) (|has| |#2| (-1049)) (|has| |#2| (-848)) (|has| |#2| (-793)) (|has| |#2| (-726)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1215) . T) ((-1272 |#2|) |has| |#2| (-365)))
-((-4123 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2553 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2101 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
-(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -4123 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2553 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2101 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-771) (-1215) (-1215)) (T -239))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1215)) (-4 *7 (-1215)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771)) (-4 *6 (-1215)) (-4 *2 (-1215)) (-5 *1 (-239 *5 *6 *2)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771)) (-4 *7 (-1215)) (-4 *5 (-1215)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
-(-10 -7 (-15 -4123 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2553 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2101 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
-((-3979 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3545 (((-112) $) NIL (|has| |#2| (-131)))) (-2338 (($ (-921)) 65 (|has| |#2| (-1049)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-3288 (($ $ $) 70 (|has| |#2| (-793)))) (-4113 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-2261 (((-112) $ (-771)) 17)) (-3733 (((-771)) NIL (|has| |#2| (-370)))) (-1859 (((-566) $) NIL (|has| |#2| (-848)))) (-2858 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1099)))) (-3343 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) 32 (|has| |#2| (-1099)))) (-3717 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-2313 (((-3 $ "failed") $) 61 (|has| |#2| (-726)))) (-3424 (($) NIL (|has| |#2| (-370)))) (-3031 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ (-566)) 59)) (-3421 (((-112) $) NIL (|has| |#2| (-848)))) (-1523 (((-644 |#2|) $) 15 (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL (|has| |#2| (-726)))) (-2307 (((-112) $) NIL (|has| |#2| (-848)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 20 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2565 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 (((-566) $) 58 (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3023 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2|) $) 47)) (-4138 (((-921) $) NIL (|has| |#2| (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#2| (-1099)))) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-2430 (($ (-921)) NIL (|has| |#2| (-370)))) (-1944 (((-1119) $) NIL (|has| |#2| (-1099)))) (-3771 ((|#2| $) NIL (|has| (-566) (-850)))) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) 21)) (-1836 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-4059 (($ (-1265 |#2|)) 18)) (-4356 (((-134)) NIL (|has| |#2| (-365)))) (-3009 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-1958 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-1265 |#2|) $) 10) (($ (-566)) NIL (-2676 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) 13 (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2875 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-1479 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2610 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2274 (($ $) NIL (|has| |#2| (-848)))) (-3200 (($) 40 (|has| |#2| (-131)) CONST)) (-3214 (($) 44 (|has| |#2| (-726)) CONST)) (-1316 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-2865 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2844 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2817 (((-112) $ $) 31 (|has| |#2| (-1099)))) (-2854 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2833 (((-112) $ $) 68 (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-2897 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) 50 (|has| |#2| (-726))) (($ $ |#2|) 48 (|has| |#2| (-726))) (($ |#2| $) 49 (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-240 |#1| |#2|) (-238 |#1| |#2|) (-771) (-1215)) (T -240))
+((-1930 (*1 *1 *1) (-4 *1 (-233))) (-2692 (*1 *1 *1) (-4 *1 (-233))) (-1930 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))) (-2692 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772)))))
+(-13 (-1050) (-10 -8 (-15 -1930 ($ $)) (-15 -2692 ($ $)) (-15 -1930 ($ $ (-772))) (-15 -2692 ($ $ (-772)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2069 (($) 12) (($ (-645 |#2|)) NIL)) (-4247 (($ $) 14)) (-4114 (($ (-645 |#2|)) 10)) (-4101 (((-863) $) 21)))
+(((-234 |#1| |#2|) (-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -2069 (|#1| (-645 |#2|))) (-15 -2069 (|#1|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -4247 (|#1| |#1|))) (-235 |#2|) (-1100)) (T -234))
+NIL
+(-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -2069 (|#1| (-645 |#2|))) (-15 -2069 (|#1|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -4247 (|#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-2581 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-2084 (($ $) 59 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ |#1| $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) 58 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-2069 (($) 50) (($ (-645 |#1|)) 49)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 51)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-235 |#1|) (-140) (-1100)) (T -235))
+((-2069 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1100)))) (-2069 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-235 *3)))) (-3410 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-235 *2)) (-4 *2 (-1100)))) (-3410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-235 *3)) (-4 *3 (-1100)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-235 *3)) (-4 *3 (-1100)))))
+(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -2069 ($)) (-15 -2069 ($ (-645 |t#1|))) (IF (|has| $ (-6 -4416)) (PROGN (-15 -3410 ($ |t#1| $)) (-15 -3410 ($ (-1 (-112) |t#1|) $)) (-15 -2581 ($ (-1 (-112) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-2364 (((-2 (|:| |varOrder| (-645 (-1176))) (|:| |inhom| (-3 (-645 (-1266 (-772))) "failed")) (|:| |hom| (-645 (-1266 (-772))))) (-295 (-953 (-567)))) 42)))
+(((-236) (-10 -7 (-15 -2364 ((-2 (|:| |varOrder| (-645 (-1176))) (|:| |inhom| (-3 (-645 (-1266 (-772))) "failed")) (|:| |hom| (-645 (-1266 (-772))))) (-295 (-953 (-567))))))) (T -236))
+((-2364 (*1 *2 *3) (-12 (-5 *3 (-295 (-953 (-567)))) (-5 *2 (-2 (|:| |varOrder| (-645 (-1176))) (|:| |inhom| (-3 (-645 (-1266 (-772))) "failed")) (|:| |hom| (-645 (-1266 (-772)))))) (-5 *1 (-236)))))
+(-10 -7 (-15 -2364 ((-2 (|:| |varOrder| (-645 (-1176))) (|:| |inhom| (-3 (-645 (-1266 (-772))) "failed")) (|:| |hom| (-645 (-1266 (-772))))) (-295 (-953 (-567))))))
+((-2013 (((-772)) 56)) (-1920 (((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 $) (-1266 $)) 53) (((-690 |#3|) (-690 $)) 44) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-1948 (((-134)) 62)) (-1930 (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-4101 (((-1266 |#3|) $) NIL) (($ |#3|) NIL) (((-863) $) NIL) (($ (-567)) 12) (($ (-410 (-567))) NIL)) (-2686 (((-772)) 15)) (-3168 (($ $ |#3|) 59)))
+(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)) (-15 -2686 ((-772))) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -4101 (|#1| |#3|)) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1920 ((-690 |#3|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 |#1|) (-1266 |#1|))) (-15 -2013 ((-772))) (-15 -3168 (|#1| |#1| |#3|)) (-15 -1948 ((-134))) (-15 -4101 ((-1266 |#3|) |#1|))) (-238 |#2| |#3|) (-772) (-1216)) (T -237))
+((-1948 (*1 *2) (-12 (-14 *4 (-772)) (-4 *5 (-1216)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2013 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1216)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2686 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1216)) (-5 *2 (-772)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))))
+(-10 -8 (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)) (-15 -2686 ((-772))) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -4101 (|#1| |#3|)) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1920 ((-690 |#3|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 |#1|) (-1266 |#1|))) (-15 -2013 ((-772))) (-15 -3168 (|#1| |#1| |#3|)) (-15 -1948 ((-134))) (-15 -4101 ((-1266 |#3|) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#2| (-1100)))) (-2865 (((-112) $) 73 (|has| |#2| (-131)))) (-4245 (($ (-922)) 126 (|has| |#2| (-1050)))) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-2140 (($ $ $) 122 (|has| |#2| (-794)))) (-4377 (((-3 $ "failed") $ $) 75 (|has| |#2| (-131)))) (-1580 (((-112) $ (-772)) 8)) (-2013 (((-772)) 108 (|has| |#2| (-370)))) (-3179 (((-567) $) 120 (|has| |#2| (-849)))) (-4230 ((|#2| $ (-567) |#2|) 53 (|has| $ (-6 -4417)))) (-4061 (($) 7 T CONST)) (-3417 (((-3 (-567) "failed") $) 68 (-1410 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-3 (-410 (-567)) "failed") $) 65 (-1410 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (((-3 |#2| "failed") $) 62 (|has| |#2| (-1100)))) (-1621 (((-567) $) 67 (-1410 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-410 (-567)) $) 64 (-1410 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) ((|#2| $) 63 (|has| |#2| (-1100)))) (-1920 (((-690 (-567)) (-690 $)) 107 (-1410 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 106 (-1410 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) 105 (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) 104 (|has| |#2| (-1050)))) (-4014 (((-3 $ "failed") $) 80 (|has| |#2| (-727)))) (-1649 (($) 111 (|has| |#2| (-370)))) (-1303 ((|#2| $ (-567) |#2|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#2| $ (-567)) 52)) (-4095 (((-112) $) 118 (|has| |#2| (-849)))) (-2896 (((-645 |#2|) $) 31 (|has| $ (-6 -4416)))) (-3714 (((-112) $) 82 (|has| |#2| (-727)))) (-3948 (((-112) $) 119 (|has| |#2| (-849)))) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-2056 (($ $ $) 117 (-2909 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-1542 (((-645 |#2|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-1802 (($ $ $) 116 (-2909 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-4392 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2|) $) 36)) (-3527 (((-922) $) 110 (|has| |#2| (-370)))) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#2| (-1100)))) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3811 (($ (-922)) 109 (|has| |#2| (-370)))) (-3339 (((-1120) $) 21 (|has| |#2| (-1100)))) (-2048 ((|#2| $) 43 (|has| (-567) (-851)))) (-2092 (($ $ |#2|) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#2| $ (-567) |#2|) 51) ((|#2| $ (-567)) 50)) (-2945 ((|#2| $ $) 125 (|has| |#2| (-1050)))) (-2345 (($ (-1266 |#2|)) 127)) (-1948 (((-134)) 124 (|has| |#2| (-365)))) (-1930 (($ $) 99 (-1410 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) 97 (-1410 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) 95 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) 94 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) 93 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) 92 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) 85 (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) 84 (|has| |#2| (-1050)))) (-3349 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4416))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-1266 |#2|) $) 128) (($ (-567)) 69 (-2909 (-1410 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-1050)))) (($ (-410 (-567))) 66 (-1410 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (($ |#2|) 61 (|has| |#2| (-1100))) (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-2686 (((-772)) 103 (|has| |#2| (-1050)) CONST)) (-3739 (((-112) $ $) 23 (|has| |#2| (-1100)))) (-2012 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4416)))) (-1771 (($ $) 121 (|has| |#2| (-849)))) (-1468 (($) 72 (|has| |#2| (-131)) CONST)) (-1484 (($) 83 (|has| |#2| (-727)) CONST)) (-2692 (($ $) 98 (-1410 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) 96 (-1410 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) 91 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) 90 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) 89 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) 88 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) 87 (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) 86 (|has| |#2| (-1050)))) (-3109 (((-112) $ $) 114 (-2909 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3085 (((-112) $ $) 113 (-2909 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3052 (((-112) $ $) 20 (|has| |#2| (-1100)))) (-3098 (((-112) $ $) 115 (-2909 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3075 (((-112) $ $) 112 (-2909 (|has| |#2| (-849)) (|has| |#2| (-794))))) (-3168 (($ $ |#2|) 123 (|has| |#2| (-365)))) (-3156 (($ $ $) 102 (|has| |#2| (-1050))) (($ $) 101 (|has| |#2| (-1050)))) (-3146 (($ $ $) 70 (|has| |#2| (-25)))) (** (($ $ (-772)) 81 (|has| |#2| (-727))) (($ $ (-922)) 78 (|has| |#2| (-727)))) (* (($ (-567) $) 100 (|has| |#2| (-1050))) (($ $ $) 79 (|has| |#2| (-727))) (($ $ |#2|) 77 (|has| |#2| (-727))) (($ |#2| $) 76 (|has| |#2| (-727))) (($ (-772) $) 74 (|has| |#2| (-131))) (($ (-922) $) 71 (|has| |#2| (-25)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-238 |#1| |#2|) (-140) (-772) (-1216)) (T -238))
+((-2345 (*1 *1 *2) (-12 (-5 *2 (-1266 *4)) (-4 *4 (-1216)) (-4 *1 (-238 *3 *4)))) (-4245 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1050)) (-4 *4 (-1216)))) (-2945 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1216)) (-4 *2 (-1050)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1216)) (-4 *2 (-727)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1216)) (-4 *2 (-727)))))
+(-13 (-605 (-567) |t#2|) (-614 (-1266 |t#2|)) (-10 -8 (-6 -4416) (-15 -2345 ($ (-1266 |t#2|))) (IF (|has| |t#2| (-1100)) (-6 (-414 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1050)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-379 |t#2|)) (-15 -4245 ($ (-922))) (-15 -2945 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-727)) (PROGN (-6 (-727)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |t#2| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |t#2| (-794)) (-6 (-794)) |%noBranch|) (IF (|has| |t#2| (-365)) (-6 (-1273 |t#2|)) |%noBranch|)))
+(((-21) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-23) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2909 (|has| |#2| (-1100)) (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2909 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-617 #0=(-410 (-567))) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))) ((-617 (-567)) -2909 (|has| |#2| (-1050)) (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-617 |#2|) -2909 (|has| |#2| (-1100)) (|has| |#2| (-172))) ((-614 (-863)) -2909 (|has| |#2| (-1100)) (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-614 (-863))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-614 (-1266 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1050)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1050))) ((-287 #1=(-567) |#2|) . T) ((-289 #1# |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-370) |has| |#2| (-370)) ((-379 |#2|) |has| |#2| (-1050)) ((-414 |#2|) |has| |#2| (-1100)) ((-492 |#2|) . T) ((-605 #1# |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-647 (-567)) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 |#2|) -2909 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-647 $) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-649 |#2|) -2909 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-649 $) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-641 |#2|) -2909 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-640 (-567)) -12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050))) ((-640 |#2|) |has| |#2| (-1050)) ((-718 |#2|) -2909 (|has| |#2| (-365)) (|has| |#2| (-172))) ((-727) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-792) |has| |#2| (-849)) ((-793) -2909 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-794) |has| |#2| (-794)) ((-795) -2909 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-796) -2909 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-849) |has| |#2| (-849)) ((-851) -2909 (|has| |#2| (-849)) (|has| |#2| (-794))) ((-901 (-1176)) -12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050))) ((-1039 #0#) -12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100))) ((-1039 (-567)) -12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) ((-1039 |#2|) |has| |#2| (-1100)) ((-1052 |#2|) -2909 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1052 $) |has| |#2| (-172)) ((-1057 |#2|) -2909 (|has| |#2| (-1050)) (|has| |#2| (-365)) (|has| |#2| (-172))) ((-1057 $) |has| |#2| (-172)) ((-1050) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1058) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-172))) ((-1112) -2909 (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-727)) (|has| |#2| (-172))) ((-1100) -2909 (|has| |#2| (-1100)) (|has| |#2| (-1050)) (|has| |#2| (-849)) (|has| |#2| (-794)) (|has| |#2| (-727)) (|has| |#2| (-370)) (|has| |#2| (-365)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1216) . T) ((-1273 |#2|) |has| |#2| (-365)))
+((-3391 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-3402 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-3494 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18)))
+(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -3391 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3402 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3494 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-772) (-1216) (-1216)) (T -239))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1216)) (-4 *7 (-1216)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772)) (-4 *6 (-1216)) (-4 *2 (-1216)) (-5 *1 (-239 *5 *6 *2)))) (-3391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772)) (-4 *7 (-1216)) (-4 *5 (-1216)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5)))))
+(-10 -7 (-15 -3391 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3402 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -3494 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|))))
+((-2257 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-2865 (((-112) $) NIL (|has| |#2| (-131)))) (-4245 (($ (-922)) 65 (|has| |#2| (-1050)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2140 (($ $ $) 70 (|has| |#2| (-794)))) (-4377 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-1580 (((-112) $ (-772)) 17)) (-2013 (((-772)) NIL (|has| |#2| (-370)))) (-3179 (((-567) $) NIL (|has| |#2| (-849)))) (-4230 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1100)))) (-1621 (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) ((|#2| $) 32 (|has| |#2| (-1100)))) (-1920 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1050)))) (-4014 (((-3 $ "failed") $) 61 (|has| |#2| (-727)))) (-1649 (($) NIL (|has| |#2| (-370)))) (-1303 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ (-567)) 59)) (-4095 (((-112) $) NIL (|has| |#2| (-849)))) (-2896 (((-645 |#2|) $) 15 (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL (|has| |#2| (-727)))) (-3948 (((-112) $) NIL (|has| |#2| (-849)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 20 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-1542 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 (((-567) $) 58 (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-4392 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2|) $) 47)) (-3527 (((-922) $) NIL (|has| |#2| (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#2| (-1100)))) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3811 (($ (-922)) NIL (|has| |#2| (-370)))) (-3339 (((-1120) $) NIL (|has| |#2| (-1100)))) (-2048 ((|#2| $) NIL (|has| (-567) (-851)))) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) 21)) (-2945 ((|#2| $ $) NIL (|has| |#2| (-1050)))) (-2345 (($ (-1266 |#2|)) 18)) (-1948 (((-134)) NIL (|has| |#2| (-365)))) (-1930 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3349 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-1266 |#2|) $) 10) (($ (-567)) NIL (-2909 (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (($ |#2|) 13 (|has| |#2| (-1100))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2686 (((-772)) NIL (|has| |#2| (-1050)) CONST)) (-3739 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-2012 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-1771 (($ $) NIL (|has| |#2| (-849)))) (-1468 (($) 40 (|has| |#2| (-131)) CONST)) (-1484 (($) 44 (|has| |#2| (-727)) CONST)) (-2692 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3109 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3085 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3052 (((-112) $ $) 31 (|has| |#2| (-1100)))) (-3098 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3075 (((-112) $ $) 68 (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $ $) NIL (|has| |#2| (-1050))) (($ $) NIL (|has| |#2| (-1050)))) (-3146 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-922)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1050))) (($ $ $) 50 (|has| |#2| (-727))) (($ $ |#2|) 48 (|has| |#2| (-727))) (($ |#2| $) 49 (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-240 |#1| |#2|) (-238 |#1| |#2|) (-772) (-1216)) (T -240))
NIL
(-238 |#1| |#2|)
-((-2072 (((-566) (-644 (-1157))) 36) (((-566) (-1157)) 29)) (-3712 (((-1270) (-644 (-1157))) 41) (((-1270) (-1157)) 40)) (-1596 (((-1157)) 16)) (-2534 (((-1157) (-566) (-1157)) 23)) (-2737 (((-644 (-1157)) (-644 (-1157)) (-566) (-1157)) 37) (((-1157) (-1157) (-566) (-1157)) 35)) (-4197 (((-644 (-1157)) (-644 (-1157))) 15) (((-644 (-1157)) (-1157)) 11)))
-(((-241) (-10 -7 (-15 -4197 ((-644 (-1157)) (-1157))) (-15 -4197 ((-644 (-1157)) (-644 (-1157)))) (-15 -1596 ((-1157))) (-15 -2534 ((-1157) (-566) (-1157))) (-15 -2737 ((-1157) (-1157) (-566) (-1157))) (-15 -2737 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -3712 ((-1270) (-1157))) (-15 -3712 ((-1270) (-644 (-1157)))) (-15 -2072 ((-566) (-1157))) (-15 -2072 ((-566) (-644 (-1157)))))) (T -241))
-((-2072 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1270)) (-5 *1 (-241)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-241)))) (-2737 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *1 (-241)))) (-2737 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-2534 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))) (-1596 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241)))) (-4197 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)))) (-4197 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157)))))
-(-10 -7 (-15 -4197 ((-644 (-1157)) (-1157))) (-15 -4197 ((-644 (-1157)) (-644 (-1157)))) (-15 -1596 ((-1157))) (-15 -2534 ((-1157) (-566) (-1157))) (-15 -2737 ((-1157) (-1157) (-566) (-1157))) (-15 -2737 ((-644 (-1157)) (-644 (-1157)) (-566) (-1157))) (-15 -3712 ((-1270) (-1157))) (-15 -3712 ((-1270) (-644 (-1157)))) (-15 -2072 ((-566) (-1157))) (-15 -2072 ((-566) (-644 (-1157)))))
-((** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 20)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ (-409 (-566)) $) 27) (($ $ (-409 (-566))) NIL)))
-(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-243)) (T -242))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 47)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 51)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 48)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 50) (($ $ (-409 (-566))) 49)))
+((-3442 (((-567) (-645 (-1158))) 36) (((-567) (-1158)) 29)) (-1993 (((-1271) (-645 (-1158))) 41) (((-1271) (-1158)) 40)) (-2456 (((-1158)) 16)) (-2602 (((-1158) (-567) (-1158)) 23)) (-4113 (((-645 (-1158)) (-645 (-1158)) (-567) (-1158)) 37) (((-1158) (-1158) (-567) (-1158)) 35)) (-2480 (((-645 (-1158)) (-645 (-1158))) 15) (((-645 (-1158)) (-1158)) 11)))
+(((-241) (-10 -7 (-15 -2480 ((-645 (-1158)) (-1158))) (-15 -2480 ((-645 (-1158)) (-645 (-1158)))) (-15 -2456 ((-1158))) (-15 -2602 ((-1158) (-567) (-1158))) (-15 -4113 ((-1158) (-1158) (-567) (-1158))) (-15 -4113 ((-645 (-1158)) (-645 (-1158)) (-567) (-1158))) (-15 -1993 ((-1271) (-1158))) (-15 -1993 ((-1271) (-645 (-1158)))) (-15 -3442 ((-567) (-1158))) (-15 -3442 ((-567) (-645 (-1158)))))) (T -241))
+((-3442 (*1 *2 *3) (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-567)) (-5 *1 (-241)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-567)) (-5 *1 (-241)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1271)) (-5 *1 (-241)))) (-1993 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-241)))) (-4113 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 (-1158))) (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *1 (-241)))) (-4113 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *3 (-567)) (-5 *1 (-241)))) (-2602 (*1 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *3 (-567)) (-5 *1 (-241)))) (-2456 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-241)))) (-2480 (*1 *2 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-241)))) (-2480 (*1 *2 *3) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-241)) (-5 *3 (-1158)))))
+(-10 -7 (-15 -2480 ((-645 (-1158)) (-1158))) (-15 -2480 ((-645 (-1158)) (-645 (-1158)))) (-15 -2456 ((-1158))) (-15 -2602 ((-1158) (-567) (-1158))) (-15 -4113 ((-1158) (-1158) (-567) (-1158))) (-15 -4113 ((-645 (-1158)) (-645 (-1158)) (-567) (-1158))) (-15 -1993 ((-1271) (-1158))) (-15 -1993 ((-1271) (-645 (-1158)))) (-15 -3442 ((-567) (-1158))) (-15 -3442 ((-567) (-645 (-1158)))))
+((** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 20)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) NIL)))
+(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-243)) (T -242))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 47)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 51)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 48)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 50) (($ $ (-410 (-567))) 49)))
(((-243) (-140)) (T -243))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566)))) (-4282 (*1 *1 *1) (-4 *1 (-243))))
-(-13 (-291) (-38 (-409 (-566))) (-10 -8 (-15 ** ($ $ (-566))) (-15 -4282 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-291) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-717 #0#) . T) ((-726) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-1829 (($ $) 58)) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-3219 (($ $ $) 54 (|has| $ (-6 -4416)))) (-2953 (($ $ $) 53 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-2633 (($) 7 T CONST)) (-1896 (($ $) 57)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2322 (($ $) 56)) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1774 ((|#1| $) 60)) (-3096 (($ $) 59)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48)) (-4104 (((-566) $ $) 45)) (-3810 (((-112) $) 47)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2011 (($ $ $) 55 (|has| $ (-6 -4416)))) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-244 |#1|) (-140) (-1215)) (T -244))
-((-1774 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215)))) (-3096 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215)))) (-1829 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215)))) (-1896 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215)))) (-2322 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215)))) (-2011 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-244 *2)) (-4 *2 (-1215)))) (-3219 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-244 *2)) (-4 *2 (-1215)))) (-2953 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-244 *2)) (-4 *2 (-1215)))))
-(-13 (-1010 |t#1|) (-10 -8 (-15 -1774 (|t#1| $)) (-15 -3096 ($ $)) (-15 -1829 ($ $)) (-15 -1896 ($ $)) (-15 -2322 ($ $)) (IF (|has| $ (-6 -4416)) (PROGN (-15 -2011 ($ $ $)) (-15 -3219 ($ $ $)) (-15 -2953 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) NIL)) (-4088 ((|#1| $) NIL)) (-1829 (($ $) NIL)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3190 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-3370 (($ $) 10 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-2363 (($ $ $) NIL (|has| $ (-6 -4416)))) (-3478 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4416))) (($ $ "rest" $) NIL (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) |#1|) $) NIL)) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-4075 ((|#1| $) NIL)) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3781 (($ $) NIL) (($ $ (-771)) NIL)) (-1985 (($ $) NIL (|has| |#1| (-1099)))) (-3806 (($ $) 7 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-1752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-4336 (((-112) $) NIL)) (-2388 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3169 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3848 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3641 (($ |#1|) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1774 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-1619 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1510 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1890 (((-112) $) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1232 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-771) $ "count") 16)) (-4104 (((-566) $ $) NIL)) (-1503 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-1302 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-4359 (($ (-644 |#1|)) 22)) (-3810 (((-112) $) NIL)) (-4278 (($ $) NIL)) (-4160 (($ $) NIL (|has| $ (-6 -4416)))) (-2251 (((-771) $) NIL)) (-2546 (($ $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) NIL)) (-2011 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4007 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-2725 (($ (-644 |#1|)) 17) (((-644 |#1|) $) 18) (((-862) $) 21 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) 14 (|has| $ (-6 -4415)))))
-(((-245 |#1|) (-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -4359 ($ (-644 |#1|))) (-15 -3282 ($ $ "unique")) (-15 -3282 ($ $ "sort")) (-15 -3282 ((-771) $ "count")))) (-850)) (T -245))
-((-4359 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850)))))
-(-13 (-666 |#1|) (-492 (-644 |#1|)) (-10 -8 (-15 -4359 ($ (-644 |#1|))) (-15 -3282 ($ $ "unique")) (-15 -3282 ($ $ "sort")) (-15 -3282 ((-771) $ "count"))))
-((-4224 (((-3 (-771) "failed") |#1| |#1| (-771)) 43)))
-(((-246 |#1|) (-10 -7 (-15 -4224 ((-3 (-771) "failed") |#1| |#1| (-771)))) (-13 (-726) (-370) (-10 -7 (-15 ** (|#1| |#1| (-566)))))) (T -246))
-((-4224 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-771)) (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566)))))) (-5 *1 (-246 *3)))))
-(-10 -7 (-15 -4224 ((-3 (-771) "failed") |#1| |#1| (-771))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-864 |#1|)) $) NIL)) (-3983 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-1780 (($ $) NIL (|has| |#2| (-558)))) (-3286 (((-112) $) NIL (|has| |#2| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2885 (($ $) NIL (|has| |#2| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-3343 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2994 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3596 (($ $ (-644 (-566))) NIL)) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#2| (-909)))) (-2385 (($ $ |#2| (-240 (-3991 |#1|) (-771)) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-4157 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#2| (-240 (-3991 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-864 |#1|)) NIL)) (-4090 (((-240 (-3991 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-1336 (($ (-1 (-240 (-3991 |#1|) (-771)) (-240 (-3991 |#1|) (-771))) $) NIL)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1742 (((-3 (-864 |#1|) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#2| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1390 (((-1157) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3428 (-771))) "failed") $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#2| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#2| (-909)))) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-2061 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3009 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3838 (((-240 (-3991 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-4330 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-240 (-3991 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#2| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-247 |#1| |#2|) (-13 (-949 |#2| (-240 (-3991 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -3596 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -247))
-((-3596 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049)))))
-(-13 (-949 |#2| (-240 (-3991 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -3596 ($ $ (-644 (-566))))))
-((-3979 (((-112) $ $) NIL)) (-2922 (((-1270) $) 17)) (-1562 (((-183 (-249)) $) 11)) (-2643 (($ (-183 (-249))) 12)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1886 (((-249) $) 7)) (-2725 (((-862) $) 9)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 15)))
-(((-248) (-13 (-1099) (-10 -8 (-15 -1886 ((-249) $)) (-15 -1562 ((-183 (-249)) $)) (-15 -2643 ($ (-183 (-249)))) (-15 -2922 ((-1270) $))))) (T -248))
-((-1886 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-248)))))
-(-13 (-1099) (-10 -8 (-15 -1886 ((-249) $)) (-15 -1562 ((-183 (-249)) $)) (-15 -2643 ($ (-183 (-249)))) (-15 -2922 ((-1270) $))))
-((-3979 (((-112) $ $) NIL)) (-3143 (((-644 (-865)) $) NIL)) (-3534 (((-508) $) NIL)) (-1390 (((-1157) $) NIL)) (-2591 (((-186) $) NIL)) (-3044 (((-112) $ (-508)) NIL)) (-1944 (((-1119) $) NIL)) (-1360 (((-334) $) 7)) (-2372 (((-644 (-112)) $) NIL)) (-2725 (((-862) $) NIL) (((-187) $) 8)) (-1479 (((-112) $ $) NIL)) (-1381 (((-55) $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-249) (-13 (-185) (-613 (-187)) (-10 -8 (-15 -1360 ((-334) $))))) (T -249))
-((-1360 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
-(-13 (-185) (-613 (-187)) (-10 -8 (-15 -1360 ((-334) $))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3282 (((-1180) $ (-771)) 13)) (-2725 (((-862) $) 20)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 16)) (-3991 (((-771) $) 9)))
-(((-250) (-13 (-1099) (-10 -8 (-15 -3991 ((-771) $)) (-15 -3282 ((-1180) $ (-771)))))) (T -250))
-((-3991 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-250)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250)))))
-(-13 (-1099) (-10 -8 (-15 -3991 ((-771) $)) (-15 -3282 ((-1180) $ (-771)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2338 (($ (-921)) NIL (|has| |#4| (-1049)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-3288 (($ $ $) NIL (|has| |#4| (-793)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3733 (((-771)) NIL (|has| |#4| (-370)))) (-1859 (((-566) $) NIL (|has| |#4| (-848)))) (-2858 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-3343 ((|#4| $) NIL (|has| |#4| (-1099))) (((-566) $) NIL (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-3717 (((-2 (|:| -3444 (-689 |#4|)) (|:| |vec| (-1265 |#4|))) (-689 $) (-1265 $)) NIL (|has| |#4| (-1049))) (((-689 |#4|) (-689 $)) NIL (|has| |#4| (-1049))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))))) (-2313 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-3424 (($) NIL (|has| |#4| (-370)))) (-3031 ((|#4| $ (-566) |#4|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#4| $ (-566)) NIL)) (-3421 (((-112) $) NIL (|has| |#4| (-848)))) (-1523 (((-644 |#4|) $) NIL (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL (-2676 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-2307 (((-112) $) NIL (|has| |#4| (-848)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (-2676 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2565 (((-644 |#4|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (-2676 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-3023 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) NIL)) (-4138 (((-921) $) NIL (|has| |#4| (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-2430 (($ (-921)) NIL (|has| |#4| (-370)))) (-1944 (((-1119) $) NIL)) (-3771 ((|#4| $) NIL (|has| (-566) (-850)))) (-3598 (($ $ |#4|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-1948 (((-644 |#4|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#4| $ (-566) |#4|) NIL) ((|#4| $ (-566)) 16)) (-1836 ((|#4| $ $) NIL (|has| |#4| (-1049)))) (-4059 (($ (-1265 |#4|)) NIL)) (-4356 (((-134)) NIL (|has| |#4| (-365)))) (-3009 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-1958 (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415))) (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-1265 |#4|) $) NIL) (((-862) $) NIL) (($ |#4|) NIL (|has| |#4| (-1099))) (($ (-566)) NIL (-2676 (-12 (|has| |#4| (-1038 (-566))) (|has| |#4| (-1099))) (|has| |#4| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#4| (-1038 (-409 (-566)))) (|has| |#4| (-1099))))) (-2875 (((-771)) NIL (|has| |#4| (-1049)) CONST)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2274 (($ $) NIL (|has| |#4| (-848)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL (-2676 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) CONST)) (-1316 (($ $ (-1 |#4| |#4|) (-771)) NIL (|has| |#4| (-1049))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))))) (-2865 (((-112) $ $) NIL (-2676 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2844 (((-112) $ $) NIL (-2676 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (-2676 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2833 (((-112) $ $) NIL (-2676 (|has| |#4| (-793)) (|has| |#4| (-848))))) (-2916 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-2905 (($ $ $) NIL) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2676 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049))))) (($ $ (-921)) NIL (-2676 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (* (($ |#2| $) 18) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-726))) (($ |#4| $) NIL (|has| |#4| (-726))) (($ $ $) NIL (-2676 (-12 (|has| |#4| (-233)) (|has| |#4| (-1049))) (-12 (|has| |#4| (-639 (-566))) (|has| |#4| (-1049))) (|has| |#4| (-726)) (-12 (|has| |#4| (-900 (-1175))) (|has| |#4| (-1049)))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-648 |#2|) (-648 |#3|)) (-921) (-1049) (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-648 |#2|)) (T -251))
-NIL
-(-13 (-238 |#1| |#4|) (-648 |#2|) (-648 |#3|))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2338 (($ (-921)) NIL (|has| |#3| (-1049)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-3288 (($ $ $) NIL (|has| |#3| (-793)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3733 (((-771)) NIL (|has| |#3| (-370)))) (-1859 (((-566) $) NIL (|has| |#3| (-848)))) (-2858 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099))) (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-3343 ((|#3| $) NIL (|has| |#3| (-1099))) (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-3717 (((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 $) (-1265 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))))) (-2313 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-3424 (($) NIL (|has| |#3| (-370)))) (-3031 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#3| $ (-566)) NIL)) (-3421 (((-112) $) NIL (|has| |#3| (-848)))) (-1523 (((-644 |#3|) $) NIL (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL (-2676 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-2307 (((-112) $) NIL (|has| |#3| (-848)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2565 (((-644 |#3|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3023 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#3| |#3|) $) NIL)) (-4138 (((-921) $) NIL (|has| |#3| (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-2430 (($ (-921)) NIL (|has| |#3| (-370)))) (-1944 (((-1119) $) NIL)) (-3771 ((|#3| $) NIL (|has| (-566) (-850)))) (-3598 (($ $ |#3|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099))))) (-1948 (((-644 |#3|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) 15)) (-1836 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-4059 (($ (-1265 |#3|)) NIL)) (-4356 (((-134)) NIL (|has| |#3| (-365)))) (-3009 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-1958 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-1265 |#3|) $) NIL) (((-862) $) NIL) (($ |#3|) NIL (|has| |#3| (-1099))) (($ (-566)) NIL (-2676 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099))))) (-2875 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415)))) (-2274 (($ $) NIL (|has| |#3| (-848)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL (-2676 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) CONST)) (-1316 (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))))) (-2865 (((-112) $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2844 (((-112) $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2833 (((-112) $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2916 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-2905 (($ $ $) NIL) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL (-2676 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049))))) (($ $ (-921)) NIL (-2676 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (* (($ |#2| $) 17) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ $ $) NIL (-2676 (-12 (|has| |#3| (-233)) (|has| |#3| (-1049))) (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049))) (|has| |#3| (-726)) (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-648 |#2|)) (-771) (-1049) (-648 |#2|)) (T -252))
-NIL
-(-13 (-238 |#1| |#3|) (-648 |#2|))
-((-2058 (((-644 (-771)) $) 56) (((-644 (-771)) $ |#3|) 59)) (-3095 (((-771) $) 58) (((-771) $ |#3|) 61)) (-1684 (($ $) 76)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-3077 (((-771) $ |#3|) 43) (((-771) $) 38)) (-1661 (((-1 $ (-771)) |#3|) 15) (((-1 $ (-771)) $) 88)) (-3766 ((|#4| $) 69)) (-2366 (((-112) $) 67)) (-2889 (($ $) 75)) (-1754 (($ $ (-644 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-644 |#3|) (-644 |#2|)) 100)) (-3009 (($ $ |#4|) NIL) (($ $ (-644 |#4|)) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) NIL) (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1416 (((-644 |#3|) $) 86)) (-3838 ((|#5| $) NIL) (((-771) $ |#4|) NIL) (((-644 (-771)) $ (-644 |#4|)) NIL) (((-771) $ |#3|) 49)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-409 (-566))) NIL) (($ $) NIL)))
-(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2725 (|#1| |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -1754 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#3| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#3| |#1|)) (-15 -1661 ((-1 |#1| (-771)) |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -3766 (|#4| |#1|)) (-15 -2366 ((-112) |#1|)) (-15 -3095 ((-771) |#1| |#3|)) (-15 -2058 ((-644 (-771)) |#1| |#3|)) (-15 -3095 ((-771) |#1|)) (-15 -2058 ((-644 (-771)) |#1|)) (-15 -3838 ((-771) |#1| |#3|)) (-15 -3077 ((-771) |#1|)) (-15 -3077 ((-771) |#1| |#3|)) (-15 -1416 ((-644 |#3|) |#1|)) (-15 -1661 ((-1 |#1| (-771)) |#3|)) (-15 -2725 (|#1| |#3|)) (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -3838 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -3838 ((-771) |#1| |#4|)) (-15 -2725 (|#1| |#4|)) (-15 -2023 ((-3 |#4| "failed") |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#4| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#4| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3838 (|#5| |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -3009 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3009 (|#1| |#1| |#4| (-771))) (-15 -3009 (|#1| |#1| (-644 |#4|))) (-15 -3009 (|#1| |#1| |#4|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1049) (-850) (-267 |#3|) (-793)) (T -253))
-NIL
-(-10 -8 (-15 -2725 (|#1| |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -1754 (|#1| |#1| (-644 |#3|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#3| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#3|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#3| |#1|)) (-15 -1661 ((-1 |#1| (-771)) |#1|)) (-15 -1684 (|#1| |#1|)) (-15 -2889 (|#1| |#1|)) (-15 -3766 (|#4| |#1|)) (-15 -2366 ((-112) |#1|)) (-15 -3095 ((-771) |#1| |#3|)) (-15 -2058 ((-644 (-771)) |#1| |#3|)) (-15 -3095 ((-771) |#1|)) (-15 -2058 ((-644 (-771)) |#1|)) (-15 -3838 ((-771) |#1| |#3|)) (-15 -3077 ((-771) |#1|)) (-15 -3077 ((-771) |#1| |#3|)) (-15 -1416 ((-644 |#3|) |#1|)) (-15 -1661 ((-1 |#1| (-771)) |#3|)) (-15 -2725 (|#1| |#3|)) (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -3838 ((-644 (-771)) |#1| (-644 |#4|))) (-15 -3838 ((-771) |#1| |#4|)) (-15 -2725 (|#1| |#4|)) (-15 -2023 ((-3 |#4| "failed") |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#4| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#4| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3838 (|#5| |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -3009 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3009 (|#1| |#1| |#4| (-771))) (-15 -3009 (|#1| |#1| (-644 |#4|))) (-15 -3009 (|#1| |#1| |#4|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2058 (((-644 (-771)) $) 216) (((-644 (-771)) $ |#2|) 214)) (-3095 (((-771) $) 215) (((-771) $ |#2|) 213)) (-4170 (((-644 |#3|) $) 112)) (-3983 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-1780 (($ $) 90 (|has| |#1| (-558)))) (-3286 (((-112) $) 92 (|has| |#1| (-558)))) (-3915 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-4113 (((-3 $ "failed") $ $) 20)) (-4350 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-2885 (($ $) 100 (|has| |#1| (-454)))) (-2555 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-1684 (($ $) 209)) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-3343 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) ((|#2| $) 224)) (-2994 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-4358 (($ $) 156)) (-3717 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-2313 (((-3 $ "failed") $) 37)) (-1520 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-4346 (((-644 $) $) 111)) (-1968 (((-112) $) 98 (|has| |#1| (-909)))) (-2385 (($ $ |#1| |#4| $) 174)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3077 (((-771) $ |#2|) 219) (((-771) $) 218)) (-3842 (((-112) $) 35)) (-2436 (((-771) $) 171)) (-4157 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-2966 (((-644 $) $) 128)) (-3819 (((-112) $) 154)) (-4145 (($ |#1| |#4|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |#3|) 122)) (-4090 ((|#4| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-1336 (($ (-1 |#4| |#4|) $) 173)) (-2101 (($ (-1 |#1| |#1|) $) 153)) (-1661 (((-1 $ (-771)) |#2|) 221) (((-1 $ (-771)) $) 208 (|has| |#1| (-233)))) (-1742 (((-3 |#3| "failed") $) 125)) (-4323 (($ $) 151)) (-4334 ((|#1| $) 150)) (-3766 ((|#3| $) 211)) (-1853 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-1390 (((-1157) $) 10)) (-2366 (((-112) $) 212)) (-2684 (((-3 (-644 $) "failed") $) 116)) (-1660 (((-3 (-644 $) "failed") $) 117)) (-2544 (((-3 (-2 (|:| |var| |#3|) (|:| -3428 (-771))) "failed") $) 115)) (-2889 (($ $) 210)) (-1944 (((-1119) $) 11)) (-4290 (((-112) $) 168)) (-4307 ((|#1| $) 169)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-1885 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-4018 (((-420 $) $) 101 (|has| |#1| (-909)))) (-3967 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) 204 (|has| |#1| (-233)))) (-2061 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3009 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-771)) 238 (|has| |#1| (-233))) (($ $ (-1175)) 236 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 235 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 234 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 233 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1416 (((-644 |#2|) $) 220)) (-3838 ((|#4| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131) (((-771) $ |#2|) 217)) (-2150 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 106 (-3144 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-409 (-566))) 80 (-2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) 170)) (-3623 ((|#1| $ |#4|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2655 (((-3 $ "failed") $) 81 (-2676 (-3144 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) 32 T CONST)) (-3977 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 91 (|has| |#1| (-558)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-771)) 237 (|has| |#1| (-233))) (($ $ (-1175)) 232 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 231 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 230 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 229 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-254 |#1| |#2| |#3| |#4|) (-140) (-1049) (-850) (-267 |t#2|) (-793)) (T -254))
-((-1661 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4)))) (-3077 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-3838 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-2058 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771)))) (-2058 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))) (-3095 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112)))) (-3766 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-793)) (-4 *2 (-267 *4)))) (-2889 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-1684 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-267 *3)) (-4 *5 (-793)))) (-1661 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6)))))
-(-13 (-949 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1038 |t#2|) (-10 -8 (-15 -1661 ((-1 $ (-771)) |t#2|)) (-15 -1416 ((-644 |t#2|) $)) (-15 -3077 ((-771) $ |t#2|)) (-15 -3077 ((-771) $)) (-15 -3838 ((-771) $ |t#2|)) (-15 -2058 ((-644 (-771)) $)) (-15 -3095 ((-771) $)) (-15 -2058 ((-644 (-771)) $ |t#2|)) (-15 -3095 ((-771) $ |t#2|)) (-15 -2366 ((-112) $)) (-15 -3766 (|t#3| $)) (-15 -2889 ($ $)) (-15 -1684 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-516 |t#2| |t#1|)) (-6 (-516 |t#2| $)) (-6 (-310 $)) (-15 -1661 ((-1 $ (-771)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2676 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#2| |#1|) |has| |#1| (-233)) ((-516 |#2| $) |has| |#1| (-233)) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#4| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#2|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) |has| |#1| (-909)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3614 ((|#1| $) 55)) (-3929 ((|#1| $) 45)) (-2261 (((-112) $ (-771)) 8)) (-2633 (($) 7 T CONST)) (-2184 (($ $) 61)) (-1970 (($ $) 49)) (-1455 ((|#1| |#1| $) 47)) (-1922 ((|#1| $) 46)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1653 (((-771) $) 62)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-2020 ((|#1| |#1| $) 53)) (-4283 ((|#1| |#1| $) 52)) (-1619 (($ |#1| $) 41)) (-1695 (((-771) $) 56)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3858 ((|#1| $) 63)) (-2578 ((|#1| $) 51)) (-4223 ((|#1| $) 50)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-3021 ((|#1| |#1| $) 59)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-2698 ((|#1| $) 60)) (-1539 (($) 58) (($ (-644 |#1|)) 57)) (-2279 (((-771) $) 44)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4044 ((|#1| $) 54)) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-3736 ((|#1| $) 64)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-255 |#1|) (-140) (-1215)) (T -255))
-((-1539 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-4 *1 (-255 *3)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))) (-2020 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))) (-4283 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))) (-1970 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(-13 (-1120 |t#1|) (-995 |t#1|) (-10 -8 (-15 -1539 ($)) (-15 -1539 ($ (-644 |t#1|))) (-15 -1695 ((-771) $)) (-15 -3614 (|t#1| $)) (-15 -4044 (|t#1| $)) (-15 -2020 (|t#1| |t#1| $)) (-15 -4283 (|t#1| |t#1| $)) (-15 -2578 (|t#1| $)) (-15 -4223 (|t#1| $)) (-15 -1970 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-995 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1120 |#1|) . T) ((-1215) . T))
-((-2138 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-1688 (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 173) (((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 171) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 176) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 172) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 164) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 163) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 145) (((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 143) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381))) 144) (((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 141)) (-2779 (((-1267) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381))) 175) (((-1267) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 174) (((-1267) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 178) (((-1267) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 177) (((-1267) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381))) 166) (((-1267) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264))) 165) (((-1267) (-1 (-943 (-225)) (-225)) (-1093 (-381))) 151) (((-1267) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264))) 150) (((-1267) (-879 (-1 (-225) (-225))) (-1093 (-381))) 149) (((-1267) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 148) (((-1266) (-877 (-1 (-225) (-225))) (-1093 (-381))) 113) (((-1266) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264))) 112) (((-1266) (-1 (-225) (-225)) (-1093 (-381))) 107) (((-1266) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264))) 105)))
-(((-256) (-10 -7 (-15 -2779 ((-1266) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -2779 ((-1266) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2779 ((-1267) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -2779 ((-1267) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2779 ((-1267) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -2138 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256))
-((-2138 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-1688 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *2 (-1266)) (-5 *1 (-256)))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256)))))
-(-10 -7 (-15 -2779 ((-1266) (-1 (-225) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) (-1 (-225) (-225)) (-1093 (-381)))) (-15 -2779 ((-1266) (-877 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) (-877 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2779 ((-1267) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-879 (-1 (-225) (-225))) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225)) (-1093 (-381)))) (-15 -2779 ((-1267) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-381)) (-1093 (-381)))) (-15 -2779 ((-1267) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -1688 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-882 (-1 (-225) (-225) (-225))) (-1093 (-381)) (-1093 (-381)))) (-15 -2138 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-2779 (((-1266) (-295 |#2|) (-1175) (-1175) (-644 (-264))) 101)))
-(((-257 |#1| |#2|) (-10 -7 (-15 -2779 ((-1266) (-295 |#2|) (-1175) (-1175) (-644 (-264))))) (-13 (-558) (-850) (-1038 (-566))) (-432 |#1|)) (T -257))
-((-2779 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1175)) (-5 *5 (-644 (-264))) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-850) (-1038 (-566)))) (-5 *2 (-1266)) (-5 *1 (-257 *6 *7)))))
-(-10 -7 (-15 -2779 ((-1266) (-295 |#2|) (-1175) (-1175) (-644 (-264)))))
-((-4081 (((-566) (-566)) 73)) (-4389 (((-566) (-566)) 74)) (-2798 (((-225) (-225)) 75)) (-1722 (((-1267) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225))) 72)) (-2669 (((-1267) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112)) 70)))
-(((-258) (-10 -7 (-15 -2669 ((-1267) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -1722 ((-1267) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -4081 ((-566) (-566))) (-15 -4389 ((-566) (-566))) (-15 -2798 ((-225) (-225))))) (T -258))
-((-2798 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-4389 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-4081 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))) (-1722 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *2 (-1267)) (-5 *1 (-258)))) (-2669 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225))) (-5 *5 (-112)) (-5 *2 (-1267)) (-5 *1 (-258)))))
-(-10 -7 (-15 -2669 ((-1267) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)) (-112))) (-15 -1722 ((-1267) (-1 (-169 (-225)) (-169 (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -4081 ((-566) (-566))) (-15 -4389 ((-566) (-566))) (-15 -2798 ((-225) (-225))))
-((-2725 (((-1091 (-381)) (-1091 (-317 |#1|))) 16)))
-(((-259 |#1|) (-10 -7 (-15 -2725 ((-1091 (-381)) (-1091 (-317 |#1|))))) (-13 (-850) (-558) (-614 (-381)))) (T -259))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-1091 (-317 *4))) (-4 *4 (-13 (-850) (-558) (-614 (-381)))) (-5 *2 (-1091 (-381))) (-5 *1 (-259 *4)))))
-(-10 -7 (-15 -2725 ((-1091 (-381)) (-1091 (-317 |#1|)))))
-((-1688 (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 75) (((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 74) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381))) 65) (((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 64) (((-1132 (-225)) (-879 |#1|) (-1091 (-381))) 56) (((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 55)) (-2779 (((-1267) (-882 |#1|) (-1091 (-381)) (-1091 (-381))) 78) (((-1267) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 77) (((-1267) |#1| (-1091 (-381)) (-1091 (-381))) 68) (((-1267) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264))) 67) (((-1267) (-879 |#1|) (-1091 (-381))) 60) (((-1267) (-879 |#1|) (-1091 (-381)) (-644 (-264))) 59) (((-1266) (-877 |#1|) (-1091 (-381))) 47) (((-1266) (-877 |#1|) (-1091 (-381)) (-644 (-264))) 46) (((-1266) |#1| (-1091 (-381))) 38) (((-1266) |#1| (-1091 (-381)) (-644 (-264))) 36)))
-(((-260 |#1|) (-10 -7 (-15 -2779 ((-1266) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) |#1| (-1091 (-381)))) (-15 -2779 ((-1266) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) (-877 |#1|) (-1091 (-381)))) (-15 -2779 ((-1267) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-879 |#1|) (-1091 (-381)))) (-15 -1688 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -2779 ((-1267) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -1688 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -2779 ((-1267) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -1688 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381))))) (-13 (-614 (-538)) (-1099))) (T -260))
-((-1688 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-1688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267)) (-5 *1 (-260 *5)))) (-2779 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267)) (-5 *1 (-260 *6)))) (-1688 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-1688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2779 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1267)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2779 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *5)))) (-1688 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *6)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267)) (-5 *1 (-260 *5)))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267)) (-5 *1 (-260 *6)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-877 *5)) (-5 *4 (-1091 (-381))) (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *5)))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-877 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266)) (-5 *1 (-260 *6)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))) (-2779 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099))))))
-(-10 -7 (-15 -2779 ((-1266) |#1| (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) |#1| (-1091 (-381)))) (-15 -2779 ((-1266) (-877 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1266) (-877 |#1|) (-1091 (-381)))) (-15 -2779 ((-1267) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-879 |#1|) (-1091 (-381)))) (-15 -1688 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-879 |#1|) (-1091 (-381)))) (-15 -2779 ((-1267) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -1688 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) |#1| (-1091 (-381)) (-1091 (-381)))) (-15 -2779 ((-1267) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -2779 ((-1267) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))) (-15 -1688 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)) (-644 (-264)))) (-15 -1688 ((-1132 (-225)) (-882 |#1|) (-1091 (-381)) (-1091 (-381)))))
-((-2779 (((-1267) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264))) 23) (((-1267) (-644 (-225)) (-644 (-225)) (-644 (-225))) 24) (((-1266) (-644 (-943 (-225))) (-644 (-264))) 16) (((-1266) (-644 (-943 (-225)))) 17) (((-1266) (-644 (-225)) (-644 (-225)) (-644 (-264))) 20) (((-1266) (-644 (-225)) (-644 (-225))) 21)))
-(((-261) (-10 -7 (-15 -2779 ((-1266) (-644 (-225)) (-644 (-225)))) (-15 -2779 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -2779 ((-1266) (-644 (-943 (-225))))) (-15 -2779 ((-1266) (-644 (-943 (-225))) (-644 (-264)))) (-15 -2779 ((-1267) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -2779 ((-1267) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264)))))) (T -261))
-((-2779 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-261)))) (-2779 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1267)) (-5 *1 (-261)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-2779 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-261)))) (-2779 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1266)) (-5 *1 (-261)))))
-(-10 -7 (-15 -2779 ((-1266) (-644 (-225)) (-644 (-225)))) (-15 -2779 ((-1266) (-644 (-225)) (-644 (-225)) (-644 (-264)))) (-15 -2779 ((-1266) (-644 (-943 (-225))))) (-15 -2779 ((-1266) (-644 (-943 (-225))) (-644 (-264)))) (-15 -2779 ((-1267) (-644 (-225)) (-644 (-225)) (-644 (-225)))) (-15 -2779 ((-1267) (-644 (-225)) (-644 (-225)) (-644 (-225)) (-644 (-264)))))
-((-2882 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3273 (((-921) (-644 (-264)) (-921)) 52)) (-2714 (((-921) (-644 (-264)) (-921)) 51)) (-3418 (((-644 (-381)) (-644 (-264)) (-644 (-381))) 68)) (-3893 (((-381) (-644 (-264)) (-381)) 57)) (-4272 (((-921) (-644 (-264)) (-921)) 53)) (-1563 (((-112) (-644 (-264)) (-112)) 27)) (-1772 (((-1157) (-644 (-264)) (-1157)) 19)) (-3559 (((-1157) (-644 (-264)) (-1157)) 26)) (-4178 (((-1132 (-225)) (-644 (-264))) 46)) (-1845 (((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381)))) 40)) (-3344 (((-874) (-644 (-264)) (-874)) 32)) (-1335 (((-874) (-644 (-264)) (-874)) 33)) (-3468 (((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225)))) 63)) (-4130 (((-112) (-644 (-264)) (-112)) 14)) (-4150 (((-112) (-644 (-264)) (-112)) 13)))
-(((-262) (-10 -7 (-15 -4150 ((-112) (-644 (-264)) (-112))) (-15 -4130 ((-112) (-644 (-264)) (-112))) (-15 -2882 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1772 ((-1157) (-644 (-264)) (-1157))) (-15 -3559 ((-1157) (-644 (-264)) (-1157))) (-15 -1563 ((-112) (-644 (-264)) (-112))) (-15 -3344 ((-874) (-644 (-264)) (-874))) (-15 -1335 ((-874) (-644 (-264)) (-874))) (-15 -1845 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -2714 ((-921) (-644 (-264)) (-921))) (-15 -3273 ((-921) (-644 (-264)) (-921))) (-15 -4178 ((-1132 (-225)) (-644 (-264)))) (-15 -4272 ((-921) (-644 (-264)) (-921))) (-15 -3893 ((-381) (-644 (-264)) (-381))) (-15 -3468 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3418 ((-644 (-381)) (-644 (-264)) (-644 (-381)))))) (T -262))
-((-3418 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3468 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3893 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4272 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4178 (*1 *2 *3) (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262)))) (-3273 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2714 (*1 *2 *3 *2) (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1845 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1335 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3344 (*1 *2 *3 *2) (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-3559 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-1772 (*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-2882 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4130 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))) (-4150 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))))
-(-10 -7 (-15 -4150 ((-112) (-644 (-264)) (-112))) (-15 -4130 ((-112) (-644 (-264)) (-112))) (-15 -2882 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-644 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1772 ((-1157) (-644 (-264)) (-1157))) (-15 -3559 ((-1157) (-644 (-264)) (-1157))) (-15 -1563 ((-112) (-644 (-264)) (-112))) (-15 -3344 ((-874) (-644 (-264)) (-874))) (-15 -1335 ((-874) (-644 (-264)) (-874))) (-15 -1845 ((-644 (-1093 (-381))) (-644 (-264)) (-644 (-1093 (-381))))) (-15 -2714 ((-921) (-644 (-264)) (-921))) (-15 -3273 ((-921) (-644 (-264)) (-921))) (-15 -4178 ((-1132 (-225)) (-644 (-264)))) (-15 -4272 ((-921) (-644 (-264)) (-921))) (-15 -3893 ((-381) (-644 (-264)) (-381))) (-15 -3468 ((-1 (-943 (-225)) (-943 (-225))) (-644 (-264)) (-1 (-943 (-225)) (-943 (-225))))) (-15 -3418 ((-644 (-381)) (-644 (-264)) (-644 (-381)))))
-((-1899 (((-3 |#1| "failed") (-644 (-264)) (-1175)) 17)))
-(((-263 |#1|) (-10 -7 (-15 -1899 ((-3 |#1| "failed") (-644 (-264)) (-1175)))) (-1215)) (T -263))
-((-1899 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *1 (-263 *2)) (-4 *2 (-1215)))))
-(-10 -7 (-15 -1899 ((-3 |#1| "failed") (-644 (-264)) (-1175))))
-((-3979 (((-112) $ $) NIL)) (-2882 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3273 (($ (-921)) 81)) (-2714 (($ (-921)) 80)) (-4082 (($ (-644 (-381))) 87)) (-3893 (($ (-381)) 66)) (-4272 (($ (-921)) 82)) (-1563 (($ (-112)) 33)) (-1772 (($ (-1157)) 28)) (-3559 (($ (-1157)) 29)) (-4178 (($ (-1132 (-225))) 76)) (-1845 (($ (-644 (-1093 (-381)))) 72)) (-3192 (($ (-644 (-1093 (-381)))) 68) (($ (-644 (-1093 (-409 (-566))))) 71)) (-1640 (($ (-381)) 38) (($ (-874)) 42)) (-3357 (((-112) (-644 $) (-1175)) 100)) (-1899 (((-3 (-52) "failed") (-644 $) (-1175)) 102)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3248 (($ (-381)) 43) (($ (-874)) 44)) (-2803 (($ (-1 (-943 (-225)) (-943 (-225)))) 65)) (-3468 (($ (-1 (-943 (-225)) (-943 (-225)))) 83)) (-1468 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2725 (((-862) $) 93)) (-2364 (($ (-112)) 34) (($ (-644 (-1093 (-381)))) 60)) (-1479 (((-112) $ $) NIL)) (-4150 (($ (-112)) 35)) (-2817 (((-112) $ $) 97)))
-(((-264) (-13 (-1099) (-10 -8 (-15 -4150 ($ (-112))) (-15 -2364 ($ (-112))) (-15 -2882 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1772 ($ (-1157))) (-15 -3559 ($ (-1157))) (-15 -1563 ($ (-112))) (-15 -2364 ($ (-644 (-1093 (-381))))) (-15 -2803 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1640 ($ (-381))) (-15 -1640 ($ (-874))) (-15 -3248 ($ (-381))) (-15 -3248 ($ (-874))) (-15 -1468 ($ (-1 (-225) (-225)))) (-15 -1468 ($ (-1 (-225) (-225) (-225)))) (-15 -1468 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3893 ($ (-381))) (-15 -3192 ($ (-644 (-1093 (-381))))) (-15 -3192 ($ (-644 (-1093 (-409 (-566)))))) (-15 -1845 ($ (-644 (-1093 (-381))))) (-15 -4178 ($ (-1132 (-225)))) (-15 -2714 ($ (-921))) (-15 -3273 ($ (-921))) (-15 -4272 ($ (-921))) (-15 -3468 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -4082 ($ (-644 (-381)))) (-15 -1899 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -3357 ((-112) (-644 $) (-1175)))))) (T -264))
-((-4150 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2364 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-1772 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-3559 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2364 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-2803 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-3248 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3248 (*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-3893 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3192 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-3192 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264)))) (-1845 (*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))) (-4178 (*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264)))) (-2714 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-3273 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-4272 (*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))) (-3468 (*1 *1 *2) (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264)))) (-1899 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52)) (-5 *1 (-264)))) (-3357 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112)) (-5 *1 (-264)))))
-(-13 (-1099) (-10 -8 (-15 -4150 ($ (-112))) (-15 -2364 ($ (-112))) (-15 -2882 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1772 ($ (-1157))) (-15 -3559 ($ (-1157))) (-15 -1563 ($ (-112))) (-15 -2364 ($ (-644 (-1093 (-381))))) (-15 -2803 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -1640 ($ (-381))) (-15 -1640 ($ (-874))) (-15 -3248 ($ (-381))) (-15 -3248 ($ (-874))) (-15 -1468 ($ (-1 (-225) (-225)))) (-15 -1468 ($ (-1 (-225) (-225) (-225)))) (-15 -1468 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3893 ($ (-381))) (-15 -3192 ($ (-644 (-1093 (-381))))) (-15 -3192 ($ (-644 (-1093 (-409 (-566)))))) (-15 -1845 ($ (-644 (-1093 (-381))))) (-15 -4178 ($ (-1132 (-225)))) (-15 -2714 ($ (-921))) (-15 -3273 ($ (-921))) (-15 -4272 ($ (-921))) (-15 -3468 ($ (-1 (-943 (-225)) (-943 (-225))))) (-15 -4082 ($ (-644 (-381)))) (-15 -1899 ((-3 (-52) "failed") (-644 $) (-1175))) (-15 -3357 ((-112) (-644 $) (-1175)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2058 (((-644 (-771)) $) NIL) (((-644 (-771)) $ |#2|) NIL)) (-3095 (((-771) $) NIL) (((-771) $ |#2|) NIL)) (-4170 (((-644 |#3|) $) NIL)) (-3983 (((-1171 $) $ |#3|) NIL) (((-1171 |#1|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 |#3|)) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1684 (($ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1124 |#1| |#2|) "failed") $) 23)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1124 |#1| |#2|) $) NIL)) (-2994 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-533 |#3|) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))))) (-3077 (((-771) $ |#2|) NIL) (((-771) $) 10)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-4157 (($ (-1171 |#1|) |#3|) NIL) (($ (-1171 $) |#3|) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |#3|) NIL)) (-4090 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL)) (-1336 (($ (-1 (-533 |#3|) (-533 |#3|)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1661 (((-1 $ (-771)) |#2|) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-1742 (((-3 |#3| "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-3766 ((|#3| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-2366 (((-112) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| |#3|) (|:| -3428 (-771))) "failed") $) NIL)) (-2889 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-644 |#3|) (-644 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-644 |#3|) (-644 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 |#2|) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-2061 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-3009 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1416 (((-644 |#2|) $) NIL)) (-3838 (((-533 |#3|) $) NIL) (((-771) $ |#3|) NIL) (((-644 (-771)) $ (-644 |#3|)) NIL) (((-771) $ |#2|) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))))) (-4330 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ |#3|) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1124 |#1| |#2|)) 32) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-533 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ |#3|) NIL) (($ $ (-644 |#3|)) NIL) (($ $ |#3| (-771)) NIL) (($ $ (-644 |#3|) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-533 |#3|)) (-1038 (-1124 |#1| |#2|))) (-1049) (-850) (-267 |#2|)) (T -265))
-NIL
-(-13 (-254 |#1| |#2| |#3| (-533 |#3|)) (-1038 (-1124 |#1| |#2|)))
-((-3095 (((-771) $) 37)) (-2023 (((-3 |#2| "failed") $) 22)) (-3343 ((|#2| $) 33)) (-3009 (($ $) 14) (($ $ (-771)) 18)) (-2725 (((-862) $) 32) (($ |#2|) 11)) (-2817 (((-112) $ $) 26)) (-2833 (((-112) $ $) 36)))
-(((-266 |#1| |#2|) (-10 -8 (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -3095 ((-771) |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|))) (-267 |#2|) (-850)) (T -266))
-NIL
-(-10 -8 (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -3095 ((-771) |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3095 (((-771) $) 23)) (-2928 ((|#1| $) 24)) (-2023 (((-3 |#1| "failed") $) 28)) (-3343 ((|#1| $) 29)) (-3077 (((-771) $) 25)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1661 (($ |#1| (-771)) 26)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3009 (($ $) 22) (($ $ (-771)) 21)) (-2725 (((-862) $) 12) (($ |#1|) 27)) (-1479 (((-112) $ $) 9)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)))
-(((-267 |#1|) (-140) (-850)) (T -267))
-((-2725 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-1661 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3009 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850)))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850)))))
-(-13 (-850) (-1038 |t#1|) (-10 -8 (-15 -1661 ($ |t#1| (-771))) (-15 -3077 ((-771) $)) (-15 -2928 (|t#1| $)) (-15 -3095 ((-771) $)) (-15 -3009 ($ $)) (-15 -3009 ($ $ (-771))) (-15 -2725 ($ |t#1|))))
-(((-102) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-850) . T) ((-1038 |#1|) . T) ((-1099) . T))
-((-4170 (((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 54)) (-1509 (((-644 (-1175)) (-317 (-225)) (-771)) 96)) (-4207 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-2425 (((-317 (-225)) (-317 (-225))) 82)) (-3649 (((-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 39)) (-2407 (((-112) (-644 (-317 (-225)))) 106)) (-2456 (((-112) (-317 (-225))) 37)) (-4305 (((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))))) 134)) (-1716 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 110)) (-2587 (((-644 (-317 (-225))) (-644 (-317 (-225)))) 108)) (-2913 (((-689 (-225)) (-644 (-317 (-225))) (-771)) 122)) (-1698 (((-112) (-317 (-225))) 32) (((-112) (-644 (-317 (-225)))) 107)) (-3056 (((-644 (-225)) (-644 (-843 (-225))) (-225)) 15)) (-3941 (((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 128)) (-4009 (((-1035) (-1175) (-1035)) 47)))
-(((-268) (-10 -7 (-15 -3056 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -3649 ((-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -4207 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2425 ((-317 (-225)) (-317 (-225)))) (-15 -2407 ((-112) (-644 (-317 (-225))))) (-15 -1698 ((-112) (-644 (-317 (-225))))) (-15 -1698 ((-112) (-317 (-225)))) (-15 -2913 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -2587 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -1716 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2456 ((-112) (-317 (-225)))) (-15 -4170 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -1509 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -4009 ((-1035) (-1175) (-1035))) (-15 -3941 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -4305 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))))))) (T -268))
-((-4305 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))))) (-5 *2 (-644 (-1157))) (-5 *1 (-268)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-4009 (*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268)))) (-1509 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) (-5 *2 (-644 (-1175))) (-5 *1 (-268)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1716 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-2587 (*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))) (-2913 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-268)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2425 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-4207 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-3649 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-268)))) (-3056 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4)) (-5 *1 (-268)))))
-(-10 -7 (-15 -3056 ((-644 (-225)) (-644 (-843 (-225))) (-225))) (-15 -3649 ((-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -4207 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2425 ((-317 (-225)) (-317 (-225)))) (-15 -2407 ((-112) (-644 (-317 (-225))))) (-15 -1698 ((-112) (-644 (-317 (-225))))) (-15 -1698 ((-112) (-317 (-225)))) (-15 -2913 ((-689 (-225)) (-644 (-317 (-225))) (-771))) (-15 -2587 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -1716 ((-644 (-317 (-225))) (-644 (-317 (-225))))) (-15 -2456 ((-112) (-317 (-225)))) (-15 -4170 ((-644 (-1175)) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -1509 ((-644 (-1175)) (-317 (-225)) (-771))) (-15 -4009 ((-1035) (-1175) (-1035))) (-15 -3941 ((-381) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -4305 ((-644 (-1157)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))))))
-((-3979 (((-112) $ $) NIL)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 56)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-269) (-839)) (T -269))
-NIL
-(-839)
-((-3979 (((-112) $ $) NIL)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 72) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 63)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 41) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 43)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-270) (-839)) (T -270))
-NIL
-(-839)
-((-3979 (((-112) $ $) NIL)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 90) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 85)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 52) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 65)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-271) (-839)) (T -271))
-NIL
-(-839)
-((-3979 (((-112) $ $) NIL)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 73)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 45) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-272) (-839)) (T -272))
-NIL
-(-839)
-((-3979 (((-112) $ $) NIL)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 65)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 31) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-273) (-839)) (T -273))
-NIL
-(-839)
-((-3979 (((-112) $ $) NIL)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 90)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 33) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-274) (-839)) (T -274))
-NIL
-(-839)
-((-3979 (((-112) $ $) NIL)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 95)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 32) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-275) (-839)) (T -275))
-NIL
-(-839)
-((-3979 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2125 (((-644 (-566)) $) 29)) (-3838 (((-771) $) 27)) (-2725 (((-862) $) 36) (($ (-644 (-566))) 23)) (-1479 (((-112) $ $) NIL)) (-2918 (($ (-771)) 33)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 9)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 17)))
-(((-276) (-13 (-850) (-10 -8 (-15 -2725 ($ (-644 (-566)))) (-15 -3838 ((-771) $)) (-15 -2125 ((-644 (-566)) $)) (-15 -2918 ($ (-771)))))) (T -276))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))) (-2918 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276)))))
-(-13 (-850) (-10 -8 (-15 -2725 ($ (-644 (-566)))) (-15 -3838 ((-771) $)) (-15 -2125 ((-644 (-566)) $)) (-15 -2918 ($ (-771)))))
-((-3622 ((|#2| |#2|) 77)) (-3474 ((|#2| |#2|) 65)) (-1470 (((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3601 ((|#2| |#2|) 75)) (-3449 ((|#2| |#2|) 63)) (-3648 ((|#2| |#2|) 79)) (-3500 ((|#2| |#2|) 67)) (-2722 ((|#2|) 46)) (-3959 (((-114) (-114)) 100)) (-1565 ((|#2| |#2|) 61)) (-4250 (((-112) |#2|) 147)) (-2782 ((|#2| |#2|) 195)) (-1697 ((|#2| |#2|) 171)) (-3037 ((|#2|) 59)) (-2685 ((|#2|) 58)) (-1751 ((|#2| |#2|) 191)) (-1476 ((|#2| |#2|) 167)) (-4237 ((|#2| |#2|) 199)) (-2466 ((|#2| |#2|) 175)) (-2330 ((|#2| |#2|) 163)) (-2334 ((|#2| |#2|) 165)) (-3704 ((|#2| |#2|) 201)) (-3271 ((|#2| |#2|) 177)) (-4003 ((|#2| |#2|) 197)) (-4326 ((|#2| |#2|) 173)) (-1683 ((|#2| |#2|) 193)) (-2077 ((|#2| |#2|) 169)) (-3061 ((|#2| |#2|) 207)) (-3313 ((|#2| |#2|) 183)) (-1902 ((|#2| |#2|) 203)) (-4219 ((|#2| |#2|) 179)) (-3331 ((|#2| |#2|) 211)) (-1796 ((|#2| |#2|) 187)) (-2559 ((|#2| |#2|) 213)) (-1365 ((|#2| |#2|) 189)) (-4194 ((|#2| |#2|) 209)) (-3745 ((|#2| |#2|) 185)) (-3506 ((|#2| |#2|) 205)) (-4226 ((|#2| |#2|) 181)) (-1535 ((|#2| |#2|) 62)) (-3658 ((|#2| |#2|) 80)) (-3515 ((|#2| |#2|) 68)) (-3635 ((|#2| |#2|) 78)) (-3488 ((|#2| |#2|) 66)) (-3612 ((|#2| |#2|) 76)) (-3461 ((|#2| |#2|) 64)) (-2827 (((-112) (-114)) 98)) (-3696 ((|#2| |#2|) 83)) (-3553 ((|#2| |#2|) 71)) (-3670 ((|#2| |#2|) 81)) (-3528 ((|#2| |#2|) 69)) (-3719 ((|#2| |#2|) 85)) (-3577 ((|#2| |#2|) 73)) (-3076 ((|#2| |#2|) 86)) (-3589 ((|#2| |#2|) 74)) (-3705 ((|#2| |#2|) 84)) (-3566 ((|#2| |#2|) 72)) (-3682 ((|#2| |#2|) 82)) (-3541 ((|#2| |#2|) 70)))
-(((-277 |#1| |#2|) (-10 -7 (-15 -1535 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -3461 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3515 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3566 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -3601 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3682 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -2722 (|#2|)) (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -2685 (|#2|)) (-15 -3037 (|#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -2077 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -4326 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -4219 (|#2| |#2|)) (-15 -4226 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -1796 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4237 (|#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -3331 (|#2| |#2|)) (-15 -2559 (|#2| |#2|)) (-15 -1470 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4250 ((-112) |#2|))) (-558) (-13 (-432 |#1|) (-1002))) (T -277))
-((-4250 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-432 *4) (-1002))))) (-1470 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558)) (-5 *1 (-277 *4 *2)))) (-2559 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3331 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4194 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3061 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3506 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3704 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4237 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4003 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2782 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1683 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1751 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1796 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3745 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4226 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4219 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2466 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-4326 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1697 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2077 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1476 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2330 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3037 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-2685 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002))))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002))))) (-2722 (*1 *2) (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2)) (-4 *3 (-558)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3705 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3682 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3601 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3577 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3566 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3528 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3515 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002))))))
-(-10 -7 (-15 -1535 (|#2| |#2|)) (-15 -1565 (|#2| |#2|)) (-15 -3449 (|#2| |#2|)) (-15 -3461 (|#2| |#2|)) (-15 -3474 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3500 (|#2| |#2|)) (-15 -3515 (|#2| |#2|)) (-15 -3528 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -3553 (|#2| |#2|)) (-15 -3566 (|#2| |#2|)) (-15 -3577 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -3601 (|#2| |#2|)) (-15 -3612 (|#2| |#2|)) (-15 -3622 (|#2| |#2|)) (-15 -3635 (|#2| |#2|)) (-15 -3648 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (-15 -3670 (|#2| |#2|)) (-15 -3682 (|#2| |#2|)) (-15 -3696 (|#2| |#2|)) (-15 -3705 (|#2| |#2|)) (-15 -3719 (|#2| |#2|)) (-15 -3076 (|#2| |#2|)) (-15 -2722 (|#2|)) (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -2685 (|#2|)) (-15 -3037 (|#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2330 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -2077 (|#2| |#2|)) (-15 -1697 (|#2| |#2|)) (-15 -4326 (|#2| |#2|)) (-15 -2466 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -4219 (|#2| |#2|)) (-15 -4226 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -3745 (|#2| |#2|)) (-15 -1796 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -1751 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -4003 (|#2| |#2|)) (-15 -4237 (|#2| |#2|)) (-15 -3704 (|#2| |#2|)) (-15 -1902 (|#2| |#2|)) (-15 -3506 (|#2| |#2|)) (-15 -3061 (|#2| |#2|)) (-15 -4194 (|#2| |#2|)) (-15 -3331 (|#2| |#2|)) (-15 -2559 (|#2| |#2|)) (-15 -1470 ((-3 |#2| "failed") |#2| (-644 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -4250 ((-112) |#2|)))
-((-1345 (((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175)) 153)) (-3707 ((|#2| (-409 (-566)) |#2|) 49)) (-2984 ((|#2| |#2| (-612 |#2|)) 146)) (-2940 (((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175)) 145)) (-2474 ((|#2| |#2| (-1175)) 20) ((|#2| |#2|) 23)) (-2174 ((|#2| |#2| (-1175)) 159) ((|#2| |#2|) 157)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -2174 (|#2| |#2|)) (-15 -2174 (|#2| |#2| (-1175))) (-15 -2940 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -2474 (|#2| |#2|)) (-15 -2474 (|#2| |#2| (-1175))) (-15 -1345 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -2984 (|#2| |#2| (-612 |#2|))) (-15 -3707 (|#2| (-409 (-566)) |#2|))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|))) (T -278))
-((-3707 (*1 *2 *3 *2) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))) (-2984 (*1 *2 *2 *3) (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)))) (-1345 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175)) (-4 *2 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *5 *2)))) (-2474 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))) (-2474 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))) (-2940 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3))) (|:| |vals| (-644 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-2174 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))) (-2174 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))))
-(-10 -7 (-15 -2174 (|#2| |#2|)) (-15 -2174 (|#2| |#2| (-1175))) (-15 -2940 ((-2 (|:| |func| |#2|) (|:| |kers| (-644 (-612 |#2|))) (|:| |vals| (-644 |#2|))) |#2| (-1175))) (-15 -2474 (|#2| |#2|)) (-15 -2474 (|#2| |#2| (-1175))) (-15 -1345 ((-3 |#2| "failed") (-644 (-612 |#2|)) |#2| (-1175))) (-15 -2984 (|#2| |#2| (-612 |#2|))) (-15 -3707 (|#2| (-409 (-566)) |#2|)))
-((-4068 (((-3 |#3| "failed") |#3|) 120)) (-3622 ((|#3| |#3|) 142)) (-3494 (((-3 |#3| "failed") |#3|) 89)) (-3474 ((|#3| |#3|) 132)) (-4284 (((-3 |#3| "failed") |#3|) 65)) (-3601 ((|#3| |#3|) 140)) (-3961 (((-3 |#3| "failed") |#3|) 53)) (-3449 ((|#3| |#3|) 130)) (-1547 (((-3 |#3| "failed") |#3|) 122)) (-3648 ((|#3| |#3|) 144)) (-3079 (((-3 |#3| "failed") |#3|) 91)) (-3500 ((|#3| |#3|) 134)) (-4163 (((-3 |#3| "failed") |#3| (-771)) 41)) (-4030 (((-3 |#3| "failed") |#3|) 81)) (-1565 ((|#3| |#3|) 129)) (-2662 (((-3 |#3| "failed") |#3|) 51)) (-1535 ((|#3| |#3|) 128)) (-3292 (((-3 |#3| "failed") |#3|) 123)) (-3658 ((|#3| |#3|) 145)) (-1434 (((-3 |#3| "failed") |#3|) 92)) (-3515 ((|#3| |#3|) 135)) (-2501 (((-3 |#3| "failed") |#3|) 121)) (-3635 ((|#3| |#3|) 143)) (-2144 (((-3 |#3| "failed") |#3|) 90)) (-3488 ((|#3| |#3|) 133)) (-3657 (((-3 |#3| "failed") |#3|) 67)) (-3612 ((|#3| |#3|) 141)) (-2675 (((-3 |#3| "failed") |#3|) 55)) (-3461 ((|#3| |#3|) 131)) (-3695 (((-3 |#3| "failed") |#3|) 73)) (-3696 ((|#3| |#3|) 148)) (-3533 (((-3 |#3| "failed") |#3|) 114)) (-3553 ((|#3| |#3|) 154)) (-4146 (((-3 |#3| "failed") |#3|) 69)) (-3670 ((|#3| |#3|) 146)) (-1611 (((-3 |#3| "failed") |#3|) 57)) (-3528 ((|#3| |#3|) 136)) (-2111 (((-3 |#3| "failed") |#3|) 77)) (-3719 ((|#3| |#3|) 150)) (-2240 (((-3 |#3| "failed") |#3|) 61)) (-3577 ((|#3| |#3|) 138)) (-4184 (((-3 |#3| "failed") |#3|) 79)) (-3076 ((|#3| |#3|) 151)) (-3318 (((-3 |#3| "failed") |#3|) 63)) (-3589 ((|#3| |#3|) 139)) (-4196 (((-3 |#3| "failed") |#3|) 75)) (-3705 ((|#3| |#3|) 149)) (-2939 (((-3 |#3| "failed") |#3|) 117)) (-3566 ((|#3| |#3|) 155)) (-2255 (((-3 |#3| "failed") |#3|) 71)) (-3682 ((|#3| |#3|) 147)) (-3727 (((-3 |#3| "failed") |#3|) 59)) (-3541 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-409 (-566))) 47 (|has| |#1| (-365)))))
-(((-279 |#1| |#2| |#3|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -1535 (|#3| |#3|)) (-15 -1565 (|#3| |#3|)) (-15 -3449 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3515 (|#3| |#3|)) (-15 -3528 (|#3| |#3|)) (-15 -3541 (|#3| |#3|)) (-15 -3553 (|#3| |#3|)) (-15 -3566 (|#3| |#3|)) (-15 -3577 (|#3| |#3|)) (-15 -3589 (|#3| |#3|)) (-15 -3601 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3658 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3682 (|#3| |#3|)) (-15 -3696 (|#3| |#3|)) (-15 -3705 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)))) (-38 (-409 (-566))) (-1256 |#1|) (-1227 |#1| |#2|)) (T -279))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1256 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1227 *4 *5)))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3515 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3528 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3566 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3577 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3601 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3682 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3705 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4)))))
-(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -1535 (|#3| |#3|)) (-15 -1565 (|#3| |#3|)) (-15 -3449 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3515 (|#3| |#3|)) (-15 -3528 (|#3| |#3|)) (-15 -3541 (|#3| |#3|)) (-15 -3553 (|#3| |#3|)) (-15 -3566 (|#3| |#3|)) (-15 -3577 (|#3| |#3|)) (-15 -3589 (|#3| |#3|)) (-15 -3601 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3658 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3682 (|#3| |#3|)) (-15 -3696 (|#3| |#3|)) (-15 -3705 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3076 (|#3| |#3|))))
-((-4068 (((-3 |#3| "failed") |#3|) 70)) (-3622 ((|#3| |#3|) 137)) (-3494 (((-3 |#3| "failed") |#3|) 54)) (-3474 ((|#3| |#3|) 125)) (-4284 (((-3 |#3| "failed") |#3|) 66)) (-3601 ((|#3| |#3|) 135)) (-3961 (((-3 |#3| "failed") |#3|) 50)) (-3449 ((|#3| |#3|) 123)) (-1547 (((-3 |#3| "failed") |#3|) 74)) (-3648 ((|#3| |#3|) 139)) (-3079 (((-3 |#3| "failed") |#3|) 58)) (-3500 ((|#3| |#3|) 127)) (-4163 (((-3 |#3| "failed") |#3| (-771)) 38)) (-4030 (((-3 |#3| "failed") |#3|) 48)) (-1565 ((|#3| |#3|) 111)) (-2662 (((-3 |#3| "failed") |#3|) 46)) (-1535 ((|#3| |#3|) 122)) (-3292 (((-3 |#3| "failed") |#3|) 76)) (-3658 ((|#3| |#3|) 140)) (-1434 (((-3 |#3| "failed") |#3|) 60)) (-3515 ((|#3| |#3|) 128)) (-2501 (((-3 |#3| "failed") |#3|) 72)) (-3635 ((|#3| |#3|) 138)) (-2144 (((-3 |#3| "failed") |#3|) 56)) (-3488 ((|#3| |#3|) 126)) (-3657 (((-3 |#3| "failed") |#3|) 68)) (-3612 ((|#3| |#3|) 136)) (-2675 (((-3 |#3| "failed") |#3|) 52)) (-3461 ((|#3| |#3|) 124)) (-3695 (((-3 |#3| "failed") |#3|) 78)) (-3696 ((|#3| |#3|) 143)) (-3533 (((-3 |#3| "failed") |#3|) 62)) (-3553 ((|#3| |#3|) 131)) (-4146 (((-3 |#3| "failed") |#3|) 112)) (-3670 ((|#3| |#3|) 141)) (-1611 (((-3 |#3| "failed") |#3|) 100)) (-3528 ((|#3| |#3|) 129)) (-2111 (((-3 |#3| "failed") |#3|) 116)) (-3719 ((|#3| |#3|) 145)) (-2240 (((-3 |#3| "failed") |#3|) 107)) (-3577 ((|#3| |#3|) 133)) (-4184 (((-3 |#3| "failed") |#3|) 117)) (-3076 ((|#3| |#3|) 146)) (-3318 (((-3 |#3| "failed") |#3|) 109)) (-3589 ((|#3| |#3|) 134)) (-4196 (((-3 |#3| "failed") |#3|) 80)) (-3705 ((|#3| |#3|) 144)) (-2939 (((-3 |#3| "failed") |#3|) 64)) (-3566 ((|#3| |#3|) 132)) (-2255 (((-3 |#3| "failed") |#3|) 113)) (-3682 ((|#3| |#3|) 142)) (-3727 (((-3 |#3| "failed") |#3|) 103)) (-3541 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-409 (-566))) 44 (|has| |#1| (-365)))))
-(((-280 |#1| |#2| |#3| |#4|) (-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -1535 (|#3| |#3|)) (-15 -1565 (|#3| |#3|)) (-15 -3449 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3515 (|#3| |#3|)) (-15 -3528 (|#3| |#3|)) (-15 -3541 (|#3| |#3|)) (-15 -3553 (|#3| |#3|)) (-15 -3566 (|#3| |#3|)) (-15 -3577 (|#3| |#3|)) (-15 -3589 (|#3| |#3|)) (-15 -3601 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3658 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3682 (|#3| |#3|)) (-15 -3696 (|#3| |#3|)) (-15 -3705 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3076 (|#3| |#3|)))) (-38 (-409 (-566))) (-1225 |#1|) (-1248 |#1| |#2|) (-983 |#2|)) (T -280))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1225 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1248 *4 *5)) (-4 *6 (-983 *5)))) (-1535 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-1565 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3449 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3474 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3500 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3515 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3528 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3553 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3566 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3577 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3601 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3612 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3622 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3635 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3648 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3670 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3682 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3696 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3705 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3719 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))) (-3076 (*1 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4)))))
-(-13 (-983 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-409 (-566)))) |%noBranch|) (-15 -1535 (|#3| |#3|)) (-15 -1565 (|#3| |#3|)) (-15 -3449 (|#3| |#3|)) (-15 -3461 (|#3| |#3|)) (-15 -3474 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3500 (|#3| |#3|)) (-15 -3515 (|#3| |#3|)) (-15 -3528 (|#3| |#3|)) (-15 -3541 (|#3| |#3|)) (-15 -3553 (|#3| |#3|)) (-15 -3566 (|#3| |#3|)) (-15 -3577 (|#3| |#3|)) (-15 -3589 (|#3| |#3|)) (-15 -3601 (|#3| |#3|)) (-15 -3612 (|#3| |#3|)) (-15 -3622 (|#3| |#3|)) (-15 -3635 (|#3| |#3|)) (-15 -3648 (|#3| |#3|)) (-15 -3658 (|#3| |#3|)) (-15 -3670 (|#3| |#3|)) (-15 -3682 (|#3| |#3|)) (-15 -3696 (|#3| |#3|)) (-15 -3705 (|#3| |#3|)) (-15 -3719 (|#3| |#3|)) (-15 -3076 (|#3| |#3|))))
-((-4047 (((-112) $) 20)) (-3960 (((-1180) $) 7)) (-3413 (((-3 (-508) "failed") $) 14)) (-2682 (((-3 (-644 $) "failed") $) NIL)) (-2156 (((-3 (-508) "failed") $) 21)) (-3650 (((-3 (-1103) "failed") $) 18)) (-3258 (((-112) $) 16)) (-2725 (((-862) $) NIL)) (-2759 (((-112) $) 9)))
-(((-281) (-13 (-613 (-862)) (-10 -8 (-15 -3960 ((-1180) $)) (-15 -3258 ((-112) $)) (-15 -3650 ((-3 (-1103) "failed") $)) (-15 -4047 ((-112) $)) (-15 -2156 ((-3 (-508) "failed") $)) (-15 -2759 ((-112) $)) (-15 -3413 ((-3 (-508) "failed") $)) (-15 -2682 ((-3 (-644 $) "failed") $))))) (T -281))
-((-3960 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-281)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3650 (*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2156 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3413 (*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))) (-2682 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3960 ((-1180) $)) (-15 -3258 ((-112) $)) (-15 -3650 ((-3 (-1103) "failed") $)) (-15 -4047 ((-112) $)) (-15 -2156 ((-3 (-508) "failed") $)) (-15 -2759 ((-112) $)) (-15 -3413 ((-3 (-508) "failed") $)) (-15 -2682 ((-3 (-644 $) "failed") $))))
-((-3281 (($ (-1 (-112) |#2|) $) 24)) (-3806 (($ $) 38)) (-2367 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1752 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3169 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-1510 (($ |#2| $ (-566)) 20) (($ $ $ (-566)) 22)) (-1302 (($ $ (-566)) 11) (($ $ (-1232 (-566))) 14)) (-2011 (($ $ |#2|) 32) (($ $ $) NIL)) (-4007 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-644 $)) NIL)))
-(((-282 |#1| |#2|) (-10 -8 (-15 -3169 (|#1| |#1| |#1|)) (-15 -2367 (|#1| |#2| |#1|)) (-15 -3169 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2367 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -2011 (|#1| |#1| |#2|)) (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -1302 (|#1| |#1| (-1232 (-566)))) (-15 -1302 (|#1| |#1| (-566))) (-15 -4007 (|#1| (-644 |#1|))) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -1752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3281 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1752 (|#1| |#2| |#1|)) (-15 -3806 (|#1| |#1|))) (-283 |#2|) (-1215)) (T -282))
-NIL
-(-10 -8 (-15 -3169 (|#1| |#1| |#1|)) (-15 -2367 (|#1| |#2| |#1|)) (-15 -3169 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2367 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -2011 (|#1| |#1| |#2|)) (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -1302 (|#1| |#1| (-1232 (-566)))) (-15 -1302 (|#1| |#1| (-566))) (-15 -4007 (|#1| (-644 |#1|))) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -1752 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3281 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1752 (|#1| |#2| |#1|)) (-15 -3806 (|#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 59 (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) |#1|) $) 86)) (-3281 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1985 (($ $) 84 (|has| |#1| (-1099)))) (-3806 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1099)))) (-1752 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 52)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3169 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1619 (($ |#1| $ (-566)) 89) (($ $ $ (-566)) 88)) (-1510 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 43 (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3598 (($ $ |#1|) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1232 (-566))) 64)) (-1503 (($ $ (-566)) 92) (($ $ (-1232 (-566))) 91)) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 71)) (-2011 (($ $ |#1|) 94) (($ $ $) 93)) (-4007 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-283 |#1|) (-140) (-1215)) (T -283))
-((-2011 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)))) (-2011 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)))) (-1503 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1215)))) (-1503 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1215)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1215)))) (-1619 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1215)))) (-1619 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1215)))) (-3169 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1215)))) (-1607 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1215)))) (-2367 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)) (-4 *2 (-1099)))) (-1985 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)) (-4 *2 (-1099)))) (-3169 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)) (-4 *2 (-850)))))
-(-13 (-651 |t#1|) (-10 -8 (-6 -4416) (-15 -2011 ($ $ |t#1|)) (-15 -2011 ($ $ $)) (-15 -1503 ($ $ (-566))) (-15 -1503 ($ $ (-1232 (-566)))) (-15 -2367 ($ (-1 (-112) |t#1|) $)) (-15 -1619 ($ |t#1| $ (-566))) (-15 -1619 ($ $ $ (-566))) (-15 -3169 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1607 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -2367 ($ |t#1| $)) (-15 -1985 ($ $))) |%noBranch|) (IF (|has| |t#1| (-850)) (-15 -3169 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567)))) (-2559 (*1 *1 *1) (-4 *1 (-243))))
+(-13 (-291) (-38 (-410 (-567))) (-10 -8 (-15 ** ($ $ (-567))) (-15 -2559 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-291) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-718 #0#) . T) ((-727) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-3221 (($ $) 58)) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-2740 (($ $ $) 54 (|has| $ (-6 -4417)))) (-1988 (($ $ $) 53 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-4061 (($) 7 T CONST)) (-3290 (($ $) 57)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-3710 (($ $) 56)) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3162 ((|#1| $) 60)) (-3942 (($ $) 59)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48)) (-4304 (((-567) $ $) 45)) (-3436 (((-112) $) 47)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3962 (($ $ $) 55 (|has| $ (-6 -4417)))) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-244 |#1|) (-140) (-1216)) (T -244))
+((-3162 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216)))) (-3221 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216)))) (-3290 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216)))) (-3710 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216)))) (-3962 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-244 *2)) (-4 *2 (-1216)))) (-2740 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-244 *2)) (-4 *2 (-1216)))) (-1988 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-244 *2)) (-4 *2 (-1216)))))
+(-13 (-1011 |t#1|) (-10 -8 (-15 -3162 (|t#1| $)) (-15 -3942 ($ $)) (-15 -3221 ($ $)) (-15 -3290 ($ $)) (-15 -3710 ($ $)) (IF (|has| $ (-6 -4417)) (PROGN (-15 -3962 ($ $ $)) (-15 -2740 ($ $ $)) (-15 -1988 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1011 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) NIL)) (-2369 ((|#1| $) NIL)) (-3221 (($ $) NIL)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3655 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-1594 (($ $) 10 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-3371 (($ $ $) NIL (|has| $ (-6 -4417)))) (-3487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4417))) (($ $ "rest" $) NIL (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) |#1|) $) NIL)) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-2357 ((|#1| $) NIL)) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2061 (($ $) NIL) (($ $ (-772)) NIL)) (-1861 (($ $) NIL (|has| |#1| (-1100)))) (-2084 (($ $) 7 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) NIL (|has| |#1| (-1100))) (($ (-1 (-112) |#1|) $) NIL)) (-3138 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-1714 (((-112) $) NIL)) (-3771 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100))) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3492 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3768 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1924 (($ |#1|) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3162 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-1336 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2884 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2216 (((-112) $) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1233 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-772) $ "count") 16)) (-4304 (((-567) $ $) NIL)) (-2816 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-2675 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-2638 (($ (-645 |#1|)) 22)) (-3436 (((-112) $) NIL)) (-2443 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4417)))) (-1449 (((-772) $) NIL)) (-1344 (($ $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) NIL)) (-3962 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2285 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4101 (($ (-645 |#1|)) 17) (((-645 |#1|) $) 18) (((-863) $) 21 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) 14 (|has| $ (-6 -4416)))))
+(((-245 |#1|) (-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -2638 ($ (-645 |#1|))) (-15 -1552 ($ $ "unique")) (-15 -1552 ($ $ "sort")) (-15 -1552 ((-772) $ "count")))) (-851)) (T -245))
+((-2638 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851)))))
+(-13 (-667 |#1|) (-493 (-645 |#1|)) (-10 -8 (-15 -2638 ($ (-645 |#1|))) (-15 -1552 ($ $ "unique")) (-15 -1552 ($ $ "sort")) (-15 -1552 ((-772) $ "count"))))
+((-3170 (((-3 (-772) "failed") |#1| |#1| (-772)) 43)))
+(((-246 |#1|) (-10 -7 (-15 -3170 ((-3 (-772) "failed") |#1| |#1| (-772)))) (-13 (-727) (-370) (-10 -7 (-15 ** (|#1| |#1| (-567)))))) (T -246))
+((-3170 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-772)) (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567)))))) (-5 *1 (-246 *3)))))
+(-10 -7 (-15 -3170 ((-3 (-772) "failed") |#1| |#1| (-772))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-865 |#1|)) $) NIL)) (-2260 (((-1172 $) $ (-865 |#1|)) NIL) (((-1172 |#2|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-3602 (($ $) NIL (|has| |#2| (-559)))) (-2119 (((-112) $) NIL (|has| |#2| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1396 (($ $) NIL (|has| |#2| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#2| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-1621 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-2414 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-2071 (($ $ (-645 (-567))) NIL)) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#2| (-910)))) (-3564 (($ $ |#2| (-240 (-2268 |#1|) (-772)) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2434 (($ (-1172 |#2|) (-865 |#1|)) NIL) (($ (-1172 $) (-865 |#1|)) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#2| (-240 (-2268 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-865 |#1|)) NIL)) (-4185 (((-240 (-2268 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-1599 (($ (-1 (-240 (-2268 |#1|) (-772)) (-240 (-2268 |#1|) (-772))) $) NIL)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-3300 (((-3 (-865 |#1|) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#2| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2451 (((-1158) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4164 (-772))) "failed") $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#2| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#2| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3347 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1930 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3677 (((-240 (-2268 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1640 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-240 (-2268 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-247 |#1| |#2|) (-13 (-950 |#2| (-240 (-2268 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2071 ($ $ (-645 (-567)))))) (-645 (-1176)) (-1050)) (T -247))
+((-2071 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4)) (-14 *3 (-645 (-1176))) (-4 *4 (-1050)))))
+(-13 (-950 |#2| (-240 (-2268 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2071 ($ $ (-645 (-567))))))
+((-2257 (((-112) $ $) NIL)) (-4289 (((-1271) $) 17)) (-2086 (((-183 (-249)) $) 11)) (-4150 (($ (-183 (-249))) 12)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3278 (((-249) $) 7)) (-4101 (((-863) $) 9)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 15)))
+(((-248) (-13 (-1100) (-10 -8 (-15 -3278 ((-249) $)) (-15 -2086 ((-183 (-249)) $)) (-15 -4150 ($ (-183 (-249)))) (-15 -4289 ((-1271) $))))) (T -248))
+((-3278 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-4150 (*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-248)))))
+(-13 (-1100) (-10 -8 (-15 -3278 ((-249) $)) (-15 -2086 ((-183 (-249)) $)) (-15 -4150 ($ (-183 (-249)))) (-15 -4289 ((-1271) $))))
+((-2257 (((-112) $ $) NIL)) (-1409 (((-645 (-866)) $) NIL)) (-1817 (((-509) $) NIL)) (-2451 (((-1158) $) NIL)) (-3972 (((-186) $) NIL)) (-1527 (((-112) $ (-509)) NIL)) (-3339 (((-1120) $) NIL)) (-3055 (((-334) $) 7)) (-3447 (((-645 (-112)) $) NIL)) (-4101 (((-863) $) NIL) (((-187) $) 8)) (-3739 (((-112) $ $) NIL)) (-1688 (((-55) $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-249) (-13 (-185) (-614 (-187)) (-10 -8 (-15 -3055 ((-334) $))))) (T -249))
+((-3055 (*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
+(-13 (-185) (-614 (-187)) (-10 -8 (-15 -3055 ((-334) $))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1552 (((-1181) $ (-772)) 13)) (-4101 (((-863) $) 20)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 16)) (-2268 (((-772) $) 9)))
+(((-250) (-13 (-1100) (-10 -8 (-15 -2268 ((-772) $)) (-15 -1552 ((-1181) $ (-772)))))) (T -250))
+((-2268 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1181)) (-5 *1 (-250)))))
+(-13 (-1100) (-10 -8 (-15 -2268 ((-772) $)) (-15 -1552 ((-1181) $ (-772)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4245 (($ (-922)) NIL (|has| |#4| (-1050)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2140 (($ $ $) NIL (|has| |#4| (-794)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2013 (((-772)) NIL (|has| |#4| (-370)))) (-3179 (((-567) $) NIL (|has| |#4| (-849)))) (-4230 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1100))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1100)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1100))))) (-1621 ((|#4| $) NIL (|has| |#4| (-1100))) (((-567) $) NIL (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1100)))) (((-410 (-567)) $) NIL (-12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1100))))) (-1920 (((-2 (|:| -4302 (-690 |#4|)) (|:| |vec| (-1266 |#4|))) (-690 $) (-1266 $)) NIL (|has| |#4| (-1050))) (((-690 |#4|) (-690 $)) NIL (|has| |#4| (-1050))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))))) (-4014 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))))) (-1649 (($) NIL (|has| |#4| (-370)))) (-1303 ((|#4| $ (-567) |#4|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#4| $ (-567)) NIL)) (-4095 (((-112) $) NIL (|has| |#4| (-849)))) (-2896 (((-645 |#4|) $) NIL (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL (-2909 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))))) (-3948 (((-112) $) NIL (|has| |#4| (-849)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (-2909 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-1542 (((-645 |#4|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (-2909 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-4392 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) NIL)) (-3527 (((-922) $) NIL (|has| |#4| (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3811 (($ (-922)) NIL (|has| |#4| (-370)))) (-3339 (((-1120) $) NIL)) (-2048 ((|#4| $) NIL (|has| (-567) (-851)))) (-2092 (($ $ |#4|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-1412 (((-645 |#4|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#4| $ (-567) |#4|) NIL) ((|#4| $ (-567)) 16)) (-2945 ((|#4| $ $) NIL (|has| |#4| (-1050)))) (-2345 (($ (-1266 |#4|)) NIL)) (-1948 (((-134)) NIL (|has| |#4| (-365)))) (-1930 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1050))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1050))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))))) (-3349 (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416))) (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-1266 |#4|) $) NIL) (((-863) $) NIL) (($ |#4|) NIL (|has| |#4| (-1100))) (($ (-567)) NIL (-2909 (-12 (|has| |#4| (-1039 (-567))) (|has| |#4| (-1100))) (|has| |#4| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#4| (-1039 (-410 (-567)))) (|has| |#4| (-1100))))) (-2686 (((-772)) NIL (|has| |#4| (-1050)) CONST)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-1771 (($ $) NIL (|has| |#4| (-849)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL (-2909 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) CONST)) (-2692 (($ $ (-1 |#4| |#4|) (-772)) NIL (|has| |#4| (-1050))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1050))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))))) (-3109 (((-112) $ $) NIL (-2909 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3085 (((-112) $ $) NIL (-2909 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (-2909 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3075 (((-112) $ $) NIL (-2909 (|has| |#4| (-794)) (|has| |#4| (-849))))) (-3168 (($ $ |#4|) NIL (|has| |#4| (-365)))) (-3156 (($ $ $) NIL) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2909 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050))))) (($ $ (-922)) NIL (-2909 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))))) (* (($ |#2| $) 18) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-727))) (($ |#4| $) NIL (|has| |#4| (-727))) (($ $ $) NIL (-2909 (-12 (|has| |#4| (-233)) (|has| |#4| (-1050))) (-12 (|has| |#4| (-640 (-567))) (|has| |#4| (-1050))) (|has| |#4| (-727)) (-12 (|has| |#4| (-901 (-1176))) (|has| |#4| (-1050)))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-251 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|)) (-922) (-1050) (-1123 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-649 |#2|)) (T -251))
+NIL
+(-13 (-238 |#1| |#4|) (-649 |#2|) (-649 |#3|))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4245 (($ (-922)) NIL (|has| |#3| (-1050)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2140 (($ $ $) NIL (|has| |#3| (-794)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2013 (((-772)) NIL (|has| |#3| (-370)))) (-3179 (((-567) $) NIL (|has| |#3| (-849)))) (-4230 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1100))) (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100))))) (-1621 ((|#3| $) NIL (|has| |#3| (-1100))) (((-567) $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100))))) (-1920 (((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 $) (-1266 $)) NIL (|has| |#3| (-1050))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1050))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))))) (-4014 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))))) (-1649 (($) NIL (|has| |#3| (-370)))) (-1303 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#3| $ (-567)) NIL)) (-4095 (((-112) $) NIL (|has| |#3| (-849)))) (-2896 (((-645 |#3|) $) NIL (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL (-2909 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))))) (-3948 (((-112) $) NIL (|has| |#3| (-849)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-1542 (((-645 |#3|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-4392 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#3| |#3|) $) NIL)) (-3527 (((-922) $) NIL (|has| |#3| (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3811 (($ (-922)) NIL (|has| |#3| (-370)))) (-3339 (((-1120) $) NIL)) (-2048 ((|#3| $) NIL (|has| (-567) (-851)))) (-2092 (($ $ |#3|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100))))) (-1412 (((-645 |#3|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) 15)) (-2945 ((|#3| $ $) NIL (|has| |#3| (-1050)))) (-2345 (($ (-1266 |#3|)) NIL)) (-1948 (((-134)) NIL (|has| |#3| (-365)))) (-1930 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))))) (-3349 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-1266 |#3|) $) NIL) (((-863) $) NIL) (($ |#3|) NIL (|has| |#3| (-1100))) (($ (-567)) NIL (-2909 (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100))) (|has| |#3| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100))))) (-2686 (((-772)) NIL (|has| |#3| (-1050)) CONST)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416)))) (-1771 (($ $) NIL (|has| |#3| (-849)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL (-2909 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) CONST)) (-2692 (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))))) (-3109 (((-112) $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3085 (((-112) $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3075 (((-112) $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3168 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3156 (($ $ $) NIL) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL (-2909 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050))))) (($ $ (-922)) NIL (-2909 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))))) (* (($ |#2| $) 17) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ $ $) NIL (-2909 (-12 (|has| |#3| (-233)) (|has| |#3| (-1050))) (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050))) (|has| |#3| (-727)) (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-252 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-649 |#2|)) (-772) (-1050) (-649 |#2|)) (T -252))
+NIL
+(-13 (-238 |#1| |#3|) (-649 |#2|))
+((-3312 (((-645 (-772)) $) 56) (((-645 (-772)) $ |#3|) 59)) (-3933 (((-772) $) 58) (((-772) $ |#3|) 61)) (-3911 (($ $) 76)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1909 (((-772) $ |#3|) 43) (((-772) $) 38)) (-1820 (((-1 $ (-772)) |#3|) 15) (((-1 $ (-772)) $) 88)) (-2046 ((|#4| $) 69)) (-3399 (((-112) $) 67)) (-4258 (($ $) 75)) (-3140 (($ $ (-645 (-295 $))) 114) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-645 |#3|) (-645 |#2|)) 100)) (-1930 (($ $ |#4|) NIL) (($ $ (-645 |#4|)) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) NIL) (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-1678 (((-645 |#3|) $) 86)) (-3677 ((|#5| $) NIL) (((-772) $ |#4|) NIL) (((-645 (-772)) $ (-645 |#4|)) NIL) (((-772) $ |#3|) 49)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-410 (-567))) NIL) (($ $) NIL)))
+(((-253 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3140 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#3| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#3| |#1|)) (-15 -1820 ((-1 |#1| (-772)) |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -4258 (|#1| |#1|)) (-15 -2046 (|#4| |#1|)) (-15 -3399 ((-112) |#1|)) (-15 -3933 ((-772) |#1| |#3|)) (-15 -3312 ((-645 (-772)) |#1| |#3|)) (-15 -3933 ((-772) |#1|)) (-15 -3312 ((-645 (-772)) |#1|)) (-15 -3677 ((-772) |#1| |#3|)) (-15 -1909 ((-772) |#1|)) (-15 -1909 ((-772) |#1| |#3|)) (-15 -1678 ((-645 |#3|) |#1|)) (-15 -1820 ((-1 |#1| (-772)) |#3|)) (-15 -4101 (|#1| |#3|)) (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3677 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3677 ((-772) |#1| |#4|)) (-15 -4101 (|#1| |#4|)) (-15 -3417 ((-3 |#4| "failed") |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#4| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#4| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3677 (|#5| |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -1930 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1930 (|#1| |#1| |#4| (-772))) (-15 -1930 (|#1| |#1| (-645 |#4|))) (-15 -1930 (|#1| |#1| |#4|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-254 |#2| |#3| |#4| |#5|) (-1050) (-851) (-267 |#3|) (-794)) (T -253))
+NIL
+(-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3140 (|#1| |#1| (-645 |#3|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#3| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#3|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#3| |#1|)) (-15 -1820 ((-1 |#1| (-772)) |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -4258 (|#1| |#1|)) (-15 -2046 (|#4| |#1|)) (-15 -3399 ((-112) |#1|)) (-15 -3933 ((-772) |#1| |#3|)) (-15 -3312 ((-645 (-772)) |#1| |#3|)) (-15 -3933 ((-772) |#1|)) (-15 -3312 ((-645 (-772)) |#1|)) (-15 -3677 ((-772) |#1| |#3|)) (-15 -1909 ((-772) |#1|)) (-15 -1909 ((-772) |#1| |#3|)) (-15 -1678 ((-645 |#3|) |#1|)) (-15 -1820 ((-1 |#1| (-772)) |#3|)) (-15 -4101 (|#1| |#3|)) (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3677 ((-645 (-772)) |#1| (-645 |#4|))) (-15 -3677 ((-772) |#1| |#4|)) (-15 -4101 (|#1| |#4|)) (-15 -3417 ((-3 |#4| "failed") |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#4| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#4| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3677 (|#5| |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -1930 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -1930 (|#1| |#1| |#4| (-772))) (-15 -1930 (|#1| |#1| (-645 |#4|))) (-15 -1930 (|#1| |#1| |#4|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-3312 (((-645 (-772)) $) 216) (((-645 (-772)) $ |#2|) 214)) (-3933 (((-772) $) 215) (((-772) $ |#2|) 213)) (-2449 (((-645 |#3|) $) 112)) (-2260 (((-1172 $) $ |#3|) 127) (((-1172 |#1|) $) 126)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-3602 (($ $) 90 (|has| |#1| (-559)))) (-2119 (((-112) $) 92 (|has| |#1| (-559)))) (-3238 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-4377 (((-3 $ "failed") $ $) 20)) (-1877 (((-421 (-1172 $)) (-1172 $)) 102 (|has| |#1| (-910)))) (-1396 (($ $) 100 (|has| |#1| (-455)))) (-1401 (((-421 $) $) 99 (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 105 (|has| |#1| (-910)))) (-3911 (($ $) 209)) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 |#2| "failed") $) 223)) (-1621 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) ((|#3| $) 139) ((|#2| $) 224)) (-2414 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-2637 (($ $) 156)) (-1920 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-4014 (((-3 $ "failed") $) 37)) (-2958 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-2624 (((-645 $) $) 111)) (-1665 (((-112) $) 98 (|has| |#1| (-910)))) (-3564 (($ $ |#1| |#4| $) 174)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| |#3| (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| |#3| (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-1909 (((-772) $ |#2|) 219) (((-772) $) 218)) (-3714 (((-112) $) 35)) (-2864 (((-772) $) 171)) (-2434 (($ (-1172 |#1|) |#3|) 119) (($ (-1172 $) |#3|) 118)) (-2133 (((-645 $) $) 128)) (-3523 (((-112) $) 154)) (-2422 (($ |#1| |#4|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |#3|) 122)) (-4185 ((|#4| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-1599 (($ (-1 |#4| |#4|) $) 173)) (-3494 (($ (-1 |#1| |#1|) $) 153)) (-1820 (((-1 $ (-772)) |#2|) 221) (((-1 $ (-772)) $) 208 (|has| |#1| (-233)))) (-3300 (((-3 |#3| "failed") $) 125)) (-2599 (($ $) 151)) (-2613 ((|#1| $) 150)) (-2046 ((|#3| $) 211)) (-3245 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-2451 (((-1158) $) 10)) (-3399 (((-112) $) 212)) (-3376 (((-3 (-645 $) "failed") $) 116)) (-1808 (((-3 (-645 $) "failed") $) 117)) (-2688 (((-3 (-2 (|:| |var| |#3|) (|:| -4164 (-772))) "failed") $) 115)) (-4258 (($ $) 210)) (-3339 (((-1120) $) 11)) (-2567 (((-112) $) 168)) (-2583 ((|#1| $) 169)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 97 (|has| |#1| (-455)))) (-3276 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) 104 (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 103 (|has| |#1| (-910)))) (-2296 (((-421 $) $) 101 (|has| |#1| (-910)))) (-2245 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140) (($ $ |#2| $) 207 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) 206 (|has| |#1| (-233))) (($ $ |#2| |#1|) 205 (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) 204 (|has| |#1| (-233)))) (-3347 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1930 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43) (($ $) 240 (|has| |#1| (-233))) (($ $ (-772)) 238 (|has| |#1| (-233))) (($ $ (-1176)) 236 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 235 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 234 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 233 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1678 (((-645 |#2|) $) 220)) (-3677 ((|#4| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131) (((-772) $ |#2|) 217)) (-3542 (((-893 (-381)) $) 84 (-12 (|has| |#3| (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| |#3| (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 106 (-1410 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ |#2|) 222) (($ (-410 (-567))) 80 (-2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) 170)) (-2339 ((|#1| $ |#4|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-4242 (((-3 $ "failed") $) 81 (-2909 (-1410 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) 32 T CONST)) (-2582 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39) (($ $) 239 (|has| |#1| (-233))) (($ $ (-772)) 237 (|has| |#1| (-233))) (($ $ (-1176)) 232 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 231 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 230 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 229 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 228) (($ $ (-1 |#1| |#1|)) 227)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-254 |#1| |#2| |#3| |#4|) (-140) (-1050) (-851) (-267 |t#2|) (-794)) (T -254))
+((-1820 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6)))) (-1678 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))) (-1909 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3312 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))) (-3933 (*1 *2 *1 *3) (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-794)) (-4 *2 (-267 *4)))) (-4258 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-3911 (*1 *1 *1) (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851)) (-4 *4 (-267 *3)) (-4 *5 (-794)))) (-1820 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6)))))
+(-13 (-950 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1039 |t#2|) (-10 -8 (-15 -1820 ((-1 $ (-772)) |t#2|)) (-15 -1678 ((-645 |t#2|) $)) (-15 -1909 ((-772) $ |t#2|)) (-15 -1909 ((-772) $)) (-15 -3677 ((-772) $ |t#2|)) (-15 -3312 ((-645 (-772)) $)) (-15 -3933 ((-772) $)) (-15 -3312 ((-645 (-772)) $ |t#2|)) (-15 -3933 ((-772) $ |t#2|)) (-15 -3399 ((-112) $)) (-15 -2046 (|t#3| $)) (-15 -4258 ($ $)) (-15 -3911 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-517 |t#2| |t#1|)) (-6 (-517 |t#2| $)) (-6 (-310 $)) (-15 -1820 ((-1 $ (-772)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#2|) . T) ((-617 |#3|) . T) ((-617 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-291) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#4|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2909 (|has| |#1| (-910)) (|has| |#1| (-455))) ((-517 |#2| |#1|) |has| |#1| (-233)) ((-517 |#2| $) |has| |#1| (-233)) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-901 (-1176)) |has| |#1| (-901 (-1176))) ((-901 |#3|) . T) ((-887 (-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) ((-950 |#1| |#4| |#3|) . T) ((-910) |has| |#1| (-910)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1039 |#2|) . T) ((-1039 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) |has| |#1| (-910)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2252 ((|#1| $) 55)) (-2207 ((|#1| $) 45)) (-1580 (((-112) $ (-772)) 8)) (-4061 (($) 7 T CONST)) (-2065 (($ $) 61)) (-1695 (($ $) 49)) (-3528 ((|#1| |#1| $) 47)) (-2548 ((|#1| $) 46)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-3036 (((-772) $) 62)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-4059 ((|#1| |#1| $) 53)) (-2493 ((|#1| |#1| $) 52)) (-1336 (($ |#1| $) 41)) (-3080 (((-772) $) 56)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-3851 ((|#1| $) 63)) (-1725 ((|#1| $) 51)) (-3157 ((|#1| $) 50)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1301 ((|#1| |#1| $) 59)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-3484 ((|#1| $) 60)) (-3135 (($) 58) (($ (-645 |#1|)) 57)) (-1716 (((-772) $) 44)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-1926 ((|#1| $) 54)) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-3945 ((|#1| $) 64)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-255 |#1|) (-140) (-1216)) (T -255))
+((-3135 (*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))) (-3135 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-4 *1 (-255 *3)))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))) (-2252 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))) (-4059 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))) (-2493 (*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))) (-1725 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))) (-1695 (*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
+(-13 (-1121 |t#1|) (-996 |t#1|) (-10 -8 (-15 -3135 ($)) (-15 -3135 ($ (-645 |t#1|))) (-15 -3080 ((-772) $)) (-15 -2252 (|t#1| $)) (-15 -1926 (|t#1| $)) (-15 -4059 (|t#1| |t#1| $)) (-15 -2493 (|t#1| |t#1| $)) (-15 -1725 (|t#1| $)) (-15 -3157 (|t#1| $)) (-15 -1695 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-996 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1121 |#1|) . T) ((-1216) . T))
+((-2892 (((-1 (-944 (-225)) (-225) (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 153)) (-3071 (((-1133 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381))) 173) (((-1133 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 171) (((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381))) 176) (((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 172) (((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381))) 164) (((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 163) (((-1133 (-225)) (-1 (-944 (-225)) (-225)) (-1094 (-381))) 145) (((-1133 (-225)) (-1 (-944 (-225)) (-225)) (-1094 (-381)) (-645 (-264))) 143) (((-1133 (-225)) (-880 (-1 (-225) (-225))) (-1094 (-381))) 144) (((-1133 (-225)) (-880 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264))) 141)) (-4156 (((-1268) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381))) 175) (((-1268) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 174) (((-1268) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381))) 178) (((-1268) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 177) (((-1268) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381))) 166) (((-1268) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264))) 165) (((-1268) (-1 (-944 (-225)) (-225)) (-1094 (-381))) 151) (((-1268) (-1 (-944 (-225)) (-225)) (-1094 (-381)) (-645 (-264))) 150) (((-1268) (-880 (-1 (-225) (-225))) (-1094 (-381))) 149) (((-1268) (-880 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264))) 148) (((-1267) (-878 (-1 (-225) (-225))) (-1094 (-381))) 113) (((-1267) (-878 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264))) 112) (((-1267) (-1 (-225) (-225)) (-1094 (-381))) 107) (((-1267) (-1 (-225) (-225)) (-1094 (-381)) (-645 (-264))) 105)))
+(((-256) (-10 -7 (-15 -4156 ((-1267) (-1 (-225) (-225)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) (-1 (-225) (-225)) (-1094 (-381)))) (-15 -4156 ((-1267) (-878 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) (-878 (-1 (-225) (-225))) (-1094 (-381)))) (-15 -4156 ((-1268) (-880 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-880 (-1 (-225) (-225))) (-1094 (-381)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-880 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-880 (-1 (-225) (-225))) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225)) (-1094 (-381)))) (-15 -4156 ((-1268) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -4156 ((-1268) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)))) (-15 -2892 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -256))
+((-2892 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *2 (-1267)) (-5 *1 (-256)))) (-4156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1094 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-256)))))
+(-10 -7 (-15 -4156 ((-1267) (-1 (-225) (-225)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) (-1 (-225) (-225)) (-1094 (-381)))) (-15 -4156 ((-1267) (-878 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) (-878 (-1 (-225) (-225))) (-1094 (-381)))) (-15 -4156 ((-1268) (-880 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-880 (-1 (-225) (-225))) (-1094 (-381)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-880 (-1 (-225) (-225))) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-880 (-1 (-225) (-225))) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225)) (-1094 (-381)))) (-15 -4156 ((-1268) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-381)) (-1094 (-381)))) (-15 -4156 ((-1268) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)))) (-15 -3071 ((-1133 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-883 (-1 (-225) (-225) (-225))) (-1094 (-381)) (-1094 (-381)))) (-15 -2892 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-4156 (((-1267) (-295 |#2|) (-1176) (-1176) (-645 (-264))) 101)))
+(((-257 |#1| |#2|) (-10 -7 (-15 -4156 ((-1267) (-295 |#2|) (-1176) (-1176) (-645 (-264))))) (-13 (-559) (-851) (-1039 (-567))) (-433 |#1|)) (T -257))
+((-4156 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-1176)) (-5 *5 (-645 (-264))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1039 (-567)))) (-5 *2 (-1267)) (-5 *1 (-257 *6 *7)))))
+(-10 -7 (-15 -4156 ((-1267) (-295 |#2|) (-1176) (-1176) (-645 (-264)))))
+((-4124 (((-567) (-567)) 73)) (-4106 (((-567) (-567)) 74)) (-3176 (((-225) (-225)) 75)) (-4235 (((-1268) (-1 (-169 (-225)) (-169 (-225))) (-1094 (-225)) (-1094 (-225))) 72)) (-4354 (((-1268) (-1 (-169 (-225)) (-169 (-225))) (-1094 (-225)) (-1094 (-225)) (-112)) 70)))
+(((-258) (-10 -7 (-15 -4354 ((-1268) (-1 (-169 (-225)) (-169 (-225))) (-1094 (-225)) (-1094 (-225)) (-112))) (-15 -4235 ((-1268) (-1 (-169 (-225)) (-169 (-225))) (-1094 (-225)) (-1094 (-225)))) (-15 -4124 ((-567) (-567))) (-15 -4106 ((-567) (-567))) (-15 -3176 ((-225) (-225))))) (T -258))
+((-3176 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))) (-4106 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))) (-4235 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1094 (-225))) (-5 *2 (-1268)) (-5 *1 (-258)))) (-4354 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1094 (-225))) (-5 *5 (-112)) (-5 *2 (-1268)) (-5 *1 (-258)))))
+(-10 -7 (-15 -4354 ((-1268) (-1 (-169 (-225)) (-169 (-225))) (-1094 (-225)) (-1094 (-225)) (-112))) (-15 -4235 ((-1268) (-1 (-169 (-225)) (-169 (-225))) (-1094 (-225)) (-1094 (-225)))) (-15 -4124 ((-567) (-567))) (-15 -4106 ((-567) (-567))) (-15 -3176 ((-225) (-225))))
+((-4101 (((-1092 (-381)) (-1092 (-317 |#1|))) 16)))
+(((-259 |#1|) (-10 -7 (-15 -4101 ((-1092 (-381)) (-1092 (-317 |#1|))))) (-13 (-851) (-559) (-615 (-381)))) (T -259))
+((-4101 (*1 *2 *3) (-12 (-5 *3 (-1092 (-317 *4))) (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1092 (-381))) (-5 *1 (-259 *4)))))
+(-10 -7 (-15 -4101 ((-1092 (-381)) (-1092 (-317 |#1|)))))
+((-3071 (((-1133 (-225)) (-883 |#1|) (-1092 (-381)) (-1092 (-381))) 75) (((-1133 (-225)) (-883 |#1|) (-1092 (-381)) (-1092 (-381)) (-645 (-264))) 74) (((-1133 (-225)) |#1| (-1092 (-381)) (-1092 (-381))) 65) (((-1133 (-225)) |#1| (-1092 (-381)) (-1092 (-381)) (-645 (-264))) 64) (((-1133 (-225)) (-880 |#1|) (-1092 (-381))) 56) (((-1133 (-225)) (-880 |#1|) (-1092 (-381)) (-645 (-264))) 55)) (-4156 (((-1268) (-883 |#1|) (-1092 (-381)) (-1092 (-381))) 78) (((-1268) (-883 |#1|) (-1092 (-381)) (-1092 (-381)) (-645 (-264))) 77) (((-1268) |#1| (-1092 (-381)) (-1092 (-381))) 68) (((-1268) |#1| (-1092 (-381)) (-1092 (-381)) (-645 (-264))) 67) (((-1268) (-880 |#1|) (-1092 (-381))) 60) (((-1268) (-880 |#1|) (-1092 (-381)) (-645 (-264))) 59) (((-1267) (-878 |#1|) (-1092 (-381))) 47) (((-1267) (-878 |#1|) (-1092 (-381)) (-645 (-264))) 46) (((-1267) |#1| (-1092 (-381))) 38) (((-1267) |#1| (-1092 (-381)) (-645 (-264))) 36)))
+(((-260 |#1|) (-10 -7 (-15 -4156 ((-1267) |#1| (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) |#1| (-1092 (-381)))) (-15 -4156 ((-1267) (-878 |#1|) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) (-878 |#1|) (-1092 (-381)))) (-15 -4156 ((-1268) (-880 |#1|) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-880 |#1|) (-1092 (-381)))) (-15 -3071 ((-1133 (-225)) (-880 |#1|) (-1092 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-880 |#1|) (-1092 (-381)))) (-15 -4156 ((-1268) |#1| (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) |#1| (-1092 (-381)) (-1092 (-381)))) (-15 -3071 ((-1133 (-225)) |#1| (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) |#1| (-1092 (-381)) (-1092 (-381)))) (-15 -4156 ((-1268) (-883 |#1|) (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-883 |#1|) (-1092 (-381)) (-1092 (-381)))) (-15 -3071 ((-1133 (-225)) (-883 |#1|) (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-883 |#1|) (-1092 (-381)) (-1092 (-381))))) (-13 (-615 (-539)) (-1100))) (T -260))
+((-3071 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1092 (-381))) (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225))) (-5 *1 (-260 *5)))) (-3071 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225))) (-5 *1 (-260 *6)))) (-4156 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-883 *5)) (-5 *4 (-1092 (-381))) (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268)) (-5 *1 (-260 *5)))) (-4156 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-883 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268)) (-5 *1 (-260 *6)))) (-3071 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092 (-381))) (-5 *2 (-1133 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100))))) (-3071 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100))))) (-4156 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1092 (-381))) (-5 *2 (-1268)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100))))) (-4156 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100))))) (-3071 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1092 (-381))) (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225))) (-5 *1 (-260 *5)))) (-3071 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225))) (-5 *1 (-260 *6)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-880 *5)) (-5 *4 (-1092 (-381))) (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268)) (-5 *1 (-260 *5)))) (-4156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-880 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268)) (-5 *1 (-260 *6)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1092 (-381))) (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1267)) (-5 *1 (-260 *5)))) (-4156 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1267)) (-5 *1 (-260 *6)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *4 (-1092 (-381))) (-5 *2 (-1267)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100))))) (-4156 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100))))))
+(-10 -7 (-15 -4156 ((-1267) |#1| (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) |#1| (-1092 (-381)))) (-15 -4156 ((-1267) (-878 |#1|) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1267) (-878 |#1|) (-1092 (-381)))) (-15 -4156 ((-1268) (-880 |#1|) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-880 |#1|) (-1092 (-381)))) (-15 -3071 ((-1133 (-225)) (-880 |#1|) (-1092 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-880 |#1|) (-1092 (-381)))) (-15 -4156 ((-1268) |#1| (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) |#1| (-1092 (-381)) (-1092 (-381)))) (-15 -3071 ((-1133 (-225)) |#1| (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) |#1| (-1092 (-381)) (-1092 (-381)))) (-15 -4156 ((-1268) (-883 |#1|) (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -4156 ((-1268) (-883 |#1|) (-1092 (-381)) (-1092 (-381)))) (-15 -3071 ((-1133 (-225)) (-883 |#1|) (-1092 (-381)) (-1092 (-381)) (-645 (-264)))) (-15 -3071 ((-1133 (-225)) (-883 |#1|) (-1092 (-381)) (-1092 (-381)))))
+((-4156 (((-1268) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264))) 23) (((-1268) (-645 (-225)) (-645 (-225)) (-645 (-225))) 24) (((-1267) (-645 (-944 (-225))) (-645 (-264))) 16) (((-1267) (-645 (-944 (-225)))) 17) (((-1267) (-645 (-225)) (-645 (-225)) (-645 (-264))) 20) (((-1267) (-645 (-225)) (-645 (-225))) 21)))
+(((-261) (-10 -7 (-15 -4156 ((-1267) (-645 (-225)) (-645 (-225)))) (-15 -4156 ((-1267) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -4156 ((-1267) (-645 (-944 (-225))))) (-15 -4156 ((-1267) (-645 (-944 (-225))) (-645 (-264)))) (-15 -4156 ((-1268) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -4156 ((-1268) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))) (T -261))
+((-4156 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-261)))) (-4156 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268)) (-5 *1 (-261)))) (-4156 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-261)))) (-4156 (*1 *2 *3) (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *2 (-1267)) (-5 *1 (-261)))) (-4156 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-261)))) (-4156 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1267)) (-5 *1 (-261)))))
+(-10 -7 (-15 -4156 ((-1267) (-645 (-225)) (-645 (-225)))) (-15 -4156 ((-1267) (-645 (-225)) (-645 (-225)) (-645 (-264)))) (-15 -4156 ((-1267) (-645 (-944 (-225))))) (-15 -4156 ((-1267) (-645 (-944 (-225))) (-645 (-264)))) (-15 -4156 ((-1268) (-645 (-225)) (-645 (-225)) (-645 (-225)))) (-15 -4156 ((-1268) (-645 (-225)) (-645 (-225)) (-645 (-225)) (-645 (-264)))))
+((-2734 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3255 (((-922) (-645 (-264)) (-922)) 52)) (-3629 (((-922) (-645 (-264)) (-922)) 51)) (-1700 (((-645 (-381)) (-645 (-264)) (-645 (-381))) 68)) (-3033 (((-381) (-645 (-264)) (-381)) 57)) (-2386 (((-922) (-645 (-264)) (-922)) 53)) (-2094 (((-112) (-645 (-264)) (-112)) 27)) (-3160 (((-1158) (-645 (-264)) (-1158)) 19)) (-2995 (((-1158) (-645 (-264)) (-1158)) 26)) (-3853 (((-1133 (-225)) (-645 (-264))) 46)) (-3040 (((-645 (-1094 (-381))) (-645 (-264)) (-645 (-1094 (-381)))) 40)) (-1405 (((-875) (-645 (-264)) (-875)) 32)) (-1585 (((-875) (-645 (-264)) (-875)) 33)) (-3409 (((-1 (-944 (-225)) (-944 (-225))) (-645 (-264)) (-1 (-944 (-225)) (-944 (-225)))) 63)) (-3458 (((-112) (-645 (-264)) (-112)) 14)) (-3634 (((-112) (-645 (-264)) (-112)) 13)))
+(((-262) (-10 -7 (-15 -3634 ((-112) (-645 (-264)) (-112))) (-15 -3458 ((-112) (-645 (-264)) (-112))) (-15 -2734 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3160 ((-1158) (-645 (-264)) (-1158))) (-15 -2995 ((-1158) (-645 (-264)) (-1158))) (-15 -2094 ((-112) (-645 (-264)) (-112))) (-15 -1405 ((-875) (-645 (-264)) (-875))) (-15 -1585 ((-875) (-645 (-264)) (-875))) (-15 -3040 ((-645 (-1094 (-381))) (-645 (-264)) (-645 (-1094 (-381))))) (-15 -3629 ((-922) (-645 (-264)) (-922))) (-15 -3255 ((-922) (-645 (-264)) (-922))) (-15 -3853 ((-1133 (-225)) (-645 (-264)))) (-15 -2386 ((-922) (-645 (-264)) (-922))) (-15 -3033 ((-381) (-645 (-264)) (-381))) (-15 -3409 ((-1 (-944 (-225)) (-944 (-225))) (-645 (-264)) (-1 (-944 (-225)) (-944 (-225))))) (-15 -1700 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))) (T -262))
+((-1700 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3409 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3033 (*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2386 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3853 (*1 *2 *3) (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-262)))) (-3255 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3629 (*1 *2 *3 *2) (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3040 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1585 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-1405 (*1 *2 *3 *2) (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2094 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2995 (*1 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3160 (*1 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-2734 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3458 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))) (-3634 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
+(-10 -7 (-15 -3634 ((-112) (-645 (-264)) (-112))) (-15 -3458 ((-112) (-645 (-264)) (-112))) (-15 -2734 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-645 (-264)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3160 ((-1158) (-645 (-264)) (-1158))) (-15 -2995 ((-1158) (-645 (-264)) (-1158))) (-15 -2094 ((-112) (-645 (-264)) (-112))) (-15 -1405 ((-875) (-645 (-264)) (-875))) (-15 -1585 ((-875) (-645 (-264)) (-875))) (-15 -3040 ((-645 (-1094 (-381))) (-645 (-264)) (-645 (-1094 (-381))))) (-15 -3629 ((-922) (-645 (-264)) (-922))) (-15 -3255 ((-922) (-645 (-264)) (-922))) (-15 -3853 ((-1133 (-225)) (-645 (-264)))) (-15 -2386 ((-922) (-645 (-264)) (-922))) (-15 -3033 ((-381) (-645 (-264)) (-381))) (-15 -3409 ((-1 (-944 (-225)) (-944 (-225))) (-645 (-264)) (-1 (-944 (-225)) (-944 (-225))))) (-15 -1700 ((-645 (-381)) (-645 (-264)) (-645 (-381)))))
+((-3293 (((-3 |#1| "failed") (-645 (-264)) (-1176)) 17)))
+(((-263 |#1|) (-10 -7 (-15 -3293 ((-3 |#1| "failed") (-645 (-264)) (-1176)))) (-1216)) (T -263))
+((-3293 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1176)) (-5 *1 (-263 *2)) (-4 *2 (-1216)))))
+(-10 -7 (-15 -3293 ((-3 |#1| "failed") (-645 (-264)) (-1176))))
+((-2257 (((-112) $ $) NIL)) (-2734 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3255 (($ (-922)) 81)) (-3629 (($ (-922)) 80)) (-4135 (($ (-645 (-381))) 87)) (-3033 (($ (-381)) 66)) (-2386 (($ (-922)) 82)) (-2094 (($ (-112)) 33)) (-3160 (($ (-1158)) 28)) (-2995 (($ (-1158)) 29)) (-3853 (($ (-1133 (-225))) 76)) (-3040 (($ (-645 (-1094 (-381)))) 72)) (-3674 (($ (-645 (-1094 (-381)))) 68) (($ (-645 (-1094 (-410 (-567))))) 71)) (-1574 (($ (-381)) 38) (($ (-875)) 42)) (-1573 (((-112) (-645 $) (-1176)) 100)) (-3293 (((-3 (-52) "failed") (-645 $) (-1176)) 102)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3012 (($ (-381)) 43) (($ (-875)) 44)) (-3216 (($ (-1 (-944 (-225)) (-944 (-225)))) 65)) (-3409 (($ (-1 (-944 (-225)) (-944 (-225)))) 83)) (-3644 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-4101 (((-863) $) 93)) (-3380 (($ (-112)) 34) (($ (-645 (-1094 (-381)))) 60)) (-3739 (((-112) $ $) NIL)) (-3634 (($ (-112)) 35)) (-3052 (((-112) $ $) 97)))
+(((-264) (-13 (-1100) (-10 -8 (-15 -3634 ($ (-112))) (-15 -3380 ($ (-112))) (-15 -2734 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3160 ($ (-1158))) (-15 -2995 ($ (-1158))) (-15 -2094 ($ (-112))) (-15 -3380 ($ (-645 (-1094 (-381))))) (-15 -3216 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -1574 ($ (-381))) (-15 -1574 ($ (-875))) (-15 -3012 ($ (-381))) (-15 -3012 ($ (-875))) (-15 -3644 ($ (-1 (-225) (-225)))) (-15 -3644 ($ (-1 (-225) (-225) (-225)))) (-15 -3644 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3033 ($ (-381))) (-15 -3674 ($ (-645 (-1094 (-381))))) (-15 -3674 ($ (-645 (-1094 (-410 (-567)))))) (-15 -3040 ($ (-645 (-1094 (-381))))) (-15 -3853 ($ (-1133 (-225)))) (-15 -3629 ($ (-922))) (-15 -3255 ($ (-922))) (-15 -2386 ($ (-922))) (-15 -3409 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -4135 ($ (-645 (-381)))) (-15 -3293 ((-3 (-52) "failed") (-645 $) (-1176))) (-15 -1573 ((-112) (-645 $) (-1176)))))) (T -264))
+((-3634 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-2734 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-264)))) (-3160 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-264)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-264)))) (-2094 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))) (-3380 (*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-264)))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264)))) (-3033 (*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-264)))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-410 (-567))))) (-5 *1 (-264)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-264)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-264)))) (-3629 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))) (-3255 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))) (-2386 (*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264)))) (-3293 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1176)) (-5 *2 (-52)) (-5 *1 (-264)))) (-1573 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1176)) (-5 *2 (-112)) (-5 *1 (-264)))))
+(-13 (-1100) (-10 -8 (-15 -3634 ($ (-112))) (-15 -3380 ($ (-112))) (-15 -2734 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -3160 ($ (-1158))) (-15 -2995 ($ (-1158))) (-15 -2094 ($ (-112))) (-15 -3380 ($ (-645 (-1094 (-381))))) (-15 -3216 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -1574 ($ (-381))) (-15 -1574 ($ (-875))) (-15 -3012 ($ (-381))) (-15 -3012 ($ (-875))) (-15 -3644 ($ (-1 (-225) (-225)))) (-15 -3644 ($ (-1 (-225) (-225) (-225)))) (-15 -3644 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3033 ($ (-381))) (-15 -3674 ($ (-645 (-1094 (-381))))) (-15 -3674 ($ (-645 (-1094 (-410 (-567)))))) (-15 -3040 ($ (-645 (-1094 (-381))))) (-15 -3853 ($ (-1133 (-225)))) (-15 -3629 ($ (-922))) (-15 -3255 ($ (-922))) (-15 -2386 ($ (-922))) (-15 -3409 ($ (-1 (-944 (-225)) (-944 (-225))))) (-15 -4135 ($ (-645 (-381)))) (-15 -3293 ((-3 (-52) "failed") (-645 $) (-1176))) (-15 -1573 ((-112) (-645 $) (-1176)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-3312 (((-645 (-772)) $) NIL) (((-645 (-772)) $ |#2|) NIL)) (-3933 (((-772) $) NIL) (((-772) $ |#2|) NIL)) (-2449 (((-645 |#3|) $) NIL)) (-2260 (((-1172 $) $ |#3|) NIL) (((-1172 |#1|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 |#3|)) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-3911 (($ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1125 |#1| |#2|) "failed") $) 23)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1125 |#1| |#2|) $) NIL)) (-2414 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-534 |#3|) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))))) (-1909 (((-772) $ |#2|) NIL) (((-772) $) 10)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2434 (($ (-1172 |#1|) |#3|) NIL) (($ (-1172 $) |#3|) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |#3|) NIL)) (-4185 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL)) (-1599 (($ (-1 (-534 |#3|) (-534 |#3|)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (((-1 $ (-772)) |#2|) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3300 (((-3 |#3| "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2046 ((|#3| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-3399 (((-112) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| |#3|) (|:| -4164 (-772))) "failed") $) NIL)) (-4258 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-645 |#3|) (-645 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-645 |#3|) (-645 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 |#2|) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3347 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-1930 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1678 (((-645 |#2|) $) NIL)) (-3677 (((-534 |#3|) $) NIL) (((-772) $ |#3|) NIL) (((-645 (-772)) $ (-645 |#3|)) NIL) (((-772) $ |#2|) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))))) (-1640 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ |#3|) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1125 |#1| |#2|)) 32) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-534 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ |#3|) NIL) (($ $ (-645 |#3|)) NIL) (($ $ |#3| (-772)) NIL) (($ $ (-645 |#3|) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-265 |#1| |#2| |#3|) (-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1039 (-1125 |#1| |#2|))) (-1050) (-851) (-267 |#2|)) (T -265))
+NIL
+(-13 (-254 |#1| |#2| |#3| (-534 |#3|)) (-1039 (-1125 |#1| |#2|)))
+((-3933 (((-772) $) 37)) (-3417 (((-3 |#2| "failed") $) 22)) (-1621 ((|#2| $) 33)) (-1930 (($ $) 14) (($ $ (-772)) 18)) (-4101 (((-863) $) 32) (($ |#2|) 11)) (-3052 (((-112) $ $) 26)) (-3075 (((-112) $ $) 36)))
+(((-266 |#1| |#2|) (-10 -8 (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3933 ((-772) |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3075 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|))) (-267 |#2|) (-851)) (T -266))
+NIL
+(-10 -8 (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3933 ((-772) |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3075 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-3933 (((-772) $) 23)) (-4295 ((|#1| $) 24)) (-3417 (((-3 |#1| "failed") $) 28)) (-1621 ((|#1| $) 29)) (-1909 (((-772) $) 25)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-1820 (($ |#1| (-772)) 26)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1930 (($ $) 22) (($ $ (-772)) 21)) (-4101 (((-863) $) 12) (($ |#1|) 27)) (-3739 (((-112) $ $) 9)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)))
+(((-267 |#1|) (-140) (-851)) (T -267))
+((-4101 (*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1820 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-3933 (*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1930 (*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851)))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851)))))
+(-13 (-851) (-1039 |t#1|) (-10 -8 (-15 -1820 ($ |t#1| (-772))) (-15 -1909 ((-772) $)) (-15 -4295 (|t#1| $)) (-15 -3933 ((-772) $)) (-15 -1930 ($ $)) (-15 -1930 ($ $ (-772))) (-15 -4101 ($ |t#1|))))
+(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-851) . T) ((-1039 |#1|) . T) ((-1100) . T))
+((-2449 (((-645 (-1176)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 54)) (-2881 (((-645 (-1176)) (-317 (-225)) (-772)) 96)) (-2986 (((-3 (-317 (-225)) "failed") (-317 (-225))) 64)) (-2772 (((-317 (-225)) (-317 (-225))) 82)) (-2603 (((-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 39)) (-3763 (((-112) (-645 (-317 (-225)))) 106)) (-3041 (((-112) (-317 (-225))) 37)) (-2708 (((-645 (-1158)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))))) 134)) (-4182 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 110)) (-1826 (((-645 (-317 (-225))) (-645 (-317 (-225)))) 108)) (-1706 (((-690 (-225)) (-645 (-317 (-225))) (-772)) 122)) (-4033 (((-112) (-317 (-225))) 32) (((-112) (-645 (-317 (-225)))) 107)) (-1694 (((-645 (-225)) (-645 (-844 (-225))) (-225)) 15)) (-2213 (((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 128)) (-1518 (((-1036) (-1176) (-1036)) 47)))
+(((-268) (-10 -7 (-15 -1694 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2603 ((-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2986 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2772 ((-317 (-225)) (-317 (-225)))) (-15 -3763 ((-112) (-645 (-317 (-225))))) (-15 -4033 ((-112) (-645 (-317 (-225))))) (-15 -4033 ((-112) (-317 (-225)))) (-15 -1706 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -1826 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -4182 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3041 ((-112) (-317 (-225)))) (-15 -2449 ((-645 (-1176)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -2881 ((-645 (-1176)) (-317 (-225)) (-772))) (-15 -1518 ((-1036) (-1176) (-1036))) (-15 -2213 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -2708 ((-645 (-1158)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))))))) (T -268))
+((-2708 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))))) (-5 *2 (-645 (-1158))) (-5 *1 (-268)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) (-5 *2 (-381)) (-5 *1 (-268)))) (-1518 (*1 *2 *3 *2) (-12 (-5 *2 (-1036)) (-5 *3 (-1176)) (-5 *1 (-268)))) (-2881 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1176))) (-5 *1 (-268)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) (-5 *2 (-645 (-1176))) (-5 *1 (-268)))) (-3041 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))) (-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-268)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))) (-2772 (*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2986 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-268)))) (-1694 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4)) (-5 *1 (-268)))))
+(-10 -7 (-15 -1694 ((-645 (-225)) (-645 (-844 (-225))) (-225))) (-15 -2603 ((-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2986 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2772 ((-317 (-225)) (-317 (-225)))) (-15 -3763 ((-112) (-645 (-317 (-225))))) (-15 -4033 ((-112) (-645 (-317 (-225))))) (-15 -4033 ((-112) (-317 (-225)))) (-15 -1706 ((-690 (-225)) (-645 (-317 (-225))) (-772))) (-15 -1826 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -4182 ((-645 (-317 (-225))) (-645 (-317 (-225))))) (-15 -3041 ((-112) (-317 (-225)))) (-15 -2449 ((-645 (-1176)) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -2881 ((-645 (-1176)) (-317 (-225)) (-772))) (-15 -1518 ((-1036) (-1176) (-1036))) (-15 -2213 ((-381) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -2708 ((-645 (-1158)) (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))))))
+((-2257 (((-112) $ $) NIL)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 56)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-269) (-840)) (T -269))
+NIL
+(-840)
+((-2257 (((-112) $ $) NIL)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 72) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 63)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 41) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 43)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-270) (-840)) (T -270))
+NIL
+(-840)
+((-2257 (((-112) $ $) NIL)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 90) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 85)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 52) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 65)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-271) (-840)) (T -271))
+NIL
+(-840)
+((-2257 (((-112) $ $) NIL)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 73)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 45) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-272) (-840)) (T -272))
+NIL
+(-840)
+((-2257 (((-112) $ $) NIL)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 65)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 31) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-273) (-840)) (T -273))
+NIL
+(-840)
+((-2257 (((-112) $ $) NIL)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 90)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 33) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-274) (-840)) (T -274))
+NIL
+(-840)
+((-2257 (((-112) $ $) NIL)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 95)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 32) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-275) (-840)) (T -275))
+NIL
+(-840)
+((-2257 (((-112) $ $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2767 (((-645 (-567)) $) 29)) (-3677 (((-772) $) 27)) (-4101 (((-863) $) 36) (($ (-645 (-567))) 23)) (-3739 (((-112) $ $) NIL)) (-1755 (($ (-772)) 33)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 9)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 17)))
+(((-276) (-13 (-851) (-10 -8 (-15 -4101 ($ (-645 (-567)))) (-15 -3677 ((-772) $)) (-15 -2767 ((-645 (-567)) $)) (-15 -1755 ($ (-772)))))) (T -276))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))) (-1755 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276)))))
+(-13 (-851) (-10 -8 (-15 -4101 ($ (-645 (-567)))) (-15 -3677 ((-772) $)) (-15 -2767 ((-645 (-567)) $)) (-15 -1755 ($ (-772)))))
+((-1772 ((|#2| |#2|) 77)) (-1605 ((|#2| |#2|) 65)) (-3663 (((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-1747 ((|#2| |#2|) 75)) (-1577 ((|#2| |#2|) 63)) (-1798 ((|#2| |#2|) 79)) (-1632 ((|#2| |#2|) 67)) (-4098 ((|#2|) 46)) (-2236 (((-114) (-114)) 100)) (-2942 ((|#2| |#2|) 61)) (-2148 (((-112) |#2|) 147)) (-3014 ((|#2| |#2|) 195)) (-4022 ((|#2| |#2|) 171)) (-1438 ((|#2|) 59)) (-3384 ((|#2|) 58)) (-3379 ((|#2| |#2|) 191)) (-3711 ((|#2| |#2|) 167)) (-3282 ((|#2| |#2|) 199)) (-3132 ((|#2| |#2|) 175)) (-4174 ((|#2| |#2|) 163)) (-4209 ((|#2| |#2|) 165)) (-1804 ((|#2| |#2|) 201)) (-3235 ((|#2| |#2|) 177)) (-1446 ((|#2| |#2|) 197)) (-1586 ((|#2| |#2|) 173)) (-3903 ((|#2| |#2|) 193)) (-3481 ((|#2| |#2|) 169)) (-1763 ((|#2| |#2|) 207)) (-2430 ((|#2| |#2|) 183)) (-2322 ((|#2| |#2|) 203)) (-3111 ((|#2| |#2|) 179)) (-2653 ((|#2| |#2|) 211)) (-3725 ((|#2| |#2|) 187)) (-1452 ((|#2| |#2|) 213)) (-2782 ((|#2| |#2|) 189)) (-2866 ((|#2| |#2|) 209)) (-4007 ((|#2| |#2|) 185)) (-3707 ((|#2| |#2|) 205)) (-3182 ((|#2| |#2|) 181)) (-2910 ((|#2| |#2|) 62)) (-1810 ((|#2| |#2|) 80)) (-1647 ((|#2| |#2|) 68)) (-1784 ((|#2| |#2|) 78)) (-1618 ((|#2| |#2|) 66)) (-1757 ((|#2| |#2|) 76)) (-1592 ((|#2| |#2|) 64)) (-2214 (((-112) (-114)) 98)) (-1847 ((|#2| |#2|) 83)) (-1690 ((|#2| |#2|) 71)) (-1823 ((|#2| |#2|) 81)) (-1660 ((|#2| |#2|) 69)) (-1869 ((|#2| |#2|) 85)) (-1719 ((|#2| |#2|) 73)) (-1345 ((|#2| |#2|) 86)) (-1733 ((|#2| |#2|) 74)) (-1858 ((|#2| |#2|) 84)) (-1704 ((|#2| |#2|) 72)) (-1834 ((|#2| |#2|) 82)) (-1673 ((|#2| |#2|) 70)))
+(((-277 |#1| |#2|) (-10 -7 (-15 -2910 (|#2| |#2|)) (-15 -2942 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -1869 (|#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -4098 (|#2|)) (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -3384 (|#2|)) (-15 -1438 (|#2|)) (-15 -4209 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -2430 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -3725 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -1804 (|#2| |#2|)) (-15 -2322 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1763 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -1452 (|#2| |#2|)) (-15 -3663 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2148 ((-112) |#2|))) (-559) (-13 (-433 |#1|) (-1003))) (T -277))
+((-2148 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3)) (-4 *3 (-13 (-433 *4) (-1003))))) (-3663 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-433 *4) (-1003))) (-4 *4 (-559)) (-5 *1 (-277 *4 *2)))) (-1452 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2653 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2866 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1763 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3707 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2322 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1804 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3282 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1446 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3014 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3379 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2782 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3725 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-4007 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2430 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3182 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3111 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3235 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3132 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1586 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-4022 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3481 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-4174 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-4209 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1438 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-3384 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4)) (-4 *4 (-13 (-433 *3) (-1003))))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003))))) (-4098 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2)) (-4 *3 (-559)))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1869 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1823 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1798 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2942 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003))))))
+(-10 -7 (-15 -2910 (|#2| |#2|)) (-15 -2942 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1592 (|#2| |#2|)) (-15 -1605 (|#2| |#2|)) (-15 -1618 (|#2| |#2|)) (-15 -1632 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -1660 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -1733 (|#2| |#2|)) (-15 -1747 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -1784 (|#2| |#2|)) (-15 -1798 (|#2| |#2|)) (-15 -1810 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1834 (|#2| |#2|)) (-15 -1847 (|#2| |#2|)) (-15 -1858 (|#2| |#2|)) (-15 -1869 (|#2| |#2|)) (-15 -1345 (|#2| |#2|)) (-15 -4098 (|#2|)) (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -3384 (|#2|)) (-15 -1438 (|#2|)) (-15 -4209 (|#2| |#2|)) (-15 -4174 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -3481 (|#2| |#2|)) (-15 -4022 (|#2| |#2|)) (-15 -1586 (|#2| |#2|)) (-15 -3132 (|#2| |#2|)) (-15 -3235 (|#2| |#2|)) (-15 -3111 (|#2| |#2|)) (-15 -3182 (|#2| |#2|)) (-15 -2430 (|#2| |#2|)) (-15 -4007 (|#2| |#2|)) (-15 -3725 (|#2| |#2|)) (-15 -2782 (|#2| |#2|)) (-15 -3379 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3014 (|#2| |#2|)) (-15 -1446 (|#2| |#2|)) (-15 -3282 (|#2| |#2|)) (-15 -1804 (|#2| |#2|)) (-15 -2322 (|#2| |#2|)) (-15 -3707 (|#2| |#2|)) (-15 -1763 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -2653 (|#2| |#2|)) (-15 -1452 (|#2| |#2|)) (-15 -3663 ((-3 |#2| "failed") |#2| (-645 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2148 ((-112) |#2|)))
+((-1713 (((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1176)) 153)) (-1829 ((|#2| (-410 (-567)) |#2|) 49)) (-2309 ((|#2| |#2| (-613 |#2|)) 146)) (-1974 (((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1176)) 145)) (-3209 ((|#2| |#2| (-1176)) 20) ((|#2| |#2|) 23)) (-3226 ((|#2| |#2| (-1176)) 159) ((|#2| |#2|) 157)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| (-1176))) (-15 -1974 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1176))) (-15 -3209 (|#2| |#2|)) (-15 -3209 (|#2| |#2| (-1176))) (-15 -1713 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1176))) (-15 -2309 (|#2| |#2| (-613 |#2|))) (-15 -1829 (|#2| (-410 (-567)) |#2|))) (-13 (-559) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|))) (T -278))
+((-1829 (*1 *2 *3 *2) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))) (-2309 (*1 *2 *2 *3) (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)))) (-1713 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1176)) (-4 *2 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *5 *2)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))) (-3209 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))) (-1974 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3))) (|:| |vals| (-645 *3)))) (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-3226 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))) (-3226 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))))
+(-10 -7 (-15 -3226 (|#2| |#2|)) (-15 -3226 (|#2| |#2| (-1176))) (-15 -1974 ((-2 (|:| |func| |#2|) (|:| |kers| (-645 (-613 |#2|))) (|:| |vals| (-645 |#2|))) |#2| (-1176))) (-15 -3209 (|#2| |#2|)) (-15 -3209 (|#2| |#2| (-1176))) (-15 -1713 ((-3 |#2| "failed") (-645 (-613 |#2|)) |#2| (-1176))) (-15 -2309 (|#2| |#2| (-613 |#2|))) (-15 -1829 (|#2| (-410 (-567)) |#2|)))
+((-3994 (((-3 |#3| "failed") |#3|) 120)) (-1772 ((|#3| |#3|) 142)) (-3623 (((-3 |#3| "failed") |#3|) 89)) (-1605 ((|#3| |#3|) 132)) (-2504 (((-3 |#3| "failed") |#3|) 65)) (-1747 ((|#3| |#3|) 140)) (-2402 (((-3 |#3| "failed") |#3|) 53)) (-1577 ((|#3| |#3|) 130)) (-1949 (((-3 |#3| "failed") |#3|) 122)) (-1798 ((|#3| |#3|) 144)) (-1933 (((-3 |#3| "failed") |#3|) 91)) (-1632 ((|#3| |#3|) 134)) (-3729 (((-3 |#3| "failed") |#3| (-772)) 41)) (-1786 (((-3 |#3| "failed") |#3|) 81)) (-2942 ((|#3| |#3|) 129)) (-4299 (((-3 |#3| "failed") |#3|) 51)) (-2910 ((|#3| |#3|) 128)) (-2187 (((-3 |#3| "failed") |#3|) 123)) (-1810 ((|#3| |#3|) 145)) (-3355 (((-3 |#3| "failed") |#3|) 92)) (-1647 ((|#3| |#3|) 135)) (-2217 (((-3 |#3| "failed") |#3|) 121)) (-1784 ((|#3| |#3|) 143)) (-2951 (((-3 |#3| "failed") |#3|) 90)) (-1618 ((|#3| |#3|) 133)) (-2677 (((-3 |#3| "failed") |#3|) 67)) (-1757 ((|#3| |#3|) 141)) (-4393 (((-3 |#3| "failed") |#3|) 55)) (-1592 ((|#3| |#3|) 131)) (-1711 (((-3 |#3| "failed") |#3|) 73)) (-1847 ((|#3| |#3|) 148)) (-2763 (((-3 |#3| "failed") |#3|) 114)) (-1690 ((|#3| |#3|) 154)) (-3596 (((-3 |#3| "failed") |#3|) 69)) (-1823 ((|#3| |#3|) 146)) (-4373 (((-3 |#3| "failed") |#3|) 57)) (-1660 ((|#3| |#3|) 136)) (-3785 (((-3 |#3| "failed") |#3|) 77)) (-1869 ((|#3| |#3|) 150)) (-1330 (((-3 |#3| "failed") |#3|) 61)) (-1719 ((|#3| |#3|) 138)) (-3906 (((-3 |#3| "failed") |#3|) 79)) (-1345 ((|#3| |#3|) 151)) (-2496 (((-3 |#3| "failed") |#3|) 63)) (-1733 ((|#3| |#3|) 139)) (-2889 (((-3 |#3| "failed") |#3|) 75)) (-1858 ((|#3| |#3|) 149)) (-1964 (((-3 |#3| "failed") |#3|) 117)) (-1704 ((|#3| |#3|) 155)) (-1507 (((-3 |#3| "failed") |#3|) 71)) (-1834 ((|#3| |#3|) 147)) (-2024 (((-3 |#3| "failed") |#3|) 59)) (-1673 ((|#3| |#3|) 137)) (** ((|#3| |#3| (-410 (-567))) 47 (|has| |#1| (-365)))))
+(((-279 |#1| |#2| |#3|) (-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -2910 (|#3| |#3|)) (-15 -2942 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -1605 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1704 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1772 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1798 (|#3| |#3|)) (-15 -1810 (|#3| |#3|)) (-15 -1823 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1847 (|#3| |#3|)) (-15 -1858 (|#3| |#3|)) (-15 -1869 (|#3| |#3|)) (-15 -1345 (|#3| |#3|)))) (-38 (-410 (-567))) (-1257 |#1|) (-1228 |#1| |#2|)) (T -279))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1257 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1228 *4 *5)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-2942 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1798 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1823 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1869 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3)) (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4)))))
+(-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -2910 (|#3| |#3|)) (-15 -2942 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -1605 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1704 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1772 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1798 (|#3| |#3|)) (-15 -1810 (|#3| |#3|)) (-15 -1823 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1847 (|#3| |#3|)) (-15 -1858 (|#3| |#3|)) (-15 -1869 (|#3| |#3|)) (-15 -1345 (|#3| |#3|))))
+((-3994 (((-3 |#3| "failed") |#3|) 70)) (-1772 ((|#3| |#3|) 137)) (-3623 (((-3 |#3| "failed") |#3|) 54)) (-1605 ((|#3| |#3|) 125)) (-2504 (((-3 |#3| "failed") |#3|) 66)) (-1747 ((|#3| |#3|) 135)) (-2402 (((-3 |#3| "failed") |#3|) 50)) (-1577 ((|#3| |#3|) 123)) (-1949 (((-3 |#3| "failed") |#3|) 74)) (-1798 ((|#3| |#3|) 139)) (-1933 (((-3 |#3| "failed") |#3|) 58)) (-1632 ((|#3| |#3|) 127)) (-3729 (((-3 |#3| "failed") |#3| (-772)) 38)) (-1786 (((-3 |#3| "failed") |#3|) 48)) (-2942 ((|#3| |#3|) 111)) (-4299 (((-3 |#3| "failed") |#3|) 46)) (-2910 ((|#3| |#3|) 122)) (-2187 (((-3 |#3| "failed") |#3|) 76)) (-1810 ((|#3| |#3|) 140)) (-3355 (((-3 |#3| "failed") |#3|) 60)) (-1647 ((|#3| |#3|) 128)) (-2217 (((-3 |#3| "failed") |#3|) 72)) (-1784 ((|#3| |#3|) 138)) (-2951 (((-3 |#3| "failed") |#3|) 56)) (-1618 ((|#3| |#3|) 126)) (-2677 (((-3 |#3| "failed") |#3|) 68)) (-1757 ((|#3| |#3|) 136)) (-4393 (((-3 |#3| "failed") |#3|) 52)) (-1592 ((|#3| |#3|) 124)) (-1711 (((-3 |#3| "failed") |#3|) 78)) (-1847 ((|#3| |#3|) 143)) (-2763 (((-3 |#3| "failed") |#3|) 62)) (-1690 ((|#3| |#3|) 131)) (-3596 (((-3 |#3| "failed") |#3|) 112)) (-1823 ((|#3| |#3|) 141)) (-4373 (((-3 |#3| "failed") |#3|) 100)) (-1660 ((|#3| |#3|) 129)) (-3785 (((-3 |#3| "failed") |#3|) 116)) (-1869 ((|#3| |#3|) 145)) (-1330 (((-3 |#3| "failed") |#3|) 107)) (-1719 ((|#3| |#3|) 133)) (-3906 (((-3 |#3| "failed") |#3|) 117)) (-1345 ((|#3| |#3|) 146)) (-2496 (((-3 |#3| "failed") |#3|) 109)) (-1733 ((|#3| |#3|) 134)) (-2889 (((-3 |#3| "failed") |#3|) 80)) (-1858 ((|#3| |#3|) 144)) (-1964 (((-3 |#3| "failed") |#3|) 64)) (-1704 ((|#3| |#3|) 132)) (-1507 (((-3 |#3| "failed") |#3|) 113)) (-1834 ((|#3| |#3|) 142)) (-2024 (((-3 |#3| "failed") |#3|) 103)) (-1673 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-410 (-567))) 44 (|has| |#1| (-365)))))
+(((-280 |#1| |#2| |#3| |#4|) (-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -2910 (|#3| |#3|)) (-15 -2942 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -1605 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1704 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1772 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1798 (|#3| |#3|)) (-15 -1810 (|#3| |#3|)) (-15 -1823 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1847 (|#3| |#3|)) (-15 -1858 (|#3| |#3|)) (-15 -1869 (|#3| |#3|)) (-15 -1345 (|#3| |#3|)))) (-38 (-410 (-567))) (-1226 |#1|) (-1249 |#1| |#2|) (-984 |#2|)) (T -280))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3)) (-4 *5 (-1226 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1249 *4 *5)) (-4 *6 (-984 *5)))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-2942 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1592 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1605 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1618 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1632 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1660 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1733 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1747 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1784 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1798 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1810 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1823 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1834 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1847 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1869 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))) (-1345 (*1 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3)) (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4)))))
+(-13 (-984 |#3|) (-10 -7 (IF (|has| |#1| (-365)) (-15 ** (|#3| |#3| (-410 (-567)))) |%noBranch|) (-15 -2910 (|#3| |#3|)) (-15 -2942 (|#3| |#3|)) (-15 -1577 (|#3| |#3|)) (-15 -1592 (|#3| |#3|)) (-15 -1605 (|#3| |#3|)) (-15 -1618 (|#3| |#3|)) (-15 -1632 (|#3| |#3|)) (-15 -1647 (|#3| |#3|)) (-15 -1660 (|#3| |#3|)) (-15 -1673 (|#3| |#3|)) (-15 -1690 (|#3| |#3|)) (-15 -1704 (|#3| |#3|)) (-15 -1719 (|#3| |#3|)) (-15 -1733 (|#3| |#3|)) (-15 -1747 (|#3| |#3|)) (-15 -1757 (|#3| |#3|)) (-15 -1772 (|#3| |#3|)) (-15 -1784 (|#3| |#3|)) (-15 -1798 (|#3| |#3|)) (-15 -1810 (|#3| |#3|)) (-15 -1823 (|#3| |#3|)) (-15 -1834 (|#3| |#3|)) (-15 -1847 (|#3| |#3|)) (-15 -1858 (|#3| |#3|)) (-15 -1869 (|#3| |#3|)) (-15 -1345 (|#3| |#3|))))
+((-1963 (((-112) $) 20)) (-2241 (((-1181) $) 7)) (-4024 (((-3 (-509) "failed") $) 14)) (-3358 (((-3 (-645 $) "failed") $) NIL)) (-3044 (((-3 (-509) "failed") $) 21)) (-2616 (((-3 (-1104) "failed") $) 18)) (-3115 (((-112) $) 16)) (-4101 (((-863) $) NIL)) (-2810 (((-112) $) 9)))
+(((-281) (-13 (-614 (-863)) (-10 -8 (-15 -2241 ((-1181) $)) (-15 -3115 ((-112) $)) (-15 -2616 ((-3 (-1104) "failed") $)) (-15 -1963 ((-112) $)) (-15 -3044 ((-3 (-509) "failed") $)) (-15 -2810 ((-112) $)) (-15 -4024 ((-3 (-509) "failed") $)) (-15 -3358 ((-3 (-645 $) "failed") $))))) (T -281))
+((-2241 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-281)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-2616 (*1 *2 *1) (|partial| -12 (-5 *2 (-1104)) (-5 *1 (-281)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-3044 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))) (-4024 (*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))) (-3358 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2241 ((-1181) $)) (-15 -3115 ((-112) $)) (-15 -2616 ((-3 (-1104) "failed") $)) (-15 -1963 ((-112) $)) (-15 -3044 ((-3 (-509) "failed") $)) (-15 -2810 ((-112) $)) (-15 -4024 ((-3 (-509) "failed") $)) (-15 -3358 ((-3 (-645 $) "failed") $))))
+((-1551 (($ (-1 (-112) |#2|) $) 24)) (-2084 (($ $) 38)) (-3410 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-3138 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-3492 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2884 (($ |#2| $ (-567)) 20) (($ $ $ (-567)) 22)) (-2675 (($ $ (-567)) 11) (($ $ (-1233 (-567))) 14)) (-3962 (($ $ |#2|) 32) (($ $ $) NIL)) (-2285 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-645 $)) NIL)))
+(((-282 |#1| |#2|) (-10 -8 (-15 -3492 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#2| |#1|)) (-15 -3492 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3410 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2675 (|#1| |#1| (-1233 (-567)))) (-15 -2675 (|#1| |#1| (-567))) (-15 -2285 (|#1| (-645 |#1|))) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -3138 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3138 (|#1| |#2| |#1|)) (-15 -2084 (|#1| |#1|))) (-283 |#2|) (-1216)) (T -282))
+NIL
+(-10 -8 (-15 -3492 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#2| |#1|)) (-15 -3492 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3410 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2675 (|#1| |#1| (-1233 (-567)))) (-15 -2675 (|#1| |#1| (-567))) (-15 -2285 (|#1| (-645 |#1|))) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -3138 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1551 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3138 (|#1| |#2| |#1|)) (-15 -2084 (|#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 59 (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) |#1|) $) 86)) (-1551 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1861 (($ $) 84 (|has| |#1| (-1100)))) (-2084 (($ $) 79 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ (-1 (-112) |#1|) $) 90) (($ |#1| $) 85 (|has| |#1| (-1100)))) (-3138 (($ |#1| $) 78 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 52)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-3492 (($ (-1 (-112) |#1| |#1|) $ $) 87) (($ $ $) 83 (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-1336 (($ |#1| $ (-567)) 89) (($ $ $ (-567)) 88)) (-2884 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 43 (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2092 (($ $ |#1|) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1233 (-567))) 64)) (-2816 (($ $ (-567)) 92) (($ $ (-1233 (-567))) 91)) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 71)) (-3962 (($ $ |#1|) 94) (($ $ $) 93)) (-2285 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-283 |#1|) (-140) (-1216)) (T -283))
+((-3962 (*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)))) (-3962 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)))) (-2816 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1216)))) (-2816 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1216)))) (-3410 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1216)))) (-1336 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1216)))) (-1336 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1216)))) (-3492 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1216)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1216)))) (-3410 (*1 *1 *2 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)) (-4 *2 (-1100)))) (-1861 (*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)) (-4 *2 (-1100)))) (-3492 (*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)) (-4 *2 (-851)))))
+(-13 (-652 |t#1|) (-10 -8 (-6 -4417) (-15 -3962 ($ $ |t#1|)) (-15 -3962 ($ $ $)) (-15 -2816 ($ $ (-567))) (-15 -2816 ($ $ (-1233 (-567)))) (-15 -3410 ($ (-1 (-112) |t#1|) $)) (-15 -1336 ($ |t#1| $ (-567))) (-15 -1336 ($ $ $ (-567))) (-15 -3492 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2581 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1100)) (PROGN (-15 -3410 ($ |t#1| $)) (-15 -1861 ($ $))) |%noBranch|) (IF (|has| |t#1| (-851)) (-15 -3492 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
((** (($ $ $) 10)))
(((-284 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-285)) (T -284))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-1565 (($ $) 6)) (-1535 (($ $) 7)) (** (($ $ $) 8)))
+((-2942 (($ $) 6)) (-2910 (($ $) 7)) (** (($ $ $) 8)))
(((-285) (-140)) (T -285))
-((** (*1 *1 *1 *1) (-4 *1 (-285))) (-1535 (*1 *1 *1) (-4 *1 (-285))) (-1565 (*1 *1 *1) (-4 *1 (-285))))
-(-13 (-10 -8 (-15 -1565 ($ $)) (-15 -1535 ($ $)) (-15 ** ($ $ $))))
-((-3637 (((-644 (-1155 |#1|)) (-1155 |#1|) |#1|) 35)) (-3989 ((|#2| |#2| |#1|) 39)) (-3590 ((|#2| |#2| |#1|) 41)) (-2942 ((|#2| |#2| |#1|) 40)))
-(((-286 |#1| |#2|) (-10 -7 (-15 -3989 (|#2| |#2| |#1|)) (-15 -2942 (|#2| |#2| |#1|)) (-15 -3590 (|#2| |#2| |#1|)) (-15 -3637 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|))) (-365) (-1256 |#1|)) (T -286))
-((-3637 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1155 *4)) (-4 *5 (-1256 *4)))) (-3590 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1256 *3)))) (-2942 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1256 *3)))) (-3989 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1256 *3)))))
-(-10 -7 (-15 -3989 (|#2| |#2| |#1|)) (-15 -2942 (|#2| |#2| |#1|)) (-15 -3590 (|#2| |#2| |#1|)) (-15 -3637 ((-644 (-1155 |#1|)) (-1155 |#1|) |#1|)))
-((-3282 ((|#2| $ |#1|) 6)))
-(((-287 |#1| |#2|) (-140) (-1099) (-1215)) (T -287))
-((-3282 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215)))))
-(-13 (-10 -8 (-15 -3282 (|t#2| $ |t#1|))))
-((-3031 ((|#3| $ |#2| |#3|) 12)) (-2975 ((|#3| $ |#2|) 10)))
-(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -3031 (|#3| |#1| |#2| |#3|)) (-15 -2975 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1099) (-1215)) (T -288))
-NIL
-(-10 -8 (-15 -3031 (|#3| |#1| |#2| |#3|)) (-15 -2975 (|#3| |#1| |#2|)))
-((-2858 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4416)))) (-3031 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) 11)) (-3282 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-289 |#1| |#2|) (-140) (-1099) (-1215)) (T -289))
-((-3282 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215)))) (-2975 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215)))) (-2858 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215)))) (-3031 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215)))))
-(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -3282 (|t#2| $ |t#1| |t#2|)) (-15 -2975 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4416)) (PROGN (-15 -2858 (|t#2| $ |t#1| |t#2|)) (-15 -3031 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-285))) (-2910 (*1 *1 *1) (-4 *1 (-285))) (-2942 (*1 *1 *1) (-4 *1 (-285))))
+(-13 (-10 -8 (-15 -2942 ($ $)) (-15 -2910 ($ $)) (-15 ** ($ $ $))))
+((-2491 (((-645 (-1156 |#1|)) (-1156 |#1|) |#1|) 35)) (-1575 ((|#2| |#2| |#1|) 39)) (-3270 ((|#2| |#2| |#1|) 41)) (-4312 ((|#2| |#2| |#1|) 40)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -1575 (|#2| |#2| |#1|)) (-15 -4312 (|#2| |#2| |#1|)) (-15 -3270 (|#2| |#2| |#1|)) (-15 -2491 ((-645 (-1156 |#1|)) (-1156 |#1|) |#1|))) (-365) (-1257 |#1|)) (T -286))
+((-2491 (*1 *2 *3 *4) (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1156 *4))) (-5 *1 (-286 *4 *5)) (-5 *3 (-1156 *4)) (-4 *5 (-1257 *4)))) (-3270 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1257 *3)))) (-4312 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1257 *3)))) (-1575 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1257 *3)))))
+(-10 -7 (-15 -1575 (|#2| |#2| |#1|)) (-15 -4312 (|#2| |#2| |#1|)) (-15 -3270 (|#2| |#2| |#1|)) (-15 -2491 ((-645 (-1156 |#1|)) (-1156 |#1|) |#1|)))
+((-1552 ((|#2| $ |#1|) 6)))
+(((-287 |#1| |#2|) (-140) (-1100) (-1216)) (T -287))
+((-1552 (*1 *2 *1 *3) (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216)))))
+(-13 (-10 -8 (-15 -1552 (|t#2| $ |t#1|))))
+((-1303 ((|#3| $ |#2| |#3|) 12)) (-4344 ((|#3| $ |#2|) 10)))
+(((-288 |#1| |#2| |#3|) (-10 -8 (-15 -1303 (|#3| |#1| |#2| |#3|)) (-15 -4344 (|#3| |#1| |#2|))) (-289 |#2| |#3|) (-1100) (-1216)) (T -288))
+NIL
+(-10 -8 (-15 -1303 (|#3| |#1| |#2| |#3|)) (-15 -4344 (|#3| |#1| |#2|)))
+((-4230 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4417)))) (-1303 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) 11)) (-1552 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-289 |#1| |#2|) (-140) (-1100) (-1216)) (T -289))
+((-1552 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216)))) (-4344 (*1 *2 *1 *3) (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216)))) (-4230 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216)))) (-1303 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216)))))
+(-13 (-287 |t#1| |t#2|) (-10 -8 (-15 -1552 (|t#2| $ |t#1| |t#2|)) (-15 -4344 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4417)) (PROGN (-15 -4230 (|t#2| $ |t#1| |t#2|)) (-15 -1303 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-287 |#1| |#2|) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 37)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 44)) (-1780 (($ $) 41)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) 35)) (-2553 (($ |#2| |#3|) 18)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2689 ((|#3| $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 19)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2641 (((-3 $ "failed") $ $) NIL)) (-3792 (((-771) $) 36)) (-3282 ((|#2| $ |#2|) 46)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 23)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) 31 T CONST)) (-3214 (($) 39 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40)))
-(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -2689 (|#3| $)) (-15 -2725 (|#2| $)) (-15 -2553 ($ |#2| |#3|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -2313 ((-3 $ "failed") $)) (-15 -4282 ($ $)) (-15 -3282 (|#2| $ |#2|)))) (-172) (-1241 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290))
-((-2313 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1241 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2689 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1241 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2725 (*1 *2 *1) (-12 (-4 *2 (-1241 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2553 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1241 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2641 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1241 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4282 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1241 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3282 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1241 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-308) (-10 -8 (-15 -2689 (|#3| $)) (-15 -2725 (|#2| $)) (-15 -2553 ($ |#2| |#3|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -2313 ((-3 $ "failed") $)) (-15 -4282 ($ $)) (-15 -3282 (|#2| $ |#2|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 37)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 44)) (-3602 (($ $) 41)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) 35)) (-3402 (($ |#2| |#3|) 18)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3416 ((|#3| $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 19)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4127 (((-3 $ "failed") $ $) NIL)) (-4369 (((-772) $) 36)) (-1552 ((|#2| $ |#2|) 46)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 23)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) 31 T CONST)) (-1484 (($) 39 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40)))
+(((-290 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-308) (-10 -8 (-15 -3416 (|#3| $)) (-15 -4101 (|#2| $)) (-15 -3402 ($ |#2| |#3|)) (-15 -4127 ((-3 $ "failed") $ $)) (-15 -4014 ((-3 $ "failed") $)) (-15 -2559 ($ $)) (-15 -1552 (|#2| $ |#2|)))) (-172) (-1242 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -290))
+((-4014 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1242 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3416 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1242 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-4101 (*1 *2 *1) (-12 (-4 *2 (-1242 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3402 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1242 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4127 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1242 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2559 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1242 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1552 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1242 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-308) (-10 -8 (-15 -3416 (|#3| $)) (-15 -4101 (|#2| $)) (-15 -3402 ($ |#2| |#3|)) (-15 -4127 ((-3 $ "failed") $ $)) (-15 -4014 ((-3 $ "failed") $)) (-15 -2559 ($ $)) (-15 -1552 (|#2| $ |#2|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-291) (-140)) (T -291))
NIL
-(-13 (-1049) (-111 $ $) (-10 -7 (-6 -4408)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3840 (($ (-508) (-508) (-1103) $) 19)) (-3385 (($ (-508) (-644 (-965)) $) 23)) (-4152 (((-644 (-1084)) $) 10)) (-3384 (($) 25)) (-1693 (((-691 (-1103)) (-508) (-508) $) 18)) (-2374 (((-644 (-965)) (-508) $) 22)) (-3906 (($) 7)) (-2795 (($) 24)) (-2725 (((-862) $) 29)) (-3420 (($) 26)))
-(((-292) (-13 (-613 (-862)) (-10 -8 (-15 -3906 ($)) (-15 -4152 ((-644 (-1084)) $)) (-15 -1693 ((-691 (-1103)) (-508) (-508) $)) (-15 -3840 ($ (-508) (-508) (-1103) $)) (-15 -2374 ((-644 (-965)) (-508) $)) (-15 -3385 ($ (-508) (-644 (-965)) $)) (-15 -2795 ($)) (-15 -3384 ($)) (-15 -3420 ($))))) (T -292))
-((-3906 (*1 *1) (-5 *1 (-292))) (-4152 (*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292)))) (-1693 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292)))) (-3840 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292)))) (-2374 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292)))) (-3385 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292)))) (-2795 (*1 *1) (-5 *1 (-292))) (-3384 (*1 *1) (-5 *1 (-292))) (-3420 (*1 *1) (-5 *1 (-292))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3906 ($)) (-15 -4152 ((-644 (-1084)) $)) (-15 -1693 ((-691 (-1103)) (-508) (-508) $)) (-15 -3840 ($ (-508) (-508) (-1103) $)) (-15 -2374 ((-644 (-965)) (-508) $)) (-15 -3385 ($ (-508) (-644 (-965)) $)) (-15 -2795 ($)) (-15 -3384 ($)) (-15 -3420 ($))))
-((-3362 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 105)) (-2295 (((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|)))) 100) (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771)) 41)) (-2602 (((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))) 102)) (-2412 (((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|)))) 77)) (-2489 (((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|)))) 76)) (-1707 (((-952 |#1|) (-689 (-409 (-952 |#1|)))) 57) (((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175)) 58)))
-(((-293 |#1|) (-10 -7 (-15 -1707 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -1707 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -2489 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -2412 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -2295 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -2295 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -3362 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -2602 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|)))))) (-454)) (T -293))
-((-2602 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-3362 (*1 *2 *3) (-12 (-4 *4 (-454)) (-5 *2 (-644 (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))) (-2295 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-2295 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6)))) (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6)))))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454)) (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))) (-5 *1 (-293 *4)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4)) (-5 *1 (-293 *4)) (-4 *4 (-454)))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175)) (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454)))))
-(-10 -7 (-15 -1707 ((-952 |#1|) (-689 (-409 (-952 |#1|))) (-1175))) (-15 -1707 ((-952 |#1|) (-689 (-409 (-952 |#1|))))) (-15 -2489 ((-644 (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (-689 (-409 (-952 |#1|))))) (-15 -2412 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))))) (-15 -2295 ((-644 (-689 (-409 (-952 |#1|)))) (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|))) (-689 (-409 (-952 |#1|))) (-771) (-771))) (-15 -2295 ((-644 (-689 (-409 (-952 |#1|)))) (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|)))))) (-689 (-409 (-952 |#1|))))) (-15 -3362 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |geneigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))) (-15 -2602 ((-644 (-2 (|:| |eigval| (-3 (-409 (-952 |#1|)) (-1164 (-1175) (-952 |#1|)))) (|:| |eigmult| (-771)) (|:| |eigvec| (-644 (-689 (-409 (-952 |#1|))))))) (-689 (-409 (-952 |#1|))))))
-((-2101 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14)))
-(((-294 |#1| |#2|) (-10 -7 (-15 -2101 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1215) (-1215)) (T -294))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))))
-(-10 -7 (-15 -2101 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3545 (((-112) $) NIL (|has| |#1| (-21)))) (-1317 (($ $) 12)) (-4113 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1713 (($ $ $) 95 (|has| |#1| (-303)))) (-2633 (($) NIL (-2676 (|has| |#1| (-21)) (|has| |#1| (-726))) CONST)) (-2778 (($ $) 51 (|has| |#1| (-21)))) (-2182 (((-3 $ "failed") $) 62 (|has| |#1| (-726)))) (-3516 ((|#1| $) 11)) (-2313 (((-3 $ "failed") $) 60 (|has| |#1| (-726)))) (-3842 (((-112) $) NIL (|has| |#1| (-726)))) (-2101 (($ (-1 |#1| |#1|) $) 14)) (-3502 ((|#1| $) 10)) (-4238 (($ $) 50 (|has| |#1| (-21)))) (-1564 (((-3 $ "failed") $) 61 (|has| |#1| (-726)))) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4282 (($ $) 64 (-2676 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1801 (((-644 $) $) 85 (|has| |#1| (-558)))) (-1754 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 21 (|has| |#1| (-516 (-1175) |#1|)))) (-3911 (($ |#1| |#1|) 9)) (-4356 (((-134)) 90 (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) 87 (|has| |#1| (-900 (-1175))))) (-2558 (($ $ $) NIL (|has| |#1| (-475)))) (-1726 (($ $ $) NIL (|has| |#1| (-475)))) (-2725 (($ (-566)) NIL (|has| |#1| (-1049))) (((-112) $) 37 (|has| |#1| (-1099))) (((-862) $) 36 (|has| |#1| (-1099)))) (-2875 (((-771)) 67 (|has| |#1| (-1049)) CONST)) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3200 (($) 47 (|has| |#1| (-21)) CONST)) (-3214 (($) 57 (|has| |#1| (-726)) CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175))))) (-2817 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1099)))) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2676 (|has| |#1| (-365)) (|has| |#1| (-475))))) (-2905 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-2897 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-566)) NIL (|has| |#1| (-475))) (($ $ (-771)) NIL (|has| |#1| (-726))) (($ $ (-921)) NIL (|has| |#1| (-1111)))) (* (($ $ |#1|) 55 (|has| |#1| (-1111))) (($ |#1| $) 54 (|has| |#1| (-1111))) (($ $ $) 53 (|has| |#1| (-1111))) (($ (-566) $) 70 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-25)))))
-(((-295 |#1|) (-13 (-1215) (-10 -8 (-15 -2817 ($ |#1| |#1|)) (-15 -3911 ($ |#1| |#1|)) (-15 -1317 ($ $)) (-15 -3502 (|#1| $)) (-15 -3516 (|#1| $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -1754 ($ $ $)) (-15 -1754 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2897 ($ |#1| $)) (-15 -2897 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4238 ($ $)) (-15 -2778 ($ $)) (-15 -2905 ($ |#1| $)) (-15 -2905 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -1564 ((-3 $ "failed") $)) (-15 -2182 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -1564 ((-3 $ "failed") $)) (-15 -2182 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -1801 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1272 |#1|)) (-15 -2916 ($ $ $)) (-15 -4282 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -1713 ($ $ $)) |%noBranch|))) (-1215)) (T -295))
-((-2817 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215)))) (-3911 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215)))) (-1317 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215)))) (-3502 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215)))) (-3516 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215)))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-295 *3)))) (-1754 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1215)) (-5 *1 (-295 *2)))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099)) (-4 *3 (-1215)) (-5 *1 (-295 *3)))) (-2897 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1215)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1215)))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215)))) (-2778 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215)))) (-2905 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215)))) (-2905 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215)))) (-1564 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1215)))) (-2182 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1215)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558)) (-4 *3 (-1215)))) (-1713 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1215)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1215)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1215)))) (-2916 (*1 *1 *1 *1) (-2676 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1215))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1215))))) (-4282 (*1 *1 *1) (-2676 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1215))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1215))))))
-(-13 (-1215) (-10 -8 (-15 -2817 ($ |#1| |#1|)) (-15 -3911 ($ |#1| |#1|)) (-15 -1317 ($ $)) (-15 -3502 (|#1| $)) (-15 -3516 (|#1| $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-516 (-1175) |#1|)) (-6 (-516 (-1175) |#1|)) |%noBranch|) (IF (|has| |#1| (-1099)) (PROGN (-6 (-1099)) (-6 (-613 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -1754 ($ $ $)) (-15 -1754 ($ $ (-644 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2897 ($ |#1| $)) (-15 -2897 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4238 ($ $)) (-15 -2778 ($ $)) (-15 -2905 ($ |#1| $)) (-15 -2905 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1111)) (PROGN (-6 (-1111)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-726)) (PROGN (-6 (-726)) (-15 -1564 ((-3 $ "failed") $)) (-15 -2182 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-475)) (PROGN (-6 (-475)) (-15 -1564 ((-3 $ "failed") $)) (-15 -2182 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|) (IF (|has| |#1| (-558)) (-15 -1801 ((-644 $) $)) |%noBranch|) (IF (|has| |#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1272 |#1|)) (-15 -2916 ($ $ $)) (-15 -4282 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -1713 ($ $ $)) |%noBranch|)))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2506 (((-1270) $ |#1| |#1|) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) NIL)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) NIL)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) NIL)) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 ((|#1| $) NIL (|has| |#1| (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 ((|#1| $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2838 (((-644 |#1|) $) NIL)) (-3932 (((-112) |#1| $) NIL)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-4063 (((-644 |#1|) $) NIL)) (-3054 (((-112) |#1| $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#2| $) NIL (|has| |#1| (-850)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-296 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415))) (-1099) (-1099)) (T -296))
-NIL
-(-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415)))
-((-4277 (((-313) (-1157) (-644 (-1157))) 17) (((-313) (-1157) (-1157)) 16) (((-313) (-644 (-1157))) 15) (((-313) (-1157)) 14)))
-(((-297) (-10 -7 (-15 -4277 ((-313) (-1157))) (-15 -4277 ((-313) (-644 (-1157)))) (-15 -4277 ((-313) (-1157) (-1157))) (-15 -4277 ((-313) (-1157) (-644 (-1157)))))) (T -297))
-((-4277 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-4277 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297)))) (-4277 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297)))))
-(-10 -7 (-15 -4277 ((-313) (-1157))) (-15 -4277 ((-313) (-644 (-1157)))) (-15 -4277 ((-313) (-1157) (-1157))) (-15 -4277 ((-313) (-1157) (-644 (-1157)))))
-((-2101 ((|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)) 18)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -2101 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|)))) (-303) (-1215)) (T -298))
-((-2101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1157)) (-5 *5 (-612 *6)) (-4 *6 (-303)) (-4 *2 (-1215)) (-5 *1 (-298 *6 *2)))))
-(-10 -7 (-15 -2101 (|#2| (-1 |#2| |#1|) (-1157) (-612 |#1|))))
-((-2101 ((|#2| (-1 |#2| |#1|) (-612 |#1|)) 17)))
-(((-299 |#1| |#2|) (-10 -7 (-15 -2101 (|#2| (-1 |#2| |#1|) (-612 |#1|)))) (-303) (-303)) (T -299))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-612 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2)))))
-(-10 -7 (-15 -2101 (|#2| (-1 |#2| |#1|) (-612 |#1|))))
-((-3329 (((-112) (-225)) 12)))
-(((-300 |#1| |#2|) (-10 -7 (-15 -3329 ((-112) (-225)))) (-225) (-225)) (T -300))
-((-3329 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -3329 ((-112) (-225))))
-((-1454 (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 118)) (-3958 (((-1155 (-225)) (-1265 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225)))) 135) (((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225)))) 72)) (-3504 (((-644 (-1157)) (-1155 (-225))) NIL)) (-1735 (((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225)))) 69)) (-2998 (((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225)))) 59)) (-3949 (((-644 (-1157)) (-644 (-225))) NIL)) (-3655 (((-225) (-1093 (-843 (-225)))) 29)) (-3170 (((-225) (-1093 (-843 (-225)))) 30)) (-2660 (((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1961 (((-1157) (-225)) NIL)))
-(((-301) (-10 -7 (-15 -3655 ((-225) (-1093 (-843 (-225))))) (-15 -3170 ((-225) (-1093 (-843 (-225))))) (-15 -2660 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1735 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -1454 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -3958 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -3958 ((-1155 (-225)) (-1265 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2998 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -1961 ((-1157) (-225))) (-15 -3949 ((-644 (-1157)) (-644 (-225)))) (-15 -3504 ((-644 (-1157)) (-1155 (-225)))))) (T -301))
-((-3504 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301)))) (-2998 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-3958 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-1454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175))) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))) (-1735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175)) (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))))
-(-10 -7 (-15 -3655 ((-225) (-1093 (-843 (-225))))) (-15 -3170 ((-225) (-1093 (-843 (-225))))) (-15 -2660 ((-112) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1735 ((-644 (-225)) (-317 (-225)) (-1175) (-1093 (-843 (-225))))) (-15 -1454 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -3958 ((-1155 (-225)) (-317 (-225)) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -3958 ((-1155 (-225)) (-1265 (-317 (-225))) (-644 (-1175)) (-1093 (-843 (-225))))) (-15 -2998 ((-644 (-225)) (-952 (-409 (-566))) (-1175) (-1093 (-843 (-225))))) (-15 -1961 ((-1157) (-225))) (-15 -3949 ((-644 (-1157)) (-644 (-225)))) (-15 -3504 ((-644 (-1157)) (-1155 (-225)))))
-((-3860 (((-644 (-612 $)) $) 27)) (-1713 (($ $ (-295 $)) 78) (($ $ (-644 (-295 $))) 139) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-2023 (((-3 (-612 $) "failed") $) 127)) (-3343 (((-612 $) $) 126)) (-3206 (($ $) 17) (($ (-644 $)) 54)) (-3684 (((-644 (-114)) $) 35)) (-3959 (((-114) (-114)) 88)) (-1687 (((-112) $) 150)) (-2101 (($ (-1 $ $) (-612 $)) 86)) (-3308 (((-3 (-612 $) "failed") $) 94)) (-2770 (($ (-114) $) 59) (($ (-114) (-644 $)) 110)) (-3044 (((-112) $ (-114)) 132) (((-112) $ (-1175)) 131)) (-1695 (((-771) $) 44)) (-3761 (((-112) $ $) 57) (((-112) $ (-1175)) 49)) (-3934 (((-112) $) 148)) (-1754 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 81) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) 67) (($ $ (-1175) (-1 $ $)) 72) (($ $ (-644 (-114)) (-644 (-1 $ $))) 80) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 82) (($ $ (-114) (-1 $ (-644 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-3282 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-644 $)) 123)) (-2220 (($ $) 51) (($ $ $) 135)) (-3016 (($ $) 15) (($ (-644 $)) 53)) (-2827 (((-112) (-114)) 21)))
-(((-302 |#1|) (-10 -8 (-15 -1687 ((-112) |#1|)) (-15 -3934 ((-112) |#1|)) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3761 ((-112) |#1| (-1175))) (-15 -3761 ((-112) |#1| |#1|)) (-15 -2101 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -2770 (|#1| (-114) (-644 |#1|))) (-15 -2770 (|#1| (-114) |#1|)) (-15 -3044 ((-112) |#1| (-1175))) (-15 -3044 ((-112) |#1| (-114))) (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -3684 ((-644 (-114)) |#1|)) (-15 -3860 ((-644 (-612 |#1|)) |#1|)) (-15 -3308 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1695 ((-771) |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -3206 (|#1| (-644 |#1|))) (-15 -3206 (|#1| |#1|)) (-15 -3016 (|#1| (-644 |#1|))) (-15 -3016 (|#1| |#1|)) (-15 -1713 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1713 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1713 (|#1| |#1| (-295 |#1|))) (-15 -3282 (|#1| (-114) (-644 |#1|))) (-15 -3282 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1754 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2023 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3343 ((-612 |#1|) |#1|))) (-303)) (T -302))
-((-3959 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))))
-(-10 -8 (-15 -1687 ((-112) |#1|)) (-15 -3934 ((-112) |#1|)) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -3761 ((-112) |#1| (-1175))) (-15 -3761 ((-112) |#1| |#1|)) (-15 -2101 (|#1| (-1 |#1| |#1|) (-612 |#1|))) (-15 -2770 (|#1| (-114) (-644 |#1|))) (-15 -2770 (|#1| (-114) |#1|)) (-15 -3044 ((-112) |#1| (-1175))) (-15 -3044 ((-112) |#1| (-114))) (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -3684 ((-644 (-114)) |#1|)) (-15 -3860 ((-644 (-612 |#1|)) |#1|)) (-15 -3308 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1695 ((-771) |#1|)) (-15 -2220 (|#1| |#1| |#1|)) (-15 -2220 (|#1| |#1|)) (-15 -3206 (|#1| (-644 |#1|))) (-15 -3206 (|#1| |#1|)) (-15 -3016 (|#1| (-644 |#1|))) (-15 -3016 (|#1| |#1|)) (-15 -1713 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1713 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1713 (|#1| |#1| (-295 |#1|))) (-15 -3282 (|#1| (-114) (-644 |#1|))) (-15 -3282 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1754 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2023 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3343 ((-612 |#1|) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3860 (((-644 (-612 $)) $) 39)) (-1713 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-2023 (((-3 (-612 $) "failed") $) 64)) (-3343 (((-612 $) $) 65)) (-3206 (($ $) 46) (($ (-644 $)) 45)) (-3684 (((-644 (-114)) $) 38)) (-3959 (((-114) (-114)) 37)) (-1687 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-2391 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-2101 (($ (-1 $ $) (-612 $)) 31)) (-3308 (((-3 (-612 $) "failed") $) 41)) (-1390 (((-1157) $) 10)) (-3944 (((-644 (-612 $)) $) 40)) (-2770 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-3044 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-1695 (((-771) $) 42)) (-1944 (((-1119) $) 11)) (-3761 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-3934 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-1754 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-3282 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-2220 (($ $) 44) (($ $ $) 43)) (-2880 (($ $) 19 (|has| $ (-1049)))) (-2725 (((-862) $) 12) (($ (-612 $)) 63)) (-3016 (($ $) 48) (($ (-644 $)) 47)) (-2827 (((-112) (-114)) 36)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
+(-13 (-1050) (-111 $ $) (-10 -7 (-6 -4409)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3696 (($ (-509) (-509) (-1104) $) 19)) (-1901 (($ (-509) (-645 (-966)) $) 23)) (-3652 (((-645 (-1085)) $) 10)) (-1889 (($) 25)) (-3991 (((-692 (-1104)) (-509) (-509) $) 18)) (-3466 (((-645 (-966)) (-509) $) 22)) (-3164 (($) 7)) (-4171 (($) 24)) (-4101 (((-863) $) 29)) (-4085 (($) 26)))
+(((-292) (-13 (-614 (-863)) (-10 -8 (-15 -3164 ($)) (-15 -3652 ((-645 (-1085)) $)) (-15 -3991 ((-692 (-1104)) (-509) (-509) $)) (-15 -3696 ($ (-509) (-509) (-1104) $)) (-15 -3466 ((-645 (-966)) (-509) $)) (-15 -1901 ($ (-509) (-645 (-966)) $)) (-15 -4171 ($)) (-15 -1889 ($)) (-15 -4085 ($))))) (T -292))
+((-3164 (*1 *1) (-5 *1 (-292))) (-3652 (*1 *2 *1) (-12 (-5 *2 (-645 (-1085))) (-5 *1 (-292)))) (-3991 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1104))) (-5 *1 (-292)))) (-3696 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-1104)) (-5 *1 (-292)))) (-3466 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-645 (-966))) (-5 *1 (-292)))) (-1901 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-292)))) (-4171 (*1 *1) (-5 *1 (-292))) (-1889 (*1 *1) (-5 *1 (-292))) (-4085 (*1 *1) (-5 *1 (-292))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3164 ($)) (-15 -3652 ((-645 (-1085)) $)) (-15 -3991 ((-692 (-1104)) (-509) (-509) $)) (-15 -3696 ($ (-509) (-509) (-1104) $)) (-15 -3466 ((-645 (-966)) (-509) $)) (-15 -1901 ($ (-509) (-645 (-966)) $)) (-15 -4171 ($)) (-15 -1889 ($)) (-15 -4085 ($))))
+((-1644 (((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|)))) 105)) (-1984 (((-645 (-690 (-410 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|)))))) (-690 (-410 (-953 |#1|)))) 100) (((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|))) (-690 (-410 (-953 |#1|))) (-772) (-772)) 41)) (-1946 (((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|)))) 102)) (-3798 (((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|))) (-690 (-410 (-953 |#1|)))) 77)) (-2091 (((-645 (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (-690 (-410 (-953 |#1|)))) 76)) (-4121 (((-953 |#1|) (-690 (-410 (-953 |#1|)))) 57) (((-953 |#1|) (-690 (-410 (-953 |#1|))) (-1176)) 58)))
+(((-293 |#1|) (-10 -7 (-15 -4121 ((-953 |#1|) (-690 (-410 (-953 |#1|))) (-1176))) (-15 -4121 ((-953 |#1|) (-690 (-410 (-953 |#1|))))) (-15 -2091 ((-645 (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (-690 (-410 (-953 |#1|))))) (-15 -3798 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|))) (-690 (-410 (-953 |#1|))))) (-15 -1984 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|))) (-690 (-410 (-953 |#1|))) (-772) (-772))) (-15 -1984 ((-645 (-690 (-410 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|)))))) (-690 (-410 (-953 |#1|))))) (-15 -1644 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|))))) (-15 -1946 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|)))))) (-455)) (T -293))
+((-1946 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1165 (-1176) (-953 *4)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4)))))) (-1644 (*1 *2 *3) (-12 (-4 *4 (-455)) (-5 *2 (-645 (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1165 (-1176) (-953 *4)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 *4)))))))) (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4)))))) (-1984 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-410 (-953 *5)) (-1165 (-1176) (-953 *5)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5)))))) (-1984 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-410 (-953 *6)) (-1165 (-1176) (-953 *6)))) (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *6))))) (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-953 *6)))))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-410 (-953 *5)) (-1165 (-1176) (-953 *5)))) (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5))))) (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5)))))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-4 *4 (-455)) (-5 *2 (-645 (-3 (-410 (-953 *4)) (-1165 (-1176) (-953 *4))))) (-5 *1 (-293 *4)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-5 *2 (-953 *4)) (-5 *1 (-293 *4)) (-4 *4 (-455)))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-953 *5)))) (-5 *4 (-1176)) (-5 *2 (-953 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455)))))
+(-10 -7 (-15 -4121 ((-953 |#1|) (-690 (-410 (-953 |#1|))) (-1176))) (-15 -4121 ((-953 |#1|) (-690 (-410 (-953 |#1|))))) (-15 -2091 ((-645 (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (-690 (-410 (-953 |#1|))))) (-15 -3798 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|))) (-690 (-410 (-953 |#1|))))) (-15 -1984 ((-645 (-690 (-410 (-953 |#1|)))) (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|))) (-690 (-410 (-953 |#1|))) (-772) (-772))) (-15 -1984 ((-645 (-690 (-410 (-953 |#1|)))) (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|)))))) (-690 (-410 (-953 |#1|))))) (-15 -1644 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |geneigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|))))) (-15 -1946 ((-645 (-2 (|:| |eigval| (-3 (-410 (-953 |#1|)) (-1165 (-1176) (-953 |#1|)))) (|:| |eigmult| (-772)) (|:| |eigvec| (-645 (-690 (-410 (-953 |#1|))))))) (-690 (-410 (-953 |#1|))))))
+((-3494 (((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)) 14)))
+(((-294 |#1| |#2|) (-10 -7 (-15 -3494 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|)))) (-1216) (-1216)) (T -294))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6)))))
+(-10 -7 (-15 -3494 ((-295 |#2|) (-1 |#2| |#1|) (-295 |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2865 (((-112) $) NIL (|has| |#1| (-21)))) (-2712 (($ $) 12)) (-4377 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3099 (($ $ $) 95 (|has| |#1| (-303)))) (-4061 (($) NIL (-2909 (|has| |#1| (-21)) (|has| |#1| (-727))) CONST)) (-2976 (($ $) 51 (|has| |#1| (-21)))) (-2051 (((-3 $ "failed") $) 62 (|has| |#1| (-727)))) (-2606 ((|#1| $) 11)) (-4014 (((-3 $ "failed") $) 60 (|has| |#1| (-727)))) (-3714 (((-112) $) NIL (|has| |#1| (-727)))) (-3494 (($ (-1 |#1| |#1|) $) 14)) (-1787 ((|#1| $) 10)) (-3294 (($ $) 50 (|has| |#1| (-21)))) (-2105 (((-3 $ "failed") $) 61 (|has| |#1| (-727)))) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2559 (($ $) 64 (-2909 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-3770 (((-645 $) $) 85 (|has| |#1| (-559)))) (-3140 (($ $ $) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 $)) 28 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-1176) |#1|) 17 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) 21 (|has| |#1| (-517 (-1176) |#1|)))) (-2190 (($ |#1| |#1|) 9)) (-1948 (((-134)) 90 (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) 87 (|has| |#1| (-901 (-1176))))) (-1443 (($ $ $) NIL (|has| |#1| (-476)))) (-4272 (($ $ $) NIL (|has| |#1| (-476)))) (-4101 (($ (-567)) NIL (|has| |#1| (-1050))) (((-112) $) 37 (|has| |#1| (-1100))) (((-863) $) 36 (|has| |#1| (-1100)))) (-2686 (((-772)) 67 (|has| |#1| (-1050)) CONST)) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1468 (($) 47 (|has| |#1| (-21)) CONST)) (-1484 (($) 57 (|has| |#1| (-727)) CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176))))) (-3052 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1100)))) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 92 (-2909 (|has| |#1| (-365)) (|has| |#1| (-476))))) (-3156 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3146 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-567)) NIL (|has| |#1| (-476))) (($ $ (-772)) NIL (|has| |#1| (-727))) (($ $ (-922)) NIL (|has| |#1| (-1112)))) (* (($ $ |#1|) 55 (|has| |#1| (-1112))) (($ |#1| $) 54 (|has| |#1| (-1112))) (($ $ $) 53 (|has| |#1| (-1112))) (($ (-567) $) 70 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-25)))))
+(((-295 |#1|) (-13 (-1216) (-10 -8 (-15 -3052 ($ |#1| |#1|)) (-15 -2190 ($ |#1| |#1|)) (-15 -2712 ($ $)) (-15 -1787 (|#1| $)) (-15 -2606 (|#1| $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1176) |#1|)) (-6 (-517 (-1176) |#1|)) |%noBranch|) (IF (|has| |#1| (-1100)) (PROGN (-6 (-1100)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -3140 ($ $ $)) (-15 -3140 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3146 ($ |#1| $)) (-15 -3146 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3294 ($ $)) (-15 -2976 ($ $)) (-15 -3156 ($ |#1| $)) (-15 -3156 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1112)) (PROGN (-6 (-1112)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -2105 ((-3 $ "failed") $)) (-15 -2051 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -2105 ((-3 $ "failed") $)) (-15 -2051 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-6 (-1050)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3770 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-901 (-1176))) (-6 (-901 (-1176))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1273 |#1|)) (-15 -3168 ($ $ $)) (-15 -2559 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -3099 ($ $ $)) |%noBranch|))) (-1216)) (T -295))
+((-3052 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216)))) (-2190 (*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216)))) (-2712 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216)))) (-1787 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216)))) (-2606 (*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216)))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-295 *3)))) (-3140 (*1 *1 *1 *1) (-12 (-4 *2 (-310 *2)) (-4 *2 (-1100)) (-4 *2 (-1216)) (-5 *1 (-295 *2)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1100)) (-4 *3 (-1216)) (-5 *1 (-295 *3)))) (-3146 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1216)))) (-3146 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1216)))) (-3294 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216)))) (-2976 (*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216)))) (-3156 (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216)))) (-3156 (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216)))) (-2105 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1216)))) (-2051 (*1 *1 *1) (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1216)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559)) (-4 *3 (-1216)))) (-3099 (*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1216)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1112)) (-4 *2 (-1216)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1112)) (-4 *2 (-1216)))) (-3168 (*1 *1 *1 *1) (-2909 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1216))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1216))))) (-2559 (*1 *1 *1) (-2909 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1216))) (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1216))))))
+(-13 (-1216) (-10 -8 (-15 -3052 ($ |#1| |#1|)) (-15 -2190 ($ |#1| |#1|)) (-15 -2712 ($ $)) (-15 -1787 (|#1| $)) (-15 -2606 (|#1| $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-517 (-1176) |#1|)) (-6 (-517 (-1176) |#1|)) |%noBranch|) (IF (|has| |#1| (-1100)) (PROGN (-6 (-1100)) (-6 (-614 (-112))) (IF (|has| |#1| (-310 |#1|)) (PROGN (-15 -3140 ($ $ $)) (-15 -3140 ($ $ (-645 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3146 ($ |#1| $)) (-15 -3146 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3294 ($ $)) (-15 -2976 ($ $)) (-15 -3156 ($ |#1| $)) (-15 -3156 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1112)) (PROGN (-6 (-1112)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-727)) (PROGN (-6 (-727)) (-15 -2105 ((-3 $ "failed") $)) (-15 -2051 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-476)) (PROGN (-6 (-476)) (-15 -2105 ((-3 $ "failed") $)) (-15 -2051 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-6 (-1050)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3770 ((-645 $) $)) |%noBranch|) (IF (|has| |#1| (-901 (-1176))) (-6 (-901 (-1176))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-1273 |#1|)) (-15 -3168 ($ $ $)) (-15 -2559 ($ $))) |%noBranch|) (IF (|has| |#1| (-303)) (-15 -3099 ($ $ $)) |%noBranch|)))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2275 (((-1271) $ |#1| |#1|) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#2| $ |#1| |#2|) NIL)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) NIL)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) NIL)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) NIL)) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 ((|#1| $) NIL (|has| |#1| (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 ((|#1| $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3004 (((-645 |#1|) $) NIL)) (-2121 (((-112) |#1| $) NIL)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3940 (((-645 |#1|) $) NIL)) (-1664 (((-112) |#1| $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#2| $) NIL (|has| |#1| (-851)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-296 |#1| |#2|) (-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416))) (-1100) (-1100)) (T -296))
+NIL
+(-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416)))
+((-2553 (((-313) (-1158) (-645 (-1158))) 17) (((-313) (-1158) (-1158)) 16) (((-313) (-645 (-1158))) 15) (((-313) (-1158)) 14)))
+(((-297) (-10 -7 (-15 -2553 ((-313) (-1158))) (-15 -2553 ((-313) (-645 (-1158)))) (-15 -2553 ((-313) (-1158) (-1158))) (-15 -2553 ((-313) (-1158) (-645 (-1158)))))) (T -297))
+((-2553 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1158))) (-5 *3 (-1158)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2553 (*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-313)) (-5 *1 (-297)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-313)) (-5 *1 (-297)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-313)) (-5 *1 (-297)))))
+(-10 -7 (-15 -2553 ((-313) (-1158))) (-15 -2553 ((-313) (-645 (-1158)))) (-15 -2553 ((-313) (-1158) (-1158))) (-15 -2553 ((-313) (-1158) (-645 (-1158)))))
+((-3494 ((|#2| (-1 |#2| |#1|) (-1158) (-613 |#1|)) 18)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -3494 (|#2| (-1 |#2| |#1|) (-1158) (-613 |#1|)))) (-303) (-1216)) (T -298))
+((-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1158)) (-5 *5 (-613 *6)) (-4 *6 (-303)) (-4 *2 (-1216)) (-5 *1 (-298 *6 *2)))))
+(-10 -7 (-15 -3494 (|#2| (-1 |#2| |#1|) (-1158) (-613 |#1|))))
+((-3494 ((|#2| (-1 |#2| |#1|) (-613 |#1|)) 17)))
+(((-299 |#1| |#2|) (-10 -7 (-15 -3494 (|#2| (-1 |#2| |#1|) (-613 |#1|)))) (-303) (-303)) (T -299))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303)) (-4 *2 (-303)) (-5 *1 (-299 *5 *2)))))
+(-10 -7 (-15 -3494 (|#2| (-1 |#2| |#1|) (-613 |#1|))))
+((-2633 (((-112) (-225)) 12)))
+(((-300 |#1| |#2|) (-10 -7 (-15 -2633 ((-112) (-225)))) (-225) (-225)) (T -300))
+((-2633 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -2633 ((-112) (-225))))
+((-3519 (((-1156 (-225)) (-317 (-225)) (-645 (-1176)) (-1094 (-844 (-225)))) 118)) (-2391 (((-1156 (-225)) (-1266 (-317 (-225))) (-645 (-1176)) (-1094 (-844 (-225)))) 135) (((-1156 (-225)) (-317 (-225)) (-645 (-1176)) (-1094 (-844 (-225)))) 72)) (-3689 (((-645 (-1158)) (-1156 (-225))) NIL)) (-4330 (((-645 (-225)) (-317 (-225)) (-1176) (-1094 (-844 (-225)))) 69)) (-2461 (((-645 (-225)) (-953 (-410 (-567))) (-1176) (-1094 (-844 (-225)))) 59)) (-2292 (((-645 (-1158)) (-645 (-225))) NIL)) (-2659 (((-225) (-1094 (-844 (-225)))) 29)) (-3500 (((-225) (-1094 (-844 (-225)))) 30)) (-4279 (((-112) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-1567 (((-1158) (-225)) NIL)))
+(((-301) (-10 -7 (-15 -2659 ((-225) (-1094 (-844 (-225))))) (-15 -3500 ((-225) (-1094 (-844 (-225))))) (-15 -4279 ((-112) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4330 ((-645 (-225)) (-317 (-225)) (-1176) (-1094 (-844 (-225))))) (-15 -3519 ((-1156 (-225)) (-317 (-225)) (-645 (-1176)) (-1094 (-844 (-225))))) (-15 -2391 ((-1156 (-225)) (-317 (-225)) (-645 (-1176)) (-1094 (-844 (-225))))) (-15 -2391 ((-1156 (-225)) (-1266 (-317 (-225))) (-645 (-1176)) (-1094 (-844 (-225))))) (-15 -2461 ((-645 (-225)) (-953 (-410 (-567))) (-1176) (-1094 (-844 (-225))))) (-15 -1567 ((-1158) (-225))) (-15 -2292 ((-645 (-1158)) (-645 (-225)))) (-15 -3689 ((-645 (-1158)) (-1156 (-225)))))) (T -301))
+((-3689 (*1 *2 *3) (-12 (-5 *3 (-1156 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-301)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-301)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1158)) (-5 *1 (-301)))) (-2461 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *4 (-1176)) (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-2391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *4 (-645 (-1176))) (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-1156 (-225))) (-5 *1 (-301)))) (-2391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1176))) (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-1156 (-225))) (-5 *1 (-301)))) (-3519 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1176))) (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-1156 (-225))) (-5 *1 (-301)))) (-4330 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1176)) (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))) (-4279 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-301)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301)))))
+(-10 -7 (-15 -2659 ((-225) (-1094 (-844 (-225))))) (-15 -3500 ((-225) (-1094 (-844 (-225))))) (-15 -4279 ((-112) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4330 ((-645 (-225)) (-317 (-225)) (-1176) (-1094 (-844 (-225))))) (-15 -3519 ((-1156 (-225)) (-317 (-225)) (-645 (-1176)) (-1094 (-844 (-225))))) (-15 -2391 ((-1156 (-225)) (-317 (-225)) (-645 (-1176)) (-1094 (-844 (-225))))) (-15 -2391 ((-1156 (-225)) (-1266 (-317 (-225))) (-645 (-1176)) (-1094 (-844 (-225))))) (-15 -2461 ((-645 (-225)) (-953 (-410 (-567))) (-1176) (-1094 (-844 (-225))))) (-15 -1567 ((-1158) (-225))) (-15 -2292 ((-645 (-1158)) (-645 (-225)))) (-15 -3689 ((-645 (-1158)) (-1156 (-225)))))
+((-2138 (((-645 (-613 $)) $) 27)) (-3099 (($ $ (-295 $)) 78) (($ $ (-645 (-295 $))) 139) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-3417 (((-3 (-613 $) "failed") $) 127)) (-1621 (((-613 $) $) 126)) (-3775 (($ $) 17) (($ (-645 $)) 54)) (-1583 (((-645 (-114)) $) 35)) (-2236 (((-114) (-114)) 88)) (-3937 (((-112) $) 150)) (-3494 (($ (-1 $ $) (-613 $)) 86)) (-2378 (((-3 (-613 $) "failed") $) 94)) (-4147 (($ (-114) $) 59) (($ (-114) (-645 $)) 110)) (-1527 (((-112) $ (-114)) 132) (((-112) $ (-1176)) 131)) (-3080 (((-772) $) 44)) (-4151 (((-112) $ $) 57) (((-112) $ (-1176)) 49)) (-2143 (((-112) $) 148)) (-3140 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) 137) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ $))) 81) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1176) (-1 $ (-645 $))) 67) (($ $ (-1176) (-1 $ $)) 72) (($ $ (-645 (-114)) (-645 (-1 $ $))) 80) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 82) (($ $ (-114) (-1 $ (-645 $))) 68) (($ $ (-114) (-1 $ $)) 74)) (-1552 (($ (-114) $) 60) (($ (-114) $ $) 61) (($ (-114) $ $ $) 62) (($ (-114) $ $ $ $) 63) (($ (-114) (-645 $)) 123)) (-2468 (($ $) 51) (($ $ $) 135)) (-4385 (($ $) 15) (($ (-645 $)) 53)) (-2214 (((-112) (-114)) 21)))
+(((-302 |#1|) (-10 -8 (-15 -3937 ((-112) |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| |#1|)))) (-15 -4151 ((-112) |#1| (-1176))) (-15 -4151 ((-112) |#1| |#1|)) (-15 -3494 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -4147 (|#1| (-114) (-645 |#1|))) (-15 -4147 (|#1| (-114) |#1|)) (-15 -1527 ((-112) |#1| (-1176))) (-15 -1527 ((-112) |#1| (-114))) (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -1583 ((-645 (-114)) |#1|)) (-15 -2138 ((-645 (-613 |#1|)) |#1|)) (-15 -2378 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3080 ((-772) |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -3775 (|#1| (-645 |#1|))) (-15 -3775 (|#1| |#1|)) (-15 -4385 (|#1| (-645 |#1|))) (-15 -4385 (|#1| |#1|)) (-15 -3099 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3099 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3099 (|#1| |#1| (-295 |#1|))) (-15 -1552 (|#1| (-114) (-645 |#1|))) (-15 -1552 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3140 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3417 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1621 ((-613 |#1|) |#1|))) (-303)) (T -302))
+((-2236 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303)))))
+(-10 -8 (-15 -3937 ((-112) |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| |#1|)))) (-15 -4151 ((-112) |#1| (-1176))) (-15 -4151 ((-112) |#1| |#1|)) (-15 -3494 (|#1| (-1 |#1| |#1|) (-613 |#1|))) (-15 -4147 (|#1| (-114) (-645 |#1|))) (-15 -4147 (|#1| (-114) |#1|)) (-15 -1527 ((-112) |#1| (-1176))) (-15 -1527 ((-112) |#1| (-114))) (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -1583 ((-645 (-114)) |#1|)) (-15 -2138 ((-645 (-613 |#1|)) |#1|)) (-15 -2378 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3080 ((-772) |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -3775 (|#1| (-645 |#1|))) (-15 -3775 (|#1| |#1|)) (-15 -4385 (|#1| (-645 |#1|))) (-15 -4385 (|#1| |#1|)) (-15 -3099 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3099 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3099 (|#1| |#1| (-295 |#1|))) (-15 -1552 (|#1| (-114) (-645 |#1|))) (-15 -1552 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3140 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -3417 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1621 ((-613 |#1|) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2138 (((-645 (-613 $)) $) 39)) (-3099 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-3417 (((-3 (-613 $) "failed") $) 64)) (-1621 (((-613 $) $) 65)) (-3775 (($ $) 46) (($ (-645 $)) 45)) (-1583 (((-645 (-114)) $) 38)) (-2236 (((-114) (-114)) 37)) (-3937 (((-112) $) 17 (|has| $ (-1039 (-567))))) (-3612 (((-1172 $) (-613 $)) 20 (|has| $ (-1050)))) (-3494 (($ (-1 $ $) (-613 $)) 31)) (-2378 (((-3 (-613 $) "failed") $) 41)) (-2451 (((-1158) $) 10)) (-2224 (((-645 (-613 $)) $) 40)) (-4147 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-1527 (((-112) $ (-114)) 35) (((-112) $ (-1176)) 34)) (-3080 (((-772) $) 42)) (-3339 (((-1120) $) 11)) (-4151 (((-112) $ $) 30) (((-112) $ (-1176)) 29)) (-2143 (((-112) $) 18 (|has| $ (-1039 (-567))))) (-3140 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1176)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1176) (-1 $ (-645 $))) 26) (($ $ (-1176) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21)) (-1552 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-2468 (($ $) 44) (($ $ $) 43)) (-2713 (($ $) 19 (|has| $ (-1050)))) (-4101 (((-863) $) 12) (($ (-613 $)) 63)) (-4385 (($ $) 48) (($ (-645 $)) 47)) (-2214 (((-112) (-114)) 36)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
(((-303) (-140)) (T -303))
-((-3282 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3282 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3282 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3282 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-3282 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-1713 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-1713 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303)))) (-1713 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-3016 (*1 *1 *1) (-4 *1 (-303))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-3206 (*1 *1 *1) (-4 *1 (-303))) (-3206 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303)))) (-2220 (*1 *1 *1) (-4 *1 (-303))) (-2220 (*1 *1 *1 *1) (-4 *1 (-303))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771)))) (-3308 (*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))) (-3684 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114))))) (-3959 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-2827 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3044 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-3044 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-2770 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-2770 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303)))) (-2101 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-612 *1)) (-4 *1 (-303)))) (-3761 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-3761 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-303)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-2391 (*1 *2 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303)) (-5 *2 (-1171 *1)))) (-2880 (*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112)))))
-(-13 (-1099) (-1038 (-612 $)) (-516 (-612 $) $) (-310 $) (-10 -8 (-15 -3282 ($ (-114) $)) (-15 -3282 ($ (-114) $ $)) (-15 -3282 ($ (-114) $ $ $)) (-15 -3282 ($ (-114) $ $ $ $)) (-15 -3282 ($ (-114) (-644 $))) (-15 -1713 ($ $ (-295 $))) (-15 -1713 ($ $ (-644 (-295 $)))) (-15 -1713 ($ $ (-644 (-612 $)) (-644 $))) (-15 -3016 ($ $)) (-15 -3016 ($ (-644 $))) (-15 -3206 ($ $)) (-15 -3206 ($ (-644 $))) (-15 -2220 ($ $)) (-15 -2220 ($ $ $)) (-15 -1695 ((-771) $)) (-15 -3308 ((-3 (-612 $) "failed") $)) (-15 -3944 ((-644 (-612 $)) $)) (-15 -3860 ((-644 (-612 $)) $)) (-15 -3684 ((-644 (-114)) $)) (-15 -3959 ((-114) (-114))) (-15 -2827 ((-112) (-114))) (-15 -3044 ((-112) $ (-114))) (-15 -3044 ((-112) $ (-1175))) (-15 -2770 ($ (-114) $)) (-15 -2770 ($ (-114) (-644 $))) (-15 -2101 ($ (-1 $ $) (-612 $))) (-15 -3761 ((-112) $ $)) (-15 -3761 ((-112) $ (-1175))) (-15 -1754 ($ $ (-644 (-1175)) (-644 (-1 $ $)))) (-15 -1754 ($ $ (-644 (-1175)) (-644 (-1 $ (-644 $))))) (-15 -1754 ($ $ (-1175) (-1 $ (-644 $)))) (-15 -1754 ($ $ (-1175) (-1 $ $))) (-15 -1754 ($ $ (-644 (-114)) (-644 (-1 $ $)))) (-15 -1754 ($ $ (-644 (-114)) (-644 (-1 $ (-644 $))))) (-15 -1754 ($ $ (-114) (-1 $ (-644 $)))) (-15 -1754 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1049)) (PROGN (-15 -2391 ((-1171 $) (-612 $))) (-15 -2880 ($ $))) |%noBranch|) (IF (|has| $ (-1038 (-566))) (PROGN (-15 -3934 ((-112) $)) (-15 -1687 ((-112) $))) |%noBranch|)))
-(((-102) . T) ((-616 #0=(-612 $)) . T) ((-613 (-862)) . T) ((-310 $) . T) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-1038 #0#) . T) ((-1099) . T))
-((-4337 (((-644 |#1|) (-644 |#1|)) 10)))
-(((-304 |#1|) (-10 -7 (-15 -4337 ((-644 |#1|) (-644 |#1|)))) (-848)) (T -304))
-((-4337 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3)))))
-(-10 -7 (-15 -4337 ((-644 |#1|) (-644 |#1|))))
-((-2101 (((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)) 17)))
-(((-305 |#1| |#2|) (-10 -7 (-15 -2101 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|)))) (-1049) (-1049)) (T -305))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-689 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-689 *6)) (-5 *1 (-305 *5 *6)))))
-(-10 -7 (-15 -2101 ((-689 |#2|) (-1 |#2| |#1|) (-689 |#1|))))
-((-3715 (((-1265 (-317 (-381))) (-1265 (-317 (-225)))) 112)) (-4380 (((-1093 (-843 (-225))) (-1093 (-843 (-381)))) 45)) (-3504 (((-644 (-1157)) (-1155 (-225))) 94)) (-3667 (((-317 (-381)) (-952 (-225))) 55)) (-1851 (((-225) (-952 (-225))) 51)) (-4111 (((-1157) (-381)) 197)) (-1907 (((-843 (-225)) (-843 (-381))) 39)) (-1443 (((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1265 (-317 (-225)))) 165)) (-1623 (((-1035) (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) 209) (((-1035) (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) 207)) (-3444 (((-689 (-225)) (-644 (-225)) (-771)) 21)) (-3660 (((-1265 (-699)) (-644 (-225))) 101)) (-3949 (((-644 (-1157)) (-644 (-225))) 81)) (-1643 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-3329 (((-112) (-225) (-1093 (-843 (-225)))) 119)) (-1991 (((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-3655 (((-225) (-1093 (-843 (-225)))) 114)) (-3170 (((-225) (-1093 (-843 (-225)))) 115)) (-2718 (((-225) (-409 (-566))) 33)) (-4054 (((-1157) (-381)) 79)) (-3578 (((-225) (-381)) 24)) (-3941 (((-381) (-1265 (-317 (-225)))) 179)) (-2167 (((-317 (-225)) (-317 (-381))) 30)) (-1669 (((-409 (-566)) (-317 (-225))) 58)) (-2985 (((-317 (-409 (-566))) (-317 (-225))) 75)) (-1515 (((-317 (-381)) (-317 (-225))) 105)) (-3870 (((-225) (-317 (-225))) 59)) (-1689 (((-644 (-225)) (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) 70)) (-2824 (((-1093 (-843 (-225))) (-1093 (-843 (-225)))) 67)) (-1961 (((-1157) (-225)) 78)) (-2235 (((-699) (-225)) 97)) (-3081 (((-409 (-566)) (-225)) 60)) (-3943 (((-317 (-381)) (-225)) 54)) (-2150 (((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381))))) 48)) (-4007 (((-1035) (-644 (-1035))) 193) (((-1035) (-1035) (-1035)) 187)) (-3289 (((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
-(((-306) (-10 -7 (-15 -3578 ((-225) (-381))) (-15 -2167 ((-317 (-225)) (-317 (-381)))) (-15 -1907 ((-843 (-225)) (-843 (-381)))) (-15 -4380 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -2150 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -3081 ((-409 (-566)) (-225))) (-15 -1669 ((-409 (-566)) (-317 (-225)))) (-15 -3870 ((-225) (-317 (-225)))) (-15 -1643 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3941 ((-381) (-1265 (-317 (-225))))) (-15 -1443 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1265 (-317 (-225))))) (-15 -2985 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -2824 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -1689 ((-644 (-225)) (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))) (-15 -2235 ((-699) (-225))) (-15 -3660 ((-1265 (-699)) (-644 (-225)))) (-15 -1515 ((-317 (-381)) (-317 (-225)))) (-15 -3715 ((-1265 (-317 (-381))) (-1265 (-317 (-225))))) (-15 -3329 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -1961 ((-1157) (-225))) (-15 -4054 ((-1157) (-381))) (-15 -3949 ((-644 (-1157)) (-644 (-225)))) (-15 -3504 ((-644 (-1157)) (-1155 (-225)))) (-15 -3655 ((-225) (-1093 (-843 (-225))))) (-15 -3170 ((-225) (-1093 (-843 (-225))))) (-15 -4007 ((-1035) (-1035) (-1035))) (-15 -4007 ((-1035) (-644 (-1035)))) (-15 -4111 ((-1157) (-381))) (-15 -1623 ((-1035) (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -1623 ((-1035) (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -3289 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1991 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3667 ((-317 (-381)) (-952 (-225)))) (-15 -1851 ((-225) (-952 (-225)))) (-15 -3943 ((-317 (-381)) (-225))) (-15 -2718 ((-225) (-409 (-566)))) (-15 -3444 ((-689 (-225)) (-644 (-225)) (-771))))) (T -306))
-((-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225))) (-5 *1 (-306)))) (-2718 (*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-1991 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-4007 (*1 *2 *3) (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306)))) (-4007 (*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306)))) (-3170 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-1961 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-3715 (*1 *2 *3) (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *2 (-1265 (-317 (-381)))) (-5 *1 (-306)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1265 (-699))) (-5 *1 (-306)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-5 *2 (-644 (-225))) (-5 *1 (-306)))) (-2824 (*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-2985 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566)))) (-5 *1 (-306)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566)))) (-5 *1 (-306)))) (-3941 (*1 *2 *3) (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-1643 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-3870 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-644 (-1093 (-843 (-381))))) (-5 *2 (-644 (-1093 (-843 (-225))))) (-5 *1 (-306)))) (-4380 (*1 *2 *3) (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))) (-1907 (*1 *2 *3) (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-3578 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
-(-10 -7 (-15 -3578 ((-225) (-381))) (-15 -2167 ((-317 (-225)) (-317 (-381)))) (-15 -1907 ((-843 (-225)) (-843 (-381)))) (-15 -4380 ((-1093 (-843 (-225))) (-1093 (-843 (-381))))) (-15 -2150 ((-644 (-1093 (-843 (-225)))) (-644 (-1093 (-843 (-381)))))) (-15 -3081 ((-409 (-566)) (-225))) (-15 -1669 ((-409 (-566)) (-317 (-225)))) (-15 -3870 ((-225) (-317 (-225)))) (-15 -1643 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -3941 ((-381) (-1265 (-317 (-225))))) (-15 -1443 ((-2 (|:| |additions| (-566)) (|:| |multiplications| (-566)) (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))) (-1265 (-317 (-225))))) (-15 -2985 ((-317 (-409 (-566))) (-317 (-225)))) (-15 -2824 ((-1093 (-843 (-225))) (-1093 (-843 (-225))))) (-15 -1689 ((-644 (-225)) (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))) (-15 -2235 ((-699) (-225))) (-15 -3660 ((-1265 (-699)) (-644 (-225)))) (-15 -1515 ((-317 (-381)) (-317 (-225)))) (-15 -3715 ((-1265 (-317 (-381))) (-1265 (-317 (-225))))) (-15 -3329 ((-112) (-225) (-1093 (-843 (-225))))) (-15 -1961 ((-1157) (-225))) (-15 -4054 ((-1157) (-381))) (-15 -3949 ((-644 (-1157)) (-644 (-225)))) (-15 -3504 ((-644 (-1157)) (-1155 (-225)))) (-15 -3655 ((-225) (-1093 (-843 (-225))))) (-15 -3170 ((-225) (-1093 (-843 (-225))))) (-15 -4007 ((-1035) (-1035) (-1035))) (-15 -4007 ((-1035) (-644 (-1035)))) (-15 -4111 ((-1157) (-381))) (-15 -1623 ((-1035) (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))))) (-15 -1623 ((-1035) (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))) (-15 -3289 ((-1035) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1991 ((-1035) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -3667 ((-317 (-381)) (-952 (-225)))) (-15 -1851 ((-225) (-952 (-225)))) (-15 -3943 ((-317 (-381)) (-225))) (-15 -2718 ((-225) (-409 (-566)))) (-15 -3444 ((-689 (-225)) (-644 (-225)) (-771))))
-((-2068 (((-112) $ $) 14)) (-3919 (($ $ $) 18)) (-3930 (($ $ $) 17)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 50)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 65)) (-1885 (($ $ $) 25) (($ (-644 $)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-3967 (((-3 $ "failed") $ $) 21)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 53)))
-(((-307 |#1|) (-10 -8 (-15 -1536 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3403 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3403 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2723 |#1|)) |#1| |#1|)) (-15 -3919 (|#1| |#1| |#1|)) (-15 -3930 (|#1| |#1| |#1|)) (-15 -2068 ((-112) |#1| |#1|)) (-15 -3654 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3481 ((-2 (|:| -1702 (-644 |#1|)) (|:| -2723 |#1|)) (-644 |#1|))) (-15 -1885 (|#1| (-644 |#1|))) (-15 -1885 (|#1| |#1| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307))
-NIL
-(-10 -8 (-15 -1536 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3403 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3403 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2723 |#1|)) |#1| |#1|)) (-15 -3919 (|#1| |#1| |#1|)) (-15 -3930 (|#1| |#1| |#1|)) (-15 -2068 ((-112) |#1| |#1|)) (-15 -3654 ((-3 (-644 |#1|) "failed") (-644 |#1|) |#1|)) (-15 -3481 ((-2 (|:| -1702 (-644 |#1|)) (|:| -2723 |#1|)) (-644 |#1|))) (-15 -1885 (|#1| (-644 |#1|))) (-15 -1885 (|#1| |#1| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2068 (((-112) $ $) 65)) (-2633 (($) 18 T CONST)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-3842 (((-112) $) 35)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
+((-1552 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1552 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1552 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1552 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-1552 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-3099 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))) (-3099 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303)))) (-3099 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-4385 (*1 *1 *1) (-4 *1 (-303))) (-4385 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-3775 (*1 *1 *1) (-4 *1 (-303))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303)))) (-2468 (*1 *1 *1) (-4 *1 (-303))) (-2468 (*1 *1 *1 *1) (-4 *1 (-303))) (-3080 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772)))) (-2378 (*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))) (-2224 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))) (-2236 (*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-2214 (*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1527 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1527 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1176)) (-5 *2 (-112)))) (-4147 (*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114)))) (-4147 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303)))) (-3494 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303)))) (-4151 (*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))) (-4151 (*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1176)) (-5 *2 (-112)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-303)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303)))) (-3612 (*1 *2 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-1050)) (-4 *1 (-303)) (-5 *2 (-1172 *1)))) (-2713 (*1 *1 *1) (-12 (-4 *1 (-1050)) (-4 *1 (-303)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))) (-3937 (*1 *2 *1) (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112)))))
+(-13 (-1100) (-1039 (-613 $)) (-517 (-613 $) $) (-310 $) (-10 -8 (-15 -1552 ($ (-114) $)) (-15 -1552 ($ (-114) $ $)) (-15 -1552 ($ (-114) $ $ $)) (-15 -1552 ($ (-114) $ $ $ $)) (-15 -1552 ($ (-114) (-645 $))) (-15 -3099 ($ $ (-295 $))) (-15 -3099 ($ $ (-645 (-295 $)))) (-15 -3099 ($ $ (-645 (-613 $)) (-645 $))) (-15 -4385 ($ $)) (-15 -4385 ($ (-645 $))) (-15 -3775 ($ $)) (-15 -3775 ($ (-645 $))) (-15 -2468 ($ $)) (-15 -2468 ($ $ $)) (-15 -3080 ((-772) $)) (-15 -2378 ((-3 (-613 $) "failed") $)) (-15 -2224 ((-645 (-613 $)) $)) (-15 -2138 ((-645 (-613 $)) $)) (-15 -1583 ((-645 (-114)) $)) (-15 -2236 ((-114) (-114))) (-15 -2214 ((-112) (-114))) (-15 -1527 ((-112) $ (-114))) (-15 -1527 ((-112) $ (-1176))) (-15 -4147 ($ (-114) $)) (-15 -4147 ($ (-114) (-645 $))) (-15 -3494 ($ (-1 $ $) (-613 $))) (-15 -4151 ((-112) $ $)) (-15 -4151 ((-112) $ (-1176))) (-15 -3140 ($ $ (-645 (-1176)) (-645 (-1 $ $)))) (-15 -3140 ($ $ (-645 (-1176)) (-645 (-1 $ (-645 $))))) (-15 -3140 ($ $ (-1176) (-1 $ (-645 $)))) (-15 -3140 ($ $ (-1176) (-1 $ $))) (-15 -3140 ($ $ (-645 (-114)) (-645 (-1 $ $)))) (-15 -3140 ($ $ (-645 (-114)) (-645 (-1 $ (-645 $))))) (-15 -3140 ($ $ (-114) (-1 $ (-645 $)))) (-15 -3140 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1050)) (PROGN (-15 -3612 ((-1172 $) (-613 $))) (-15 -2713 ($ $))) |%noBranch|) (IF (|has| $ (-1039 (-567))) (PROGN (-15 -2143 ((-112) $)) (-15 -3937 ((-112) $))) |%noBranch|)))
+(((-102) . T) ((-617 #0=(-613 $)) . T) ((-614 (-863)) . T) ((-310 $) . T) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-1039 #0#) . T) ((-1100) . T))
+((-1727 (((-645 |#1|) (-645 |#1|)) 10)))
+(((-304 |#1|) (-10 -7 (-15 -1727 ((-645 |#1|) (-645 |#1|)))) (-849)) (T -304))
+((-1727 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3)))))
+(-10 -7 (-15 -1727 ((-645 |#1|) (-645 |#1|))))
+((-3494 (((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)) 17)))
+(((-305 |#1| |#2|) (-10 -7 (-15 -3494 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|)))) (-1050) (-1050)) (T -305))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6)))))
+(-10 -7 (-15 -3494 ((-690 |#2|) (-1 |#2| |#1|) (-690 |#1|))))
+((-1895 (((-1266 (-317 (-381))) (-1266 (-317 (-225)))) 112)) (-4009 (((-1094 (-844 (-225))) (-1094 (-844 (-381)))) 45)) (-3689 (((-645 (-1158)) (-1156 (-225))) 94)) (-1388 (((-317 (-381)) (-953 (-225))) 55)) (-3108 (((-225) (-953 (-225))) 51)) (-4359 (((-1158) (-381)) 197)) (-2382 (((-844 (-225)) (-844 (-381))) 39)) (-3441 (((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1266 (-317 (-225)))) 165)) (-1363 (((-1036) (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036)))) 209) (((-1036) (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) 207)) (-4302 (((-690 (-225)) (-645 (-225)) (-772)) 21)) (-2698 (((-1266 (-700)) (-645 (-225))) 101)) (-2292 (((-645 (-1158)) (-645 (-225))) 81)) (-3024 (((-3 (-317 (-225)) "failed") (-317 (-225))) 130)) (-2633 (((-112) (-225) (-1094 (-844 (-225)))) 119)) (-1919 (((-1036) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) 226)) (-2659 (((-225) (-1094 (-844 (-225)))) 114)) (-3500 (((-225) (-1094 (-844 (-225)))) 115)) (-3656 (((-225) (-410 (-567))) 33)) (-2020 (((-1158) (-381)) 79)) (-3165 (((-225) (-381)) 24)) (-2213 (((-381) (-1266 (-317 (-225)))) 179)) (-3149 (((-317 (-225)) (-317 (-381))) 30)) (-1902 (((-410 (-567)) (-317 (-225))) 58)) (-2323 (((-317 (-410 (-567))) (-317 (-225))) 75)) (-2925 (((-317 (-381)) (-317 (-225))) 105)) (-2811 (((-225) (-317 (-225))) 59)) (-3946 (((-645 (-225)) (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) 70)) (-2175 (((-1094 (-844 (-225))) (-1094 (-844 (-225)))) 67)) (-1567 (((-1158) (-225)) 78)) (-2644 (((-700) (-225)) 97)) (-1954 (((-410 (-567)) (-225)) 60)) (-2231 (((-317 (-381)) (-225)) 54)) (-3542 (((-645 (-1094 (-844 (-225)))) (-645 (-1094 (-844 (-381))))) 48)) (-2285 (((-1036) (-645 (-1036))) 193) (((-1036) (-1036) (-1036)) 187)) (-2150 (((-1036) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 223)))
+(((-306) (-10 -7 (-15 -3165 ((-225) (-381))) (-15 -3149 ((-317 (-225)) (-317 (-381)))) (-15 -2382 ((-844 (-225)) (-844 (-381)))) (-15 -4009 ((-1094 (-844 (-225))) (-1094 (-844 (-381))))) (-15 -3542 ((-645 (-1094 (-844 (-225)))) (-645 (-1094 (-844 (-381)))))) (-15 -1954 ((-410 (-567)) (-225))) (-15 -1902 ((-410 (-567)) (-317 (-225)))) (-15 -2811 ((-225) (-317 (-225)))) (-15 -3024 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2213 ((-381) (-1266 (-317 (-225))))) (-15 -3441 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1266 (-317 (-225))))) (-15 -2323 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -2175 ((-1094 (-844 (-225))) (-1094 (-844 (-225))))) (-15 -3946 ((-645 (-225)) (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))) (-15 -2644 ((-700) (-225))) (-15 -2698 ((-1266 (-700)) (-645 (-225)))) (-15 -2925 ((-317 (-381)) (-317 (-225)))) (-15 -1895 ((-1266 (-317 (-381))) (-1266 (-317 (-225))))) (-15 -2633 ((-112) (-225) (-1094 (-844 (-225))))) (-15 -1567 ((-1158) (-225))) (-15 -2020 ((-1158) (-381))) (-15 -2292 ((-645 (-1158)) (-645 (-225)))) (-15 -3689 ((-645 (-1158)) (-1156 (-225)))) (-15 -2659 ((-225) (-1094 (-844 (-225))))) (-15 -3500 ((-225) (-1094 (-844 (-225))))) (-15 -2285 ((-1036) (-1036) (-1036))) (-15 -2285 ((-1036) (-645 (-1036)))) (-15 -4359 ((-1158) (-381))) (-15 -1363 ((-1036) (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))))) (-15 -1363 ((-1036) (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))))) (-15 -2150 ((-1036) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1919 ((-1036) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -1388 ((-317 (-381)) (-953 (-225)))) (-15 -3108 ((-225) (-953 (-225)))) (-15 -2231 ((-317 (-381)) (-225))) (-15 -3656 ((-225) (-410 (-567)))) (-15 -4302 ((-690 (-225)) (-645 (-225)) (-772))))) (T -306))
+((-4302 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225))) (-5 *1 (-306)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-3108 (*1 *2 *3) (-12 (-5 *3 (-953 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-953 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036)))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-1363 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-4359 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1158)) (-5 *1 (-306)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-645 (-1036))) (-5 *2 (-1036)) (-5 *1 (-306)))) (-2285 (*1 *2 *2 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-306)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))) (-3689 (*1 *2 *3) (-12 (-5 *3 (-1156 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-306)))) (-2292 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-306)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1158)) (-5 *1 (-306)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1158)) (-5 *1 (-306)))) (-2633 (*1 *2 *3 *4) (-12 (-5 *4 (-1094 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-306)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *2 (-1266 (-317 (-381)))) (-5 *1 (-306)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))) (-2698 (*1 *2 *3) (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1266 (-700))) (-5 *1 (-306)))) (-2644 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))) (-3946 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-5 *2 (-645 (-225))) (-5 *1 (-306)))) (-2175 (*1 *2 *2) (-12 (-5 *2 (-1094 (-844 (-225)))) (-5 *1 (-306)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567)))) (-5 *1 (-306)))) (-3441 (*1 *2 *3) (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *2 (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567)))) (-5 *1 (-306)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))) (-3024 (*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))) (-1902 (*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-645 (-1094 (-844 (-381))))) (-5 *2 (-645 (-1094 (-844 (-225))))) (-5 *1 (-306)))) (-4009 (*1 *2 *3) (-12 (-5 *3 (-1094 (-844 (-381)))) (-5 *2 (-1094 (-844 (-225)))) (-5 *1 (-306)))) (-2382 (*1 *2 *3) (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
+(-10 -7 (-15 -3165 ((-225) (-381))) (-15 -3149 ((-317 (-225)) (-317 (-381)))) (-15 -2382 ((-844 (-225)) (-844 (-381)))) (-15 -4009 ((-1094 (-844 (-225))) (-1094 (-844 (-381))))) (-15 -3542 ((-645 (-1094 (-844 (-225)))) (-645 (-1094 (-844 (-381)))))) (-15 -1954 ((-410 (-567)) (-225))) (-15 -1902 ((-410 (-567)) (-317 (-225)))) (-15 -2811 ((-225) (-317 (-225)))) (-15 -3024 ((-3 (-317 (-225)) "failed") (-317 (-225)))) (-15 -2213 ((-381) (-1266 (-317 (-225))))) (-15 -3441 ((-2 (|:| |additions| (-567)) (|:| |multiplications| (-567)) (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))) (-1266 (-317 (-225))))) (-15 -2323 ((-317 (-410 (-567))) (-317 (-225)))) (-15 -2175 ((-1094 (-844 (-225))) (-1094 (-844 (-225))))) (-15 -3946 ((-645 (-225)) (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))) (-15 -2644 ((-700) (-225))) (-15 -2698 ((-1266 (-700)) (-645 (-225)))) (-15 -2925 ((-317 (-381)) (-317 (-225)))) (-15 -1895 ((-1266 (-317 (-381))) (-1266 (-317 (-225))))) (-15 -2633 ((-112) (-225) (-1094 (-844 (-225))))) (-15 -1567 ((-1158) (-225))) (-15 -2020 ((-1158) (-381))) (-15 -2292 ((-645 (-1158)) (-645 (-225)))) (-15 -3689 ((-645 (-1158)) (-1156 (-225)))) (-15 -2659 ((-225) (-1094 (-844 (-225))))) (-15 -3500 ((-225) (-1094 (-844 (-225))))) (-15 -2285 ((-1036) (-1036) (-1036))) (-15 -2285 ((-1036) (-645 (-1036)))) (-15 -4359 ((-1158) (-381))) (-15 -1363 ((-1036) (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))))) (-15 -1363 ((-1036) (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))))) (-15 -2150 ((-1036) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1919 ((-1036) (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))) (-15 -1388 ((-317 (-381)) (-953 (-225)))) (-15 -3108 ((-225) (-953 (-225)))) (-15 -2231 ((-317 (-381)) (-225))) (-15 -3656 ((-225) (-410 (-567)))) (-15 -4302 ((-690 (-225)) (-645 (-225)) (-772))))
+((-3405 (((-112) $ $) 14)) (-2197 (($ $ $) 18)) (-2210 (($ $ $) 17)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 50)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 65)) (-3276 (($ $ $) 25) (($ (-645 $)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 35) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40)) (-2245 (((-3 $ "failed") $ $) 21)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 53)))
+(((-307 |#1|) (-10 -8 (-15 -3102 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3930 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3930 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4099 |#1|)) |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -3405 ((-112) |#1| |#1|)) (-15 -2649 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3516 ((-2 (|:| -3087 (-645 |#1|)) (|:| -4099 |#1|)) (-645 |#1|))) (-15 -3276 (|#1| (-645 |#1|))) (-15 -3276 (|#1| |#1| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|))) (-308)) (T -307))
+NIL
+(-10 -8 (-15 -3102 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3930 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3930 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4099 |#1|)) |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2210 (|#1| |#1| |#1|)) (-15 -3405 ((-112) |#1| |#1|)) (-15 -2649 ((-3 (-645 |#1|) "failed") (-645 |#1|) |#1|)) (-15 -3516 ((-2 (|:| -3087 (-645 |#1|)) (|:| -4099 |#1|)) (-645 |#1|))) (-15 -3276 (|#1| (-645 |#1|))) (-15 -3276 (|#1| |#1| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-3405 (((-112) $ $) 65)) (-4061 (($) 18 T CONST)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-3714 (((-112) $) 35)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
(((-308) (-140)) (T -308))
-((-2068 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771)))) (-4301 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-308)))) (-3930 (*1 *1 *1 *1) (-4 *1 (-308))) (-3919 (*1 *1 *1 *1) (-4 *1 (-308))) (-3403 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2723 *1))) (-4 *1 (-308)))) (-3403 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-1536 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308)))))
-(-13 (-920) (-10 -8 (-15 -2068 ((-112) $ $)) (-15 -3792 ((-771) $)) (-15 -4301 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -3930 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -3403 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $)) (-15 -3403 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1536 ((-3 (-644 $) "failed") (-644 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-1754 (($ $ (-644 |#2|) (-644 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-644 (-295 |#2|))) NIL)))
-(((-309 |#1| |#2|) (-10 -8 (-15 -1754 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1754 (|#1| |#1| (-295 |#2|))) (-15 -1754 (|#1| |#1| |#2| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#2|)))) (-310 |#2|) (-1099)) (T -309))
-NIL
-(-10 -8 (-15 -1754 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1754 (|#1| |#1| (-295 |#2|))) (-15 -1754 (|#1| |#1| |#2| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#2|))))
-((-1754 (($ $ (-644 |#1|) (-644 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-644 (-295 |#1|))) 10)))
-(((-310 |#1|) (-140) (-1099)) (T -310))
-((-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099)))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099)))))
-(-13 (-516 |t#1| |t#1|) (-10 -8 (-15 -1754 ($ $ (-295 |t#1|))) (-15 -1754 ($ $ (-644 (-295 |t#1|))))))
-(((-516 |#1| |#1|) . T))
-((-1754 ((|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))) 25)))
-(((-311 |#1|) (-10 -7 (-15 -1754 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566)))))) (-38 (-409 (-566)))) (T -311))
-((-1754 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566)))))))
-(-10 -7 (-15 -1754 (|#1| (-1 |#1| (-566)) (-1177 (-409 (-566))))))
-((-3979 (((-112) $ $) NIL)) (-1445 (((-566) $) 12)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1743 (((-1134) $) 9)) (-2725 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-312) (-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -1445 ((-566) $))))) (T -312))
-((-1743 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312)))))
-(-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -1445 ((-566) $))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 7)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 9)))
-(((-313) (-1099)) (T -313))
-NIL
-(-1099)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 60)) (-4191 (((-1251 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-1251 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-1250 |#2| |#3| |#4|) "failed") $) 26)) (-3343 (((-1251 |#1| |#2| |#3| |#4|) $) NIL) (((-1175) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-566) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1038 (-566)))) (((-1250 |#2| |#3| |#4|) $) NIL)) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-1251 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1265 (-1251 |#1| |#2| |#3| |#4|)))) (-689 $) (-1265 $)) NIL) (((-689 (-1251 |#1| |#2| |#3| |#4|)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 (((-1251 |#1| |#2| |#3| |#4|) $) 22)) (-3869 (((-3 $ "failed") $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1150)))) (-2307 (((-112) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-850)))) (-3936 (($ $ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-850)))) (-2101 (($ (-1 (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|)) $) NIL)) (-3294 (((-3 (-843 |#2|) "failed") $) 80)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-308)))) (-2311 (((-1251 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 (-1251 |#1| |#2| |#3| |#4|)) (-644 (-1251 |#1| |#2| |#3| |#4|))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-310 (-1251 |#1| |#2| |#3| |#4|)))) (($ $ (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-310 (-1251 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1251 |#1| |#2| |#3| |#4|))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-310 (-1251 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-295 (-1251 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-310 (-1251 |#1| |#2| |#3| |#4|)))) (($ $ (-644 (-1175)) (-644 (-1251 |#1| |#2| |#3| |#4|))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1251 |#1| |#2| |#3| |#4|)))) (($ $ (-1175) (-1251 |#1| |#2| |#3| |#4|)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-516 (-1175) (-1251 |#1| |#2| |#3| |#4|))))) (-3792 (((-771) $) NIL)) (-3282 (($ $ (-1251 |#1| |#2| |#3| |#4|)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-287 (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|))) NIL)) (-3233 (($ $) NIL)) (-2702 (((-1251 |#1| |#2| |#3| |#4|) $) 19)) (-2150 (((-892 (-566)) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-614 (-538)))) (((-381) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1022))) (((-225) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1022)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3| |#4|) (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-1251 |#1| |#2| |#3| |#4|)) 30) (($ (-1175)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-1038 (-1175)))) (($ (-1250 |#2| |#3| |#4|)) 37)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3| |#4|) (-909))) (|has| (-1251 |#1| |#2| |#3| |#4|) (-145))))) (-2875 (((-771)) NIL T CONST)) (-2119 (((-1251 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-820)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-771)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1175)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-900 (-1175)))) (($ $ (-1 (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|)) (-771)) NIL) (($ $ (-1 (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|))) NIL)) (-2865 (((-112) $ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-1251 |#1| |#2| |#3| |#4|) (-850)))) (-2916 (($ $ $) 35) (($ (-1251 |#1| |#2| |#3| |#4|) (-1251 |#1| |#2| |#3| |#4|)) 32)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-1251 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1251 |#1| |#2| |#3| |#4|)) NIL)))
-(((-314 |#1| |#2| |#3| |#4|) (-13 (-992 (-1251 |#1| |#2| |#3| |#4|)) (-1038 (-1250 |#2| |#3| |#4|)) (-10 -8 (-15 -3294 ((-3 (-843 |#2|) "failed") $)) (-15 -2725 ($ (-1250 |#2| |#3| |#4|))))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1200) (-432 |#1|)) (-1175) |#2|) (T -314))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1250 *4 *5 *6)) (-4 *4 (-13 (-27) (-1200) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4) (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *1 (-314 *3 *4 *5 *6)))) (-3294 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1200) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4))))
-(-13 (-992 (-1251 |#1| |#2| |#3| |#4|)) (-1038 (-1250 |#2| |#3| |#4|)) (-10 -8 (-15 -3294 ((-3 (-843 |#2|) "failed") $)) (-15 -2725 ($ (-1250 |#2| |#3| |#4|)))))
-((-2101 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13)))
-(((-315 |#1| |#2|) (-10 -7 (-15 -2101 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1099) (-1099)) (T -315))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))))
-(-10 -7 (-15 -2101 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|))))
-((-4231 (((-52) |#2| (-295 |#2|) (-771)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-771)) 35) (((-52) |#2|) 33) (((-52) (-1175)) 26)) (-3040 (((-52) |#2| (-295 |#2|) (-409 (-566))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-409 (-566))) 58) (((-52) |#2|) 57) (((-52) (-1175)) 55)) (-4256 (((-52) |#2| (-295 |#2|) (-409 (-566))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-409 (-566))) 53) (((-52) |#2|) 52) (((-52) (-1175)) 50)) (-4244 (((-52) |#2| (-295 |#2|) (-566)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-566)) 46) (((-52) |#2|) 45) (((-52) (-1175)) 43)))
-(((-316 |#1| |#2|) (-10 -7 (-15 -4231 ((-52) (-1175))) (-15 -4231 ((-52) |#2|)) (-15 -4231 ((-52) |#2| (-771))) (-15 -4231 ((-52) |#2| (-295 |#2|))) (-15 -4231 ((-52) |#2| (-295 |#2|) (-771))) (-15 -4244 ((-52) (-1175))) (-15 -4244 ((-52) |#2|)) (-15 -4244 ((-52) |#2| (-566))) (-15 -4244 ((-52) |#2| (-295 |#2|))) (-15 -4244 ((-52) |#2| (-295 |#2|) (-566))) (-15 -4256 ((-52) (-1175))) (-15 -4256 ((-52) |#2|)) (-15 -4256 ((-52) |#2| (-409 (-566)))) (-15 -4256 ((-52) |#2| (-295 |#2|))) (-15 -4256 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -3040 ((-52) (-1175))) (-15 -3040 ((-52) |#2|)) (-15 -3040 ((-52) |#2| (-409 (-566)))) (-15 -3040 ((-52) |#2| (-295 |#2|))) (-15 -3040 ((-52) |#2| (-295 |#2|) (-409 (-566))))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|))) (T -316))
-((-3040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-3040 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))) (-3040 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4))))) (-4256 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-4256 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4))))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-4244 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-4244 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4))))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-771)) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-4231 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4))))))
-(-10 -7 (-15 -4231 ((-52) (-1175))) (-15 -4231 ((-52) |#2|)) (-15 -4231 ((-52) |#2| (-771))) (-15 -4231 ((-52) |#2| (-295 |#2|))) (-15 -4231 ((-52) |#2| (-295 |#2|) (-771))) (-15 -4244 ((-52) (-1175))) (-15 -4244 ((-52) |#2|)) (-15 -4244 ((-52) |#2| (-566))) (-15 -4244 ((-52) |#2| (-295 |#2|))) (-15 -4244 ((-52) |#2| (-295 |#2|) (-566))) (-15 -4256 ((-52) (-1175))) (-15 -4256 ((-52) |#2|)) (-15 -4256 ((-52) |#2| (-409 (-566)))) (-15 -4256 ((-52) |#2| (-295 |#2|))) (-15 -4256 ((-52) |#2| (-295 |#2|) (-409 (-566)))) (-15 -3040 ((-52) (-1175))) (-15 -3040 ((-52) |#2|)) (-15 -3040 ((-52) |#2| (-409 (-566)))) (-15 -3040 ((-52) |#2| (-295 |#2|))) (-15 -3040 ((-52) |#2| (-295 |#2|) (-409 (-566)))))
-((-3979 (((-112) $ $) NIL)) (-1454 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-3542 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-3545 (((-112) $) 27 (-2676 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-4170 (((-644 (-1175)) $) 368)) (-3983 (((-409 (-1171 $)) $ (-612 $)) NIL (|has| |#1| (-558)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3860 (((-644 (-612 $)) $) NIL)) (-3622 (($ $) 171 (|has| |#1| (-558)))) (-3474 (($ $) 147 (|has| |#1| (-558)))) (-2513 (($ $ (-1091 $)) 232 (|has| |#1| (-558))) (($ $ (-1175)) 228 (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) NIL (-2676 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-1713 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) 386) (($ $ (-644 (-612 $)) (-644 $)) 430)) (-4350 (((-420 (-1171 $)) (-1171 $)) 308 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-2885 (($ $) NIL (|has| |#1| (-558)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-558)))) (-4028 (($ $) NIL (|has| |#1| (-558)))) (-2068 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3601 (($ $) 167 (|has| |#1| (-558)))) (-3449 (($ $) 143 (|has| |#1| (-558)))) (-2598 (($ $ (-566)) 73 (|has| |#1| (-558)))) (-3648 (($ $) 175 (|has| |#1| (-558)))) (-3500 (($ $) 151 (|has| |#1| (-558)))) (-2633 (($) NIL (-2676 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-1748 (((-644 $) $ (-1175)) NIL (|has| |#1| (-558))) (((-644 $) $) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $) (-1175)) NIL (|has| |#1| (-558))) (((-644 $) (-1171 $)) NIL (|has| |#1| (-558))) (((-644 $) (-952 $)) NIL (|has| |#1| (-558)))) (-2563 (($ $ (-1175)) NIL (|has| |#1| (-558))) (($ $) NIL (|has| |#1| (-558))) (($ (-1171 $) (-1175)) 134 (|has| |#1| (-558))) (($ (-1171 $)) NIL (|has| |#1| (-558))) (($ (-952 $)) NIL (|has| |#1| (-558)))) (-2023 (((-3 (-612 $) "failed") $) 18) (((-3 (-1175) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-952 |#1|)) "failed") $) NIL (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) NIL (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 46 (-2676 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3343 (((-612 $) $) 12) (((-1175) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-952 |#1|)) $) NIL (|has| |#1| (-558))) (((-952 |#1|) $) NIL (|has| |#1| (-1049))) (((-409 (-566)) $) 319 (-2676 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3919 (($ $ $) NIL (|has| |#1| (-558)))) (-3717 (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 125 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 115 (|has| |#1| (-1049))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (-2553 (($ $) 96 (|has| |#1| (-558)))) (-2313 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-3930 (($ $ $) NIL (|has| |#1| (-558)))) (-3839 (($ $ (-1091 $)) 236 (|has| |#1| (-558))) (($ $ (-1175)) 234 (|has| |#1| (-558)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-558)))) (-1968 (((-112) $) NIL (|has| |#1| (-558)))) (-1666 (($ $ $) 202 (|has| |#1| (-558)))) (-2722 (($) 137 (|has| |#1| (-558)))) (-1549 (($ $ $) 222 (|has| |#1| (-558)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 392 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 399 (|has| |#1| (-886 (-381))))) (-3206 (($ $) NIL) (($ (-644 $)) NIL)) (-3684 (((-644 (-114)) $) NIL)) (-3959 (((-114) (-114)) 276)) (-3842 (((-112) $) 25 (-2676 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (-1687 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-3450 (($ $) 72 (|has| |#1| (-1049)))) (-2691 (((-1124 |#1| (-612 $)) $) 91 (|has| |#1| (-1049)))) (-3862 (((-112) $) 62 (|has| |#1| (-558)))) (-2810 (($ $ (-566)) NIL (|has| |#1| (-558)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-2391 (((-1171 $) (-612 $)) 277 (|has| $ (-1049)))) (-2101 (($ (-1 $ $) (-612 $)) 426)) (-3308 (((-3 (-612 $) "failed") $) NIL)) (-1565 (($ $) 141 (|has| |#1| (-558)))) (-2468 (($ $) 247 (|has| |#1| (-558)))) (-1853 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-1390 (((-1157) $) NIL)) (-3944 (((-644 (-612 $)) $) 49)) (-2770 (($ (-114) $) NIL) (($ (-114) (-644 $)) 431)) (-2684 (((-3 (-644 $) "failed") $) NIL (|has| |#1| (-1111)))) (-1559 (((-3 (-2 (|:| |val| $) (|:| -3428 (-566))) "failed") $) NIL (|has| |#1| (-1049)))) (-1660 (((-3 (-644 $) "failed") $) 436 (|has| |#1| (-25)))) (-2271 (((-3 (-2 (|:| -1702 (-566)) (|:| |var| (-612 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2544 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $) NIL (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-114)) NIL (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-1175)) NIL (|has| |#1| (-1049)))) (-3044 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) 51)) (-4282 (($ $) NIL (-2676 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-2283 (($ $ (-1175)) 251 (|has| |#1| (-558))) (($ $ (-1091 $)) 253 (|has| |#1| (-558)))) (-1695 (((-771) $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) 43)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 301 (|has| |#1| (-558)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-3761 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-2645 (($ $ (-1175)) 226 (|has| |#1| (-558))) (($ $) 224 (|has| |#1| (-558)))) (-2062 (($ $) 218 (|has| |#1| (-558)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 306 (-12 (|has| |#1| (-454)) (|has| |#1| (-558))))) (-4018 (((-420 $) $) NIL (|has| |#1| (-558)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-558)))) (-1535 (($ $) 139 (|has| |#1| (-558)))) (-3934 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-1754 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 425) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) 379) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) NIL (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-614 (-538)))) (($ $) NIL (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 366 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 365 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) NIL (|has| |#1| (-1049)))) (-3792 (((-771) $) NIL (|has| |#1| (-558)))) (-3393 (($ $) 239 (|has| |#1| (-558)))) (-3282 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-2220 (($ $) NIL) (($ $ $) NIL)) (-3436 (($ $) 249 (|has| |#1| (-558)))) (-2895 (($ $) 200 (|has| |#1| (-558)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-3233 (($ $) 74 (|has| |#1| (-558)))) (-2702 (((-1124 |#1| (-612 $)) $) 93 (|has| |#1| (-558)))) (-2880 (($ $) 317 (|has| $ (-1049)))) (-3658 (($ $) 177 (|has| |#1| (-558)))) (-3515 (($ $) 153 (|has| |#1| (-558)))) (-3635 (($ $) 173 (|has| |#1| (-558)))) (-3488 (($ $) 149 (|has| |#1| (-558)))) (-3612 (($ $) 169 (|has| |#1| (-558)))) (-3461 (($ $) 145 (|has| |#1| (-558)))) (-2150 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) NIL (|has| |#1| (-558))) (((-538) $) 363 (|has| |#1| (-614 (-538))))) (-2558 (($ $ $) NIL (|has| |#1| (-475)))) (-1726 (($ $ $) NIL (|has| |#1| (-475)))) (-2725 (((-862) $) 424) (($ (-612 $)) 415) (($ (-1175)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-558))) (($ (-48)) 312 (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) (($ (-1124 |#1| (-612 $))) 95 (|has| |#1| (-1049))) (($ (-409 |#1|)) NIL (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) NIL (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) NIL (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) NIL (|has| |#1| (-558))) (($ (-952 |#1|)) NIL (|has| |#1| (-1049))) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-558)) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 34 (-2676 (|has| |#1| (-1038 (-566))) (|has| |#1| (-1049))))) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL (|has| |#1| (-1049)) CONST)) (-3016 (($ $) NIL) (($ (-644 $)) NIL)) (-1672 (($ $ $) 220 (|has| |#1| (-558)))) (-4293 (($ $ $) 206 (|has| |#1| (-558)))) (-3394 (($ $ $) 210 (|has| |#1| (-558)))) (-3600 (($ $ $) 204 (|has| |#1| (-558)))) (-3865 (($ $ $) 208 (|has| |#1| (-558)))) (-2827 (((-112) (-114)) 10)) (-1479 (((-112) $ $) 86)) (-3696 (($ $) 183 (|has| |#1| (-558)))) (-3553 (($ $) 159 (|has| |#1| (-558)))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) 179 (|has| |#1| (-558)))) (-3528 (($ $) 155 (|has| |#1| (-558)))) (-3719 (($ $) 187 (|has| |#1| (-558)))) (-3577 (($ $) 163 (|has| |#1| (-558)))) (-3750 (($ (-1175) $) NIL) (($ (-1175) $ $) NIL) (($ (-1175) $ $ $) NIL) (($ (-1175) $ $ $ $) NIL) (($ (-1175) (-644 $)) NIL)) (-2852 (($ $) 214 (|has| |#1| (-558)))) (-3328 (($ $) 212 (|has| |#1| (-558)))) (-3076 (($ $) 189 (|has| |#1| (-558)))) (-3589 (($ $) 165 (|has| |#1| (-558)))) (-3705 (($ $) 185 (|has| |#1| (-558)))) (-3566 (($ $) 161 (|has| |#1| (-558)))) (-3682 (($ $) 181 (|has| |#1| (-558)))) (-3541 (($ $) 157 (|has| |#1| (-558)))) (-2274 (($ $) 192 (|has| |#1| (-558)))) (-3200 (($) 21 (-2676 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) CONST)) (-2097 (($ $) 243 (|has| |#1| (-558)))) (-3214 (($) 23 (-2676 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))) CONST)) (-3181 (($ $) 194 (|has| |#1| (-558))) (($ $ $) 196 (|has| |#1| (-558)))) (-3159 (($ $) 241 (|has| |#1| (-558)))) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-1049))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-1049))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-1049))) (($ $ (-1175)) NIL (|has| |#1| (-1049)))) (-2106 (($ $) 245 (|has| |#1| (-558)))) (-2434 (($ $ $) 198 (|has| |#1| (-558)))) (-2817 (((-112) $ $) 88)) (-2916 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 106 (|has| |#1| (-558))) (($ $ $) 42 (-2676 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-2905 (($ $ $) 40 (-2676 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ $) 29 (-2676 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (-2897 (($ $ $) 38 (-2676 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))) (** (($ $ $) 64 (|has| |#1| (-558))) (($ $ (-409 (-566))) 314 (|has| |#1| (-558))) (($ $ (-566)) 80 (-2676 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 75 (-2676 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ $ (-921)) 84 (-2676 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111))))) (* (($ (-409 (-566)) $) NIL (|has| |#1| (-558))) (($ $ (-409 (-566))) NIL (|has| |#1| (-558))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2676 (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) (|has| |#1| (-1111)))) (($ (-566) $) 32 (-2676 (|has| |#1| (-21)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-771) $) NIL (-2676 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))))) (($ (-921) $) NIL (-2676 (|has| |#1| (-25)) (-12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))))))
-(((-317 |#1|) (-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1200)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -2553 ($ $)) (-15 -3862 ((-112) $)) (-15 -2598 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -4314 ((-420 (-1171 $)) (-1171 $))) (-15 -4350 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|))) (-1099)) (T -317))
-((-2553 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099)))) (-3862 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-4314 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))) (-4350 (*1 *2 *3) (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099)))))
-(-13 (-432 |#1|) (-10 -8 (IF (|has| |#1| (-558)) (PROGN (-6 (-29 |#1|)) (-6 (-1200)) (-6 (-160)) (-6 (-629)) (-6 (-1138)) (-15 -2553 ($ $)) (-15 -3862 ((-112) $)) (-15 -2598 ($ $ (-566))) (IF (|has| |#1| (-454)) (PROGN (-15 -4314 ((-420 (-1171 $)) (-1171 $))) (-15 -4350 ((-420 (-1171 $)) (-1171 $)))) |%noBranch|) (IF (|has| |#1| (-1038 (-566))) (-6 (-1038 (-48))) |%noBranch|)) |%noBranch|)))
-((-1448 (((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 81) (((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 83) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|)) 84) (((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86)))
-(((-318 |#1| |#2|) (-10 -7 (-15 -1448 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -1448 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1448 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1448 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -1448 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -1448 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1448 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -1448 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -1448 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -1448 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-558) (-614 (-538))) (-432 |#1|)) (T -318))
-((-1448 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3)) (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-1448 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1448 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-1448 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-1448 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8))) (-4 *8 (-432 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-1448 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-1448 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-644 *8)) (-4 *8 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-1448 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-1448 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7)) (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-1448 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5)) (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6)))))
-(-10 -7 (-15 -1448 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -1448 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1448 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1448 ((-52) (-644 (-295 |#2|)) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -1448 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 |#2|))) (-15 -1448 ((-52) (-644 |#2|) (-644 (-114)) (-295 |#2|) (-644 (-295 |#2|)))) (-15 -1448 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -1448 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -1448 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -1448 ((-52) |#2| (-114) (-295 |#2|) (-644 |#2|))))
-((-2233 (((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157)) 67) (((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566)) 68) (((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157)) 64) (((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566)) 65)) (-1838 (((-1 (-225) (-225)) (-225)) 66)))
-(((-319) (-10 -7 (-15 -1838 ((-1 (-225) (-225)) (-225))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157))))) (T -319))
-((-2233 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157)) (-5 *2 (-1210 (-926))) (-5 *1 (-319)))) (-2233 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *2 (-1210 (-926))) (-5 *1 (-319)))) (-2233 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157)) (-5 *2 (-1210 (-926))) (-5 *1 (-319)))) (-2233 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1210 (-926))) (-5 *1 (-319)))) (-1838 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
-(-10 -7 (-15 -1838 ((-1 (-225) (-225)) (-225))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-1 (-225) (-225)) (-566) (-1157))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566))) (-15 -2233 ((-1210 (-926)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-225) (-566) (-1157))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 26)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-3564 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 20)) (-3622 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3648 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) 36)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) 16)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1879 (($ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200)))))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-409 (-566))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3841 (((-409 (-566)) $) 17)) (-1457 (($ (-1250 |#1| |#2| |#3|)) 11)) (-3428 (((-1250 |#1| |#2| |#3|) $) 12)) (-1535 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3838 (((-409 (-566)) $) NIL)) (-3658 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 10)) (-2725 (((-862) $) 42) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3623 ((|#1| $ (-409 (-566))) 34)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) NIL)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 28)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 37)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-320 |#1| |#2| |#3|) (-13 (-1246 |#1|) (-792) (-10 -8 (-15 -1457 ($ (-1250 |#1| |#2| |#3|))) (-15 -3428 ((-1250 |#1| |#2| |#3|) $)) (-15 -3841 ((-409 (-566)) $)))) (-365) (-1175) |#1|) (T -320))
-((-1457 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-1250 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3))) (-3841 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175)) (-14 *5 *3))))
-(-13 (-1246 |#1|) (-792) (-10 -8 (-15 -1457 ($ (-1250 |#1| |#2| |#3|))) (-15 -3428 ((-1250 |#1| |#2| |#3|) $)) (-15 -3841 ((-409 (-566)) $))))
-((-2810 (((-2 (|:| -3428 (-771)) (|:| -1702 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771)) 35)) (-1565 (((-644 (-2 (|:| -1702 (-771)) (|:| |logand| |#1|))) (-420 |#1|)) 40)))
-(((-321 |#1|) (-10 -7 (-15 -2810 ((-2 (|:| -3428 (-771)) (|:| -1702 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -1565 ((-644 (-2 (|:| -1702 (-771)) (|:| |logand| |#1|))) (-420 |#1|)))) (-558)) (T -321))
-((-1565 (*1 *2 *3) (-12 (-5 *3 (-420 *4)) (-4 *4 (-558)) (-5 *2 (-644 (-2 (|:| -1702 (-771)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-420 *5)) (-4 *5 (-558)) (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *5) (|:| |radicand| (-644 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-771)))))
-(-10 -7 (-15 -2810 ((-2 (|:| -3428 (-771)) (|:| -1702 |#1|) (|:| |radicand| (-644 |#1|))) (-420 |#1|) (-771))) (-15 -1565 ((-644 (-2 (|:| -1702 (-771)) (|:| |logand| |#1|))) (-420 |#1|))))
-((-4170 (((-644 |#2|) (-1171 |#4|)) 44)) (-2409 ((|#3| (-566)) 47)) (-2836 (((-1171 |#4|) (-1171 |#3|)) 30)) (-3520 (((-1171 |#4|) (-1171 |#4|) (-566)) 66)) (-1657 (((-1171 |#3|) (-1171 |#4|)) 21)) (-3838 (((-644 (-771)) (-1171 |#4|) (-644 |#2|)) 41)) (-4258 (((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|)) 35)))
-(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4258 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -3838 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -4170 ((-644 |#2|) (-1171 |#4|))) (-15 -1657 ((-1171 |#3|) (-1171 |#4|))) (-15 -2836 ((-1171 |#4|) (-1171 |#3|))) (-15 -3520 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -2409 (|#3| (-566)))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|)) (T -322))
-((-2409 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5)))) (-3520 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850)) (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049)) (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8)))) (-4258 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
-(-10 -7 (-15 -4258 ((-1171 |#3|) (-1171 |#4|) (-644 |#2|) (-644 |#3|))) (-15 -3838 ((-644 (-771)) (-1171 |#4|) (-644 |#2|))) (-15 -4170 ((-644 |#2|) (-1171 |#4|))) (-15 -1657 ((-1171 |#3|) (-1171 |#4|))) (-15 -2836 ((-1171 |#4|) (-1171 |#3|))) (-15 -3520 ((-1171 |#4|) (-1171 |#4|) (-566))) (-15 -2409 (|#3| (-566))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 19)) (-3564 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-566)))) $) 21)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3733 (((-771) $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-2654 ((|#1| $ (-566)) NIL)) (-3049 (((-566) $ (-566)) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-2990 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (($ (-1 (-566) (-566)) $) 11)) (-1390 (((-1157) $) NIL)) (-3697 (($ $ $) NIL (|has| (-566) (-792)))) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL) (($ |#1|) NIL)) (-3623 (((-566) |#1| $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) 29 (|has| |#1| (-850)))) (-2905 (($ $) 12) (($ $ $) 28)) (-2897 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL) (($ (-566) |#1|) 27)))
-(((-323 |#1|) (-13 (-21) (-717 (-566)) (-324 |#1| (-566)) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1099)) (T -323))
-NIL
-(-13 (-21) (-717 (-566)) (-324 |#1| (-566)) (-10 -7 (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-3564 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|))) $) 28)) (-4113 (((-3 $ "failed") $ $) 20)) (-3733 (((-771) $) 29)) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 33)) (-3343 ((|#1| $) 34)) (-2654 ((|#1| $ (-566)) 26)) (-3049 ((|#2| $ (-566)) 27)) (-2990 (($ (-1 |#1| |#1|) $) 23)) (-1745 (($ (-1 |#2| |#2|) $) 24)) (-1390 (((-1157) $) 10)) (-3697 (($ $ $) 22 (|has| |#2| (-792)))) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ |#1|) 32)) (-3623 ((|#2| |#1| $) 25)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2897 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ |#2| |#1|) 30)))
-(((-324 |#1| |#2|) (-140) (-1099) (-131)) (T -324))
-((-2897 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-771)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)) (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 *4)))))) (-3049 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099)) (-4 *2 (-131)))) (-2654 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1099)))) (-3623 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131)))) (-1745 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-2990 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131)))) (-3697 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131)) (-4 *3 (-792)))))
-(-13 (-131) (-1038 |t#1|) (-10 -8 (-15 -2897 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3733 ((-771) $)) (-15 -3564 ((-644 (-2 (|:| |gen| |t#1|) (|:| -1535 |t#2|))) $)) (-15 -3049 (|t#2| $ (-566))) (-15 -2654 (|t#1| $ (-566))) (-15 -3623 (|t#2| |t#1| $)) (-15 -1745 ($ (-1 |t#2| |t#2|) $)) (-15 -2990 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-792)) (-15 -3697 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-1038 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-3564 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-771)))) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3733 (((-771) $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-2654 ((|#1| $ (-566)) NIL)) (-3049 (((-771) $ (-566)) NIL)) (-2990 (($ (-1 |#1| |#1|) $) NIL)) (-1745 (($ (-1 (-771) (-771)) $) NIL)) (-1390 (((-1157) $) NIL)) (-3697 (($ $ $) NIL (|has| (-771) (-792)))) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL) (($ |#1|) NIL)) (-3623 (((-771) |#1| $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2897 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-771) |#1|) NIL)))
-(((-325 |#1|) (-324 |#1| (-771)) (-1099)) (T -325))
-NIL
-(-324 |#1| (-771))
-((-1520 (($ $) 72)) (-2385 (($ $ |#2| |#3| $) 14)) (-1336 (($ (-1 |#3| |#3|) $) 51)) (-4290 (((-112) $) 42)) (-4307 ((|#2| $) 44)) (-3967 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-4330 ((|#2| $) 68)) (-3624 (((-644 |#2|) $) 56)) (-3977 (($ $ $ (-771)) 37)) (-2916 (($ $ |#2|) 60)))
-(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -1520 (|#1| |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3977 (|#1| |#1| |#1| (-771))) (-15 -2385 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1336 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3624 ((-644 |#2|) |#1|)) (-15 -4307 (|#2| |#1|)) (-15 -4290 ((-112) |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2916 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1049) (-792)) (T -326))
-NIL
-(-10 -8 (-15 -1520 (|#1| |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3977 (|#1| |#1| |#1| (-771))) (-15 -2385 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1336 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3624 ((-644 |#2|) |#1|)) (-15 -4307 (|#2| |#1|)) (-15 -4290 ((-112) |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2916 (|#1| |#1| |#2|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 98 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 95)) (-3343 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 97 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 96)) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-1520 (($ $) 84 (|has| |#1| (-454)))) (-2385 (($ $ |#1| |#2| $) 88)) (-3842 (((-112) $) 35)) (-2436 (((-771) $) 91)) (-3819 (((-112) $) 74)) (-4145 (($ |#1| |#2|) 73)) (-4090 ((|#2| $) 90)) (-1336 (($ (-1 |#2| |#2|) $) 89)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4290 (((-112) $) 94)) (-4307 ((|#1| $) 93)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-558)))) (-3838 ((|#2| $) 76)) (-4330 ((|#1| $) 85 (|has| |#1| (-454)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59) (($ (-409 (-566))) 69 (-2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-3624 (((-644 |#1|) $) 92)) (-3623 ((|#1| $ |#2|) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-3977 (($ $ $ (-771)) 87 (|has| |#1| (-172)))) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-327 |#1| |#2|) (-140) (-1049) (-792)) (T -327))
-((-4290 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-112)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-644 *3)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-771)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-1336 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-2385 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))) (-3977 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *3 (-172)))) (-3967 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-558)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-1520 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *2 (-454)))))
-(-13 (-47 |t#1| |t#2|) (-413 |t#1|) (-10 -8 (-15 -4290 ((-112) $)) (-15 -4307 (|t#1| $)) (-15 -3624 ((-644 |t#1|) $)) (-15 -2436 ((-771) $)) (-15 -4090 (|t#2| $)) (-15 -1336 ($ (-1 |t#2| |t#2|) $)) (-15 -2385 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3977 ($ $ $ (-771))) |%noBranch|) (IF (|has| |t#1| (-558)) (-15 -3967 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -4330 (|t#1| $)) (-15 -1520 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-413 |#1|) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-3569 (((-112) (-112)) NIL)) (-2858 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) |#1|) $) NIL)) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-1985 (($ $) NIL (|has| |#1| (-1099)))) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3045 (($ $ (-566)) NIL)) (-2612 (((-771) $) NIL)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3169 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1619 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4298 (($ (-644 |#1|)) NIL)) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1503 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) NIL)) (-2011 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -4298 ($ (-644 |#1|))) (-15 -2612 ((-771) $)) (-15 -3045 ($ $ (-566))) (-15 -3569 ((-112) (-112))))) (-1215)) (T -328))
-((-4298 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-328 *3)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1215)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1215)))) (-3569 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1215)))))
-(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -4298 ($ (-644 |#1|))) (-15 -2612 ((-771) $)) (-15 -3045 ($ $ (-566))) (-15 -3569 ((-112) (-112)))))
-((-3004 (((-112) $) 50)) (-2967 (((-771)) 26)) (-2717 ((|#2| $) 54) (($ $ (-921)) 124)) (-3733 (((-771)) 125)) (-1452 (($ (-1265 |#2|)) 23)) (-3778 (((-112) $) 138)) (-3202 ((|#2| $) 56) (($ $ (-921)) 121)) (-2323 (((-1171 |#2|) $) NIL) (((-1171 $) $ (-921)) 112)) (-2535 (((-1171 |#2|) $) 98)) (-3777 (((-1171 |#2|) $) 94) (((-3 (-1171 |#2|) "failed") $ $) 91)) (-2195 (($ $ (-1171 |#2|)) 62)) (-2438 (((-833 (-921))) 33) (((-921)) 51)) (-4356 (((-134)) 30)) (-3838 (((-833 (-921)) $) 35) (((-921) $) 141)) (-2014 (($) 131)) (-2803 (((-1265 |#2|) $) NIL) (((-689 |#2|) (-1265 $)) 45)) (-2655 (($ $) NIL) (((-3 $ "failed") $) 101)) (-3314 (((-112) $) 48)))
-(((-329 |#1| |#2|) (-10 -8 (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -3733 ((-771))) (-15 -2655 (|#1| |#1|)) (-15 -3777 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -3777 ((-1171 |#2|) |#1|)) (-15 -2535 ((-1171 |#2|) |#1|)) (-15 -2195 (|#1| |#1| (-1171 |#2|))) (-15 -3778 ((-112) |#1|)) (-15 -2014 (|#1|)) (-15 -2717 (|#1| |#1| (-921))) (-15 -3202 (|#1| |#1| (-921))) (-15 -2323 ((-1171 |#1|) |#1| (-921))) (-15 -2717 (|#2| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -3838 ((-921) |#1|)) (-15 -2438 ((-921))) (-15 -2323 ((-1171 |#2|) |#1|)) (-15 -1452 (|#1| (-1265 |#2|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -2967 ((-771))) (-15 -2438 ((-833 (-921)))) (-15 -3838 ((-833 (-921)) |#1|)) (-15 -3004 ((-112) |#1|)) (-15 -3314 ((-112) |#1|)) (-15 -4356 ((-134)))) (-330 |#2|) (-365)) (T -329))
-((-4356 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2438 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2967 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2438 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-3733 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))))
-(-10 -8 (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -3733 ((-771))) (-15 -2655 (|#1| |#1|)) (-15 -3777 ((-3 (-1171 |#2|) "failed") |#1| |#1|)) (-15 -3777 ((-1171 |#2|) |#1|)) (-15 -2535 ((-1171 |#2|) |#1|)) (-15 -2195 (|#1| |#1| (-1171 |#2|))) (-15 -3778 ((-112) |#1|)) (-15 -2014 (|#1|)) (-15 -2717 (|#1| |#1| (-921))) (-15 -3202 (|#1| |#1| (-921))) (-15 -2323 ((-1171 |#1|) |#1| (-921))) (-15 -2717 (|#2| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -3838 ((-921) |#1|)) (-15 -2438 ((-921))) (-15 -2323 ((-1171 |#2|) |#1|)) (-15 -1452 (|#1| (-1265 |#2|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -2967 ((-771))) (-15 -2438 ((-833 (-921)))) (-15 -3838 ((-833 (-921)) |#1|)) (-15 -3004 ((-112) |#1|)) (-15 -3314 ((-112) |#1|)) (-15 -4356 ((-134))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-3004 (((-112) $) 104)) (-2967 (((-771)) 100)) (-2717 ((|#1| $) 150) (($ $ (-921)) 147 (|has| |#1| (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) 132 (|has| |#1| (-370)))) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-2068 (((-112) $ $) 65)) (-3733 (((-771)) 122 (|has| |#1| (-370)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 111)) (-3343 ((|#1| $) 112)) (-1452 (($ (-1265 |#1|)) 156)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3424 (($) 119 (|has| |#1| (-370)))) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-4183 (($) 134 (|has| |#1| (-370)))) (-1963 (((-112) $) 135 (|has| |#1| (-370)))) (-4205 (($ $ (-771)) 97 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) 79)) (-3077 (((-921) $) 137 (|has| |#1| (-370))) (((-833 (-921)) $) 94 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) 35)) (-3029 (($) 145 (|has| |#1| (-370)))) (-3778 (((-112) $) 144 (|has| |#1| (-370)))) (-3202 ((|#1| $) 151) (($ $ (-921)) 148 (|has| |#1| (-370)))) (-3869 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2323 (((-1171 |#1|) $) 155) (((-1171 $) $ (-921)) 149 (|has| |#1| (-370)))) (-4138 (((-921) $) 120 (|has| |#1| (-370)))) (-2535 (((-1171 |#1|) $) 141 (|has| |#1| (-370)))) (-3777 (((-1171 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-2195 (($ $ (-1171 |#1|)) 142 (|has| |#1| (-370)))) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1342 (($) 124 (|has| |#1| (-370)) CONST)) (-2430 (($ (-921)) 121 (|has| |#1| (-370)))) (-4274 (((-112) $) 103)) (-1944 (((-1119) $) 11)) (-2723 (($) 143 (|has| |#1| (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 131 (|has| |#1| (-370)))) (-4018 (((-420 $) $) 82)) (-2438 (((-833 (-921))) 101) (((-921)) 153)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2816 (((-771) $) 136 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 95 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) 109)) (-3009 (($ $) 128 (|has| |#1| (-370))) (($ $ (-771)) 126 (|has| |#1| (-370)))) (-3838 (((-833 (-921)) $) 102) (((-921) $) 152)) (-2880 (((-1171 |#1|)) 154)) (-1344 (($) 133 (|has| |#1| (-370)))) (-2014 (($) 146 (|has| |#1| (-370)))) (-2803 (((-1265 |#1|) $) 158) (((-689 |#1|) (-1265 $)) 157)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 130 (|has| |#1| (-370)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-2655 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-2227 (((-1265 $)) 160) (((-1265 $) (-921)) 159)) (-1597 (((-112) $ $) 45)) (-3314 (((-112) $) 105)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-3940 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-1316 (($ $) 127 (|has| |#1| (-370))) (($ $ (-771)) 125 (|has| |#1| (-370)))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 73) (($ $ |#1|) 108)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+((-3405 (*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))) (-2679 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-308)))) (-2210 (*1 *1 *1 *1) (-4 *1 (-308))) (-2197 (*1 *1 *1 *1) (-4 *1 (-308))) (-3930 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4099 *1))) (-4 *1 (-308)))) (-3930 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-308)))) (-3102 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308)))))
+(-13 (-921) (-10 -8 (-15 -3405 ((-112) $ $)) (-15 -4369 ((-772) $)) (-15 -2679 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -2210 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -3930 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $)) (-15 -3930 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3102 ((-3 (-645 $) "failed") (-645 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3140 (($ $ (-645 |#2|) (-645 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-295 |#2|)) 11) (($ $ (-645 (-295 |#2|))) NIL)))
+(((-309 |#1| |#2|) (-10 -8 (-15 -3140 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3140 (|#1| |#1| (-295 |#2|))) (-15 -3140 (|#1| |#1| |#2| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#2|)))) (-310 |#2|) (-1100)) (T -309))
+NIL
+(-10 -8 (-15 -3140 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3140 (|#1| |#1| (-295 |#2|))) (-15 -3140 (|#1| |#1| |#2| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#2|))))
+((-3140 (($ $ (-645 |#1|) (-645 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-295 |#1|)) 11) (($ $ (-645 (-295 |#1|))) 10)))
+(((-310 |#1|) (-140) (-1100)) (T -310))
+((-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1100)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1100)))))
+(-13 (-517 |t#1| |t#1|) (-10 -8 (-15 -3140 ($ $ (-295 |t#1|))) (-15 -3140 ($ $ (-645 (-295 |t#1|))))))
+(((-517 |#1| |#1|) . T))
+((-3140 ((|#1| (-1 |#1| (-567)) (-1178 (-410 (-567)))) 25)))
+(((-311 |#1|) (-10 -7 (-15 -3140 (|#1| (-1 |#1| (-567)) (-1178 (-410 (-567)))))) (-38 (-410 (-567)))) (T -311))
+((-3140 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1178 (-410 (-567)))) (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567)))))))
+(-10 -7 (-15 -3140 (|#1| (-1 |#1| (-567)) (-1178 (-410 (-567))))))
+((-2257 (((-112) $ $) NIL)) (-2818 (((-567) $) 12)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3130 (((-1135) $) 9)) (-4101 (((-863) $) 19) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-312) (-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -2818 ((-567) $))))) (T -312))
+((-3130 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-312)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312)))))
+(-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -2818 ((-567) $))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 7)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 9)))
+(((-313) (-1100)) (T -313))
+NIL
+(-1100)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 60)) (-2838 (((-1252 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-1252 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-3 (-1251 |#2| |#3| |#4|) "failed") $) 26)) (-1621 (((-1252 |#1| |#2| |#3| |#4|) $) NIL) (((-1176) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-567) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1039 (-567)))) (((-1251 |#2| |#3| |#4|) $) NIL)) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-1252 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1266 (-1252 |#1| |#2| |#3| |#4|)))) (-690 $) (-1266 $)) NIL) (((-690 (-1252 |#1| |#2| |#3| |#4|)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 (((-1252 |#1| |#2| |#3| |#4|) $) 22)) (-2802 (((-3 $ "failed") $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1151)))) (-3948 (((-112) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-851)))) (-1802 (($ $ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-851)))) (-3494 (($ (-1 (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|)) $) NIL)) (-2212 (((-3 (-844 |#2|) "failed") $) 80)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-308)))) (-3992 (((-1252 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 (-1252 |#1| |#2| |#3| |#4|)) (-645 (-1252 |#1| |#2| |#3| |#4|))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-310 (-1252 |#1| |#2| |#3| |#4|)))) (($ $ (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-310 (-1252 |#1| |#2| |#3| |#4|)))) (($ $ (-295 (-1252 |#1| |#2| |#3| |#4|))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-310 (-1252 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-295 (-1252 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-310 (-1252 |#1| |#2| |#3| |#4|)))) (($ $ (-645 (-1176)) (-645 (-1252 |#1| |#2| |#3| |#4|))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-517 (-1176) (-1252 |#1| |#2| |#3| |#4|)))) (($ $ (-1176) (-1252 |#1| |#2| |#3| |#4|)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-517 (-1176) (-1252 |#1| |#2| |#3| |#4|))))) (-4369 (((-772) $) NIL)) (-1552 (($ $ (-1252 |#1| |#2| |#3| |#4|)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-287 (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1176)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-1 (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|))) NIL)) (-2870 (($ $) NIL)) (-4078 (((-1252 |#1| |#2| |#3| |#4|) $) 19)) (-3542 (((-893 (-567)) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-615 (-539)))) (((-381) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1023))) (((-225) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1023)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1252 |#1| |#2| |#3| |#4|) (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-1252 |#1| |#2| |#3| |#4|)) 30) (($ (-1176)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-1039 (-1176)))) (($ (-1251 |#2| |#3| |#4|)) 37)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-1252 |#1| |#2| |#3| |#4|) (-910))) (|has| (-1252 |#1| |#2| |#3| |#4|) (-145))))) (-2686 (((-772)) NIL T CONST)) (-2721 (((-1252 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-821)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-772)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1176)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-901 (-1176)))) (($ $ (-1 (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|)) (-772)) NIL) (($ $ (-1 (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|))) NIL)) (-3109 (((-112) $ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-1252 |#1| |#2| |#3| |#4|) (-851)))) (-3168 (($ $ $) 35) (($ (-1252 |#1| |#2| |#3| |#4|) (-1252 |#1| |#2| |#3| |#4|)) 32)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-1252 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1252 |#1| |#2| |#3| |#4|)) NIL)))
+(((-314 |#1| |#2| |#3| |#4|) (-13 (-993 (-1252 |#1| |#2| |#3| |#4|)) (-1039 (-1251 |#2| |#3| |#4|)) (-10 -8 (-15 -2212 ((-3 (-844 |#2|) "failed") $)) (-15 -4101 ($ (-1251 |#2| |#3| |#4|))))) (-13 (-1039 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1201) (-433 |#1|)) (-1176) |#2|) (T -314))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1251 *4 *5 *6)) (-4 *4 (-13 (-27) (-1201) (-433 *3))) (-14 *5 (-1176)) (-14 *6 *4) (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *1 (-314 *3 *4 *5 *6)))) (-2212 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1201) (-433 *3))) (-14 *5 (-1176)) (-14 *6 *4))))
+(-13 (-993 (-1252 |#1| |#2| |#3| |#4|)) (-1039 (-1251 |#2| |#3| |#4|)) (-10 -8 (-15 -2212 ((-3 (-844 |#2|) "failed") $)) (-15 -4101 ($ (-1251 |#2| |#3| |#4|)))))
+((-3494 (((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)) 13)))
+(((-315 |#1| |#2|) (-10 -7 (-15 -3494 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|)))) (-1100) (-1100)) (T -315))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6)))))
+(-10 -7 (-15 -3494 ((-317 |#2|) (-1 |#2| |#1|) (-317 |#1|))))
+((-2511 (((-52) |#2| (-295 |#2|) (-772)) 40) (((-52) |#2| (-295 |#2|)) 32) (((-52) |#2| (-772)) 35) (((-52) |#2|) 33) (((-52) (-1176)) 26)) (-2009 (((-52) |#2| (-295 |#2|) (-410 (-567))) 59) (((-52) |#2| (-295 |#2|)) 56) (((-52) |#2| (-410 (-567))) 58) (((-52) |#2|) 57) (((-52) (-1176)) 55)) (-2535 (((-52) |#2| (-295 |#2|) (-410 (-567))) 54) (((-52) |#2| (-295 |#2|)) 51) (((-52) |#2| (-410 (-567))) 53) (((-52) |#2|) 52) (((-52) (-1176)) 50)) (-2524 (((-52) |#2| (-295 |#2|) (-567)) 47) (((-52) |#2| (-295 |#2|)) 44) (((-52) |#2| (-567)) 46) (((-52) |#2|) 45) (((-52) (-1176)) 43)))
+(((-316 |#1| |#2|) (-10 -7 (-15 -2511 ((-52) (-1176))) (-15 -2511 ((-52) |#2|)) (-15 -2511 ((-52) |#2| (-772))) (-15 -2511 ((-52) |#2| (-295 |#2|))) (-15 -2511 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2524 ((-52) (-1176))) (-15 -2524 ((-52) |#2|)) (-15 -2524 ((-52) |#2| (-567))) (-15 -2524 ((-52) |#2| (-295 |#2|))) (-15 -2524 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2535 ((-52) (-1176))) (-15 -2535 ((-52) |#2|)) (-15 -2535 ((-52) |#2| (-410 (-567)))) (-15 -2535 ((-52) |#2| (-295 |#2|))) (-15 -2535 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -2009 ((-52) (-1176))) (-15 -2009 ((-52) |#2|)) (-15 -2009 ((-52) |#2| (-410 (-567)))) (-15 -2009 ((-52) |#2| (-295 |#2|))) (-15 -2009 ((-52) |#2| (-295 |#2|) (-410 (-567))))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|))) (T -316))
+((-2009 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-2009 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4))))) (-2535 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2535 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-2535 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))) (-2535 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4))))) (-2524 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-455) (-1039 *5) (-640 *5))) (-5 *5 (-567)) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2524 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2524 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1039 *4) (-640 *4))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-2524 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))) (-2524 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4))))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-295 *3)) (-5 *5 (-772)) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *6 *3)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-2511 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4))))))
+(-10 -7 (-15 -2511 ((-52) (-1176))) (-15 -2511 ((-52) |#2|)) (-15 -2511 ((-52) |#2| (-772))) (-15 -2511 ((-52) |#2| (-295 |#2|))) (-15 -2511 ((-52) |#2| (-295 |#2|) (-772))) (-15 -2524 ((-52) (-1176))) (-15 -2524 ((-52) |#2|)) (-15 -2524 ((-52) |#2| (-567))) (-15 -2524 ((-52) |#2| (-295 |#2|))) (-15 -2524 ((-52) |#2| (-295 |#2|) (-567))) (-15 -2535 ((-52) (-1176))) (-15 -2535 ((-52) |#2|)) (-15 -2535 ((-52) |#2| (-410 (-567)))) (-15 -2535 ((-52) |#2| (-295 |#2|))) (-15 -2535 ((-52) |#2| (-295 |#2|) (-410 (-567)))) (-15 -2009 ((-52) (-1176))) (-15 -2009 ((-52) |#2|)) (-15 -2009 ((-52) |#2| (-410 (-567)))) (-15 -2009 ((-52) |#2| (-295 |#2|))) (-15 -2009 ((-52) |#2| (-295 |#2|) (-410 (-567)))))
+((-2257 (((-112) $ $) NIL)) (-3519 (((-645 $) $ (-1176)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1172 $) (-1176)) NIL (|has| |#1| (-559))) (((-645 $) (-1172 $)) NIL (|has| |#1| (-559))) (((-645 $) (-953 $)) NIL (|has| |#1| (-559)))) (-2836 (($ $ (-1176)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1172 $) (-1176)) NIL (|has| |#1| (-559))) (($ (-1172 $)) NIL (|has| |#1| (-559))) (($ (-953 $)) NIL (|has| |#1| (-559)))) (-2865 (((-112) $) 27 (-2909 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-2449 (((-645 (-1176)) $) 368)) (-2260 (((-410 (-1172 $)) $ (-613 $)) NIL (|has| |#1| (-559)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2138 (((-645 (-613 $)) $) NIL)) (-1772 (($ $) 171 (|has| |#1| (-559)))) (-1605 (($ $) 147 (|has| |#1| (-559)))) (-2360 (($ $ (-1092 $)) 232 (|has| |#1| (-559))) (($ $ (-1176)) 228 (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) NIL (-2909 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-3099 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) 386) (($ $ (-645 (-613 $)) (-645 $)) 430)) (-1877 (((-421 (-1172 $)) (-1172 $)) 308 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-1396 (($ $) NIL (|has| |#1| (-559)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-559)))) (-2307 (($ $) NIL (|has| |#1| (-559)))) (-3405 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1747 (($ $) 167 (|has| |#1| (-559)))) (-1577 (($ $) 143 (|has| |#1| (-559)))) (-1910 (($ $ (-567)) 73 (|has| |#1| (-559)))) (-1798 (($ $) 175 (|has| |#1| (-559)))) (-1632 (($ $) 151 (|has| |#1| (-559)))) (-4061 (($) NIL (-2909 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1112))) CONST)) (-3348 (((-645 $) $ (-1176)) NIL (|has| |#1| (-559))) (((-645 $) $) NIL (|has| |#1| (-559))) (((-645 $) (-1172 $) (-1176)) NIL (|has| |#1| (-559))) (((-645 $) (-1172 $)) NIL (|has| |#1| (-559))) (((-645 $) (-953 $)) NIL (|has| |#1| (-559)))) (-1515 (($ $ (-1176)) NIL (|has| |#1| (-559))) (($ $) NIL (|has| |#1| (-559))) (($ (-1172 $) (-1176)) 134 (|has| |#1| (-559))) (($ (-1172 $)) NIL (|has| |#1| (-559))) (($ (-953 $)) NIL (|has| |#1| (-559)))) (-3417 (((-3 (-613 $) "failed") $) 18) (((-3 (-1176) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-953 |#1|)) "failed") $) NIL (|has| |#1| (-559))) (((-3 (-953 |#1|) "failed") $) NIL (|has| |#1| (-1050))) (((-3 (-410 (-567)) "failed") $) 46 (-2909 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-1621 (((-613 $) $) 12) (((-1176) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-953 |#1|)) $) NIL (|has| |#1| (-559))) (((-953 |#1|) $) NIL (|has| |#1| (-1050))) (((-410 (-567)) $) 319 (-2909 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-2197 (($ $ $) NIL (|has| |#1| (-559)))) (-1920 (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 125 (|has| |#1| (-1050))) (((-690 |#1|) (-690 $)) 115 (|has| |#1| (-1050))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (-3402 (($ $) 96 (|has| |#1| (-559)))) (-4014 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1112))))) (-2210 (($ $ $) NIL (|has| |#1| (-559)))) (-3687 (($ $ (-1092 $)) 236 (|has| |#1| (-559))) (($ $ (-1176)) 234 (|has| |#1| (-559)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-559)))) (-1665 (((-112) $) NIL (|has| |#1| (-559)))) (-1868 (($ $ $) 202 (|has| |#1| (-559)))) (-4098 (($) 137 (|has| |#1| (-559)))) (-1969 (($ $ $) 222 (|has| |#1| (-559)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 392 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 399 (|has| |#1| (-887 (-381))))) (-3775 (($ $) NIL) (($ (-645 $)) NIL)) (-1583 (((-645 (-114)) $) NIL)) (-2236 (((-114) (-114)) 276)) (-3714 (((-112) $) 25 (-2909 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1112))))) (-3937 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-4349 (($ $) 72 (|has| |#1| (-1050)))) (-4067 (((-1125 |#1| (-613 $)) $) 91 (|has| |#1| (-1050)))) (-3866 (((-112) $) 62 (|has| |#1| (-559)))) (-3287 (($ $ (-567)) NIL (|has| |#1| (-559)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-3612 (((-1172 $) (-613 $)) 277 (|has| $ (-1050)))) (-3494 (($ (-1 $ $) (-613 $)) 426)) (-2378 (((-3 (-613 $) "failed") $) NIL)) (-2942 (($ $) 141 (|has| |#1| (-559)))) (-3847 (($ $) 247 (|has| |#1| (-559)))) (-3245 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-2451 (((-1158) $) NIL)) (-2224 (((-645 (-613 $)) $) 49)) (-4147 (($ (-114) $) NIL) (($ (-114) (-645 $)) 431)) (-3376 (((-3 (-645 $) "failed") $) NIL (|has| |#1| (-1112)))) (-2063 (((-3 (-2 (|:| |val| $) (|:| -4164 (-567))) "failed") $) NIL (|has| |#1| (-1050)))) (-1808 (((-3 (-645 $) "failed") $) 436 (|has| |#1| (-25)))) (-1729 (((-3 (-2 (|:| -3087 (-567)) (|:| |var| (-613 $))) "failed") $) 440 (|has| |#1| (-25)))) (-2688 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $) NIL (|has| |#1| (-1112))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-114)) NIL (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-1176)) NIL (|has| |#1| (-1050)))) (-1527 (((-112) $ (-114)) NIL) (((-112) $ (-1176)) 51)) (-2559 (($ $) NIL (-2909 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-1857 (($ $ (-1176)) 251 (|has| |#1| (-559))) (($ $ (-1092 $)) 253 (|has| |#1| (-559)))) (-3080 (((-772) $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) 43)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 301 (|has| |#1| (-559)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-4151 (((-112) $ $) NIL) (((-112) $ (-1176)) NIL)) (-4169 (($ $ (-1176)) 226 (|has| |#1| (-559))) (($ $) 224 (|has| |#1| (-559)))) (-3354 (($ $) 218 (|has| |#1| (-559)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 306 (-12 (|has| |#1| (-455)) (|has| |#1| (-559))))) (-2296 (((-421 $) $) NIL (|has| |#1| (-559)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-559)))) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-559)))) (-2910 (($ $) 139 (|has| |#1| (-559)))) (-2143 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-3140 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 425) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1176) (-1 $ (-645 $))) NIL) (($ $ (-1176) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) 379) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1176)) NIL (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-615 (-539)))) (($ $) NIL (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1176)) 366 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1176)) 365 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ $))) NIL (|has| |#1| (-1050))) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ (-645 $)))) NIL (|has| |#1| (-1050))) (($ $ (-1176) (-772) (-1 $ (-645 $))) NIL (|has| |#1| (-1050))) (($ $ (-1176) (-772) (-1 $ $)) NIL (|has| |#1| (-1050)))) (-4369 (((-772) $) NIL (|has| |#1| (-559)))) (-1519 (($ $) 239 (|has| |#1| (-559)))) (-1552 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-2468 (($ $) NIL) (($ $ $) NIL)) (-1562 (($ $) 249 (|has| |#1| (-559)))) (-1496 (($ $) 200 (|has| |#1| (-559)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-1050))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-1050))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-1050))) (($ $ (-1176)) NIL (|has| |#1| (-1050)))) (-2870 (($ $) 74 (|has| |#1| (-559)))) (-4078 (((-1125 |#1| (-613 $)) $) 93 (|has| |#1| (-559)))) (-2713 (($ $) 317 (|has| $ (-1050)))) (-1810 (($ $) 177 (|has| |#1| (-559)))) (-1647 (($ $) 153 (|has| |#1| (-559)))) (-1784 (($ $) 173 (|has| |#1| (-559)))) (-1618 (($ $) 149 (|has| |#1| (-559)))) (-1757 (($ $) 169 (|has| |#1| (-559)))) (-1592 (($ $) 145 (|has| |#1| (-559)))) (-3542 (((-893 (-567)) $) NIL (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#1| (-615 (-893 (-381))))) (($ (-421 $)) NIL (|has| |#1| (-559))) (((-539) $) 363 (|has| |#1| (-615 (-539))))) (-1443 (($ $ $) NIL (|has| |#1| (-476)))) (-4272 (($ $ $) NIL (|has| |#1| (-476)))) (-4101 (((-863) $) 424) (($ (-613 $)) 415) (($ (-1176)) 381) (($ |#1|) 337) (($ $) NIL (|has| |#1| (-559))) (($ (-48)) 312 (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) (($ (-1125 |#1| (-613 $))) 95 (|has| |#1| (-1050))) (($ (-410 |#1|)) NIL (|has| |#1| (-559))) (($ (-953 (-410 |#1|))) NIL (|has| |#1| (-559))) (($ (-410 (-953 (-410 |#1|)))) NIL (|has| |#1| (-559))) (($ (-410 (-953 |#1|))) NIL (|has| |#1| (-559))) (($ (-953 |#1|)) NIL (|has| |#1| (-1050))) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-559)) (|has| |#1| (-1039 (-410 (-567)))))) (($ (-567)) 34 (-2909 (|has| |#1| (-1039 (-567))) (|has| |#1| (-1050))))) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL (|has| |#1| (-1050)) CONST)) (-4385 (($ $) NIL) (($ (-645 $)) NIL)) (-3806 (($ $ $) 220 (|has| |#1| (-559)))) (-2604 (($ $ $) 206 (|has| |#1| (-559)))) (-1997 (($ $ $) 210 (|has| |#1| (-559)))) (-2115 (($ $ $) 204 (|has| |#1| (-559)))) (-2761 (($ $ $) 208 (|has| |#1| (-559)))) (-2214 (((-112) (-114)) 10)) (-3739 (((-112) $ $) 86)) (-1847 (($ $) 183 (|has| |#1| (-559)))) (-1690 (($ $) 159 (|has| |#1| (-559)))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) 179 (|has| |#1| (-559)))) (-1660 (($ $) 155 (|has| |#1| (-559)))) (-1869 (($ $) 187 (|has| |#1| (-559)))) (-1719 (($ $) 163 (|has| |#1| (-559)))) (-1903 (($ (-1176) $) NIL) (($ (-1176) $ $) NIL) (($ (-1176) $ $ $) NIL) (($ (-1176) $ $ $ $) NIL) (($ (-1176) (-645 $)) NIL)) (-2460 (($ $) 214 (|has| |#1| (-559)))) (-2623 (($ $) 212 (|has| |#1| (-559)))) (-1345 (($ $) 189 (|has| |#1| (-559)))) (-1733 (($ $) 165 (|has| |#1| (-559)))) (-1858 (($ $) 185 (|has| |#1| (-559)))) (-1704 (($ $) 161 (|has| |#1| (-559)))) (-1834 (($ $) 181 (|has| |#1| (-559)))) (-1673 (($ $) 157 (|has| |#1| (-559)))) (-1771 (($ $) 192 (|has| |#1| (-559)))) (-1468 (($) 21 (-2909 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) CONST)) (-3664 (($ $) 243 (|has| |#1| (-559)))) (-1484 (($) 23 (-2909 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1112))) CONST)) (-3589 (($ $) 194 (|has| |#1| (-559))) (($ $ $) 196 (|has| |#1| (-559)))) (-3395 (($ $) 241 (|has| |#1| (-559)))) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-1050))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-1050))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-1050))) (($ $ (-1176)) NIL (|has| |#1| (-1050)))) (-3740 (($ $) 245 (|has| |#1| (-559)))) (-2846 (($ $ $) 198 (|has| |#1| (-559)))) (-3052 (((-112) $ $) 88)) (-3168 (($ (-1125 |#1| (-613 $)) (-1125 |#1| (-613 $))) 106 (|has| |#1| (-559))) (($ $ $) 42 (-2909 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3156 (($ $ $) 40 (-2909 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (($ $) 29 (-2909 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (-3146 (($ $ $) 38 (-2909 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))) (** (($ $ $) 64 (|has| |#1| (-559))) (($ $ (-410 (-567))) 314 (|has| |#1| (-559))) (($ $ (-567)) 80 (-2909 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 75 (-2909 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1112)))) (($ $ (-922)) 84 (-2909 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1112))))) (* (($ (-410 (-567)) $) NIL (|has| |#1| (-559))) (($ $ (-410 (-567))) NIL (|has| |#1| (-559))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2909 (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) (|has| |#1| (-1112)))) (($ (-567) $) 32 (-2909 (|has| |#1| (-21)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (($ (-772) $) NIL (-2909 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))))) (($ (-922) $) NIL (-2909 (|has| |#1| (-25)) (-12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))))))
+(((-317 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1201)) (-6 (-160)) (-6 (-630)) (-6 (-1139)) (-15 -3402 ($ $)) (-15 -3866 ((-112) $)) (-15 -1910 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -1429 ((-421 (-1172 $)) (-1172 $))) (-15 -1877 ((-421 (-1172 $)) (-1172 $)))) |%noBranch|) (IF (|has| |#1| (-1039 (-567))) (-6 (-1039 (-48))) |%noBranch|)) |%noBranch|))) (-1100)) (T -317))
+((-3402 (*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1100)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1100)))) (-1910 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1100)))) (-1429 (*1 *2 *3) (-12 (-5 *2 (-421 (-1172 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1100)))) (-1877 (*1 *2 *3) (-12 (-5 *2 (-421 (-1172 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1100)))))
+(-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-559)) (PROGN (-6 (-29 |#1|)) (-6 (-1201)) (-6 (-160)) (-6 (-630)) (-6 (-1139)) (-15 -3402 ($ $)) (-15 -3866 ((-112) $)) (-15 -1910 ($ $ (-567))) (IF (|has| |#1| (-455)) (PROGN (-15 -1429 ((-421 (-1172 $)) (-1172 $))) (-15 -1877 ((-421 (-1172 $)) (-1172 $)))) |%noBranch|) (IF (|has| |#1| (-1039 (-567))) (-6 (-1039 (-48))) |%noBranch|)) |%noBranch|)))
+((-3480 (((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)) 89) (((-52) |#2| (-114) (-295 |#2|) (-295 |#2|)) 85) (((-52) |#2| (-114) (-295 |#2|) |#2|) 87) (((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|) 88) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 81) (((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 83) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|)) 84) (((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|))) 82) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 90) (((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|)) 86)))
+(((-318 |#1| |#2|) (-10 -7 (-15 -3480 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3480 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3480 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3480 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3480 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3480 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3480 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3480 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3480 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3480 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-559) (-615 (-539))) (-433 |#1|)) (T -318))
+((-3480 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *3)))) (-3480 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3480 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *3)))) (-3480 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *5)))) (-3480 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8))) (-4 *8 (-433 *7)) (-5 *5 (-295 *8)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3480 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3480 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8)) (-5 *6 (-645 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *7 *8)))) (-3480 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3480 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *6 *7)))) (-3480 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52)) (-5 *1 (-318 *5 *6)))))
+(-10 -7 (-15 -3480 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-295 |#2|))) (-15 -3480 ((-52) (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -3480 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3480 ((-52) (-645 (-295 |#2|)) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3480 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 |#2|))) (-15 -3480 ((-52) (-645 |#2|) (-645 (-114)) (-295 |#2|) (-645 (-295 |#2|)))) (-15 -3480 ((-52) (-295 |#2|) (-114) (-295 |#2|) |#2|)) (-15 -3480 ((-52) |#2| (-114) (-295 |#2|) |#2|)) (-15 -3480 ((-52) |#2| (-114) (-295 |#2|) (-295 |#2|))) (-15 -3480 ((-52) |#2| (-114) (-295 |#2|) (-645 |#2|))))
+((-2620 (((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-225) (-567) (-1158)) 67) (((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-225) (-567)) 68) (((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-1 (-225) (-225)) (-567) (-1158)) 64) (((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-1 (-225) (-225)) (-567)) 65)) (-2963 (((-1 (-225) (-225)) (-225)) 66)))
+(((-319) (-10 -7 (-15 -2963 ((-1 (-225) (-225)) (-225))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-1 (-225) (-225)) (-567))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-1 (-225) (-225)) (-567) (-1158))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-225) (-567))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-225) (-567) (-1158))))) (T -319))
+((-2620 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1094 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1158)) (-5 *2 (-1211 (-927))) (-5 *1 (-319)))) (-2620 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1094 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *2 (-1211 (-927))) (-5 *1 (-319)))) (-2620 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1094 (-225))) (-5 *6 (-567)) (-5 *7 (-1158)) (-5 *2 (-1211 (-927))) (-5 *1 (-319)))) (-2620 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1094 (-225))) (-5 *6 (-567)) (-5 *2 (-1211 (-927))) (-5 *1 (-319)))) (-2963 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
+(-10 -7 (-15 -2963 ((-1 (-225) (-225)) (-225))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-1 (-225) (-225)) (-567))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-1 (-225) (-225)) (-567) (-1158))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-225) (-567))) (-15 -2620 ((-1211 (-927)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-225) (-567) (-1158))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 26)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3030 (((-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 20)) (-1772 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1798 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) 36)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) 16)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-410 (-567))) NIL) (($ $ (-1082) (-410 (-567))) NIL) (($ $ (-645 (-1082)) (-645 (-410 (-567)))) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2113 (($ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201)))))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-410 (-567))) NIL)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3704 (((-410 (-567)) $) 17)) (-3549 (($ (-1251 |#1| |#2| |#3|)) 11)) (-4164 (((-1251 |#1| |#2| |#3|) $) 12)) (-2910 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3677 (((-410 (-567)) $) NIL)) (-1810 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 10)) (-4101 (((-863) $) 42) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2339 ((|#1| $ (-410 (-567))) 34)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) NIL)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 28)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 37)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-320 |#1| |#2| |#3|) (-13 (-1247 |#1|) (-793) (-10 -8 (-15 -3549 ($ (-1251 |#1| |#2| |#3|))) (-15 -4164 ((-1251 |#1| |#2| |#3|) $)) (-15 -3704 ((-410 (-567)) $)))) (-365) (-1176) |#1|) (T -320))
+((-3549 (*1 *1 *2) (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1176)) (-14 *5 *3) (-5 *1 (-320 *3 *4 *5)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-1251 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1176)) (-14 *5 *3))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1176)) (-14 *5 *3))))
+(-13 (-1247 |#1|) (-793) (-10 -8 (-15 -3549 ($ (-1251 |#1| |#2| |#3|))) (-15 -4164 ((-1251 |#1| |#2| |#3|) $)) (-15 -3704 ((-410 (-567)) $))))
+((-3287 (((-2 (|:| -4164 (-772)) (|:| -3087 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772)) 35)) (-2942 (((-645 (-2 (|:| -3087 (-772)) (|:| |logand| |#1|))) (-421 |#1|)) 40)))
+(((-321 |#1|) (-10 -7 (-15 -3287 ((-2 (|:| -4164 (-772)) (|:| -3087 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -2942 ((-645 (-2 (|:| -3087 (-772)) (|:| |logand| |#1|))) (-421 |#1|)))) (-559)) (T -321))
+((-2942 (*1 *2 *3) (-12 (-5 *3 (-421 *4)) (-4 *4 (-559)) (-5 *2 (-645 (-2 (|:| -3087 (-772)) (|:| |logand| *4)))) (-5 *1 (-321 *4)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *5)) (-4 *5 (-559)) (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *5) (|:| |radicand| (-645 *5)))) (-5 *1 (-321 *5)) (-5 *4 (-772)))))
+(-10 -7 (-15 -3287 ((-2 (|:| -4164 (-772)) (|:| -3087 |#1|) (|:| |radicand| (-645 |#1|))) (-421 |#1|) (-772))) (-15 -2942 ((-645 (-2 (|:| -3087 (-772)) (|:| |logand| |#1|))) (-421 |#1|))))
+((-2449 (((-645 |#2|) (-1172 |#4|)) 44)) (-3779 ((|#3| (-567)) 47)) (-2302 (((-1172 |#4|) (-1172 |#3|)) 30)) (-3799 (((-1172 |#4|) (-1172 |#4|) (-567)) 66)) (-1782 (((-1172 |#3|) (-1172 |#4|)) 21)) (-3677 (((-645 (-772)) (-1172 |#4|) (-645 |#2|)) 41)) (-2219 (((-1172 |#3|) (-1172 |#4|) (-645 |#2|) (-645 |#3|)) 35)))
+(((-322 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2219 ((-1172 |#3|) (-1172 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3677 ((-645 (-772)) (-1172 |#4|) (-645 |#2|))) (-15 -2449 ((-645 |#2|) (-1172 |#4|))) (-15 -1782 ((-1172 |#3|) (-1172 |#4|))) (-15 -2302 ((-1172 |#4|) (-1172 |#3|))) (-15 -3799 ((-1172 |#4|) (-1172 |#4|) (-567))) (-15 -3779 (|#3| (-567)))) (-794) (-851) (-1050) (-950 |#3| |#1| |#2|)) (T -322))
+((-3779 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1050)) (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-950 *2 *4 *5)))) (-3799 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *7)) (-5 *3 (-567)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2302 (*1 *2 *3) (-12 (-5 *3 (-1172 *6)) (-4 *6 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1172 *7)) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-1172 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-1172 *6)) (-5 *1 (-322 *4 *5 *6 *7)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-1172 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-645 *5)) (-5 *1 (-322 *4 *5 *6 *7)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851)) (-4 *8 (-950 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1050)) (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8)))) (-2219 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1172 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8)) (-4 *7 (-851)) (-4 *8 (-1050)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-1172 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2219 ((-1172 |#3|) (-1172 |#4|) (-645 |#2|) (-645 |#3|))) (-15 -3677 ((-645 (-772)) (-1172 |#4|) (-645 |#2|))) (-15 -2449 ((-645 |#2|) (-1172 |#4|))) (-15 -1782 ((-1172 |#3|) (-1172 |#4|))) (-15 -2302 ((-1172 |#4|) (-1172 |#3|))) (-15 -3799 ((-1172 |#4|) (-1172 |#4|) (-567))) (-15 -3779 (|#3| (-567))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 19)) (-3030 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-567)))) $) 21)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2013 (((-772) $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-4234 ((|#1| $ (-567)) NIL)) (-1595 (((-567) $ (-567)) NIL)) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-2383 (($ (-1 |#1| |#1|) $) NIL)) (-3318 (($ (-1 (-567) (-567)) $) 11)) (-2451 (((-1158) $) NIL)) (-1726 (($ $ $) NIL (|has| (-567) (-793)))) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL) (($ |#1|) NIL)) (-2339 (((-567) |#1| $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) 29 (|has| |#1| (-851)))) (-3156 (($ $) 12) (($ $ $) 28)) (-3146 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL) (($ (-567) |#1|) 27)))
+(((-323 |#1|) (-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) (-1100)) (T -323))
+NIL
+(-13 (-21) (-718 (-567)) (-324 |#1| (-567)) (-10 -7 (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-3030 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|))) $) 28)) (-4377 (((-3 $ "failed") $ $) 20)) (-2013 (((-772) $) 29)) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 33)) (-1621 ((|#1| $) 34)) (-4234 ((|#1| $ (-567)) 26)) (-1595 ((|#2| $ (-567)) 27)) (-2383 (($ (-1 |#1| |#1|) $) 23)) (-3318 (($ (-1 |#2| |#2|) $) 24)) (-2451 (((-1158) $) 10)) (-1726 (($ $ $) 22 (|has| |#2| (-793)))) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ |#1|) 32)) (-2339 ((|#2| |#1| $) 25)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3146 (($ $ $) 15) (($ |#1| $) 31)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ |#2| |#1|) 30)))
+(((-324 |#1| |#2|) (-140) (-1100) (-131)) (T -324))
+((-3146 (*1 *1 *2 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-131)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-131)) (-5 *2 (-772)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-131)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 *4)))))) (-1595 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1100)) (-4 *2 (-131)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1100)))) (-2339 (*1 *2 *3 *1) (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-131)))) (-3318 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-131)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-131)))) (-1726 (*1 *1 *1 *1) (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-131)) (-4 *3 (-793)))))
+(-13 (-131) (-1039 |t#1|) (-10 -8 (-15 -3146 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2013 ((-772) $)) (-15 -3030 ((-645 (-2 (|:| |gen| |t#1|) (|:| -2910 |t#2|))) $)) (-15 -1595 (|t#2| $ (-567))) (-15 -4234 (|t#1| $ (-567))) (-15 -2339 (|t#2| |t#1| $)) (-15 -3318 ($ (-1 |t#2| |t#2|) $)) (-15 -2383 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-793)) (-15 -1726 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-1039 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-3030 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2013 (((-772) $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-4234 ((|#1| $ (-567)) NIL)) (-1595 (((-772) $ (-567)) NIL)) (-2383 (($ (-1 |#1| |#1|) $) NIL)) (-3318 (($ (-1 (-772) (-772)) $) NIL)) (-2451 (((-1158) $) NIL)) (-1726 (($ $ $) NIL (|has| (-772) (-793)))) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL) (($ |#1|) NIL)) (-2339 (((-772) |#1| $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3146 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-772) |#1|) NIL)))
+(((-325 |#1|) (-324 |#1| (-772)) (-1100)) (T -325))
+NIL
+(-324 |#1| (-772))
+((-2958 (($ $) 72)) (-3564 (($ $ |#2| |#3| $) 14)) (-1599 (($ (-1 |#3| |#3|) $) 51)) (-2567 (((-112) $) 42)) (-2583 ((|#2| $) 44)) (-2245 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 64)) (-1640 ((|#2| $) 68)) (-2350 (((-645 |#2|) $) 56)) (-2582 (($ $ $ (-772)) 37)) (-3168 (($ $ |#2|) 60)))
+(((-326 |#1| |#2| |#3|) (-10 -8 (-15 -2958 (|#1| |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2582 (|#1| |#1| |#1| (-772))) (-15 -3564 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1599 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2350 ((-645 |#2|) |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2567 ((-112) |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3168 (|#1| |#1| |#2|))) (-327 |#2| |#3|) (-1050) (-793)) (T -326))
+NIL
+(-10 -8 (-15 -2958 (|#1| |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2582 (|#1| |#1| |#1| (-772))) (-15 -3564 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1599 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2350 ((-645 |#2|) |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2567 ((-112) |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3168 (|#1| |#1| |#2|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 98 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 95)) (-1621 (((-567) $) 99 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 97 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 96)) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-2958 (($ $) 84 (|has| |#1| (-455)))) (-3564 (($ $ |#1| |#2| $) 88)) (-3714 (((-112) $) 35)) (-2864 (((-772) $) 91)) (-3523 (((-112) $) 74)) (-2422 (($ |#1| |#2|) 73)) (-4185 ((|#2| $) 90)) (-1599 (($ (-1 |#2| |#2|) $) 89)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2567 (((-112) $) 94)) (-2583 ((|#1| $) 93)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-559)))) (-3677 ((|#2| $) 76)) (-1640 ((|#1| $) 85 (|has| |#1| (-455)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59) (($ (-410 (-567))) 69 (-2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-2350 (((-645 |#1|) $) 92)) (-2339 ((|#1| $ |#2|) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-2582 (($ $ $ (-772)) 87 (|has| |#1| (-172)))) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-327 |#1| |#2|) (-140) (-1050) (-793)) (T -327))
+((-2567 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-112)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-645 *3)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-772)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-1599 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)))) (-3564 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))) (-2582 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-4 *3 (-172)))) (-2245 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *2 (-559)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)) (-4 *2 (-455)))) (-2958 (*1 *1 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *2 (-455)))))
+(-13 (-47 |t#1| |t#2|) (-414 |t#1|) (-10 -8 (-15 -2567 ((-112) $)) (-15 -2583 (|t#1| $)) (-15 -2350 ((-645 |t#1|) $)) (-15 -2864 ((-772) $)) (-15 -4185 (|t#2| $)) (-15 -1599 ($ (-1 |t#2| |t#2|) $)) (-15 -3564 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -2582 ($ $ $ (-772))) |%noBranch|) (IF (|has| |t#1| (-559)) (-15 -2245 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -1640 (|t#1| $)) (-15 -2958 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-414 |#1|) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-3072 (((-112) (-112)) NIL)) (-4230 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) |#1|) $) NIL)) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-1861 (($ $) NIL (|has| |#1| (-1100)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) NIL (|has| |#1| (-1100))) (($ (-1 (-112) |#1|) $) NIL)) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-1539 (($ $ (-567)) NIL)) (-2036 (((-772) $) NIL)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3492 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-1336 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2651 (($ (-645 |#1|)) NIL)) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2816 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) NIL)) (-3962 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-328 |#1|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2651 ($ (-645 |#1|))) (-15 -2036 ((-772) $)) (-15 -1539 ($ $ (-567))) (-15 -3072 ((-112) (-112))))) (-1216)) (T -328))
+((-2651 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-328 *3)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1216)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1216)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1216)))))
+(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2651 ($ (-645 |#1|))) (-15 -2036 ((-772) $)) (-15 -1539 ($ $ (-567))) (-15 -3072 ((-112) (-112)))))
+((-2513 (((-112) $) 50)) (-2145 (((-772)) 26)) (-4093 ((|#2| $) 54) (($ $ (-922)) 124)) (-2013 (((-772)) 125)) (-3499 (($ (-1266 |#2|)) 23)) (-4270 (((-112) $) 138)) (-3751 ((|#2| $) 56) (($ $ (-922)) 121)) (-4110 (((-1172 |#2|) $) NIL) (((-1172 $) $ (-922)) 112)) (-2617 (((-1172 |#2|) $) 98)) (-4260 (((-1172 |#2|) $) 94) (((-3 (-1172 |#2|) "failed") $ $) 91)) (-2173 (($ $ (-1172 |#2|)) 62)) (-2888 (((-834 (-922))) 33) (((-922)) 51)) (-1948 (((-134)) 30)) (-3677 (((-834 (-922)) $) 35) (((-922) $) 141)) (-3995 (($) 131)) (-3216 (((-1266 |#2|) $) NIL) (((-690 |#2|) (-1266 $)) 45)) (-4242 (($ $) NIL) (((-3 $ "failed") $) 101)) (-2447 (((-112) $) 48)))
+(((-329 |#1| |#2|) (-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2013 ((-772))) (-15 -4242 (|#1| |#1|)) (-15 -4260 ((-3 (-1172 |#2|) "failed") |#1| |#1|)) (-15 -4260 ((-1172 |#2|) |#1|)) (-15 -2617 ((-1172 |#2|) |#1|)) (-15 -2173 (|#1| |#1| (-1172 |#2|))) (-15 -4270 ((-112) |#1|)) (-15 -3995 (|#1|)) (-15 -4093 (|#1| |#1| (-922))) (-15 -3751 (|#1| |#1| (-922))) (-15 -4110 ((-1172 |#1|) |#1| (-922))) (-15 -4093 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -3677 ((-922) |#1|)) (-15 -2888 ((-922))) (-15 -4110 ((-1172 |#2|) |#1|)) (-15 -3499 (|#1| (-1266 |#2|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -2145 ((-772))) (-15 -2888 ((-834 (-922)))) (-15 -3677 ((-834 (-922)) |#1|)) (-15 -2513 ((-112) |#1|)) (-15 -2447 ((-112) |#1|)) (-15 -1948 ((-134)))) (-330 |#2|) (-365)) (T -329))
+((-1948 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2888 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2145 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2888 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))) (-2013 (*1 *2) (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4)) (-4 *3 (-330 *4)))))
+(-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -2013 ((-772))) (-15 -4242 (|#1| |#1|)) (-15 -4260 ((-3 (-1172 |#2|) "failed") |#1| |#1|)) (-15 -4260 ((-1172 |#2|) |#1|)) (-15 -2617 ((-1172 |#2|) |#1|)) (-15 -2173 (|#1| |#1| (-1172 |#2|))) (-15 -4270 ((-112) |#1|)) (-15 -3995 (|#1|)) (-15 -4093 (|#1| |#1| (-922))) (-15 -3751 (|#1| |#1| (-922))) (-15 -4110 ((-1172 |#1|) |#1| (-922))) (-15 -4093 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -3677 ((-922) |#1|)) (-15 -2888 ((-922))) (-15 -4110 ((-1172 |#2|) |#1|)) (-15 -3499 (|#1| (-1266 |#2|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -2145 ((-772))) (-15 -2888 ((-834 (-922)))) (-15 -3677 ((-834 (-922)) |#1|)) (-15 -2513 ((-112) |#1|)) (-15 -2447 ((-112) |#1|)) (-15 -1948 ((-134))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-2513 (((-112) $) 104)) (-2145 (((-772)) 100)) (-4093 ((|#1| $) 150) (($ $ (-922)) 147 (|has| |#1| (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) 132 (|has| |#1| (-370)))) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-3405 (((-112) $ $) 65)) (-2013 (((-772)) 122 (|has| |#1| (-370)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 111)) (-1621 ((|#1| $) 112)) (-3499 (($ (-1266 |#1|)) 156)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 138 (|has| |#1| (-370)))) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-1649 (($) 119 (|has| |#1| (-370)))) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-3896 (($) 134 (|has| |#1| (-370)))) (-1596 (((-112) $) 135 (|has| |#1| (-370)))) (-2966 (($ $ (-772)) 97 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) 79)) (-1909 (((-922) $) 137 (|has| |#1| (-370))) (((-834 (-922)) $) 94 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) 35)) (-1359 (($) 145 (|has| |#1| (-370)))) (-4270 (((-112) $) 144 (|has| |#1| (-370)))) (-3751 ((|#1| $) 151) (($ $ (-922)) 148 (|has| |#1| (-370)))) (-2802 (((-3 $ "failed") $) 123 (|has| |#1| (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-4110 (((-1172 |#1|) $) 155) (((-1172 $) $ (-922)) 149 (|has| |#1| (-370)))) (-3527 (((-922) $) 120 (|has| |#1| (-370)))) (-2617 (((-1172 |#1|) $) 141 (|has| |#1| (-370)))) (-4260 (((-1172 |#1|) $) 140 (|has| |#1| (-370))) (((-3 (-1172 |#1|) "failed") $ $) 139 (|has| |#1| (-370)))) (-2173 (($ $ (-1172 |#1|)) 142 (|has| |#1| (-370)))) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-2596 (($) 124 (|has| |#1| (-370)) CONST)) (-3811 (($ (-922)) 121 (|has| |#1| (-370)))) (-2407 (((-112) $) 103)) (-3339 (((-1120) $) 11)) (-4099 (($) 143 (|has| |#1| (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 131 (|has| |#1| (-370)))) (-2296 (((-421 $) $) 82)) (-2888 (((-834 (-922))) 101) (((-922)) 153)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-2097 (((-772) $) 136 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 95 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) 109)) (-1930 (($ $) 128 (|has| |#1| (-370))) (($ $ (-772)) 126 (|has| |#1| (-370)))) (-3677 (((-834 (-922)) $) 102) (((-922) $) 152)) (-2713 (((-1172 |#1|)) 154)) (-1698 (($) 133 (|has| |#1| (-370)))) (-3995 (($) 146 (|has| |#1| (-370)))) (-3216 (((-1266 |#1|) $) 158) (((-690 |#1|) (-1266 $)) 157)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 130 (|has| |#1| (-370)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-4242 (($ $) 129 (|has| |#1| (-370))) (((-3 $ "failed") $) 93 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2557 (((-1266 $)) 160) (((-1266 $) (-922)) 159)) (-2469 (((-112) $ $) 45)) (-2447 (((-112) $) 105)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2202 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-2692 (($ $) 127 (|has| |#1| (-370))) (($ $ (-772)) 125 (|has| |#1| (-370)))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 73) (($ $ |#1|) 108)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
(((-330 |#1|) (-140) (-365)) (T -330))
-((-2227 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1265 *1)) (-4 *1 (-330 *3)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1265 *1)) (-4 *1 (-330 *4)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1265 *3)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-2880 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3)))) (-2438 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-2323 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1)) (-4 *1 (-330 *4)))) (-3202 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-2717 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-2014 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3029 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-2723 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2195 (*1 *1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))) (-3777 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1171 *3)))))
-(-13 (-1284 |t#1|) (-1038 |t#1|) (-10 -8 (-15 -2227 ((-1265 $))) (-15 -2227 ((-1265 $) (-921))) (-15 -2803 ((-1265 |t#1|) $)) (-15 -2803 ((-689 |t#1|) (-1265 $))) (-15 -1452 ($ (-1265 |t#1|))) (-15 -2323 ((-1171 |t#1|) $)) (-15 -2880 ((-1171 |t#1|))) (-15 -2438 ((-921))) (-15 -3838 ((-921) $)) (-15 -3202 (|t#1| $)) (-15 -2717 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -2323 ((-1171 $) $ (-921))) (-15 -3202 ($ $ (-921))) (-15 -2717 ($ $ (-921))) (-15 -2014 ($)) (-15 -3029 ($)) (-15 -3778 ((-112) $)) (-15 -2723 ($)) (-15 -2195 ($ $ (-1171 |t#1|))) (-15 -2535 ((-1171 |t#1|) $)) (-15 -3777 ((-1171 |t#1|) $)) (-15 -3777 ((-3 (-1171 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2676 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1284 |#1|) . T) ((-365) . T) ((-404) -2676 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-370)) ((-1219) . T) ((-1272 |#1|) . T))
-((-3979 (((-112) $ $) NIL)) (-3878 (($ (-1174) $) 104)) (-4257 (($) 93)) (-4251 (((-1119) (-1119)) 9)) (-1993 (($) 94)) (-2205 (($) 108) (($ (-317 (-699))) 116) (($ (-317 (-701))) 112) (($ (-317 (-694))) 120) (($ (-317 (-381))) 127) (($ (-317 (-566))) 123) (($ (-317 (-169 (-381)))) 131)) (-1477 (($ (-1174) $) 105)) (-2353 (($ (-644 (-862))) 95)) (-1478 (((-1270) $) 91)) (-1322 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3397 (($ (-1119)) 60)) (-1593 (((-1103) $) 32)) (-3556 (($ (-1091 (-952 (-566))) $) 101) (($ (-1091 (-952 (-566))) (-952 (-566)) $) 102)) (-1621 (($ (-1119)) 103)) (-1658 (($ (-1174) $) 133) (($ (-1174) $ $) 134)) (-3595 (($ (-1175) (-644 (-1175))) 92)) (-1516 (($ (-1157)) 98) (($ (-644 (-1157))) 96)) (-2725 (((-862) $) 136)) (-3482 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4246 (-112)) (|:| -2465 (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -3192 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -3546 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -3546 $))) (|:| |commonBranch| (-2 (|:| -3534 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $) 51)) (-1382 (($ (-1157)) 205)) (-2551 (($ (-644 $)) 132)) (-1479 (((-112) $ $) NIL)) (-4077 (($ (-1175) (-1157)) 138) (($ (-1175) (-317 (-701))) 178) (($ (-1175) (-317 (-699))) 179) (($ (-1175) (-317 (-694))) 180) (($ (-1175) (-689 (-701))) 141) (($ (-1175) (-689 (-699))) 144) (($ (-1175) (-689 (-694))) 147) (($ (-1175) (-1265 (-701))) 150) (($ (-1175) (-1265 (-699))) 153) (($ (-1175) (-1265 (-694))) 156) (($ (-1175) (-689 (-317 (-701)))) 159) (($ (-1175) (-689 (-317 (-699)))) 162) (($ (-1175) (-689 (-317 (-694)))) 165) (($ (-1175) (-1265 (-317 (-701)))) 168) (($ (-1175) (-1265 (-317 (-699)))) 171) (($ (-1175) (-1265 (-317 (-694)))) 174) (($ (-1175) (-644 (-952 (-566))) (-317 (-701))) 175) (($ (-1175) (-644 (-952 (-566))) (-317 (-699))) 176) (($ (-1175) (-644 (-952 (-566))) (-317 (-694))) 177) (($ (-1175) (-317 (-566))) 202) (($ (-1175) (-317 (-381))) 203) (($ (-1175) (-317 (-169 (-381)))) 204) (($ (-1175) (-689 (-317 (-566)))) 183) (($ (-1175) (-689 (-317 (-381)))) 186) (($ (-1175) (-689 (-317 (-169 (-381))))) 189) (($ (-1175) (-1265 (-317 (-566)))) 192) (($ (-1175) (-1265 (-317 (-381)))) 195) (($ (-1175) (-1265 (-317 (-169 (-381))))) 198) (($ (-1175) (-644 (-952 (-566))) (-317 (-566))) 199) (($ (-1175) (-644 (-952 (-566))) (-317 (-381))) 200) (($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381)))) 201)) (-2817 (((-112) $ $) NIL)))
-(((-331) (-13 (-1099) (-10 -8 (-15 -3556 ($ (-1091 (-952 (-566))) $)) (-15 -3556 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -3878 ($ (-1174) $)) (-15 -1477 ($ (-1174) $)) (-15 -3397 ($ (-1119))) (-15 -1621 ($ (-1119))) (-15 -1516 ($ (-1157))) (-15 -1516 ($ (-644 (-1157)))) (-15 -1382 ($ (-1157))) (-15 -2205 ($)) (-15 -2205 ($ (-317 (-699)))) (-15 -2205 ($ (-317 (-701)))) (-15 -2205 ($ (-317 (-694)))) (-15 -2205 ($ (-317 (-381)))) (-15 -2205 ($ (-317 (-566)))) (-15 -2205 ($ (-317 (-169 (-381))))) (-15 -1658 ($ (-1174) $)) (-15 -1658 ($ (-1174) $ $)) (-15 -4077 ($ (-1175) (-1157))) (-15 -4077 ($ (-1175) (-317 (-701)))) (-15 -4077 ($ (-1175) (-317 (-699)))) (-15 -4077 ($ (-1175) (-317 (-694)))) (-15 -4077 ($ (-1175) (-689 (-701)))) (-15 -4077 ($ (-1175) (-689 (-699)))) (-15 -4077 ($ (-1175) (-689 (-694)))) (-15 -4077 ($ (-1175) (-1265 (-701)))) (-15 -4077 ($ (-1175) (-1265 (-699)))) (-15 -4077 ($ (-1175) (-1265 (-694)))) (-15 -4077 ($ (-1175) (-689 (-317 (-701))))) (-15 -4077 ($ (-1175) (-689 (-317 (-699))))) (-15 -4077 ($ (-1175) (-689 (-317 (-694))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-701))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-699))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-694))))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -4077 ($ (-1175) (-317 (-566)))) (-15 -4077 ($ (-1175) (-317 (-381)))) (-15 -4077 ($ (-1175) (-317 (-169 (-381))))) (-15 -4077 ($ (-1175) (-689 (-317 (-566))))) (-15 -4077 ($ (-1175) (-689 (-317 (-381))))) (-15 -4077 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-566))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-381))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2551 ($ (-644 $))) (-15 -4257 ($)) (-15 -1993 ($)) (-15 -2353 ($ (-644 (-862)))) (-15 -3595 ($ (-1175) (-644 (-1175)))) (-15 -1322 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3482 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4246 (-112)) (|:| -2465 (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -3192 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -3546 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -3546 $))) (|:| |commonBranch| (-2 (|:| -3534 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -1478 ((-1270) $)) (-15 -1593 ((-1103) $)) (-15 -4251 ((-1119) (-1119)))))) (T -331))
-((-3556 (*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331)))) (-3556 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566))) (-5 *1 (-331)))) (-3878 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-1477 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-3397 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331)))) (-1382 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))) (-2205 (*1 *1) (-5 *1 (-331))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-1658 (*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-1658 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-701))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-699))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-694))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-701)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-699)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-694)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-701))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-699))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-694))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-566)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-381)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-566))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331)))) (-4257 (*1 *1) (-5 *1 (-331))) (-1993 (*1 *1) (-5 *1 (-331))) (-2353 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331)))) (-3595 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -4246 (-112)) (|:| -2465 (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |blockBranch| (-644 (-331))) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -3192 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -3546 (-331)))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -3546 (-331)))) (|:| |commonBranch| (-2 (|:| -3534 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862))))) (-5 *1 (-331)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-331)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331)))) (-4251 (*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))))
-(-13 (-1099) (-10 -8 (-15 -3556 ($ (-1091 (-952 (-566))) $)) (-15 -3556 ($ (-1091 (-952 (-566))) (-952 (-566)) $)) (-15 -3878 ($ (-1174) $)) (-15 -1477 ($ (-1174) $)) (-15 -3397 ($ (-1119))) (-15 -1621 ($ (-1119))) (-15 -1516 ($ (-1157))) (-15 -1516 ($ (-644 (-1157)))) (-15 -1382 ($ (-1157))) (-15 -2205 ($)) (-15 -2205 ($ (-317 (-699)))) (-15 -2205 ($ (-317 (-701)))) (-15 -2205 ($ (-317 (-694)))) (-15 -2205 ($ (-317 (-381)))) (-15 -2205 ($ (-317 (-566)))) (-15 -2205 ($ (-317 (-169 (-381))))) (-15 -1658 ($ (-1174) $)) (-15 -1658 ($ (-1174) $ $)) (-15 -4077 ($ (-1175) (-1157))) (-15 -4077 ($ (-1175) (-317 (-701)))) (-15 -4077 ($ (-1175) (-317 (-699)))) (-15 -4077 ($ (-1175) (-317 (-694)))) (-15 -4077 ($ (-1175) (-689 (-701)))) (-15 -4077 ($ (-1175) (-689 (-699)))) (-15 -4077 ($ (-1175) (-689 (-694)))) (-15 -4077 ($ (-1175) (-1265 (-701)))) (-15 -4077 ($ (-1175) (-1265 (-699)))) (-15 -4077 ($ (-1175) (-1265 (-694)))) (-15 -4077 ($ (-1175) (-689 (-317 (-701))))) (-15 -4077 ($ (-1175) (-689 (-317 (-699))))) (-15 -4077 ($ (-1175) (-689 (-317 (-694))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-701))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-699))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-694))))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-701)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-699)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-694)))) (-15 -4077 ($ (-1175) (-317 (-566)))) (-15 -4077 ($ (-1175) (-317 (-381)))) (-15 -4077 ($ (-1175) (-317 (-169 (-381))))) (-15 -4077 ($ (-1175) (-689 (-317 (-566))))) (-15 -4077 ($ (-1175) (-689 (-317 (-381))))) (-15 -4077 ($ (-1175) (-689 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-566))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-381))))) (-15 -4077 ($ (-1175) (-1265 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-566)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-381)))) (-15 -4077 ($ (-1175) (-644 (-952 (-566))) (-317 (-169 (-381))))) (-15 -2551 ($ (-644 $))) (-15 -4257 ($)) (-15 -1993 ($)) (-15 -2353 ($ (-644 (-862)))) (-15 -3595 ($ (-1175) (-644 (-1175)))) (-15 -1322 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -3482 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1175)) (|:| |arrayIndex| (-644 (-952 (-566)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1175)) (|:| |rand| (-862)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1174)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4246 (-112)) (|:| -2465 (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862)))))) (|:| |blockBranch| (-644 $)) (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157)) (|:| |forBranch| (-2 (|:| -3192 (-1091 (-952 (-566)))) (|:| |span| (-952 (-566))) (|:| -3546 $))) (|:| |labelBranch| (-1119)) (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -3546 $))) (|:| |commonBranch| (-2 (|:| -3534 (-1175)) (|:| |contents| (-644 (-1175))))) (|:| |printBranch| (-644 (-862)))) $)) (-15 -1478 ((-1270) $)) (-15 -1593 ((-1103) $)) (-15 -4251 ((-1119) (-1119)))))
-((-3979 (((-112) $ $) NIL)) (-2593 (((-112) $) 13)) (-3449 (($ |#1|) 10)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3461 (($ |#1|) 12)) (-2725 (((-862) $) 19)) (-1479 (((-112) $ $) NIL)) (-2711 ((|#1| $) 14)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 21)))
-(((-332 |#1|) (-13 (-850) (-10 -8 (-15 -3449 ($ |#1|)) (-15 -3461 ($ |#1|)) (-15 -2593 ((-112) $)) (-15 -2711 (|#1| $)))) (-850)) (T -332))
-((-3449 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-3461 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))) (-2593 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850)))) (-2711 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850)))))
-(-13 (-850) (-10 -8 (-15 -3449 ($ |#1|)) (-15 -3461 ($ |#1|)) (-15 -2593 ((-112) $)) (-15 -2711 (|#1| $))))
-((-2116 (((-331) (-1175) (-952 (-566))) 23)) (-3507 (((-331) (-1175) (-952 (-566))) 27)) (-4121 (((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566)))) 26) (((-331) (-1175) (-952 (-566)) (-952 (-566))) 24)) (-1891 (((-331) (-1175) (-952 (-566))) 31)))
-(((-333) (-10 -7 (-15 -2116 ((-331) (-1175) (-952 (-566)))) (-15 -4121 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -4121 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -3507 ((-331) (-1175) (-952 (-566)))) (-15 -1891 ((-331) (-1175) (-952 (-566)))))) (T -333))
-((-1891 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-4121 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-4121 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2116 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331)) (-5 *1 (-333)))))
-(-10 -7 (-15 -2116 ((-331) (-1175) (-952 (-566)))) (-15 -4121 ((-331) (-1175) (-952 (-566)) (-952 (-566)))) (-15 -4121 ((-331) (-1175) (-1091 (-952 (-566))) (-1091 (-952 (-566))))) (-15 -3507 ((-331) (-1175) (-952 (-566)))) (-15 -1891 ((-331) (-1175) (-952 (-566)))))
-((-3979 (((-112) $ $) NIL)) (-3651 (((-508) $) 20)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3375 (((-958 (-771)) $) 18)) (-1704 (((-250) $) 7)) (-2725 (((-862) $) 26)) (-2157 (((-958 (-183 (-139))) $) 16)) (-1479 (((-112) $ $) NIL)) (-2475 (((-644 (-873 (-1180) (-771))) $) 12)) (-2817 (((-112) $ $) 22)))
-(((-334) (-13 (-1099) (-10 -8 (-15 -1704 ((-250) $)) (-15 -2475 ((-644 (-873 (-1180) (-771))) $)) (-15 -3375 ((-958 (-771)) $)) (-15 -2157 ((-958 (-183 (-139))) $)) (-15 -3651 ((-508) $))))) (T -334))
-((-1704 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-958 (-183 (-139)))) (-5 *1 (-334)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334)))))
-(-13 (-1099) (-10 -8 (-15 -1704 ((-250) $)) (-15 -2475 ((-644 (-873 (-1180) (-771))) $)) (-15 -3375 ((-958 (-771)) $)) (-15 -2157 ((-958 (-183 (-139))) $)) (-15 -3651 ((-508) $))))
-((-2101 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33)))
-(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2101 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1241 |#5|) (-1241 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -335))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1241 *9)) (-4 *11 (-1241 (-409 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11)))))
-(-10 -7 (-15 -2101 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|))))
-((-3769 (((-112) $) 14)))
-(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3769 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1241 |#2|) (-1241 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -336))
-NIL
-(-10 -8 (-15 -3769 ((-112) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2553 (($ $) 29)) (-3769 (((-112) $) 28)) (-1390 (((-1157) $) 10)) (-2603 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 35)) (-1944 (((-1119) $) 11)) (-2723 (((-3 |#4| "failed") $) 27)) (-4263 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-566)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2442 (((-2 (|:| -2596 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24)))
-(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1241 |t#1|) (-1241 (-409 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337))
-((-2603 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-415 *4 (-409 *4) *5 *6)))) (-4263 (*1 *1 *2) (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-4263 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-4263 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1241 *2)) (-4 *4 (-1241 (-409 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-4263 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1241 *2)) (-4 *5 (-1241 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -2596 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6))))) (-2553 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1241 *2)) (-4 *4 (-1241 (-409 *3))) (-4 *5 (-344 *2 *3 *4)))) (-3769 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-2723 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-4 *2 (-344 *3 *4 *5)))) (-4263 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 (-409 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2603 ((-415 |t#2| (-409 |t#2|) |t#3| |t#4|) $)) (-15 -4263 ($ (-415 |t#2| (-409 |t#2|) |t#3| |t#4|))) (-15 -4263 ($ |t#4|)) (-15 -4263 ($ |t#1| |t#1|)) (-15 -4263 ($ |t#1| |t#1| (-566))) (-15 -2442 ((-2 (|:| -2596 (-415 |t#2| (-409 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2553 ($ $)) (-15 -3769 ((-112) $)) (-15 -2723 ((-3 |t#4| "failed") $)) (-15 -4263 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2553 (($ $) 33)) (-3769 (((-112) $) NIL)) (-1390 (((-1157) $) NIL)) (-3301 (((-1265 |#4|) $) 135)) (-2603 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 31)) (-1944 (((-1119) $) NIL)) (-2723 (((-3 |#4| "failed") $) 36)) (-3978 (((-1265 |#4|) $) 127)) (-4263 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-566)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2442 (((-2 (|:| -2596 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2725 (((-862) $) 17)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 14 T CONST)) (-2817 (((-112) $ $) 20)) (-2905 (($ $) 27) (($ $ $) NIL)) (-2897 (($ $ $) 25)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 23)))
-(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3978 ((-1265 |#4|) $)) (-15 -3301 ((-1265 |#4|) $)))) (-365) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -338))
-((-3978 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-1265 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-3301 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-1265 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))))
-(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3978 ((-1265 |#4|) $)) (-15 -3301 ((-1265 |#4|) $))))
-((-1754 (($ $ (-1175) |#2|) NIL) (($ $ (-644 (-1175)) (-644 |#2|)) 20) (($ $ (-644 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-3282 (($ $ |#2|) 11)))
-(((-339 |#1| |#2|) (-10 -8 (-15 -3282 (|#1| |#1| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#2| |#2|)) (-15 -1754 (|#1| |#1| (-295 |#2|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -1754 (|#1| |#1| (-1175) |#2|))) (-340 |#2|) (-1099)) (T -339))
-NIL
-(-10 -8 (-15 -3282 (|#1| |#1| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#2| |#2|)) (-15 -1754 (|#1| |#1| (-295 |#2|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 |#2|))) (-15 -1754 (|#1| |#1| (-1175) |#2|)))
-((-2101 (($ (-1 |#1| |#1|) $) 6)) (-1754 (($ $ (-1175) |#1|) 17 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 16 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-644 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-644 |#1|) (-644 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-3282 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|)))))
-(((-340 |#1|) (-140) (-1099)) (T -340))
-((-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1099)))))
-(-13 (-10 -8 (-15 -2101 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-516 (-1175) |t#1|)) (-6 (-516 (-1175) |t#1|)) |%noBranch|)))
-(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1175)) $) NIL)) (-3800 (((-112)) 99) (((-112) (-112)) 100)) (-3860 (((-644 (-612 $)) $) NIL)) (-3622 (($ $) NIL)) (-3474 (($ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-1713 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-4028 (($ $) NIL)) (-3601 (($ $) NIL)) (-3449 (($ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-612 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1175)) 105) (((-3 $ "failed") (-317 (-566))) 67 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-409 (-952 (-566)))) 73 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-952 (-566))) 68 (|has| |#3| (-1038 (-566)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-409 (-952 (-381)))) 91 (|has| |#3| (-1038 (-381)))) (((-3 $ "failed") (-952 (-381))) 86 (|has| |#3| (-1038 (-381))))) (-3343 (((-612 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1175)) 106) (($ (-317 (-566))) 69 (|has| |#3| (-1038 (-566)))) (($ (-409 (-952 (-566)))) 74 (|has| |#3| (-1038 (-566)))) (($ (-952 (-566))) 70 (|has| |#3| (-1038 (-566)))) (($ (-317 (-381))) 98 (|has| |#3| (-1038 (-381)))) (($ (-409 (-952 (-381)))) 92 (|has| |#3| (-1038 (-381)))) (($ (-952 (-381))) 88 (|has| |#3| (-1038 (-381))))) (-2313 (((-3 $ "failed") $) NIL)) (-2722 (($) 10)) (-3206 (($ $) NIL) (($ (-644 $)) NIL)) (-3684 (((-644 (-114)) $) NIL)) (-3959 (((-114) (-114)) NIL)) (-3842 (((-112) $) NIL)) (-1687 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2391 (((-1171 $) (-612 $)) NIL (|has| $ (-1049)))) (-2101 (($ (-1 $ $) (-612 $)) NIL)) (-3308 (((-3 (-612 $) "failed") $) NIL)) (-3184 (($ $) 102)) (-1565 (($ $) NIL)) (-1390 (((-1157) $) NIL)) (-3944 (((-644 (-612 $)) $) NIL)) (-2770 (($ (-114) $) 101) (($ (-114) (-644 $)) NIL)) (-3044 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-1695 (((-771) $) NIL)) (-1944 (((-1119) $) NIL)) (-3761 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-1535 (($ $) NIL)) (-3934 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-1754 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3282 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-2220 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-2880 (($ $) NIL (|has| $ (-1049)))) (-3612 (($ $) NIL)) (-3461 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-612 $)) NIL) (($ |#3|) NIL) (($ (-566)) NIL) (((-317 |#3|) $) 104)) (-2875 (((-771)) NIL T CONST)) (-3016 (($ $) NIL) (($ (-644 $)) NIL)) (-2827 (((-112) (-114)) NIL)) (-1479 (((-112) $ $) NIL)) (-3553 (($ $) NIL)) (-3528 (($ $) NIL)) (-3541 (($ $) NIL)) (-2274 (($ $) NIL)) (-3200 (($) 103 T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $ $) NIL) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL)))
-(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -3343 ($ (-317 |#3|))) (-15 -2023 ((-3 $ "failed") (-317 |#3|))) (-15 -3343 ($ (-1175))) (-15 -2023 ((-3 $ "failed") (-1175))) (-15 -2725 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -3343 ($ (-317 (-566)))) (-15 -2023 ((-3 $ "failed") (-317 (-566)))) (-15 -3343 ($ (-409 (-952 (-566))))) (-15 -2023 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -3343 ($ (-952 (-566)))) (-15 -2023 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -3343 ($ (-317 (-381)))) (-15 -2023 ((-3 $ "failed") (-317 (-381)))) (-15 -3343 ($ (-409 (-952 (-381))))) (-15 -2023 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -3343 ($ (-952 (-381)))) (-15 -2023 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -2274 ($ $)) (-15 -4028 ($ $)) (-15 -1535 ($ $)) (-15 -1565 ($ $)) (-15 -3184 ($ $)) (-15 -3449 ($ $)) (-15 -3461 ($ $)) (-15 -3474 ($ $)) (-15 -3528 ($ $)) (-15 -3541 ($ $)) (-15 -3553 ($ $)) (-15 -3601 ($ $)) (-15 -3612 ($ $)) (-15 -3622 ($ $)) (-15 -2722 ($)) (-15 -4170 ((-644 (-1175)) $)) (-15 -3800 ((-112))) (-15 -3800 ((-112) (-112))))) (-644 (-1175)) (-644 (-1175)) (-389)) (T -341))
-((-3343 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-2274 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-4028 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-1535 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-1565 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3184 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3449 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3461 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3474 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3528 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3541 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3553 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3601 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3612 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-3622 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-2722 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175))) (-14 *3 (-644 (-1175))) (-4 *4 (-389)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-389)))) (-3800 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389)))))
-(-13 (-303) (-38 |#3|) (-1038 |#3|) (-900 (-1175)) (-10 -8 (-15 -3343 ($ (-317 |#3|))) (-15 -2023 ((-3 $ "failed") (-317 |#3|))) (-15 -3343 ($ (-1175))) (-15 -2023 ((-3 $ "failed") (-1175))) (-15 -2725 ((-317 |#3|) $)) (IF (|has| |#3| (-1038 (-566))) (PROGN (-15 -3343 ($ (-317 (-566)))) (-15 -2023 ((-3 $ "failed") (-317 (-566)))) (-15 -3343 ($ (-409 (-952 (-566))))) (-15 -2023 ((-3 $ "failed") (-409 (-952 (-566))))) (-15 -3343 ($ (-952 (-566)))) (-15 -2023 ((-3 $ "failed") (-952 (-566))))) |%noBranch|) (IF (|has| |#3| (-1038 (-381))) (PROGN (-15 -3343 ($ (-317 (-381)))) (-15 -2023 ((-3 $ "failed") (-317 (-381)))) (-15 -3343 ($ (-409 (-952 (-381))))) (-15 -2023 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -3343 ($ (-952 (-381)))) (-15 -2023 ((-3 $ "failed") (-952 (-381))))) |%noBranch|) (-15 -2274 ($ $)) (-15 -4028 ($ $)) (-15 -1535 ($ $)) (-15 -1565 ($ $)) (-15 -3184 ($ $)) (-15 -3449 ($ $)) (-15 -3461 ($ $)) (-15 -3474 ($ $)) (-15 -3528 ($ $)) (-15 -3541 ($ $)) (-15 -3553 ($ $)) (-15 -3601 ($ $)) (-15 -3612 ($ $)) (-15 -3622 ($ $)) (-15 -2722 ($)) (-15 -4170 ((-644 (-1175)) $)) (-15 -3800 ((-112))) (-15 -3800 ((-112) (-112)))))
-((-2101 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2101 (|#8| (-1 |#5| |#1|) |#4|))) (-1219) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-1219) (-1241 |#5|) (-1241 (-409 |#6|)) (-344 |#5| |#6| |#7|)) (T -342))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1219)) (-4 *8 (-1219)) (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-4 *9 (-1241 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1241 (-409 *9))))))
-(-10 -7 (-15 -2101 (|#8| (-1 |#5| |#1|) |#4|)))
-((-2021 (((-2 (|:| |num| (-1265 |#3|)) (|:| |den| |#3|)) $) 40)) (-1452 (($ (-1265 (-409 |#3|)) (-1265 $)) NIL) (($ (-1265 (-409 |#3|))) NIL) (($ (-1265 |#3|) |#3|) 177)) (-4070 (((-1265 $) (-1265 $)) 161)) (-4120 (((-644 (-644 |#2|))) 130)) (-3105 (((-112) |#2| |#2|) 77)) (-1520 (($ $) 152)) (-2797 (((-771)) 33)) (-2556 (((-1265 $) (-1265 $)) 222)) (-2373 (((-644 (-952 |#2|)) (-1175)) 119)) (-2342 (((-112) $) 174)) (-1304 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-2200 (((-3 |#3| "failed")) 53)) (-3174 (((-771)) 188)) (-3282 ((|#2| $ |#2| |#2|) 144)) (-3080 (((-3 |#3| "failed")) 72)) (-3009 (($ $ (-1 (-409 |#3|) (-409 |#3|)) (-771)) NIL) (($ $ (-1 (-409 |#3|) (-409 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-3405 (((-1265 $) (-1265 $)) 167)) (-1817 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3386 (((-112)) 35)))
-(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -4120 ((-644 (-644 |#2|)))) (-15 -2373 ((-644 (-952 |#2|)) (-1175))) (-15 -1817 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2200 ((-3 |#3| "failed"))) (-15 -3080 ((-3 |#3| "failed"))) (-15 -3282 (|#2| |#1| |#2| |#2|)) (-15 -1520 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1304 ((-112) |#1| |#3|)) (-15 -1304 ((-112) |#1| |#2|)) (-15 -1452 (|#1| (-1265 |#3|) |#3|)) (-15 -2021 ((-2 (|:| |num| (-1265 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4070 ((-1265 |#1|) (-1265 |#1|))) (-15 -2556 ((-1265 |#1|) (-1265 |#1|))) (-15 -3405 ((-1265 |#1|) (-1265 |#1|))) (-15 -1304 ((-112) |#1|)) (-15 -2342 ((-112) |#1|)) (-15 -3105 ((-112) |#2| |#2|)) (-15 -3386 ((-112))) (-15 -3174 ((-771))) (-15 -2797 ((-771))) (-15 -3009 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3009 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -1452 (|#1| (-1265 (-409 |#3|)))) (-15 -1452 (|#1| (-1265 (-409 |#3|)) (-1265 |#1|)))) (-344 |#2| |#3| |#4|) (-1219) (-1241 |#2|) (-1241 (-409 |#3|))) (T -343))
-((-2797 (*1 *2) (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3174 (*1 *2) (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3386 (*1 *2) (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3105 (*1 *2 *3 *3) (-12 (-4 *3 (-1219)) (-4 *5 (-1241 *3)) (-4 *6 (-1241 (-409 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-3080 (*1 *2) (|partial| -12 (-4 *4 (-1219)) (-4 *5 (-1241 (-409 *2))) (-4 *2 (-1241 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-2200 (*1 *2) (|partial| -12 (-4 *4 (-1219)) (-4 *5 (-1241 (-409 *2))) (-4 *2 (-1241 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *5 (-1219)) (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-5 *2 (-644 (-952 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-4120 (*1 *2) (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))))
-(-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -4120 ((-644 (-644 |#2|)))) (-15 -2373 ((-644 (-952 |#2|)) (-1175))) (-15 -1817 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2200 ((-3 |#3| "failed"))) (-15 -3080 ((-3 |#3| "failed"))) (-15 -3282 (|#2| |#1| |#2| |#2|)) (-15 -1520 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1304 ((-112) |#1| |#3|)) (-15 -1304 ((-112) |#1| |#2|)) (-15 -1452 (|#1| (-1265 |#3|) |#3|)) (-15 -2021 ((-2 (|:| |num| (-1265 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4070 ((-1265 |#1|) (-1265 |#1|))) (-15 -2556 ((-1265 |#1|) (-1265 |#1|))) (-15 -3405 ((-1265 |#1|) (-1265 |#1|))) (-15 -1304 ((-112) |#1|)) (-15 -2342 ((-112) |#1|)) (-15 -3105 ((-112) |#2| |#2|)) (-15 -3386 ((-112))) (-15 -3174 ((-771))) (-15 -2797 ((-771))) (-15 -3009 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)))) (-15 -3009 (|#1| |#1| (-1 (-409 |#3|) (-409 |#3|)) (-771))) (-15 -1452 (|#1| (-1265 (-409 |#3|)))) (-15 -1452 (|#1| (-1265 (-409 |#3|)) (-1265 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2021 (((-2 (|:| |num| (-1265 |#2|)) (|:| |den| |#2|)) $) 204)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 102 (|has| (-409 |#2|) (-365)))) (-1780 (($ $) 103 (|has| (-409 |#2|) (-365)))) (-3286 (((-112) $) 105 (|has| (-409 |#2|) (-365)))) (-3561 (((-689 (-409 |#2|)) (-1265 $)) 53) (((-689 (-409 |#2|))) 68)) (-2717 (((-409 |#2|) $) 59)) (-3374 (((-1188 (-921) (-771)) (-566)) 155 (|has| (-409 |#2|) (-351)))) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 122 (|has| (-409 |#2|) (-365)))) (-2555 (((-420 $) $) 123 (|has| (-409 |#2|) (-365)))) (-2068 (((-112) $ $) 113 (|has| (-409 |#2|) (-365)))) (-3733 (((-771)) 96 (|has| (-409 |#2|) (-370)))) (-3730 (((-112)) 221)) (-1530 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 178 (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) 173)) (-3343 (((-566) $) 177 (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) 174)) (-1452 (($ (-1265 (-409 |#2|)) (-1265 $)) 55) (($ (-1265 (-409 |#2|))) 71) (($ (-1265 |#2|) |#2|) 203)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-409 |#2|) (-351)))) (-3919 (($ $ $) 117 (|has| (-409 |#2|) (-365)))) (-2340 (((-689 (-409 |#2|)) $ (-1265 $)) 60) (((-689 (-409 |#2|)) $) 66)) (-3717 (((-689 (-566)) (-689 $)) 172 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 171 (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-409 |#2|))) (|:| |vec| (-1265 (-409 |#2|)))) (-689 $) (-1265 $)) 170) (((-689 (-409 |#2|)) (-689 $)) 169)) (-4070 (((-1265 $) (-1265 $)) 209)) (-2553 (($ |#3|) 166) (((-3 $ "failed") (-409 |#3|)) 163 (|has| (-409 |#2|) (-365)))) (-2313 (((-3 $ "failed") $) 37)) (-4120 (((-644 (-644 |#1|))) 190 (|has| |#1| (-370)))) (-3105 (((-112) |#1| |#1|) 225)) (-4153 (((-921)) 61)) (-3424 (($) 99 (|has| (-409 |#2|) (-370)))) (-2351 (((-112)) 218)) (-2462 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-3930 (($ $ $) 116 (|has| (-409 |#2|) (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 111 (|has| (-409 |#2|) (-365)))) (-1520 (($ $) 196)) (-4183 (($) 157 (|has| (-409 |#2|) (-351)))) (-1963 (((-112) $) 158 (|has| (-409 |#2|) (-351)))) (-4205 (($ $ (-771)) 149 (|has| (-409 |#2|) (-351))) (($ $) 148 (|has| (-409 |#2|) (-351)))) (-1968 (((-112) $) 124 (|has| (-409 |#2|) (-365)))) (-3077 (((-921) $) 160 (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) 146 (|has| (-409 |#2|) (-351)))) (-3842 (((-112) $) 35)) (-2797 (((-771)) 228)) (-2556 (((-1265 $) (-1265 $)) 210)) (-3202 (((-409 |#2|) $) 58)) (-2373 (((-644 (-952 |#1|)) (-1175)) 191 (|has| |#1| (-365)))) (-3869 (((-3 $ "failed") $) 150 (|has| (-409 |#2|) (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| (-409 |#2|) (-365)))) (-2323 ((|#3| $) 51 (|has| (-409 |#2|) (-365)))) (-4138 (((-921) $) 98 (|has| (-409 |#2|) (-370)))) (-2542 ((|#3| $) 164)) (-1853 (($ (-644 $)) 109 (|has| (-409 |#2|) (-365))) (($ $ $) 108 (|has| (-409 |#2|) (-365)))) (-1390 (((-1157) $) 10)) (-2241 (((-689 (-409 |#2|))) 205)) (-4131 (((-689 (-409 |#2|))) 207)) (-4282 (($ $) 125 (|has| (-409 |#2|) (-365)))) (-3438 (($ (-1265 |#2|) |#2|) 201)) (-4026 (((-689 (-409 |#2|))) 206)) (-4094 (((-689 (-409 |#2|))) 208)) (-2290 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1630 (((-2 (|:| |num| (-1265 |#2|)) (|:| |den| |#2|)) $) 202)) (-4158 (((-1265 $)) 214)) (-2281 (((-1265 $)) 215)) (-2342 (((-112) $) 213)) (-1304 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-1342 (($) 151 (|has| (-409 |#2|) (-351)) CONST)) (-2430 (($ (-921)) 97 (|has| (-409 |#2|) (-370)))) (-2200 (((-3 |#2| "failed")) 193)) (-1944 (((-1119) $) 11)) (-3174 (((-771)) 227)) (-2723 (($) 168)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| (-409 |#2|) (-365)))) (-1885 (($ (-644 $)) 107 (|has| (-409 |#2|) (-365))) (($ $ $) 106 (|has| (-409 |#2|) (-365)))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 154 (|has| (-409 |#2|) (-351)))) (-4018 (((-420 $) $) 121 (|has| (-409 |#2|) (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 118 (|has| (-409 |#2|) (-365)))) (-3967 (((-3 $ "failed") $ $) 101 (|has| (-409 |#2|) (-365)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| (-409 |#2|) (-365)))) (-3792 (((-771) $) 114 (|has| (-409 |#2|) (-365)))) (-3282 ((|#1| $ |#1| |#1|) 195)) (-3080 (((-3 |#2| "failed")) 194)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 115 (|has| (-409 |#2|) (-365)))) (-2061 (((-409 |#2|) (-1265 $)) 54) (((-409 |#2|)) 67)) (-2816 (((-771) $) 159 (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) 147 (|has| (-409 |#2|) (-351)))) (-3009 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 131 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 130 (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 139 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 140 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 141 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 143 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-3144 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 145 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-3144 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-1436 (((-689 (-409 |#2|)) (-1265 $) (-1 (-409 |#2|) (-409 |#2|))) 162 (|has| (-409 |#2|) (-365)))) (-2880 ((|#3|) 167)) (-1344 (($) 156 (|has| (-409 |#2|) (-351)))) (-2803 (((-1265 (-409 |#2|)) $ (-1265 $)) 57) (((-689 (-409 |#2|)) (-1265 $) (-1265 $)) 56) (((-1265 (-409 |#2|)) $) 73) (((-689 (-409 |#2|)) (-1265 $)) 72)) (-2150 (((-1265 (-409 |#2|)) $) 70) (($ (-1265 (-409 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 153 (|has| (-409 |#2|) (-351)))) (-3405 (((-1265 $) (-1265 $)) 211)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 |#2|)) 44) (($ (-409 (-566))) 95 (-2676 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-1038 (-409 (-566)))))) (($ $) 100 (|has| (-409 |#2|) (-365)))) (-2655 (($ $) 152 (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-409 |#2|) (-145)))) (-1707 ((|#3| $) 52)) (-2875 (((-771)) 32 T CONST)) (-2467 (((-112)) 224)) (-3245 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-1479 (((-112) $ $) 9)) (-2227 (((-1265 $)) 74)) (-1597 (((-112) $ $) 104 (|has| (-409 |#2|) (-365)))) (-1817 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-3386 (((-112)) 226)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) 133 (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) 132 (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175) (-771)) 135 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-644 (-1175))) 136 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-1175)) 137 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) (-3144 (|has| (-409 |#2|) (-900 (-1175))) (|has| (-409 |#2|) (-365))))) (($ $ (-771)) 142 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-3144 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) 144 (-2676 (-3144 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-233))) (-3144 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 129 (|has| (-409 |#2|) (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 |#2|)) 46) (($ (-409 |#2|) $) 45) (($ (-409 (-566)) $) 128 (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) 127 (|has| (-409 |#2|) (-365)))))
-(((-344 |#1| |#2| |#3|) (-140) (-1219) (-1241 |t#1|) (-1241 (-409 |t#2|))) (T -344))
-((-2797 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-771)))) (-3174 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-771)))) (-3386 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-3105 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-2467 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-3245 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-3245 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112)))) (-3730 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-1530 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-1530 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112)))) (-2351 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-2462 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-2462 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112)))) (-2281 (*1 *2) (-12 (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)))) (-4158 (*1 *2) (-12 (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)))) (-2342 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-1304 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))))) (-2556 (*1 *2 *2) (-12 (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))))) (-4094 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-4131 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-4026 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-2241 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1265 *4)) (|:| |den| *4))))) (-1452 (*1 *1 *2 *3) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1241 *4)) (-4 *4 (-1219)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1241 (-409 *3))))) (-1630 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-2 (|:| |num| (-1265 *4)) (|:| |den| *4))))) (-3438 (*1 *1 *2 *3) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1241 *4)) (-4 *4 (-1219)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1241 (-409 *3))))) (-2290 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5))))) (-1304 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))) (-1304 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112)))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))))) (-1520 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-1241 *2)) (-4 *4 (-1241 (-409 *3))))) (-3282 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-1241 *2)) (-4 *4 (-1241 (-409 *3))))) (-3080 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1219)) (-4 *4 (-1241 (-409 *2))) (-4 *2 (-1241 *3)))) (-2200 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1219)) (-4 *4 (-1241 (-409 *2))) (-4 *2 (-1241 *3)))) (-1817 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-1219)) (-4 *6 (-1241 (-409 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-4 *4 (-365)) (-5 *2 (-644 (-952 *4))))) (-4120 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3))))))
-(-13 (-724 (-409 |t#2|) |t#3|) (-10 -8 (-15 -2797 ((-771))) (-15 -3174 ((-771))) (-15 -3386 ((-112))) (-15 -3105 ((-112) |t#1| |t#1|)) (-15 -2467 ((-112))) (-15 -3245 ((-112) |t#1|)) (-15 -3245 ((-112) |t#2|)) (-15 -3730 ((-112))) (-15 -1530 ((-112) |t#1|)) (-15 -1530 ((-112) |t#2|)) (-15 -2351 ((-112))) (-15 -2462 ((-112) |t#1|)) (-15 -2462 ((-112) |t#2|)) (-15 -2281 ((-1265 $))) (-15 -4158 ((-1265 $))) (-15 -2342 ((-112) $)) (-15 -1304 ((-112) $)) (-15 -3405 ((-1265 $) (-1265 $))) (-15 -2556 ((-1265 $) (-1265 $))) (-15 -4070 ((-1265 $) (-1265 $))) (-15 -4094 ((-689 (-409 |t#2|)))) (-15 -4131 ((-689 (-409 |t#2|)))) (-15 -4026 ((-689 (-409 |t#2|)))) (-15 -2241 ((-689 (-409 |t#2|)))) (-15 -2021 ((-2 (|:| |num| (-1265 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1452 ($ (-1265 |t#2|) |t#2|)) (-15 -1630 ((-2 (|:| |num| (-1265 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3438 ($ (-1265 |t#2|) |t#2|)) (-15 -2290 ((-2 (|:| |num| (-689 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1304 ((-112) $ |t#1|)) (-15 -1304 ((-112) $ |t#2|)) (-15 -3009 ($ $ (-1 |t#2| |t#2|))) (-15 -1520 ($ $)) (-15 -3282 (|t#1| $ |t#1| |t#1|)) (-15 -3080 ((-3 |t#2| "failed"))) (-15 -2200 ((-3 |t#2| "failed"))) (-15 -1817 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -2373 ((-644 (-952 |t#1|)) (-1175))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -4120 ((-644 (-644 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-38 #1=(-409 |#2|)) . T) ((-38 $) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-145))) ((-147) |has| (-409 |#2|) (-147)) ((-616 #0#) -2676 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-616 #1#) . T) ((-616 (-566)) . T) ((-616 $) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#3|) . T) ((-231 #1#) |has| (-409 |#2|) (-365)) ((-233) -2676 (|has| (-409 |#2|) (-351)) (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365)))) ((-243) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-291) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-308) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-365) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-404) |has| (-409 |#2|) (-351)) ((-370) -2676 (|has| (-409 |#2|) (-370)) (|has| (-409 |#2|) (-351))) ((-351) |has| (-409 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-411 #1# |#3|) . T) ((-379 #1#) . T) ((-413 #1#) . T) ((-454) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-558) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #0#) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-646 #1#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-648 #1#) . T) ((-648 $) . T) ((-640 #0#) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-640 #1#) . T) ((-640 $) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-639 #1#) . T) ((-639 (-566)) |has| (-409 |#2|) (-639 (-566))) ((-717 #0#) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-717 #1#) . T) ((-717 $) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-724 #1# |#3|) . T) ((-726) . T) ((-900 (-1175)) -12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175)))) ((-920) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1038 (-409 (-566))) |has| (-409 |#2|) (-1038 (-409 (-566)))) ((-1038 #1#) . T) ((-1038 (-566)) |has| (-409 |#2|) (-1038 (-566))) ((-1051 #0#) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1056 #0#) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))) ((-1056 #1#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| (-409 |#2|) (-351)) ((-1219) -2676 (|has| (-409 |#2|) (-351)) (|has| (-409 |#2|) (-365))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-910 |#1|) "failed") $) NIL)) (-3343 (((-910 |#1|) $) NIL)) (-1452 (($ (-1265 (-910 |#1|))) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-910 |#1|) (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL (|has| (-910 |#1|) (-370)))) (-1963 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| (-910 |#1|) (-370)))) (-3778 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-3202 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4138 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2535 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-3777 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-2195 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2430 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-4034 (((-958 (-1119))) NIL)) (-2723 (($) NIL (|has| (-910 |#1|) (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 (-910 |#1|))) NIL)) (-1344 (($) NIL (|has| (-910 |#1|) (-370)))) (-2014 (($) NIL (|has| (-910 |#1|) (-370)))) (-2803 (((-1265 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2655 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL) (((-1265 $) (-921)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-1316 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL)))
-(((-345 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -4034 ((-958 (-1119)))))) (-921) (-921)) (T -345))
-((-4034 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))))
-(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -4034 ((-958 (-1119))))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 58)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) 56 (|has| |#1| (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 144)) (-3343 ((|#1| $) 115)) (-1452 (($ (-1265 |#1|)) 132)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) 126 (|has| |#1| (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) 162 (|has| |#1| (-370)))) (-1963 (((-112) $) 66 (|has| |#1| (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) 60 (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) 62)) (-3029 (($) 164 (|has| |#1| (-370)))) (-3778 (((-112) $) NIL (|has| |#1| (-370)))) (-3202 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 |#1|) $) 119) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4138 (((-921) $) 173 (|has| |#1| (-370)))) (-2535 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3777 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2195 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 180)) (-1342 (($) NIL (|has| |#1| (-370)) CONST)) (-2430 (($ (-921)) 98 (|has| |#1| (-370)))) (-4274 (((-112) $) 149)) (-1944 (((-1119) $) NIL)) (-4034 (((-958 (-1119))) 57)) (-2723 (($) 160 (|has| |#1| (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 121 (|has| |#1| (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) 92) (((-921)) 93)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) 163 (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) 156 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 |#1|)) 124)) (-1344 (($) 161 (|has| |#1| (-370)))) (-2014 (($) 169 (|has| |#1| (-370)))) (-2803 (((-1265 |#1|) $) 77) (((-689 |#1|) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2725 (((-862) $) 176) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 102)) (-2655 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) 157 T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 146) (((-1265 $) (-921)) 100)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) 67 T CONST)) (-3214 (($) 105 T CONST)) (-3940 (($ $) 109 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2817 (((-112) $ $) 65)) (-2916 (($ $ $) 178) (($ $ |#1|) 179)) (-2905 (($ $) 159) (($ $ $) NIL)) (-2897 (($ $ $) 86)) (** (($ $ (-921)) 182) (($ $ (-771)) 183) (($ $ (-566)) 181)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 104) (($ $ $) 103) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177)))
-(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -4034 ((-958 (-1119)))))) (-351) (-1171 |#1|)) (T -346))
-((-4034 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1171 *3)))))
-(-13 (-330 |#1|) (-10 -7 (-15 -4034 ((-958 (-1119))))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-1452 (($ (-1265 |#1|)) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| |#1| (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL (|has| |#1| (-370)))) (-1963 (((-112) $) NIL (|has| |#1| (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| |#1| (-370)))) (-3778 (((-112) $) NIL (|has| |#1| (-370)))) (-3202 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4138 (((-921) $) NIL (|has| |#1| (-370)))) (-2535 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3777 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2195 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| |#1| (-370)) CONST)) (-2430 (($ (-921)) NIL (|has| |#1| (-370)))) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-4034 (((-958 (-1119))) NIL)) (-2723 (($) NIL (|has| |#1| (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| |#1| (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 |#1|)) NIL)) (-1344 (($) NIL (|has| |#1| (-370)))) (-2014 (($) NIL (|has| |#1| (-370)))) (-2803 (((-1265 |#1|) $) NIL) (((-689 |#1|) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2655 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL) (((-1265 $) (-921)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -4034 ((-958 (-1119)))))) (-351) (-921)) (T -347))
-((-4034 (*1 *2) (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))))
-(-13 (-330 |#1|) (-10 -7 (-15 -4034 ((-958 (-1119))))))
-((-2025 (((-771) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119)))))) 61)) (-2406 (((-958 (-1119)) (-1171 |#1|)) 113)) (-3275 (((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) (-1171 |#1|)) 105)) (-1557 (((-689 |#1|) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119)))))) 115)) (-4162 (((-3 (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) "failed") (-921)) 13)) (-4393 (((-3 (-1171 |#1|) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119)))))) (-921)) 18)))
-(((-348 |#1|) (-10 -7 (-15 -2406 ((-958 (-1119)) (-1171 |#1|))) (-15 -3275 ((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) (-1171 |#1|))) (-15 -1557 ((-689 |#1|) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -2025 ((-771) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -4162 ((-3 (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) "failed") (-921))) (-15 -4393 ((-3 (-1171 |#1|) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119)))))) (-921)))) (-351)) (T -348))
-((-4393 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-3 (-1171 *4) (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-4162 (*1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-5 *2 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-2025 (*1 *2 *3) (-12 (-5 *3 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4)))) (-3275 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119)))))) (-5 *1 (-348 *4)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119))) (-5 *1 (-348 *4)))))
-(-10 -7 (-15 -2406 ((-958 (-1119)) (-1171 |#1|))) (-15 -3275 ((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) (-1171 |#1|))) (-15 -1557 ((-689 |#1|) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -2025 ((-771) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -4162 ((-3 (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) "failed") (-921))) (-15 -4393 ((-3 (-1171 |#1|) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119)))))) (-921))))
-((-2725 ((|#1| |#3|) 108) ((|#3| |#1|) 91)))
-(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -2725 (|#3| |#1|)) (-15 -2725 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349))
-((-2725 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-2725 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4)))))
-(-10 -7 (-15 -2725 (|#3| |#1|)) (-15 -2725 (|#1| |#3|)))
-((-1963 (((-112) $) 60)) (-3077 (((-833 (-921)) $) 23) (((-921) $) 66)) (-3869 (((-3 $ "failed") $) 18)) (-1342 (($) 9)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 116)) (-2816 (((-3 (-771) "failed") $ $) 94) (((-771) $) 81)) (-3009 (($ $ (-771)) NIL) (($ $) 8)) (-1344 (($) 53)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 38)) (-2655 (((-3 $ "failed") $) 45) (($ $) 44)))
-(((-350 |#1|) (-10 -8 (-15 -3077 ((-921) |#1|)) (-15 -2816 ((-771) |#1|)) (-15 -1963 ((-112) |#1|)) (-15 -1344 (|#1|)) (-15 -3039 ((-3 (-1265 |#1|) "failed") (-689 |#1|))) (-15 -2655 (|#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -2816 ((-3 (-771) "failed") |#1| |#1|)) (-15 -3077 ((-833 (-921)) |#1|)) (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-351)) (T -350))
-NIL
-(-10 -8 (-15 -3077 ((-921) |#1|)) (-15 -2816 ((-771) |#1|)) (-15 -1963 ((-112) |#1|)) (-15 -1344 (|#1|)) (-15 -3039 ((-3 (-1265 |#1|) "failed") (-689 |#1|))) (-15 -2655 (|#1| |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -2816 ((-3 (-771) "failed") |#1| |#1|)) (-15 -3077 ((-833 (-921)) |#1|)) (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-3374 (((-1188 (-921) (-771)) (-566)) 101)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-2068 (((-112) $ $) 65)) (-3733 (((-771)) 111)) (-2633 (($) 18 T CONST)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3424 (($) 114)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-4183 (($) 99)) (-1963 (((-112) $) 98)) (-4205 (($ $) 87) (($ $ (-771)) 86)) (-1968 (((-112) $) 79)) (-3077 (((-833 (-921)) $) 89) (((-921) $) 96)) (-3842 (((-112) $) 35)) (-3869 (((-3 $ "failed") $) 110)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-4138 (((-921) $) 113)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1342 (($) 109 T CONST)) (-2430 (($ (-921)) 112)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 102)) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2816 (((-3 (-771) "failed") $ $) 88) (((-771) $) 97)) (-3009 (($ $ (-771)) 107) (($ $) 105)) (-1344 (($) 100)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 103)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2655 (((-3 $ "failed") $) 90) (($ $) 104)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-771)) 108) (($ $) 106)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 73)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75)))
+((-2557 (*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1266 *1)) (-4 *1 (-330 *3)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1266 *1)) (-4 *1 (-330 *4)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1266 *3)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1172 *3)))) (-2713 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1172 *3)))) (-2888 (*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365)))) (-4110 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1172 *1)) (-4 *1 (-330 *4)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-4093 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)))) (-3995 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-1359 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-4270 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112)))) (-4099 (*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))) (-2173 (*1 *1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3)) (-4 *3 (-365)))) (-2617 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1172 *3)))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1172 *3)))) (-4260 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-1172 *3)))))
+(-13 (-1285 |t#1|) (-1039 |t#1|) (-10 -8 (-15 -2557 ((-1266 $))) (-15 -2557 ((-1266 $) (-922))) (-15 -3216 ((-1266 |t#1|) $)) (-15 -3216 ((-690 |t#1|) (-1266 $))) (-15 -3499 ($ (-1266 |t#1|))) (-15 -4110 ((-1172 |t#1|) $)) (-15 -2713 ((-1172 |t#1|))) (-15 -2888 ((-922))) (-15 -3677 ((-922) $)) (-15 -3751 (|t#1| $)) (-15 -4093 (|t#1| $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-351)) (-15 -4110 ((-1172 $) $ (-922))) (-15 -3751 ($ $ (-922))) (-15 -4093 ($ $ (-922))) (-15 -3995 ($)) (-15 -1359 ($)) (-15 -4270 ((-112) $)) (-15 -4099 ($)) (-15 -2173 ($ $ (-1172 |t#1|))) (-15 -2617 ((-1172 |t#1|) $)) (-15 -4260 ((-1172 |t#1|) $)) (-15 -4260 ((-3 (-1172 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2909 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) |has| |#1| (-370)) ((-243) . T) ((-291) . T) ((-308) . T) ((-1285 |#1|) . T) ((-365) . T) ((-405) -2909 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-370) |has| |#1| (-370)) ((-351) |has| |#1| (-370)) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) |has| |#1| (-370)) ((-1220) . T) ((-1273 |#1|) . T))
+((-2257 (((-112) $ $) NIL)) (-2895 (($ (-1175) $) 104)) (-3941 (($) 93)) (-2158 (((-1120) (-1120)) 9)) (-3386 (($) 94)) (-2293 (($) 108) (($ (-317 (-700))) 116) (($ (-317 (-702))) 112) (($ (-317 (-695))) 120) (($ (-317 (-381))) 127) (($ (-317 (-567))) 123) (($ (-317 (-169 (-381)))) 131)) (-3720 (($ (-1175) $) 105)) (-4375 (($ (-645 (-863))) 95)) (-3730 (((-1271) $) 91)) (-3301 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3879 (($ (-1120)) 60)) (-2418 (((-1104) $) 32)) (-2964 (($ (-1092 (-953 (-567))) $) 101) (($ (-1092 (-953 (-567))) (-953 (-567)) $) 102)) (-2997 (($ (-1120)) 103)) (-3039 (($ (-1175) $) 133) (($ (-1175) $ $) 134)) (-1878 (($ (-1176) (-645 (-1176))) 92)) (-2774 (($ (-1158)) 98) (($ (-645 (-1158))) 96)) (-4101 (((-863) $) 136)) (-1769 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1176)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1176)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1175)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3353 (-112)) (|:| -3843 (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1158))) (|:| |callBranch| (-1158)) (|:| |forBranch| (-2 (|:| -3674 (-1092 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1830 $))) (|:| |labelBranch| (-1120)) (|:| |loopBranch| (-2 (|:| |switch| (-1175)) (|:| -1830 $))) (|:| |commonBranch| (-2 (|:| -1817 (-1176)) (|:| |contents| (-645 (-1176))))) (|:| |printBranch| (-645 (-863)))) $) 51)) (-2756 (($ (-1158)) 205)) (-1378 (($ (-645 $)) 132)) (-3739 (((-112) $ $) NIL)) (-4077 (($ (-1176) (-1158)) 138) (($ (-1176) (-317 (-702))) 178) (($ (-1176) (-317 (-700))) 179) (($ (-1176) (-317 (-695))) 180) (($ (-1176) (-690 (-702))) 141) (($ (-1176) (-690 (-700))) 144) (($ (-1176) (-690 (-695))) 147) (($ (-1176) (-1266 (-702))) 150) (($ (-1176) (-1266 (-700))) 153) (($ (-1176) (-1266 (-695))) 156) (($ (-1176) (-690 (-317 (-702)))) 159) (($ (-1176) (-690 (-317 (-700)))) 162) (($ (-1176) (-690 (-317 (-695)))) 165) (($ (-1176) (-1266 (-317 (-702)))) 168) (($ (-1176) (-1266 (-317 (-700)))) 171) (($ (-1176) (-1266 (-317 (-695)))) 174) (($ (-1176) (-645 (-953 (-567))) (-317 (-702))) 175) (($ (-1176) (-645 (-953 (-567))) (-317 (-700))) 176) (($ (-1176) (-645 (-953 (-567))) (-317 (-695))) 177) (($ (-1176) (-317 (-567))) 202) (($ (-1176) (-317 (-381))) 203) (($ (-1176) (-317 (-169 (-381)))) 204) (($ (-1176) (-690 (-317 (-567)))) 183) (($ (-1176) (-690 (-317 (-381)))) 186) (($ (-1176) (-690 (-317 (-169 (-381))))) 189) (($ (-1176) (-1266 (-317 (-567)))) 192) (($ (-1176) (-1266 (-317 (-381)))) 195) (($ (-1176) (-1266 (-317 (-169 (-381))))) 198) (($ (-1176) (-645 (-953 (-567))) (-317 (-567))) 199) (($ (-1176) (-645 (-953 (-567))) (-317 (-381))) 200) (($ (-1176) (-645 (-953 (-567))) (-317 (-169 (-381)))) 201)) (-3052 (((-112) $ $) NIL)))
+(((-331) (-13 (-1100) (-10 -8 (-15 -2964 ($ (-1092 (-953 (-567))) $)) (-15 -2964 ($ (-1092 (-953 (-567))) (-953 (-567)) $)) (-15 -2895 ($ (-1175) $)) (-15 -3720 ($ (-1175) $)) (-15 -3879 ($ (-1120))) (-15 -2997 ($ (-1120))) (-15 -2774 ($ (-1158))) (-15 -2774 ($ (-645 (-1158)))) (-15 -2756 ($ (-1158))) (-15 -2293 ($)) (-15 -2293 ($ (-317 (-700)))) (-15 -2293 ($ (-317 (-702)))) (-15 -2293 ($ (-317 (-695)))) (-15 -2293 ($ (-317 (-381)))) (-15 -2293 ($ (-317 (-567)))) (-15 -2293 ($ (-317 (-169 (-381))))) (-15 -3039 ($ (-1175) $)) (-15 -3039 ($ (-1175) $ $)) (-15 -4077 ($ (-1176) (-1158))) (-15 -4077 ($ (-1176) (-317 (-702)))) (-15 -4077 ($ (-1176) (-317 (-700)))) (-15 -4077 ($ (-1176) (-317 (-695)))) (-15 -4077 ($ (-1176) (-690 (-702)))) (-15 -4077 ($ (-1176) (-690 (-700)))) (-15 -4077 ($ (-1176) (-690 (-695)))) (-15 -4077 ($ (-1176) (-1266 (-702)))) (-15 -4077 ($ (-1176) (-1266 (-700)))) (-15 -4077 ($ (-1176) (-1266 (-695)))) (-15 -4077 ($ (-1176) (-690 (-317 (-702))))) (-15 -4077 ($ (-1176) (-690 (-317 (-700))))) (-15 -4077 ($ (-1176) (-690 (-317 (-695))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-702))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-700))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-695))))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-702)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-700)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-695)))) (-15 -4077 ($ (-1176) (-317 (-567)))) (-15 -4077 ($ (-1176) (-317 (-381)))) (-15 -4077 ($ (-1176) (-317 (-169 (-381))))) (-15 -4077 ($ (-1176) (-690 (-317 (-567))))) (-15 -4077 ($ (-1176) (-690 (-317 (-381))))) (-15 -4077 ($ (-1176) (-690 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-567))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-381))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-567)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-381)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-169 (-381))))) (-15 -1378 ($ (-645 $))) (-15 -3941 ($)) (-15 -3386 ($)) (-15 -4375 ($ (-645 (-863)))) (-15 -1878 ($ (-1176) (-645 (-1176)))) (-15 -3301 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1769 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1176)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1176)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1175)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3353 (-112)) (|:| -3843 (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1158))) (|:| |callBranch| (-1158)) (|:| |forBranch| (-2 (|:| -3674 (-1092 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1830 $))) (|:| |labelBranch| (-1120)) (|:| |loopBranch| (-2 (|:| |switch| (-1175)) (|:| -1830 $))) (|:| |commonBranch| (-2 (|:| -1817 (-1176)) (|:| |contents| (-645 (-1176))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -3730 ((-1271) $)) (-15 -2418 ((-1104) $)) (-15 -2158 ((-1120) (-1120)))))) (T -331))
+((-2964 (*1 *1 *2 *1) (-12 (-5 *2 (-1092 (-953 (-567)))) (-5 *1 (-331)))) (-2964 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1092 (-953 (-567)))) (-5 *3 (-953 (-567))) (-5 *1 (-331)))) (-2895 (*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331)))) (-3720 (*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331)))) (-3879 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-331)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-331)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-331)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-331)))) (-2756 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-331)))) (-2293 (*1 *1) (-5 *1 (-331))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331)))) (-2293 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-3039 (*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331)))) (-3039 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1158)) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-702))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-700))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-695))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-702))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-700))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-695))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-702))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-700))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-695))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-702)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-700)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-695)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-702))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-700))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-695))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-567))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-381))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-567)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-381)))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-169 (-381))))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-567))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-381))) (-5 *1 (-331)))) (-4077 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331)))) (-1378 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))) (-3941 (*1 *1) (-5 *1 (-331))) (-3386 (*1 *1) (-5 *1 (-331))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))) (-1878 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1176)) (-5 *1 (-331)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-331)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1176)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1176)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1175)) (|:| |thenClause| (-331)) (|:| |elseClause| (-331)))) (|:| |returnBranch| (-2 (|:| -3353 (-112)) (|:| -3843 (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |blockBranch| (-645 (-331))) (|:| |commentBranch| (-645 (-1158))) (|:| |callBranch| (-1158)) (|:| |forBranch| (-2 (|:| -3674 (-1092 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1830 (-331)))) (|:| |labelBranch| (-1120)) (|:| |loopBranch| (-2 (|:| |switch| (-1175)) (|:| -1830 (-331)))) (|:| |commonBranch| (-2 (|:| -1817 (-1176)) (|:| |contents| (-645 (-1176))))) (|:| |printBranch| (-645 (-863))))) (-5 *1 (-331)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-331)))) (-2418 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-331)))) (-2158 (*1 *2 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-331)))))
+(-13 (-1100) (-10 -8 (-15 -2964 ($ (-1092 (-953 (-567))) $)) (-15 -2964 ($ (-1092 (-953 (-567))) (-953 (-567)) $)) (-15 -2895 ($ (-1175) $)) (-15 -3720 ($ (-1175) $)) (-15 -3879 ($ (-1120))) (-15 -2997 ($ (-1120))) (-15 -2774 ($ (-1158))) (-15 -2774 ($ (-645 (-1158)))) (-15 -2756 ($ (-1158))) (-15 -2293 ($)) (-15 -2293 ($ (-317 (-700)))) (-15 -2293 ($ (-317 (-702)))) (-15 -2293 ($ (-317 (-695)))) (-15 -2293 ($ (-317 (-381)))) (-15 -2293 ($ (-317 (-567)))) (-15 -2293 ($ (-317 (-169 (-381))))) (-15 -3039 ($ (-1175) $)) (-15 -3039 ($ (-1175) $ $)) (-15 -4077 ($ (-1176) (-1158))) (-15 -4077 ($ (-1176) (-317 (-702)))) (-15 -4077 ($ (-1176) (-317 (-700)))) (-15 -4077 ($ (-1176) (-317 (-695)))) (-15 -4077 ($ (-1176) (-690 (-702)))) (-15 -4077 ($ (-1176) (-690 (-700)))) (-15 -4077 ($ (-1176) (-690 (-695)))) (-15 -4077 ($ (-1176) (-1266 (-702)))) (-15 -4077 ($ (-1176) (-1266 (-700)))) (-15 -4077 ($ (-1176) (-1266 (-695)))) (-15 -4077 ($ (-1176) (-690 (-317 (-702))))) (-15 -4077 ($ (-1176) (-690 (-317 (-700))))) (-15 -4077 ($ (-1176) (-690 (-317 (-695))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-702))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-700))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-695))))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-702)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-700)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-695)))) (-15 -4077 ($ (-1176) (-317 (-567)))) (-15 -4077 ($ (-1176) (-317 (-381)))) (-15 -4077 ($ (-1176) (-317 (-169 (-381))))) (-15 -4077 ($ (-1176) (-690 (-317 (-567))))) (-15 -4077 ($ (-1176) (-690 (-317 (-381))))) (-15 -4077 ($ (-1176) (-690 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-567))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-381))))) (-15 -4077 ($ (-1176) (-1266 (-317 (-169 (-381)))))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-567)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-381)))) (-15 -4077 ($ (-1176) (-645 (-953 (-567))) (-317 (-169 (-381))))) (-15 -1378 ($ (-645 $))) (-15 -3941 ($)) (-15 -3386 ($)) (-15 -4375 ($ (-645 (-863)))) (-15 -1878 ($ (-1176) (-645 (-1176)))) (-15 -3301 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1769 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1176)) (|:| |arrayIndex| (-645 (-953 (-567)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1176)) (|:| |rand| (-863)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1175)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3353 (-112)) (|:| -3843 (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863)))))) (|:| |blockBranch| (-645 $)) (|:| |commentBranch| (-645 (-1158))) (|:| |callBranch| (-1158)) (|:| |forBranch| (-2 (|:| -3674 (-1092 (-953 (-567)))) (|:| |span| (-953 (-567))) (|:| -1830 $))) (|:| |labelBranch| (-1120)) (|:| |loopBranch| (-2 (|:| |switch| (-1175)) (|:| -1830 $))) (|:| |commonBranch| (-2 (|:| -1817 (-1176)) (|:| |contents| (-645 (-1176))))) (|:| |printBranch| (-645 (-863)))) $)) (-15 -3730 ((-1271) $)) (-15 -2418 ((-1104) $)) (-15 -2158 ((-1120) (-1120)))))
+((-2257 (((-112) $ $) NIL)) (-1863 (((-112) $) 13)) (-1577 (($ |#1|) 10)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1592 (($ |#1|) 12)) (-4101 (((-863) $) 19)) (-3739 (((-112) $ $) NIL)) (-3600 ((|#1| $) 14)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 21)))
+(((-332 |#1|) (-13 (-851) (-10 -8 (-15 -1577 ($ |#1|)) (-15 -1592 ($ |#1|)) (-15 -1863 ((-112) $)) (-15 -3600 (|#1| $)))) (-851)) (T -332))
+((-1577 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-1592 (*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))) (-3600 (*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851)))))
+(-13 (-851) (-10 -8 (-15 -1577 ($ |#1|)) (-15 -1592 ($ |#1|)) (-15 -1863 ((-112) $)) (-15 -3600 (|#1| $))))
+((-2693 (((-331) (-1176) (-953 (-567))) 23)) (-3717 (((-331) (-1176) (-953 (-567))) 27)) (-1349 (((-331) (-1176) (-1092 (-953 (-567))) (-1092 (-953 (-567)))) 26) (((-331) (-1176) (-953 (-567)) (-953 (-567))) 24)) (-2226 (((-331) (-1176) (-953 (-567))) 31)))
+(((-333) (-10 -7 (-15 -2693 ((-331) (-1176) (-953 (-567)))) (-15 -1349 ((-331) (-1176) (-953 (-567)) (-953 (-567)))) (-15 -1349 ((-331) (-1176) (-1092 (-953 (-567))) (-1092 (-953 (-567))))) (-15 -3717 ((-331) (-1176) (-953 (-567)))) (-15 -2226 ((-331) (-1176) (-953 (-567)))))) (T -333))
+((-2226 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1349 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-1092 (-953 (-567)))) (-5 *2 (-331)) (-5 *1 (-333)))) (-1349 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))) (-2693 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331)) (-5 *1 (-333)))))
+(-10 -7 (-15 -2693 ((-331) (-1176) (-953 (-567)))) (-15 -1349 ((-331) (-1176) (-953 (-567)) (-953 (-567)))) (-15 -1349 ((-331) (-1176) (-1092 (-953 (-567))) (-1092 (-953 (-567))))) (-15 -3717 ((-331) (-1176) (-953 (-567)))) (-15 -2226 ((-331) (-1176) (-953 (-567)))))
+((-2257 (((-112) $ $) NIL)) (-2628 (((-509) $) 20)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1794 (((-959 (-772)) $) 18)) (-4084 (((-250) $) 7)) (-4101 (((-863) $) 26)) (-3550 (((-959 (-183 (-139))) $) 16)) (-3739 (((-112) $ $) NIL)) (-3220 (((-645 (-874 (-1181) (-772))) $) 12)) (-3052 (((-112) $ $) 22)))
+(((-334) (-13 (-1100) (-10 -8 (-15 -4084 ((-250) $)) (-15 -3220 ((-645 (-874 (-1181) (-772))) $)) (-15 -1794 ((-959 (-772)) $)) (-15 -3550 ((-959 (-183 (-139))) $)) (-15 -2628 ((-509) $))))) (T -334))
+((-4084 (*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1181) (-772)))) (-5 *1 (-334)))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-959 (-772))) (-5 *1 (-334)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-959 (-183 (-139)))) (-5 *1 (-334)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334)))))
+(-13 (-1100) (-10 -8 (-15 -4084 ((-250) $)) (-15 -3220 ((-645 (-874 (-1181) (-772))) $)) (-15 -1794 ((-959 (-772)) $)) (-15 -3550 ((-959 (-183 (-139))) $)) (-15 -2628 ((-509) $))))
+((-3494 (((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)) 33)))
+(((-335 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3494 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|)))) (-365) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-365) (-1242 |#5|) (-1242 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -335))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365)) (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *9 (-365)) (-4 *10 (-1242 *9)) (-4 *11 (-1242 (-410 *10))) (-5 *2 (-338 *9 *10 *11 *12)) (-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-344 *9 *10 *11)))))
+(-10 -7 (-15 -3494 ((-338 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-338 |#1| |#2| |#3| |#4|))))
+((-4206 (((-112) $) 14)))
+(((-336 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4206 ((-112) |#1|))) (-337 |#2| |#3| |#4| |#5|) (-365) (-1242 |#2|) (-1242 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -336))
+NIL
+(-10 -8 (-15 -4206 ((-112) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3402 (($ $) 29)) (-4206 (((-112) $) 28)) (-2451 (((-1158) $) 10)) (-1956 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 35)) (-3339 (((-1120) $) 11)) (-4099 (((-3 |#4| "failed") $) 27)) (-2277 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 34) (($ |#4|) 33) (($ |#1| |#1|) 32) (($ |#1| |#1| (-567)) 31) (($ |#4| |#2| |#2| |#2| |#1|) 26)) (-2912 (((-2 (|:| -3978 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24)))
+(((-337 |#1| |#2| |#3| |#4|) (-140) (-365) (-1242 |t#1|) (-1242 (-410 |t#2|)) (-344 |t#1| |t#2| |t#3|)) (T -337))
+((-1956 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-416 *4 (-410 *4) *5 *6)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365)) (-4 *1 (-337 *3 *4 *5 *6)))) (-2277 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5)))) (-2277 (*1 *1 *2 *2) (-12 (-4 *2 (-365)) (-4 *3 (-1242 *2)) (-4 *4 (-1242 (-410 *3))) (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4)))) (-2277 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1242 *2)) (-4 *5 (-1242 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6)) (-4 *6 (-344 *2 *4 *5)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-2 (|:| -3978 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6))))) (-3402 (*1 *1 *1) (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1242 *2)) (-4 *4 (-1242 (-410 *3))) (-4 *5 (-344 *2 *3 *4)))) (-4206 (*1 *2 *1) (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-4 *2 (-344 *3 *4 *5)))) (-2277 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-365)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 (-410 *3))) (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -1956 ((-416 |t#2| (-410 |t#2|) |t#3| |t#4|) $)) (-15 -2277 ($ (-416 |t#2| (-410 |t#2|) |t#3| |t#4|))) (-15 -2277 ($ |t#4|)) (-15 -2277 ($ |t#1| |t#1|)) (-15 -2277 ($ |t#1| |t#1| (-567))) (-15 -2912 ((-2 (|:| -3978 (-416 |t#2| (-410 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3402 ($ $)) (-15 -4206 ((-112) $)) (-15 -4099 ((-3 |t#4| "failed") $)) (-15 -2277 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3402 (($ $) 33)) (-4206 (((-112) $) NIL)) (-2451 (((-1158) $) NIL)) (-2294 (((-1266 |#4|) $) 135)) (-1956 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 31)) (-3339 (((-1120) $) NIL)) (-4099 (((-3 |#4| "failed") $) 36)) (-2593 (((-1266 |#4|) $) 127)) (-2277 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-567)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2912 (((-2 (|:| -3978 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-4101 (((-863) $) 17)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 14 T CONST)) (-3052 (((-112) $ $) 20)) (-3156 (($ $) 27) (($ $ $) NIL)) (-3146 (($ $ $) 25)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 23)))
+(((-338 |#1| |#2| |#3| |#4|) (-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2593 ((-1266 |#4|) $)) (-15 -2294 ((-1266 |#4|) $)))) (-365) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -338))
+((-2593 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-1266 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))) (-2294 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-1266 *6)) (-5 *1 (-338 *3 *4 *5 *6)) (-4 *6 (-344 *3 *4 *5)))))
+(-13 (-337 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2593 ((-1266 |#4|) $)) (-15 -2294 ((-1266 |#4|) $))))
+((-3140 (($ $ (-1176) |#2|) NIL) (($ $ (-645 (-1176)) (-645 |#2|)) 20) (($ $ (-645 (-295 |#2|))) 15) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-1552 (($ $ |#2|) 11)))
+(((-339 |#1| |#2|) (-10 -8 (-15 -1552 (|#1| |#1| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#2| |#2|)) (-15 -3140 (|#1| |#1| (-295 |#2|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 |#2|))) (-15 -3140 (|#1| |#1| (-1176) |#2|))) (-340 |#2|) (-1100)) (T -339))
+NIL
+(-10 -8 (-15 -1552 (|#1| |#1| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#2| |#2|)) (-15 -3140 (|#1| |#1| (-295 |#2|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 |#2|))) (-15 -3140 (|#1| |#1| (-1176) |#2|)))
+((-3494 (($ (-1 |#1| |#1|) $) 6)) (-3140 (($ $ (-1176) |#1|) 17 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) 16 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-645 (-295 |#1|))) 15 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 14 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-310 |#1|))) (($ $ (-645 |#1|) (-645 |#1|)) 12 (|has| |#1| (-310 |#1|)))) (-1552 (($ $ |#1|) 11 (|has| |#1| (-287 |#1| |#1|)))))
+(((-340 |#1|) (-140) (-1100)) (T -340))
+((-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1100)))))
+(-13 (-10 -8 (-15 -3494 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-287 |t#1| |t#1|)) (-6 (-287 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517 (-1176) |t#1|)) (-6 (-517 (-1176) |t#1|)) |%noBranch|)))
+(((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-517 (-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1176)) $) NIL)) (-1327 (((-112)) 99) (((-112) (-112)) 100)) (-2138 (((-645 (-613 $)) $) NIL)) (-1772 (($ $) NIL)) (-1605 (($ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3099 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-2307 (($ $) NIL)) (-1747 (($ $) NIL)) (-1577 (($ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-613 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-317 |#3|)) 79) (((-3 $ "failed") (-1176)) 105) (((-3 $ "failed") (-317 (-567))) 67 (|has| |#3| (-1039 (-567)))) (((-3 $ "failed") (-410 (-953 (-567)))) 73 (|has| |#3| (-1039 (-567)))) (((-3 $ "failed") (-953 (-567))) 68 (|has| |#3| (-1039 (-567)))) (((-3 $ "failed") (-317 (-381))) 97 (|has| |#3| (-1039 (-381)))) (((-3 $ "failed") (-410 (-953 (-381)))) 91 (|has| |#3| (-1039 (-381)))) (((-3 $ "failed") (-953 (-381))) 86 (|has| |#3| (-1039 (-381))))) (-1621 (((-613 $) $) NIL) ((|#3| $) NIL) (($ (-317 |#3|)) 80) (($ (-1176)) 106) (($ (-317 (-567))) 69 (|has| |#3| (-1039 (-567)))) (($ (-410 (-953 (-567)))) 74 (|has| |#3| (-1039 (-567)))) (($ (-953 (-567))) 70 (|has| |#3| (-1039 (-567)))) (($ (-317 (-381))) 98 (|has| |#3| (-1039 (-381)))) (($ (-410 (-953 (-381)))) 92 (|has| |#3| (-1039 (-381)))) (($ (-953 (-381))) 88 (|has| |#3| (-1039 (-381))))) (-4014 (((-3 $ "failed") $) NIL)) (-4098 (($) 10)) (-3775 (($ $) NIL) (($ (-645 $)) NIL)) (-1583 (((-645 (-114)) $) NIL)) (-2236 (((-114) (-114)) NIL)) (-3714 (((-112) $) NIL)) (-3937 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-3612 (((-1172 $) (-613 $)) NIL (|has| $ (-1050)))) (-3494 (($ (-1 $ $) (-613 $)) NIL)) (-2378 (((-3 (-613 $) "failed") $) NIL)) (-1456 (($ $) 102)) (-2942 (($ $) NIL)) (-2451 (((-1158) $) NIL)) (-2224 (((-645 (-613 $)) $) NIL)) (-4147 (($ (-114) $) 101) (($ (-114) (-645 $)) NIL)) (-1527 (((-112) $ (-114)) NIL) (((-112) $ (-1176)) NIL)) (-3080 (((-772) $) NIL)) (-3339 (((-1120) $) NIL)) (-4151 (((-112) $ $) NIL) (((-112) $ (-1176)) NIL)) (-2910 (($ $) NIL)) (-2143 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-3140 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1176) (-1 $ (-645 $))) NIL) (($ $ (-1176) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-1552 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2468 (($ $) NIL) (($ $ $) NIL)) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL)) (-2713 (($ $) NIL (|has| $ (-1050)))) (-1757 (($ $) NIL)) (-1592 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-613 $)) NIL) (($ |#3|) NIL) (($ (-567)) NIL) (((-317 |#3|) $) 104)) (-2686 (((-772)) NIL T CONST)) (-4385 (($ $) NIL) (($ (-645 $)) NIL)) (-2214 (((-112) (-114)) NIL)) (-3739 (((-112) $ $) NIL)) (-1690 (($ $) NIL)) (-1660 (($ $) NIL)) (-1673 (($ $) NIL)) (-1771 (($ $) NIL)) (-1468 (($) 103 T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $ $) NIL) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL)))
+(((-341 |#1| |#2| |#3|) (-13 (-303) (-38 |#3|) (-1039 |#3|) (-901 (-1176)) (-10 -8 (-15 -1621 ($ (-317 |#3|))) (-15 -3417 ((-3 $ "failed") (-317 |#3|))) (-15 -1621 ($ (-1176))) (-15 -3417 ((-3 $ "failed") (-1176))) (-15 -4101 ((-317 |#3|) $)) (IF (|has| |#3| (-1039 (-567))) (PROGN (-15 -1621 ($ (-317 (-567)))) (-15 -3417 ((-3 $ "failed") (-317 (-567)))) (-15 -1621 ($ (-410 (-953 (-567))))) (-15 -3417 ((-3 $ "failed") (-410 (-953 (-567))))) (-15 -1621 ($ (-953 (-567)))) (-15 -3417 ((-3 $ "failed") (-953 (-567))))) |%noBranch|) (IF (|has| |#3| (-1039 (-381))) (PROGN (-15 -1621 ($ (-317 (-381)))) (-15 -3417 ((-3 $ "failed") (-317 (-381)))) (-15 -1621 ($ (-410 (-953 (-381))))) (-15 -3417 ((-3 $ "failed") (-410 (-953 (-381))))) (-15 -1621 ($ (-953 (-381)))) (-15 -3417 ((-3 $ "failed") (-953 (-381))))) |%noBranch|) (-15 -1771 ($ $)) (-15 -2307 ($ $)) (-15 -2910 ($ $)) (-15 -2942 ($ $)) (-15 -1456 ($ $)) (-15 -1577 ($ $)) (-15 -1592 ($ $)) (-15 -1605 ($ $)) (-15 -1660 ($ $)) (-15 -1673 ($ $)) (-15 -1690 ($ $)) (-15 -1747 ($ $)) (-15 -1757 ($ $)) (-15 -1772 ($ $)) (-15 -4098 ($)) (-15 -2449 ((-645 (-1176)) $)) (-15 -1327 ((-112))) (-15 -1327 ((-112) (-112))))) (-645 (-1176)) (-645 (-1176)) (-390)) (T -341))
+((-1621 (*1 *1 *2) (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5)) (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1771 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-2307 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-2910 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-2942 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1577 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1605 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1673 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1690 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1747 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1757 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-1772 (*1 *1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-4098 (*1 *1) (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176))) (-14 *3 (-645 (-1176))) (-4 *4 (-390)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-390)))) (-1327 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))) (-1327 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390)))))
+(-13 (-303) (-38 |#3|) (-1039 |#3|) (-901 (-1176)) (-10 -8 (-15 -1621 ($ (-317 |#3|))) (-15 -3417 ((-3 $ "failed") (-317 |#3|))) (-15 -1621 ($ (-1176))) (-15 -3417 ((-3 $ "failed") (-1176))) (-15 -4101 ((-317 |#3|) $)) (IF (|has| |#3| (-1039 (-567))) (PROGN (-15 -1621 ($ (-317 (-567)))) (-15 -3417 ((-3 $ "failed") (-317 (-567)))) (-15 -1621 ($ (-410 (-953 (-567))))) (-15 -3417 ((-3 $ "failed") (-410 (-953 (-567))))) (-15 -1621 ($ (-953 (-567)))) (-15 -3417 ((-3 $ "failed") (-953 (-567))))) |%noBranch|) (IF (|has| |#3| (-1039 (-381))) (PROGN (-15 -1621 ($ (-317 (-381)))) (-15 -3417 ((-3 $ "failed") (-317 (-381)))) (-15 -1621 ($ (-410 (-953 (-381))))) (-15 -3417 ((-3 $ "failed") (-410 (-953 (-381))))) (-15 -1621 ($ (-953 (-381)))) (-15 -3417 ((-3 $ "failed") (-953 (-381))))) |%noBranch|) (-15 -1771 ($ $)) (-15 -2307 ($ $)) (-15 -2910 ($ $)) (-15 -2942 ($ $)) (-15 -1456 ($ $)) (-15 -1577 ($ $)) (-15 -1592 ($ $)) (-15 -1605 ($ $)) (-15 -1660 ($ $)) (-15 -1673 ($ $)) (-15 -1690 ($ $)) (-15 -1747 ($ $)) (-15 -1757 ($ $)) (-15 -1772 ($ $)) (-15 -4098 ($)) (-15 -2449 ((-645 (-1176)) $)) (-15 -1327 ((-112))) (-15 -1327 ((-112) (-112)))))
+((-3494 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-342 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3494 (|#8| (-1 |#5| |#1|) |#4|))) (-1220) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-1220) (-1242 |#5|) (-1242 (-410 |#6|)) (-344 |#5| |#6| |#7|)) (T -342))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1220)) (-4 *8 (-1220)) (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-4 *9 (-1242 *8)) (-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1242 (-410 *9))))))
+(-10 -7 (-15 -3494 (|#8| (-1 |#5| |#1|) |#4|)))
+((-4068 (((-2 (|:| |num| (-1266 |#3|)) (|:| |den| |#3|)) $) 40)) (-3499 (($ (-1266 (-410 |#3|)) (-1266 $)) NIL) (($ (-1266 (-410 |#3|))) NIL) (($ (-1266 |#3|) |#3|) 177)) (-4015 (((-1266 $) (-1266 $)) 161)) (-1339 (((-645 (-645 |#2|))) 130)) (-4017 (((-112) |#2| |#2|) 77)) (-2958 (($ $) 152)) (-3163 (((-772)) 33)) (-1413 (((-1266 $) (-1266 $)) 222)) (-3456 (((-645 (-953 |#2|)) (-1176)) 119)) (-4273 (((-112) $) 174)) (-2517 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-2234 (((-3 |#3| "failed")) 53)) (-3529 (((-772)) 188)) (-1552 ((|#2| $ |#2| |#2|) 144)) (-1944 (((-3 |#3| "failed")) 72)) (-1930 (($ $ (-1 (-410 |#3|) (-410 |#3|)) (-772)) NIL) (($ $ (-1 (-410 |#3|) (-410 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3947 (((-1266 $) (-1266 $)) 167)) (-2773 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-1913 (((-112)) 35)))
+(((-343 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1339 ((-645 (-645 |#2|)))) (-15 -3456 ((-645 (-953 |#2|)) (-1176))) (-15 -2773 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2234 ((-3 |#3| "failed"))) (-15 -1944 ((-3 |#3| "failed"))) (-15 -1552 (|#2| |#1| |#2| |#2|)) (-15 -2958 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2517 ((-112) |#1| |#3|)) (-15 -2517 ((-112) |#1| |#2|)) (-15 -3499 (|#1| (-1266 |#3|) |#3|)) (-15 -4068 ((-2 (|:| |num| (-1266 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4015 ((-1266 |#1|) (-1266 |#1|))) (-15 -1413 ((-1266 |#1|) (-1266 |#1|))) (-15 -3947 ((-1266 |#1|) (-1266 |#1|))) (-15 -2517 ((-112) |#1|)) (-15 -4273 ((-112) |#1|)) (-15 -4017 ((-112) |#2| |#2|)) (-15 -1913 ((-112))) (-15 -3529 ((-772))) (-15 -3163 ((-772))) (-15 -1930 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1930 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3499 (|#1| (-1266 (-410 |#3|)))) (-15 -3499 (|#1| (-1266 (-410 |#3|)) (-1266 |#1|)))) (-344 |#2| |#3| |#4|) (-1220) (-1242 |#2|) (-1242 (-410 |#3|))) (T -343))
+((-3163 (*1 *2) (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-3529 (*1 *2) (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-1913 (*1 *2) (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))) (-4017 (*1 *2 *3 *3) (-12 (-4 *3 (-1220)) (-4 *5 (-1242 *3)) (-4 *6 (-1242 (-410 *5))) (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6)))) (-1944 (*1 *2) (|partial| -12 (-4 *4 (-1220)) (-4 *5 (-1242 (-410 *2))) (-4 *2 (-1242 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-2234 (*1 *2) (|partial| -12 (-4 *4 (-1220)) (-4 *5 (-1242 (-410 *2))) (-4 *2 (-1242 *4)) (-5 *1 (-343 *3 *4 *2 *5)) (-4 *3 (-344 *4 *2 *5)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *5 (-1220)) (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-5 *2 (-645 (-953 *5))) (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7)))) (-1339 (*1 *2) (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6)))))
+(-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1339 ((-645 (-645 |#2|)))) (-15 -3456 ((-645 (-953 |#2|)) (-1176))) (-15 -2773 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2234 ((-3 |#3| "failed"))) (-15 -1944 ((-3 |#3| "failed"))) (-15 -1552 (|#2| |#1| |#2| |#2|)) (-15 -2958 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2517 ((-112) |#1| |#3|)) (-15 -2517 ((-112) |#1| |#2|)) (-15 -3499 (|#1| (-1266 |#3|) |#3|)) (-15 -4068 ((-2 (|:| |num| (-1266 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -4015 ((-1266 |#1|) (-1266 |#1|))) (-15 -1413 ((-1266 |#1|) (-1266 |#1|))) (-15 -3947 ((-1266 |#1|) (-1266 |#1|))) (-15 -2517 ((-112) |#1|)) (-15 -4273 ((-112) |#1|)) (-15 -4017 ((-112) |#2| |#2|)) (-15 -1913 ((-112))) (-15 -3529 ((-772))) (-15 -3163 ((-772))) (-15 -1930 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)))) (-15 -1930 (|#1| |#1| (-1 (-410 |#3|) (-410 |#3|)) (-772))) (-15 -3499 (|#1| (-1266 (-410 |#3|)))) (-15 -3499 (|#1| (-1266 (-410 |#3|)) (-1266 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4068 (((-2 (|:| |num| (-1266 |#2|)) (|:| |den| |#2|)) $) 204)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 102 (|has| (-410 |#2|) (-365)))) (-3602 (($ $) 103 (|has| (-410 |#2|) (-365)))) (-2119 (((-112) $) 105 (|has| (-410 |#2|) (-365)))) (-3007 (((-690 (-410 |#2|)) (-1266 $)) 53) (((-690 (-410 |#2|))) 68)) (-4093 (((-410 |#2|) $) 59)) (-1783 (((-1189 (-922) (-772)) (-567)) 155 (|has| (-410 |#2|) (-351)))) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 122 (|has| (-410 |#2|) (-365)))) (-1401 (((-421 $) $) 123 (|has| (-410 |#2|) (-365)))) (-3405 (((-112) $ $) 113 (|has| (-410 |#2|) (-365)))) (-2013 (((-772)) 96 (|has| (-410 |#2|) (-370)))) (-3897 (((-112)) 221)) (-3056 (((-112) |#1|) 220) (((-112) |#2|) 219)) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 178 (|has| (-410 |#2|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) 173)) (-1621 (((-567) $) 177 (|has| (-410 |#2|) (-1039 (-567)))) (((-410 (-567)) $) 175 (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-410 |#2|) $) 174)) (-3499 (($ (-1266 (-410 |#2|)) (-1266 $)) 55) (($ (-1266 (-410 |#2|))) 71) (($ (-1266 |#2|) |#2|) 203)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| (-410 |#2|) (-351)))) (-2197 (($ $ $) 117 (|has| (-410 |#2|) (-365)))) (-4253 (((-690 (-410 |#2|)) $ (-1266 $)) 60) (((-690 (-410 |#2|)) $) 66)) (-1920 (((-690 (-567)) (-690 $)) 172 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 171 (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-410 |#2|))) (|:| |vec| (-1266 (-410 |#2|)))) (-690 $) (-1266 $)) 170) (((-690 (-410 |#2|)) (-690 $)) 169)) (-4015 (((-1266 $) (-1266 $)) 209)) (-3402 (($ |#3|) 166) (((-3 $ "failed") (-410 |#3|)) 163 (|has| (-410 |#2|) (-365)))) (-4014 (((-3 $ "failed") $) 37)) (-1339 (((-645 (-645 |#1|))) 190 (|has| |#1| (-370)))) (-4017 (((-112) |#1| |#1|) 225)) (-2432 (((-922)) 61)) (-1649 (($) 99 (|has| (-410 |#2|) (-370)))) (-4357 (((-112)) 218)) (-3095 (((-112) |#1|) 217) (((-112) |#2|) 216)) (-2210 (($ $ $) 116 (|has| (-410 |#2|) (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 111 (|has| (-410 |#2|) (-365)))) (-2958 (($ $) 196)) (-3896 (($) 157 (|has| (-410 |#2|) (-351)))) (-1596 (((-112) $) 158 (|has| (-410 |#2|) (-351)))) (-2966 (($ $ (-772)) 149 (|has| (-410 |#2|) (-351))) (($ $) 148 (|has| (-410 |#2|) (-351)))) (-1665 (((-112) $) 124 (|has| (-410 |#2|) (-365)))) (-1909 (((-922) $) 160 (|has| (-410 |#2|) (-351))) (((-834 (-922)) $) 146 (|has| (-410 |#2|) (-351)))) (-3714 (((-112) $) 35)) (-3163 (((-772)) 228)) (-1413 (((-1266 $) (-1266 $)) 210)) (-3751 (((-410 |#2|) $) 58)) (-3456 (((-645 (-953 |#1|)) (-1176)) 191 (|has| |#1| (-365)))) (-2802 (((-3 $ "failed") $) 150 (|has| (-410 |#2|) (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| (-410 |#2|) (-365)))) (-4110 ((|#3| $) 51 (|has| (-410 |#2|) (-365)))) (-3527 (((-922) $) 98 (|has| (-410 |#2|) (-370)))) (-3392 ((|#3| $) 164)) (-3245 (($ (-645 $)) 109 (|has| (-410 |#2|) (-365))) (($ $ $) 108 (|has| (-410 |#2|) (-365)))) (-2451 (((-1158) $) 10)) (-1337 (((-690 (-410 |#2|))) 205)) (-3468 (((-690 (-410 |#2|))) 207)) (-2559 (($ $) 125 (|has| (-410 |#2|) (-365)))) (-4244 (($ (-1266 |#2|) |#2|) 201)) (-1742 (((-690 (-410 |#2|))) 206)) (-4219 (((-690 (-410 |#2|))) 208)) (-1938 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 200)) (-1431 (((-2 (|:| |num| (-1266 |#2|)) (|:| |den| |#2|)) $) 202)) (-3691 (((-1266 $)) 214)) (-1835 (((-1266 $)) 215)) (-4273 (((-112) $) 213)) (-2517 (((-112) $) 212) (((-112) $ |#1|) 199) (((-112) $ |#2|) 198)) (-2596 (($) 151 (|has| (-410 |#2|) (-351)) CONST)) (-3811 (($ (-922)) 97 (|has| (-410 |#2|) (-370)))) (-2234 (((-3 |#2| "failed")) 193)) (-3339 (((-1120) $) 11)) (-3529 (((-772)) 227)) (-4099 (($) 168)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 110 (|has| (-410 |#2|) (-365)))) (-3276 (($ (-645 $)) 107 (|has| (-410 |#2|) (-365))) (($ $ $) 106 (|has| (-410 |#2|) (-365)))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 154 (|has| (-410 |#2|) (-351)))) (-2296 (((-421 $) $) 121 (|has| (-410 |#2|) (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 118 (|has| (-410 |#2|) (-365)))) (-2245 (((-3 $ "failed") $ $) 101 (|has| (-410 |#2|) (-365)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| (-410 |#2|) (-365)))) (-4369 (((-772) $) 114 (|has| (-410 |#2|) (-365)))) (-1552 ((|#1| $ |#1| |#1|) 195)) (-1944 (((-3 |#2| "failed")) 194)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 115 (|has| (-410 |#2|) (-365)))) (-3347 (((-410 |#2|) (-1266 $)) 54) (((-410 |#2|)) 67)) (-2097 (((-772) $) 159 (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) 147 (|has| (-410 |#2|) (-351)))) (-1930 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 131 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 130 (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) 197) (($ $ (-645 (-1176)) (-645 (-772))) 138 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-1176) (-772)) 139 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1176))) 140 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-1176)) 141 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 143 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1410 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 145 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1410 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3374 (((-690 (-410 |#2|)) (-1266 $) (-1 (-410 |#2|) (-410 |#2|))) 162 (|has| (-410 |#2|) (-365)))) (-2713 ((|#3|) 167)) (-1698 (($) 156 (|has| (-410 |#2|) (-351)))) (-3216 (((-1266 (-410 |#2|)) $ (-1266 $)) 57) (((-690 (-410 |#2|)) (-1266 $) (-1266 $)) 56) (((-1266 (-410 |#2|)) $) 73) (((-690 (-410 |#2|)) (-1266 $)) 72)) (-3542 (((-1266 (-410 |#2|)) $) 70) (($ (-1266 (-410 |#2|))) 69) ((|#3| $) 179) (($ |#3|) 165)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 153 (|has| (-410 |#2|) (-351)))) (-3947 (((-1266 $) (-1266 $)) 211)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 |#2|)) 44) (($ (-410 (-567))) 95 (-2909 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-1039 (-410 (-567)))))) (($ $) 100 (|has| (-410 |#2|) (-365)))) (-4242 (($ $) 152 (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) 50 (|has| (-410 |#2|) (-145)))) (-4121 ((|#3| $) 52)) (-2686 (((-772)) 32 T CONST)) (-3143 (((-112)) 224)) (-2978 (((-112) |#1|) 223) (((-112) |#2|) 222)) (-3739 (((-112) $ $) 9)) (-2557 (((-1266 $)) 74)) (-2469 (((-112) $ $) 104 (|has| (-410 |#2|) (-365)))) (-2773 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 192)) (-1913 (((-112)) 226)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) 133 (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) 132 (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1176)) (-645 (-772))) 134 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-1176) (-772)) 135 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-645 (-1176))) 136 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-1176)) 137 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) (-1410 (|has| (-410 |#2|) (-901 (-1176))) (|has| (-410 |#2|) (-365))))) (($ $ (-772)) 142 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1410 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) 144 (-2909 (-1410 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-233))) (-1410 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 129 (|has| (-410 |#2|) (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 |#2|)) 46) (($ (-410 |#2|) $) 45) (($ (-410 (-567)) $) 128 (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) 127 (|has| (-410 |#2|) (-365)))))
+(((-344 |#1| |#2| |#3|) (-140) (-1220) (-1242 |t#1|) (-1242 (-410 |t#2|))) (T -344))
+((-3163 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-772)))) (-3529 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-772)))) (-1913 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-4017 (*1 *2 *3 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-3143 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-2978 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-2978 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112)))) (-3897 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-3056 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-3056 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112)))) (-4357 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-3095 (*1 *2 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-3095 (*1 *2 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112)))) (-1835 (*1 *2) (-12 (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)))) (-3691 (*1 *2) (-12 (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)))) (-4273 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-3947 (*1 *2 *2) (-12 (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))))) (-4219 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-3468 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1742 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-1337 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))) (-4068 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1266 *4)) (|:| |den| *4))))) (-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1242 *4)) (-4 *4 (-1220)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1242 (-410 *3))))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-2 (|:| |num| (-1266 *4)) (|:| |den| *4))))) (-4244 (*1 *1 *2 *3) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1242 *4)) (-4 *4 (-1220)) (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1242 (-410 *3))))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))) (-2517 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))) (-2517 (*1 *2 *1 *3) (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112)))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))))) (-2958 (*1 *1 *1) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1220)) (-4 *3 (-1242 *2)) (-4 *4 (-1242 (-410 *3))))) (-1552 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1220)) (-4 *3 (-1242 *2)) (-4 *4 (-1242 (-410 *3))))) (-1944 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1220)) (-4 *4 (-1242 (-410 *2))) (-4 *2 (-1242 *3)))) (-2234 (*1 *2) (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1220)) (-4 *4 (-1242 (-410 *2))) (-4 *2 (-1242 *3)))) (-2773 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-1220)) (-4 *6 (-1242 (-410 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-344 *4 *5 *6)))) (-3456 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-4 *4 (-365)) (-5 *2 (-645 (-953 *4))))) (-1339 (*1 *2) (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3))))))
+(-13 (-725 (-410 |t#2|) |t#3|) (-10 -8 (-15 -3163 ((-772))) (-15 -3529 ((-772))) (-15 -1913 ((-112))) (-15 -4017 ((-112) |t#1| |t#1|)) (-15 -3143 ((-112))) (-15 -2978 ((-112) |t#1|)) (-15 -2978 ((-112) |t#2|)) (-15 -3897 ((-112))) (-15 -3056 ((-112) |t#1|)) (-15 -3056 ((-112) |t#2|)) (-15 -4357 ((-112))) (-15 -3095 ((-112) |t#1|)) (-15 -3095 ((-112) |t#2|)) (-15 -1835 ((-1266 $))) (-15 -3691 ((-1266 $))) (-15 -4273 ((-112) $)) (-15 -2517 ((-112) $)) (-15 -3947 ((-1266 $) (-1266 $))) (-15 -1413 ((-1266 $) (-1266 $))) (-15 -4015 ((-1266 $) (-1266 $))) (-15 -4219 ((-690 (-410 |t#2|)))) (-15 -3468 ((-690 (-410 |t#2|)))) (-15 -1742 ((-690 (-410 |t#2|)))) (-15 -1337 ((-690 (-410 |t#2|)))) (-15 -4068 ((-2 (|:| |num| (-1266 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3499 ($ (-1266 |t#2|) |t#2|)) (-15 -1431 ((-2 (|:| |num| (-1266 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4244 ($ (-1266 |t#2|) |t#2|)) (-15 -1938 ((-2 (|:| |num| (-690 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2517 ((-112) $ |t#1|)) (-15 -2517 ((-112) $ |t#2|)) (-15 -1930 ($ $ (-1 |t#2| |t#2|))) (-15 -2958 ($ $)) (-15 -1552 (|t#1| $ |t#1| |t#1|)) (-15 -1944 ((-3 |t#2| "failed"))) (-15 -2234 ((-3 |t#2| "failed"))) (-15 -2773 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-365)) (-15 -3456 ((-645 (-953 |t#1|)) (-1176))) |%noBranch|) (IF (|has| |t#1| (-370)) (-15 -1339 ((-645 (-645 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-38 #1=(-410 |#2|)) . T) ((-38 $) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-102) . T) ((-111 #0# #0#) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-145))) ((-147) |has| (-410 |#2|) (-147)) ((-617 #0#) -2909 (|has| (-410 |#2|) (-1039 (-410 (-567)))) (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-617 #1#) . T) ((-617 (-567)) . T) ((-617 $) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#3|) . T) ((-231 #1#) |has| (-410 |#2|) (-365)) ((-233) -2909 (|has| (-410 |#2|) (-351)) (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365)))) ((-243) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-291) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-308) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-365) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-405) |has| (-410 |#2|) (-351)) ((-370) -2909 (|has| (-410 |#2|) (-370)) (|has| (-410 |#2|) (-351))) ((-351) |has| (-410 |#2|) (-351)) ((-372 #1# |#3|) . T) ((-412 #1# |#3|) . T) ((-379 #1#) . T) ((-414 #1#) . T) ((-455) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-559) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #0#) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-647 #1#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-641 #1#) . T) ((-641 $) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-640 #1#) . T) ((-640 (-567)) |has| (-410 |#2|) (-640 (-567))) ((-718 #0#) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-718 #1#) . T) ((-718 $) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-725 #1# |#3|) . T) ((-727) . T) ((-901 (-1176)) -12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176)))) ((-921) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1039 (-410 (-567))) |has| (-410 |#2|) (-1039 (-410 (-567)))) ((-1039 #1#) . T) ((-1039 (-567)) |has| (-410 |#2|) (-1039 (-567))) ((-1052 #0#) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1052 #1#) . T) ((-1052 $) . T) ((-1057 #0#) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))) ((-1057 #1#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) |has| (-410 |#2|) (-351)) ((-1220) -2909 (|has| (-410 |#2|) (-351)) (|has| (-410 |#2|) (-365))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| (-911 |#1|) (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| (-911 |#1|) (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-911 |#1|) "failed") $) NIL)) (-1621 (((-911 |#1|) $) NIL)) (-3499 (($ (-1266 (-911 |#1|))) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-911 |#1|) (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-911 |#1|) (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL (|has| (-911 |#1|) (-370)))) (-1596 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370)))) (($ $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| (-911 |#1|) (-370))) (((-834 (-922)) $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| (-911 |#1|) (-370)))) (-4270 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-3751 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| (-911 |#1|) (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 (-911 |#1|)) $) NIL) (((-1172 $) $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3527 (((-922) $) NIL (|has| (-911 |#1|) (-370)))) (-2617 (((-1172 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370)))) (-4260 (((-1172 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-1172 (-911 |#1|)) "failed") $ $) NIL (|has| (-911 |#1|) (-370)))) (-2173 (($ $ (-1172 (-911 |#1|))) NIL (|has| (-911 |#1|) (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-911 |#1|) (-370)) CONST)) (-3811 (($ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-1836 (((-959 (-1120))) NIL)) (-4099 (($) NIL (|has| (-911 |#1|) (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| (-911 |#1|) (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 (-911 |#1|))) NIL)) (-1698 (($) NIL (|has| (-911 |#1|) (-370)))) (-3995 (($) NIL (|has| (-911 |#1|) (-370)))) (-3216 (((-1266 (-911 |#1|)) $) NIL) (((-690 (-911 |#1|)) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| (-911 |#1|) (-370)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-911 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-911 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL) (((-1266 $) (-922)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2692 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL) (($ $ (-911 |#1|)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-911 |#1|)) NIL) (($ (-911 |#1|) $) NIL)))
+(((-345 |#1| |#2|) (-13 (-330 (-911 |#1|)) (-10 -7 (-15 -1836 ((-959 (-1120)))))) (-922) (-922)) (T -345))
+((-1836 (*1 *2) (-12 (-5 *2 (-959 (-1120))) (-5 *1 (-345 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))))
+(-13 (-330 (-911 |#1|)) (-10 -7 (-15 -1836 ((-959 (-1120))))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 58)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) 56 (|has| |#1| (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 144)) (-1621 ((|#1| $) 115)) (-3499 (($ (-1266 |#1|)) 132)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) 126 (|has| |#1| (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) 162 (|has| |#1| (-370)))) (-1596 (((-112) $) 66 (|has| |#1| (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) 60 (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) 62)) (-1359 (($) 164 (|has| |#1| (-370)))) (-4270 (((-112) $) NIL (|has| |#1| (-370)))) (-3751 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 |#1|) $) 119) (((-1172 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3527 (((-922) $) 173 (|has| |#1| (-370)))) (-2617 (((-1172 |#1|) $) NIL (|has| |#1| (-370)))) (-4260 (((-1172 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1172 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2173 (($ $ (-1172 |#1|)) NIL (|has| |#1| (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 180)) (-2596 (($) NIL (|has| |#1| (-370)) CONST)) (-3811 (($ (-922)) 98 (|has| |#1| (-370)))) (-2407 (((-112) $) 149)) (-3339 (((-1120) $) NIL)) (-1836 (((-959 (-1120))) 57)) (-4099 (($) 160 (|has| |#1| (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 121 (|has| |#1| (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) 92) (((-922)) 93)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) 163 (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) 156 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 |#1|)) 124)) (-1698 (($) 161 (|has| |#1| (-370)))) (-3995 (($) 169 (|has| |#1| (-370)))) (-3216 (((-1266 |#1|) $) 77) (((-690 |#1|) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4101 (((-863) $) 176) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 102)) (-4242 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) 157 T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 146) (((-1266 $) (-922)) 100)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) 67 T CONST)) (-1484 (($) 105 T CONST)) (-2202 (($ $) 109 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2692 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3052 (((-112) $ $) 65)) (-3168 (($ $ $) 178) (($ $ |#1|) 179)) (-3156 (($ $) 159) (($ $ $) NIL)) (-3146 (($ $ $) 86)) (** (($ $ (-922)) 182) (($ $ (-772)) 183) (($ $ (-567)) 181)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 104) (($ $ $) 103) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 177)))
+(((-346 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1836 ((-959 (-1120)))))) (-351) (-1172 |#1|)) (T -346))
+((-1836 (*1 *2) (-12 (-5 *2 (-959 (-1120))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351)) (-14 *4 (-1172 *3)))))
+(-13 (-330 |#1|) (-10 -7 (-15 -1836 ((-959 (-1120))))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-3499 (($ (-1266 |#1|)) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| |#1| (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL (|has| |#1| (-370)))) (-1596 (((-112) $) NIL (|has| |#1| (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| |#1| (-370)))) (-4270 (((-112) $) NIL (|has| |#1| (-370)))) (-3751 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 |#1|) $) NIL) (((-1172 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3527 (((-922) $) NIL (|has| |#1| (-370)))) (-2617 (((-1172 |#1|) $) NIL (|has| |#1| (-370)))) (-4260 (((-1172 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1172 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2173 (($ $ (-1172 |#1|)) NIL (|has| |#1| (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| |#1| (-370)) CONST)) (-3811 (($ (-922)) NIL (|has| |#1| (-370)))) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-1836 (((-959 (-1120))) NIL)) (-4099 (($) NIL (|has| |#1| (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| |#1| (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 |#1|)) NIL)) (-1698 (($) NIL (|has| |#1| (-370)))) (-3995 (($) NIL (|has| |#1| (-370)))) (-3216 (((-1266 |#1|) $) NIL) (((-690 |#1|) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL) (((-1266 $) (-922)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2692 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-347 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1836 ((-959 (-1120)))))) (-351) (-922)) (T -347))
+((-1836 (*1 *2) (-12 (-5 *2 (-959 (-1120))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922)))))
+(-13 (-330 |#1|) (-10 -7 (-15 -1836 ((-959 (-1120))))))
+((-4102 (((-772) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120)))))) 61)) (-3755 (((-959 (-1120)) (-1172 |#1|)) 113)) (-2015 (((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) (-1172 |#1|)) 105)) (-2039 (((-690 |#1|) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120)))))) 115)) (-3719 (((-3 (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) "failed") (-922)) 13)) (-4152 (((-3 (-1172 |#1|) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120)))))) (-922)) 18)))
+(((-348 |#1|) (-10 -7 (-15 -3755 ((-959 (-1120)) (-1172 |#1|))) (-15 -2015 ((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) (-1172 |#1|))) (-15 -2039 ((-690 |#1|) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -4102 ((-772) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -3719 ((-3 (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) "failed") (-922))) (-15 -4152 ((-3 (-1172 |#1|) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120)))))) (-922)))) (-351)) (T -348))
+((-4152 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-3 (-1172 *4) (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120))))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-3719 (*1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-5 *2 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120)))))) (-5 *1 (-348 *4)) (-4 *4 (-351)))) (-4102 (*1 *2 *3) (-12 (-5 *3 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120)))))) (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120)))))) (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-5 *2 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120)))))) (-5 *1 (-348 *4)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-5 *2 (-959 (-1120))) (-5 *1 (-348 *4)))))
+(-10 -7 (-15 -3755 ((-959 (-1120)) (-1172 |#1|))) (-15 -2015 ((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) (-1172 |#1|))) (-15 -2039 ((-690 |#1|) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -4102 ((-772) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -3719 ((-3 (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) "failed") (-922))) (-15 -4152 ((-3 (-1172 |#1|) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120)))))) (-922))))
+((-4101 ((|#1| |#3|) 108) ((|#3| |#1|) 91)))
+(((-349 |#1| |#2| |#3|) (-10 -7 (-15 -4101 (|#3| |#1|)) (-15 -4101 (|#1| |#3|))) (-330 |#2|) (-351) (-330 |#2|)) (T -349))
+((-4101 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3)) (-4 *3 (-330 *4)))) (-4101 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2)) (-4 *3 (-330 *4)))))
+(-10 -7 (-15 -4101 (|#3| |#1|)) (-15 -4101 (|#1| |#3|)))
+((-1596 (((-112) $) 60)) (-1909 (((-834 (-922)) $) 23) (((-922) $) 66)) (-2802 (((-3 $ "failed") $) 18)) (-2596 (($) 9)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 116)) (-2097 (((-3 (-772) "failed") $ $) 94) (((-772) $) 81)) (-1930 (($ $ (-772)) NIL) (($ $) 8)) (-1698 (($) 53)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 38)) (-4242 (((-3 $ "failed") $) 45) (($ $) 44)))
+(((-350 |#1|) (-10 -8 (-15 -1909 ((-922) |#1|)) (-15 -2097 ((-772) |#1|)) (-15 -1596 ((-112) |#1|)) (-15 -1698 (|#1|)) (-15 -1470 ((-3 (-1266 |#1|) "failed") (-690 |#1|))) (-15 -4242 (|#1| |#1|)) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -2097 ((-3 (-772) "failed") |#1| |#1|)) (-15 -1909 ((-834 (-922)) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)))) (-351)) (T -350))
+NIL
+(-10 -8 (-15 -1909 ((-922) |#1|)) (-15 -2097 ((-772) |#1|)) (-15 -1596 ((-112) |#1|)) (-15 -1698 (|#1|)) (-15 -1470 ((-3 (-1266 |#1|) "failed") (-690 |#1|))) (-15 -4242 (|#1| |#1|)) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -2097 ((-3 (-772) "failed") |#1| |#1|)) (-15 -1909 ((-834 (-922)) |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-1783 (((-1189 (-922) (-772)) (-567)) 101)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-3405 (((-112) $ $) 65)) (-2013 (((-772)) 111)) (-4061 (($) 18 T CONST)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 95)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-1649 (($) 114)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-3896 (($) 99)) (-1596 (((-112) $) 98)) (-2966 (($ $) 87) (($ $ (-772)) 86)) (-1665 (((-112) $) 79)) (-1909 (((-834 (-922)) $) 89) (((-922) $) 96)) (-3714 (((-112) $) 35)) (-2802 (((-3 $ "failed") $) 110)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3527 (((-922) $) 113)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-2596 (($) 109 T CONST)) (-3811 (($ (-922)) 112)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 102)) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-2097 (((-3 (-772) "failed") $ $) 88) (((-772) $) 97)) (-1930 (($ $ (-772)) 107) (($ $) 105)) (-1698 (($) 100)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 103)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-4242 (((-3 $ "failed") $) 90) (($ $) 104)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-772)) 108) (($ $) 106)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 73)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-351) (-140)) (T -351))
-((-2655 (*1 *1 *1) (-4 *1 (-351))) (-3039 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1265 *1)))) (-2867 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))))) (-3374 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1188 (-921) (-771))))) (-1344 (*1 *1) (-4 *1 (-351))) (-4183 (*1 *1) (-4 *1 (-351))) (-1963 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-2816 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921)))) (-3414 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-404) (-370) (-1150) (-233) (-10 -8 (-15 -2655 ($ $)) (-15 -3039 ((-3 (-1265 $) "failed") (-689 $))) (-15 -2867 ((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566)))))) (-15 -3374 ((-1188 (-921) (-771)) (-566))) (-15 -1344 ($)) (-15 -4183 ($)) (-15 -1963 ((-112) $)) (-15 -2816 ((-771) $)) (-15 -3077 ((-921) $)) (-15 -3414 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-404) . T) ((-370) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) . T) ((-1219) . T))
-((-3018 (((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|) 55)) (-2281 (((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 53)))
-(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -2281 ((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -3018 ((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))) (-1241 |#1|) (-411 |#1| |#2|)) (T -352))
-((-3018 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *4 (-1241 *3)) (-5 *2 (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2281 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *4 (-1241 *3)) (-5 *2 (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4)))))
-(-10 -7 (-15 -2281 ((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))) (-15 -3018 ((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2025 (((-771)) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-910 |#1|) "failed") $) NIL)) (-3343 (((-910 |#1|) $) NIL)) (-1452 (($ (-1265 (-910 |#1|))) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-910 |#1|) (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL (|has| (-910 |#1|) (-370)))) (-1963 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| (-910 |#1|) (-370)))) (-3778 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-3202 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4138 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2535 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-3777 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-2195 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2430 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-3026 (((-1265 (-644 (-2 (|:| -2465 (-910 |#1|)) (|:| -2430 (-1119)))))) NIL)) (-2804 (((-689 (-910 |#1|))) NIL)) (-2723 (($) NIL (|has| (-910 |#1|) (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 (-910 |#1|))) NIL)) (-1344 (($) NIL (|has| (-910 |#1|) (-370)))) (-2014 (($) NIL (|has| (-910 |#1|) (-370)))) (-2803 (((-1265 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2655 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL) (((-1265 $) (-921)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-1316 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL)))
-(((-353 |#1| |#2|) (-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3026 ((-1265 (-644 (-2 (|:| -2465 (-910 |#1|)) (|:| -2430 (-1119))))))) (-15 -2804 ((-689 (-910 |#1|)))) (-15 -2025 ((-771))))) (-921) (-921)) (T -353))
-((-3026 (*1 *2) (-12 (-5 *2 (-1265 (-644 (-2 (|:| -2465 (-910 *3)) (|:| -2430 (-1119)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-2804 (*1 *2) (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-2025 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))))
-(-13 (-330 (-910 |#1|)) (-10 -7 (-15 -3026 ((-1265 (-644 (-2 (|:| -2465 (-910 |#1|)) (|:| -2430 (-1119))))))) (-15 -2804 ((-689 (-910 |#1|)))) (-15 -2025 ((-771)))))
-((-3979 (((-112) $ $) 76)) (-3545 (((-112) $) 90)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 ((|#1| $) 108) (($ $ (-921)) 106 (|has| |#1| (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) 177 (|has| |#1| (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2025 (((-771)) 105)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) 193 (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 130)) (-3343 ((|#1| $) 107)) (-1452 (($ (-1265 |#1|)) 74)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) 189 (|has| |#1| (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) 178 (|has| |#1| (-370)))) (-1963 (((-112) $) NIL (|has| |#1| (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) 116 (|has| |#1| (-370)))) (-3778 (((-112) $) 206 (|has| |#1| (-370)))) (-3202 ((|#1| $) 110) (($ $ (-921)) 109 (|has| |#1| (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 |#1|) $) 220) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4138 (((-921) $) 154 (|has| |#1| (-370)))) (-2535 (((-1171 |#1|) $) 89 (|has| |#1| (-370)))) (-3777 (((-1171 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-2195 (($ $ (-1171 |#1|)) 85 (|has| |#1| (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 224)) (-1342 (($) NIL (|has| |#1| (-370)) CONST)) (-2430 (($ (-921)) 157 (|has| |#1| (-370)))) (-4274 (((-112) $) 126)) (-1944 (((-1119) $) NIL)) (-3026 (((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119)))))) 99)) (-2804 (((-689 |#1|)) 103)) (-2723 (($) 112 (|has| |#1| (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 180 (|has| |#1| (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) 181)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) 78)) (-2880 (((-1171 |#1|)) 182)) (-1344 (($) 153 (|has| |#1| (-370)))) (-2014 (($) NIL (|has| |#1| (-370)))) (-2803 (((-1265 |#1|) $) 124) (((-689 |#1|) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2725 (((-862) $) 146) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 73)) (-2655 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) 187 T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 203) (((-1265 $) (-921)) 119)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) 140 T CONST)) (-3214 (($) 44 T CONST)) (-3940 (($ $) 125 (|has| |#1| (-370))) (($ $ (-771)) 117 (|has| |#1| (-370)))) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2817 (((-112) $ $) 214)) (-2916 (($ $ $) 122) (($ $ |#1|) 123)) (-2905 (($ $) 208) (($ $ $) 212)) (-2897 (($ $ $) 210)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 159)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 217) (($ $ $) 171) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
-(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3026 ((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -2804 ((-689 |#1|))) (-15 -2025 ((-771))))) (-351) (-3 (-1171 |#1|) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (T -354))
-((-3026 (*1 *2) (-12 (-5 *2 (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2)))) (-2804 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119))))))))) (-2025 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119))))))))))
-(-13 (-330 |#1|) (-10 -7 (-15 -3026 ((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -2804 ((-689 |#1|))) (-15 -2025 ((-771)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2025 (((-771)) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-1452 (($ (-1265 |#1|)) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| |#1| (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL (|has| |#1| (-370)))) (-1963 (((-112) $) NIL (|has| |#1| (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| |#1| (-370)))) (-3778 (((-112) $) NIL (|has| |#1| (-370)))) (-3202 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4138 (((-921) $) NIL (|has| |#1| (-370)))) (-2535 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3777 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2195 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| |#1| (-370)) CONST)) (-2430 (($ (-921)) NIL (|has| |#1| (-370)))) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-3026 (((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119)))))) NIL)) (-2804 (((-689 |#1|)) NIL)) (-2723 (($) NIL (|has| |#1| (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| |#1| (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 |#1|)) NIL)) (-1344 (($) NIL (|has| |#1| (-370)))) (-2014 (($) NIL (|has| |#1| (-370)))) (-2803 (((-1265 |#1|) $) NIL) (((-689 |#1|) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2655 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL) (((-1265 $) (-921)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -3026 ((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -2804 ((-689 |#1|))) (-15 -2025 ((-771))))) (-351) (-921)) (T -355))
-((-3026 (*1 *2) (-12 (-5 *2 (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-2804 (*1 *2) (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))) (-2025 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))))
-(-13 (-330 |#1|) (-10 -7 (-15 -3026 ((-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))))) (-15 -2804 ((-689 |#1|))) (-15 -2025 ((-771)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| (-910 |#1|) (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| (-910 |#1|) (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-910 |#1|) "failed") $) NIL)) (-3343 (((-910 |#1|) $) NIL)) (-1452 (($ (-1265 (-910 |#1|))) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-910 |#1|) (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-910 |#1|) (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL (|has| (-910 |#1|) (-370)))) (-1963 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370)))) (($ $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| (-910 |#1|) (-370))) (((-833 (-921)) $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| (-910 |#1|) (-370)))) (-3778 (((-112) $) NIL (|has| (-910 |#1|) (-370)))) (-3202 (((-910 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| (-910 |#1|) (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 (-910 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4138 (((-921) $) NIL (|has| (-910 |#1|) (-370)))) (-2535 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370)))) (-3777 (((-1171 (-910 |#1|)) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-1171 (-910 |#1|)) "failed") $ $) NIL (|has| (-910 |#1|) (-370)))) (-2195 (($ $ (-1171 (-910 |#1|))) NIL (|has| (-910 |#1|) (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-910 |#1|) (-370)) CONST)) (-2430 (($ (-921)) NIL (|has| (-910 |#1|) (-370)))) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-2723 (($) NIL (|has| (-910 |#1|) (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| (-910 |#1|) (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| (-910 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 (-910 |#1|))) NIL)) (-1344 (($) NIL (|has| (-910 |#1|) (-370)))) (-2014 (($) NIL (|has| (-910 |#1|) (-370)))) (-2803 (((-1265 (-910 |#1|)) $) NIL) (((-689 (-910 |#1|)) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| (-910 |#1|) (-370)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-910 |#1|)) NIL)) (-2655 (($ $) NIL (|has| (-910 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| (-910 |#1|) (-145)) (|has| (-910 |#1|) (-370))))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL) (((-1265 $) (-921)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-1316 (($ $) NIL (|has| (-910 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-910 |#1|) (-370)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL) (($ $ (-910 |#1|)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-910 |#1|)) NIL) (($ (-910 |#1|) $) NIL)))
-(((-356 |#1| |#2|) (-330 (-910 |#1|)) (-921) (-921)) (T -356))
-NIL
-(-330 (-910 |#1|))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) 135 (|has| |#1| (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) 165 (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 109)) (-3343 ((|#1| $) 106)) (-1452 (($ (-1265 |#1|)) 101)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) 98 (|has| |#1| (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) 51 (|has| |#1| (-370)))) (-1963 (((-112) $) NIL (|has| |#1| (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) 136 (|has| |#1| (-370)))) (-3778 (((-112) $) 90 (|has| |#1| (-370)))) (-3202 ((|#1| $) 47) (($ $ (-921)) 52 (|has| |#1| (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 |#1|) $) 79) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4138 (((-921) $) 113 (|has| |#1| (-370)))) (-2535 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3777 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2195 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| |#1| (-370)) CONST)) (-2430 (($ (-921)) 111 (|has| |#1| (-370)))) (-4274 (((-112) $) 167)) (-1944 (((-1119) $) NIL)) (-2723 (($) 44 (|has| |#1| (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 130 (|has| |#1| (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) 164)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) 71)) (-2880 (((-1171 |#1|)) 104)) (-1344 (($) 141 (|has| |#1| (-370)))) (-2014 (($) NIL (|has| |#1| (-370)))) (-2803 (((-1265 |#1|) $) 66) (((-689 |#1|) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2725 (((-862) $) 163) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 103)) (-2655 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) 169 T CONST)) (-1479 (((-112) $ $) 171)) (-2227 (((-1265 $)) 125) (((-1265 $) (-921)) 60)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) 127 T CONST)) (-3214 (($) 40 T CONST)) (-3940 (($ $) 82 (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2817 (((-112) $ $) 123)) (-2916 (($ $ $) 115) (($ $ |#1|) 116)) (-2905 (($ $) 96) (($ $ $) 121)) (-2897 (($ $ $) 119)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55) (($ $ (-566)) 146)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 94) (($ $ $) 68) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
-(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1171 |#1|)) (T -357))
+((-4242 (*1 *1 *1) (-4 *1 (-351))) (-1470 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1266 *1)))) (-2608 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))))) (-1783 (*1 *2 *3) (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1189 (-922) (-772))))) (-1698 (*1 *1) (-4 *1 (-351))) (-3896 (*1 *1) (-4 *1 (-351))) (-1596 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-922)))) (-4032 (*1 *2) (-12 (-4 *1 (-351)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-405) (-370) (-1151) (-233) (-10 -8 (-15 -4242 ($ $)) (-15 -1470 ((-3 (-1266 $) "failed") (-690 $))) (-15 -2608 ((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567)))))) (-15 -1783 ((-1189 (-922) (-772)) (-567))) (-15 -1698 ($)) (-15 -3896 ($)) (-15 -1596 ((-112) $)) (-15 -2097 ((-772) $)) (-15 -1909 ((-922) $)) (-15 -4032 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) . T) ((-370) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) . T) ((-1220) . T))
+((-2627 (((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|) 55)) (-1835 (((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 53)))
+(((-352 |#1| |#2| |#3|) (-10 -7 (-15 -1835 ((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -2627 ((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|))) (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))) (-1242 |#1|) (-412 |#1| |#2|)) (T -352))
+((-2627 (*1 *2 *3) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *4 (-1242 *3)) (-5 *2 (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-1835 (*1 *2) (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *4 (-1242 *3)) (-5 *2 (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(-10 -7 (-15 -1835 ((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))) (-15 -2627 ((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| (-911 |#1|) (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4102 (((-772)) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| (-911 |#1|) (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-911 |#1|) "failed") $) NIL)) (-1621 (((-911 |#1|) $) NIL)) (-3499 (($ (-1266 (-911 |#1|))) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-911 |#1|) (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-911 |#1|) (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL (|has| (-911 |#1|) (-370)))) (-1596 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370)))) (($ $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| (-911 |#1|) (-370))) (((-834 (-922)) $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| (-911 |#1|) (-370)))) (-4270 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-3751 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| (-911 |#1|) (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 (-911 |#1|)) $) NIL) (((-1172 $) $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3527 (((-922) $) NIL (|has| (-911 |#1|) (-370)))) (-2617 (((-1172 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370)))) (-4260 (((-1172 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-1172 (-911 |#1|)) "failed") $ $) NIL (|has| (-911 |#1|) (-370)))) (-2173 (($ $ (-1172 (-911 |#1|))) NIL (|has| (-911 |#1|) (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-911 |#1|) (-370)) CONST)) (-3811 (($ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-1333 (((-1266 (-645 (-2 (|:| -3843 (-911 |#1|)) (|:| -3811 (-1120)))))) NIL)) (-3225 (((-690 (-911 |#1|))) NIL)) (-4099 (($) NIL (|has| (-911 |#1|) (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| (-911 |#1|) (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 (-911 |#1|))) NIL)) (-1698 (($) NIL (|has| (-911 |#1|) (-370)))) (-3995 (($) NIL (|has| (-911 |#1|) (-370)))) (-3216 (((-1266 (-911 |#1|)) $) NIL) (((-690 (-911 |#1|)) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| (-911 |#1|) (-370)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-911 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-911 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL) (((-1266 $) (-922)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2692 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL) (($ $ (-911 |#1|)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-911 |#1|)) NIL) (($ (-911 |#1|) $) NIL)))
+(((-353 |#1| |#2|) (-13 (-330 (-911 |#1|)) (-10 -7 (-15 -1333 ((-1266 (-645 (-2 (|:| -3843 (-911 |#1|)) (|:| -3811 (-1120))))))) (-15 -3225 ((-690 (-911 |#1|)))) (-15 -4102 ((-772))))) (-922) (-922)) (T -353))
+((-1333 (*1 *2) (-12 (-5 *2 (-1266 (-645 (-2 (|:| -3843 (-911 *3)) (|:| -3811 (-1120)))))) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-3225 (*1 *2) (-12 (-5 *2 (-690 (-911 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-4102 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))))
+(-13 (-330 (-911 |#1|)) (-10 -7 (-15 -1333 ((-1266 (-645 (-2 (|:| -3843 (-911 |#1|)) (|:| -3811 (-1120))))))) (-15 -3225 ((-690 (-911 |#1|)))) (-15 -4102 ((-772)))))
+((-2257 (((-112) $ $) 76)) (-2865 (((-112) $) 90)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 ((|#1| $) 108) (($ $ (-922)) 106 (|has| |#1| (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) 177 (|has| |#1| (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4102 (((-772)) 105)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) 193 (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 130)) (-1621 ((|#1| $) 107)) (-3499 (($ (-1266 |#1|)) 74)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) 189 (|has| |#1| (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) 178 (|has| |#1| (-370)))) (-1596 (((-112) $) NIL (|has| |#1| (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) 116 (|has| |#1| (-370)))) (-4270 (((-112) $) 206 (|has| |#1| (-370)))) (-3751 ((|#1| $) 110) (($ $ (-922)) 109 (|has| |#1| (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 |#1|) $) 220) (((-1172 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3527 (((-922) $) 154 (|has| |#1| (-370)))) (-2617 (((-1172 |#1|) $) 89 (|has| |#1| (-370)))) (-4260 (((-1172 |#1|) $) 86 (|has| |#1| (-370))) (((-3 (-1172 |#1|) "failed") $ $) 98 (|has| |#1| (-370)))) (-2173 (($ $ (-1172 |#1|)) 85 (|has| |#1| (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 224)) (-2596 (($) NIL (|has| |#1| (-370)) CONST)) (-3811 (($ (-922)) 157 (|has| |#1| (-370)))) (-2407 (((-112) $) 126)) (-3339 (((-1120) $) NIL)) (-1333 (((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120)))))) 99)) (-3225 (((-690 |#1|)) 103)) (-4099 (($) 112 (|has| |#1| (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 180 (|has| |#1| (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) 181)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) 78)) (-2713 (((-1172 |#1|)) 182)) (-1698 (($) 153 (|has| |#1| (-370)))) (-3995 (($) NIL (|has| |#1| (-370)))) (-3216 (((-1266 |#1|) $) 124) (((-690 |#1|) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4101 (((-863) $) 146) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 73)) (-4242 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) 187 T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 203) (((-1266 $) (-922)) 119)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) 140 T CONST)) (-1484 (($) 44 T CONST)) (-2202 (($ $) 125 (|has| |#1| (-370))) (($ $ (-772)) 117 (|has| |#1| (-370)))) (-2692 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3052 (((-112) $ $) 214)) (-3168 (($ $ $) 122) (($ $ |#1|) 123)) (-3156 (($ $) 208) (($ $ $) 212)) (-3146 (($ $ $) 210)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 159)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 217) (($ $ $) 171) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121)))
+(((-354 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1333 ((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -3225 ((-690 |#1|))) (-15 -4102 ((-772))))) (-351) (-3 (-1172 |#1|) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (T -354))
+((-1333 (*1 *2) (-12 (-5 *2 (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120)))))) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1172 *3) *2)))) (-3225 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1172 *3) (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120))))))))) (-4102 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1172 *3) (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120))))))))))
+(-13 (-330 |#1|) (-10 -7 (-15 -1333 ((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -3225 ((-690 |#1|))) (-15 -4102 ((-772)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4102 (((-772)) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-3499 (($ (-1266 |#1|)) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| |#1| (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL (|has| |#1| (-370)))) (-1596 (((-112) $) NIL (|has| |#1| (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| |#1| (-370)))) (-4270 (((-112) $) NIL (|has| |#1| (-370)))) (-3751 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 |#1|) $) NIL) (((-1172 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3527 (((-922) $) NIL (|has| |#1| (-370)))) (-2617 (((-1172 |#1|) $) NIL (|has| |#1| (-370)))) (-4260 (((-1172 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1172 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2173 (($ $ (-1172 |#1|)) NIL (|has| |#1| (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| |#1| (-370)) CONST)) (-3811 (($ (-922)) NIL (|has| |#1| (-370)))) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-1333 (((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120)))))) NIL)) (-3225 (((-690 |#1|)) NIL)) (-4099 (($) NIL (|has| |#1| (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| |#1| (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 |#1|)) NIL)) (-1698 (($) NIL (|has| |#1| (-370)))) (-3995 (($) NIL (|has| |#1| (-370)))) (-3216 (((-1266 |#1|) $) NIL) (((-690 |#1|) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL) (((-1266 $) (-922)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2692 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-355 |#1| |#2|) (-13 (-330 |#1|) (-10 -7 (-15 -1333 ((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -3225 ((-690 |#1|))) (-15 -4102 ((-772))))) (-351) (-922)) (T -355))
+((-1333 (*1 *2) (-12 (-5 *2 (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120)))))) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922)))) (-3225 (*1 *2) (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922)))) (-4102 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922)))))
+(-13 (-330 |#1|) (-10 -7 (-15 -1333 ((-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))))) (-15 -3225 ((-690 |#1|))) (-15 -4102 ((-772)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| (-911 |#1|) (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| (-911 |#1|) (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-911 |#1|) "failed") $) NIL)) (-1621 (((-911 |#1|) $) NIL)) (-3499 (($ (-1266 (-911 |#1|))) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-911 |#1|) (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-911 |#1|) (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL (|has| (-911 |#1|) (-370)))) (-1596 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370)))) (($ $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| (-911 |#1|) (-370))) (((-834 (-922)) $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| (-911 |#1|) (-370)))) (-4270 (((-112) $) NIL (|has| (-911 |#1|) (-370)))) (-3751 (((-911 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| (-911 |#1|) (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 (-911 |#1|)) $) NIL) (((-1172 $) $ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-3527 (((-922) $) NIL (|has| (-911 |#1|) (-370)))) (-2617 (((-1172 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370)))) (-4260 (((-1172 (-911 |#1|)) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-1172 (-911 |#1|)) "failed") $ $) NIL (|has| (-911 |#1|) (-370)))) (-2173 (($ $ (-1172 (-911 |#1|))) NIL (|has| (-911 |#1|) (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-911 |#1|) (-370)) CONST)) (-3811 (($ (-922)) NIL (|has| (-911 |#1|) (-370)))) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-4099 (($) NIL (|has| (-911 |#1|) (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| (-911 |#1|) (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| (-911 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 (-911 |#1|))) NIL)) (-1698 (($) NIL (|has| (-911 |#1|) (-370)))) (-3995 (($) NIL (|has| (-911 |#1|) (-370)))) (-3216 (((-1266 (-911 |#1|)) $) NIL) (((-690 (-911 |#1|)) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| (-911 |#1|) (-370)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-911 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-911 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| (-911 |#1|) (-145)) (|has| (-911 |#1|) (-370))))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL) (((-1266 $) (-922)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-2692 (($ $) NIL (|has| (-911 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-911 |#1|) (-370)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL) (($ $ (-911 |#1|)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-911 |#1|)) NIL) (($ (-911 |#1|) $) NIL)))
+(((-356 |#1| |#2|) (-330 (-911 |#1|)) (-922) (-922)) (T -356))
+NIL
+(-330 (-911 |#1|))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) 135 (|has| |#1| (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) 165 (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 109)) (-1621 ((|#1| $) 106)) (-3499 (($ (-1266 |#1|)) 101)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) 98 (|has| |#1| (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) 51 (|has| |#1| (-370)))) (-1596 (((-112) $) NIL (|has| |#1| (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) 136 (|has| |#1| (-370)))) (-4270 (((-112) $) 90 (|has| |#1| (-370)))) (-3751 ((|#1| $) 47) (($ $ (-922)) 52 (|has| |#1| (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 |#1|) $) 79) (((-1172 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3527 (((-922) $) 113 (|has| |#1| (-370)))) (-2617 (((-1172 |#1|) $) NIL (|has| |#1| (-370)))) (-4260 (((-1172 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1172 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2173 (($ $ (-1172 |#1|)) NIL (|has| |#1| (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| |#1| (-370)) CONST)) (-3811 (($ (-922)) 111 (|has| |#1| (-370)))) (-2407 (((-112) $) 167)) (-3339 (((-1120) $) NIL)) (-4099 (($) 44 (|has| |#1| (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 130 (|has| |#1| (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) 164)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) 71)) (-2713 (((-1172 |#1|)) 104)) (-1698 (($) 141 (|has| |#1| (-370)))) (-3995 (($) NIL (|has| |#1| (-370)))) (-3216 (((-1266 |#1|) $) 66) (((-690 |#1|) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4101 (((-863) $) 163) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 103)) (-4242 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) 169 T CONST)) (-3739 (((-112) $ $) 171)) (-2557 (((-1266 $)) 125) (((-1266 $) (-922)) 60)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) 127 T CONST)) (-1484 (($) 40 T CONST)) (-2202 (($ $) 82 (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2692 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3052 (((-112) $ $) 123)) (-3168 (($ $ $) 115) (($ $ |#1|) 116)) (-3156 (($ $) 96) (($ $ $) 121)) (-3146 (($ $ $) 119)) (** (($ $ (-922)) NIL) (($ $ (-772)) 55) (($ $ (-567)) 146)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 94) (($ $ $) 68) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92)))
+(((-357 |#1| |#2|) (-330 |#1|) (-351) (-1172 |#1|)) (T -357))
NIL
(-330 |#1|)
-((-2105 ((|#1| (-1171 |#2|)) 63)))
-(((-358 |#1| |#2|) (-10 -7 (-15 -2105 (|#1| (-1171 |#2|)))) (-13 (-404) (-10 -7 (-15 -2725 (|#1| |#2|)) (-15 -4138 ((-921) |#1|)) (-15 -2227 ((-1265 |#1|) (-921))) (-15 -3940 (|#1| |#1|)))) (-351)) (T -358))
-((-2105 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-404) (-10 -7 (-15 -2725 (*2 *4)) (-15 -4138 ((-921) *2)) (-15 -2227 ((-1265 *2) (-921))) (-15 -3940 (*2 *2))))) (-5 *1 (-358 *2 *4)))))
-(-10 -7 (-15 -2105 (|#1| (-1171 |#2|))))
-((-3333 (((-958 (-1171 |#1|)) (-1171 |#1|)) 53)) (-3424 (((-1171 |#1|) (-921) (-921)) 168) (((-1171 |#1|) (-921)) 164)) (-1963 (((-112) (-1171 |#1|)) 120)) (-2815 (((-921) (-921)) 98)) (-1446 (((-921) (-921)) 105)) (-2103 (((-921) (-921)) 96)) (-3778 (((-112) (-1171 |#1|)) 124)) (-1998 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 149)) (-1969 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 154)) (-3685 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 153)) (-3303 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 152)) (-1583 (((-3 (-1171 |#1|) "failed") (-1171 |#1|)) 144)) (-2337 (((-1171 |#1|) (-1171 |#1|)) 84)) (-3900 (((-1171 |#1|) (-921)) 159)) (-1353 (((-1171 |#1|) (-921)) 162)) (-1842 (((-1171 |#1|) (-921)) 161)) (-3632 (((-1171 |#1|) (-921)) 160)) (-3364 (((-1171 |#1|) (-921)) 157)))
-(((-359 |#1|) (-10 -7 (-15 -1963 ((-112) (-1171 |#1|))) (-15 -3778 ((-112) (-1171 |#1|))) (-15 -2103 ((-921) (-921))) (-15 -2815 ((-921) (-921))) (-15 -1446 ((-921) (-921))) (-15 -3364 ((-1171 |#1|) (-921))) (-15 -3900 ((-1171 |#1|) (-921))) (-15 -3632 ((-1171 |#1|) (-921))) (-15 -1842 ((-1171 |#1|) (-921))) (-15 -1353 ((-1171 |#1|) (-921))) (-15 -1583 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1998 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3303 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3685 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1969 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3424 ((-1171 |#1|) (-921))) (-15 -3424 ((-1171 |#1|) (-921) (-921))) (-15 -2337 ((-1171 |#1|) (-1171 |#1|))) (-15 -3333 ((-958 (-1171 |#1|)) (-1171 |#1|)))) (-351)) (T -359))
-((-3333 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1171 *4)))) (-2337 (*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3424 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1969 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3685 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3303 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1998 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1583 (*1 *2 *2) (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3900 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3364 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2815 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-2103 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-1963 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))))
-(-10 -7 (-15 -1963 ((-112) (-1171 |#1|))) (-15 -3778 ((-112) (-1171 |#1|))) (-15 -2103 ((-921) (-921))) (-15 -2815 ((-921) (-921))) (-15 -1446 ((-921) (-921))) (-15 -3364 ((-1171 |#1|) (-921))) (-15 -3900 ((-1171 |#1|) (-921))) (-15 -3632 ((-1171 |#1|) (-921))) (-15 -1842 ((-1171 |#1|) (-921))) (-15 -1353 ((-1171 |#1|) (-921))) (-15 -1583 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1998 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3303 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3685 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -1969 ((-3 (-1171 |#1|) "failed") (-1171 |#1|))) (-15 -3424 ((-1171 |#1|) (-921))) (-15 -3424 ((-1171 |#1|) (-921) (-921))) (-15 -2337 ((-1171 |#1|) (-1171 |#1|))) (-15 -3333 ((-958 (-1171 |#1|)) (-1171 |#1|))))
-((-4078 (((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|) 38)))
-(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -4078 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|))) (-351) (-1241 |#1|) (-1241 |#2|)) (T -360))
-((-4078 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))))
-(-10 -7 (-15 -4078 ((-3 (-644 |#3|) "failed") (-644 |#3|) |#3|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| |#1| (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-1452 (($ (-1265 |#1|)) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| |#1| (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL (|has| |#1| (-370)))) (-1963 (((-112) $) NIL (|has| |#1| (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| |#1| (-370))) (((-833 (-921)) $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| |#1| (-370)))) (-3778 (((-112) $) NIL (|has| |#1| (-370)))) (-3202 ((|#1| $) NIL) (($ $ (-921)) NIL (|has| |#1| (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 |#1|) $) NIL) (((-1171 $) $ (-921)) NIL (|has| |#1| (-370)))) (-4138 (((-921) $) NIL (|has| |#1| (-370)))) (-2535 (((-1171 |#1|) $) NIL (|has| |#1| (-370)))) (-3777 (((-1171 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1171 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2195 (($ $ (-1171 |#1|)) NIL (|has| |#1| (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| |#1| (-370)) CONST)) (-2430 (($ (-921)) NIL (|has| |#1| (-370)))) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-2723 (($) NIL (|has| |#1| (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| |#1| (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| |#1| (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 |#1|)) NIL)) (-1344 (($) NIL (|has| |#1| (-370)))) (-2014 (($) NIL (|has| |#1| (-370)))) (-2803 (((-1265 |#1|) $) NIL) (((-689 |#1|) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| |#1| (-370)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) NIL)) (-2655 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL) (((-1265 $) (-921)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-1316 (($ $) NIL (|has| |#1| (-370))) (($ $ (-771)) NIL (|has| |#1| (-370)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-361 |#1| |#2|) (-330 |#1|) (-351) (-921)) (T -361))
+((-3731 ((|#1| (-1172 |#2|)) 63)))
+(((-358 |#1| |#2|) (-10 -7 (-15 -3731 (|#1| (-1172 |#2|)))) (-13 (-405) (-10 -7 (-15 -4101 (|#1| |#2|)) (-15 -3527 ((-922) |#1|)) (-15 -2557 ((-1266 |#1|) (-922))) (-15 -2202 (|#1| |#1|)))) (-351)) (T -358))
+((-3731 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-4 *2 (-13 (-405) (-10 -7 (-15 -4101 (*2 *4)) (-15 -3527 ((-922) *2)) (-15 -2557 ((-1266 *2) (-922))) (-15 -2202 (*2 *2))))) (-5 *1 (-358 *2 *4)))))
+(-10 -7 (-15 -3731 (|#1| (-1172 |#2|))))
+((-1312 (((-959 (-1172 |#1|)) (-1172 |#1|)) 53)) (-1649 (((-1172 |#1|) (-922) (-922)) 168) (((-1172 |#1|) (-922)) 164)) (-1596 (((-112) (-1172 |#1|)) 120)) (-3336 (((-922) (-922)) 98)) (-3460 (((-922) (-922)) 105)) (-3712 (((-922) (-922)) 96)) (-4270 (((-112) (-1172 |#1|)) 124)) (-3848 (((-3 (-1172 |#1|) "failed") (-1172 |#1|)) 149)) (-1679 (((-3 (-1172 |#1|) "failed") (-1172 |#1|)) 154)) (-1597 (((-3 (-1172 |#1|) "failed") (-1172 |#1|)) 153)) (-2314 (((-3 (-1172 |#1|) "failed") (-1172 |#1|)) 152)) (-2303 (((-3 (-1172 |#1|) "failed") (-1172 |#1|)) 144)) (-4236 (((-1172 |#1|) (-1172 |#1|)) 84)) (-3112 (((-1172 |#1|) (-922)) 159)) (-2715 (((-1172 |#1|) (-922)) 162)) (-3006 (((-1172 |#1|) (-922)) 161)) (-2441 (((-1172 |#1|) (-922)) 160)) (-1656 (((-1172 |#1|) (-922)) 157)))
+(((-359 |#1|) (-10 -7 (-15 -1596 ((-112) (-1172 |#1|))) (-15 -4270 ((-112) (-1172 |#1|))) (-15 -3712 ((-922) (-922))) (-15 -3336 ((-922) (-922))) (-15 -3460 ((-922) (-922))) (-15 -1656 ((-1172 |#1|) (-922))) (-15 -3112 ((-1172 |#1|) (-922))) (-15 -2441 ((-1172 |#1|) (-922))) (-15 -3006 ((-1172 |#1|) (-922))) (-15 -2715 ((-1172 |#1|) (-922))) (-15 -2303 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -3848 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -2314 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -1597 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -1679 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -1649 ((-1172 |#1|) (-922))) (-15 -1649 ((-1172 |#1|) (-922) (-922))) (-15 -4236 ((-1172 |#1|) (-1172 |#1|))) (-15 -1312 ((-959 (-1172 |#1|)) (-1172 |#1|)))) (-351)) (T -359))
+((-1312 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-959 (-1172 *4))) (-5 *1 (-359 *4)) (-5 *3 (-1172 *4)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1649 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1679 (*1 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-1597 (*1 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2314 (*1 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-3848 (*1 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2303 (*1 *2 *2) (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))) (-2715 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3006 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4)) (-4 *4 (-351)))) (-3460 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-359 *4)))))
+(-10 -7 (-15 -1596 ((-112) (-1172 |#1|))) (-15 -4270 ((-112) (-1172 |#1|))) (-15 -3712 ((-922) (-922))) (-15 -3336 ((-922) (-922))) (-15 -3460 ((-922) (-922))) (-15 -1656 ((-1172 |#1|) (-922))) (-15 -3112 ((-1172 |#1|) (-922))) (-15 -2441 ((-1172 |#1|) (-922))) (-15 -3006 ((-1172 |#1|) (-922))) (-15 -2715 ((-1172 |#1|) (-922))) (-15 -2303 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -3848 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -2314 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -1597 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -1679 ((-3 (-1172 |#1|) "failed") (-1172 |#1|))) (-15 -1649 ((-1172 |#1|) (-922))) (-15 -1649 ((-1172 |#1|) (-922) (-922))) (-15 -4236 ((-1172 |#1|) (-1172 |#1|))) (-15 -1312 ((-959 (-1172 |#1|)) (-1172 |#1|))))
+((-4087 (((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|) 38)))
+(((-360 |#1| |#2| |#3|) (-10 -7 (-15 -4087 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|))) (-351) (-1242 |#1|) (-1242 |#2|)) (T -360))
+((-4087 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3)))))
+(-10 -7 (-15 -4087 ((-3 (-645 |#3|) "failed") (-645 |#3|) |#3|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| |#1| (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-3499 (($ (-1266 |#1|)) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| |#1| (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL (|has| |#1| (-370)))) (-1596 (((-112) $) NIL (|has| |#1| (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| |#1| (-370))) (((-834 (-922)) $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| |#1| (-370)))) (-4270 (((-112) $) NIL (|has| |#1| (-370)))) (-3751 ((|#1| $) NIL) (($ $ (-922)) NIL (|has| |#1| (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 |#1|) $) NIL) (((-1172 $) $ (-922)) NIL (|has| |#1| (-370)))) (-3527 (((-922) $) NIL (|has| |#1| (-370)))) (-2617 (((-1172 |#1|) $) NIL (|has| |#1| (-370)))) (-4260 (((-1172 |#1|) $) NIL (|has| |#1| (-370))) (((-3 (-1172 |#1|) "failed") $ $) NIL (|has| |#1| (-370)))) (-2173 (($ $ (-1172 |#1|)) NIL (|has| |#1| (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| |#1| (-370)) CONST)) (-3811 (($ (-922)) NIL (|has| |#1| (-370)))) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-4099 (($) NIL (|has| |#1| (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| |#1| (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| |#1| (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 |#1|)) NIL)) (-1698 (($) NIL (|has| |#1| (-370)))) (-3995 (($) NIL (|has| |#1| (-370)))) (-3216 (((-1266 |#1|) $) NIL) (((-690 |#1|) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| |#1| (-370)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) NIL)) (-4242 (($ $) NIL (|has| |#1| (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL) (((-1266 $) (-922)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-2692 (($ $) NIL (|has| |#1| (-370))) (($ $ (-772)) NIL (|has| |#1| (-370)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-361 |#1| |#2|) (-330 |#1|) (-351) (-922)) (T -361))
NIL
(-330 |#1|)
-((-2259 (((-112) (-644 (-952 |#1|))) 41)) (-4371 (((-644 (-952 |#1|)) (-644 (-952 |#1|))) 53)) (-2859 (((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|))) 48)))
-(((-362 |#1| |#2|) (-10 -7 (-15 -2259 ((-112) (-644 (-952 |#1|)))) (-15 -2859 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -4371 ((-644 (-952 |#1|)) (-644 (-952 |#1|))))) (-454) (-644 (-1175))) (T -362))
-((-4371 (*1 *2 *2) (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-2859 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175))))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175))))))
-(-10 -7 (-15 -2259 ((-112) (-644 (-952 |#1|)))) (-15 -2859 ((-3 (-644 (-952 |#1|)) "failed") (-644 (-952 |#1|)))) (-15 -4371 ((-644 (-952 |#1|)) (-644 (-952 |#1|)))))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771) $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) 17)) (-2654 ((|#1| $ (-566)) NIL)) (-1681 (((-566) $ (-566)) NIL)) (-2990 (($ (-1 |#1| |#1|) $) 34)) (-3903 (($ (-1 (-566) (-566)) $) 26)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 28)) (-1944 (((-1119) $) NIL)) (-1502 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-566)))) $) 30)) (-2558 (($ $ $) NIL)) (-1726 (($ $ $) NIL)) (-2725 (((-862) $) 40) (($ |#1|) NIL)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 11 T CONST)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ |#1| (-566)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
-(((-363 |#1|) (-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -3733 ((-771) $)) (-15 -1681 ((-566) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -3903 ($ (-1 (-566) (-566)) $)) (-15 -2990 ($ (-1 |#1| |#1|) $)) (-15 -1502 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-566)))) $)))) (-1099)) (T -363))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-1681 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-2654 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099)))) (-3903 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))) (-2990 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 (-566))))) (-5 *1 (-363 *3)) (-4 *3 (-1099)))))
-(-13 (-475) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-566))) (-15 -3733 ((-771) $)) (-15 -1681 ((-566) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -3903 ($ (-1 (-566) (-566)) $)) (-15 -2990 ($ (-1 |#1| |#1|) $)) (-15 -1502 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-566)))) $))))
-((-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 13)) (-1780 (($ $) 14)) (-2555 (((-420 $) $) 34)) (-1968 (((-112) $) 30)) (-4282 (($ $) 19)) (-1885 (($ $ $) 25) (($ (-644 $)) NIL)) (-4018 (((-420 $) $) 35)) (-3967 (((-3 $ "failed") $ $) 24)) (-3792 (((-771) $) 28)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 39)) (-1597 (((-112) $ $) 16)) (-2916 (($ $ $) 37)))
-(((-364 |#1|) (-10 -8 (-15 -2916 (|#1| |#1| |#1|)) (-15 -4282 (|#1| |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4301 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -3792 ((-771) |#1|)) (-15 -1885 (|#1| (-644 |#1|))) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1597 ((-112) |#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -2920 ((-2 (|:| -4082 |#1|) (|:| -4402 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364))
-NIL
-(-10 -8 (-15 -2916 (|#1| |#1| |#1|)) (-15 -4282 (|#1| |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4301 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -3792 ((-771) |#1|)) (-15 -1885 (|#1| (-644 |#1|))) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1597 ((-112) |#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -2920 ((-2 (|:| -4082 |#1|) (|:| -4402 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-2068 (((-112) $ $) 65)) (-2633 (($) 18 T CONST)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-1968 (((-112) $) 79)) (-3842 (((-112) $) 35)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 73)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75)))
+((-1560 (((-112) (-645 (-953 |#1|))) 41)) (-2085 (((-645 (-953 |#1|)) (-645 (-953 |#1|))) 53)) (-2519 (((-3 (-645 (-953 |#1|)) "failed") (-645 (-953 |#1|))) 48)))
+(((-362 |#1| |#2|) (-10 -7 (-15 -1560 ((-112) (-645 (-953 |#1|)))) (-15 -2519 ((-3 (-645 (-953 |#1|)) "failed") (-645 (-953 |#1|)))) (-15 -2085 ((-645 (-953 |#1|)) (-645 (-953 |#1|))))) (-455) (-645 (-1176))) (T -362))
+((-2085 (*1 *2 *2) (-12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1176))))) (-2519 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1176))))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-112)) (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1176))))))
+(-10 -7 (-15 -1560 ((-112) (-645 (-953 |#1|)))) (-15 -2519 ((-3 (-645 (-953 |#1|)) "failed") (-645 (-953 |#1|)))) (-15 -2085 ((-645 (-953 |#1|)) (-645 (-953 |#1|)))))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772) $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) 17)) (-4234 ((|#1| $ (-567)) NIL)) (-3885 (((-567) $ (-567)) NIL)) (-2383 (($ (-1 |#1| |#1|) $) 34)) (-3136 (($ (-1 (-567) (-567)) $) 26)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 28)) (-3339 (((-1120) $) NIL)) (-2807 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-567)))) $) 30)) (-1443 (($ $ $) NIL)) (-4272 (($ $ $) NIL)) (-4101 (((-863) $) 40) (($ |#1|) NIL)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 11 T CONST)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ |#1| (-567)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21)))
+(((-363 |#1|) (-13 (-476) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2013 ((-772) $)) (-15 -3885 ((-567) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3136 ($ (-1 (-567) (-567)) $)) (-15 -2383 ($ (-1 |#1| |#1|) $)) (-15 -2807 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-567)))) $)))) (-1100)) (T -363))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1100)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1100)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1100)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1100)))) (-3885 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1100)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1100)))) (-3136 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1100)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-363 *3)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-567))))) (-5 *1 (-363 *3)) (-4 *3 (-1100)))))
+(-13 (-476) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-567))) (-15 -2013 ((-772) $)) (-15 -3885 ((-567) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3136 ($ (-1 (-567) (-567)) $)) (-15 -2383 ($ (-1 |#1| |#1|) $)) (-15 -2807 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-567)))) $))))
+((-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 13)) (-3602 (($ $) 14)) (-1401 (((-421 $) $) 34)) (-1665 (((-112) $) 30)) (-2559 (($ $) 19)) (-3276 (($ $ $) 25) (($ (-645 $)) NIL)) (-2296 (((-421 $) $) 35)) (-2245 (((-3 $ "failed") $ $) 24)) (-4369 (((-772) $) 28)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 39)) (-2469 (((-112) $ $) 16)) (-3168 (($ $ $) 37)))
+(((-364 |#1|) (-10 -8 (-15 -3168 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -1665 ((-112) |#1|)) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -2679 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -4369 ((-772) |#1|)) (-15 -3276 (|#1| (-645 |#1|))) (-15 -3276 (|#1| |#1| |#1|)) (-15 -2469 ((-112) |#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -1785 ((-2 (|:| -4135 |#1|) (|:| -4403 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|))) (-365)) (T -364))
+NIL
+(-10 -8 (-15 -3168 (|#1| |#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -1665 ((-112) |#1|)) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -2679 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -4369 ((-772) |#1|)) (-15 -3276 (|#1| (-645 |#1|))) (-15 -3276 (|#1| |#1| |#1|)) (-15 -2469 ((-112) |#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -1785 ((-2 (|:| -4135 |#1|) (|:| -4403 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-3405 (((-112) $ $) 65)) (-4061 (($) 18 T CONST)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-1665 (((-112) $) 79)) (-3714 (((-112) $) 35)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 73)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
(((-365) (-140)) (T -365))
-((-2916 (*1 *1 *1 *1) (-4 *1 (-365))))
-(-13 (-308) (-1219) (-243) (-10 -8 (-15 -2916 ($ $ $)) (-6 -4413) (-6 -4407)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T))
-((-3979 (((-112) $ $) 7)) (-1572 ((|#2| $ |#2|) 14)) (-4281 (($ $ (-1157)) 19)) (-2096 ((|#2| $) 15)) (-3099 (($ |#1|) 21) (($ |#1| (-1157)) 20)) (-3534 ((|#1| $) 17)) (-1390 (((-1157) $) 10)) (-1647 (((-1157) $) 16)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-4381 (($ $) 18)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-366 |#1| |#2|) (-140) (-1099) (-1099)) (T -366))
-((-3099 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3099 (*1 *1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099)) (-4 *4 (-1099)))) (-4281 (*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-4381 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-1157)))) (-2096 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-1572 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))))
-(-13 (-1099) (-10 -8 (-15 -3099 ($ |t#1|)) (-15 -3099 ($ |t#1| (-1157))) (-15 -4281 ($ $ (-1157))) (-15 -4381 ($ $)) (-15 -3534 (|t#1| $)) (-15 -1647 ((-1157) $)) (-15 -2096 (|t#2| $)) (-15 -1572 (|t#2| $ |t#2|))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-1572 ((|#1| $ |#1|) 31)) (-4281 (($ $ (-1157)) 23)) (-1746 (((-3 |#1| "failed") $) 30)) (-2096 ((|#1| $) 28)) (-3099 (($ (-390)) 22) (($ (-390) (-1157)) 21)) (-3534 (((-390) $) 25)) (-1390 (((-1157) $) NIL)) (-1647 (((-1157) $) 26)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 20)) (-4381 (($ $) 24)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 19)))
-(((-367 |#1|) (-13 (-366 (-390) |#1|) (-10 -8 (-15 -1746 ((-3 |#1| "failed") $)))) (-1099)) (T -367))
-((-1746 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099)))))
-(-13 (-366 (-390) |#1|) (-10 -8 (-15 -1746 ((-3 |#1| "failed") $))))
-((-3677 (((-1265 (-689 |#2|)) (-1265 $)) 70)) (-3371 (((-689 |#2|) (-1265 $)) 141)) (-4383 ((|#2| $) 39)) (-3793 (((-689 |#2|) $ (-1265 $)) 144)) (-2784 (((-3 $ "failed") $) 91)) (-2701 ((|#2| $) 42)) (-3035 (((-1171 |#2|) $) 99)) (-2822 ((|#2| (-1265 $)) 124)) (-3770 (((-1171 |#2|) $) 34)) (-1685 (((-112)) 118)) (-1452 (($ (-1265 |#2|) (-1265 $)) 134)) (-2313 (((-3 $ "failed") $) 95)) (-1375 (((-112)) 112)) (-2282 (((-112)) 107)) (-3164 (((-112)) 61)) (-4306 (((-689 |#2|) (-1265 $)) 139)) (-2567 ((|#2| $) 38)) (-1431 (((-689 |#2|) $ (-1265 $)) 143)) (-4220 (((-3 $ "failed") $) 89)) (-1625 ((|#2| $) 41)) (-3012 (((-1171 |#2|) $) 98)) (-3158 ((|#2| (-1265 $)) 122)) (-2234 (((-1171 |#2|) $) 32)) (-2187 (((-112)) 117)) (-3804 (((-112)) 109)) (-2318 (((-112)) 59)) (-1981 (((-112)) 104)) (-2073 (((-112)) 119)) (-2803 (((-1265 |#2|) $ (-1265 $)) NIL) (((-689 |#2|) (-1265 $) (-1265 $)) 130)) (-3716 (((-112)) 115)) (-2847 (((-644 (-1265 |#2|))) 103)) (-3086 (((-112)) 116)) (-2477 (((-112)) 113)) (-3272 (((-112)) 54)) (-3137 (((-112)) 120)))
-(((-368 |#1| |#2|) (-10 -8 (-15 -3035 ((-1171 |#2|) |#1|)) (-15 -3012 ((-1171 |#2|) |#1|)) (-15 -2847 ((-644 (-1265 |#2|)))) (-15 -2784 ((-3 |#1| "failed") |#1|)) (-15 -4220 ((-3 |#1| "failed") |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 -2282 ((-112))) (-15 -3804 ((-112))) (-15 -1375 ((-112))) (-15 -2318 ((-112))) (-15 -3164 ((-112))) (-15 -1981 ((-112))) (-15 -3137 ((-112))) (-15 -2073 ((-112))) (-15 -1685 ((-112))) (-15 -2187 ((-112))) (-15 -3272 ((-112))) (-15 -3086 ((-112))) (-15 -2477 ((-112))) (-15 -3716 ((-112))) (-15 -3770 ((-1171 |#2|) |#1|)) (-15 -2234 ((-1171 |#2|) |#1|)) (-15 -3371 ((-689 |#2|) (-1265 |#1|))) (-15 -4306 ((-689 |#2|) (-1265 |#1|))) (-15 -2822 (|#2| (-1265 |#1|))) (-15 -3158 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -2701 (|#2| |#1|)) (-15 -1625 (|#2| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -3793 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -1431 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -3677 ((-1265 (-689 |#2|)) (-1265 |#1|)))) (-369 |#2|) (-172)) (T -368))
-((-3716 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2477 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3086 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3272 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2187 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1685 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2073 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3137 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1981 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3164 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2318 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1375 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3804 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2282 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2847 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1265 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))))
-(-10 -8 (-15 -3035 ((-1171 |#2|) |#1|)) (-15 -3012 ((-1171 |#2|) |#1|)) (-15 -2847 ((-644 (-1265 |#2|)))) (-15 -2784 ((-3 |#1| "failed") |#1|)) (-15 -4220 ((-3 |#1| "failed") |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 -2282 ((-112))) (-15 -3804 ((-112))) (-15 -1375 ((-112))) (-15 -2318 ((-112))) (-15 -3164 ((-112))) (-15 -1981 ((-112))) (-15 -3137 ((-112))) (-15 -2073 ((-112))) (-15 -1685 ((-112))) (-15 -2187 ((-112))) (-15 -3272 ((-112))) (-15 -3086 ((-112))) (-15 -2477 ((-112))) (-15 -3716 ((-112))) (-15 -3770 ((-1171 |#2|) |#1|)) (-15 -2234 ((-1171 |#2|) |#1|)) (-15 -3371 ((-689 |#2|) (-1265 |#1|))) (-15 -4306 ((-689 |#2|) (-1265 |#1|))) (-15 -2822 (|#2| (-1265 |#1|))) (-15 -3158 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -2701 (|#2| |#1|)) (-15 -1625 (|#2| |#1|)) (-15 -4383 (|#2| |#1|)) (-15 -2567 (|#2| |#1|)) (-15 -3793 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -1431 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -3677 ((-1265 (-689 |#2|)) (-1265 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4082 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) 20)) (-3677 (((-1265 (-689 |#1|)) (-1265 $)) 83)) (-3470 (((-1265 $)) 86)) (-2633 (($) 18 T CONST)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-3748 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-3371 (((-689 |#1|) (-1265 $)) 70)) (-4383 ((|#1| $) 79)) (-3793 (((-689 |#1|) $ (-1265 $)) 81)) (-2784 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-3801 (($ $ (-921)) 31)) (-2701 ((|#1| $) 77)) (-3035 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-2822 ((|#1| (-1265 $)) 72)) (-3770 (((-1171 |#1|) $) 68)) (-1685 (((-112)) 62)) (-1452 (($ (-1265 |#1|) (-1265 $)) 74)) (-2313 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-4153 (((-921)) 85)) (-2745 (((-112)) 59)) (-2284 (($ $ (-921)) 38)) (-1375 (((-112)) 55)) (-2282 (((-112)) 53)) (-3164 (((-112)) 57)) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-3531 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-4306 (((-689 |#1|) (-1265 $)) 71)) (-2567 ((|#1| $) 80)) (-1431 (((-689 |#1|) $ (-1265 $)) 82)) (-4220 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-3510 (($ $ (-921)) 32)) (-1625 ((|#1| $) 78)) (-3012 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-3158 ((|#1| (-1265 $)) 73)) (-2234 (((-1171 |#1|) $) 69)) (-2187 (((-112)) 63)) (-1390 (((-1157) $) 10)) (-3804 (((-112)) 54)) (-2318 (((-112)) 56)) (-1981 (((-112)) 58)) (-1944 (((-1119) $) 11)) (-2073 (((-112)) 61)) (-2803 (((-1265 |#1|) $ (-1265 $)) 76) (((-689 |#1|) (-1265 $) (-1265 $)) 75)) (-3643 (((-644 (-952 |#1|)) (-1265 $)) 84)) (-1726 (($ $ $) 28)) (-3716 (((-112)) 67)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2847 (((-644 (-1265 |#1|))) 49 (|has| |#1| (-558)))) (-2481 (($ $ $ $) 29)) (-3086 (((-112)) 65)) (-2586 (($ $ $) 27)) (-2477 (((-112)) 66)) (-3272 (((-112)) 64)) (-3137 (((-112)) 60)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+((-3168 (*1 *1 *1 *1) (-4 *1 (-365))))
+(-13 (-308) (-1220) (-243) (-10 -8 (-15 -3168 ($ $ $)) (-6 -4414) (-6 -4408)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T))
+((-2257 (((-112) $ $) 7)) (-2172 ((|#2| $ |#2|) 14)) (-2481 (($ $ (-1158)) 19)) (-3654 ((|#2| $) 15)) (-1367 (($ |#1|) 21) (($ |#1| (-1158)) 20)) (-1817 ((|#1| $) 17)) (-2451 (((-1158) $) 10)) (-1658 (((-1158) $) 16)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-4021 (($ $) 18)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-366 |#1| |#2|) (-140) (-1100) (-1100)) (T -366))
+((-1367 (*1 *1 *2) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-1367 (*1 *1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1100)) (-4 *4 (-1100)))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-4021 (*1 *1 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1100)) (-4 *2 (-1100)))) (-1658 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-5 *2 (-1158)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))) (-2172 (*1 *2 *1 *2) (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))))
+(-13 (-1100) (-10 -8 (-15 -1367 ($ |t#1|)) (-15 -1367 ($ |t#1| (-1158))) (-15 -2481 ($ $ (-1158))) (-15 -4021 ($ $)) (-15 -1817 (|t#1| $)) (-15 -1658 ((-1158) $)) (-15 -3654 (|t#2| $)) (-15 -2172 (|t#2| $ |t#2|))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2172 ((|#1| $ |#1|) 31)) (-2481 (($ $ (-1158)) 23)) (-3329 (((-3 |#1| "failed") $) 30)) (-3654 ((|#1| $) 28)) (-1367 (($ (-391)) 22) (($ (-391) (-1158)) 21)) (-1817 (((-391) $) 25)) (-2451 (((-1158) $) NIL)) (-1658 (((-1158) $) 26)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 20)) (-4021 (($ $) 24)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 19)))
+(((-367 |#1|) (-13 (-366 (-391) |#1|) (-10 -8 (-15 -3329 ((-3 |#1| "failed") $)))) (-1100)) (T -367))
+((-3329 (*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1100)))))
+(-13 (-366 (-391) |#1|) (-10 -8 (-15 -3329 ((-3 |#1| "failed") $))))
+((-1502 (((-1266 (-690 |#2|)) (-1266 $)) 70)) (-1743 (((-690 |#2|) (-1266 $)) 141)) (-4042 ((|#2| $) 39)) (-4380 (((-690 |#2|) $ (-1266 $)) 144)) (-3038 (((-3 $ "failed") $) 91)) (-3511 ((|#2| $) 42)) (-1411 (((-1172 |#2|) $) 99)) (-2152 ((|#2| (-1266 $)) 124)) (-4214 (((-1172 |#2|) $) 34)) (-3920 (((-112)) 118)) (-3499 (($ (-1266 |#2|) (-1266 $)) 134)) (-4014 (((-3 $ "failed") $) 95)) (-3352 (((-112)) 112)) (-1843 (((-112)) 107)) (-3443 (((-112)) 61)) (-2719 (((-690 |#2|) (-1266 $)) 139)) (-1568 ((|#2| $) 38)) (-3322 (((-690 |#2|) $ (-1266 $)) 143)) (-3123 (((-3 $ "failed") $) 89)) (-1380 ((|#2| $) 41)) (-2575 (((-1172 |#2|) $) 98)) (-3385 ((|#2| (-1266 $)) 122)) (-2632 (((-1172 |#2|) $) 32)) (-2095 (((-112)) 117)) (-3387 (((-112)) 109)) (-4064 (((-112)) 59)) (-1815 (((-112)) 104)) (-3451 (((-112)) 119)) (-3216 (((-1266 |#2|) $ (-1266 $)) NIL) (((-690 |#2|) (-1266 $) (-1266 $)) 130)) (-1911 (((-112)) 115)) (-2411 (((-645 (-1266 |#2|))) 103)) (-3854 (((-112)) 116)) (-3239 (((-112)) 113)) (-3244 (((-112)) 54)) (-4307 (((-112)) 120)))
+(((-368 |#1| |#2|) (-10 -8 (-15 -1411 ((-1172 |#2|) |#1|)) (-15 -2575 ((-1172 |#2|) |#1|)) (-15 -2411 ((-645 (-1266 |#2|)))) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 -1843 ((-112))) (-15 -3387 ((-112))) (-15 -3352 ((-112))) (-15 -4064 ((-112))) (-15 -3443 ((-112))) (-15 -1815 ((-112))) (-15 -4307 ((-112))) (-15 -3451 ((-112))) (-15 -3920 ((-112))) (-15 -2095 ((-112))) (-15 -3244 ((-112))) (-15 -3854 ((-112))) (-15 -3239 ((-112))) (-15 -1911 ((-112))) (-15 -4214 ((-1172 |#2|) |#1|)) (-15 -2632 ((-1172 |#2|) |#1|)) (-15 -1743 ((-690 |#2|) (-1266 |#1|))) (-15 -2719 ((-690 |#2|) (-1266 |#1|))) (-15 -2152 (|#2| (-1266 |#1|))) (-15 -3385 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -3511 (|#2| |#1|)) (-15 -1380 (|#2| |#1|)) (-15 -4042 (|#2| |#1|)) (-15 -1568 (|#2| |#1|)) (-15 -4380 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -3322 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -1502 ((-1266 (-690 |#2|)) (-1266 |#1|)))) (-369 |#2|) (-172)) (T -368))
+((-1911 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3239 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3854 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3244 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2095 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3920 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3451 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4307 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1815 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3443 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-4064 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3352 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-3387 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-1843 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))) (-2411 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1266 *4))) (-5 *1 (-368 *3 *4)) (-4 *3 (-369 *4)))))
+(-10 -8 (-15 -1411 ((-1172 |#2|) |#1|)) (-15 -2575 ((-1172 |#2|) |#1|)) (-15 -2411 ((-645 (-1266 |#2|)))) (-15 -3038 ((-3 |#1| "failed") |#1|)) (-15 -3123 ((-3 |#1| "failed") |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 -1843 ((-112))) (-15 -3387 ((-112))) (-15 -3352 ((-112))) (-15 -4064 ((-112))) (-15 -3443 ((-112))) (-15 -1815 ((-112))) (-15 -4307 ((-112))) (-15 -3451 ((-112))) (-15 -3920 ((-112))) (-15 -2095 ((-112))) (-15 -3244 ((-112))) (-15 -3854 ((-112))) (-15 -3239 ((-112))) (-15 -1911 ((-112))) (-15 -4214 ((-1172 |#2|) |#1|)) (-15 -2632 ((-1172 |#2|) |#1|)) (-15 -1743 ((-690 |#2|) (-1266 |#1|))) (-15 -2719 ((-690 |#2|) (-1266 |#1|))) (-15 -2152 (|#2| (-1266 |#1|))) (-15 -3385 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -3511 (|#2| |#1|)) (-15 -1380 (|#2| |#1|)) (-15 -4042 (|#2| |#1|)) (-15 -1568 (|#2| |#1|)) (-15 -4380 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -3322 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -1502 ((-1266 (-690 |#2|)) (-1266 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4135 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) 20)) (-1502 (((-1266 (-690 |#1|)) (-1266 $)) 83)) (-3429 (((-1266 $)) 86)) (-4061 (($) 18 T CONST)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-4040 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1743 (((-690 |#1|) (-1266 $)) 70)) (-4042 ((|#1| $) 79)) (-4380 (((-690 |#1|) $ (-1266 $)) 81)) (-3038 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-3356 (($ $ (-922)) 31)) (-3511 ((|#1| $) 77)) (-1411 (((-1172 |#1|) $) 47 (|has| |#1| (-559)))) (-2152 ((|#1| (-1266 $)) 72)) (-4214 (((-1172 |#1|) $) 68)) (-3920 (((-112)) 62)) (-3499 (($ (-1266 |#1|) (-1266 $)) 74)) (-4014 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-2432 (((-922)) 85)) (-3831 (((-112)) 59)) (-1866 (($ $ (-922)) 38)) (-3352 (((-112)) 55)) (-1843 (((-112)) 53)) (-3443 (((-112)) 57)) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-2743 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-2719 (((-690 |#1|) (-1266 $)) 71)) (-1568 ((|#1| $) 80)) (-3322 (((-690 |#1|) $ (-1266 $)) 82)) (-3123 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-3747 (($ $ (-922)) 32)) (-1380 ((|#1| $) 78)) (-2575 (((-1172 |#1|) $) 48 (|has| |#1| (-559)))) (-3385 ((|#1| (-1266 $)) 73)) (-2632 (((-1172 |#1|) $) 69)) (-2095 (((-112)) 63)) (-2451 (((-1158) $) 10)) (-3387 (((-112)) 54)) (-4064 (((-112)) 56)) (-1815 (((-112)) 58)) (-3339 (((-1120) $) 11)) (-3451 (((-112)) 61)) (-3216 (((-1266 |#1|) $ (-1266 $)) 76) (((-690 |#1|) (-1266 $) (-1266 $)) 75)) (-2539 (((-645 (-953 |#1|)) (-1266 $)) 84)) (-4272 (($ $ $) 28)) (-1911 (((-112)) 67)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-2411 (((-645 (-1266 |#1|))) 49 (|has| |#1| (-559)))) (-3280 (($ $ $ $) 29)) (-3854 (((-112)) 65)) (-1816 (($ $ $) 27)) (-3239 (((-112)) 66)) (-3244 (((-112)) 64)) (-4307 (((-112)) 60)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
(((-369 |#1|) (-140) (-172)) (T -369))
-((-3470 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1265 *1)) (-4 *1 (-369 *3)))) (-4153 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1265 (-689 *4))))) (-1431 (*1 *2 *1 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-3793 (*1 *2 *1 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2701 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1265 *4)))) (-2803 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-1452 (*1 *1 *2 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-1265 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-3158 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4306 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-3371 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-2234 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-3770 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))) (-3716 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2477 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3086 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3272 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2187 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1685 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2073 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3137 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2745 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1981 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3164 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2318 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1375 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3804 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2282 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2313 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-4220 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2784 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558)))) (-2847 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-644 (-1265 *3))))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-3035 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558)) (-5 *2 (-1171 *3)))) (-2861 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2227 (-644 *1)))) (-4 *1 (-369 *3)))) (-3522 (*1 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2227 (-644 *1)))) (-4 *1 (-369 *3)))) (-3531 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-3748 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))) (-4082 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))))
-(-13 (-744 |t#1|) (-10 -8 (-15 -3470 ((-1265 $))) (-15 -4153 ((-921))) (-15 -3643 ((-644 (-952 |t#1|)) (-1265 $))) (-15 -3677 ((-1265 (-689 |t#1|)) (-1265 $))) (-15 -1431 ((-689 |t#1|) $ (-1265 $))) (-15 -3793 ((-689 |t#1|) $ (-1265 $))) (-15 -2567 (|t#1| $)) (-15 -4383 (|t#1| $)) (-15 -1625 (|t#1| $)) (-15 -2701 (|t#1| $)) (-15 -2803 ((-1265 |t#1|) $ (-1265 $))) (-15 -2803 ((-689 |t#1|) (-1265 $) (-1265 $))) (-15 -1452 ($ (-1265 |t#1|) (-1265 $))) (-15 -3158 (|t#1| (-1265 $))) (-15 -2822 (|t#1| (-1265 $))) (-15 -4306 ((-689 |t#1|) (-1265 $))) (-15 -3371 ((-689 |t#1|) (-1265 $))) (-15 -2234 ((-1171 |t#1|) $)) (-15 -3770 ((-1171 |t#1|) $)) (-15 -3716 ((-112))) (-15 -2477 ((-112))) (-15 -3086 ((-112))) (-15 -3272 ((-112))) (-15 -2187 ((-112))) (-15 -1685 ((-112))) (-15 -2073 ((-112))) (-15 -3137 ((-112))) (-15 -2745 ((-112))) (-15 -1981 ((-112))) (-15 -3164 ((-112))) (-15 -2318 ((-112))) (-15 -1375 ((-112))) (-15 -3804 ((-112))) (-15 -2282 ((-112))) (IF (|has| |t#1| (-558)) (PROGN (-15 -2313 ((-3 $ "failed") $)) (-15 -4220 ((-3 $ "failed") $)) (-15 -2784 ((-3 $ "failed") $)) (-15 -2847 ((-644 (-1265 |t#1|)))) (-15 -3012 ((-1171 |t#1|) $)) (-15 -3035 ((-1171 |t#1|) $)) (-15 -2861 ((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed"))) (-15 -3522 ((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed"))) (-15 -3531 ((-3 $ "failed"))) (-15 -3748 ((-3 $ "failed"))) (-15 -4082 ((-3 $ "failed"))) (-6 -4412)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-744 |#1|) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3733 (((-771)) 17)) (-3424 (($) 14)) (-4138 (((-921) $) 15)) (-1390 (((-1157) $) 10)) (-2430 (($ (-921)) 16)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
+((-3429 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1266 *1)) (-4 *1 (-369 *3)))) (-2432 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922)))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-645 (-953 *4))))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1266 (-690 *4))))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-4380 (*1 *2 *1 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1568 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-1266 *4)))) (-3216 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-1266 *1)) (-4 *4 (-172)) (-4 *1 (-369 *4)))) (-3385 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172)))) (-2719 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1743 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1172 *3)))) (-4214 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1172 *3)))) (-1911 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3239 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3854 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3244 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2095 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3920 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3451 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4307 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3831 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1815 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3443 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4064 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3352 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3387 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1843 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4014 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-3123 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-3038 (*1 *1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559)))) (-2411 (*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-645 (-1266 *3))))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1172 *3)))) (-1411 (*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559)) (-5 *2 (-1172 *3)))) (-2546 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2557 (-645 *1)))) (-4 *1 (-369 *3)))) (-3817 (*1 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2557 (-645 *1)))) (-4 *1 (-369 *3)))) (-2743 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-4040 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))) (-4135 (*1 *1) (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
+(-13 (-745 |t#1|) (-10 -8 (-15 -3429 ((-1266 $))) (-15 -2432 ((-922))) (-15 -2539 ((-645 (-953 |t#1|)) (-1266 $))) (-15 -1502 ((-1266 (-690 |t#1|)) (-1266 $))) (-15 -3322 ((-690 |t#1|) $ (-1266 $))) (-15 -4380 ((-690 |t#1|) $ (-1266 $))) (-15 -1568 (|t#1| $)) (-15 -4042 (|t#1| $)) (-15 -1380 (|t#1| $)) (-15 -3511 (|t#1| $)) (-15 -3216 ((-1266 |t#1|) $ (-1266 $))) (-15 -3216 ((-690 |t#1|) (-1266 $) (-1266 $))) (-15 -3499 ($ (-1266 |t#1|) (-1266 $))) (-15 -3385 (|t#1| (-1266 $))) (-15 -2152 (|t#1| (-1266 $))) (-15 -2719 ((-690 |t#1|) (-1266 $))) (-15 -1743 ((-690 |t#1|) (-1266 $))) (-15 -2632 ((-1172 |t#1|) $)) (-15 -4214 ((-1172 |t#1|) $)) (-15 -1911 ((-112))) (-15 -3239 ((-112))) (-15 -3854 ((-112))) (-15 -3244 ((-112))) (-15 -2095 ((-112))) (-15 -3920 ((-112))) (-15 -3451 ((-112))) (-15 -4307 ((-112))) (-15 -3831 ((-112))) (-15 -1815 ((-112))) (-15 -3443 ((-112))) (-15 -4064 ((-112))) (-15 -3352 ((-112))) (-15 -3387 ((-112))) (-15 -1843 ((-112))) (IF (|has| |t#1| (-559)) (PROGN (-15 -4014 ((-3 $ "failed") $)) (-15 -3123 ((-3 $ "failed") $)) (-15 -3038 ((-3 $ "failed") $)) (-15 -2411 ((-645 (-1266 |t#1|)))) (-15 -2575 ((-1172 |t#1|) $)) (-15 -1411 ((-1172 |t#1|) $)) (-15 -2546 ((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed"))) (-15 -3817 ((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed"))) (-15 -2743 ((-3 $ "failed"))) (-15 -4040 ((-3 $ "failed"))) (-15 -4135 ((-3 $ "failed"))) (-6 -4413)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2013 (((-772)) 17)) (-1649 (($) 14)) (-3527 (((-922) $) 15)) (-2451 (((-1158) $) 10)) (-3811 (($ (-922)) 16)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
(((-370) (-140)) (T -370))
-((-3733 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370)))) (-4138 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921)))) (-3424 (*1 *1) (-4 *1 (-370))))
-(-13 (-1099) (-10 -8 (-15 -3733 ((-771))) (-15 -2430 ($ (-921))) (-15 -4138 ((-921) $)) (-15 -3424 ($))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3561 (((-689 |#2|) (-1265 $)) 47)) (-1452 (($ (-1265 |#2|) (-1265 $)) 41)) (-2340 (((-689 |#2|) $ (-1265 $)) 49)) (-2061 ((|#2| (-1265 $)) 13)) (-2803 (((-1265 |#2|) $ (-1265 $)) NIL) (((-689 |#2|) (-1265 $) (-1265 $)) 27)))
-(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -3561 ((-689 |#2|) (-1265 |#1|))) (-15 -2061 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -2340 ((-689 |#2|) |#1| (-1265 |#1|)))) (-372 |#2| |#3|) (-172) (-1241 |#2|)) (T -371))
-NIL
-(-10 -8 (-15 -3561 ((-689 |#2|) (-1265 |#1|))) (-15 -2061 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -2340 ((-689 |#2|) |#1| (-1265 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-3561 (((-689 |#1|) (-1265 $)) 53)) (-2717 ((|#1| $) 59)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1452 (($ (-1265 |#1|) (-1265 $)) 55)) (-2340 (((-689 |#1|) $ (-1265 $)) 60)) (-2313 (((-3 $ "failed") $) 37)) (-4153 (((-921)) 61)) (-3842 (((-112) $) 35)) (-3202 ((|#1| $) 58)) (-2323 ((|#2| $) 51 (|has| |#1| (-365)))) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2061 ((|#1| (-1265 $)) 54)) (-2803 (((-1265 |#1|) $ (-1265 $)) 57) (((-689 |#1|) (-1265 $) (-1265 $)) 56)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2655 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1707 ((|#2| $) 52)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-372 |#1| |#2|) (-140) (-172) (-1241 |t#1|)) (T -372))
-((-4153 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3)) (-5 *2 (-921)))) (-2340 (*1 *2 *1 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-689 *4)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1241 *2)) (-4 *2 (-172)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1241 *2)) (-4 *2 (-172)))) (-2803 (*1 *2 *1 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-1265 *4)))) (-2803 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-689 *4)))) (-1452 (*1 *1 *2 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-1265 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1241 *4)))) (-2061 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1241 *2)) (-4 *2 (-172)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-689 *4)))) (-1707 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1241 *3)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1241 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -4153 ((-921))) (-15 -2340 ((-689 |t#1|) $ (-1265 $))) (-15 -2717 (|t#1| $)) (-15 -3202 (|t#1| $)) (-15 -2803 ((-1265 |t#1|) $ (-1265 $))) (-15 -2803 ((-689 |t#1|) (-1265 $) (-1265 $))) (-15 -1452 ($ (-1265 |t#1|) (-1265 $))) (-15 -2061 (|t#1| (-1265 $))) (-15 -3561 ((-689 |t#1|) (-1265 $))) (-15 -1707 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -2323 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-4123 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2553 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2101 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
-(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2553 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1215) (-375 |#1|) (-1215) (-375 |#3|)) (T -373))
-((-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1215)) (-4 *5 (-1215)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1215)) (-4 *2 (-1215)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))))
-(-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2553 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1305 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3190 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-3370 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-1921 (($ $) 25)) (-2388 (((-566) (-1 (-112) |#2|) $) NIL) (((-566) |#2| $) 11) (((-566) |#2| $ (-566)) NIL)) (-3848 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-374 |#1| |#2|) (-10 -8 (-15 -3190 (|#1| |#1|)) (-15 -3190 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1305 ((-112) |#1|)) (-15 -3370 (|#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2388 ((-566) |#2| |#1| (-566))) (-15 -2388 ((-566) |#2| |#1|)) (-15 -2388 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -1305 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3370 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1921 (|#1| |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1215)) (T -374))
-NIL
-(-10 -8 (-15 -3190 (|#1| |#1|)) (-15 -3190 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1305 ((-112) |#1|)) (-15 -3370 (|#1| |#1|)) (-15 -3848 (|#1| |#1| |#1|)) (-15 -2388 ((-566) |#2| |#1| (-566))) (-15 -2388 ((-566) |#2| |#1|)) (-15 -2388 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -1305 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3370 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1921 (|#1| |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4416))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4416))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 59 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1970 (($ $) 91 (|has| $ (-6 -4416)))) (-1921 (($ $) 101)) (-3806 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 52)) (-2388 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3075 (($ $ $) 88 (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3936 (($ $ $) 87 (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 43 (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3598 (($ $ |#1|) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1232 (-566))) 64)) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3199 (($ $ $ (-566)) 92 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 71)) (-4007 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2854 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 83 (|has| |#1| (-850)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-375 |#1|) (-140) (-1215)) (T -375))
-((-3848 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1215)))) (-1921 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1215)))) (-3370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1215)))) (-1305 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1215)) (-5 *2 (-112)))) (-2388 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1215)) (-5 *2 (-566)))) (-2388 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1215)) (-4 *3 (-1099)) (-5 *2 (-566)))) (-2388 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1215)) (-4 *3 (-1099)))) (-3848 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1215)) (-4 *2 (-850)))) (-3370 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1215)) (-4 *2 (-850)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1215)) (-4 *3 (-850)) (-5 *2 (-112)))) (-3199 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4416)) (-4 *1 (-375 *3)) (-4 *3 (-1215)))) (-1970 (*1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-375 *2)) (-4 *2 (-1215)))) (-3190 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4416)) (-4 *1 (-375 *3)) (-4 *3 (-1215)))) (-3190 (*1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-375 *2)) (-4 *2 (-1215)) (-4 *2 (-850)))))
-(-13 (-651 |t#1|) (-10 -8 (-6 -4415) (-15 -3848 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1921 ($ $)) (-15 -3370 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1305 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2388 ((-566) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -2388 ((-566) |t#1| $)) (-15 -2388 ((-566) |t#1| $ (-566)))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-6 (-850)) (-15 -3848 ($ $ $)) (-15 -3370 ($ $)) (-15 -1305 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4416)) (PROGN (-15 -3199 ($ $ $ (-566))) (-15 -1970 ($ $)) (-15 -3190 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-850)) (-15 -3190 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1215) . T))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-1509 (((-644 |#1|) $) 37)) (-1728 (($ $ (-771)) 38)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-4060 (((-1289 |#1| |#2|) (-1289 |#1| |#2|) $) 41)) (-3746 (($ $) 39)) (-1324 (((-1289 |#1| |#2|) (-1289 |#1| |#2|) $) 42)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-1754 (($ $ |#1| $) 36) (($ $ (-644 |#1|) (-644 $)) 35)) (-3838 (((-771) $) 43)) (-2738 (($ $ $) 34)) (-2725 (((-862) $) 12) (($ |#1|) 46) (((-1280 |#1| |#2|) $) 45) (((-1289 |#1| |#2|) $) 44)) (-1702 ((|#2| (-1289 |#1| |#2|) $) 47)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-4140 (($ (-672 |#1|)) 40)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
-(((-376 |#1| |#2|) (-140) (-850) (-172)) (T -376))
-((-1702 (*1 *2 *3 *1) (-12 (-5 *3 (-1289 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-850)) (-4 *2 (-172)))) (-2725 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1280 *3 *4)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-1289 *3 *4)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-771)))) (-1324 (*1 *2 *2 *1) (-12 (-5 *2 (-1289 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-4060 (*1 *2 *2 *1) (-12 (-5 *2 (-1289 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-4140 (*1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-3746 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-1728 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *2 (-644 *3)))) (-1754 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-850)) (-4 *5 (-172)))))
-(-13 (-634 |t#2|) (-10 -8 (-15 -1702 (|t#2| (-1289 |t#1| |t#2|) $)) (-15 -2725 ($ |t#1|)) (-15 -2725 ((-1280 |t#1| |t#2|) $)) (-15 -2725 ((-1289 |t#1| |t#2|) $)) (-15 -3838 ((-771) $)) (-15 -1324 ((-1289 |t#1| |t#2|) (-1289 |t#1| |t#2|) $)) (-15 -4060 ((-1289 |t#1| |t#2|) (-1289 |t#1| |t#2|) $)) (-15 -4140 ($ (-672 |t#1|))) (-15 -3746 ($ $)) (-15 -1728 ($ $ (-771))) (-15 -1509 ((-644 |t#1|) $)) (-15 -1754 ($ $ |t#1| $)) (-15 -1754 ($ $ (-644 |t#1|) (-644 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-648 |#2|) . T) ((-634 |#2|) . T) ((-640 |#2|) . T) ((-717 |#2|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1099) . T))
-((-2214 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-2719 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-1484 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
-(((-377 |#1| |#2|) (-10 -7 (-15 -2719 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1484 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2214 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1215) (-13 (-375 |#1|) (-10 -7 (-6 -4416)))) (T -377))
-((-2214 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416)))))) (-1484 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416)))))) (-2719 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416)))))))
-(-10 -7 (-15 -2719 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1484 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2214 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
-((-3717 (((-689 |#2|) (-689 $)) NIL) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 22) (((-689 (-566)) (-689 $)) 14)))
-(((-378 |#1| |#2|) (-10 -8 (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 |#2|) (-689 |#1|)))) (-379 |#2|) (-1049)) (T -378))
-NIL
-(-10 -8 (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 |#2|) (-689 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-3717 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 39) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 47 (|has| |#1| (-639 (-566)))) (((-689 (-566)) (-689 $)) 46 (|has| |#1| (-639 (-566))))) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-379 |#1|) (-140) (-1049)) (T -379))
-NIL
-(-13 (-639 |t#1|) (-10 -7 (IF (|has| |t#1| (-639 (-566))) (-6 (-639 (-566))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-1599 (((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|) 51) (((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|) 50) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|) 47) (((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|) 41)) (-2301 (((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|) 30) (((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|) 18)))
-(((-380 |#1|) (-10 -7 (-15 -1599 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -1599 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -1599 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -1599 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -2301 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -2301 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|))) (-13 (-365) (-848))) (T -380))
-((-2301 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848))))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566))))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))) (-1599 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848))))))
-(-10 -7 (-15 -1599 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -1599 ((-644 (-644 (-295 (-952 (-169 |#1|))))) (-644 (-295 (-409 (-952 (-169 (-566)))))) |#1|)) (-15 -1599 ((-644 (-295 (-952 (-169 |#1|)))) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -1599 ((-644 (-295 (-952 (-169 |#1|)))) (-295 (-409 (-952 (-169 (-566))))) |#1|)) (-15 -2301 ((-644 (-169 |#1|)) (-409 (-952 (-169 (-566)))) |#1|)) (-15 -2301 ((-644 (-644 (-169 |#1|))) (-644 (-409 (-952 (-169 (-566))))) (-644 (-1175)) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 35)) (-4191 (((-566) $) 62)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1807 (($ $) 144)) (-3622 (($ $) 107)) (-3474 (($ $) 94)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4028 (($ $) 47)) (-2068 (((-112) $ $) NIL)) (-3601 (($ $) 105)) (-3449 (($ $) 88)) (-1859 (((-566) $) 81)) (-2724 (($ $ (-566)) 76)) (-3648 (($ $) NIL)) (-3500 (($ $) NIL)) (-2633 (($) NIL T CONST)) (-3995 (($ $) 146)) (-2023 (((-3 (-566) "failed") $) 242) (((-3 (-409 (-566)) "failed") $) 238)) (-3343 (((-566) $) 240) (((-409 (-566)) $) 236)) (-3919 (($ $ $) NIL)) (-1362 (((-566) $ $) 133)) (-2313 (((-3 $ "failed") $) 149)) (-2734 (((-409 (-566)) $ (-771)) 243) (((-409 (-566)) $ (-771) (-771)) 235)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3006 (((-921)) 96) (((-921) (-921)) 129 (|has| $ (-6 -4406)))) (-3421 (((-112) $) 138)) (-2722 (($) 41)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-3276 (((-1270) (-771)) 201)) (-3299 (((-1270)) 206) (((-1270) (-771)) 207)) (-2393 (((-1270)) 208) (((-1270) (-771)) 209)) (-3495 (((-1270)) 204) (((-1270) (-771)) 205)) (-3077 (((-566) $) 69)) (-3842 (((-112) $) 40)) (-2810 (($ $ (-566)) NIL)) (-2174 (($ $) 51)) (-3202 (($ $) NIL)) (-2307 (((-112) $) 37)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL) (($) NIL (-12 (-3129 (|has| $ (-6 -4398))) (-3129 (|has| $ (-6 -4406)))))) (-3936 (($ $ $) NIL) (($) 130 (-12 (-3129 (|has| $ (-6 -4398))) (-3129 (|has| $ (-6 -4406)))))) (-1497 (((-566) $) 17)) (-4342 (($) 115) (($ $) 121)) (-3184 (($) 120) (($ $) 122)) (-1565 (($ $) 110)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 151)) (-1834 (((-921) (-566)) 46 (|has| $ (-6 -4406)))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) 60)) (-2311 (($ $) 143)) (-1449 (($ (-566) (-566)) 139) (($ (-566) (-566) (-921)) 140)) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3428 (((-566) $) 19)) (-2416 (($) 123)) (-1535 (($ $) 104)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2016 (((-921)) 131) (((-921) (-921)) 132 (|has| $ (-6 -4406)))) (-3009 (($ $ (-771)) NIL) (($ $) 150)) (-2773 (((-921) (-566)) 50 (|has| $ (-6 -4406)))) (-3658 (($ $) NIL)) (-3515 (($ $) NIL)) (-3635 (($ $) NIL)) (-3488 (($ $) NIL)) (-3612 (($ $) 106)) (-3461 (($ $) 93)) (-2150 (((-381) $) 229) (((-225) $) 230) (((-892 (-381)) $) NIL) (((-1157) $) 212) (((-538) $) 227) (($ (-225)) 234)) (-2725 (((-862) $) 216) (($ (-566)) 239) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-566)) 239) (($ (-409 (-566))) NIL) (((-225) $) 231)) (-2875 (((-771)) NIL T CONST)) (-2119 (($ $) 145)) (-3194 (((-921)) 61) (((-921) (-921)) 83 (|has| $ (-6 -4406)))) (-1479 (((-112) $ $) NIL)) (-1792 (((-921)) 134)) (-3696 (($ $) 113)) (-3553 (($ $) 49) (($ $ $) 59)) (-1597 (((-112) $ $) NIL)) (-3670 (($ $) 111)) (-3528 (($ $) 39)) (-3719 (($ $) NIL)) (-3577 (($ $) NIL)) (-3076 (($ $) NIL)) (-3589 (($ $) NIL)) (-3705 (($ $) NIL)) (-3566 (($ $) NIL)) (-3682 (($ $) 112)) (-3541 (($ $) 52)) (-2274 (($ $) 58)) (-3200 (($) 36 T CONST)) (-3214 (($) 43 T CONST)) (-2331 (((-1157) $) 27) (((-1157) $ (-112)) 29) (((-1270) (-822) $) 30) (((-1270) (-822) $ (-112)) 31)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2865 (((-112) $ $) 213)) (-2844 (((-112) $ $) 45)) (-2817 (((-112) $ $) 56)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 57)) (-2916 (($ $ $) 48) (($ $ (-566)) 42)) (-2905 (($ $) 38) (($ $ $) 53)) (-2897 (($ $ $) 75)) (** (($ $ (-921)) 86) (($ $ (-771)) NIL) (($ $ (-566)) 116) (($ $ (-409 (-566))) 162) (($ $ $) 153)) (* (($ (-921) $) 82) (($ (-771) $) NIL) (($ (-566) $) 87) (($ $ $) 74) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-381) (-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1200) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -2916 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2174 ($ $)) (-15 -1362 ((-566) $ $)) (-15 -2724 ($ $ (-566))) (-15 -2734 ((-409 (-566)) $ (-771))) (-15 -2734 ((-409 (-566)) $ (-771) (-771))) (-15 -4342 ($)) (-15 -3184 ($)) (-15 -2416 ($)) (-15 -3553 ($ $ $)) (-15 -4342 ($ $)) (-15 -3184 ($ $)) (-15 -2393 ((-1270))) (-15 -2393 ((-1270) (-771))) (-15 -3495 ((-1270))) (-15 -3495 ((-1270) (-771))) (-15 -3299 ((-1270))) (-15 -3299 ((-1270) (-771))) (-15 -3276 ((-1270) (-771))) (-6 -4406) (-6 -4398)))) (T -381))
-((** (*1 *1 *1 *1) (-5 *1 (-381))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-2174 (*1 *1 *1) (-5 *1 (-381))) (-1362 (*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381)))) (-2734 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-2734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))) (-4342 (*1 *1) (-5 *1 (-381))) (-3184 (*1 *1) (-5 *1 (-381))) (-2416 (*1 *1) (-5 *1 (-381))) (-3553 (*1 *1 *1 *1) (-5 *1 (-381))) (-4342 (*1 *1 *1) (-5 *1 (-381))) (-3184 (*1 *1 *1) (-5 *1 (-381))) (-2393 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-381)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381)))) (-3495 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-381)))) (-3495 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381)))) (-3299 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-381)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381)))))
-(-13 (-406) (-233) (-614 (-1157)) (-828) (-613 (-225)) (-1200) (-614 (-538)) (-618 (-225)) (-10 -8 (-15 -2916 ($ $ (-566))) (-15 ** ($ $ $)) (-15 -2174 ($ $)) (-15 -1362 ((-566) $ $)) (-15 -2724 ($ $ (-566))) (-15 -2734 ((-409 (-566)) $ (-771))) (-15 -2734 ((-409 (-566)) $ (-771) (-771))) (-15 -4342 ($)) (-15 -3184 ($)) (-15 -2416 ($)) (-15 -3553 ($ $ $)) (-15 -4342 ($ $)) (-15 -3184 ($ $)) (-15 -2393 ((-1270))) (-15 -2393 ((-1270) (-771))) (-15 -3495 ((-1270))) (-15 -3495 ((-1270) (-771))) (-15 -3299 ((-1270))) (-15 -3299 ((-1270) (-771))) (-15 -3276 ((-1270) (-771))) (-6 -4406) (-6 -4398)))
-((-1409 (((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|) 46) (((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|) 45) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|) 42) (((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|) 36)) (-3975 (((-644 |#1|) (-409 (-952 (-566))) |#1|) 20) (((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|) 30)))
-(((-382 |#1|) (-10 -7 (-15 -1409 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -1409 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -1409 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -1409 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -3975 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -3975 ((-644 |#1|) (-409 (-952 (-566))) |#1|))) (-13 (-848) (-365))) (T -382))
-((-3975 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-3975 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-848) (-365))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 (-566))))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 (-566)))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365))))))
-(-10 -7 (-15 -1409 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-409 (-952 (-566)))) |#1|)) (-15 -1409 ((-644 (-644 (-295 (-952 |#1|)))) (-644 (-295 (-409 (-952 (-566))))) |#1|)) (-15 -1409 ((-644 (-295 (-952 |#1|))) (-409 (-952 (-566))) |#1|)) (-15 -1409 ((-644 (-295 (-952 |#1|))) (-295 (-409 (-952 (-566)))) |#1|)) (-15 -3975 ((-644 (-644 |#1|)) (-644 (-409 (-952 (-566)))) (-644 (-1175)) |#1|)) (-15 -3975 ((-644 |#1|) (-409 (-952 (-566))) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) 30)) (-3343 ((|#2| $) 32)) (-4358 (($ $) NIL)) (-2436 (((-771) $) 11)) (-2966 (((-644 $) $) 23)) (-3819 (((-112) $) NIL)) (-3562 (($ |#2| |#1|) 21)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-4323 ((|#2| $) 18)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 51) (($ |#2|) 31)) (-3624 (((-644 |#1|) $) 20)) (-3623 ((|#1| $ |#2|) 55)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 33 T CONST)) (-1893 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
-(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1049) (-850)) (T -383))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)))))
+((-2013 (*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772)))) (-3811 (*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370)))) (-3527 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922)))) (-1649 (*1 *1) (-4 *1 (-370))))
+(-13 (-1100) (-10 -8 (-15 -2013 ((-772))) (-15 -3811 ($ (-922))) (-15 -3527 ((-922) $)) (-15 -1649 ($))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-3007 (((-690 |#2|) (-1266 $)) 47)) (-3499 (($ (-1266 |#2|) (-1266 $)) 41)) (-4253 (((-690 |#2|) $ (-1266 $)) 49)) (-3347 ((|#2| (-1266 $)) 13)) (-3216 (((-1266 |#2|) $ (-1266 $)) NIL) (((-690 |#2|) (-1266 $) (-1266 $)) 27)))
+(((-371 |#1| |#2| |#3|) (-10 -8 (-15 -3007 ((-690 |#2|) (-1266 |#1|))) (-15 -3347 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -4253 ((-690 |#2|) |#1| (-1266 |#1|)))) (-372 |#2| |#3|) (-172) (-1242 |#2|)) (T -371))
+NIL
+(-10 -8 (-15 -3007 ((-690 |#2|) (-1266 |#1|))) (-15 -3347 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -4253 ((-690 |#2|) |#1| (-1266 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-3007 (((-690 |#1|) (-1266 $)) 53)) (-4093 ((|#1| $) 59)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3499 (($ (-1266 |#1|) (-1266 $)) 55)) (-4253 (((-690 |#1|) $ (-1266 $)) 60)) (-4014 (((-3 $ "failed") $) 37)) (-2432 (((-922)) 61)) (-3714 (((-112) $) 35)) (-3751 ((|#1| $) 58)) (-4110 ((|#2| $) 51 (|has| |#1| (-365)))) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3347 ((|#1| (-1266 $)) 54)) (-3216 (((-1266 |#1|) $ (-1266 $)) 57) (((-690 |#1|) (-1266 $) (-1266 $)) 56)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-4242 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-4121 ((|#2| $) 52)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-372 |#1| |#2|) (-140) (-172) (-1242 |t#1|)) (T -372))
+((-2432 (*1 *2) (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3)) (-5 *2 (-922)))) (-4253 (*1 *2 *1 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-690 *4)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1242 *2)) (-4 *2 (-172)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1242 *2)) (-4 *2 (-172)))) (-3216 (*1 *2 *1 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-1266 *4)))) (-3216 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-690 *4)))) (-3499 (*1 *1 *2 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-1266 *1)) (-4 *4 (-172)) (-4 *1 (-372 *4 *5)) (-4 *5 (-1242 *4)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1242 *2)) (-4 *2 (-172)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-690 *4)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1242 *3)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365)) (-4 *2 (-1242 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -2432 ((-922))) (-15 -4253 ((-690 |t#1|) $ (-1266 $))) (-15 -4093 (|t#1| $)) (-15 -3751 (|t#1| $)) (-15 -3216 ((-1266 |t#1|) $ (-1266 $))) (-15 -3216 ((-690 |t#1|) (-1266 $) (-1266 $))) (-15 -3499 ($ (-1266 |t#1|) (-1266 $))) (-15 -3347 (|t#1| (-1266 $))) (-15 -3007 ((-690 |t#1|) (-1266 $))) (-15 -4121 (|t#2| $)) (IF (|has| |t#1| (-365)) (-15 -4110 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3391 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-3402 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-3494 ((|#4| (-1 |#3| |#1|) |#2|) 23)))
+(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3402 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3391 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1216) (-375 |#1|) (-1216) (-375 |#3|)) (T -373))
+((-3391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1216)) (-4 *5 (-1216)) (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6)))) (-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1216)) (-4 *2 (-1216)) (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5)))))
+(-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3402 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3391 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2530 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-3655 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-1594 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-3315 (($ $) 25)) (-3771 (((-567) (-1 (-112) |#2|) $) NIL) (((-567) |#2| $) 11) (((-567) |#2| $ (-567)) NIL)) (-3768 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-374 |#1| |#2|) (-10 -8 (-15 -3655 (|#1| |#1|)) (-15 -3655 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -3768 (|#1| |#1| |#1|)) (-15 -3771 ((-567) |#2| |#1| (-567))) (-15 -3771 ((-567) |#2| |#1|)) (-15 -3771 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2530 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1594 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -3768 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-375 |#2|) (-1216)) (T -374))
+NIL
+(-10 -8 (-15 -3655 (|#1| |#1|)) (-15 -3655 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -1594 (|#1| |#1|)) (-15 -3768 (|#1| |#1| |#1|)) (-15 -3771 ((-567) |#2| |#1| (-567))) (-15 -3771 ((-567) |#2| |#1|)) (-15 -3771 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -2530 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -1594 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -3768 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4417))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4417))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 59 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1695 (($ $) 91 (|has| $ (-6 -4417)))) (-3315 (($ $) 101)) (-2084 (($ $) 79 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#1| $) 78 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 52)) (-3771 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-2056 (($ $ $) 88 (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-1802 (($ $ $) 87 (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 43 (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2092 (($ $ |#1|) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1233 (-567))) 64)) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3732 (($ $ $ (-567)) 92 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 71)) (-2285 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) 85 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 84 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-3098 (((-112) $ $) 86 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 83 (|has| |#1| (-851)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-375 |#1|) (-140) (-1216)) (T -375))
+((-3768 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1216)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1216)))) (-1594 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1216)))) (-2530 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1216)) (-5 *2 (-112)))) (-3771 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1216)) (-5 *2 (-567)))) (-3771 (*1 *2 *3 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1216)) (-4 *3 (-1100)) (-5 *2 (-567)))) (-3771 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1216)) (-4 *3 (-1100)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1216)) (-4 *2 (-851)))) (-1594 (*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1216)) (-4 *2 (-851)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-375 *3)) (-4 *3 (-1216)) (-4 *3 (-851)) (-5 *2 (-112)))) (-3732 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4417)) (-4 *1 (-375 *3)) (-4 *3 (-1216)))) (-1695 (*1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-375 *2)) (-4 *2 (-1216)))) (-3655 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4417)) (-4 *1 (-375 *3)) (-4 *3 (-1216)))) (-3655 (*1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-375 *2)) (-4 *2 (-1216)) (-4 *2 (-851)))))
+(-13 (-652 |t#1|) (-10 -8 (-6 -4416) (-15 -3768 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -3315 ($ $)) (-15 -1594 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2530 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3771 ((-567) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1100)) (PROGN (-15 -3771 ((-567) |t#1| $)) (-15 -3771 ((-567) |t#1| $ (-567)))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-6 (-851)) (-15 -3768 ($ $ $)) (-15 -1594 ($ $)) (-15 -2530 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4417)) (PROGN (-15 -3732 ($ $ $ (-567))) (-15 -1695 ($ $)) (-15 -3655 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-15 -3655 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1100) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-1216) . T))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2881 (((-645 |#1|) $) 37)) (-4291 (($ $ (-772)) 38)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2079 (((-1290 |#1| |#2|) (-1290 |#1| |#2|) $) 41)) (-4020 (($ $) 39)) (-1430 (((-1290 |#1| |#2|) (-1290 |#1| |#2|) $) 42)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3140 (($ $ |#1| $) 36) (($ $ (-645 |#1|) (-645 $)) 35)) (-3677 (((-772) $) 43)) (-4114 (($ $ $) 34)) (-4101 (((-863) $) 12) (($ |#1|) 46) (((-1281 |#1| |#2|) $) 45) (((-1290 |#1| |#2|) $) 44)) (-3087 ((|#2| (-1290 |#1| |#2|) $) 47)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3547 (($ (-673 |#1|)) 40)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#2|) 33 (|has| |#2| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#2| $) 27) (($ $ |#2|) 31)))
+(((-376 |#1| |#2|) (-140) (-851) (-172)) (T -376))
+((-3087 (*1 *2 *3 *1) (-12 (-5 *3 (-1290 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851)) (-4 *2 (-172)))) (-4101 (*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1281 *3 *4)))) (-4101 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-1290 *3 *4)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-772)))) (-1430 (*1 *2 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2079 (*1 *2 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3547 (*1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4)) (-4 *4 (-172)))) (-4020 (*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *2 (-645 *3)))) (-3140 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5)) (-4 *4 (-851)) (-4 *5 (-172)))))
+(-13 (-635 |t#2|) (-10 -8 (-15 -3087 (|t#2| (-1290 |t#1| |t#2|) $)) (-15 -4101 ($ |t#1|)) (-15 -4101 ((-1281 |t#1| |t#2|) $)) (-15 -4101 ((-1290 |t#1| |t#2|) $)) (-15 -3677 ((-772) $)) (-15 -1430 ((-1290 |t#1| |t#2|) (-1290 |t#1| |t#2|) $)) (-15 -2079 ((-1290 |t#1| |t#2|) (-1290 |t#1| |t#2|) $)) (-15 -3547 ($ (-673 |t#1|))) (-15 -4020 ($ $)) (-15 -4291 ($ $ (-772))) (-15 -2881 ((-645 |t#1|) $)) (-15 -3140 ($ $ |t#1| $)) (-15 -3140 ($ $ (-645 |t#1|) (-645 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-649 |#2|) . T) ((-635 |#2|) . T) ((-641 |#2|) . T) ((-718 |#2|) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1100) . T))
+((-2399 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 44)) (-3666 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2643 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35)))
+(((-377 |#1| |#2|) (-10 -7 (-15 -3666 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2643 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2399 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1216) (-13 (-375 |#1|) (-10 -7 (-6 -4417)))) (T -377))
+((-2399 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417)))))) (-2643 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417)))))) (-3666 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-377 *4 *2)) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417)))))))
+(-10 -7 (-15 -3666 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2643 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2399 (|#2| (-1 (-112) |#1| |#1|) |#2|)))
+((-1920 (((-690 |#2|) (-690 $)) NIL) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 22) (((-690 (-567)) (-690 $)) 14)))
+(((-378 |#1| |#2|) (-10 -8 (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 |#2|) (-690 |#1|)))) (-379 |#2|) (-1050)) (T -378))
+NIL
+(-10 -8 (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 |#2|) (-690 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-1920 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 39) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 47 (|has| |#1| (-640 (-567)))) (((-690 (-567)) (-690 $)) 46 (|has| |#1| (-640 (-567))))) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-379 |#1|) (-140) (-1050)) (T -379))
+NIL
+(-13 (-640 |t#1|) (-10 -7 (IF (|has| |t#1| (-640 (-567))) (-6 (-640 (-567))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-727) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2494 (((-645 (-295 (-953 (-169 |#1|)))) (-295 (-410 (-953 (-169 (-567))))) |#1|) 51) (((-645 (-295 (-953 (-169 |#1|)))) (-410 (-953 (-169 (-567)))) |#1|) 50) (((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-295 (-410 (-953 (-169 (-567)))))) |#1|) 47) (((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-410 (-953 (-169 (-567))))) |#1|) 41)) (-3894 (((-645 (-645 (-169 |#1|))) (-645 (-410 (-953 (-169 (-567))))) (-645 (-1176)) |#1|) 30) (((-645 (-169 |#1|)) (-410 (-953 (-169 (-567)))) |#1|) 18)))
+(((-380 |#1|) (-10 -7 (-15 -2494 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -2494 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-295 (-410 (-953 (-169 (-567)))))) |#1|)) (-15 -2494 ((-645 (-295 (-953 (-169 |#1|)))) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -2494 ((-645 (-295 (-953 (-169 |#1|)))) (-295 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -3894 ((-645 (-169 |#1|)) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -3894 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-953 (-169 (-567))))) (-645 (-1176)) |#1|))) (-13 (-365) (-849))) (T -380))
+((-3894 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567)))))) (-5 *4 (-645 (-1176))) (-5 *2 (-645 (-645 (-169 *5)))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))) (-3894 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-169 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 (-169 (-567)))))) (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-169 (-567))))) (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-953 (-169 (-567))))))) (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567)))))) (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -2494 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -2494 ((-645 (-645 (-295 (-953 (-169 |#1|))))) (-645 (-295 (-410 (-953 (-169 (-567)))))) |#1|)) (-15 -2494 ((-645 (-295 (-953 (-169 |#1|)))) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -2494 ((-645 (-295 (-953 (-169 |#1|)))) (-295 (-410 (-953 (-169 (-567))))) |#1|)) (-15 -3894 ((-645 (-169 |#1|)) (-410 (-953 (-169 (-567)))) |#1|)) (-15 -3894 ((-645 (-645 (-169 |#1|))) (-645 (-410 (-953 (-169 (-567))))) (-645 (-1176)) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 35)) (-2838 (((-567) $) 62)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2674 (($ $) 144)) (-1772 (($ $) 107)) (-1605 (($ $) 94)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-2307 (($ $) 47)) (-3405 (((-112) $ $) NIL)) (-1747 (($ $) 105)) (-1577 (($ $) 88)) (-3179 (((-567) $) 81)) (-4100 (($ $ (-567)) 76)) (-1798 (($ $) NIL)) (-1632 (($ $) NIL)) (-4061 (($) NIL T CONST)) (-2733 (($ $) 146)) (-3417 (((-3 (-567) "failed") $) 242) (((-3 (-410 (-567)) "failed") $) 238)) (-1621 (((-567) $) 240) (((-410 (-567)) $) 236)) (-2197 (($ $ $) NIL)) (-1680 (((-567) $ $) 133)) (-4014 (((-3 $ "failed") $) 149)) (-3760 (((-410 (-567)) $ (-772)) 243) (((-410 (-567)) $ (-772) (-772)) 235)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4374 (((-922)) 96) (((-922) (-922)) 129 (|has| $ (-6 -4407)))) (-4095 (((-112) $) 138)) (-4098 (($) 41)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL)) (-2028 (((-1271) (-772)) 201)) (-2269 (((-1271)) 206) (((-1271) (-772)) 207)) (-3633 (((-1271)) 208) (((-1271) (-772)) 209)) (-3632 (((-1271)) 204) (((-1271) (-772)) 205)) (-1909 (((-567) $) 69)) (-3714 (((-112) $) 40)) (-3287 (($ $ (-567)) NIL)) (-3226 (($ $) 51)) (-3751 (($ $) NIL)) (-3948 (((-112) $) 37)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL) (($) NIL (-12 (-1397 (|has| $ (-6 -4399))) (-1397 (|has| $ (-6 -4407)))))) (-1802 (($ $ $) NIL) (($) 130 (-12 (-1397 (|has| $ (-6 -4399))) (-1397 (|has| $ (-6 -4407)))))) (-2869 (((-567) $) 17)) (-1793 (($) 115) (($ $) 121)) (-1456 (($) 120) (($ $) 122)) (-2942 (($ $) 110)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 151)) (-2920 (((-922) (-567)) 46 (|has| $ (-6 -4407)))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) 60)) (-3992 (($ $) 143)) (-2822 (($ (-567) (-567)) 139) (($ (-567) (-567) (-922)) 140)) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4164 (((-567) $) 19)) (-3834 (($) 123)) (-2910 (($ $) 104)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4018 (((-922)) 131) (((-922) (-922)) 132 (|has| $ (-6 -4407)))) (-1930 (($ $ (-772)) NIL) (($ $) 150)) (-2926 (((-922) (-567)) 50 (|has| $ (-6 -4407)))) (-1810 (($ $) NIL)) (-1647 (($ $) NIL)) (-1784 (($ $) NIL)) (-1618 (($ $) NIL)) (-1757 (($ $) 106)) (-1592 (($ $) 93)) (-3542 (((-381) $) 229) (((-225) $) 230) (((-893 (-381)) $) NIL) (((-1158) $) 212) (((-539) $) 227) (($ (-225)) 234)) (-4101 (((-863) $) 216) (($ (-567)) 239) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-567)) 239) (($ (-410 (-567))) NIL) (((-225) $) 231)) (-2686 (((-772)) NIL T CONST)) (-2721 (($ $) 145)) (-3693 (((-922)) 61) (((-922) (-922)) 83 (|has| $ (-6 -4407)))) (-3739 (((-112) $ $) NIL)) (-3183 (((-922)) 134)) (-1847 (($ $) 113)) (-1690 (($ $) 49) (($ $ $) 59)) (-2469 (((-112) $ $) NIL)) (-1823 (($ $) 111)) (-1660 (($ $) 39)) (-1869 (($ $) NIL)) (-1719 (($ $) NIL)) (-1345 (($ $) NIL)) (-1733 (($ $) NIL)) (-1858 (($ $) NIL)) (-1704 (($ $) NIL)) (-1834 (($ $) 112)) (-1673 (($ $) 52)) (-1771 (($ $) 58)) (-1468 (($) 36 T CONST)) (-1484 (($) 43 T CONST)) (-4184 (((-1158) $) 27) (((-1158) $ (-112)) 29) (((-1271) (-823) $) 30) (((-1271) (-823) $ (-112)) 31)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3109 (((-112) $ $) 213)) (-3085 (((-112) $ $) 45)) (-3052 (((-112) $ $) 56)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 57)) (-3168 (($ $ $) 48) (($ $ (-567)) 42)) (-3156 (($ $) 38) (($ $ $) 53)) (-3146 (($ $ $) 75)) (** (($ $ (-922)) 86) (($ $ (-772)) NIL) (($ $ (-567)) 116) (($ $ (-410 (-567))) 162) (($ $ $) 153)) (* (($ (-922) $) 82) (($ (-772) $) NIL) (($ (-567) $) 87) (($ $ $) 74) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-381) (-13 (-407) (-233) (-615 (-1158)) (-829) (-614 (-225)) (-1201) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3168 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3226 ($ $)) (-15 -1680 ((-567) $ $)) (-15 -4100 ($ $ (-567))) (-15 -3760 ((-410 (-567)) $ (-772))) (-15 -3760 ((-410 (-567)) $ (-772) (-772))) (-15 -1793 ($)) (-15 -1456 ($)) (-15 -3834 ($)) (-15 -1690 ($ $ $)) (-15 -1793 ($ $)) (-15 -1456 ($ $)) (-15 -3633 ((-1271))) (-15 -3633 ((-1271) (-772))) (-15 -3632 ((-1271))) (-15 -3632 ((-1271) (-772))) (-15 -2269 ((-1271))) (-15 -2269 ((-1271) (-772))) (-15 -2028 ((-1271) (-772))) (-6 -4407) (-6 -4399)))) (T -381))
+((** (*1 *1 *1 *1) (-5 *1 (-381))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-3226 (*1 *1 *1) (-5 *1 (-381))) (-1680 (*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-4100 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381)))) (-3760 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-3760 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))) (-1793 (*1 *1) (-5 *1 (-381))) (-1456 (*1 *1) (-5 *1 (-381))) (-3834 (*1 *1) (-5 *1 (-381))) (-1690 (*1 *1 *1 *1) (-5 *1 (-381))) (-1793 (*1 *1 *1) (-5 *1 (-381))) (-1456 (*1 *1 *1) (-5 *1 (-381))) (-3633 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-381)))) (-3633 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381)))) (-3632 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-381)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381)))) (-2269 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-381)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381)))))
+(-13 (-407) (-233) (-615 (-1158)) (-829) (-614 (-225)) (-1201) (-615 (-539)) (-619 (-225)) (-10 -8 (-15 -3168 ($ $ (-567))) (-15 ** ($ $ $)) (-15 -3226 ($ $)) (-15 -1680 ((-567) $ $)) (-15 -4100 ($ $ (-567))) (-15 -3760 ((-410 (-567)) $ (-772))) (-15 -3760 ((-410 (-567)) $ (-772) (-772))) (-15 -1793 ($)) (-15 -1456 ($)) (-15 -3834 ($)) (-15 -1690 ($ $ $)) (-15 -1793 ($ $)) (-15 -1456 ($ $)) (-15 -3633 ((-1271))) (-15 -3633 ((-1271) (-772))) (-15 -3632 ((-1271))) (-15 -3632 ((-1271) (-772))) (-15 -2269 ((-1271))) (-15 -2269 ((-1271) (-772))) (-15 -2028 ((-1271) (-772))) (-6 -4407) (-6 -4399)))
+((-1607 (((-645 (-295 (-953 |#1|))) (-295 (-410 (-953 (-567)))) |#1|) 46) (((-645 (-295 (-953 |#1|))) (-410 (-953 (-567))) |#1|) 45) (((-645 (-645 (-295 (-953 |#1|)))) (-645 (-295 (-410 (-953 (-567))))) |#1|) 42) (((-645 (-645 (-295 (-953 |#1|)))) (-645 (-410 (-953 (-567)))) |#1|) 36)) (-2554 (((-645 |#1|) (-410 (-953 (-567))) |#1|) 20) (((-645 (-645 |#1|)) (-645 (-410 (-953 (-567)))) (-645 (-1176)) |#1|) 30)))
+(((-382 |#1|) (-10 -7 (-15 -1607 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-410 (-953 (-567)))) |#1|)) (-15 -1607 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-295 (-410 (-953 (-567))))) |#1|)) (-15 -1607 ((-645 (-295 (-953 |#1|))) (-410 (-953 (-567))) |#1|)) (-15 -1607 ((-645 (-295 (-953 |#1|))) (-295 (-410 (-953 (-567)))) |#1|)) (-15 -2554 ((-645 (-645 |#1|)) (-645 (-410 (-953 (-567)))) (-645 (-1176)) |#1|)) (-15 -2554 ((-645 |#1|) (-410 (-953 (-567))) |#1|))) (-13 (-849) (-365))) (T -382))
+((-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-2554 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-410 (-953 (-567))))) (-5 *4 (-645 (-1176))) (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5)) (-4 *5 (-13 (-849) (-365))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 (-567))))) (-5 *2 (-645 (-295 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 (-295 (-953 *4)))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-953 (-567)))))) (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 (-567))))) (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365))))))
+(-10 -7 (-15 -1607 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-410 (-953 (-567)))) |#1|)) (-15 -1607 ((-645 (-645 (-295 (-953 |#1|)))) (-645 (-295 (-410 (-953 (-567))))) |#1|)) (-15 -1607 ((-645 (-295 (-953 |#1|))) (-410 (-953 (-567))) |#1|)) (-15 -1607 ((-645 (-295 (-953 |#1|))) (-295 (-410 (-953 (-567)))) |#1|)) (-15 -2554 ((-645 (-645 |#1|)) (-645 (-410 (-953 (-567)))) (-645 (-1176)) |#1|)) (-15 -2554 ((-645 |#1|) (-410 (-953 (-567))) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) 30)) (-1621 ((|#2| $) 32)) (-2637 (($ $) NIL)) (-2864 (((-772) $) 11)) (-2133 (((-645 $) $) 23)) (-3523 (((-112) $) NIL)) (-1845 (($ |#2| |#1|) 21)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2789 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-2599 ((|#2| $) 18)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 51) (($ |#2|) 31)) (-2350 (((-645 |#1|) $) 20)) (-2339 ((|#1| $ |#2|) 55)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 33 T CONST)) (-2250 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 39) (($ |#2| |#1|) 40)))
+(((-383 |#1| |#2|) (-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1050) (-851)) (T -383))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851)))))
(-13 (-384 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#2| "failed") $) 49)) (-3343 ((|#2| $) 50)) (-4358 (($ $) 35)) (-2436 (((-771) $) 39)) (-2966 (((-644 $) $) 40)) (-3819 (((-112) $) 43)) (-3562 (($ |#2| |#1|) 44)) (-2101 (($ (-1 |#1| |#1|) $) 45)) (-2127 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-4323 ((|#2| $) 38)) (-4334 ((|#1| $) 37)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ |#2|) 48)) (-3624 (((-644 |#1|) $) 41)) (-3623 ((|#1| $ |#2|) 46)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-1893 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
-(((-384 |#1| |#2|) (-140) (-1049) (-1099)) (T -384))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))) (-3623 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)))) (-3562 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-2966 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-384 *3 *4)))) (-2436 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-771)))) (-4323 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099)))))
-(-13 (-111 |t#1| |t#1|) (-1038 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3623 (|t#1| $ |t#2|)) (-15 -2101 ($ (-1 |t#1| |t#1|) $)) (-15 -3562 ($ |t#2| |t#1|)) (-15 -3819 ((-112) $)) (-15 -1893 ((-644 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3624 ((-644 |t#1|) $)) (-15 -2966 ((-644 $) $)) (-15 -2436 ((-771) $)) (-15 -4323 (|t#2| $)) (-15 -4334 (|t#1| $)) (-15 -2127 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4358 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-717 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-1038 |#2|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T))
-((-2887 (((-1270) $) 7)) (-2725 (((-862) $) 8) (($ (-689 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 11)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#2| "failed") $) 49)) (-1621 ((|#2| $) 50)) (-2637 (($ $) 35)) (-2864 (((-772) $) 39)) (-2133 (((-645 $) $) 40)) (-3523 (((-112) $) 43)) (-1845 (($ |#2| |#1|) 44)) (-3494 (($ (-1 |#1| |#1|) $) 45)) (-2789 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36)) (-2599 ((|#2| $) 38)) (-2613 ((|#1| $) 37)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ |#2|) 48)) (-2350 (((-645 |#1|) $) 41)) (-2339 ((|#1| $ |#2|) 46)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-2250 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31) (($ |#1| |#2|) 47)))
+(((-384 |#1| |#2|) (-140) (-1050) (-1100)) (T -384))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1100)))) (-2339 (*1 *2 *1 *3) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1100)) (-4 *2 (-1050)))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100)))) (-1845 (*1 *1 *2 *3) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1100)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100)) (-5 *2 (-112)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100)) (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100)) (-5 *2 (-645 *3)))) (-2133 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-1100)) (-5 *2 (-645 *1)) (-4 *1 (-384 *3 *4)))) (-2864 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100)) (-5 *2 (-772)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1100)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1100)) (-4 *2 (-1050)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2637 (*1 *1 *1) (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1100)))))
+(-13 (-111 |t#1| |t#1|) (-1039 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2339 (|t#1| $ |t#2|)) (-15 -3494 ($ (-1 |t#1| |t#1|) $)) (-15 -1845 ($ |t#2| |t#1|)) (-15 -3523 ((-112) $)) (-15 -2250 ((-645 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2350 ((-645 |t#1|) $)) (-15 -2133 ((-645 $) $)) (-15 -2864 ((-772) $)) (-15 -2599 (|t#2| $)) (-15 -2613 (|t#1| $)) (-15 -2789 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2637 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-718 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-1039 |#2|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1100) . T))
+((-1774 (((-1271) $) 7)) (-4101 (((-863) $) 8) (($ (-690 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 11)))
(((-385) (-140)) (T -385))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-689 (-699))) (-4 *1 (-385)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-385)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) (-4 *1 (-385)))))
-(-13 (-397) (-10 -8 (-15 -2725 ($ (-689 (-699)))) (-15 -2725 ($ (-644 (-331)))) (-15 -2725 ($ (-331))) (-15 -2725 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))))))
-(((-613 (-862)) . T) ((-397) . T) ((-1215) . T))
-((-2023 (((-3 $ "failed") (-689 (-317 (-381)))) 21) (((-3 $ "failed") (-689 (-317 (-566)))) 19) (((-3 $ "failed") (-689 (-952 (-381)))) 17) (((-3 $ "failed") (-689 (-952 (-566)))) 15) (((-3 $ "failed") (-689 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-689 (-409 (-952 (-566))))) 11)) (-3343 (($ (-689 (-317 (-381)))) 22) (($ (-689 (-317 (-566)))) 20) (($ (-689 (-952 (-381)))) 18) (($ (-689 (-952 (-566)))) 16) (($ (-689 (-409 (-952 (-381))))) 14) (($ (-689 (-409 (-952 (-566))))) 12)) (-2887 (((-1270) $) 7)) (-2725 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 23)))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) (-4 *1 (-385)))))
+(-13 (-398) (-10 -8 (-15 -4101 ($ (-690 (-700)))) (-15 -4101 ($ (-645 (-331)))) (-15 -4101 ($ (-331))) (-15 -4101 ($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1216) . T))
+((-3417 (((-3 $ "failed") (-690 (-317 (-381)))) 21) (((-3 $ "failed") (-690 (-317 (-567)))) 19) (((-3 $ "failed") (-690 (-953 (-381)))) 17) (((-3 $ "failed") (-690 (-953 (-567)))) 15) (((-3 $ "failed") (-690 (-410 (-953 (-381))))) 13) (((-3 $ "failed") (-690 (-410 (-953 (-567))))) 11)) (-1621 (($ (-690 (-317 (-381)))) 22) (($ (-690 (-317 (-567)))) 20) (($ (-690 (-953 (-381)))) 18) (($ (-690 (-953 (-567)))) 16) (($ (-690 (-410 (-953 (-381))))) 14) (($ (-690 (-410 (-953 (-567))))) 12)) (-1774 (((-1271) $) 7)) (-4101 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 23)))
(((-386) (-140)) (T -386))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-386)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) (-4 *1 (-386)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386)))))
-(-13 (-397) (-10 -8 (-15 -2725 ($ (-644 (-331)))) (-15 -2725 ($ (-331))) (-15 -2725 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))) (-15 -3343 ($ (-689 (-317 (-381))))) (-15 -2023 ((-3 $ "failed") (-689 (-317 (-381))))) (-15 -3343 ($ (-689 (-317 (-566))))) (-15 -2023 ((-3 $ "failed") (-689 (-317 (-566))))) (-15 -3343 ($ (-689 (-952 (-381))))) (-15 -2023 ((-3 $ "failed") (-689 (-952 (-381))))) (-15 -3343 ($ (-689 (-952 (-566))))) (-15 -2023 ((-3 $ "failed") (-689 (-952 (-566))))) (-15 -3343 ($ (-689 (-409 (-952 (-381)))))) (-15 -2023 ((-3 $ "failed") (-689 (-409 (-952 (-381)))))) (-15 -3343 ($ (-689 (-409 (-952 (-566)))))) (-15 -2023 ((-3 $ "failed") (-689 (-409 (-952 (-566))))))))
-(((-613 (-862)) . T) ((-397) . T) ((-1215) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-3323 ((|#2| $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 34)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 12 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
-(((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-511 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|))) (-1049) (-850)) (T -387))
-NIL
-(-13 (-111 |#1| |#1|) (-511 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-717 |#1|)) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771) $) 74)) (-2633 (($) NIL T CONST)) (-4060 (((-3 $ "failed") $ $) 77)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-2890 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3842 (((-112) $) 17)) (-2654 ((|#1| $ (-566)) NIL)) (-1681 (((-771) $ (-566)) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-2990 (($ (-1 |#1| |#1|) $) 40)) (-3903 (($ (-1 (-771) (-771)) $) 37)) (-1324 (((-3 $ "failed") $ $) 60)) (-1390 (((-1157) $) NIL)) (-4345 (($ $ $) 28)) (-2450 (($ $ $) 26)) (-1944 (((-1119) $) NIL)) (-1502 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-771)))) $) 34)) (-4301 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-2725 (((-862) $) 24) (($ |#1|) NIL)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 11 T CONST)) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) 84 (|has| |#1| (-850)))) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
-(((-388 |#1|) (-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -2450 ($ $ $)) (-15 -4345 ($ $ $)) (-15 -1324 ((-3 $ "failed") $ $)) (-15 -4060 ((-3 $ "failed") $ $)) (-15 -4301 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2890 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3733 ((-771) $)) (-15 -1502 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-771)))) $)) (-15 -1681 ((-771) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -3903 ($ (-1 (-771) (-771)) $)) (-15 -2990 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|))) (-1099)) (T -388))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-2450 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-4345 (*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-1324 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-4060 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-4301 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-2890 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3)))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 (-771))))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-1681 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099)))) (-2654 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099)))) (-3903 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099)))) (-2990 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3)))))
-(-13 (-726) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -2450 ($ $ $)) (-15 -4345 ($ $ $)) (-15 -1324 ((-3 $ "failed") $ $)) (-15 -4060 ((-3 $ "failed") $ $)) (-15 -4301 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2890 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3733 ((-771) $)) (-15 -1502 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-771)))) $)) (-15 -1681 ((-771) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -3903 ($ (-1 (-771) (-771)) $)) (-15 -2990 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-850)) (-6 (-850)) |%noBranch|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 53)) (-3343 (((-566) $) 54)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-3075 (($ $ $) 60)) (-3936 (($ $ $) 59)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ $) 48)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 52)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2865 (((-112) $ $) 57)) (-2844 (((-112) $ $) 56)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 58)) (-2833 (((-112) $ $) 55)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-389) (-140)) (T -389))
-NIL
-(-13 (-558) (-850) (-1038 (-566)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-850) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-2208 (((-112) $) 25)) (-1355 (((-112) $) 22)) (-2631 (($ (-1157) (-1157) (-1157)) 26)) (-3534 (((-1157) $) 16)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3503 (($ (-1157) (-1157) (-1157)) 14)) (-3548 (((-1157) $) 17)) (-2136 (((-112) $) 18)) (-1852 (((-1157) $) 15)) (-2725 (((-862) $) 12) (($ (-1157)) 13) (((-1157) $) 9)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 7)))
-(((-390) (-391)) (T -390))
-NIL
-(-391)
-((-3979 (((-112) $ $) 7)) (-2208 (((-112) $) 17)) (-1355 (((-112) $) 18)) (-2631 (($ (-1157) (-1157) (-1157)) 16)) (-3534 (((-1157) $) 21)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3503 (($ (-1157) (-1157) (-1157)) 23)) (-3548 (((-1157) $) 20)) (-2136 (((-112) $) 19)) (-1852 (((-1157) $) 22)) (-2725 (((-862) $) 12) (($ (-1157)) 25) (((-1157) $) 24)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-391) (-140)) (T -391))
-((-3503 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))) (-1852 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))) (-2136 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))) (-2631 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))))
-(-13 (-1099) (-492 (-1157)) (-10 -8 (-15 -3503 ($ (-1157) (-1157) (-1157))) (-15 -1852 ((-1157) $)) (-15 -3534 ((-1157) $)) (-15 -3548 ((-1157) $)) (-15 -2136 ((-112) $)) (-15 -1355 ((-112) $)) (-15 -2208 ((-112) $)) (-15 -2631 ($ (-1157) (-1157) (-1157)))))
-(((-102) . T) ((-616 #0=(-1157)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-1844 (((-862) $) 64)) (-2633 (($) NIL T CONST)) (-3801 (($ $ (-921)) NIL)) (-2284 (($ $ (-921)) NIL)) (-3510 (($ $ (-921)) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2723 (($ (-771)) 38)) (-4356 (((-771)) 18)) (-3757 (((-862) $) 66)) (-1726 (($ $ $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2481 (($ $ $ $) NIL)) (-2586 (($ $ $) NIL)) (-3200 (($) 24 T CONST)) (-2817 (((-112) $ $) 41)) (-2905 (($ $) 48) (($ $ $) 50)) (-2897 (($ $ $) 51)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
-(((-392 |#1| |#2| |#3|) (-13 (-744 |#3|) (-10 -8 (-15 -4356 ((-771))) (-15 -3757 ((-862) $)) (-15 -1844 ((-862) $)) (-15 -2723 ($ (-771))))) (-771) (-771) (-172)) (T -392))
-((-4356 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)) (-4 *5 (-172)))) (-2723 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
-(-13 (-744 |#3|) (-10 -8 (-15 -4356 ((-771))) (-15 -3757 ((-862) $)) (-15 -1844 ((-862) $)) (-15 -2723 ($ (-771)))))
-((-3213 (((-1157)) 12)) (-2958 (((-1146 (-1157))) 31)) (-2868 (((-1270) (-1157)) 28) (((-1270) (-390)) 27)) (-2876 (((-1270)) 29)) (-3509 (((-1146 (-1157))) 30)))
-(((-393) (-10 -7 (-15 -3509 ((-1146 (-1157)))) (-15 -2958 ((-1146 (-1157)))) (-15 -2876 ((-1270))) (-15 -2868 ((-1270) (-390))) (-15 -2868 ((-1270) (-1157))) (-15 -3213 ((-1157))))) (T -393))
-((-3213 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-393)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1270)) (-5 *1 (-393)))) (-2876 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-393)))) (-2958 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393)))) (-3509 (*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393)))))
-(-10 -7 (-15 -3509 ((-1146 (-1157)))) (-15 -2958 ((-1146 (-1157)))) (-15 -2876 ((-1270))) (-15 -2868 ((-1270) (-390))) (-15 -2868 ((-1270) (-1157))) (-15 -3213 ((-1157))))
-((-3077 (((-771) (-338 |#1| |#2| |#3| |#4|)) 19)))
-(((-394 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3077 ((-771) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -394))
-((-3077 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3077 ((-771) (-338 |#1| |#2| |#3| |#4|))))
-((-2725 (((-396) |#1|) 11)))
-(((-395 |#1|) (-10 -7 (-15 -2725 ((-396) |#1|))) (-1099)) (T -395))
-((-2725 (*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1099)))))
-(-10 -7 (-15 -2725 ((-396) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3008 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-2996 (((-644 (-1157)) $ (-644 (-1157))) 44)) (-1720 (((-644 (-1157)) $ (-644 (-1157))) 45)) (-1843 (((-644 (-1157)) $) 40)) (-2631 (($) 30)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2328 (((-644 (-1157)) $) 41)) (-2031 (((-644 (-1157)) $) 42)) (-2498 (((-1270) $ (-566)) 38) (((-1270) $) 39)) (-2150 (($ (-862) (-566)) 35)) (-2725 (((-862) $) 54) (($ (-862)) 32)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-396) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2150 ($ (-862) (-566))) (-15 -2498 ((-1270) $ (-566))) (-15 -2498 ((-1270) $)) (-15 -2031 ((-644 (-1157)) $)) (-15 -2328 ((-644 (-1157)) $)) (-15 -2631 ($)) (-15 -1843 ((-644 (-1157)) $)) (-15 -1720 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2996 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3008 ((-644 (-1157)) $ (-644 (-1157))))))) (T -396))
-((-2150 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-396)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-396)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-396)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2631 (*1 *1) (-5 *1 (-396))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-1720 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-2996 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))) (-3008 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))))
-(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2150 ($ (-862) (-566))) (-15 -2498 ((-1270) $ (-566))) (-15 -2498 ((-1270) $)) (-15 -2031 ((-644 (-1157)) $)) (-15 -2328 ((-644 (-1157)) $)) (-15 -2631 ($)) (-15 -1843 ((-644 (-1157)) $)) (-15 -1720 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2996 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3008 ((-644 (-1157)) $ (-644 (-1157))))))
-((-2887 (((-1270) $) 7)) (-2725 (((-862) $) 8)))
-(((-397) (-140)) (T -397))
-((-2887 (*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1270)))))
-(-13 (-1215) (-613 (-862)) (-10 -8 (-15 -2887 ((-1270) $))))
-(((-613 (-862)) . T) ((-1215) . T))
-((-2023 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-566))) 19) (((-3 $ "failed") (-952 (-381))) 17) (((-3 $ "failed") (-952 (-566))) 15) (((-3 $ "failed") (-409 (-952 (-381)))) 13) (((-3 $ "failed") (-409 (-952 (-566)))) 11)) (-3343 (($ (-317 (-381))) 22) (($ (-317 (-566))) 20) (($ (-952 (-381))) 18) (($ (-952 (-566))) 16) (($ (-409 (-952 (-381)))) 14) (($ (-409 (-952 (-566)))) 12)) (-2887 (((-1270) $) 7)) (-2725 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 23)))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) (-4 *1 (-386)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386)))))
+(-13 (-398) (-10 -8 (-15 -4101 ($ (-645 (-331)))) (-15 -4101 ($ (-331))) (-15 -4101 ($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))) (-15 -1621 ($ (-690 (-317 (-381))))) (-15 -3417 ((-3 $ "failed") (-690 (-317 (-381))))) (-15 -1621 ($ (-690 (-317 (-567))))) (-15 -3417 ((-3 $ "failed") (-690 (-317 (-567))))) (-15 -1621 ($ (-690 (-953 (-381))))) (-15 -3417 ((-3 $ "failed") (-690 (-953 (-381))))) (-15 -1621 ($ (-690 (-953 (-567))))) (-15 -3417 ((-3 $ "failed") (-690 (-953 (-567))))) (-15 -1621 ($ (-690 (-410 (-953 (-381)))))) (-15 -3417 ((-3 $ "failed") (-690 (-410 (-953 (-381)))))) (-15 -1621 ($ (-690 (-410 (-953 (-567)))))) (-15 -3417 ((-3 $ "failed") (-690 (-410 (-953 (-567))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1216) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-2422 (($ |#1| |#2|) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2555 ((|#2| $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 34)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 12 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18)))
+(((-387 |#1| |#2|) (-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|))) (-1050) (-851)) (T -387))
+NIL
+(-13 (-111 |#1| |#1|) (-512 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-718 |#1|)) |%noBranch|)))
+((-2257 (((-112) $ $) 7)) (-2013 (((-772) $) 34)) (-4061 (($) 19 T CONST)) (-2079 (((-3 $ "failed") $ $) 37)) (-3417 (((-3 |#1| "failed") $) 45)) (-1621 ((|#1| $) 46)) (-4014 (((-3 $ "failed") $) 16)) (-1421 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 35)) (-3714 (((-112) $) 18)) (-4234 ((|#1| $ (-567)) 31)) (-3885 (((-772) $ (-567)) 32)) (-2056 (($ $ $) 28 (|has| |#1| (-851)))) (-1802 (($ $ $) 27 (|has| |#1| (-851)))) (-2383 (($ (-1 |#1| |#1|) $) 29)) (-3136 (($ (-1 (-772) (-772)) $) 30)) (-1430 (((-3 $ "failed") $ $) 38)) (-2451 (((-1158) $) 10)) (-1831 (($ $ $) 39)) (-2985 (($ $ $) 40)) (-3339 (((-1120) $) 11)) (-2807 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $) 33)) (-2679 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 36)) (-4101 (((-863) $) 12) (($ |#1|) 44)) (-3739 (((-112) $ $) 9)) (-1484 (($) 20 T CONST)) (-3109 (((-112) $ $) 25 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 24 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 26 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 23 (|has| |#1| (-851)))) (** (($ $ (-922)) 14) (($ $ (-772)) 17) (($ |#1| (-772)) 41)) (* (($ $ $) 15) (($ |#1| $) 43) (($ $ |#1|) 42)))
+(((-388 |#1|) (-140) (-1100)) (T -388))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (-2985 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (-1831 (*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (-1430 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (-2079 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (-2679 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1100)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-1421 (*1 *2 *1 *1) (-12 (-4 *3 (-1100)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3)))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1100)) (-5 *2 (-772)))) (-2807 (*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1100)) (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-772))))))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1100)) (-5 *2 (-772)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1100)))) (-3136 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1100)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1100)))))
+(-13 (-727) (-1039 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-772))) (-15 -2985 ($ $ $)) (-15 -1831 ($ $ $)) (-15 -1430 ((-3 $ "failed") $ $)) (-15 -2079 ((-3 $ "failed") $ $)) (-15 -2679 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1421 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2013 ((-772) $)) (-15 -2807 ((-645 (-2 (|:| |gen| |t#1|) (|:| -2910 (-772)))) $)) (-15 -3885 ((-772) $ (-567))) (-15 -4234 (|t#1| $ (-567))) (-15 -3136 ($ (-1 (-772) (-772)) $)) (-15 -2383 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|)))
+(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1039 |#1|) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772) $) 74)) (-4061 (($) NIL T CONST)) (-2079 (((-3 $ "failed") $ $) 77)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1421 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64)) (-3714 (((-112) $) 17)) (-4234 ((|#1| $ (-567)) NIL)) (-3885 (((-772) $ (-567)) NIL)) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-2383 (($ (-1 |#1| |#1|) $) 40)) (-3136 (($ (-1 (-772) (-772)) $) 37)) (-1430 (((-3 $ "failed") $ $) 60)) (-2451 (((-1158) $) NIL)) (-1831 (($ $ $) 28)) (-2985 (($ $ $) 26)) (-3339 (((-1120) $) NIL)) (-2807 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $) 34)) (-2679 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70)) (-4101 (((-863) $) 24) (($ |#1|) NIL)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 11 T CONST)) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) 84 (|has| |#1| (-851)))) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30)))
+(((-389 |#1|) (-13 (-727) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-772))) (-15 -2985 ($ $ $)) (-15 -1831 ($ $ $)) (-15 -1430 ((-3 $ "failed") $ $)) (-15 -2079 ((-3 $ "failed") $ $)) (-15 -2679 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1421 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2013 ((-772) $)) (-15 -2807 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $)) (-15 -3885 ((-772) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3136 ($ (-1 (-772) (-772)) $)) (-15 -2383 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|))) (-1100)) (T -389))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (-2985 (*1 *1 *1 *1) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (-1831 (*1 *1 *1 *1) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (-1430 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (-2079 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (-2679 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-389 *3)) (|:| |rm| (-389 *3)))) (-5 *1 (-389 *3)) (-4 *3 (-1100)))) (-1421 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-389 *3)) (|:| |mm| (-389 *3)) (|:| |rm| (-389 *3)))) (-5 *1 (-389 *3)) (-4 *3 (-1100)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-389 *3)) (-4 *3 (-1100)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-772))))) (-5 *1 (-389 *3)) (-4 *3 (-1100)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-772)) (-5 *1 (-389 *4)) (-4 *4 (-1100)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-389 *2)) (-4 *2 (-1100)))) (-3136 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-389 *3)) (-4 *3 (-1100)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-389 *3)))))
+(-13 (-727) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-772))) (-15 -2985 ($ $ $)) (-15 -1831 ($ $ $)) (-15 -1430 ((-3 $ "failed") $ $)) (-15 -2079 ((-3 $ "failed") $ $)) (-15 -2679 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1421 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2013 ((-772) $)) (-15 -2807 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $)) (-15 -3885 ((-772) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3136 ($ (-1 (-772) (-772)) $)) (-15 -2383 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-851)) (-6 (-851)) |%noBranch|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 53)) (-1621 (((-567) $) 54)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2056 (($ $ $) 60)) (-1802 (($ $ $) 59)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ $) 48)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 52)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3109 (((-112) $ $) 57)) (-3085 (((-112) $ $) 56)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 58)) (-3075 (((-112) $ $) 55)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-390) (-140)) (T -390))
+NIL
+(-13 (-559) (-851) (-1039 (-567)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1039 (-567)) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2330 (((-112) $) 25)) (-3960 (((-112) $) 22)) (-4012 (($ (-1158) (-1158) (-1158)) 26)) (-1817 (((-1158) $) 16)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1788 (($ (-1158) (-1158) (-1158)) 14)) (-2885 (((-1158) $) 17)) (-2867 (((-112) $) 18)) (-4306 (((-1158) $) 15)) (-4101 (((-863) $) 12) (($ (-1158)) 13) (((-1158) $) 9)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 7)))
+(((-391) (-392)) (T -391))
+NIL
+(-392)
+((-2257 (((-112) $ $) 7)) (-2330 (((-112) $) 17)) (-3960 (((-112) $) 18)) (-4012 (($ (-1158) (-1158) (-1158)) 16)) (-1817 (((-1158) $) 21)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1788 (($ (-1158) (-1158) (-1158)) 23)) (-2885 (((-1158) $) 20)) (-2867 (((-112) $) 19)) (-4306 (((-1158) $) 22)) (-4101 (((-863) $) 12) (($ (-1158)) 25) (((-1158) $) 24)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-392) (-140)) (T -392))
+((-1788 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-392)))) (-4306 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1158)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1158)))) (-2885 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1158)))) (-2867 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-3960 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))) (-4012 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-392)))))
+(-13 (-1100) (-493 (-1158)) (-10 -8 (-15 -1788 ($ (-1158) (-1158) (-1158))) (-15 -4306 ((-1158) $)) (-15 -1817 ((-1158) $)) (-15 -2885 ((-1158) $)) (-15 -2867 ((-112) $)) (-15 -3960 ((-112) $)) (-15 -2330 ((-112) $)) (-15 -4012 ($ (-1158) (-1158) (-1158)))))
+(((-102) . T) ((-617 #0=(-1158)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3028 (((-863) $) 64)) (-4061 (($) NIL T CONST)) (-3356 (($ $ (-922)) NIL)) (-1866 (($ $ (-922)) NIL)) (-3747 (($ $ (-922)) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4099 (($ (-772)) 38)) (-1948 (((-772)) 18)) (-4104 (((-863) $) 66)) (-4272 (($ $ $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3280 (($ $ $ $) NIL)) (-1816 (($ $ $) NIL)) (-1468 (($) 24 T CONST)) (-3052 (((-112) $ $) 41)) (-3156 (($ $) 48) (($ $ $) 50)) (-3146 (($ $ $) 51)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 52) (($ $ |#3|) NIL) (($ |#3| $) 47)))
+(((-393 |#1| |#2| |#3|) (-13 (-745 |#3|) (-10 -8 (-15 -1948 ((-772))) (-15 -4104 ((-863) $)) (-15 -3028 ((-863) $)) (-15 -4099 ($ (-772))))) (-772) (-772) (-172)) (T -393))
+((-1948 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)) (-4 *5 (-172)))) (-4099 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))))
+(-13 (-745 |#3|) (-10 -8 (-15 -1948 ((-772))) (-15 -4104 ((-863) $)) (-15 -3028 ((-863) $)) (-15 -4099 ($ (-772)))))
+((-2702 (((-1158)) 12)) (-2047 (((-1147 (-1158))) 31)) (-1748 (((-1271) (-1158)) 28) (((-1271) (-391)) 27)) (-1760 (((-1271)) 29)) (-3736 (((-1147 (-1158))) 30)))
+(((-394) (-10 -7 (-15 -3736 ((-1147 (-1158)))) (-15 -2047 ((-1147 (-1158)))) (-15 -1760 ((-1271))) (-15 -1748 ((-1271) (-391))) (-15 -1748 ((-1271) (-1158))) (-15 -2702 ((-1158))))) (T -394))
+((-2702 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-394)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-394)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1271)) (-5 *1 (-394)))) (-1760 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-394)))) (-2047 (*1 *2) (-12 (-5 *2 (-1147 (-1158))) (-5 *1 (-394)))) (-3736 (*1 *2) (-12 (-5 *2 (-1147 (-1158))) (-5 *1 (-394)))))
+(-10 -7 (-15 -3736 ((-1147 (-1158)))) (-15 -2047 ((-1147 (-1158)))) (-15 -1760 ((-1271))) (-15 -1748 ((-1271) (-391))) (-15 -1748 ((-1271) (-1158))) (-15 -2702 ((-1158))))
+((-1909 (((-772) (-338 |#1| |#2| |#3| |#4|)) 19)))
+(((-395 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1909 ((-772) (-338 |#1| |#2| |#3| |#4|)))) (-13 (-370) (-365)) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -395))
+((-1909 (*1 *2 *3) (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365))) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-4 *7 (-344 *4 *5 *6)) (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1909 ((-772) (-338 |#1| |#2| |#3| |#4|))))
+((-4101 (((-397) |#1|) 11)))
+(((-396 |#1|) (-10 -7 (-15 -4101 ((-397) |#1|))) (-1100)) (T -396))
+((-4101 (*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1100)))))
+(-10 -7 (-15 -4101 ((-397) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2549 (((-645 (-1158)) $ (-645 (-1158))) 43)) (-2437 (((-645 (-1158)) $ (-645 (-1158))) 44)) (-4216 (((-645 (-1158)) $ (-645 (-1158))) 45)) (-3016 (((-645 (-1158)) $) 40)) (-4012 (($) 30)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4262 (((-645 (-1158)) $) 41)) (-4159 (((-645 (-1158)) $) 42)) (-3877 (((-1271) $ (-567)) 38) (((-1271) $) 39)) (-3542 (($ (-863) (-567)) 35)) (-4101 (((-863) $) 54) (($ (-863)) 32)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-397) (-13 (-1100) (-617 (-863)) (-10 -8 (-15 -3542 ($ (-863) (-567))) (-15 -3877 ((-1271) $ (-567))) (-15 -3877 ((-1271) $)) (-15 -4159 ((-645 (-1158)) $)) (-15 -4262 ((-645 (-1158)) $)) (-15 -4012 ($)) (-15 -3016 ((-645 (-1158)) $)) (-15 -4216 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -2437 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -2549 ((-645 (-1158)) $ (-645 (-1158))))))) (T -397))
+((-3542 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-397)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-397)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))) (-4012 (*1 *1) (-5 *1 (-397))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))) (-4216 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))) (-2437 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))) (-2549 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))))
+(-13 (-1100) (-617 (-863)) (-10 -8 (-15 -3542 ($ (-863) (-567))) (-15 -3877 ((-1271) $ (-567))) (-15 -3877 ((-1271) $)) (-15 -4159 ((-645 (-1158)) $)) (-15 -4262 ((-645 (-1158)) $)) (-15 -4012 ($)) (-15 -3016 ((-645 (-1158)) $)) (-15 -4216 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -2437 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -2549 ((-645 (-1158)) $ (-645 (-1158))))))
+((-1774 (((-1271) $) 7)) (-4101 (((-863) $) 8)))
(((-398) (-140)) (T -398))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-398)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-398)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) (-4 *1 (-398)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398)))))
-(-13 (-397) (-10 -8 (-15 -2725 ($ (-644 (-331)))) (-15 -2725 ($ (-331))) (-15 -2725 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))) (-15 -3343 ($ (-317 (-381)))) (-15 -2023 ((-3 $ "failed") (-317 (-381)))) (-15 -3343 ($ (-317 (-566)))) (-15 -2023 ((-3 $ "failed") (-317 (-566)))) (-15 -3343 ($ (-952 (-381)))) (-15 -2023 ((-3 $ "failed") (-952 (-381)))) (-15 -3343 ($ (-952 (-566)))) (-15 -2023 ((-3 $ "failed") (-952 (-566)))) (-15 -3343 ($ (-409 (-952 (-381))))) (-15 -2023 ((-3 $ "failed") (-409 (-952 (-381))))) (-15 -3343 ($ (-409 (-952 (-566))))) (-15 -2023 ((-3 $ "failed") (-409 (-952 (-566)))))))
-(((-613 (-862)) . T) ((-397) . T) ((-1215) . T))
-((-4348 (((-644 (-1157)) (-644 (-1157))) 9)) (-2887 (((-1270) (-390)) 27)) (-1527 (((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175))) 60) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175)) 35) (((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175))) 34)))
-(((-399) (-10 -7 (-15 -1527 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -1527 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -1527 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -2887 ((-1270) (-390))) (-15 -4348 ((-644 (-1157)) (-644 (-1157)))))) (T -399))
-((-4348 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1270)) (-5 *1 (-399)))) (-1527 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-1527 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))) (-1527 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175))))) (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103)) (-5 *1 (-399)))))
-(-10 -7 (-15 -1527 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)))) (-15 -1527 ((-1103) (-1175) (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175)))) (-644 (-644 (-3 (|:| |array| (-644 (-1175))) (|:| |scalar| (-1175))))) (-644 (-1175)) (-1175))) (-15 -1527 ((-1103) (-1175) (-644 (-1175)) (-1178) (-644 (-1175)))) (-15 -2887 ((-1270) (-390))) (-15 -4348 ((-644 (-1157)) (-644 (-1157)))))
-((-2887 (((-1270) $) 36)) (-2725 (((-862) $) 98) (($ (-331)) 100) (($ (-644 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 97) (($ (-317 (-701))) 53) (($ (-317 (-699))) 73) (($ (-317 (-694))) 86) (($ (-295 (-317 (-701)))) 68) (($ (-295 (-317 (-699)))) 81) (($ (-295 (-317 (-694)))) 94) (($ (-317 (-566))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-566)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139)))
-(((-400 |#1| |#2| |#3| |#4|) (-13 (-397) (-10 -8 (-15 -2725 ($ (-331))) (-15 -2725 ($ (-644 (-331)))) (-15 -2725 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))) (-15 -2725 ($ (-317 (-701)))) (-15 -2725 ($ (-317 (-699)))) (-15 -2725 ($ (-317 (-694)))) (-15 -2725 ($ (-295 (-317 (-701))))) (-15 -2725 ($ (-295 (-317 (-699))))) (-15 -2725 ($ (-295 (-317 (-694))))) (-15 -2725 ($ (-317 (-566)))) (-15 -2725 ($ (-317 (-381)))) (-15 -2725 ($ (-317 (-169 (-381))))) (-15 -2725 ($ (-295 (-317 (-566))))) (-15 -2725 ($ (-295 (-317 (-381))))) (-15 -2725 ($ (-295 (-317 (-169 (-381)))))))) (-1175) (-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-644 (-1175)) (-1179)) (T -400))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-701)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-699)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-694)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-566)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-14 *5 (-644 (-1175))) (-14 *6 (-1179)))))
-(-13 (-397) (-10 -8 (-15 -2725 ($ (-331))) (-15 -2725 ($ (-644 (-331)))) (-15 -2725 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))) (-15 -2725 ($ (-317 (-701)))) (-15 -2725 ($ (-317 (-699)))) (-15 -2725 ($ (-317 (-694)))) (-15 -2725 ($ (-295 (-317 (-701))))) (-15 -2725 ($ (-295 (-317 (-699))))) (-15 -2725 ($ (-295 (-317 (-694))))) (-15 -2725 ($ (-317 (-566)))) (-15 -2725 ($ (-317 (-381)))) (-15 -2725 ($ (-317 (-169 (-381))))) (-15 -2725 ($ (-295 (-317 (-566))))) (-15 -2725 ($ (-295 (-317 (-381))))) (-15 -2725 ($ (-295 (-317 (-169 (-381))))))))
-((-3979 (((-112) $ $) NIL)) (-1719 ((|#2| $) 38)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3514 (($ (-409 |#2|)) 95)) (-4167 (((-644 (-2 (|:| -3428 (-771)) (|:| -2737 |#2|) (|:| |num| |#2|))) $) 39)) (-3009 (($ $) 34) (($ $ (-771)) 36)) (-2150 (((-409 |#2|) $) 51)) (-2738 (($ (-644 (-2 (|:| -3428 (-771)) (|:| -2737 |#2|) (|:| |num| |#2|)))) 33)) (-2725 (((-862) $) 132)) (-1479 (((-112) $ $) NIL)) (-1316 (($ $) 35) (($ $ (-771)) 37)) (-2817 (((-112) $ $) NIL)) (-2897 (($ |#2| $) 41)))
-(((-401 |#1| |#2|) (-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -2897 ($ |#2| $)) (-15 -3514 ($ (-409 |#2|))) (-15 -1719 (|#2| $)) (-15 -4167 ((-644 (-2 (|:| -3428 (-771)) (|:| -2737 |#2|) (|:| |num| |#2|))) $)) (-15 -2738 ($ (-644 (-2 (|:| -3428 (-771)) (|:| -2737 |#2|) (|:| |num| |#2|))))) (-15 -3009 ($ $)) (-15 -1316 ($ $)) (-15 -3009 ($ $ (-771))) (-15 -1316 ($ $ (-771))))) (-13 (-365) (-147)) (-1241 |#1|)) (T -401))
-((-2897 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *2)) (-4 *2 (-1241 *3)))) (-3514 (*1 *1 *2) (-12 (-5 *2 (-409 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-1719 (*1 *2 *1) (-12 (-4 *2 (-1241 *3)) (-5 *1 (-401 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-644 (-2 (|:| -3428 (-771)) (|:| -2737 *4) (|:| |num| *4)))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1241 *3)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3428 (-771)) (|:| -2737 *4) (|:| |num| *4)))) (-4 *4 (-1241 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)))) (-3009 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1241 *2)))) (-1316 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3)) (-4 *3 (-1241 *2)))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1241 *3)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4)) (-4 *4 (-1241 *3)))))
-(-13 (-1099) (-614 (-409 |#2|)) (-10 -8 (-15 -2897 ($ |#2| $)) (-15 -3514 ($ (-409 |#2|))) (-15 -1719 (|#2| $)) (-15 -4167 ((-644 (-2 (|:| -3428 (-771)) (|:| -2737 |#2|) (|:| |num| |#2|))) $)) (-15 -2738 ($ (-644 (-2 (|:| -3428 (-771)) (|:| -2737 |#2|) (|:| |num| |#2|))))) (-15 -3009 ($ $)) (-15 -1316 ($ $)) (-15 -3009 ($ $ (-771))) (-15 -1316 ($ $ (-771)))))
-((-3979 (((-112) $ $) 9 (-2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 16 (|has| |#1| (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 15 (|has| |#1| (-886 (-566))))) (-1390 (((-1157) $) 13 (-2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-1944 (((-1119) $) 12 (-2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2725 (((-862) $) 11 (-2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-1479 (((-112) $ $) 14 (-2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))) (-2817 (((-112) $ $) 10 (-2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))))))
-(((-402 |#1|) (-140) (-1215)) (T -402))
-NIL
-(-13 (-1215) (-10 -7 (IF (|has| |t#1| (-886 (-566))) (-6 (-886 (-566))) |%noBranch|) (IF (|has| |t#1| (-886 (-381))) (-6 (-886 (-381))) |%noBranch|)))
-(((-102) -2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-613 (-862)) -2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-1099) -2676 (|has| |#1| (-886 (-566))) (|has| |#1| (-886 (-381)))) ((-1215) . T))
-((-4205 (($ $) 10) (($ $ (-771)) 12)))
-(((-403 |#1|) (-10 -8 (-15 -4205 (|#1| |#1| (-771))) (-15 -4205 (|#1| |#1|))) (-404)) (T -403))
-NIL
-(-10 -8 (-15 -4205 (|#1| |#1| (-771))) (-15 -4205 (|#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-2068 (((-112) $ $) 65)) (-2633 (($) 18 T CONST)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-4205 (($ $) 87) (($ $ (-771)) 86)) (-1968 (((-112) $) 79)) (-3077 (((-833 (-921)) $) 89)) (-3842 (((-112) $) 35)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2816 (((-3 (-771) "failed") $ $) 88)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74)) (-2655 (((-3 $ "failed") $) 90)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 73)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75)))
-(((-404) (-140)) (T -404))
-((-3077 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921))))) (-2816 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771)))) (-4205 (*1 *1 *1) (-4 *1 (-404))) (-4205 (*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771)))))
-(-13 (-365) (-145) (-10 -8 (-15 -3077 ((-833 (-921)) $)) (-15 -2816 ((-3 (-771) "failed") $ $)) (-15 -4205 ($ $)) (-15 -4205 ($ $ (-771)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T))
-((-1449 (($ (-566) (-566)) 11) (($ (-566) (-566) (-921)) NIL)) (-2016 (((-921)) 20) (((-921) (-921)) NIL)))
-(((-405 |#1|) (-10 -8 (-15 -2016 ((-921) (-921))) (-15 -2016 ((-921))) (-15 -1449 (|#1| (-566) (-566) (-921))) (-15 -1449 (|#1| (-566) (-566)))) (-406)) (T -405))
-((-2016 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))) (-2016 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406)))))
-(-10 -8 (-15 -2016 ((-921) (-921))) (-15 -2016 ((-921))) (-15 -1449 (|#1| (-566) (-566) (-921))) (-15 -1449 (|#1| (-566) (-566))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4191 (((-566) $) 97)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-1807 (($ $) 95)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-4028 (($ $) 105)) (-2068 (((-112) $ $) 65)) (-1859 (((-566) $) 122)) (-2633 (($) 18 T CONST)) (-3995 (($ $) 94)) (-2023 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-3343 (((-566) $) 111) (((-409 (-566)) $) 108)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-1968 (((-112) $) 79)) (-3006 (((-921)) 138) (((-921) (-921)) 135 (|has| $ (-6 -4406)))) (-3421 (((-112) $) 120)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-3077 (((-566) $) 144)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 104)) (-3202 (($ $) 100)) (-2307 (((-112) $) 121)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3075 (($ $ $) 119) (($) 132 (-12 (-3129 (|has| $ (-6 -4406))) (-3129 (|has| $ (-6 -4398)))))) (-3936 (($ $ $) 118) (($) 131 (-12 (-3129 (|has| $ (-6 -4406))) (-3129 (|has| $ (-6 -4398)))))) (-1497 (((-566) $) 141)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1834 (((-921) (-566)) 134 (|has| $ (-6 -4406)))) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-2941 (($ $) 96)) (-2311 (($ $) 98)) (-1449 (($ (-566) (-566)) 146) (($ (-566) (-566) (-921)) 145)) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3428 (((-566) $) 142)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2016 (((-921)) 139) (((-921) (-921)) 136 (|has| $ (-6 -4406)))) (-2773 (((-921) (-566)) 133 (|has| $ (-6 -4406)))) (-2150 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-2875 (((-771)) 32 T CONST)) (-2119 (($ $) 99)) (-3194 (((-921)) 140) (((-921) (-921)) 137 (|has| $ (-6 -4406)))) (-1479 (((-112) $ $) 9)) (-1792 (((-921)) 143)) (-1597 (((-112) $ $) 45)) (-2274 (($ $) 123)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2865 (((-112) $ $) 116)) (-2844 (((-112) $ $) 115)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 117)) (-2833 (((-112) $ $) 114)) (-2916 (($ $ $) 73)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75)))
-(((-406) (-140)) (T -406))
-((-1449 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406)))) (-1449 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-1792 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-3428 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566)))) (-3194 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-2016 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-3006 (*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) (-3194 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4406)) (-4 *1 (-406)))) (-2016 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4406)) (-4 *1 (-406)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4406)) (-4 *1 (-406)))) (-1834 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4406)) (-4 *1 (-406)) (-5 *2 (-921)))) (-2773 (*1 *2 *3) (-12 (-5 *3 (-566)) (|has| *1 (-6 -4406)) (-4 *1 (-406)) (-5 *2 (-921)))) (-3075 (*1 *1) (-12 (-4 *1 (-406)) (-3129 (|has| *1 (-6 -4406))) (-3129 (|has| *1 (-6 -4398))))) (-3936 (*1 *1) (-12 (-4 *1 (-406)) (-3129 (|has| *1 (-6 -4406))) (-3129 (|has| *1 (-6 -4398))))))
-(-13 (-1059) (-10 -8 (-6 -1551) (-15 -1449 ($ (-566) (-566))) (-15 -1449 ($ (-566) (-566) (-921))) (-15 -3077 ((-566) $)) (-15 -1792 ((-921))) (-15 -3428 ((-566) $)) (-15 -1497 ((-566) $)) (-15 -3194 ((-921))) (-15 -2016 ((-921))) (-15 -3006 ((-921))) (IF (|has| $ (-6 -4406)) (PROGN (-15 -3194 ((-921) (-921))) (-15 -2016 ((-921) (-921))) (-15 -3006 ((-921) (-921))) (-15 -1834 ((-921) (-566))) (-15 -2773 ((-921) (-566)))) |%noBranch|) (IF (|has| $ (-6 -4398)) |%noBranch| (IF (|has| $ (-6 -4406)) |%noBranch| (PROGN (-15 -3075 ($)) (-15 -3936 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-892 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-886 (-381)) . T) ((-920) . T) ((-1002) . T) ((-1022) . T) ((-1059) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T))
-((-2101 (((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)) 20)))
-(((-407 |#1| |#2|) (-10 -7 (-15 -2101 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|)))) (-558) (-558)) (T -407))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6)))))
-(-10 -7 (-15 -2101 ((-420 |#2|) (-1 |#2| |#1|) (-420 |#1|))))
-((-2101 (((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)) 13)))
-(((-408 |#1| |#2|) (-10 -7 (-15 -2101 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|)))) (-558) (-558)) (T -408))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6)))))
-(-10 -7 (-15 -2101 ((-409 |#2|) (-1 |#2| |#1|) (-409 |#1|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 13)) (-4191 ((|#1| $) 21 (|has| |#1| (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| |#1| (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 17) (((-3 (-1175) "failed") $) NIL (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 72 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566))))) (-3343 ((|#1| $) 15) (((-1175) $) NIL (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 69 (|has| |#1| (-1038 (-566)))) (((-566) $) NIL (|has| |#1| (-1038 (-566))))) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) 51)) (-3424 (($) NIL (|has| |#1| (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| |#1| (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#1| (-886 (-381))))) (-3842 (((-112) $) 57)) (-3450 (($ $) NIL)) (-2691 ((|#1| $) 73)) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-2307 (((-112) $) NIL (|has| |#1| (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| |#1| (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 100)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| |#1| (-308)))) (-2311 ((|#1| $) 28 (|has| |#1| (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) 148 (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-3792 (((-771) $) NIL)) (-3282 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-3233 (($ $) NIL)) (-2702 ((|#1| $) 75)) (-2150 (((-892 (-566)) $) NIL (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#1| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#1| (-614 (-538)))) (((-381) $) NIL (|has| |#1| (-1022))) (((-225) $) NIL (|has| |#1| (-1022)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 10) (($ (-1175)) NIL (|has| |#1| (-1038 (-1175))))) (-2655 (((-3 $ "failed") $) 102 (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) 103 T CONST)) (-2119 ((|#1| $) 26 (|has| |#1| (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| |#1| (-820)))) (-3200 (($) 22 T CONST)) (-3214 (($) 8 T CONST)) (-2331 (((-1157) $) 44 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1157) $ (-112)) 45 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1270) (-822) $) 46 (-12 (|has| |#1| (-547)) (|has| |#1| (-828)))) (((-1270) (-822) $ (-112)) 47 (-12 (|has| |#1| (-547)) (|has| |#1| (-828))))) (-1316 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) 66)) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) 24 (|has| |#1| (-850)))) (-2916 (($ $ $) 136) (($ |#1| |#1|) 53)) (-2905 (($ $) 25) (($ $ $) 56)) (-2897 (($ $ $) 54)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 135)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 61) (($ $ $) 58) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
-(((-409 |#1|) (-13 (-992 |#1|) (-10 -7 (IF (|has| |#1| (-547)) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4402)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-6 -4413)) (-6 -4402) |%noBranch|) |%noBranch|) |%noBranch|))) (-558)) (T -409))
-NIL
-(-13 (-992 |#1|) (-10 -7 (IF (|has| |#1| (-547)) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4402)) (IF (|has| |#1| (-454)) (IF (|has| |#1| (-6 -4413)) (-6 -4402) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3561 (((-689 |#2|) (-1265 $)) NIL) (((-689 |#2|)) 18)) (-1452 (($ (-1265 |#2|) (-1265 $)) NIL) (($ (-1265 |#2|)) 24)) (-2340 (((-689 |#2|) $ (-1265 $)) NIL) (((-689 |#2|) $) 40)) (-2323 ((|#3| $) 73)) (-2061 ((|#2| (-1265 $)) NIL) ((|#2|) 20)) (-2803 (((-1265 |#2|) $ (-1265 $)) NIL) (((-689 |#2|) (-1265 $) (-1265 $)) NIL) (((-1265 |#2|) $) 22) (((-689 |#2|) (-1265 $)) 38)) (-2150 (((-1265 |#2|) $) 11) (($ (-1265 |#2|)) 13)) (-1707 ((|#3| $) 55)))
-(((-410 |#1| |#2| |#3|) (-10 -8 (-15 -2340 ((-689 |#2|) |#1|)) (-15 -2061 (|#2|)) (-15 -3561 ((-689 |#2|))) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -1452 (|#1| (-1265 |#2|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -2323 (|#3| |#1|)) (-15 -1707 (|#3| |#1|)) (-15 -3561 ((-689 |#2|) (-1265 |#1|))) (-15 -2061 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -2340 ((-689 |#2|) |#1| (-1265 |#1|)))) (-411 |#2| |#3|) (-172) (-1241 |#2|)) (T -410))
-((-3561 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-689 *4)) (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5)))) (-2061 (*1 *2) (-12 (-4 *4 (-1241 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4)) (-4 *3 (-411 *2 *4)))))
-(-10 -8 (-15 -2340 ((-689 |#2|) |#1|)) (-15 -2061 (|#2|)) (-15 -3561 ((-689 |#2|))) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -1452 (|#1| (-1265 |#2|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -2323 (|#3| |#1|)) (-15 -1707 (|#3| |#1|)) (-15 -3561 ((-689 |#2|) (-1265 |#1|))) (-15 -2061 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -2340 ((-689 |#2|) |#1| (-1265 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-3561 (((-689 |#1|) (-1265 $)) 53) (((-689 |#1|)) 68)) (-2717 ((|#1| $) 59)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1452 (($ (-1265 |#1|) (-1265 $)) 55) (($ (-1265 |#1|)) 71)) (-2340 (((-689 |#1|) $ (-1265 $)) 60) (((-689 |#1|) $) 66)) (-2313 (((-3 $ "failed") $) 37)) (-4153 (((-921)) 61)) (-3842 (((-112) $) 35)) (-3202 ((|#1| $) 58)) (-2323 ((|#2| $) 51 (|has| |#1| (-365)))) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2061 ((|#1| (-1265 $)) 54) ((|#1|) 67)) (-2803 (((-1265 |#1|) $ (-1265 $)) 57) (((-689 |#1|) (-1265 $) (-1265 $)) 56) (((-1265 |#1|) $) 73) (((-689 |#1|) (-1265 $)) 72)) (-2150 (((-1265 |#1|) $) 70) (($ (-1265 |#1|)) 69)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44)) (-2655 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1707 ((|#2| $) 52)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-2227 (((-1265 $)) 74)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-411 |#1| |#2|) (-140) (-172) (-1241 |t#1|)) (T -411))
-((-2227 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1241 *3)) (-5 *2 (-1265 *1)) (-4 *1 (-411 *3 *4)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3)) (-5 *2 (-1265 *3)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-689 *4)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1241 *3)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3)) (-5 *2 (-1265 *3)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4)) (-4 *4 (-1241 *3)))) (-3561 (*1 *2) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3)) (-5 *2 (-689 *3)))) (-2061 (*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1241 *2)) (-4 *2 (-172)))) (-2340 (*1 *2 *1) (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3)) (-5 *2 (-689 *3)))))
-(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2227 ((-1265 $))) (-15 -2803 ((-1265 |t#1|) $)) (-15 -2803 ((-689 |t#1|) (-1265 $))) (-15 -1452 ($ (-1265 |t#1|))) (-15 -2150 ((-1265 |t#1|) $)) (-15 -2150 ($ (-1265 |t#1|))) (-15 -3561 ((-689 |t#1|))) (-15 -2061 (|t#1|)) (-15 -2340 ((-689 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-372 |#1| |#2|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) 27) (((-3 (-566) "failed") $) 19)) (-3343 ((|#2| $) NIL) (((-409 (-566)) $) 24) (((-566) $) 14)) (-2725 (($ |#2|) NIL) (($ (-409 (-566))) 22) (($ (-566)) 11)))
-(((-412 |#1| |#2|) (-10 -8 (-15 -2725 (|#1| (-566))) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|))) (-413 |#2|) (-1215)) (T -412))
-NIL
-(-10 -8 (-15 -2725 (|#1| (-566))) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|)))
-((-2023 (((-3 |#1| "failed") $) 9) (((-3 (-409 (-566)) "failed") $) 16 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 13 (|has| |#1| (-1038 (-566))))) (-3343 ((|#1| $) 8) (((-409 (-566)) $) 17 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 14 (|has| |#1| (-1038 (-566))))) (-2725 (($ |#1|) 6) (($ (-409 (-566))) 15 (|has| |#1| (-1038 (-409 (-566))))) (($ (-566)) 12 (|has| |#1| (-1038 (-566))))))
-(((-413 |#1|) (-140) (-1215)) (T -413))
-NIL
-(-13 (-1038 |t#1|) (-10 -7 (IF (|has| |t#1| (-1038 (-566))) (-6 (-1038 (-566))) |%noBranch|) (IF (|has| |t#1| (-1038 (-409 (-566)))) (-6 (-1038 (-409 (-566)))) |%noBranch|)))
-(((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 #1=(-566)) |has| |#1| (-1038 (-566))) ((-616 |#1|) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 #1#) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T))
-((-2101 (((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)) 35)))
-(((-414 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2101 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|)))) (-308) (-992 |#1|) (-1241 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|)) (-308) (-992 |#5|) (-1241 |#6|) (-13 (-411 |#6| |#7|) (-1038 |#6|))) (T -414))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *7 (-1241 *6)) (-4 *8 (-13 (-411 *6 *7) (-1038 *6))) (-4 *9 (-308)) (-4 *10 (-992 *9)) (-4 *11 (-1241 *10)) (-5 *2 (-415 *9 *10 *11 *12)) (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-411 *10 *11) (-1038 *10))))))
-(-10 -7 (-15 -2101 ((-415 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-415 |#1| |#2| |#3| |#4|))))
-((-3979 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3822 ((|#4| (-771) (-1265 |#4|)) 60)) (-3842 (((-112) $) NIL)) (-2691 (((-1265 |#4|) $) 17)) (-3202 ((|#2| $) 55)) (-1617 (($ $) 163)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 108)) (-2603 (($ (-1265 |#4|)) 107)) (-1944 (((-1119) $) NIL)) (-2702 ((|#1| $) 18)) (-2558 (($ $ $) NIL)) (-1726 (($ $ $) NIL)) (-2725 (((-862) $) 153)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 |#4|) $) 146)) (-3214 (($) 11 T CONST)) (-2817 (((-112) $ $) 41)) (-2916 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 139)) (* (($ $ $) 135)))
-(((-415 |#1| |#2| |#3| |#4|) (-13 (-475) (-10 -8 (-15 -2603 ($ (-1265 |#4|))) (-15 -2227 ((-1265 |#4|) $)) (-15 -3202 (|#2| $)) (-15 -2691 ((-1265 |#4|) $)) (-15 -2702 (|#1| $)) (-15 -1617 ($ $)) (-15 -3822 (|#4| (-771) (-1265 |#4|))))) (-308) (-992 |#1|) (-1241 |#2|) (-13 (-411 |#2| |#3|) (-1038 |#2|))) (T -415))
-((-2603 (*1 *1 *2) (-12 (-5 *2 (-1265 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-4 *3 (-308)) (-5 *1 (-415 *3 *4 *5 *6)))) (-2227 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-5 *2 (-1265 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-3202 (*1 *2 *1) (-12 (-4 *4 (-1241 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2))))) (-2691 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-5 *2 (-1265 *6)) (-5 *1 (-415 *3 *4 *5 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4))))) (-2702 (*1 *2 *1) (-12 (-4 *3 (-992 *2)) (-4 *4 (-1241 *3)) (-4 *2 (-308)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-1617 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1241 *3)) (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1265 *2)) (-4 *5 (-308)) (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6))) (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1241 *6)))))
-(-13 (-475) (-10 -8 (-15 -2603 ($ (-1265 |#4|))) (-15 -2227 ((-1265 |#4|) $)) (-15 -3202 (|#2| $)) (-15 -2691 ((-1265 |#4|) $)) (-15 -2702 (|#1| $)) (-15 -1617 ($ $)) (-15 -3822 (|#4| (-771) (-1265 |#4|)))))
-((-3979 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-3202 ((|#2| $) 71)) (-3818 (($ (-1265 |#4|)) 27) (($ (-415 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1038 |#2|)))) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 37)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 |#4|) $) 28)) (-3214 (($) 25 T CONST)) (-2817 (((-112) $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ $ $) 82)))
-(((-416 |#1| |#2| |#3| |#4| |#5|) (-13 (-726) (-10 -8 (-15 -2227 ((-1265 |#4|) $)) (-15 -3202 (|#2| $)) (-15 -3818 ($ (-1265 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -3818 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-992 |#1|) (-1241 |#2|) (-411 |#2| |#3|) (-1265 |#4|)) (T -416))
-((-2227 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-5 *2 (-1265 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-4 *6 (-411 *4 *5)) (-14 *7 *2))) (-3202 (*1 *2 *1) (-12 (-4 *4 (-1241 *2)) (-4 *2 (-992 *3)) (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4)) (-14 *6 (-1265 *5)))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-1265 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3818 (*1 *1 *2) (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-4 *6 (-411 *4 *5)) (-14 *7 (-1265 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7)))))
-(-13 (-726) (-10 -8 (-15 -2227 ((-1265 |#4|) $)) (-15 -3202 (|#2| $)) (-15 -3818 ($ (-1265 |#4|))) (IF (|has| |#4| (-1038 |#2|)) (-15 -3818 ($ (-415 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-2101 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
-(((-417 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#3| (-1 |#4| |#2|) |#1|))) (-419 |#2|) (-172) (-419 |#4|) (-172)) (T -417))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5)))))
-(-10 -7 (-15 -2101 (|#3| (-1 |#4| |#2|) |#1|)))
-((-4082 (((-3 $ "failed")) 99)) (-3677 (((-1265 (-689 |#2|)) (-1265 $)) NIL) (((-1265 (-689 |#2|))) 104)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) 97)) (-3748 (((-3 $ "failed")) 96)) (-3371 (((-689 |#2|) (-1265 $)) NIL) (((-689 |#2|)) 115)) (-3793 (((-689 |#2|) $ (-1265 $)) NIL) (((-689 |#2|) $) 123)) (-3668 (((-1171 (-952 |#2|))) 65)) (-2822 ((|#2| (-1265 $)) NIL) ((|#2|) 119)) (-1452 (($ (-1265 |#2|) (-1265 $)) NIL) (($ (-1265 |#2|)) 125)) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) 95)) (-3531 (((-3 $ "failed")) 87)) (-4306 (((-689 |#2|) (-1265 $)) NIL) (((-689 |#2|)) 113)) (-1431 (((-689 |#2|) $ (-1265 $)) NIL) (((-689 |#2|) $) 121)) (-3223 (((-1171 (-952 |#2|))) 64)) (-3158 ((|#2| (-1265 $)) NIL) ((|#2|) 117)) (-2803 (((-1265 |#2|) $ (-1265 $)) NIL) (((-689 |#2|) (-1265 $) (-1265 $)) NIL) (((-1265 |#2|) $) 124) (((-689 |#2|) (-1265 $)) 133)) (-2150 (((-1265 |#2|) $) 109) (($ (-1265 |#2|)) 111)) (-3643 (((-644 (-952 |#2|)) (-1265 $)) NIL) (((-644 (-952 |#2|))) 107)) (-3709 (($ (-689 |#2|) $) 103)))
-(((-418 |#1| |#2|) (-10 -8 (-15 -3709 (|#1| (-689 |#2|) |#1|)) (-15 -3668 ((-1171 (-952 |#2|)))) (-15 -3223 ((-1171 (-952 |#2|)))) (-15 -3793 ((-689 |#2|) |#1|)) (-15 -1431 ((-689 |#2|) |#1|)) (-15 -3371 ((-689 |#2|))) (-15 -4306 ((-689 |#2|))) (-15 -2822 (|#2|)) (-15 -3158 (|#2|)) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -1452 (|#1| (-1265 |#2|))) (-15 -3643 ((-644 (-952 |#2|)))) (-15 -3677 ((-1265 (-689 |#2|)))) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -4082 ((-3 |#1| "failed"))) (-15 -3748 ((-3 |#1| "failed"))) (-15 -3531 ((-3 |#1| "failed"))) (-15 -3522 ((-3 (-2 (|:| |particular| |#1|) (|:| -2227 (-644 |#1|))) "failed"))) (-15 -2861 ((-3 (-2 (|:| |particular| |#1|) (|:| -2227 (-644 |#1|))) "failed"))) (-15 -3371 ((-689 |#2|) (-1265 |#1|))) (-15 -4306 ((-689 |#2|) (-1265 |#1|))) (-15 -2822 (|#2| (-1265 |#1|))) (-15 -3158 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -3793 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -1431 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -3677 ((-1265 (-689 |#2|)) (-1265 |#1|))) (-15 -3643 ((-644 (-952 |#2|)) (-1265 |#1|)))) (-419 |#2|) (-172)) (T -418))
-((-3677 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1265 (-689 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3643 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3158 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-2822 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2)))) (-4306 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3371 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3223 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))) (-3668 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4)) (-4 *3 (-419 *4)))))
-(-10 -8 (-15 -3709 (|#1| (-689 |#2|) |#1|)) (-15 -3668 ((-1171 (-952 |#2|)))) (-15 -3223 ((-1171 (-952 |#2|)))) (-15 -3793 ((-689 |#2|) |#1|)) (-15 -1431 ((-689 |#2|) |#1|)) (-15 -3371 ((-689 |#2|))) (-15 -4306 ((-689 |#2|))) (-15 -2822 (|#2|)) (-15 -3158 (|#2|)) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -1452 (|#1| (-1265 |#2|))) (-15 -3643 ((-644 (-952 |#2|)))) (-15 -3677 ((-1265 (-689 |#2|)))) (-15 -2803 ((-689 |#2|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1|)) (-15 -4082 ((-3 |#1| "failed"))) (-15 -3748 ((-3 |#1| "failed"))) (-15 -3531 ((-3 |#1| "failed"))) (-15 -3522 ((-3 (-2 (|:| |particular| |#1|) (|:| -2227 (-644 |#1|))) "failed"))) (-15 -2861 ((-3 (-2 (|:| |particular| |#1|) (|:| -2227 (-644 |#1|))) "failed"))) (-15 -3371 ((-689 |#2|) (-1265 |#1|))) (-15 -4306 ((-689 |#2|) (-1265 |#1|))) (-15 -2822 (|#2| (-1265 |#1|))) (-15 -3158 (|#2| (-1265 |#1|))) (-15 -1452 (|#1| (-1265 |#2|) (-1265 |#1|))) (-15 -2803 ((-689 |#2|) (-1265 |#1|) (-1265 |#1|))) (-15 -2803 ((-1265 |#2|) |#1| (-1265 |#1|))) (-15 -3793 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -1431 ((-689 |#2|) |#1| (-1265 |#1|))) (-15 -3677 ((-1265 (-689 |#2|)) (-1265 |#1|))) (-15 -3643 ((-644 (-952 |#2|)) (-1265 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4082 (((-3 $ "failed")) 42 (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) 20)) (-3677 (((-1265 (-689 |#1|)) (-1265 $)) 83) (((-1265 (-689 |#1|))) 105)) (-3470 (((-1265 $)) 86)) (-2633 (($) 18 T CONST)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) 45 (|has| |#1| (-558)))) (-3748 (((-3 $ "failed")) 43 (|has| |#1| (-558)))) (-3371 (((-689 |#1|) (-1265 $)) 70) (((-689 |#1|)) 97)) (-4383 ((|#1| $) 79)) (-3793 (((-689 |#1|) $ (-1265 $)) 81) (((-689 |#1|) $) 95)) (-2784 (((-3 $ "failed") $) 50 (|has| |#1| (-558)))) (-3668 (((-1171 (-952 |#1|))) 93 (|has| |#1| (-365)))) (-3801 (($ $ (-921)) 31)) (-2701 ((|#1| $) 77)) (-3035 (((-1171 |#1|) $) 47 (|has| |#1| (-558)))) (-2822 ((|#1| (-1265 $)) 72) ((|#1|) 99)) (-3770 (((-1171 |#1|) $) 68)) (-1685 (((-112)) 62)) (-1452 (($ (-1265 |#1|) (-1265 $)) 74) (($ (-1265 |#1|)) 103)) (-2313 (((-3 $ "failed") $) 52 (|has| |#1| (-558)))) (-4153 (((-921)) 85)) (-2745 (((-112)) 59)) (-2284 (($ $ (-921)) 38)) (-1375 (((-112)) 55)) (-2282 (((-112)) 53)) (-3164 (((-112)) 57)) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) 46 (|has| |#1| (-558)))) (-3531 (((-3 $ "failed")) 44 (|has| |#1| (-558)))) (-4306 (((-689 |#1|) (-1265 $)) 71) (((-689 |#1|)) 98)) (-2567 ((|#1| $) 80)) (-1431 (((-689 |#1|) $ (-1265 $)) 82) (((-689 |#1|) $) 96)) (-4220 (((-3 $ "failed") $) 51 (|has| |#1| (-558)))) (-3223 (((-1171 (-952 |#1|))) 94 (|has| |#1| (-365)))) (-3510 (($ $ (-921)) 32)) (-1625 ((|#1| $) 78)) (-3012 (((-1171 |#1|) $) 48 (|has| |#1| (-558)))) (-3158 ((|#1| (-1265 $)) 73) ((|#1|) 100)) (-2234 (((-1171 |#1|) $) 69)) (-2187 (((-112)) 63)) (-1390 (((-1157) $) 10)) (-3804 (((-112)) 54)) (-2318 (((-112)) 56)) (-1981 (((-112)) 58)) (-1944 (((-1119) $) 11)) (-2073 (((-112)) 61)) (-3282 ((|#1| $ (-566)) 106)) (-2803 (((-1265 |#1|) $ (-1265 $)) 76) (((-689 |#1|) (-1265 $) (-1265 $)) 75) (((-1265 |#1|) $) 108) (((-689 |#1|) (-1265 $)) 107)) (-2150 (((-1265 |#1|) $) 102) (($ (-1265 |#1|)) 101)) (-3643 (((-644 (-952 |#1|)) (-1265 $)) 84) (((-644 (-952 |#1|))) 104)) (-1726 (($ $ $) 28)) (-3716 (((-112)) 67)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2227 (((-1265 $)) 109)) (-2847 (((-644 (-1265 |#1|))) 49 (|has| |#1| (-558)))) (-2481 (($ $ $ $) 29)) (-3086 (((-112)) 65)) (-3709 (($ (-689 |#1|) $) 92)) (-2586 (($ $ $) 27)) (-2477 (((-112)) 66)) (-3272 (((-112)) 64)) (-3137 (((-112)) 60)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-419 |#1|) (-140) (-172)) (T -419))
-((-2227 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1265 *1)) (-4 *1 (-419 *3)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1265 *3)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172)) (-5 *2 (-689 *4)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-3677 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1265 (-689 *3))))) (-3643 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3))))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1265 *3)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))) (-3158 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-2822 (*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))) (-4306 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-3371 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-1431 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))) (-3223 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-3668 (*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1171 (-952 *3))))) (-3709 (*1 *1 *2 *1) (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172)))))
-(-13 (-369 |t#1|) (-10 -8 (-15 -2227 ((-1265 $))) (-15 -2803 ((-1265 |t#1|) $)) (-15 -2803 ((-689 |t#1|) (-1265 $))) (-15 -3282 (|t#1| $ (-566))) (-15 -3677 ((-1265 (-689 |t#1|)))) (-15 -3643 ((-644 (-952 |t#1|)))) (-15 -1452 ($ (-1265 |t#1|))) (-15 -2150 ((-1265 |t#1|) $)) (-15 -2150 ($ (-1265 |t#1|))) (-15 -3158 (|t#1|)) (-15 -2822 (|t#1|)) (-15 -4306 ((-689 |t#1|))) (-15 -3371 ((-689 |t#1|))) (-15 -1431 ((-689 |t#1|) $)) (-15 -3793 ((-689 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -3223 ((-1171 (-952 |t#1|)))) (-15 -3668 ((-1171 (-952 |t#1|))))) |%noBranch|) (-15 -3709 ($ (-689 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-369 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-744 |#1|) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 60)) (-3686 (($ $) 78)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 191)) (-1780 (($ $) NIL)) (-3286 (((-112) $) 48)) (-4082 ((|#1| $) 16)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#1| (-1219)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-1219)))) (-2746 (($ |#1| (-566)) 42)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 148)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 74)) (-2313 (((-3 $ "failed") $) 164)) (-4388 (((-3 (-409 (-566)) "failed") $) 84 (|has| |#1| (-547)))) (-1929 (((-112) $) 80 (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) 91 (|has| |#1| (-547)))) (-2199 (($ |#1| (-566)) 44)) (-1968 (((-112) $) 213 (|has| |#1| (-1219)))) (-3842 (((-112) $) 62)) (-2980 (((-771) $) 51)) (-4241 (((-3 "nil" "sqfr" "irred" "prime") $ (-566)) 175)) (-2654 ((|#1| $ (-566)) 174)) (-2524 (((-566) $ (-566)) 173)) (-1866 (($ |#1| (-566)) 41)) (-2101 (($ (-1 |#1| |#1|) $) 183)) (-3068 (($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566))))) 79)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-4252 (($ |#1| (-566)) 43)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 192 (|has| |#1| (-454)))) (-2522 (($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-1502 (((-644 (-2 (|:| -4018 |#1|) (|:| -3428 (-566)))) $) 73)) (-1537 (((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $) 12)) (-4018 (((-420 $) $) NIL (|has| |#1| (-1219)))) (-3967 (((-3 $ "failed") $ $) 176)) (-3428 (((-566) $) 167)) (-3240 ((|#1| $) 75)) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 106 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) $) NIL (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-1175)) (-644 $)) 107 (|has| |#1| (-516 (-1175) $))) (($ $ (-644 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-644 $) (-644 $)) NIL (|has| |#1| (-310 $)))) (-3282 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-3009 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-2150 (((-538) $) 39 (|has| |#1| (-614 (-538)))) (((-381) $) 113 (|has| |#1| (-1022))) (((-225) $) 119 (|has| |#1| (-1022)))) (-2725 (((-862) $) 146) (($ (-566)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566)))))) (-2875 (((-771)) 67 T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) 53 T CONST)) (-3214 (($) 52 T CONST)) (-1316 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2817 (((-112) $ $) 159)) (-2905 (($ $) 161) (($ $ $) NIL)) (-2897 (($ $ $) 180)) (** (($ $ (-921)) NIL) (($ $ (-771)) 125)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
-(((-420 |#1|) (-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -3240 (|#1| $)) (-15 -3428 ((-566) $)) (-15 -3068 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -1537 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -1866 ($ |#1| (-566))) (-15 -1502 ((-644 (-2 (|:| -4018 |#1|) (|:| -3428 (-566)))) $)) (-15 -4252 ($ |#1| (-566))) (-15 -2524 ((-566) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -4241 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -2980 ((-771) $)) (-15 -2199 ($ |#1| (-566))) (-15 -2746 ($ |#1| (-566))) (-15 -2522 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4082 (|#1| $)) (-15 -3686 ($ $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1219)) (-6 (-1219)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|))) (-558)) (T -420))
-((-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3)))) (-3240 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3428 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-3068 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-566))))) (-4 *2 (-558)) (-5 *1 (-420 *2)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-1866 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -4018 *3) (|:| -3428 (-566))))) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-4252 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2524 (*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2654 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *4)) (-4 *4 (-558)))) (-2980 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558)))) (-2199 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2746 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-2522 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-4082 (*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-3686 (*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))) (-4388 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558)))))
-(-13 (-558) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-413 |#1|) (-10 -8 (-15 -3240 (|#1| $)) (-15 -3428 ((-566) $)) (-15 -3068 ($ |#1| (-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))))) (-15 -1537 ((-644 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-566)))) $)) (-15 -1866 ($ |#1| (-566))) (-15 -1502 ((-644 (-2 (|:| -4018 |#1|) (|:| -3428 (-566)))) $)) (-15 -4252 ($ |#1| (-566))) (-15 -2524 ((-566) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -4241 ((-3 "nil" "sqfr" "irred" "prime") $ (-566))) (-15 -2980 ((-771) $)) (-15 -2199 ($ |#1| (-566))) (-15 -2746 ($ |#1| (-566))) (-15 -2522 ($ |#1| (-566) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4082 (|#1| $)) (-15 -3686 ($ $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-454)) (-6 (-454)) |%noBranch|) (IF (|has| |#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |#1| (-1219)) (-6 (-1219)) |%noBranch|) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-516 (-1175) $)) (-6 (-516 (-1175) $)) |%noBranch|)))
-((-2521 (((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|)) 28)) (-3142 (((-420 |#1|) (-420 |#1|) (-420 |#1|)) 17)))
-(((-421 |#1|) (-10 -7 (-15 -2521 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -3142 ((-420 |#1|) (-420 |#1|) (-420 |#1|)))) (-558)) (T -421))
-((-3142 (*1 *2 *2 *2) (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3)))) (-2521 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4)) (-5 *1 (-421 *4)))))
-(-10 -7 (-15 -2521 ((-420 |#1|) (-420 |#1|) (-1 (-420 |#1|) |#1|))) (-15 -3142 ((-420 |#1|) (-420 |#1|) (-420 |#1|))))
-((-1314 ((|#2| |#2|) 183)) (-3319 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112)) 60)))
-(((-422 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3319 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -1314 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|)) (-1175) |#2|) (T -422))
-((-1314 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1200) (-432 *3))) (-14 *4 (-1175)) (-14 *5 *2))) (-3319 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1200) (-432 *5))) (-14 *6 (-1175)) (-14 *7 *3))))
-(-10 -7 (-15 -3319 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112))) (-15 -1314 (|#2| |#2|)))
-((-2101 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-432 |#1|) (-1049) (-432 |#3|)) (T -423))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5)))))
-(-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1314 ((|#2| |#2|) 106)) (-2877 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 52)) (-3222 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157)) 171)))
-(((-424 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2877 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -3222 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1314 (|#2| |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|) (-10 -8 (-15 -2725 ($ |#3|)))) (-848) (-13 (-1243 |#2| |#3|) (-365) (-1200) (-10 -8 (-15 -3009 ($ $)) (-15 -1879 ($ $)))) (-983 |#4|) (-1175)) (T -424))
-((-1314 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *2 (-13 (-27) (-1200) (-432 *3) (-10 -8 (-15 -2725 ($ *4))))) (-4 *4 (-848)) (-4 *5 (-13 (-1243 *2 *4) (-365) (-1200) (-10 -8 (-15 -3009 ($ $)) (-15 -1879 ($ $))))) (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175)))) (-3222 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1200) (-432 *6) (-10 -8 (-15 -2725 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1243 *3 *7) (-365) (-1200) (-10 -8 (-15 -3009 ($ $)) (-15 -1879 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175)))) (-2877 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-4 *3 (-13 (-27) (-1200) (-432 *6) (-10 -8 (-15 -2725 ($ *7))))) (-4 *7 (-848)) (-4 *8 (-13 (-1243 *3 *7) (-365) (-1200) (-10 -8 (-15 -3009 ($ $)) (-15 -1879 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157)))))) (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8)) (-14 *10 (-1175)))))
-(-10 -7 (-15 -2877 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -3222 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))) |#2| (-112) (-1157))) (-15 -1314 (|#2| |#2|)))
-((-4123 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2553 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2101 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2553 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1099) (-427 |#1|) (-1099) (-427 |#3|)) (T -425))
-((-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099)) (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6)))) (-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099)) (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5)))))
-(-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2553 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1301 (($) 52)) (-2672 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3913 (($ $ $) 45)) (-4199 (((-112) $ $) 34)) (-3733 (((-771)) 56)) (-2583 (($ (-644 |#2|)) 23) (($) NIL)) (-3424 (($) 67)) (-4155 (((-112) $ $) 15)) (-3075 ((|#2| $) 78)) (-3936 ((|#2| $) 76)) (-4138 (((-921) $) 71)) (-1799 (($ $ $) 41)) (-2430 (($ (-921)) 61)) (-2818 (($ $ |#2|) NIL) (($ $ $) 44)) (-1958 (((-771) (-1 (-112) |#2|) $) NIL) (((-771) |#2| $) 31)) (-2738 (($ (-644 |#2|)) 27)) (-1916 (($ $) 54)) (-2725 (((-862) $) 39)) (-1686 (((-771) $) 24)) (-4087 (($ (-644 |#2|)) 22) (($) NIL)) (-2817 (((-112) $ $) 19)))
-(((-426 |#1| |#2|) (-10 -8 (-15 -3733 ((-771))) (-15 -2430 (|#1| (-921))) (-15 -4138 ((-921) |#1|)) (-15 -3424 (|#1|)) (-15 -3075 (|#2| |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -1301 (|#1|)) (-15 -1916 (|#1| |#1|)) (-15 -1686 ((-771) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -4155 ((-112) |#1| |#1|)) (-15 -4087 (|#1|)) (-15 -4087 (|#1| (-644 |#2|))) (-15 -2583 (|#1|)) (-15 -2583 (|#1| (-644 |#2|))) (-15 -1799 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#2|)) (-15 -3913 (|#1| |#1| |#1|)) (-15 -4199 ((-112) |#1| |#1|)) (-15 -2672 (|#1| |#1| |#1|)) (-15 -2672 (|#1| |#1| |#2|)) (-15 -2672 (|#1| |#2| |#1|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|))) (-427 |#2|) (-1099)) (T -426))
-((-3733 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4)) (-4 *3 (-427 *4)))))
-(-10 -8 (-15 -3733 ((-771))) (-15 -2430 (|#1| (-921))) (-15 -4138 ((-921) |#1|)) (-15 -3424 (|#1|)) (-15 -3075 (|#2| |#1|)) (-15 -3936 (|#2| |#1|)) (-15 -1301 (|#1|)) (-15 -1916 (|#1| |#1|)) (-15 -1686 ((-771) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -4155 ((-112) |#1| |#1|)) (-15 -4087 (|#1|)) (-15 -4087 (|#1| (-644 |#2|))) (-15 -2583 (|#1|)) (-15 -2583 (|#1| (-644 |#2|))) (-15 -1799 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#2|)) (-15 -3913 (|#1| |#1| |#1|)) (-15 -4199 ((-112) |#1| |#1|)) (-15 -2672 (|#1| |#1| |#1|)) (-15 -2672 (|#1| |#1| |#2|)) (-15 -2672 (|#1| |#2| |#1|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -1958 ((-771) |#2| |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)))
-((-3979 (((-112) $ $) 19)) (-1301 (($) 68 (|has| |#1| (-370)))) (-2672 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3913 (($ $ $) 79)) (-4199 (((-112) $ $) 80)) (-2261 (((-112) $ (-771)) 8)) (-3733 (((-771)) 62 (|has| |#1| (-370)))) (-2583 (($ (-644 |#1|)) 75) (($) 74)) (-1607 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-3806 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ |#1| $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4415)))) (-3424 (($) 65 (|has| |#1| (-370)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4155 (((-112) $ $) 71)) (-2429 (((-112) $ (-771)) 9)) (-3075 ((|#1| $) 66 (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3936 ((|#1| $) 67 (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-4138 (((-921) $) 64 (|has| |#1| (-370)))) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22)) (-1799 (($ $ $) 76)) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41)) (-2430 (($ (-921)) 63 (|has| |#1| (-370)))) (-1944 (((-1119) $) 21)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-2818 (($ $ |#1|) 78) (($ $ $) 77)) (-1873 (($) 50) (($ (-644 |#1|)) 49)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 51)) (-1916 (($ $) 69 (|has| |#1| (-370)))) (-2725 (((-862) $) 18)) (-1686 (((-771) $) 70)) (-4087 (($ (-644 |#1|)) 73) (($) 72)) (-1479 (((-112) $ $) 23)) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20)) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-427 |#1|) (-140) (-1099)) (T -427))
-((-1686 (*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-1916 (*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370)))) (-1301 (*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099)))) (-3936 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850)))))
-(-13 (-229 |t#1|) (-1097 |t#1|) (-10 -8 (-6 -4415) (-15 -1686 ((-771) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -1916 ($ $)) (-15 -1301 ($))) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -3936 (|t#1| $)) (-15 -3075 (|t#1| $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-370) |has| |#1| (-370)) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1097 |#1|) . T) ((-1099) . T) ((-1215) . T))
-((-3059 (((-587 |#2|) |#2| (-1175)) 36)) (-2379 (((-587 |#2|) |#2| (-1175)) 21)) (-2460 ((|#2| |#2| (-1175)) 26)))
-(((-428 |#1| |#2|) (-10 -7 (-15 -2379 ((-587 |#2|) |#2| (-1175))) (-15 -3059 ((-587 |#2|) |#2| (-1175))) (-15 -2460 (|#2| |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-29 |#1|))) (T -428))
-((-2460 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1200) (-29 *4))))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1200) (-29 *5))))) (-2379 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1200) (-29 *5))))))
-(-10 -7 (-15 -2379 ((-587 |#2|) |#2| (-1175))) (-15 -3059 ((-587 |#2|) |#2| (-1175))) (-15 -2460 (|#2| |#2| (-1175))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-1456 (($ |#2| |#1|) 37)) (-2253 (($ |#2| |#1|) 35)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 10 T CONST)) (-3214 (($) 16 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 36)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-429 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4402)) (IF (|has| |#1| (-6 -4402)) (-6 -4402) |%noBranch|) |%noBranch|) (-15 -2725 ($ |#1|)) (-15 -2725 ($ (-332 |#2|))) (-15 -1456 ($ |#2| |#1|)) (-15 -2253 ($ |#2| |#1|)))) (-13 (-172) (-38 (-409 (-566)))) (-13 (-850) (-21))) (T -429))
-((-2725 (*1 *1 *2) (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-409 (-566))))) (-4 *3 (-13 (-850) (-21))))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-850) (-21))) (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))))) (-1456 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21))))) (-2253 (*1 *1 *2 *3) (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566))))) (-4 *2 (-13 (-850) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4402)) (IF (|has| |#1| (-6 -4402)) (-6 -4402) |%noBranch|) |%noBranch|) (-15 -2725 ($ |#1|)) (-15 -2725 ($ (-332 |#2|))) (-15 -1456 ($ |#2| |#1|)) (-15 -2253 ($ |#2| |#1|))))
-((-1879 (((-3 |#2| (-644 |#2|)) |#2| (-1175)) 115)))
-(((-430 |#1| |#2|) (-10 -7 (-15 -1879 ((-3 |#2| (-644 |#2|)) |#2| (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-959) (-29 |#1|))) (T -430))
-((-1879 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3)) (-4 *3 (-13 (-1200) (-959) (-29 *5))))))
-(-10 -7 (-15 -1879 ((-3 |#2| (-644 |#2|)) |#2| (-1175))))
-((-4170 (((-644 (-1175)) $) 81)) (-3983 (((-409 (-1171 $)) $ (-612 $)) 314)) (-1713 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) 278)) (-2023 (((-3 (-612 $) "failed") $) NIL) (((-3 (-1175) "failed") $) 84) (((-3 (-566) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-409 (-952 |#2|)) "failed") $) 364) (((-3 (-952 |#2|) "failed") $) 276) (((-3 (-409 (-566)) "failed") $) NIL)) (-3343 (((-612 $) $) NIL) (((-1175) $) 28) (((-566) $) NIL) ((|#2| $) 272) (((-409 (-952 |#2|)) $) 346) (((-952 |#2|) $) 273) (((-409 (-566)) $) NIL)) (-3959 (((-114) (-114)) 47)) (-3450 (($ $) 99)) (-3308 (((-3 (-612 $) "failed") $) 269)) (-3944 (((-644 (-612 $)) $) 270)) (-2684 (((-3 (-644 $) "failed") $) 288)) (-1559 (((-3 (-2 (|:| |val| $) (|:| -3428 (-566))) "failed") $) 295)) (-1660 (((-3 (-644 $) "failed") $) 286)) (-2271 (((-3 (-2 (|:| -1702 (-566)) (|:| |var| (-612 $))) "failed") $) 305)) (-2544 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $) 292) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-1175)) 258)) (-4290 (((-112) $) 17)) (-4307 ((|#2| $) 19)) (-1754 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) 277) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 109) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1175)) 62) (($ $ (-644 (-1175))) 281) (($ $) 282) (($ $ (-114) $ (-1175)) 65) (($ $ (-644 (-114)) (-644 $) (-1175)) 72) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 120) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 283) (($ $ (-1175) (-771) (-1 $ (-644 $))) 105) (($ $ (-1175) (-771) (-1 $ $)) 104)) (-3282 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) 119)) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) 279)) (-3233 (($ $) 325)) (-2150 (((-892 (-566)) $) 298) (((-892 (-381)) $) 302) (($ (-420 $)) 360) (((-538) $) NIL)) (-2725 (((-862) $) 280) (($ (-612 $)) 93) (($ (-1175)) 24) (($ |#2|) NIL) (($ (-1124 |#2| (-612 $))) NIL) (($ (-409 |#2|)) 330) (($ (-952 (-409 |#2|))) 369) (($ (-409 (-952 (-409 |#2|)))) 342) (($ (-409 (-952 |#2|))) 336) (($ $) NIL) (($ (-952 |#2|)) 218) (($ (-409 (-566))) 374) (($ (-566)) NIL)) (-2875 (((-771)) 88)) (-2827 (((-112) (-114)) 42)) (-3750 (($ (-1175) $) 31) (($ (-1175) $ $) 32) (($ (-1175) $ $ $) 33) (($ (-1175) $ $ $ $) 34) (($ (-1175) (-644 $)) 39)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL)))
-(((-431 |#1| |#2|) (-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2725 (|#1| (-566))) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2725 (|#1| (-952 |#2|))) (-15 -2023 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -3343 ((-952 |#2|) |#1|)) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2725 (|#1| (-409 (-952 |#2|)))) (-15 -2023 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -3343 ((-409 (-952 |#2|)) |#1|)) (-15 -3983 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -2725 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -2725 (|#1| (-952 (-409 |#2|)))) (-15 -2725 (|#1| (-409 |#2|))) (-15 -3233 (|#1| |#1|)) (-15 -2150 (|#1| (-420 |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -1559 ((-3 (-2 (|:| |val| |#1|) (|:| -3428 (-566))) "failed") |#1|)) (-15 -2544 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3428 (-566))) "failed") |#1| (-1175))) (-15 -2544 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3428 (-566))) "failed") |#1| (-114))) (-15 -3450 (|#1| |#1|)) (-15 -2725 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -2271 ((-3 (-2 (|:| -1702 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -1660 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2544 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3428 (-566))) "failed") |#1|)) (-15 -2684 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -1754 (|#1| |#1| (-114) |#1| (-1175))) (-15 -1754 (|#1| |#1|)) (-15 -1754 (|#1| |#1| (-644 (-1175)))) (-15 -1754 (|#1| |#1| (-1175))) (-15 -3750 (|#1| (-1175) (-644 |#1|))) (-15 -3750 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -3750 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -3750 (|#1| (-1175) |#1| |#1|)) (-15 -3750 (|#1| (-1175) |#1|)) (-15 -4170 ((-644 (-1175)) |#1|)) (-15 -4307 (|#2| |#1|)) (-15 -4290 ((-112) |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2725 (|#1| (-1175))) (-15 -2023 ((-3 (-1175) "failed") |#1|)) (-15 -3343 ((-1175) |#1|)) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -3944 ((-644 (-612 |#1|)) |#1|)) (-15 -3308 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1713 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1713 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1713 (|#1| |#1| (-295 |#1|))) (-15 -3282 (|#1| (-114) (-644 |#1|))) (-15 -3282 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1754 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2725 (|#1| (-612 |#1|))) (-15 -2023 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3343 ((-612 |#1|) |#1|)) (-15 -2725 ((-862) |#1|))) (-432 |#2|) (-1099)) (T -431))
-((-3959 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5)))) (-2875 (*1 *2) (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))))
-(-10 -8 (-15 * (|#1| (-921) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2725 (|#1| (-566))) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2725 (|#1| (-952 |#2|))) (-15 -2023 ((-3 (-952 |#2|) "failed") |#1|)) (-15 -3343 ((-952 |#2|) |#1|)) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2725 (|#1| |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2725 (|#1| (-409 (-952 |#2|)))) (-15 -2023 ((-3 (-409 (-952 |#2|)) "failed") |#1|)) (-15 -3343 ((-409 (-952 |#2|)) |#1|)) (-15 -3983 ((-409 (-1171 |#1|)) |#1| (-612 |#1|))) (-15 -2725 (|#1| (-409 (-952 (-409 |#2|))))) (-15 -2725 (|#1| (-952 (-409 |#2|)))) (-15 -2725 (|#1| (-409 |#2|))) (-15 -3233 (|#1| |#1|)) (-15 -2150 (|#1| (-420 |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-771) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-771) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-771)) (-644 (-1 |#1| |#1|)))) (-15 -1559 ((-3 (-2 (|:| |val| |#1|) (|:| -3428 (-566))) "failed") |#1|)) (-15 -2544 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3428 (-566))) "failed") |#1| (-1175))) (-15 -2544 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3428 (-566))) "failed") |#1| (-114))) (-15 -3450 (|#1| |#1|)) (-15 -2725 (|#1| (-1124 |#2| (-612 |#1|)))) (-15 -2271 ((-3 (-2 (|:| -1702 (-566)) (|:| |var| (-612 |#1|))) "failed") |#1|)) (-15 -1660 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -2544 ((-3 (-2 (|:| |var| (-612 |#1|)) (|:| -3428 (-566))) "failed") |#1|)) (-15 -2684 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 |#1|) (-1175))) (-15 -1754 (|#1| |#1| (-114) |#1| (-1175))) (-15 -1754 (|#1| |#1|)) (-15 -1754 (|#1| |#1| (-644 (-1175)))) (-15 -1754 (|#1| |#1| (-1175))) (-15 -3750 (|#1| (-1175) (-644 |#1|))) (-15 -3750 (|#1| (-1175) |#1| |#1| |#1| |#1|)) (-15 -3750 (|#1| (-1175) |#1| |#1| |#1|)) (-15 -3750 (|#1| (-1175) |#1| |#1|)) (-15 -3750 (|#1| (-1175) |#1|)) (-15 -4170 ((-644 (-1175)) |#1|)) (-15 -4307 (|#2| |#1|)) (-15 -4290 ((-112) |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2725 (|#1| (-1175))) (-15 -2023 ((-3 (-1175) "failed") |#1|)) (-15 -3343 ((-1175) |#1|)) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-114) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-114)) (-644 (-1 |#1| |#1|)))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| |#1|))) (-15 -1754 (|#1| |#1| (-1175) (-1 |#1| (-644 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| (-644 |#1|))))) (-15 -1754 (|#1| |#1| (-644 (-1175)) (-644 (-1 |#1| |#1|)))) (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -3944 ((-644 (-612 |#1|)) |#1|)) (-15 -3308 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -1713 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1713 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1713 (|#1| |#1| (-295 |#1|))) (-15 -3282 (|#1| (-114) (-644 |#1|))) (-15 -3282 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1| |#1|)) (-15 -3282 (|#1| (-114) |#1|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -1754 (|#1| |#1| (-644 (-612 |#1|)) (-644 |#1|))) (-15 -1754 (|#1| |#1| (-612 |#1|) |#1|)) (-15 -2725 (|#1| (-612 |#1|))) (-15 -2023 ((-3 (-612 |#1|) "failed") |#1|)) (-15 -3343 ((-612 |#1|) |#1|)) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 116 (|has| |#1| (-25)))) (-4170 (((-644 (-1175)) $) 203)) (-3983 (((-409 (-1171 $)) $ (-612 $)) 171 (|has| |#1| (-558)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 143 (|has| |#1| (-558)))) (-1780 (($ $) 144 (|has| |#1| (-558)))) (-3286 (((-112) $) 146 (|has| |#1| (-558)))) (-3860 (((-644 (-612 $)) $) 39)) (-4113 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1713 (($ $ (-295 $)) 51) (($ $ (-644 (-295 $))) 50) (($ $ (-644 (-612 $)) (-644 $)) 49)) (-2885 (($ $) 163 (|has| |#1| (-558)))) (-2555 (((-420 $) $) 164 (|has| |#1| (-558)))) (-2068 (((-112) $ $) 154 (|has| |#1| (-558)))) (-2633 (($) 104 (-2676 (|has| |#1| (-1111)) (|has| |#1| (-25))) CONST)) (-2023 (((-3 (-612 $) "failed") $) 64) (((-3 (-1175) "failed") $) 216) (((-3 (-566) "failed") $) 210 (|has| |#1| (-1038 (-566)))) (((-3 |#1| "failed") $) 207) (((-3 (-409 (-952 |#1|)) "failed") $) 169 (|has| |#1| (-558))) (((-3 (-952 |#1|) "failed") $) 123 (|has| |#1| (-1049))) (((-3 (-409 (-566)) "failed") $) 98 (-2676 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-3343 (((-612 $) $) 65) (((-1175) $) 217) (((-566) $) 209 (|has| |#1| (-1038 (-566)))) ((|#1| $) 208) (((-409 (-952 |#1|)) $) 170 (|has| |#1| (-558))) (((-952 |#1|) $) 124 (|has| |#1| (-1049))) (((-409 (-566)) $) 99 (-2676 (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566))))))) (-3919 (($ $ $) 158 (|has| |#1| (-558)))) (-3717 (((-689 (-566)) (-689 $)) 137 (-3144 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 136 (-3144 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 135 (|has| |#1| (-1049))) (((-689 |#1|) (-689 $)) 134 (|has| |#1| (-1049)))) (-2313 (((-3 $ "failed") $) 106 (|has| |#1| (-1111)))) (-3930 (($ $ $) 157 (|has| |#1| (-558)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 152 (|has| |#1| (-558)))) (-1968 (((-112) $) 165 (|has| |#1| (-558)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 212 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 211 (|has| |#1| (-886 (-381))))) (-3206 (($ $) 46) (($ (-644 $)) 45)) (-3684 (((-644 (-114)) $) 38)) (-3959 (((-114) (-114)) 37)) (-3842 (((-112) $) 105 (|has| |#1| (-1111)))) (-1687 (((-112) $) 17 (|has| $ (-1038 (-566))))) (-3450 (($ $) 186 (|has| |#1| (-1049)))) (-2691 (((-1124 |#1| (-612 $)) $) 187 (|has| |#1| (-1049)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 161 (|has| |#1| (-558)))) (-2391 (((-1171 $) (-612 $)) 20 (|has| $ (-1049)))) (-2101 (($ (-1 $ $) (-612 $)) 31)) (-3308 (((-3 (-612 $) "failed") $) 41)) (-1853 (($ (-644 $)) 150 (|has| |#1| (-558))) (($ $ $) 149 (|has| |#1| (-558)))) (-1390 (((-1157) $) 10)) (-3944 (((-644 (-612 $)) $) 40)) (-2770 (($ (-114) $) 33) (($ (-114) (-644 $)) 32)) (-2684 (((-3 (-644 $) "failed") $) 192 (|has| |#1| (-1111)))) (-1559 (((-3 (-2 (|:| |val| $) (|:| -3428 (-566))) "failed") $) 183 (|has| |#1| (-1049)))) (-1660 (((-3 (-644 $) "failed") $) 190 (|has| |#1| (-25)))) (-2271 (((-3 (-2 (|:| -1702 (-566)) (|:| |var| (-612 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2544 (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $) 191 (|has| |#1| (-1111))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-114)) 185 (|has| |#1| (-1049))) (((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-1175)) 184 (|has| |#1| (-1049)))) (-3044 (((-112) $ (-114)) 35) (((-112) $ (-1175)) 34)) (-4282 (($ $) 108 (-2676 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-1695 (((-771) $) 42)) (-1944 (((-1119) $) 11)) (-4290 (((-112) $) 205)) (-4307 ((|#1| $) 204)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 151 (|has| |#1| (-558)))) (-1885 (($ (-644 $)) 148 (|has| |#1| (-558))) (($ $ $) 147 (|has| |#1| (-558)))) (-3761 (((-112) $ $) 30) (((-112) $ (-1175)) 29)) (-4018 (((-420 $) $) 162 (|has| |#1| (-558)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-558))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 159 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 153 (|has| |#1| (-558)))) (-3934 (((-112) $) 18 (|has| $ (-1038 (-566))))) (-1754 (($ $ (-612 $) $) 62) (($ $ (-644 (-612 $)) (-644 $)) 61) (($ $ (-644 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-644 $) (-644 $)) 57) (($ $ (-644 (-1175)) (-644 (-1 $ $))) 28) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) 27) (($ $ (-1175) (-1 $ (-644 $))) 26) (($ $ (-1175) (-1 $ $)) 25) (($ $ (-644 (-114)) (-644 (-1 $ $))) 24) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) 23) (($ $ (-114) (-1 $ (-644 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1175)) 197 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175))) 196 (|has| |#1| (-614 (-538)))) (($ $) 195 (|has| |#1| (-614 (-538)))) (($ $ (-114) $ (-1175)) 194 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-114)) (-644 $) (-1175)) 193 (|has| |#1| (-614 (-538)))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $))) 182 (|has| |#1| (-1049))) (($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $)))) 181 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ (-644 $))) 180 (|has| |#1| (-1049))) (($ $ (-1175) (-771) (-1 $ $)) 179 (|has| |#1| (-1049)))) (-3792 (((-771) $) 155 (|has| |#1| (-558)))) (-3282 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-644 $)) 52)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 156 (|has| |#1| (-558)))) (-2220 (($ $) 44) (($ $ $) 43)) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) 128 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 127 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 126 (|has| |#1| (-1049))) (($ $ (-1175)) 125 (|has| |#1| (-1049)))) (-3233 (($ $) 176 (|has| |#1| (-558)))) (-2702 (((-1124 |#1| (-612 $)) $) 177 (|has| |#1| (-558)))) (-2880 (($ $) 19 (|has| $ (-1049)))) (-2150 (((-892 (-566)) $) 214 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 213 (|has| |#1| (-614 (-892 (-381))))) (($ (-420 $)) 178 (|has| |#1| (-558))) (((-538) $) 100 (|has| |#1| (-614 (-538))))) (-2558 (($ $ $) 111 (|has| |#1| (-475)))) (-1726 (($ $ $) 112 (|has| |#1| (-475)))) (-2725 (((-862) $) 12) (($ (-612 $)) 63) (($ (-1175)) 215) (($ |#1|) 206) (($ (-1124 |#1| (-612 $))) 188 (|has| |#1| (-1049))) (($ (-409 |#1|)) 174 (|has| |#1| (-558))) (($ (-952 (-409 |#1|))) 173 (|has| |#1| (-558))) (($ (-409 (-952 (-409 |#1|)))) 172 (|has| |#1| (-558))) (($ (-409 (-952 |#1|))) 168 (|has| |#1| (-558))) (($ $) 141 (|has| |#1| (-558))) (($ (-952 |#1|)) 122 (|has| |#1| (-1049))) (($ (-409 (-566))) 97 (-2676 (|has| |#1| (-558)) (-12 (|has| |#1| (-1038 (-566))) (|has| |#1| (-558))) (|has| |#1| (-1038 (-409 (-566)))))) (($ (-566)) 96 (-2676 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566)))))) (-2655 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2875 (((-771)) 133 (|has| |#1| (-1049)) CONST)) (-3016 (($ $) 48) (($ (-644 $)) 47)) (-2827 (((-112) (-114)) 36)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 145 (|has| |#1| (-558)))) (-3750 (($ (-1175) $) 202) (($ (-1175) $ $) 201) (($ (-1175) $ $ $) 200) (($ (-1175) $ $ $ $) 199) (($ (-1175) (-644 $)) 198)) (-3200 (($) 115 (|has| |#1| (-25)) CONST)) (-3214 (($) 103 (|has| |#1| (-1111)) CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) 132 (|has| |#1| (-1049))) (($ $ (-1175) (-771)) 131 (|has| |#1| (-1049))) (($ $ (-644 (-1175))) 130 (|has| |#1| (-1049))) (($ $ (-1175)) 129 (|has| |#1| (-1049)))) (-2817 (((-112) $ $) 6)) (-2916 (($ (-1124 |#1| (-612 $)) (-1124 |#1| (-612 $))) 175 (|has| |#1| (-558))) (($ $ $) 109 (-2676 (|has| |#1| (-475)) (|has| |#1| (-558))))) (-2905 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-2897 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-566)) 110 (-2676 (|has| |#1| (-475)) (|has| |#1| (-558)))) (($ $ (-771)) 107 (|has| |#1| (-1111))) (($ $ (-921)) 102 (|has| |#1| (-1111)))) (* (($ (-409 (-566)) $) 167 (|has| |#1| (-558))) (($ $ (-409 (-566))) 166 (|has| |#1| (-558))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-566) $) 119 (|has| |#1| (-21))) (($ (-771) $) 117 (|has| |#1| (-25))) (($ (-921) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1111)))))
-(((-432 |#1|) (-140) (-1099)) (T -432))
-((-4290 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-4307 (*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175))))) (-3750 (*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3750 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3750 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3750 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))) (-3750 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-1754 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-614 (-538))))) (-1754 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538))))) (-1754 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-614 (-538))))) (-1754 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538))))) (-2684 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-2544 (*1 *2 *1) (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3428 (-566)))) (-4 *1 (-432 *3)))) (-1660 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-432 *3)))) (-2271 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| -1702 (-566)) (|:| |var| (-612 *1)))) (-4 *1 (-432 *3)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-1049)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2691 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049)))) (-2544 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3428 (-566)))) (-4 *1 (-432 *4)))) (-2544 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099)) (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3428 (-566)))) (-4 *1 (-432 *4)))) (-1559 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-2 (|:| |val| *1) (|:| -3428 (-566)))) (-4 *1 (-432 *3)))) (-1754 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-1754 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771))) (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-1754 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-1754 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1)) (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))) (-2702 (*1 *2 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1))) (-4 *1 (-432 *3)))) (-3233 (*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558)))) (-2916 (*1 *1 *2 *2) (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-1099)) (-4 *1 (-432 *3)))) (-3983 (*1 *2 *1 *3) (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099)) (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-4 *3 (-1111)))))
-(-13 (-303) (-1038 (-1175)) (-884 |t#1|) (-402 |t#1|) (-413 |t#1|) (-10 -8 (-15 -4290 ((-112) $)) (-15 -4307 (|t#1| $)) (-15 -4170 ((-644 (-1175)) $)) (-15 -3750 ($ (-1175) $)) (-15 -3750 ($ (-1175) $ $)) (-15 -3750 ($ (-1175) $ $ $)) (-15 -3750 ($ (-1175) $ $ $ $)) (-15 -3750 ($ (-1175) (-644 $))) (IF (|has| |t#1| (-614 (-538))) (PROGN (-6 (-614 (-538))) (-15 -1754 ($ $ (-1175))) (-15 -1754 ($ $ (-644 (-1175)))) (-15 -1754 ($ $)) (-15 -1754 ($ $ (-114) $ (-1175))) (-15 -1754 ($ $ (-644 (-114)) (-644 $) (-1175)))) |%noBranch|) (IF (|has| |t#1| (-1111)) (PROGN (-6 (-726)) (-15 ** ($ $ (-771))) (-15 -2684 ((-3 (-644 $) "failed") $)) (-15 -2544 ((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-475)) (-6 (-475)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1660 ((-3 (-644 $) "failed") $)) (-15 -2271 ((-3 (-2 (|:| -1702 (-566)) (|:| |var| (-612 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-6 (-1049)) (-6 (-1038 (-952 |t#1|))) (-6 (-900 (-1175))) (-6 (-379 |t#1|)) (-15 -2725 ($ (-1124 |t#1| (-612 $)))) (-15 -2691 ((-1124 |t#1| (-612 $)) $)) (-15 -3450 ($ $)) (-15 -2544 ((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-114))) (-15 -2544 ((-3 (-2 (|:| |var| (-612 $)) (|:| -3428 (-566))) "failed") $ (-1175))) (-15 -1559 ((-3 (-2 (|:| |val| $) (|:| -3428 (-566))) "failed") $)) (-15 -1754 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ $)))) (-15 -1754 ($ $ (-644 (-1175)) (-644 (-771)) (-644 (-1 $ (-644 $))))) (-15 -1754 ($ $ (-1175) (-771) (-1 $ (-644 $)))) (-15 -1754 ($ $ (-1175) (-771) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-365)) (-6 (-1038 (-409 (-952 |t#1|)))) (-15 -2150 ($ (-420 $))) (-15 -2702 ((-1124 |t#1| (-612 $)) $)) (-15 -3233 ($ $)) (-15 -2916 ($ (-1124 |t#1| (-612 $)) (-1124 |t#1| (-612 $)))) (-15 -2725 ($ (-409 |t#1|))) (-15 -2725 ($ (-952 (-409 |t#1|)))) (-15 -2725 ($ (-409 (-952 (-409 |t#1|))))) (-15 -3983 ((-409 (-1171 $)) $ (-612 $))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-1038 (-409 (-566)))) |%noBranch|)) |%noBranch|)))
-(((-21) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-409 (-566))) |has| |#1| (-558)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-558)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-558)) ((-131) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-558))) ((-616 #1=(-409 (-952 |#1|))) |has| |#1| (-558)) ((-616 (-566)) -2676 (|has| |#1| (-1049)) (|has| |#1| (-1038 (-566))) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-616 #2=(-612 $)) . T) ((-616 #3=(-952 |#1|)) |has| |#1| (-1049)) ((-616 #4=(-1175)) . T) ((-616 |#1|) . T) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) |has| |#1| (-558)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-243) |has| |#1| (-558)) ((-291) |has| |#1| (-558)) ((-308) |has| |#1| (-558)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-558)) ((-379 |#1|) |has| |#1| (-1049)) ((-402 |#1|) . T) ((-413 |#1|) . T) ((-454) |has| |#1| (-558)) ((-475) |has| |#1| (-475)) ((-516 (-612 $) $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-558)) ((-646 (-566)) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-646 |#1|) |has| |#1| (-172)) ((-646 $) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-648 #0#) |has| |#1| (-558)) ((-648 |#1|) |has| |#1| (-172)) ((-648 $) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-640 #0#) |has| |#1| (-558)) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-639 (-566)) -12 (|has| |#1| (-639 (-566))) (|has| |#1| (-1049))) ((-639 |#1|) |has| |#1| (-1049)) ((-717 #0#) |has| |#1| (-558)) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) -2676 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-900 (-1175)) |has| |#1| (-1049)) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-920) |has| |#1| (-558)) ((-1038 (-409 (-566))) -2676 (|has| |#1| (-1038 (-409 (-566)))) (-12 (|has| |#1| (-558)) (|has| |#1| (-1038 (-566))))) ((-1038 #1#) |has| |#1| (-558)) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 #3#) |has| |#1| (-1049)) ((-1038 #4#) . T) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-558)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-558)) ((-1056 #0#) |has| |#1| (-558)) ((-1056 |#1|) |has| |#1| (-172)) ((-1056 $) |has| |#1| (-558)) ((-1049) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1057) -2676 (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1111) -2676 (|has| |#1| (-1111)) (|has| |#1| (-1049)) (|has| |#1| (-558)) (|has| |#1| (-475)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1099) . T) ((-1215) . T) ((-1219) |has| |#1| (-558)))
-((-1666 ((|#2| |#2| |#2|) 31)) (-3959 (((-114) (-114)) 43)) (-2864 ((|#2| |#2|) 63)) (-3813 ((|#2| |#2|) 66)) (-2895 ((|#2| |#2|) 30)) (-4293 ((|#2| |#2| |#2|) 33)) (-3394 ((|#2| |#2| |#2|) 35)) (-3600 ((|#2| |#2| |#2|) 32)) (-3865 ((|#2| |#2| |#2|) 34)) (-2827 (((-112) (-114)) 41)) (-2852 ((|#2| |#2|) 37)) (-3328 ((|#2| |#2|) 36)) (-2274 ((|#2| |#2|) 25)) (-3181 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2434 ((|#2| |#2| |#2|) 29)))
-(((-433 |#1| |#2|) (-10 -7 (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -2274 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -3181 (|#2| |#2| |#2|)) (-15 -2434 (|#2| |#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -1666 (|#2| |#2| |#2|)) (-15 -3600 (|#2| |#2| |#2|)) (-15 -4293 (|#2| |#2| |#2|)) (-15 -3865 (|#2| |#2| |#2|)) (-15 -3394 (|#2| |#2| |#2|)) (-15 -3328 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -2864 (|#2| |#2|))) (-558) (-432 |#1|)) (T -433))
-((-2864 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2852 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3328 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3394 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3865 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-4293 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3600 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-1666 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2895 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2434 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3181 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-2274 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4)) (-4 *4 (-432 *3)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4)))))
-(-10 -7 (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -2274 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -3181 (|#2| |#2| |#2|)) (-15 -2434 (|#2| |#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -1666 (|#2| |#2| |#2|)) (-15 -3600 (|#2| |#2| |#2|)) (-15 -4293 (|#2| |#2| |#2|)) (-15 -3865 (|#2| |#2| |#2|)) (-15 -3394 (|#2| |#2| |#2|)) (-15 -3328 (|#2| |#2|)) (-15 -2852 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -2864 (|#2| |#2|)))
-((-4183 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|)) 68)))
-(((-434 |#1| |#2|) (-10 -7 (-15 -4183 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -4183 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-558) (-147)) (-432 |#1|)) (T -434))
-((-4183 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3)) (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3)))) (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-434 *4 *5)))))
-(-10 -7 (-15 -4183 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-644 (-1171 |#2|))) (|:| |prim| (-1171 |#2|))) (-644 |#2|))) (IF (|has| |#2| (-27)) (-15 -4183 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1171 |#2|)) (|:| |pol2| (-1171 |#2|)) (|:| |prim| (-1171 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3592 (((-1270)) 19)) (-2681 (((-1171 (-409 (-566))) |#2| (-612 |#2|)) 41) (((-409 (-566)) |#2|) 25)))
-(((-435 |#1| |#2|) (-10 -7 (-15 -2681 ((-409 (-566)) |#2|)) (-15 -2681 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -3592 ((-1270)))) (-13 (-558) (-1038 (-566))) (-432 |#1|)) (T -435))
-((-3592 (*1 *2) (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1270)) (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-435 *5 *3)))) (-2681 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566))) (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4)))))
-(-10 -7 (-15 -2681 ((-409 (-566)) |#2|)) (-15 -2681 ((-1171 (-409 (-566))) |#2| (-612 |#2|))) (-15 -3592 ((-1270))))
-((-2912 (((-112) $) 32)) (-2871 (((-112) $) 34)) (-3855 (((-112) $) 35)) (-2956 (((-112) $) 38)) (-2608 (((-112) $) 33)) (-2950 (((-112) $) 37)) (-2725 (((-862) $) 20) (($ (-1157)) 31) (($ (-1175)) 26) (((-1175) $) 24) (((-1103) $) 23)) (-2317 (((-112) $) 36)) (-2817 (((-112) $ $) 17)))
-(((-436) (-13 (-613 (-862)) (-10 -8 (-15 -2725 ($ (-1157))) (-15 -2725 ($ (-1175))) (-15 -2725 ((-1175) $)) (-15 -2725 ((-1103) $)) (-15 -2912 ((-112) $)) (-15 -2608 ((-112) $)) (-15 -3855 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -2956 ((-112) $)) (-15 -2317 ((-112) $)) (-15 -2871 ((-112) $)) (-15 -2817 ((-112) $ $))))) (T -436))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-436)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-436)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))) (-2817 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -2725 ($ (-1157))) (-15 -2725 ($ (-1175))) (-15 -2725 ((-1175) $)) (-15 -2725 ((-1103) $)) (-15 -2912 ((-112) $)) (-15 -2608 ((-112) $)) (-15 -3855 ((-112) $)) (-15 -2950 ((-112) $)) (-15 -2956 ((-112) $)) (-15 -2317 ((-112) $)) (-15 -2871 ((-112) $)) (-15 -2817 ((-112) $ $))))
-((-2496 (((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|) 72)) (-1794 (((-420 |#3|) |#3|) 34)) (-3305 (((-3 (-420 (-1171 (-48))) "failed") |#3|) 46 (|has| |#2| (-1038 (-48))))) (-3115 (((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -2188 (-112))) |#3|) 37)))
-(((-437 |#1| |#2| |#3|) (-10 -7 (-15 -1794 ((-420 |#3|) |#3|)) (-15 -2496 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -3115 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -2188 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -3305 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1241 |#2|)) (T -437))
-((-3305 (*1 *2 *3) (|partial| -12 (-4 *5 (-1038 (-48))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1241 *5)))) (-3115 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -2188 (-112)))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1241 *5)))) (-2496 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1241 *5)))) (-1794 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4)) (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1241 *5)))))
-(-10 -7 (-15 -1794 ((-420 |#3|) |#3|)) (-15 -2496 ((-3 (-420 (-1171 (-409 (-566)))) "failed") |#3|)) (-15 -3115 ((-3 (|:| |overq| (-1171 (-409 (-566)))) (|:| |overan| (-1171 (-48))) (|:| -2188 (-112))) |#3|)) (IF (|has| |#2| (-1038 (-48))) (-15 -3305 ((-3 (-420 (-1171 (-48))) "failed") |#3|)) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-1572 (((-1157) $ (-1157)) NIL)) (-4281 (($ $ (-1157)) NIL)) (-2096 (((-1157) $) NIL)) (-2237 (((-390) (-390) (-390)) 17) (((-390) (-390)) 15)) (-3099 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-3534 (((-390) $) NIL)) (-1390 (((-1157) $) NIL)) (-1647 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1349 (((-1270) (-1157)) 9)) (-2909 (((-1270) (-1157)) 10)) (-3041 (((-1270)) 11)) (-2725 (((-862) $) NIL)) (-4381 (($ $) 39)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-438) (-13 (-366 (-390) (-1157)) (-10 -7 (-15 -2237 ((-390) (-390) (-390))) (-15 -2237 ((-390) (-390))) (-15 -1349 ((-1270) (-1157))) (-15 -2909 ((-1270) (-1157))) (-15 -3041 ((-1270)))))) (T -438))
-((-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-2237 (*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-438)))) (-2909 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-438)))) (-3041 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-438)))))
-(-13 (-366 (-390) (-1157)) (-10 -7 (-15 -2237 ((-390) (-390) (-390))) (-15 -2237 ((-390) (-390))) (-15 -1349 ((-1270) (-1157))) (-15 -2909 ((-1270) (-1157))) (-15 -3041 ((-1270)))))
-((-3979 (((-112) $ $) NIL)) (-2132 (((-3 (|:| |fst| (-436)) (|:| -4106 "void")) $) 11)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3208 (($) 35)) (-4377 (($) 41)) (-2857 (($) 37)) (-3452 (($) 39)) (-3123 (($) 36)) (-2319 (($) 38)) (-3445 (($) 40)) (-3760 (((-112) $) 8)) (-1461 (((-644 (-952 (-566))) $) 19)) (-2738 (($ (-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-644 (-1175)) (-112)) 29) (($ (-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-644 (-952 (-566))) (-112)) 30)) (-2725 (((-862) $) 24) (($ (-436)) 32)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-439) (-13 (-1099) (-10 -8 (-15 -2725 ($ (-436))) (-15 -2132 ((-3 (|:| |fst| (-436)) (|:| -4106 "void")) $)) (-15 -1461 ((-644 (-952 (-566))) $)) (-15 -3760 ((-112) $)) (-15 -2738 ($ (-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-644 (-1175)) (-112))) (-15 -2738 ($ (-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-644 (-952 (-566))) (-112))) (-15 -3208 ($)) (-15 -3123 ($)) (-15 -2857 ($)) (-15 -4377 ($)) (-15 -2319 ($)) (-15 -3452 ($)) (-15 -3445 ($))))) (T -439))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *1 (-439)))) (-1461 (*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439)))) (-3760 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))) (-2738 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439)))) (-2738 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439)))) (-3208 (*1 *1) (-5 *1 (-439))) (-3123 (*1 *1) (-5 *1 (-439))) (-2857 (*1 *1) (-5 *1 (-439))) (-4377 (*1 *1) (-5 *1 (-439))) (-2319 (*1 *1) (-5 *1 (-439))) (-3452 (*1 *1) (-5 *1 (-439))) (-3445 (*1 *1) (-5 *1 (-439))))
-(-13 (-1099) (-10 -8 (-15 -2725 ($ (-436))) (-15 -2132 ((-3 (|:| |fst| (-436)) (|:| -4106 "void")) $)) (-15 -1461 ((-644 (-952 (-566))) $)) (-15 -3760 ((-112) $)) (-15 -2738 ($ (-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-644 (-1175)) (-112))) (-15 -2738 ($ (-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-644 (-952 (-566))) (-112))) (-15 -3208 ($)) (-15 -3123 ($)) (-15 -2857 ($)) (-15 -4377 ($)) (-15 -2319 ($)) (-15 -3452 ($)) (-15 -3445 ($))))
-((-3979 (((-112) $ $) NIL)) (-3534 (((-1175) $) 8)) (-1390 (((-1157) $) 17)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 11)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 14)))
-(((-440 |#1|) (-13 (-1099) (-10 -8 (-15 -3534 ((-1175) $)))) (-1175)) (T -440))
-((-3534 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2))))
-(-13 (-1099) (-10 -8 (-15 -3534 ((-1175) $))))
-((-3979 (((-112) $ $) NIL)) (-2653 (((-1117) $) 7)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 13)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 9)))
-(((-441) (-13 (-1099) (-10 -8 (-15 -2653 ((-1117) $))))) (T -441))
-((-2653 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441)))))
-(-13 (-1099) (-10 -8 (-15 -2653 ((-1117) $))))
-((-2887 (((-1270) $) 7)) (-2725 (((-862) $) 8) (($ (-1265 (-699))) 14) (($ (-644 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 11)))
-(((-442) (-140)) (T -442))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-699))) (-4 *1 (-442)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-442)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-442)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) (-4 *1 (-442)))))
-(-13 (-397) (-10 -8 (-15 -2725 ($ (-1265 (-699)))) (-15 -2725 ($ (-644 (-331)))) (-15 -2725 ($ (-331))) (-15 -2725 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))))))
-(((-613 (-862)) . T) ((-397) . T) ((-1215) . T))
-((-2023 (((-3 $ "failed") (-1265 (-317 (-381)))) 21) (((-3 $ "failed") (-1265 (-317 (-566)))) 19) (((-3 $ "failed") (-1265 (-952 (-381)))) 17) (((-3 $ "failed") (-1265 (-952 (-566)))) 15) (((-3 $ "failed") (-1265 (-409 (-952 (-381))))) 13) (((-3 $ "failed") (-1265 (-409 (-952 (-566))))) 11)) (-3343 (($ (-1265 (-317 (-381)))) 22) (($ (-1265 (-317 (-566)))) 20) (($ (-1265 (-952 (-381)))) 18) (($ (-1265 (-952 (-566)))) 16) (($ (-1265 (-409 (-952 (-381))))) 14) (($ (-1265 (-409 (-952 (-566))))) 12)) (-2887 (((-1270) $) 7)) (-2725 (((-862) $) 8) (($ (-644 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) 23)))
+((-1774 (*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1271)))))
+(-13 (-1216) (-614 (-863)) (-10 -8 (-15 -1774 ((-1271) $))))
+(((-614 (-863)) . T) ((-1216) . T))
+((-3417 (((-3 $ "failed") (-317 (-381))) 21) (((-3 $ "failed") (-317 (-567))) 19) (((-3 $ "failed") (-953 (-381))) 17) (((-3 $ "failed") (-953 (-567))) 15) (((-3 $ "failed") (-410 (-953 (-381)))) 13) (((-3 $ "failed") (-410 (-953 (-567)))) 11)) (-1621 (($ (-317 (-381))) 22) (($ (-317 (-567))) 20) (($ (-953 (-381))) 18) (($ (-953 (-567))) 16) (($ (-410 (-953 (-381)))) 14) (($ (-410 (-953 (-567)))) 12)) (-1774 (((-1271) $) 7)) (-4101 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 23)))
+(((-399) (-140)) (T -399))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) (-4 *1 (-399)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-4 *1 (-399)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-4 *1 (-399)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-399)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-567))) (-4 *1 (-399)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399)))))
+(-13 (-398) (-10 -8 (-15 -4101 ($ (-645 (-331)))) (-15 -4101 ($ (-331))) (-15 -4101 ($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))) (-15 -1621 ($ (-317 (-381)))) (-15 -3417 ((-3 $ "failed") (-317 (-381)))) (-15 -1621 ($ (-317 (-567)))) (-15 -3417 ((-3 $ "failed") (-317 (-567)))) (-15 -1621 ($ (-953 (-381)))) (-15 -3417 ((-3 $ "failed") (-953 (-381)))) (-15 -1621 ($ (-953 (-567)))) (-15 -3417 ((-3 $ "failed") (-953 (-567)))) (-15 -1621 ($ (-410 (-953 (-381))))) (-15 -3417 ((-3 $ "failed") (-410 (-953 (-381))))) (-15 -1621 ($ (-410 (-953 (-567))))) (-15 -3417 ((-3 $ "failed") (-410 (-953 (-567)))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1216) . T))
+((-1854 (((-645 (-1158)) (-645 (-1158))) 9)) (-1774 (((-1271) (-391)) 27)) (-3021 (((-1104) (-1176) (-645 (-1176)) (-1179) (-645 (-1176))) 60) (((-1104) (-1176) (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176)))) (-645 (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176))))) (-645 (-1176)) (-1176)) 35) (((-1104) (-1176) (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176)))) (-645 (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176))))) (-645 (-1176))) 34)))
+(((-400) (-10 -7 (-15 -3021 ((-1104) (-1176) (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176)))) (-645 (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176))))) (-645 (-1176)))) (-15 -3021 ((-1104) (-1176) (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176)))) (-645 (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176))))) (-645 (-1176)) (-1176))) (-15 -3021 ((-1104) (-1176) (-645 (-1176)) (-1179) (-645 (-1176)))) (-15 -1774 ((-1271) (-391))) (-15 -1854 ((-645 (-1158)) (-645 (-1158)))))) (T -400))
+((-1854 (*1 *2 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-400)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1271)) (-5 *1 (-400)))) (-3021 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-645 (-1176))) (-5 *5 (-1179)) (-5 *3 (-1176)) (-5 *2 (-1104)) (-5 *1 (-400)))) (-3021 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1176))))) (-5 *6 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1104)) (-5 *1 (-400)))) (-3021 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1176))))) (-5 *6 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1104)) (-5 *1 (-400)))))
+(-10 -7 (-15 -3021 ((-1104) (-1176) (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176)))) (-645 (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176))))) (-645 (-1176)))) (-15 -3021 ((-1104) (-1176) (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176)))) (-645 (-645 (-3 (|:| |array| (-645 (-1176))) (|:| |scalar| (-1176))))) (-645 (-1176)) (-1176))) (-15 -3021 ((-1104) (-1176) (-645 (-1176)) (-1179) (-645 (-1176)))) (-15 -1774 ((-1271) (-391))) (-15 -1854 ((-645 (-1158)) (-645 (-1158)))))
+((-1774 (((-1271) $) 36)) (-4101 (((-863) $) 98) (($ (-331)) 100) (($ (-645 (-331))) 99) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 97) (($ (-317 (-702))) 53) (($ (-317 (-700))) 73) (($ (-317 (-695))) 86) (($ (-295 (-317 (-702)))) 68) (($ (-295 (-317 (-700)))) 81) (($ (-295 (-317 (-695)))) 94) (($ (-317 (-567))) 105) (($ (-317 (-381))) 118) (($ (-317 (-169 (-381)))) 131) (($ (-295 (-317 (-567)))) 113) (($ (-295 (-317 (-381)))) 126) (($ (-295 (-317 (-169 (-381))))) 139)))
+(((-401 |#1| |#2| |#3| |#4|) (-13 (-398) (-10 -8 (-15 -4101 ($ (-331))) (-15 -4101 ($ (-645 (-331)))) (-15 -4101 ($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))) (-15 -4101 ($ (-317 (-702)))) (-15 -4101 ($ (-317 (-700)))) (-15 -4101 ($ (-317 (-695)))) (-15 -4101 ($ (-295 (-317 (-702))))) (-15 -4101 ($ (-295 (-317 (-700))))) (-15 -4101 ($ (-295 (-317 (-695))))) (-15 -4101 ($ (-317 (-567)))) (-15 -4101 ($ (-317 (-381)))) (-15 -4101 ($ (-317 (-169 (-381))))) (-15 -4101 ($ (-295 (-317 (-567))))) (-15 -4101 ($ (-295 (-317 (-381))))) (-15 -4101 ($ (-295 (-317 (-169 (-381)))))))) (-1176) (-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-645 (-1176)) (-1180)) (T -401))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-14 *5 (-645 (-1176))) (-14 *6 (-1180)))))
+(-13 (-398) (-10 -8 (-15 -4101 ($ (-331))) (-15 -4101 ($ (-645 (-331)))) (-15 -4101 ($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))) (-15 -4101 ($ (-317 (-702)))) (-15 -4101 ($ (-317 (-700)))) (-15 -4101 ($ (-317 (-695)))) (-15 -4101 ($ (-295 (-317 (-702))))) (-15 -4101 ($ (-295 (-317 (-700))))) (-15 -4101 ($ (-295 (-317 (-695))))) (-15 -4101 ($ (-317 (-567)))) (-15 -4101 ($ (-317 (-381)))) (-15 -4101 ($ (-317 (-169 (-381))))) (-15 -4101 ($ (-295 (-317 (-567))))) (-15 -4101 ($ (-295 (-317 (-381))))) (-15 -4101 ($ (-295 (-317 (-169 (-381))))))))
+((-2257 (((-112) $ $) NIL)) (-4208 ((|#2| $) 38)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3772 (($ (-410 |#2|)) 95)) (-3765 (((-645 (-2 (|:| -4164 (-772)) (|:| -4113 |#2|) (|:| |num| |#2|))) $) 39)) (-1930 (($ $) 34) (($ $ (-772)) 36)) (-3542 (((-410 |#2|) $) 51)) (-4114 (($ (-645 (-2 (|:| -4164 (-772)) (|:| -4113 |#2|) (|:| |num| |#2|)))) 33)) (-4101 (((-863) $) 132)) (-3739 (((-112) $ $) NIL)) (-2692 (($ $) 35) (($ $ (-772)) 37)) (-3052 (((-112) $ $) NIL)) (-3146 (($ |#2| $) 41)))
+(((-402 |#1| |#2|) (-13 (-1100) (-615 (-410 |#2|)) (-10 -8 (-15 -3146 ($ |#2| $)) (-15 -3772 ($ (-410 |#2|))) (-15 -4208 (|#2| $)) (-15 -3765 ((-645 (-2 (|:| -4164 (-772)) (|:| -4113 |#2|) (|:| |num| |#2|))) $)) (-15 -4114 ($ (-645 (-2 (|:| -4164 (-772)) (|:| -4113 |#2|) (|:| |num| |#2|))))) (-15 -1930 ($ $)) (-15 -2692 ($ $)) (-15 -1930 ($ $ (-772))) (-15 -2692 ($ $ (-772))))) (-13 (-365) (-147)) (-1242 |#1|)) (T -402))
+((-3146 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2)) (-4 *2 (-1242 *3)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-410 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-4208 (*1 *2 *1) (-12 (-4 *2 (-1242 *3)) (-5 *1 (-402 *3 *2)) (-4 *3 (-13 (-365) (-147))))) (-3765 (*1 *2 *1) (-12 (-4 *3 (-13 (-365) (-147))) (-5 *2 (-645 (-2 (|:| -4164 (-772)) (|:| -4113 *4) (|:| |num| *4)))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1242 *3)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -4164 (-772)) (|:| -4113 *4) (|:| |num| *4)))) (-4 *4 (-1242 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)))) (-1930 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1242 *2)))) (-2692 (*1 *1 *1) (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3)) (-4 *3 (-1242 *2)))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1242 *3)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4)) (-4 *4 (-1242 *3)))))
+(-13 (-1100) (-615 (-410 |#2|)) (-10 -8 (-15 -3146 ($ |#2| $)) (-15 -3772 ($ (-410 |#2|))) (-15 -4208 (|#2| $)) (-15 -3765 ((-645 (-2 (|:| -4164 (-772)) (|:| -4113 |#2|) (|:| |num| |#2|))) $)) (-15 -4114 ($ (-645 (-2 (|:| -4164 (-772)) (|:| -4113 |#2|) (|:| |num| |#2|))))) (-15 -1930 ($ $)) (-15 -2692 ($ $)) (-15 -1930 ($ $ (-772))) (-15 -2692 ($ $ (-772)))))
+((-2257 (((-112) $ $) 9 (-2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 16 (|has| |#1| (-887 (-381)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 15 (|has| |#1| (-887 (-567))))) (-2451 (((-1158) $) 13 (-2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-3339 (((-1120) $) 12 (-2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-4101 (((-863) $) 11 (-2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-3739 (((-112) $ $) 14 (-2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))) (-3052 (((-112) $ $) 10 (-2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))))))
+(((-403 |#1|) (-140) (-1216)) (T -403))
+NIL
+(-13 (-1216) (-10 -7 (IF (|has| |t#1| (-887 (-567))) (-6 (-887 (-567))) |%noBranch|) (IF (|has| |t#1| (-887 (-381))) (-6 (-887 (-381))) |%noBranch|)))
+(((-102) -2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))) ((-614 (-863)) -2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-1100) -2909 (|has| |#1| (-887 (-567))) (|has| |#1| (-887 (-381)))) ((-1216) . T))
+((-2966 (($ $) 10) (($ $ (-772)) 12)))
+(((-404 |#1|) (-10 -8 (-15 -2966 (|#1| |#1| (-772))) (-15 -2966 (|#1| |#1|))) (-405)) (T -404))
+NIL
+(-10 -8 (-15 -2966 (|#1| |#1| (-772))) (-15 -2966 (|#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-3405 (((-112) $ $) 65)) (-4061 (($) 18 T CONST)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-2966 (($ $) 87) (($ $ (-772)) 86)) (-1665 (((-112) $) 79)) (-1909 (((-834 (-922)) $) 89)) (-3714 (((-112) $) 35)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-2097 (((-3 (-772) "failed") $ $) 88)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74)) (-4242 (((-3 $ "failed") $) 90)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 73)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+(((-405) (-140)) (T -405))
+((-1909 (*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922))))) (-2097 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))) (-2966 (*1 *1 *1) (-4 *1 (-405))) (-2966 (*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772)))))
+(-13 (-365) (-145) (-10 -8 (-15 -1909 ((-834 (-922)) $)) (-15 -2097 ((-3 (-772) "failed") $ $)) (-15 -2966 ($ $)) (-15 -2966 ($ $ (-772)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T))
+((-2822 (($ (-567) (-567)) 11) (($ (-567) (-567) (-922)) NIL)) (-4018 (((-922)) 20) (((-922) (-922)) NIL)))
+(((-406 |#1|) (-10 -8 (-15 -4018 ((-922) (-922))) (-15 -4018 ((-922))) (-15 -2822 (|#1| (-567) (-567) (-922))) (-15 -2822 (|#1| (-567) (-567)))) (-407)) (T -406))
+((-4018 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407)))))
+(-10 -8 (-15 -4018 ((-922) (-922))) (-15 -4018 ((-922))) (-15 -2822 (|#1| (-567) (-567) (-922))) (-15 -2822 (|#1| (-567) (-567))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2838 (((-567) $) 97)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-2674 (($ $) 95)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-2307 (($ $) 105)) (-3405 (((-112) $ $) 65)) (-3179 (((-567) $) 122)) (-4061 (($) 18 T CONST)) (-2733 (($ $) 94)) (-3417 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-1621 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-1665 (((-112) $) 79)) (-4374 (((-922)) 138) (((-922) (-922)) 135 (|has| $ (-6 -4407)))) (-4095 (((-112) $) 120)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 101)) (-1909 (((-567) $) 144)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 104)) (-3751 (($ $) 100)) (-3948 (((-112) $) 121)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2056 (($ $ $) 119) (($) 132 (-12 (-1397 (|has| $ (-6 -4407))) (-1397 (|has| $ (-6 -4399)))))) (-1802 (($ $ $) 118) (($) 131 (-12 (-1397 (|has| $ (-6 -4407))) (-1397 (|has| $ (-6 -4399)))))) (-2869 (((-567) $) 141)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-2920 (((-922) (-567)) 134 (|has| $ (-6 -4407)))) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-1987 (($ $) 96)) (-3992 (($ $) 98)) (-2822 (($ (-567) (-567)) 146) (($ (-567) (-567) (-922)) 145)) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4164 (((-567) $) 142)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-4018 (((-922)) 139) (((-922) (-922)) 136 (|has| $ (-6 -4407)))) (-2926 (((-922) (-567)) 133 (|has| $ (-6 -4407)))) (-3542 (((-381) $) 113) (((-225) $) 112) (((-893 (-381)) $) 102)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-2686 (((-772)) 32 T CONST)) (-2721 (($ $) 99)) (-3693 (((-922)) 140) (((-922) (-922)) 137 (|has| $ (-6 -4407)))) (-3739 (((-112) $ $) 9)) (-3183 (((-922)) 143)) (-2469 (((-112) $ $) 45)) (-1771 (($ $) 123)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3109 (((-112) $ $) 116)) (-3085 (((-112) $ $) 115)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 117)) (-3075 (((-112) $ $) 114)) (-3168 (($ $ $) 73)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+(((-407) (-140)) (T -407))
+((-2822 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407)))) (-2822 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-4 *1 (-407)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3183 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-4164 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-2869 (*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567)))) (-3693 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-4018 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-4374 (*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) (-3693 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4407)) (-4 *1 (-407)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4407)) (-4 *1 (-407)))) (-4374 (*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4407)) (-4 *1 (-407)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4407)) (-4 *1 (-407)) (-5 *2 (-922)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-567)) (|has| *1 (-6 -4407)) (-4 *1 (-407)) (-5 *2 (-922)))) (-2056 (*1 *1) (-12 (-4 *1 (-407)) (-1397 (|has| *1 (-6 -4407))) (-1397 (|has| *1 (-6 -4399))))) (-1802 (*1 *1) (-12 (-4 *1 (-407)) (-1397 (|has| *1 (-6 -4407))) (-1397 (|has| *1 (-6 -4399))))))
+(-13 (-1060) (-10 -8 (-6 -2927) (-15 -2822 ($ (-567) (-567))) (-15 -2822 ($ (-567) (-567) (-922))) (-15 -1909 ((-567) $)) (-15 -3183 ((-922))) (-15 -4164 ((-567) $)) (-15 -2869 ((-567) $)) (-15 -3693 ((-922))) (-15 -4018 ((-922))) (-15 -4374 ((-922))) (IF (|has| $ (-6 -4407)) (PROGN (-15 -3693 ((-922) (-922))) (-15 -4018 ((-922) (-922))) (-15 -4374 ((-922) (-922))) (-15 -2920 ((-922) (-567))) (-15 -2926 ((-922) (-567)))) |%noBranch|) (IF (|has| $ (-6 -4399)) |%noBranch| (IF (|has| $ (-6 -4407)) |%noBranch| (PROGN (-15 -2056 ($)) (-15 -1802 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-893 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-887 (-381)) . T) ((-921) . T) ((-1003) . T) ((-1023) . T) ((-1060) . T) ((-1039 (-410 (-567))) . T) ((-1039 (-567)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T))
+((-3494 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 20)))
+(((-408 |#1| |#2|) (-10 -7 (-15 -3494 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-559) (-559)) (T -408))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6)))))
+(-10 -7 (-15 -3494 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|))))
+((-3494 (((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)) 13)))
+(((-409 |#1| |#2|) (-10 -7 (-15 -3494 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|)))) (-559) (-559)) (T -409))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6)))))
+(-10 -7 (-15 -3494 ((-410 |#2|) (-1 |#2| |#1|) (-410 |#1|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 13)) (-2838 ((|#1| $) 21 (|has| |#1| (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| |#1| (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 17) (((-3 (-1176) "failed") $) NIL (|has| |#1| (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) 72 (|has| |#1| (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567))))) (-1621 ((|#1| $) 15) (((-1176) $) NIL (|has| |#1| (-1039 (-1176)))) (((-410 (-567)) $) 69 (|has| |#1| (-1039 (-567)))) (((-567) $) NIL (|has| |#1| (-1039 (-567))))) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) 51)) (-1649 (($) NIL (|has| |#1| (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| |#1| (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| |#1| (-887 (-381))))) (-3714 (((-112) $) 57)) (-4349 (($ $) NIL)) (-4067 ((|#1| $) 73)) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-1151)))) (-3948 (((-112) $) NIL (|has| |#1| (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| |#1| (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 100)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| |#1| (-308)))) (-3992 ((|#1| $) 28 (|has| |#1| (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) 148 (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 141 (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-517 (-1176) |#1|)))) (-4369 (((-772) $) NIL)) (-1552 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2870 (($ $) NIL)) (-4078 ((|#1| $) 75)) (-3542 (((-893 (-567)) $) NIL (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#1| (-615 (-893 (-381))))) (((-539) $) NIL (|has| |#1| (-615 (-539)))) (((-381) $) NIL (|has| |#1| (-1023))) (((-225) $) NIL (|has| |#1| (-1023)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 10) (($ (-1176)) NIL (|has| |#1| (-1039 (-1176))))) (-4242 (((-3 $ "failed") $) 102 (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) 103 T CONST)) (-2721 ((|#1| $) 26 (|has| |#1| (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-821)))) (-1468 (($) 22 T CONST)) (-1484 (($) 8 T CONST)) (-4184 (((-1158) $) 44 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1158) $ (-112)) 45 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1271) (-823) $) 46 (-12 (|has| |#1| (-548)) (|has| |#1| (-829)))) (((-1271) (-823) $ (-112)) 47 (-12 (|has| |#1| (-548)) (|has| |#1| (-829))))) (-2692 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) 66)) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) 24 (|has| |#1| (-851)))) (-3168 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3156 (($ $) 25) (($ $ $) 56)) (-3146 (($ $ $) 54)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 135)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 61) (($ $ $) 58) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88)))
+(((-410 |#1|) (-13 (-993 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4414)) (-6 -4403) |%noBranch|) |%noBranch|) |%noBranch|))) (-559)) (T -410))
+NIL
+(-13 (-993 |#1|) (-10 -7 (IF (|has| |#1| (-548)) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4403)) (IF (|has| |#1| (-455)) (IF (|has| |#1| (-6 -4414)) (-6 -4403) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-3007 (((-690 |#2|) (-1266 $)) NIL) (((-690 |#2|)) 18)) (-3499 (($ (-1266 |#2|) (-1266 $)) NIL) (($ (-1266 |#2|)) 24)) (-4253 (((-690 |#2|) $ (-1266 $)) NIL) (((-690 |#2|) $) 40)) (-4110 ((|#3| $) 73)) (-3347 ((|#2| (-1266 $)) NIL) ((|#2|) 20)) (-3216 (((-1266 |#2|) $ (-1266 $)) NIL) (((-690 |#2|) (-1266 $) (-1266 $)) NIL) (((-1266 |#2|) $) 22) (((-690 |#2|) (-1266 $)) 38)) (-3542 (((-1266 |#2|) $) 11) (($ (-1266 |#2|)) 13)) (-4121 ((|#3| $) 55)))
+(((-411 |#1| |#2| |#3|) (-10 -8 (-15 -4253 ((-690 |#2|) |#1|)) (-15 -3347 (|#2|)) (-15 -3007 ((-690 |#2|))) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -3499 (|#1| (-1266 |#2|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -4110 (|#3| |#1|)) (-15 -4121 (|#3| |#1|)) (-15 -3007 ((-690 |#2|) (-1266 |#1|))) (-15 -3347 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -4253 ((-690 |#2|) |#1| (-1266 |#1|)))) (-412 |#2| |#3|) (-172) (-1242 |#2|)) (T -411))
+((-3007 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-690 *4)) (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5)))) (-3347 (*1 *2) (-12 (-4 *4 (-1242 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4)) (-4 *3 (-412 *2 *4)))))
+(-10 -8 (-15 -4253 ((-690 |#2|) |#1|)) (-15 -3347 (|#2|)) (-15 -3007 ((-690 |#2|))) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -3499 (|#1| (-1266 |#2|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -4110 (|#3| |#1|)) (-15 -4121 (|#3| |#1|)) (-15 -3007 ((-690 |#2|) (-1266 |#1|))) (-15 -3347 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -4253 ((-690 |#2|) |#1| (-1266 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-3007 (((-690 |#1|) (-1266 $)) 53) (((-690 |#1|)) 68)) (-4093 ((|#1| $) 59)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3499 (($ (-1266 |#1|) (-1266 $)) 55) (($ (-1266 |#1|)) 71)) (-4253 (((-690 |#1|) $ (-1266 $)) 60) (((-690 |#1|) $) 66)) (-4014 (((-3 $ "failed") $) 37)) (-2432 (((-922)) 61)) (-3714 (((-112) $) 35)) (-3751 ((|#1| $) 58)) (-4110 ((|#2| $) 51 (|has| |#1| (-365)))) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3347 ((|#1| (-1266 $)) 54) ((|#1|) 67)) (-3216 (((-1266 |#1|) $ (-1266 $)) 57) (((-690 |#1|) (-1266 $) (-1266 $)) 56) (((-1266 |#1|) $) 73) (((-690 |#1|) (-1266 $)) 72)) (-3542 (((-1266 |#1|) $) 70) (($ (-1266 |#1|)) 69)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44)) (-4242 (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-4121 ((|#2| $) 52)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2557 (((-1266 $)) 74)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-412 |#1| |#2|) (-140) (-172) (-1242 |t#1|)) (T -412))
+((-2557 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1242 *3)) (-5 *2 (-1266 *1)) (-4 *1 (-412 *3 *4)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3)) (-5 *2 (-1266 *3)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-690 *4)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1242 *3)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3)) (-5 *2 (-1266 *3)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4)) (-4 *4 (-1242 *3)))) (-3007 (*1 *2) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3)) (-5 *2 (-690 *3)))) (-3347 (*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1242 *2)) (-4 *2 (-172)))) (-4253 (*1 *2 *1) (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3)) (-5 *2 (-690 *3)))))
+(-13 (-372 |t#1| |t#2|) (-10 -8 (-15 -2557 ((-1266 $))) (-15 -3216 ((-1266 |t#1|) $)) (-15 -3216 ((-690 |t#1|) (-1266 $))) (-15 -3499 ($ (-1266 |t#1|))) (-15 -3542 ((-1266 |t#1|) $)) (-15 -3542 ($ (-1266 |t#1|))) (-15 -3007 ((-690 |t#1|))) (-15 -3347 (|t#1|)) (-15 -4253 ((-690 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-372 |#1| |#2|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) 27) (((-3 (-567) "failed") $) 19)) (-1621 ((|#2| $) NIL) (((-410 (-567)) $) 24) (((-567) $) 14)) (-4101 (($ |#2|) NIL) (($ (-410 (-567))) 22) (($ (-567)) 11)))
+(((-413 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| (-567))) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|))) (-414 |#2|) (-1216)) (T -413))
+NIL
+(-10 -8 (-15 -4101 (|#1| (-567))) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|)))
+((-3417 (((-3 |#1| "failed") $) 9) (((-3 (-410 (-567)) "failed") $) 16 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 13 (|has| |#1| (-1039 (-567))))) (-1621 ((|#1| $) 8) (((-410 (-567)) $) 17 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 14 (|has| |#1| (-1039 (-567))))) (-4101 (($ |#1|) 6) (($ (-410 (-567))) 15 (|has| |#1| (-1039 (-410 (-567))))) (($ (-567)) 12 (|has| |#1| (-1039 (-567))))))
+(((-414 |#1|) (-140) (-1216)) (T -414))
+NIL
+(-13 (-1039 |t#1|) (-10 -7 (IF (|has| |t#1| (-1039 (-567))) (-6 (-1039 (-567))) |%noBranch|) (IF (|has| |t#1| (-1039 (-410 (-567)))) (-6 (-1039 (-410 (-567)))) |%noBranch|)))
+(((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 #1=(-567)) |has| |#1| (-1039 (-567))) ((-617 |#1|) . T) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 #1#) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T))
+((-3494 (((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)) 35)))
+(((-415 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3494 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|)))) (-308) (-993 |#1|) (-1242 |#2|) (-13 (-412 |#2| |#3|) (-1039 |#2|)) (-308) (-993 |#5|) (-1242 |#6|) (-13 (-412 |#6| |#7|) (-1039 |#6|))) (T -415))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308)) (-4 *6 (-993 *5)) (-4 *7 (-1242 *6)) (-4 *8 (-13 (-412 *6 *7) (-1039 *6))) (-4 *9 (-308)) (-4 *10 (-993 *9)) (-4 *11 (-1242 *10)) (-5 *2 (-416 *9 *10 *11 *12)) (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-412 *10 *11) (-1039 *10))))))
+(-10 -7 (-15 -3494 ((-416 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-416 |#1| |#2| |#3| |#4|))))
+((-2257 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3537 ((|#4| (-772) (-1266 |#4|)) 60)) (-3714 (((-112) $) NIL)) (-4067 (((-1266 |#4|) $) 17)) (-3751 ((|#2| $) 55)) (-1320 (($ $) 163)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 108)) (-1956 (($ (-1266 |#4|)) 107)) (-3339 (((-1120) $) NIL)) (-4078 ((|#1| $) 18)) (-1443 (($ $ $) NIL)) (-4272 (($ $ $) NIL)) (-4101 (((-863) $) 153)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 |#4|) $) 146)) (-1484 (($) 11 T CONST)) (-3052 (((-112) $ $) 41)) (-3168 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 139)) (* (($ $ $) 135)))
+(((-416 |#1| |#2| |#3| |#4|) (-13 (-476) (-10 -8 (-15 -1956 ($ (-1266 |#4|))) (-15 -2557 ((-1266 |#4|) $)) (-15 -3751 (|#2| $)) (-15 -4067 ((-1266 |#4|) $)) (-15 -4078 (|#1| $)) (-15 -1320 ($ $)) (-15 -3537 (|#4| (-772) (-1266 |#4|))))) (-308) (-993 |#1|) (-1242 |#2|) (-13 (-412 |#2| |#3|) (-1039 |#2|))) (T -416))
+((-1956 (*1 *1 *2) (-12 (-5 *2 (-1266 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4))) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6)))) (-2557 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-5 *2 (-1266 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4))))) (-3751 (*1 *2 *1) (-12 (-4 *4 (-1242 *2)) (-4 *2 (-993 *3)) (-5 *1 (-416 *3 *2 *4 *5)) (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1039 *2))))) (-4067 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-5 *2 (-1266 *6)) (-5 *1 (-416 *3 *4 *5 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4))))) (-4078 (*1 *2 *1) (-12 (-4 *3 (-993 *2)) (-4 *4 (-1242 *3)) (-4 *2 (-308)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3))))) (-1320 (*1 *1 *1) (-12 (-4 *2 (-308)) (-4 *3 (-993 *2)) (-4 *4 (-1242 *3)) (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3))))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1266 *2)) (-4 *5 (-308)) (-4 *6 (-993 *5)) (-4 *2 (-13 (-412 *6 *7) (-1039 *6))) (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1242 *6)))))
+(-13 (-476) (-10 -8 (-15 -1956 ($ (-1266 |#4|))) (-15 -2557 ((-1266 |#4|) $)) (-15 -3751 (|#2| $)) (-15 -4067 ((-1266 |#4|) $)) (-15 -4078 (|#1| $)) (-15 -1320 ($ $)) (-15 -3537 (|#4| (-772) (-1266 |#4|)))))
+((-2257 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-3751 ((|#2| $) 71)) (-3512 (($ (-1266 |#4|)) 27) (($ (-416 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1039 |#2|)))) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 37)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 |#4|) $) 28)) (-1484 (($) 25 T CONST)) (-3052 (((-112) $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ $ $) 82)))
+(((-417 |#1| |#2| |#3| |#4| |#5|) (-13 (-727) (-10 -8 (-15 -2557 ((-1266 |#4|) $)) (-15 -3751 (|#2| $)) (-15 -3512 ($ (-1266 |#4|))) (IF (|has| |#4| (-1039 |#2|)) (-15 -3512 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-308) (-993 |#1|) (-1242 |#2|) (-412 |#2| |#3|) (-1266 |#4|)) (T -417))
+((-2557 (*1 *2 *1) (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-5 *2 (-1266 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-4 *6 (-412 *4 *5)) (-14 *7 *2))) (-3751 (*1 *2 *1) (-12 (-4 *4 (-1242 *2)) (-4 *2 (-993 *3)) (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4)) (-14 *6 (-1266 *5)))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-1266 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3512 (*1 *1 *2) (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1039 *4)) (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-4 *6 (-412 *4 *5)) (-14 *7 (-1266 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7)))))
+(-13 (-727) (-10 -8 (-15 -2557 ((-1266 |#4|) $)) (-15 -3751 (|#2| $)) (-15 -3512 ($ (-1266 |#4|))) (IF (|has| |#4| (-1039 |#2|)) (-15 -3512 ($ (-416 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3494 ((|#3| (-1 |#4| |#2|) |#1|) 32)))
+(((-418 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#3| (-1 |#4| |#2|) |#1|))) (-420 |#2|) (-172) (-420 |#4|) (-172)) (T -418))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5)))))
+(-10 -7 (-15 -3494 (|#3| (-1 |#4| |#2|) |#1|)))
+((-4135 (((-3 $ "failed")) 99)) (-1502 (((-1266 (-690 |#2|)) (-1266 $)) NIL) (((-1266 (-690 |#2|))) 104)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) 97)) (-4040 (((-3 $ "failed")) 96)) (-1743 (((-690 |#2|) (-1266 $)) NIL) (((-690 |#2|)) 115)) (-4380 (((-690 |#2|) $ (-1266 $)) NIL) (((-690 |#2|) $) 123)) (-1400 (((-1172 (-953 |#2|))) 65)) (-2152 ((|#2| (-1266 $)) NIL) ((|#2|) 119)) (-3499 (($ (-1266 |#2|) (-1266 $)) NIL) (($ (-1266 |#2|)) 125)) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) 95)) (-2743 (((-3 $ "failed")) 87)) (-2719 (((-690 |#2|) (-1266 $)) NIL) (((-690 |#2|)) 113)) (-3322 (((-690 |#2|) $ (-1266 $)) NIL) (((-690 |#2|) $) 121)) (-2778 (((-1172 (-953 |#2|))) 64)) (-3385 ((|#2| (-1266 $)) NIL) ((|#2|) 117)) (-3216 (((-1266 |#2|) $ (-1266 $)) NIL) (((-690 |#2|) (-1266 $) (-1266 $)) NIL) (((-1266 |#2|) $) 124) (((-690 |#2|) (-1266 $)) 133)) (-3542 (((-1266 |#2|) $) 109) (($ (-1266 |#2|)) 111)) (-2539 (((-645 (-953 |#2|)) (-1266 $)) NIL) (((-645 (-953 |#2|))) 107)) (-1992 (($ (-690 |#2|) $) 103)))
+(((-419 |#1| |#2|) (-10 -8 (-15 -1992 (|#1| (-690 |#2|) |#1|)) (-15 -1400 ((-1172 (-953 |#2|)))) (-15 -2778 ((-1172 (-953 |#2|)))) (-15 -4380 ((-690 |#2|) |#1|)) (-15 -3322 ((-690 |#2|) |#1|)) (-15 -1743 ((-690 |#2|))) (-15 -2719 ((-690 |#2|))) (-15 -2152 (|#2|)) (-15 -3385 (|#2|)) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -3499 (|#1| (-1266 |#2|))) (-15 -2539 ((-645 (-953 |#2|)))) (-15 -1502 ((-1266 (-690 |#2|)))) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -4135 ((-3 |#1| "failed"))) (-15 -4040 ((-3 |#1| "failed"))) (-15 -2743 ((-3 |#1| "failed"))) (-15 -3817 ((-3 (-2 (|:| |particular| |#1|) (|:| -2557 (-645 |#1|))) "failed"))) (-15 -2546 ((-3 (-2 (|:| |particular| |#1|) (|:| -2557 (-645 |#1|))) "failed"))) (-15 -1743 ((-690 |#2|) (-1266 |#1|))) (-15 -2719 ((-690 |#2|) (-1266 |#1|))) (-15 -2152 (|#2| (-1266 |#1|))) (-15 -3385 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -4380 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -3322 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -1502 ((-1266 (-690 |#2|)) (-1266 |#1|))) (-15 -2539 ((-645 (-953 |#2|)) (-1266 |#1|)))) (-420 |#2|) (-172)) (T -419))
+((-1502 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1266 (-690 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2539 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-645 (-953 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-3385 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-2152 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2)))) (-2719 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1743 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-2778 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1172 (-953 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))) (-1400 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1172 (-953 *4))) (-5 *1 (-419 *3 *4)) (-4 *3 (-420 *4)))))
+(-10 -8 (-15 -1992 (|#1| (-690 |#2|) |#1|)) (-15 -1400 ((-1172 (-953 |#2|)))) (-15 -2778 ((-1172 (-953 |#2|)))) (-15 -4380 ((-690 |#2|) |#1|)) (-15 -3322 ((-690 |#2|) |#1|)) (-15 -1743 ((-690 |#2|))) (-15 -2719 ((-690 |#2|))) (-15 -2152 (|#2|)) (-15 -3385 (|#2|)) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -3499 (|#1| (-1266 |#2|))) (-15 -2539 ((-645 (-953 |#2|)))) (-15 -1502 ((-1266 (-690 |#2|)))) (-15 -3216 ((-690 |#2|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1|)) (-15 -4135 ((-3 |#1| "failed"))) (-15 -4040 ((-3 |#1| "failed"))) (-15 -2743 ((-3 |#1| "failed"))) (-15 -3817 ((-3 (-2 (|:| |particular| |#1|) (|:| -2557 (-645 |#1|))) "failed"))) (-15 -2546 ((-3 (-2 (|:| |particular| |#1|) (|:| -2557 (-645 |#1|))) "failed"))) (-15 -1743 ((-690 |#2|) (-1266 |#1|))) (-15 -2719 ((-690 |#2|) (-1266 |#1|))) (-15 -2152 (|#2| (-1266 |#1|))) (-15 -3385 (|#2| (-1266 |#1|))) (-15 -3499 (|#1| (-1266 |#2|) (-1266 |#1|))) (-15 -3216 ((-690 |#2|) (-1266 |#1|) (-1266 |#1|))) (-15 -3216 ((-1266 |#2|) |#1| (-1266 |#1|))) (-15 -4380 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -3322 ((-690 |#2|) |#1| (-1266 |#1|))) (-15 -1502 ((-1266 (-690 |#2|)) (-1266 |#1|))) (-15 -2539 ((-645 (-953 |#2|)) (-1266 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4135 (((-3 $ "failed")) 42 (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) 20)) (-1502 (((-1266 (-690 |#1|)) (-1266 $)) 83) (((-1266 (-690 |#1|))) 105)) (-3429 (((-1266 $)) 86)) (-4061 (($) 18 T CONST)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) 45 (|has| |#1| (-559)))) (-4040 (((-3 $ "failed")) 43 (|has| |#1| (-559)))) (-1743 (((-690 |#1|) (-1266 $)) 70) (((-690 |#1|)) 97)) (-4042 ((|#1| $) 79)) (-4380 (((-690 |#1|) $ (-1266 $)) 81) (((-690 |#1|) $) 95)) (-3038 (((-3 $ "failed") $) 50 (|has| |#1| (-559)))) (-1400 (((-1172 (-953 |#1|))) 93 (|has| |#1| (-365)))) (-3356 (($ $ (-922)) 31)) (-3511 ((|#1| $) 77)) (-1411 (((-1172 |#1|) $) 47 (|has| |#1| (-559)))) (-2152 ((|#1| (-1266 $)) 72) ((|#1|) 99)) (-4214 (((-1172 |#1|) $) 68)) (-3920 (((-112)) 62)) (-3499 (($ (-1266 |#1|) (-1266 $)) 74) (($ (-1266 |#1|)) 103)) (-4014 (((-3 $ "failed") $) 52 (|has| |#1| (-559)))) (-2432 (((-922)) 85)) (-3831 (((-112)) 59)) (-1866 (($ $ (-922)) 38)) (-3352 (((-112)) 55)) (-1843 (((-112)) 53)) (-3443 (((-112)) 57)) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) 46 (|has| |#1| (-559)))) (-2743 (((-3 $ "failed")) 44 (|has| |#1| (-559)))) (-2719 (((-690 |#1|) (-1266 $)) 71) (((-690 |#1|)) 98)) (-1568 ((|#1| $) 80)) (-3322 (((-690 |#1|) $ (-1266 $)) 82) (((-690 |#1|) $) 96)) (-3123 (((-3 $ "failed") $) 51 (|has| |#1| (-559)))) (-2778 (((-1172 (-953 |#1|))) 94 (|has| |#1| (-365)))) (-3747 (($ $ (-922)) 32)) (-1380 ((|#1| $) 78)) (-2575 (((-1172 |#1|) $) 48 (|has| |#1| (-559)))) (-3385 ((|#1| (-1266 $)) 73) ((|#1|) 100)) (-2632 (((-1172 |#1|) $) 69)) (-2095 (((-112)) 63)) (-2451 (((-1158) $) 10)) (-3387 (((-112)) 54)) (-4064 (((-112)) 56)) (-1815 (((-112)) 58)) (-3339 (((-1120) $) 11)) (-3451 (((-112)) 61)) (-1552 ((|#1| $ (-567)) 106)) (-3216 (((-1266 |#1|) $ (-1266 $)) 76) (((-690 |#1|) (-1266 $) (-1266 $)) 75) (((-1266 |#1|) $) 108) (((-690 |#1|) (-1266 $)) 107)) (-3542 (((-1266 |#1|) $) 102) (($ (-1266 |#1|)) 101)) (-2539 (((-645 (-953 |#1|)) (-1266 $)) 84) (((-645 (-953 |#1|))) 104)) (-4272 (($ $ $) 28)) (-1911 (((-112)) 67)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-2557 (((-1266 $)) 109)) (-2411 (((-645 (-1266 |#1|))) 49 (|has| |#1| (-559)))) (-3280 (($ $ $ $) 29)) (-3854 (((-112)) 65)) (-1992 (($ (-690 |#1|) $) 92)) (-1816 (($ $ $) 27)) (-3239 (((-112)) 66)) (-3244 (((-112)) 64)) (-4307 (((-112)) 60)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-420 |#1|) (-140) (-172)) (T -420))
+((-2557 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1266 *1)) (-4 *1 (-420 *3)))) (-3216 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1266 *3)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172)) (-5 *2 (-690 *4)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-1502 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1266 (-690 *3))))) (-2539 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-953 *3))))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3542 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1266 *3)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))) (-3385 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2152 (*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))) (-2719 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-1743 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))) (-2778 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1172 (-953 *3))))) (-1400 (*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365)) (-5 *2 (-1172 (-953 *3))))) (-1992 (*1 *1 *2 *1) (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172)))))
+(-13 (-369 |t#1|) (-10 -8 (-15 -2557 ((-1266 $))) (-15 -3216 ((-1266 |t#1|) $)) (-15 -3216 ((-690 |t#1|) (-1266 $))) (-15 -1552 (|t#1| $ (-567))) (-15 -1502 ((-1266 (-690 |t#1|)))) (-15 -2539 ((-645 (-953 |t#1|)))) (-15 -3499 ($ (-1266 |t#1|))) (-15 -3542 ((-1266 |t#1|) $)) (-15 -3542 ($ (-1266 |t#1|))) (-15 -3385 (|t#1|)) (-15 -2152 (|t#1|)) (-15 -2719 ((-690 |t#1|))) (-15 -1743 ((-690 |t#1|))) (-15 -3322 ((-690 |t#1|) $)) (-15 -4380 ((-690 |t#1|) $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2778 ((-1172 (-953 |t#1|)))) (-15 -1400 ((-1172 (-953 |t#1|))))) |%noBranch|) (-15 -1992 ($ (-690 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-369 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-745 |#1|) . T) ((-762) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 60)) (-1610 (($ $) 78)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 191)) (-3602 (($ $) NIL)) (-2119 (((-112) $) 48)) (-4135 ((|#1| $) 16)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-1220)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-1220)))) (-3841 (($ |#1| (-567)) 42)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 148)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 74)) (-4014 (((-3 $ "failed") $) 164)) (-4092 (((-3 (-410 (-567)) "failed") $) 84 (|has| |#1| (-548)))) (-4379 (((-112) $) 80 (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) 91 (|has| |#1| (-548)))) (-2222 (($ |#1| (-567)) 44)) (-1665 (((-112) $) 213 (|has| |#1| (-1220)))) (-3714 (((-112) $) 62)) (-2273 (((-772) $) 51)) (-3311 (((-3 "nil" "sqfr" "irred" "prime") $ (-567)) 175)) (-4234 ((|#1| $ (-567)) 174)) (-2479 (((-567) $ (-567)) 173)) (-1989 (($ |#1| (-567)) 41)) (-3494 (($ (-1 |#1| |#1|) $) 183)) (-1838 (($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567))))) 79)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-2171 (($ |#1| (-567)) 43)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 192 (|has| |#1| (-455)))) (-2453 (($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime")) 40)) (-2807 (((-645 (-2 (|:| -2296 |#1|) (|:| -4164 (-567)))) $) 73)) (-3113 (((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $) 12)) (-2296 (((-421 $) $) NIL (|has| |#1| (-1220)))) (-2245 (((-3 $ "failed") $ $) 176)) (-4164 (((-567) $) 167)) (-1511 ((|#1| $) 75)) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 100 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) 106 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) $) NIL (|has| |#1| (-517 (-1176) $))) (($ $ (-645 (-1176)) (-645 $)) 107 (|has| |#1| (-517 (-1176) $))) (($ $ (-645 (-295 $))) 103 (|has| |#1| (-310 $))) (($ $ (-295 $)) NIL (|has| |#1| (-310 $))) (($ $ $ $) NIL (|has| |#1| (-310 $))) (($ $ (-645 $) (-645 $)) NIL (|has| |#1| (-310 $)))) (-1552 (($ $ |#1|) 92 (|has| |#1| (-287 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-287 $ $)))) (-1930 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) 182)) (-3542 (((-539) $) 39 (|has| |#1| (-615 (-539)))) (((-381) $) 113 (|has| |#1| (-1023))) (((-225) $) 119 (|has| |#1| (-1023)))) (-4101 (((-863) $) 146) (($ (-567)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567)))))) (-2686 (((-772)) 67 T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) 53 T CONST)) (-1484 (($) 52 T CONST)) (-2692 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3052 (((-112) $ $) 159)) (-3156 (($ $) 161) (($ $ $) NIL)) (-3146 (($ $ $) 180)) (** (($ $ (-922)) NIL) (($ $ (-772)) 125)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL)))
+(((-421 |#1|) (-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -1511 (|#1| $)) (-15 -4164 ((-567) $)) (-15 -1838 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -3113 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1989 ($ |#1| (-567))) (-15 -2807 ((-645 (-2 (|:| -2296 |#1|) (|:| -4164 (-567)))) $)) (-15 -2171 ($ |#1| (-567))) (-15 -2479 ((-567) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3311 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2273 ((-772) $)) (-15 -2222 ($ |#1| (-567))) (-15 -3841 ($ |#1| (-567))) (-15 -2453 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4135 (|#1| $)) (-15 -1610 ($ $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1220)) (-6 (-1220)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1176) $)) (-6 (-517 (-1176) $)) |%noBranch|))) (-559)) (T -421))
+((-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3)))) (-1511 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1838 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-567))))) (-4 *2 (-559)) (-5 *1 (-421 *2)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-1989 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -2296 *3) (|:| -4164 (-567))))) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2171 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2479 (*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3311 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *4)) (-4 *4 (-559)))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559)))) (-2222 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-3841 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-2453 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-4135 (*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-1610 (*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))) (-4092 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559)))))
+(-13 (-559) (-231 |#1|) (-38 |#1|) (-340 |#1|) (-414 |#1|) (-10 -8 (-15 -1511 (|#1| $)) (-15 -4164 ((-567) $)) (-15 -1838 ($ |#1| (-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))))) (-15 -3113 ((-645 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-567)))) $)) (-15 -1989 ($ |#1| (-567))) (-15 -2807 ((-645 (-2 (|:| -2296 |#1|) (|:| -4164 (-567)))) $)) (-15 -2171 ($ |#1| (-567))) (-15 -2479 ((-567) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3311 ((-3 "nil" "sqfr" "irred" "prime") $ (-567))) (-15 -2273 ((-772) $)) (-15 -2222 ($ |#1| (-567))) (-15 -3841 ($ |#1| (-567))) (-15 -2453 ($ |#1| (-567) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4135 (|#1| $)) (-15 -1610 ($ $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-455)) (-6 (-455)) |%noBranch|) (IF (|has| |#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |#1| (-1220)) (-6 (-1220)) |%noBranch|) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-287 $ $)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |#1| (-310 $)) (-6 (-310 $)) |%noBranch|) (IF (|has| |#1| (-517 (-1176) $)) (-6 (-517 (-1176) $)) |%noBranch|)))
+((-2442 (((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|)) 28)) (-4352 (((-421 |#1|) (-421 |#1|) (-421 |#1|)) 17)))
+(((-422 |#1|) (-10 -7 (-15 -2442 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -4352 ((-421 |#1|) (-421 |#1|) (-421 |#1|)))) (-559)) (T -422))
+((-4352 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))) (-2442 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4)) (-5 *1 (-422 *4)))))
+(-10 -7 (-15 -2442 ((-421 |#1|) (-421 |#1|) (-1 (-421 |#1|) |#1|))) (-15 -4352 ((-421 |#1|) (-421 |#1|) (-421 |#1|))))
+((-2621 ((|#2| |#2|) 183)) (-2506 (((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112)) 60)))
+(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2506 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112))) (-15 -2621 (|#2| |#2|))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|)) (-1176) |#2|) (T -423))
+((-2621 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1201) (-433 *3))) (-14 *4 (-1176)) (-14 *5 *2))) (-2506 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (|:| |%expansion| (-314 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158)))))) (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1201) (-433 *5))) (-14 *6 (-1176)) (-14 *7 *3))))
+(-10 -7 (-15 -2506 ((-3 (|:| |%expansion| (-314 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112))) (-15 -2621 (|#2| |#2|)))
+((-3494 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|))) (-1050) (-433 |#1|) (-1050) (-433 |#3|)) (T -424))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5)))))
+(-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2621 ((|#2| |#2|) 106)) (-2695 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112) (-1158)) 52)) (-2768 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112) (-1158)) 171)))
+(((-425 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2695 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112) (-1158))) (-15 -2768 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112) (-1158))) (-15 -2621 (|#2| |#2|))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|) (-10 -8 (-15 -4101 ($ |#3|)))) (-849) (-13 (-1244 |#2| |#3|) (-365) (-1201) (-10 -8 (-15 -1930 ($ $)) (-15 -2113 ($ $)))) (-984 |#4|) (-1176)) (T -425))
+((-2621 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *2 (-13 (-27) (-1201) (-433 *3) (-10 -8 (-15 -4101 ($ *4))))) (-4 *4 (-849)) (-4 *5 (-13 (-1244 *2 *4) (-365) (-1201) (-10 -8 (-15 -1930 ($ $)) (-15 -2113 ($ $))))) (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-984 *5)) (-14 *7 (-1176)))) (-2768 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1201) (-433 *6) (-10 -8 (-15 -4101 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1244 *3 *7) (-365) (-1201) (-10 -8 (-15 -1930 ($ $)) (-15 -2113 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1158)) (-4 *9 (-984 *8)) (-14 *10 (-1176)))) (-2695 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-4 *3 (-13 (-27) (-1201) (-433 *6) (-10 -8 (-15 -4101 ($ *7))))) (-4 *7 (-849)) (-4 *8 (-13 (-1244 *3 *7) (-365) (-1201) (-10 -8 (-15 -1930 ($ $)) (-15 -2113 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158)))))) (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1158)) (-4 *9 (-984 *8)) (-14 *10 (-1176)))))
+(-10 -7 (-15 -2695 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112) (-1158))) (-15 -2768 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))) |#2| (-112) (-1158))) (-15 -2621 (|#2| |#2|)))
+((-3391 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3402 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3494 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3402 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3391 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1100) (-428 |#1|) (-1100) (-428 |#3|)) (T -426))
+((-3391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1100)) (-4 *5 (-1100)) (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6)))) (-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1100)) (-4 *2 (-1100)) (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5)))))
+(-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3402 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3391 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2495 (($) 52)) (-4051 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-3217 (($ $ $) 45)) (-2901 (((-112) $ $) 34)) (-2013 (((-772)) 56)) (-3966 (($ (-645 |#2|)) 23) (($) NIL)) (-1649 (($) 67)) (-3672 (((-112) $ $) 15)) (-2056 ((|#2| $) 78)) (-1802 ((|#2| $) 76)) (-3527 (((-922) $) 71)) (-3754 (($ $ $) 41)) (-3811 (($ (-922)) 61)) (-2108 (($ $ |#2|) NIL) (($ $ $) 44)) (-3349 (((-772) (-1 (-112) |#2|) $) NIL) (((-772) |#2| $) 31)) (-4114 (($ (-645 |#2|)) 27)) (-2488 (($ $) 54)) (-4101 (((-863) $) 39)) (-3929 (((-772) $) 24)) (-2368 (($ (-645 |#2|)) 22) (($) NIL)) (-3052 (((-112) $ $) 19)))
+(((-427 |#1| |#2|) (-10 -8 (-15 -2013 ((-772))) (-15 -3811 (|#1| (-922))) (-15 -3527 ((-922) |#1|)) (-15 -1649 (|#1|)) (-15 -2056 (|#2| |#1|)) (-15 -1802 (|#2| |#1|)) (-15 -2495 (|#1|)) (-15 -2488 (|#1| |#1|)) (-15 -3929 ((-772) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3672 ((-112) |#1| |#1|)) (-15 -2368 (|#1|)) (-15 -2368 (|#1| (-645 |#2|))) (-15 -3966 (|#1|)) (-15 -3966 (|#1| (-645 |#2|))) (-15 -3754 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -2901 ((-112) |#1| |#1|)) (-15 -4051 (|#1| |#1| |#1|)) (-15 -4051 (|#1| |#1| |#2|)) (-15 -4051 (|#1| |#2| |#1|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -3349 ((-772) |#2| |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|))) (-428 |#2|) (-1100)) (T -427))
+((-2013 (*1 *2) (-12 (-4 *4 (-1100)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4)) (-4 *3 (-428 *4)))))
+(-10 -8 (-15 -2013 ((-772))) (-15 -3811 (|#1| (-922))) (-15 -3527 ((-922) |#1|)) (-15 -1649 (|#1|)) (-15 -2056 (|#2| |#1|)) (-15 -1802 (|#2| |#1|)) (-15 -2495 (|#1|)) (-15 -2488 (|#1| |#1|)) (-15 -3929 ((-772) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3672 ((-112) |#1| |#1|)) (-15 -2368 (|#1|)) (-15 -2368 (|#1| (-645 |#2|))) (-15 -3966 (|#1|)) (-15 -3966 (|#1| (-645 |#2|))) (-15 -3754 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#2|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -2901 ((-112) |#1| |#1|)) (-15 -4051 (|#1| |#1| |#1|)) (-15 -4051 (|#1| |#1| |#2|)) (-15 -4051 (|#1| |#2| |#1|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -3349 ((-772) |#2| |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)))
+((-2257 (((-112) $ $) 19)) (-2495 (($) 68 (|has| |#1| (-370)))) (-4051 (($ |#1| $) 83) (($ $ |#1|) 82) (($ $ $) 81)) (-3217 (($ $ $) 79)) (-2901 (((-112) $ $) 80)) (-1580 (((-112) $ (-772)) 8)) (-2013 (((-772)) 62 (|has| |#1| (-370)))) (-3966 (($ (-645 |#1|)) 75) (($) 74)) (-2581 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-2084 (($ $) 59 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ |#1| $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) 58 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4416)))) (-1649 (($) 65 (|has| |#1| (-370)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-3672 (((-112) $ $) 71)) (-2805 (((-112) $ (-772)) 9)) (-2056 ((|#1| $) 66 (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1802 ((|#1| $) 67 (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3527 (((-922) $) 64 (|has| |#1| (-370)))) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22)) (-3754 (($ $ $) 76)) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41)) (-3811 (($ (-922)) 63 (|has| |#1| (-370)))) (-3339 (((-1120) $) 21)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-2108 (($ $ |#1|) 78) (($ $ $) 77)) (-2069 (($) 50) (($ (-645 |#1|)) 49)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 51)) (-2488 (($ $) 69 (|has| |#1| (-370)))) (-4101 (((-863) $) 18)) (-3929 (((-772) $) 70)) (-2368 (($ (-645 |#1|)) 73) (($) 72)) (-3739 (((-112) $ $) 23)) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20)) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-428 |#1|) (-140) (-1100)) (T -428))
+((-3929 (*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1100)) (-5 *2 (-772)))) (-2488 (*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1100)) (-4 *2 (-370)))) (-2495 (*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1100)))) (-1802 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1100)) (-4 *2 (-851)))) (-2056 (*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1100)) (-4 *2 (-851)))))
+(-13 (-229 |t#1|) (-1098 |t#1|) (-10 -8 (-6 -4416) (-15 -3929 ((-772) $)) (IF (|has| |t#1| (-370)) (PROGN (-6 (-370)) (-15 -2488 ($ $)) (-15 -2495 ($))) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -1802 (|t#1| $)) (-15 -2056 (|t#1| $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-370) |has| |#1| (-370)) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1098 |#1|) . T) ((-1100) . T) ((-1216) . T))
+((-1736 (((-588 |#2|) |#2| (-1176)) 36)) (-3505 (((-588 |#2|) |#2| (-1176)) 21)) (-3074 ((|#2| |#2| (-1176)) 26)))
+(((-429 |#1| |#2|) (-10 -7 (-15 -3505 ((-588 |#2|) |#2| (-1176))) (-15 -1736 ((-588 |#2|) |#2| (-1176))) (-15 -3074 (|#2| |#2| (-1176)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-29 |#1|))) (T -429))
+((-3074 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1201) (-29 *4))))) (-1736 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1201) (-29 *5))))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3)) (-4 *3 (-13 (-1201) (-29 *5))))))
+(-10 -7 (-15 -3505 ((-588 |#2|) |#2| (-1176))) (-15 -1736 ((-588 |#2|) |#2| (-1176))) (-15 -3074 (|#2| |#2| (-1176))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-3538 (($ |#2| |#1|) 37)) (-1477 (($ |#2| |#1|) 35)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-332 |#2|)) 25)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 10 T CONST)) (-1484 (($) 16 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 36)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-430 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4403)) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) |%noBranch|) (-15 -4101 ($ |#1|)) (-15 -4101 ($ (-332 |#2|))) (-15 -3538 ($ |#2| |#1|)) (-15 -1477 ($ |#2| |#1|)))) (-13 (-172) (-38 (-410 (-567)))) (-13 (-851) (-21))) (T -430))
+((-4101 (*1 *1 *2) (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567))))) (-4 *3 (-13 (-851) (-21))))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21))) (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))))) (-3538 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))) (-1477 (*1 *1 *2 *3) (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567))))) (-4 *2 (-13 (-851) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4403)) (IF (|has| |#1| (-6 -4403)) (-6 -4403) |%noBranch|) |%noBranch|) (-15 -4101 ($ |#1|)) (-15 -4101 ($ (-332 |#2|))) (-15 -3538 ($ |#2| |#1|)) (-15 -1477 ($ |#2| |#1|))))
+((-2113 (((-3 |#2| (-645 |#2|)) |#2| (-1176)) 115)))
+(((-431 |#1| |#2|) (-10 -7 (-15 -2113 ((-3 |#2| (-645 |#2|)) |#2| (-1176)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-960) (-29 |#1|))) (T -431))
+((-2113 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3)) (-4 *3 (-13 (-1201) (-960) (-29 *5))))))
+(-10 -7 (-15 -2113 ((-3 |#2| (-645 |#2|)) |#2| (-1176))))
+((-2449 (((-645 (-1176)) $) 81)) (-2260 (((-410 (-1172 $)) $ (-613 $)) 314)) (-3099 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) 278)) (-3417 (((-3 (-613 $) "failed") $) NIL) (((-3 (-1176) "failed") $) 84) (((-3 (-567) "failed") $) NIL) (((-3 |#2| "failed") $) 274) (((-3 (-410 (-953 |#2|)) "failed") $) 364) (((-3 (-953 |#2|) "failed") $) 276) (((-3 (-410 (-567)) "failed") $) NIL)) (-1621 (((-613 $) $) NIL) (((-1176) $) 28) (((-567) $) NIL) ((|#2| $) 272) (((-410 (-953 |#2|)) $) 346) (((-953 |#2|) $) 273) (((-410 (-567)) $) NIL)) (-2236 (((-114) (-114)) 47)) (-4349 (($ $) 99)) (-2378 (((-3 (-613 $) "failed") $) 269)) (-2224 (((-645 (-613 $)) $) 270)) (-3376 (((-3 (-645 $) "failed") $) 288)) (-2063 (((-3 (-2 (|:| |val| $) (|:| -4164 (-567))) "failed") $) 295)) (-1808 (((-3 (-645 $) "failed") $) 286)) (-1729 (((-3 (-2 (|:| -3087 (-567)) (|:| |var| (-613 $))) "failed") $) 305)) (-2688 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $) 292) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-114)) 256) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-1176)) 258)) (-2567 (((-112) $) 17)) (-2583 ((|#2| $) 19)) (-3140 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) 277) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) 109) (($ $ (-1176) (-1 $ (-645 $))) NIL) (($ $ (-1176) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1176)) 62) (($ $ (-645 (-1176))) 281) (($ $) 282) (($ $ (-114) $ (-1176)) 65) (($ $ (-645 (-114)) (-645 $) (-1176)) 72) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ $))) 120) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 283) (($ $ (-1176) (-772) (-1 $ (-645 $))) 105) (($ $ (-1176) (-772) (-1 $ $)) 104)) (-1552 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) 119)) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) 279)) (-2870 (($ $) 325)) (-3542 (((-893 (-567)) $) 298) (((-893 (-381)) $) 302) (($ (-421 $)) 360) (((-539) $) NIL)) (-4101 (((-863) $) 280) (($ (-613 $)) 93) (($ (-1176)) 24) (($ |#2|) NIL) (($ (-1125 |#2| (-613 $))) NIL) (($ (-410 |#2|)) 330) (($ (-953 (-410 |#2|))) 369) (($ (-410 (-953 (-410 |#2|)))) 342) (($ (-410 (-953 |#2|))) 336) (($ $) NIL) (($ (-953 |#2|)) 218) (($ (-410 (-567))) 374) (($ (-567)) NIL)) (-2686 (((-772)) 88)) (-2214 (((-112) (-114)) 42)) (-1903 (($ (-1176) $) 31) (($ (-1176) $ $) 32) (($ (-1176) $ $ $) 33) (($ (-1176) $ $ $ $) 34) (($ (-1176) (-645 $)) 39)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#2| $) 307) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL)))
+(((-432 |#1| |#2|) (-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4101 (|#1| (-567))) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -4101 (|#1| (-953 |#2|))) (-15 -3417 ((-3 (-953 |#2|) "failed") |#1|)) (-15 -1621 ((-953 |#2|) |#1|)) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4101 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4101 (|#1| (-410 (-953 |#2|)))) (-15 -3417 ((-3 (-410 (-953 |#2|)) "failed") |#1|)) (-15 -1621 ((-410 (-953 |#2|)) |#1|)) (-15 -2260 ((-410 (-1172 |#1|)) |#1| (-613 |#1|))) (-15 -4101 (|#1| (-410 (-953 (-410 |#2|))))) (-15 -4101 (|#1| (-953 (-410 |#2|)))) (-15 -4101 (|#1| (-410 |#2|))) (-15 -2870 (|#1| |#1|)) (-15 -3542 (|#1| (-421 |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-772) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-772) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -2063 ((-3 (-2 (|:| |val| |#1|) (|:| -4164 (-567))) "failed") |#1|)) (-15 -2688 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4164 (-567))) "failed") |#1| (-1176))) (-15 -2688 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4164 (-567))) "failed") |#1| (-114))) (-15 -4349 (|#1| |#1|)) (-15 -4101 (|#1| (-1125 |#2| (-613 |#1|)))) (-15 -1729 ((-3 (-2 (|:| -3087 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -1808 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2688 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4164 (-567))) "failed") |#1|)) (-15 -3376 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1176))) (-15 -3140 (|#1| |#1| (-114) |#1| (-1176))) (-15 -3140 (|#1| |#1|)) (-15 -3140 (|#1| |#1| (-645 (-1176)))) (-15 -3140 (|#1| |#1| (-1176))) (-15 -1903 (|#1| (-1176) (-645 |#1|))) (-15 -1903 (|#1| (-1176) |#1| |#1| |#1| |#1|)) (-15 -1903 (|#1| (-1176) |#1| |#1| |#1|)) (-15 -1903 (|#1| (-1176) |#1| |#1|)) (-15 -1903 (|#1| (-1176) |#1|)) (-15 -2449 ((-645 (-1176)) |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2567 ((-112) |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -4101 (|#1| (-1176))) (-15 -3417 ((-3 (-1176) "failed") |#1|)) (-15 -1621 ((-1176) |#1|)) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| |#1|)))) (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -2224 ((-645 (-613 |#1|)) |#1|)) (-15 -2378 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3099 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3099 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3099 (|#1| |#1| (-295 |#1|))) (-15 -1552 (|#1| (-114) (-645 |#1|))) (-15 -1552 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3140 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4101 (|#1| (-613 |#1|))) (-15 -3417 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1621 ((-613 |#1|) |#1|)) (-15 -4101 ((-863) |#1|))) (-433 |#2|) (-1100)) (T -432))
+((-2236 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-1100)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-1100)) (-5 *2 (-112)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-2686 (*1 *2) (-12 (-4 *4 (-1100)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))))
+(-10 -8 (-15 * (|#1| (-922) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4101 (|#1| (-567))) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -4101 (|#1| (-953 |#2|))) (-15 -3417 ((-3 (-953 |#2|) "failed") |#1|)) (-15 -1621 ((-953 |#2|) |#1|)) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4101 (|#1| |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -4101 (|#1| (-410 (-953 |#2|)))) (-15 -3417 ((-3 (-410 (-953 |#2|)) "failed") |#1|)) (-15 -1621 ((-410 (-953 |#2|)) |#1|)) (-15 -2260 ((-410 (-1172 |#1|)) |#1| (-613 |#1|))) (-15 -4101 (|#1| (-410 (-953 (-410 |#2|))))) (-15 -4101 (|#1| (-953 (-410 |#2|)))) (-15 -4101 (|#1| (-410 |#2|))) (-15 -2870 (|#1| |#1|)) (-15 -3542 (|#1| (-421 |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-772) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-772) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-772)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-772)) (-645 (-1 |#1| |#1|)))) (-15 -2063 ((-3 (-2 (|:| |val| |#1|) (|:| -4164 (-567))) "failed") |#1|)) (-15 -2688 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4164 (-567))) "failed") |#1| (-1176))) (-15 -2688 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4164 (-567))) "failed") |#1| (-114))) (-15 -4349 (|#1| |#1|)) (-15 -4101 (|#1| (-1125 |#2| (-613 |#1|)))) (-15 -1729 ((-3 (-2 (|:| -3087 (-567)) (|:| |var| (-613 |#1|))) "failed") |#1|)) (-15 -1808 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2688 ((-3 (-2 (|:| |var| (-613 |#1|)) (|:| -4164 (-567))) "failed") |#1|)) (-15 -3376 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 |#1|) (-1176))) (-15 -3140 (|#1| |#1| (-114) |#1| (-1176))) (-15 -3140 (|#1| |#1|)) (-15 -3140 (|#1| |#1| (-645 (-1176)))) (-15 -3140 (|#1| |#1| (-1176))) (-15 -1903 (|#1| (-1176) (-645 |#1|))) (-15 -1903 (|#1| (-1176) |#1| |#1| |#1| |#1|)) (-15 -1903 (|#1| (-1176) |#1| |#1| |#1|)) (-15 -1903 (|#1| (-1176) |#1| |#1|)) (-15 -1903 (|#1| (-1176) |#1|)) (-15 -2449 ((-645 (-1176)) |#1|)) (-15 -2583 (|#2| |#1|)) (-15 -2567 ((-112) |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -4101 (|#1| (-1176))) (-15 -3417 ((-3 (-1176) "failed") |#1|)) (-15 -1621 ((-1176) |#1|)) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-114) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-114)) (-645 (-1 |#1| |#1|)))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| |#1|))) (-15 -3140 (|#1| |#1| (-1176) (-1 |#1| (-645 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| (-645 |#1|))))) (-15 -3140 (|#1| |#1| (-645 (-1176)) (-645 (-1 |#1| |#1|)))) (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -2224 ((-645 (-613 |#1|)) |#1|)) (-15 -2378 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -3099 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3099 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3099 (|#1| |#1| (-295 |#1|))) (-15 -1552 (|#1| (-114) (-645 |#1|))) (-15 -1552 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1| |#1|)) (-15 -1552 (|#1| (-114) |#1|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3140 (|#1| |#1| (-645 (-613 |#1|)) (-645 |#1|))) (-15 -3140 (|#1| |#1| (-613 |#1|) |#1|)) (-15 -4101 (|#1| (-613 |#1|))) (-15 -3417 ((-3 (-613 |#1|) "failed") |#1|)) (-15 -1621 ((-613 |#1|) |#1|)) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 116 (|has| |#1| (-25)))) (-2449 (((-645 (-1176)) $) 203)) (-2260 (((-410 (-1172 $)) $ (-613 $)) 171 (|has| |#1| (-559)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 143 (|has| |#1| (-559)))) (-3602 (($ $) 144 (|has| |#1| (-559)))) (-2119 (((-112) $) 146 (|has| |#1| (-559)))) (-2138 (((-645 (-613 $)) $) 39)) (-4377 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-3099 (($ $ (-295 $)) 51) (($ $ (-645 (-295 $))) 50) (($ $ (-645 (-613 $)) (-645 $)) 49)) (-1396 (($ $) 163 (|has| |#1| (-559)))) (-1401 (((-421 $) $) 164 (|has| |#1| (-559)))) (-3405 (((-112) $ $) 154 (|has| |#1| (-559)))) (-4061 (($) 104 (-2909 (|has| |#1| (-1112)) (|has| |#1| (-25))) CONST)) (-3417 (((-3 (-613 $) "failed") $) 64) (((-3 (-1176) "failed") $) 216) (((-3 (-567) "failed") $) 210 (|has| |#1| (-1039 (-567)))) (((-3 |#1| "failed") $) 207) (((-3 (-410 (-953 |#1|)) "failed") $) 169 (|has| |#1| (-559))) (((-3 (-953 |#1|) "failed") $) 123 (|has| |#1| (-1050))) (((-3 (-410 (-567)) "failed") $) 98 (-2909 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-1621 (((-613 $) $) 65) (((-1176) $) 217) (((-567) $) 209 (|has| |#1| (-1039 (-567)))) ((|#1| $) 208) (((-410 (-953 |#1|)) $) 170 (|has| |#1| (-559))) (((-953 |#1|) $) 124 (|has| |#1| (-1050))) (((-410 (-567)) $) 99 (-2909 (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567))))))) (-2197 (($ $ $) 158 (|has| |#1| (-559)))) (-1920 (((-690 (-567)) (-690 $)) 137 (-1410 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 136 (-1410 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 135 (|has| |#1| (-1050))) (((-690 |#1|) (-690 $)) 134 (|has| |#1| (-1050)))) (-4014 (((-3 $ "failed") $) 106 (|has| |#1| (-1112)))) (-2210 (($ $ $) 157 (|has| |#1| (-559)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 152 (|has| |#1| (-559)))) (-1665 (((-112) $) 165 (|has| |#1| (-559)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 212 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 211 (|has| |#1| (-887 (-381))))) (-3775 (($ $) 46) (($ (-645 $)) 45)) (-1583 (((-645 (-114)) $) 38)) (-2236 (((-114) (-114)) 37)) (-3714 (((-112) $) 105 (|has| |#1| (-1112)))) (-3937 (((-112) $) 17 (|has| $ (-1039 (-567))))) (-4349 (($ $) 186 (|has| |#1| (-1050)))) (-4067 (((-1125 |#1| (-613 $)) $) 187 (|has| |#1| (-1050)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 161 (|has| |#1| (-559)))) (-3612 (((-1172 $) (-613 $)) 20 (|has| $ (-1050)))) (-3494 (($ (-1 $ $) (-613 $)) 31)) (-2378 (((-3 (-613 $) "failed") $) 41)) (-3245 (($ (-645 $)) 150 (|has| |#1| (-559))) (($ $ $) 149 (|has| |#1| (-559)))) (-2451 (((-1158) $) 10)) (-2224 (((-645 (-613 $)) $) 40)) (-4147 (($ (-114) $) 33) (($ (-114) (-645 $)) 32)) (-3376 (((-3 (-645 $) "failed") $) 192 (|has| |#1| (-1112)))) (-2063 (((-3 (-2 (|:| |val| $) (|:| -4164 (-567))) "failed") $) 183 (|has| |#1| (-1050)))) (-1808 (((-3 (-645 $) "failed") $) 190 (|has| |#1| (-25)))) (-1729 (((-3 (-2 (|:| -3087 (-567)) (|:| |var| (-613 $))) "failed") $) 189 (|has| |#1| (-25)))) (-2688 (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $) 191 (|has| |#1| (-1112))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-114)) 185 (|has| |#1| (-1050))) (((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-1176)) 184 (|has| |#1| (-1050)))) (-1527 (((-112) $ (-114)) 35) (((-112) $ (-1176)) 34)) (-2559 (($ $) 108 (-2909 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3080 (((-772) $) 42)) (-3339 (((-1120) $) 11)) (-2567 (((-112) $) 205)) (-2583 ((|#1| $) 204)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 151 (|has| |#1| (-559)))) (-3276 (($ (-645 $)) 148 (|has| |#1| (-559))) (($ $ $) 147 (|has| |#1| (-559)))) (-4151 (((-112) $ $) 30) (((-112) $ (-1176)) 29)) (-2296 (((-421 $) $) 162 (|has| |#1| (-559)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-559))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 159 (|has| |#1| (-559)))) (-2245 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 153 (|has| |#1| (-559)))) (-2143 (((-112) $) 18 (|has| $ (-1039 (-567))))) (-3140 (($ $ (-613 $) $) 62) (($ $ (-645 (-613 $)) (-645 $)) 61) (($ $ (-645 (-295 $))) 60) (($ $ (-295 $)) 59) (($ $ $ $) 58) (($ $ (-645 $) (-645 $)) 57) (($ $ (-645 (-1176)) (-645 (-1 $ $))) 28) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) 27) (($ $ (-1176) (-1 $ (-645 $))) 26) (($ $ (-1176) (-1 $ $)) 25) (($ $ (-645 (-114)) (-645 (-1 $ $))) 24) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) 23) (($ $ (-114) (-1 $ (-645 $))) 22) (($ $ (-114) (-1 $ $)) 21) (($ $ (-1176)) 197 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1176))) 196 (|has| |#1| (-615 (-539)))) (($ $) 195 (|has| |#1| (-615 (-539)))) (($ $ (-114) $ (-1176)) 194 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-114)) (-645 $) (-1176)) 193 (|has| |#1| (-615 (-539)))) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ $))) 182 (|has| |#1| (-1050))) (($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ (-645 $)))) 181 (|has| |#1| (-1050))) (($ $ (-1176) (-772) (-1 $ (-645 $))) 180 (|has| |#1| (-1050))) (($ $ (-1176) (-772) (-1 $ $)) 179 (|has| |#1| (-1050)))) (-4369 (((-772) $) 155 (|has| |#1| (-559)))) (-1552 (($ (-114) $) 56) (($ (-114) $ $) 55) (($ (-114) $ $ $) 54) (($ (-114) $ $ $ $) 53) (($ (-114) (-645 $)) 52)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 156 (|has| |#1| (-559)))) (-2468 (($ $) 44) (($ $ $) 43)) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) 128 (|has| |#1| (-1050))) (($ $ (-1176) (-772)) 127 (|has| |#1| (-1050))) (($ $ (-645 (-1176))) 126 (|has| |#1| (-1050))) (($ $ (-1176)) 125 (|has| |#1| (-1050)))) (-2870 (($ $) 176 (|has| |#1| (-559)))) (-4078 (((-1125 |#1| (-613 $)) $) 177 (|has| |#1| (-559)))) (-2713 (($ $) 19 (|has| $ (-1050)))) (-3542 (((-893 (-567)) $) 214 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 213 (|has| |#1| (-615 (-893 (-381))))) (($ (-421 $)) 178 (|has| |#1| (-559))) (((-539) $) 100 (|has| |#1| (-615 (-539))))) (-1443 (($ $ $) 111 (|has| |#1| (-476)))) (-4272 (($ $ $) 112 (|has| |#1| (-476)))) (-4101 (((-863) $) 12) (($ (-613 $)) 63) (($ (-1176)) 215) (($ |#1|) 206) (($ (-1125 |#1| (-613 $))) 188 (|has| |#1| (-1050))) (($ (-410 |#1|)) 174 (|has| |#1| (-559))) (($ (-953 (-410 |#1|))) 173 (|has| |#1| (-559))) (($ (-410 (-953 (-410 |#1|)))) 172 (|has| |#1| (-559))) (($ (-410 (-953 |#1|))) 168 (|has| |#1| (-559))) (($ $) 141 (|has| |#1| (-559))) (($ (-953 |#1|)) 122 (|has| |#1| (-1050))) (($ (-410 (-567))) 97 (-2909 (|has| |#1| (-559)) (-12 (|has| |#1| (-1039 (-567))) (|has| |#1| (-559))) (|has| |#1| (-1039 (-410 (-567)))))) (($ (-567)) 96 (-2909 (|has| |#1| (-1050)) (|has| |#1| (-1039 (-567)))))) (-4242 (((-3 $ "failed") $) 138 (|has| |#1| (-145)))) (-2686 (((-772)) 133 (|has| |#1| (-1050)) CONST)) (-4385 (($ $) 48) (($ (-645 $)) 47)) (-2214 (((-112) (-114)) 36)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 145 (|has| |#1| (-559)))) (-1903 (($ (-1176) $) 202) (($ (-1176) $ $) 201) (($ (-1176) $ $ $) 200) (($ (-1176) $ $ $ $) 199) (($ (-1176) (-645 $)) 198)) (-1468 (($) 115 (|has| |#1| (-25)) CONST)) (-1484 (($) 103 (|has| |#1| (-1112)) CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) 132 (|has| |#1| (-1050))) (($ $ (-1176) (-772)) 131 (|has| |#1| (-1050))) (($ $ (-645 (-1176))) 130 (|has| |#1| (-1050))) (($ $ (-1176)) 129 (|has| |#1| (-1050)))) (-3052 (((-112) $ $) 6)) (-3168 (($ (-1125 |#1| (-613 $)) (-1125 |#1| (-613 $))) 175 (|has| |#1| (-559))) (($ $ $) 109 (-2909 (|has| |#1| (-476)) (|has| |#1| (-559))))) (-3156 (($ $ $) 121 (|has| |#1| (-21))) (($ $) 120 (|has| |#1| (-21)))) (-3146 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-567)) 110 (-2909 (|has| |#1| (-476)) (|has| |#1| (-559)))) (($ $ (-772)) 107 (|has| |#1| (-1112))) (($ $ (-922)) 102 (|has| |#1| (-1112)))) (* (($ (-410 (-567)) $) 167 (|has| |#1| (-559))) (($ $ (-410 (-567))) 166 (|has| |#1| (-559))) (($ |#1| $) 140 (|has| |#1| (-172))) (($ $ |#1|) 139 (|has| |#1| (-172))) (($ (-567) $) 119 (|has| |#1| (-21))) (($ (-772) $) 117 (|has| |#1| (-25))) (($ (-922) $) 114 (|has| |#1| (-25))) (($ $ $) 101 (|has| |#1| (-1112)))))
+(((-433 |#1|) (-140) (-1100)) (T -433))
+((-2567 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))) (-2583 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1100)) (-5 *2 (-645 (-1176))))) (-1903 (*1 *1 *2 *1) (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100)))) (-1903 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100)))) (-1903 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100)))) (-1903 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100)))) (-1903 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1100)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100)) (-4 *3 (-615 (-539))))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1176))) (-4 *1 (-433 *3)) (-4 *3 (-1100)) (-4 *3 (-615 (-539))))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)) (-4 *2 (-615 (-539))))) (-3140 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1176)) (-4 *1 (-433 *4)) (-4 *4 (-1100)) (-4 *4 (-615 (-539))))) (-3140 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1176)) (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-615 (-539))))) (-3376 (*1 *2 *1) (|partial| -12 (-4 *3 (-1112)) (-4 *3 (-1100)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-2688 (*1 *2 *1) (|partial| -12 (-4 *3 (-1112)) (-4 *3 (-1100)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4164 (-567)))) (-4 *1 (-433 *3)))) (-1808 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1100)) (-5 *2 (-645 *1)) (-4 *1 (-433 *3)))) (-1729 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1100)) (-5 *2 (-2 (|:| -3087 (-567)) (|:| |var| (-613 *1)))) (-4 *1 (-433 *3)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1125 *3 (-613 *1))) (-4 *3 (-1050)) (-4 *3 (-1100)) (-4 *1 (-433 *3)))) (-4067 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *3 (-1100)) (-5 *2 (-1125 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-4349 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)) (-4 *2 (-1050)))) (-2688 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1050)) (-4 *4 (-1100)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4164 (-567)))) (-4 *1 (-433 *4)))) (-2688 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1176)) (-4 *4 (-1050)) (-4 *4 (-1100)) (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4164 (-567)))) (-4 *1 (-433 *4)))) (-2063 (*1 *2 *1) (|partial| -12 (-4 *3 (-1050)) (-4 *3 (-1100)) (-5 *2 (-2 (|:| |val| *1) (|:| -4164 (-567)))) (-4 *1 (-433 *3)))) (-3140 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-1050)))) (-3140 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-772))) (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-1050)))) (-3140 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-1050)))) (-3140 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-1050)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559)) (-4 *3 (-1100)))) (-4078 (*1 *2 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1100)) (-5 *2 (-1125 *3 (-613 *1))) (-4 *1 (-433 *3)))) (-2870 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)) (-4 *2 (-559)))) (-3168 (*1 *1 *2 *2) (-12 (-5 *2 (-1125 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1100)) (-4 *1 (-433 *3)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1100)) (-4 *1 (-433 *3)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-953 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1100)) (-4 *1 (-433 *3)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1100)) (-4 *1 (-433 *3)))) (-2260 (*1 *2 *1 *3) (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1100)) (-4 *4 (-559)) (-5 *2 (-410 (-1172 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1100)) (-4 *3 (-1112)))))
+(-13 (-303) (-1039 (-1176)) (-885 |t#1|) (-403 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2567 ((-112) $)) (-15 -2583 (|t#1| $)) (-15 -2449 ((-645 (-1176)) $)) (-15 -1903 ($ (-1176) $)) (-15 -1903 ($ (-1176) $ $)) (-15 -1903 ($ (-1176) $ $ $)) (-15 -1903 ($ (-1176) $ $ $ $)) (-15 -1903 ($ (-1176) (-645 $))) (IF (|has| |t#1| (-615 (-539))) (PROGN (-6 (-615 (-539))) (-15 -3140 ($ $ (-1176))) (-15 -3140 ($ $ (-645 (-1176)))) (-15 -3140 ($ $)) (-15 -3140 ($ $ (-114) $ (-1176))) (-15 -3140 ($ $ (-645 (-114)) (-645 $) (-1176)))) |%noBranch|) (IF (|has| |t#1| (-1112)) (PROGN (-6 (-727)) (-15 ** ($ $ (-772))) (-15 -3376 ((-3 (-645 $) "failed") $)) (-15 -2688 ((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-476)) (-6 (-476)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1808 ((-3 (-645 $) "failed") $)) (-15 -1729 ((-3 (-2 (|:| -3087 (-567)) (|:| |var| (-613 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1050)) (PROGN (-6 (-1050)) (-6 (-1039 (-953 |t#1|))) (-6 (-901 (-1176))) (-6 (-379 |t#1|)) (-15 -4101 ($ (-1125 |t#1| (-613 $)))) (-15 -4067 ((-1125 |t#1| (-613 $)) $)) (-15 -4349 ($ $)) (-15 -2688 ((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-114))) (-15 -2688 ((-3 (-2 (|:| |var| (-613 $)) (|:| -4164 (-567))) "failed") $ (-1176))) (-15 -2063 ((-3 (-2 (|:| |val| $) (|:| -4164 (-567))) "failed") $)) (-15 -3140 ($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ $)))) (-15 -3140 ($ $ (-645 (-1176)) (-645 (-772)) (-645 (-1 $ (-645 $))))) (-15 -3140 ($ $ (-1176) (-772) (-1 $ (-645 $)))) (-15 -3140 ($ $ (-1176) (-772) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-365)) (-6 (-1039 (-410 (-953 |t#1|)))) (-15 -3542 ($ (-421 $))) (-15 -4078 ((-1125 |t#1| (-613 $)) $)) (-15 -2870 ($ $)) (-15 -3168 ($ (-1125 |t#1| (-613 $)) (-1125 |t#1| (-613 $)))) (-15 -4101 ($ (-410 |t#1|))) (-15 -4101 ($ (-953 (-410 |t#1|)))) (-15 -4101 ($ (-410 (-953 (-410 |t#1|))))) (-15 -2260 ((-410 (-1172 $)) $ (-613 $))) (IF (|has| |t#1| (-1039 (-567))) (-6 (-1039 (-410 (-567)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-410 (-567))) |has| |#1| (-559)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-559)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-559)) ((-131) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-559))) ((-617 #1=(-410 (-953 |#1|))) |has| |#1| (-559)) ((-617 (-567)) -2909 (|has| |#1| (-1050)) (|has| |#1| (-1039 (-567))) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-617 #2=(-613 $)) . T) ((-617 #3=(-953 |#1|)) |has| |#1| (-1050)) ((-617 #4=(-1176)) . T) ((-617 |#1|) . T) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) |has| |#1| (-559)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-243) |has| |#1| (-559)) ((-291) |has| |#1| (-559)) ((-308) |has| |#1| (-559)) ((-310 $) . T) ((-303) . T) ((-365) |has| |#1| (-559)) ((-379 |#1|) |has| |#1| (-1050)) ((-403 |#1|) . T) ((-414 |#1|) . T) ((-455) |has| |#1| (-559)) ((-476) |has| |#1| (-476)) ((-517 (-613 $) $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-559)) ((-647 (-567)) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-647 |#1|) |has| |#1| (-172)) ((-647 $) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-649 #0#) |has| |#1| (-559)) ((-649 |#1|) |has| |#1| (-172)) ((-649 $) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-641 #0#) |has| |#1| (-559)) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-640 (-567)) -12 (|has| |#1| (-640 (-567))) (|has| |#1| (-1050))) ((-640 |#1|) |has| |#1| (-1050)) ((-718 #0#) |has| |#1| (-559)) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) -2909 (|has| |#1| (-1112)) (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-901 (-1176)) |has| |#1| (-1050)) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-921) |has| |#1| (-559)) ((-1039 (-410 (-567))) -2909 (|has| |#1| (-1039 (-410 (-567)))) (-12 (|has| |#1| (-559)) (|has| |#1| (-1039 (-567))))) ((-1039 #1#) |has| |#1| (-559)) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #2#) . T) ((-1039 #3#) |has| |#1| (-1050)) ((-1039 #4#) . T) ((-1039 |#1|) . T) ((-1052 #0#) |has| |#1| (-559)) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) |has| |#1| (-559)) ((-1057 #0#) |has| |#1| (-559)) ((-1057 |#1|) |has| |#1| (-172)) ((-1057 $) |has| |#1| (-559)) ((-1050) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1058) -2909 (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1112) -2909 (|has| |#1| (-1112)) (|has| |#1| (-1050)) (|has| |#1| (-559)) (|has| |#1| (-476)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1100) . T) ((-1216) . T) ((-1220) |has| |#1| (-559)))
+((-1868 ((|#2| |#2| |#2|) 31)) (-2236 (((-114) (-114)) 43)) (-2584 ((|#2| |#2|) 63)) (-3463 ((|#2| |#2|) 66)) (-1496 ((|#2| |#2|) 30)) (-2604 ((|#2| |#2| |#2|) 33)) (-1997 ((|#2| |#2| |#2|) 35)) (-2115 ((|#2| |#2| |#2|) 32)) (-2761 ((|#2| |#2| |#2|) 34)) (-2214 (((-112) (-114)) 41)) (-2460 ((|#2| |#2|) 37)) (-2623 ((|#2| |#2|) 36)) (-1771 ((|#2| |#2|) 25)) (-3589 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2846 ((|#2| |#2| |#2|) 29)))
+(((-434 |#1| |#2|) (-10 -7 (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -1771 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -3589 (|#2| |#2| |#2|)) (-15 -2846 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -2115 (|#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2|)) (-15 -2761 (|#2| |#2| |#2|)) (-15 -1997 (|#2| |#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -2584 (|#2| |#2|))) (-559) (-433 |#1|)) (T -434))
+((-2584 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3463 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2460 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2623 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1997 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2761 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2604 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2115 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1868 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2846 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3589 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-1771 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4)) (-4 *4 (-433 *3)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4)))))
+(-10 -7 (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -1771 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -3589 (|#2| |#2| |#2|)) (-15 -2846 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -1868 (|#2| |#2| |#2|)) (-15 -2115 (|#2| |#2| |#2|)) (-15 -2604 (|#2| |#2| |#2|)) (-15 -2761 (|#2| |#2| |#2|)) (-15 -1997 (|#2| |#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2460 (|#2| |#2|)) (-15 -3463 (|#2| |#2|)) (-15 -2584 (|#2| |#2|)))
+((-3896 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1172 |#2|)) (|:| |pol2| (-1172 |#2|)) (|:| |prim| (-1172 |#2|))) |#2| |#2|) 106 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1172 |#2|))) (|:| |prim| (-1172 |#2|))) (-645 |#2|)) 68)))
+(((-435 |#1| |#2|) (-10 -7 (-15 -3896 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1172 |#2|))) (|:| |prim| (-1172 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3896 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1172 |#2|)) (|:| |pol2| (-1172 |#2|)) (|:| |prim| (-1172 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-559) (-147)) (-433 |#1|)) (T -435))
+((-3896 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1172 *3)) (|:| |pol2| (-1172 *3)) (|:| |prim| (-1172 *3)))) (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1172 *5))) (|:| |prim| (-1172 *5)))) (-5 *1 (-435 *4 *5)))))
+(-10 -7 (-15 -3896 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-645 (-1172 |#2|))) (|:| |prim| (-1172 |#2|))) (-645 |#2|))) (IF (|has| |#2| (-27)) (-15 -3896 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1172 |#2|)) (|:| |pol2| (-1172 |#2|)) (|:| |prim| (-1172 |#2|))) |#2| |#2|)) |%noBranch|))
+((-3291 (((-1271)) 19)) (-1328 (((-1172 (-410 (-567))) |#2| (-613 |#2|)) 41) (((-410 (-567)) |#2|) 25)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -1328 ((-410 (-567)) |#2|)) (-15 -1328 ((-1172 (-410 (-567))) |#2| (-613 |#2|))) (-15 -3291 ((-1271)))) (-13 (-559) (-1039 (-567))) (-433 |#1|)) (T -436))
+((-3291 (*1 *2) (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1271)) (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))) (-1328 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1172 (-410 (-567)))) (-5 *1 (-436 *5 *3)))) (-1328 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 (-567))) (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4)))))
+(-10 -7 (-15 -1328 ((-410 (-567)) |#2|)) (-15 -1328 ((-1172 (-410 (-567))) |#2| (-613 |#2|))) (-15 -3291 ((-1271))))
+((-1693 (((-112) $) 32)) (-2646 (((-112) $) 34)) (-3822 (((-112) $) 35)) (-2022 (((-112) $) 38)) (-1990 (((-112) $) 33)) (-2067 (((-112) $) 37)) (-4101 (((-863) $) 20) (($ (-1158)) 31) (($ (-1176)) 26) (((-1176) $) 24) (((-1104) $) 23)) (-4055 (((-112) $) 36)) (-3052 (((-112) $ $) 17)))
+(((-437) (-13 (-614 (-863)) (-10 -8 (-15 -4101 ($ (-1158))) (-15 -4101 ($ (-1176))) (-15 -4101 ((-1176) $)) (-15 -4101 ((-1104) $)) (-15 -1693 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -3822 ((-112) $)) (-15 -2067 ((-112) $)) (-15 -2022 ((-112) $)) (-15 -4055 ((-112) $)) (-15 -2646 ((-112) $)) (-15 -3052 ((-112) $ $))))) (T -437))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-437)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-437)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-437)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-437)))) (-1693 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2646 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3052 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -4101 ($ (-1158))) (-15 -4101 ($ (-1176))) (-15 -4101 ((-1176) $)) (-15 -4101 ((-1104) $)) (-15 -1693 ((-112) $)) (-15 -1990 ((-112) $)) (-15 -3822 ((-112) $)) (-15 -2067 ((-112) $)) (-15 -2022 ((-112) $)) (-15 -4055 ((-112) $)) (-15 -2646 ((-112) $)) (-15 -3052 ((-112) $ $))))
+((-2165 (((-3 (-421 (-1172 (-410 (-567)))) "failed") |#3|) 72)) (-3706 (((-421 |#3|) |#3|) 34)) (-2343 (((-3 (-421 (-1172 (-48))) "failed") |#3|) 46 (|has| |#2| (-1039 (-48))))) (-4125 (((-3 (|:| |overq| (-1172 (-410 (-567)))) (|:| |overan| (-1172 (-48))) (|:| -3577 (-112))) |#3|) 37)))
+(((-438 |#1| |#2| |#3|) (-10 -7 (-15 -3706 ((-421 |#3|) |#3|)) (-15 -2165 ((-3 (-421 (-1172 (-410 (-567)))) "failed") |#3|)) (-15 -4125 ((-3 (|:| |overq| (-1172 (-410 (-567)))) (|:| |overan| (-1172 (-48))) (|:| -3577 (-112))) |#3|)) (IF (|has| |#2| (-1039 (-48))) (-15 -2343 ((-3 (-421 (-1172 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-559) (-1039 (-567))) (-433 |#1|) (-1242 |#2|)) (T -438))
+((-2343 (*1 *2 *3) (|partial| -12 (-4 *5 (-1039 (-48))) (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1172 (-48)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1242 *5)))) (-4125 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1172 (-410 (-567)))) (|:| |overan| (-1172 (-48))) (|:| -3577 (-112)))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1242 *5)))) (-2165 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 (-1172 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1242 *5)))) (-3706 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4)) (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1242 *5)))))
+(-10 -7 (-15 -3706 ((-421 |#3|) |#3|)) (-15 -2165 ((-3 (-421 (-1172 (-410 (-567)))) "failed") |#3|)) (-15 -4125 ((-3 (|:| |overq| (-1172 (-410 (-567)))) (|:| |overan| (-1172 (-48))) (|:| -3577 (-112))) |#3|)) (IF (|has| |#2| (-1039 (-48))) (-15 -2343 ((-3 (-421 (-1172 (-48))) "failed") |#3|)) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-2172 (((-1158) $ (-1158)) NIL)) (-2481 (($ $ (-1158)) NIL)) (-3654 (((-1158) $) NIL)) (-2662 (((-391) (-391) (-391)) 17) (((-391) (-391)) 15)) (-1367 (($ (-391)) NIL) (($ (-391) (-1158)) NIL)) (-1817 (((-391) $) NIL)) (-2451 (((-1158) $) NIL)) (-1658 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2887 (((-1271) (-1158)) 9)) (-1648 (((-1271) (-1158)) 10)) (-1481 (((-1271)) 11)) (-4101 (((-863) $) NIL)) (-4021 (($ $) 39)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-439) (-13 (-366 (-391) (-1158)) (-10 -7 (-15 -2662 ((-391) (-391) (-391))) (-15 -2662 ((-391) (-391))) (-15 -2887 ((-1271) (-1158))) (-15 -1648 ((-1271) (-1158))) (-15 -1481 ((-1271)))))) (T -439))
+((-2662 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-439)))) (-1648 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-439)))) (-1481 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-439)))))
+(-13 (-366 (-391) (-1158)) (-10 -7 (-15 -2662 ((-391) (-391) (-391))) (-15 -2662 ((-391) (-391))) (-15 -2887 ((-1271) (-1158))) (-15 -1648 ((-1271) (-1158))) (-15 -1481 ((-1271)))))
+((-2257 (((-112) $ $) NIL)) (-2830 (((-3 (|:| |fst| (-437)) (|:| -2387 "void")) $) 11)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3793 (($) 35)) (-3977 (($) 41)) (-2508 (($) 37)) (-4366 (($) 39)) (-4186 (($) 36)) (-4075 (($) 38)) (-4315 (($) 40)) (-4136 (((-112) $) 8)) (-3578 (((-645 (-953 (-567))) $) 19)) (-4114 (($ (-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-645 (-1176)) (-112)) 29) (($ (-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-645 (-953 (-567))) (-112)) 30)) (-4101 (((-863) $) 24) (($ (-437)) 32)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-440) (-13 (-1100) (-10 -8 (-15 -4101 ($ (-437))) (-15 -2830 ((-3 (|:| |fst| (-437)) (|:| -2387 "void")) $)) (-15 -3578 ((-645 (-953 (-567))) $)) (-15 -4136 ((-112) $)) (-15 -4114 ($ (-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-645 (-1176)) (-112))) (-15 -4114 ($ (-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-645 (-953 (-567))) (-112))) (-15 -3793 ($)) (-15 -4186 ($)) (-15 -2508 ($)) (-15 -3977 ($)) (-15 -4075 ($)) (-15 -4366 ($)) (-15 -4315 ($))))) (T -440))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *1 (-440)))) (-3578 (*1 *2 *1) (-12 (-5 *2 (-645 (-953 (-567)))) (-5 *1 (-440)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *3 (-645 (-1176))) (-5 *4 (-112)) (-5 *1 (-440)))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-112)) (-5 *1 (-440)))) (-3793 (*1 *1) (-5 *1 (-440))) (-4186 (*1 *1) (-5 *1 (-440))) (-2508 (*1 *1) (-5 *1 (-440))) (-3977 (*1 *1) (-5 *1 (-440))) (-4075 (*1 *1) (-5 *1 (-440))) (-4366 (*1 *1) (-5 *1 (-440))) (-4315 (*1 *1) (-5 *1 (-440))))
+(-13 (-1100) (-10 -8 (-15 -4101 ($ (-437))) (-15 -2830 ((-3 (|:| |fst| (-437)) (|:| -2387 "void")) $)) (-15 -3578 ((-645 (-953 (-567))) $)) (-15 -4136 ((-112) $)) (-15 -4114 ($ (-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-645 (-1176)) (-112))) (-15 -4114 ($ (-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-645 (-953 (-567))) (-112))) (-15 -3793 ($)) (-15 -4186 ($)) (-15 -2508 ($)) (-15 -3977 ($)) (-15 -4075 ($)) (-15 -4366 ($)) (-15 -4315 ($))))
+((-2257 (((-112) $ $) NIL)) (-1817 (((-1176) $) 8)) (-2451 (((-1158) $) 17)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 11)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 14)))
+(((-441 |#1|) (-13 (-1100) (-10 -8 (-15 -1817 ((-1176) $)))) (-1176)) (T -441))
+((-1817 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-441 *3)) (-14 *3 *2))))
+(-13 (-1100) (-10 -8 (-15 -1817 ((-1176) $))))
+((-2257 (((-112) $ $) NIL)) (-4034 (((-1118) $) 7)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 13)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 9)))
+(((-442) (-13 (-1100) (-10 -8 (-15 -4034 ((-1118) $))))) (T -442))
+((-4034 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-442)))))
+(-13 (-1100) (-10 -8 (-15 -4034 ((-1118) $))))
+((-1774 (((-1271) $) 7)) (-4101 (((-863) $) 8) (($ (-1266 (-700))) 14) (($ (-645 (-331))) 13) (($ (-331)) 12) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 11)))
(((-443) (-140)) (T -443))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-443)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331))))) (-4 *1 (-443)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1265 (-317 (-381)))) (-4 *1 (-443)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-1265 (-317 (-381)))) (-4 *1 (-443)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1265 (-317 (-566)))) (-4 *1 (-443)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-1265 (-317 (-566)))) (-4 *1 (-443)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1265 (-952 (-381)))) (-4 *1 (-443)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-1265 (-952 (-381)))) (-4 *1 (-443)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1265 (-952 (-566)))) (-4 *1 (-443)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-1265 (-952 (-566)))) (-4 *1 (-443)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1265 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-1265 (-409 (-952 (-381))))) (-4 *1 (-443)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-1265 (-409 (-952 (-566))))) (-4 *1 (-443)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-1265 (-409 (-952 (-566))))) (-4 *1 (-443)))))
-(-13 (-397) (-10 -8 (-15 -2725 ($ (-644 (-331)))) (-15 -2725 ($ (-331))) (-15 -2725 ($ (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))) (-15 -3343 ($ (-1265 (-317 (-381))))) (-15 -2023 ((-3 $ "failed") (-1265 (-317 (-381))))) (-15 -3343 ($ (-1265 (-317 (-566))))) (-15 -2023 ((-3 $ "failed") (-1265 (-317 (-566))))) (-15 -3343 ($ (-1265 (-952 (-381))))) (-15 -2023 ((-3 $ "failed") (-1265 (-952 (-381))))) (-15 -3343 ($ (-1265 (-952 (-566))))) (-15 -2023 ((-3 $ "failed") (-1265 (-952 (-566))))) (-15 -3343 ($ (-1265 (-409 (-952 (-381)))))) (-15 -2023 ((-3 $ "failed") (-1265 (-409 (-952 (-381)))))) (-15 -3343 ($ (-1265 (-409 (-952 (-566)))))) (-15 -2023 ((-3 $ "failed") (-1265 (-409 (-952 (-566))))))))
-(((-613 (-862)) . T) ((-397) . T) ((-1215) . T))
-((-2472 (((-112)) 18)) (-2819 (((-112) (-112)) 19)) (-3121 (((-112)) 14)) (-2884 (((-112) (-112)) 15)) (-2712 (((-112)) 16)) (-4071 (((-112) (-112)) 17)) (-4137 (((-921) (-921)) 22) (((-921)) 21)) (-2980 (((-771) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566))))) 52)) (-2161 (((-921) (-921)) 24) (((-921)) 23)) (-4148 (((-2 (|:| -1920 (-566)) (|:| -1502 (-644 |#1|))) |#1|) 97)) (-3068 (((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566))))))) 178)) (-3931 (((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112)) 211)) (-1385 (((-420 |#1|) |#1| (-771) (-771)) 226) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 223) (((-420 |#1|) |#1| (-644 (-771))) 225) (((-420 |#1|) |#1| (-771)) 224) (((-420 |#1|) |#1|) 222)) (-2851 (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112)) 228) (((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771)) 229) (((-3 |#1| "failed") (-921) |#1| (-644 (-771))) 231) (((-3 |#1| "failed") (-921) |#1| (-771)) 230) (((-3 |#1| "failed") (-921) |#1|) 232)) (-4018 (((-420 |#1|) |#1| (-771) (-771)) 221) (((-420 |#1|) |#1| (-644 (-771)) (-771)) 217) (((-420 |#1|) |#1| (-644 (-771))) 219) (((-420 |#1|) |#1| (-771)) 218) (((-420 |#1|) |#1|) 216)) (-3228 (((-112) |#1|) 44)) (-3089 (((-737 (-771)) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566))))) 102)) (-4180 (((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)) 215)))
-(((-444 |#1|) (-10 -7 (-15 -3068 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))))) (-15 -3089 ((-737 (-771)) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))))) (-15 -2161 ((-921))) (-15 -2161 ((-921) (-921))) (-15 -4137 ((-921))) (-15 -4137 ((-921) (-921))) (-15 -2980 ((-771) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))))) (-15 -4148 ((-2 (|:| -1920 (-566)) (|:| -1502 (-644 |#1|))) |#1|)) (-15 -2472 ((-112))) (-15 -2819 ((-112) (-112))) (-15 -3121 ((-112))) (-15 -2884 ((-112) (-112))) (-15 -3228 ((-112) |#1|)) (-15 -2712 ((-112))) (-15 -4071 ((-112) (-112))) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4018 ((-420 |#1|) |#1| (-771))) (-15 -4018 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -4018 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -4018 ((-420 |#1|) |#1| (-771) (-771))) (-15 -1385 ((-420 |#1|) |#1|)) (-15 -1385 ((-420 |#1|) |#1| (-771))) (-15 -1385 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -1385 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -1385 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1|)) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -3931 ((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112))) (-15 -4180 ((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112) (-1101 (-771)) (-771)))) (-1241 (-566))) (T -444))
-((-4180 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566))))))) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2851 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1241 (-566))))) (-2851 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1241 (-566))))) (-2851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2)) (-4 *2 (-1241 (-566))))) (-2851 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2)) (-4 *2 (-1241 (-566))))) (-2851 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2)) (-4 *2 (-1241 (-566))))) (-1385 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-1385 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-1385 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-1385 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-1385 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4018 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4018 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2712 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-3228 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2884 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-3121 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2819 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2472 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4148 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1920 (-566)) (|:| -1502 (-644 *3)))) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4018 *4) (|:| -3838 (-566))))) (-4 *4 (-1241 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-4137 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2161 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-2161 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4018 *4) (|:| -3838 (-566))))) (-4 *4 (-1241 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| *4) (|:| -1737 (-566))))))) (-4 *4 (-1241 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4)))))
-(-10 -7 (-15 -3068 ((-420 |#1|) (-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))))) (-15 -3089 ((-737 (-771)) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))))) (-15 -2161 ((-921))) (-15 -2161 ((-921) (-921))) (-15 -4137 ((-921))) (-15 -4137 ((-921) (-921))) (-15 -2980 ((-771) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))))) (-15 -4148 ((-2 (|:| -1920 (-566)) (|:| -1502 (-644 |#1|))) |#1|)) (-15 -2472 ((-112))) (-15 -2819 ((-112) (-112))) (-15 -3121 ((-112))) (-15 -2884 ((-112) (-112))) (-15 -3228 ((-112) |#1|)) (-15 -2712 ((-112))) (-15 -4071 ((-112) (-112))) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4018 ((-420 |#1|) |#1| (-771))) (-15 -4018 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -4018 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -4018 ((-420 |#1|) |#1| (-771) (-771))) (-15 -1385 ((-420 |#1|) |#1|)) (-15 -1385 ((-420 |#1|) |#1| (-771))) (-15 -1385 ((-420 |#1|) |#1| (-644 (-771)))) (-15 -1385 ((-420 |#1|) |#1| (-644 (-771)) (-771))) (-15 -1385 ((-420 |#1|) |#1| (-771) (-771))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1|)) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-771))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771))) (-15 -2851 ((-3 |#1| "failed") (-921) |#1| (-644 (-771)) (-771) (-112))) (-15 -3931 ((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112))) (-15 -4180 ((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112) (-1101 (-771)) (-771))))
-((-4236 (((-566) |#2|) 52) (((-566) |#2| (-771)) 51)) (-3454 (((-566) |#2|) 67)) (-1578 ((|#3| |#2|) 26)) (-3202 ((|#3| |#2| (-921)) 15)) (-1653 ((|#3| |#2|) 16)) (-1940 ((|#3| |#2|) 9)) (-1695 ((|#3| |#2|) 10)) (-3798 ((|#3| |#2| (-921)) 74) ((|#3| |#2|) 34)) (-3571 (((-566) |#2|) 69)))
-(((-445 |#1| |#2| |#3|) (-10 -7 (-15 -3571 ((-566) |#2|)) (-15 -3798 (|#3| |#2|)) (-15 -3798 (|#3| |#2| (-921))) (-15 -3454 ((-566) |#2|)) (-15 -4236 ((-566) |#2| (-771))) (-15 -4236 ((-566) |#2|)) (-15 -3202 (|#3| |#2| (-921))) (-15 -1578 (|#3| |#2|)) (-15 -1940 (|#3| |#2|)) (-15 -1695 (|#3| |#2|)) (-15 -1653 (|#3| |#2|))) (-1049) (-1241 |#1|) (-13 (-406) (-1038 |#1|) (-365) (-1200) (-285))) (T -445))
-((-1653 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4)))) (-1695 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4)))) (-1940 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4)))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4)))) (-3202 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1200) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1241 *5)))) (-4236 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1241 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))))) (-4236 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1241 *5)) (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1200) (-285))))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1241 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))))) (-3798 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1200) (-285))) (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1241 *5)))) (-3798 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))) (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4)))) (-3571 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5)) (-4 *3 (-1241 *4)) (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))))))
-(-10 -7 (-15 -3571 ((-566) |#2|)) (-15 -3798 (|#3| |#2|)) (-15 -3798 (|#3| |#2| (-921))) (-15 -3454 ((-566) |#2|)) (-15 -4236 ((-566) |#2| (-771))) (-15 -4236 ((-566) |#2|)) (-15 -3202 (|#3| |#2| (-921))) (-15 -1578 (|#3| |#2|)) (-15 -1940 (|#3| |#2|)) (-15 -1695 (|#3| |#2|)) (-15 -1653 (|#3| |#2|)))
-((-1488 ((|#2| (-1265 |#1|)) 45)) (-2657 ((|#2| |#2| |#1|) 61)) (-1652 ((|#2| |#2| |#1|) 53)) (-1921 ((|#2| |#2|) 49)) (-3518 (((-112) |#2|) 36)) (-3984 (((-644 |#2|) (-921) (-420 |#2|)) 24)) (-2851 ((|#2| (-921) (-420 |#2|)) 28)) (-3089 (((-737 (-771)) (-420 |#2|)) 33)))
-(((-446 |#1| |#2|) (-10 -7 (-15 -3518 ((-112) |#2|)) (-15 -1488 (|#2| (-1265 |#1|))) (-15 -1921 (|#2| |#2|)) (-15 -1652 (|#2| |#2| |#1|)) (-15 -2657 (|#2| |#2| |#1|)) (-15 -3089 ((-737 (-771)) (-420 |#2|))) (-15 -2851 (|#2| (-921) (-420 |#2|))) (-15 -3984 ((-644 |#2|) (-921) (-420 |#2|)))) (-1049) (-1241 |#1|)) (T -446))
-((-3984 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1241 *5)) (-5 *1 (-446 *5 *2)) (-4 *5 (-1049)))) (-3089 (*1 *2 *3) (-12 (-5 *3 (-420 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-1049)) (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5)))) (-2657 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1241 *3)))) (-1652 (*1 *2 *2 *3) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1241 *3)))) (-1921 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1241 *3)))) (-1488 (*1 *2 *3) (-12 (-5 *3 (-1265 *4)) (-4 *4 (-1049)) (-4 *2 (-1241 *4)) (-5 *1 (-446 *4 *2)))) (-3518 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -3518 ((-112) |#2|)) (-15 -1488 (|#2| (-1265 |#1|))) (-15 -1921 (|#2| |#2|)) (-15 -1652 (|#2| |#2| |#1|)) (-15 -2657 (|#2| |#2| |#1|)) (-15 -3089 ((-737 (-771)) (-420 |#2|))) (-15 -2851 (|#2| (-921) (-420 |#2|))) (-15 -3984 ((-644 |#2|) (-921) (-420 |#2|))))
-((-2305 (((-771)) 59)) (-3580 (((-771)) 29 (|has| |#1| (-406))) (((-771) (-771)) 28 (|has| |#1| (-406)))) (-3097 (((-566) |#1|) 25 (|has| |#1| (-406)))) (-1911 (((-566) |#1|) 27 (|has| |#1| (-406)))) (-4190 (((-771)) 58) (((-771) (-771)) 57)) (-4300 ((|#1| (-771) (-566)) 37)) (-4253 (((-1270)) 61)))
-(((-447 |#1|) (-10 -7 (-15 -4300 (|#1| (-771) (-566))) (-15 -4190 ((-771) (-771))) (-15 -4190 ((-771))) (-15 -2305 ((-771))) (-15 -4253 ((-1270))) (IF (|has| |#1| (-406)) (PROGN (-15 -1911 ((-566) |#1|)) (-15 -3097 ((-566) |#1|)) (-15 -3580 ((-771) (-771))) (-15 -3580 ((-771)))) |%noBranch|)) (-1049)) (T -447))
-((-3580 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3580 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-3097 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-1911 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))) (-4253 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-2305 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-4190 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-4190 (*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))) (-4300 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049)))))
-(-10 -7 (-15 -4300 (|#1| (-771) (-566))) (-15 -4190 ((-771) (-771))) (-15 -4190 ((-771))) (-15 -2305 ((-771))) (-15 -4253 ((-1270))) (IF (|has| |#1| (-406)) (PROGN (-15 -1911 ((-566) |#1|)) (-15 -3097 ((-566) |#1|)) (-15 -3580 ((-771) (-771))) (-15 -3580 ((-771)))) |%noBranch|))
-((-2083 (((-644 (-566)) (-566)) 76)) (-1968 (((-112) (-169 (-566))) 82)) (-4018 (((-420 (-169 (-566))) (-169 (-566))) 75)))
-(((-448) (-10 -7 (-15 -4018 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -2083 ((-644 (-566)) (-566))) (-15 -1968 ((-112) (-169 (-566)))))) (T -448))
-((-1968 (*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448)))) (-2083 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566)))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448)) (-5 *3 (-169 (-566))))))
-(-10 -7 (-15 -4018 ((-420 (-169 (-566))) (-169 (-566)))) (-15 -2083 ((-644 (-566)) (-566))) (-15 -1968 ((-112) (-169 (-566)))))
-((-3022 ((|#4| |#4| (-644 |#4|)) 82)) (-1850 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 22) (((-644 |#4|) (-644 |#4|) (-1157)) 21) (((-644 |#4|) (-644 |#4|)) 13)))
-(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3022 (|#4| |#4| (-644 |#4|))) (-15 -1850 ((-644 |#4|) (-644 |#4|))) (-15 -1850 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -1850 ((-644 |#4|) (-644 |#4|) (-1157) (-1157)))) (-308) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -449))
-((-1850 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1850 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6)))) (-3022 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3022 (|#4| |#4| (-644 |#4|))) (-15 -1850 ((-644 |#4|) (-644 |#4|))) (-15 -1850 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -1850 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))))
-((-3232 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 91) (((-644 (-644 |#4|)) (-644 |#4|)) 90) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112)) 84) (((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|)) 85)) (-2000 (((-644 (-644 |#4|)) (-644 |#4|) (-112)) 55) (((-644 (-644 |#4|)) (-644 |#4|)) 77)))
-(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2000 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2000 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|) (-112)))) (-13 (-308) (-147)) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -450))
-((-3232 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3232 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3232 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-3232 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2000 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8))) (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))) (-2000 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7)))))
-(-10 -7 (-15 -2000 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -2000 ((-644 (-644 |#4|)) (-644 |#4|) (-112))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|))) (-15 -3232 ((-644 (-644 |#4|)) (-644 |#4|) (-112))))
-((-2202 (((-771) |#4|) 12)) (-2326 (((-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|)))) 39)) (-3888 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-1980 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-2048 ((|#4| |#4| (-644 |#4|)) 56)) (-3924 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|)) 98)) (-1813 (((-1270) |#4|) 61)) (-1705 (((-1270) (-644 |#4|)) 71)) (-2272 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566)) 68)) (-3956 (((-1270) (-566)) 113)) (-3345 (((-644 |#4|) (-644 |#4|)) 105)) (-1995 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|)) |#4| (-771)) 31)) (-3701 (((-566) |#4|) 110)) (-1417 ((|#4| |#4|) 37)) (-3176 (((-644 |#4|) (-644 |#4|) (-566) (-566)) 76)) (-2478 (((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566)) 126)) (-3082 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-1584 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-1725 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-3387 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-3887 (((-112) |#2| |#2|) 77)) (-4033 (((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-4208 (((-112) |#2| |#2| |#2| |#2|) 82)) (-3378 ((|#4| |#4| (-644 |#4|)) 99)))
-(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3378 (|#4| |#4| (-644 |#4|))) (-15 -2048 (|#4| |#4| (-644 |#4|))) (-15 -3176 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -1584 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3887 ((-112) |#2| |#2|)) (-15 -4208 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4033 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3387 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1725 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3924 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -1417 (|#4| |#4|)) (-15 -2326 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|))))) (-15 -1980 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3888 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3345 ((-644 |#4|) (-644 |#4|))) (-15 -3701 ((-566) |#4|)) (-15 -1813 ((-1270) |#4|)) (-15 -2272 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -2478 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -1705 ((-1270) (-644 |#4|))) (-15 -3956 ((-1270) (-566))) (-15 -3082 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1995 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|)) |#4| (-771))) (-15 -2202 ((-771) |#4|))) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -451))
-((-2202 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-1995 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -4144 *4))) (-5 *5 (-771)) (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-451 *6 *7 *8 *4)))) (-3082 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1270)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1270)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2478 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-2272 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *4)))) (-1813 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1270)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-3701 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566)) (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-3888 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2)) (-4 *4 (-454)) (-4 *6 (-850)))) (-2326 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 *3)))) (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3)))) (-1417 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-451 *5 *6 *7 *3)))) (-1725 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *4 *3 *5 *6)))) (-3387 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *3)))) (-4208 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-3887 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))) (-1584 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))) (-3176 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *7)))) (-2048 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2)))) (-3378 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3378 (|#4| |#4| (-644 |#4|))) (-15 -2048 (|#4| |#4| (-644 |#4|))) (-15 -3176 ((-644 |#4|) (-644 |#4|) (-566) (-566))) (-15 -1584 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3887 ((-112) |#2| |#2|)) (-15 -4208 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4033 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3387 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1725 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3924 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-644 |#4|))) (-15 -1417 (|#4| |#4|)) (-15 -2326 ((-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|))) |#4| (-771) (-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|))))) (-15 -1980 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3888 ((-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-644 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3345 ((-644 |#4|) (-644 |#4|))) (-15 -3701 ((-566) |#4|)) (-15 -1813 ((-1270) |#4|)) (-15 -2272 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566))) (-15 -2478 ((-566) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-566) (-566) (-566) (-566))) (-15 -1705 ((-1270) (-644 |#4|))) (-15 -3956 ((-1270) (-566))) (-15 -3082 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1995 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-771)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-771)) (|:| -4144 |#4|)) |#4| (-771))) (-15 -2202 ((-771) |#4|)))
-((-3551 ((|#4| |#4| (-644 |#4|)) 20 (|has| |#1| (-365)))) (-4371 (((-644 |#4|) (-644 |#4|) (-1157) (-1157)) 46) (((-644 |#4|) (-644 |#4|) (-1157)) 45) (((-644 |#4|) (-644 |#4|)) 34)))
-(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4371 ((-644 |#4|) (-644 |#4|))) (-15 -4371 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -4371 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -3551 (|#4| |#4| (-644 |#4|))) |%noBranch|)) (-454) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -452))
-((-3551 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *2)))) (-4371 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4371 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4371 ((-644 |#4|) (-644 |#4|))) (-15 -4371 ((-644 |#4|) (-644 |#4|) (-1157))) (-15 -4371 ((-644 |#4|) (-644 |#4|) (-1157) (-1157))) (IF (|has| |#1| (-365)) (-15 -3551 (|#4| |#4| (-644 |#4|))) |%noBranch|))
-((-1853 (($ $ $) 14) (($ (-644 $)) 21)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 46)) (-1885 (($ $ $) NIL) (($ (-644 $)) 22)))
-(((-453 |#1|) (-10 -8 (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1853 (|#1| (-644 |#1|))) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1885 (|#1| (-644 |#1|))) (-15 -1885 (|#1| |#1| |#1|))) (-454)) (T -453))
-NIL
-(-10 -8 (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -1853 (|#1| (-644 |#1|))) (-15 -1853 (|#1| |#1| |#1|)) (-15 -1885 (|#1| (-644 |#1|))) (-15 -1885 (|#1| |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-3967 (((-3 $ "failed") $ $) 48)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-454) (-140)) (T -454))
-((-1885 (*1 *1 *1 *1) (-4 *1 (-454))) (-1885 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-1853 (*1 *1 *1 *1) (-4 *1 (-454))) (-1853 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454)))) (-4344 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454)))))
-(-13 (-558) (-10 -8 (-15 -1885 ($ $ $)) (-15 -1885 ($ (-644 $))) (-15 -1853 ($ $ $)) (-15 -1853 ($ (-644 $))) (-15 -4344 ((-1171 $) (-1171 $) (-1171 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4082 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-3677 (((-1265 (-689 (-409 (-952 |#1|)))) (-1265 $)) NIL) (((-1265 (-689 (-409 (-952 |#1|))))) NIL)) (-3470 (((-1265 $)) NIL)) (-2633 (($) NIL T CONST)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL)) (-3748 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3371 (((-689 (-409 (-952 |#1|))) (-1265 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-4383 (((-409 (-952 |#1|)) $) NIL)) (-3793 (((-689 (-409 (-952 |#1|))) $ (-1265 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-2784 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3668 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 94 (|has| |#1| (-558)))) (-3801 (($ $ (-921)) NIL)) (-2701 (((-409 (-952 |#1|)) $) NIL)) (-3035 (((-1171 (-409 (-952 |#1|))) $) 92 (|has| (-409 (-952 |#1|)) (-558)))) (-2822 (((-409 (-952 |#1|)) (-1265 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-3770 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-1685 (((-112)) NIL)) (-1452 (($ (-1265 (-409 (-952 |#1|))) (-1265 $)) 118) (($ (-1265 (-409 (-952 |#1|)))) NIL)) (-2313 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-4153 (((-921)) NIL)) (-2745 (((-112)) NIL)) (-2284 (($ $ (-921)) NIL)) (-1375 (((-112)) NIL)) (-2282 (((-112)) NIL)) (-3164 (((-112)) NIL)) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL)) (-3531 (((-3 $ "failed")) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-4306 (((-689 (-409 (-952 |#1|))) (-1265 $)) NIL) (((-689 (-409 (-952 |#1|)))) NIL)) (-2567 (((-409 (-952 |#1|)) $) NIL)) (-1431 (((-689 (-409 (-952 |#1|))) $ (-1265 $)) NIL) (((-689 (-409 (-952 |#1|))) $) NIL)) (-4220 (((-3 $ "failed") $) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-3223 (((-1171 (-952 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-365))) (((-1171 (-409 (-952 |#1|)))) 93 (|has| |#1| (-558)))) (-3510 (($ $ (-921)) NIL)) (-1625 (((-409 (-952 |#1|)) $) NIL)) (-3012 (((-1171 (-409 (-952 |#1|))) $) 87 (|has| (-409 (-952 |#1|)) (-558)))) (-3158 (((-409 (-952 |#1|)) (-1265 $)) NIL) (((-409 (-952 |#1|))) NIL)) (-2234 (((-1171 (-409 (-952 |#1|))) $) NIL)) (-2187 (((-112)) NIL)) (-1390 (((-1157) $) NIL)) (-3804 (((-112)) NIL)) (-2318 (((-112)) NIL)) (-1981 (((-112)) NIL)) (-1944 (((-1119) $) NIL)) (-3543 (((-409 (-952 |#1|)) $ $) 78 (|has| |#1| (-558)))) (-1939 (((-409 (-952 |#1|)) $) 104 (|has| |#1| (-558)))) (-2090 (((-409 (-952 |#1|)) $) 108 (|has| |#1| (-558)))) (-4265 (((-1171 (-409 (-952 |#1|))) $) 98 (|has| |#1| (-558)))) (-1410 (((-409 (-952 |#1|))) 79 (|has| |#1| (-558)))) (-3732 (((-409 (-952 |#1|)) $ $) 71 (|has| |#1| (-558)))) (-1820 (((-409 (-952 |#1|)) $) 103 (|has| |#1| (-558)))) (-2832 (((-409 (-952 |#1|)) $) 107 (|has| |#1| (-558)))) (-4045 (((-1171 (-409 (-952 |#1|))) $) 97 (|has| |#1| (-558)))) (-3871 (((-409 (-952 |#1|))) 75 (|has| |#1| (-558)))) (-4006 (($) 114) (($ (-1175)) 122) (($ (-1265 (-1175))) 121) (($ (-1265 $)) 109) (($ (-1175) (-1265 $)) 120) (($ (-1265 (-1175)) (-1265 $)) 119)) (-2073 (((-112)) NIL)) (-3282 (((-409 (-952 |#1|)) $ (-566)) NIL)) (-2803 (((-1265 (-409 (-952 |#1|))) $ (-1265 $)) 111) (((-689 (-409 (-952 |#1|))) (-1265 $) (-1265 $)) NIL) (((-1265 (-409 (-952 |#1|))) $) 45) (((-689 (-409 (-952 |#1|))) (-1265 $)) NIL)) (-2150 (((-1265 (-409 (-952 |#1|))) $) NIL) (($ (-1265 (-409 (-952 |#1|)))) 42)) (-3643 (((-644 (-952 (-409 (-952 |#1|)))) (-1265 $)) NIL) (((-644 (-952 (-409 (-952 |#1|))))) NIL) (((-644 (-952 |#1|)) (-1265 $)) 112 (|has| |#1| (-558))) (((-644 (-952 |#1|))) 113 (|has| |#1| (-558)))) (-1726 (($ $ $) NIL)) (-3716 (((-112)) NIL)) (-2725 (((-862) $) NIL) (($ (-1265 (-409 (-952 |#1|)))) NIL)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 67)) (-2847 (((-644 (-1265 (-409 (-952 |#1|))))) NIL (|has| (-409 (-952 |#1|)) (-558)))) (-2481 (($ $ $ $) NIL)) (-3086 (((-112)) NIL)) (-3709 (($ (-689 (-409 (-952 |#1|))) $) NIL)) (-2586 (($ $ $) NIL)) (-2477 (((-112)) NIL)) (-3272 (((-112)) NIL)) (-3137 (((-112)) NIL)) (-3200 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) 110)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 63) (($ $ (-409 (-952 |#1|))) NIL) (($ (-409 (-952 |#1|)) $) NIL) (($ (-1141 |#2| (-409 (-952 |#1|))) $) NIL)))
-(((-455 |#1| |#2| |#3| |#4|) (-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -2725 ($ (-1265 (-409 (-952 |#1|))))) (-15 -2861 ((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed"))) (-15 -3522 ((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed"))) (-15 -4006 ($)) (-15 -4006 ($ (-1175))) (-15 -4006 ($ (-1265 (-1175)))) (-15 -4006 ($ (-1265 $))) (-15 -4006 ($ (-1175) (-1265 $))) (-15 -4006 ($ (-1265 (-1175)) (-1265 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -3223 ((-1171 (-409 (-952 |#1|))))) (-15 -4045 ((-1171 (-409 (-952 |#1|))) $)) (-15 -1820 ((-409 (-952 |#1|)) $)) (-15 -2832 ((-409 (-952 |#1|)) $)) (-15 -3668 ((-1171 (-409 (-952 |#1|))))) (-15 -4265 ((-1171 (-409 (-952 |#1|))) $)) (-15 -1939 ((-409 (-952 |#1|)) $)) (-15 -2090 ((-409 (-952 |#1|)) $)) (-15 -3732 ((-409 (-952 |#1|)) $ $)) (-15 -3871 ((-409 (-952 |#1|)))) (-15 -3543 ((-409 (-952 |#1|)) $ $)) (-15 -1410 ((-409 (-952 |#1|)))) (-15 -3643 ((-644 (-952 |#1|)) (-1265 $))) (-15 -3643 ((-644 (-952 |#1|))))) |%noBranch|))) (-172) (-921) (-644 (-1175)) (-1265 (-689 |#1|))) (T -455))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1265 (-409 (-952 *3)))) (-4 *3 (-172)) (-14 *6 (-1265 (-689 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))))) (-2861 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -2227 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-3522 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-455 *3 *4 *5 *6)) (|:| -2227 (-644 (-455 *3 *4 *5 *6))))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-4006 (*1 *1) (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921)) (-14 *4 (-644 (-1175))) (-14 *5 (-1265 (-689 *2))))) (-4006 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1265 (-689 *3))))) (-4006 (*1 *1 *2) (-12 (-5 *2 (-1265 (-1175))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-4006 (*1 *1 *2) (-12 (-5 *2 (-1265 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-4006 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 *2)) (-14 *7 (-1265 (-689 *4))))) (-4006 (*1 *1 *2 *3) (-12 (-5 *2 (-1265 (-1175))) (-5 *3 (-1265 (-455 *4 *5 *6 *7))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1265 (-689 *4))))) (-3223 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-2832 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-3668 (*1 *2) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-4265 (*1 *2 *1) (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-2090 (*1 *2 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-3732 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-3871 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-3543 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-1410 (*1 *2) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-1265 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4))) (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172)) (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1265 (-689 *4))))) (-3643 (*1 *2) (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(-13 (-419 (-409 (-952 |#1|))) (-648 (-1141 |#2| (-409 (-952 |#1|)))) (-10 -8 (-15 -2725 ($ (-1265 (-409 (-952 |#1|))))) (-15 -2861 ((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed"))) (-15 -3522 ((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed"))) (-15 -4006 ($)) (-15 -4006 ($ (-1175))) (-15 -4006 ($ (-1265 (-1175)))) (-15 -4006 ($ (-1265 $))) (-15 -4006 ($ (-1175) (-1265 $))) (-15 -4006 ($ (-1265 (-1175)) (-1265 $))) (IF (|has| |#1| (-558)) (PROGN (-15 -3223 ((-1171 (-409 (-952 |#1|))))) (-15 -4045 ((-1171 (-409 (-952 |#1|))) $)) (-15 -1820 ((-409 (-952 |#1|)) $)) (-15 -2832 ((-409 (-952 |#1|)) $)) (-15 -3668 ((-1171 (-409 (-952 |#1|))))) (-15 -4265 ((-1171 (-409 (-952 |#1|))) $)) (-15 -1939 ((-409 (-952 |#1|)) $)) (-15 -2090 ((-409 (-952 |#1|)) $)) (-15 -3732 ((-409 (-952 |#1|)) $ $)) (-15 -3871 ((-409 (-952 |#1|)))) (-15 -3543 ((-409 (-952 |#1|)) $ $)) (-15 -1410 ((-409 (-952 |#1|)))) (-15 -3643 ((-644 (-952 |#1|)) (-1265 $))) (-15 -3643 ((-644 (-952 |#1|))))) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 18)) (-4170 (((-644 (-864 |#1|)) $) 92)) (-3983 (((-1171 $) $ (-864 |#1|)) 55) (((-1171 |#2|) $) 143)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-1780 (($ $) NIL (|has| |#2| (-558)))) (-3286 (((-112) $) NIL (|has| |#2| (-558)))) (-3915 (((-771) $) 27) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2885 (($ $) NIL (|has| |#2| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) 53) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-3343 ((|#2| $) 51) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2994 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3596 (($ $ (-644 (-566))) 98)) (-4358 (($ $) 85)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#2| (-909)))) (-2385 (($ $ |#2| |#3| $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) 68)) (-4157 (($ (-1171 |#2|) (-864 |#1|)) 148) (($ (-1171 $) (-864 |#1|)) 61)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) 71)) (-4145 (($ |#2| |#3|) 38) (($ $ (-864 |#1|) (-771)) 40) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-864 |#1|)) NIL)) (-4090 ((|#3| $) NIL) (((-771) $ (-864 |#1|)) 59) (((-644 (-771)) $ (-644 (-864 |#1|))) 66)) (-1336 (($ (-1 |#3| |#3|) $) NIL)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1742 (((-3 (-864 |#1|) "failed") $) 48)) (-4323 (($ $) NIL)) (-4334 ((|#2| $) 50)) (-1853 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1390 (((-1157) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3428 (-771))) "failed") $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) 49)) (-4307 ((|#2| $) 141)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) 154 (|has| |#2| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#2| (-909)))) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) 105) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) 111) (($ $ (-864 |#1|) $) 103) (($ $ (-644 (-864 |#1|)) (-644 $)) 129)) (-2061 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3009 (($ $ (-864 |#1|)) 62) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3838 ((|#3| $) 84) (((-771) $ (-864 |#1|)) 45) (((-644 (-771)) $ (-644 (-864 |#1|))) 65)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-4330 ((|#2| $) 150 (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2725 (((-862) $) 179) (($ (-566)) NIL) (($ |#2|) 104) (($ (-864 |#1|)) 42) (($ (-409 (-566))) NIL (-2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ |#3|) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#2| (-558)))) (-3200 (($) 22 T CONST)) (-3214 (($) 31 T CONST)) (-1316 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 136)) (** (($ $ (-921)) NIL) (($ $ (-771)) 134)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) 80) (($ $ |#2|) NIL)))
-(((-456 |#1| |#2| |#3|) (-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -3596 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049) (-238 (-3991 |#1|) (-771))) (T -456))
-((-3596 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175))) (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-238 (-3991 *3) (-771))))))
-(-13 (-949 |#2| |#3| (-864 |#1|)) (-10 -8 (-15 -3596 ($ $ (-644 (-566))))))
-((-3645 (((-112) |#1| (-644 |#2|)) 94)) (-3306 (((-3 (-1265 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|)) 103)) (-3327 (((-3 (-644 |#2|) "failed") |#2| |#1| (-1265 (-644 |#2|))) 105)) (-4270 ((|#2| |#2| |#1|) 35)) (-4021 (((-771) |#2| (-644 |#2|)) 26)))
-(((-457 |#1| |#2|) (-10 -7 (-15 -4270 (|#2| |#2| |#1|)) (-15 -4021 ((-771) |#2| (-644 |#2|))) (-15 -3306 ((-3 (-1265 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -3327 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1265 (-644 |#2|)))) (-15 -3645 ((-112) |#1| (-644 |#2|)))) (-308) (-1241 |#1|)) (T -457))
-((-3645 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-1241 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-457 *3 *5)))) (-3327 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1265 (-644 *3))) (-4 *4 (-308)) (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1241 *4)))) (-3306 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1241 *4)) (-5 *2 (-1265 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6)))) (-4021 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-308)) (-5 *2 (-771)) (-5 *1 (-457 *5 *3)))) (-4270 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1241 *3)))))
-(-10 -7 (-15 -4270 (|#2| |#2| |#1|)) (-15 -4021 ((-771) |#2| (-644 |#2|))) (-15 -3306 ((-3 (-1265 (-644 |#2|)) "failed") (-771) |#1| (-644 |#2|))) (-15 -3327 ((-3 (-644 |#2|) "failed") |#2| |#1| (-1265 (-644 |#2|)))) (-15 -3645 ((-112) |#1| (-644 |#2|))))
-((-4018 (((-420 |#5|) |#5|) 24)))
-(((-458 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4018 ((-420 |#5|) |#5|))) (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175))))) (-793) (-558) (-558) (-949 |#4| |#2| |#1|)) (T -458))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175)))))) (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558)) (-4 *3 (-949 *7 *5 *4)))))
-(-10 -7 (-15 -4018 ((-420 |#5|) |#5|)))
-((-3499 ((|#3|) 40)) (-4344 (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 36)))
-(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4344 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -3499 (|#3|))) (-793) (-850) (-909) (-949 |#3| |#1| |#2|)) (T -459))
-((-3499 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4)))) (-4344 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6)))))
-(-10 -7 (-15 -4344 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -3499 (|#3|)))
-((-4018 (((-420 (-1171 |#1|)) (-1171 |#1|)) 43)))
-(((-460 |#1|) (-10 -7 (-15 -4018 ((-420 (-1171 |#1|)) (-1171 |#1|)))) (-308)) (T -460))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4)) (-5 *3 (-1171 *4)))))
-(-10 -7 (-15 -4018 ((-420 (-1171 |#1|)) (-1171 |#1|))))
-((-4231 (((-52) |#2| (-1175) (-295 |#2|) (-1232 (-771))) 44) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-771))) 43) (((-52) |#2| (-1175) (-295 |#2|)) 36) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 29)) (-3040 (((-52) |#2| (-1175) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566))) 88) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566))) 87) (((-52) |#2| (-1175) (-295 |#2|) (-1232 (-566))) 86) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-566))) 85) (((-52) |#2| (-1175) (-295 |#2|)) 80) (((-52) (-1 |#2| (-566)) (-295 |#2|)) 79)) (-4256 (((-52) |#2| (-1175) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566))) 74) (((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566))) 72)) (-4244 (((-52) |#2| (-1175) (-295 |#2|) (-1232 (-566))) 51) (((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-566))) 50)))
-(((-461 |#1| |#2|) (-10 -7 (-15 -4231 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -4231 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -4231 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-771)))) (-15 -4231 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-771)))) (-15 -4244 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-566)))) (-15 -4244 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-566)))) (-15 -4256 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566)))) (-15 -4256 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566)))) (-15 -3040 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -3040 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -3040 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-566)))) (-15 -3040 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-566)))) (-15 -3040 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566)))) (-15 -3040 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566))))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|))) (T -461))
-((-3040 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-3040 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1232 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1200) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-3040 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1232 (-566))) (-4 *7 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-3040 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6)))) (-4256 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-409 (-566)))) (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *8))) (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *8 *3)))) (-4256 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8)) (-5 *5 (-1232 (-409 (-566)))) (-5 *6 (-409 (-566))) (-4 *8 (-13 (-27) (-1200) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *8)))) (-4244 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-4244 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1232 (-566))) (-4 *7 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-4231 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-771))) (-4 *3 (-13 (-27) (-1200) (-432 *7))) (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *7 *3)))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1232 (-771))) (-4 *7 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *7)))) (-4231 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *6 *3)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52)) (-5 *1 (-461 *5 *6)))))
-(-10 -7 (-15 -4231 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -4231 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -4231 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-771)))) (-15 -4231 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-771)))) (-15 -4244 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-566)))) (-15 -4244 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-566)))) (-15 -4256 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566)))) (-15 -4256 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566)))) (-15 -3040 ((-52) (-1 |#2| (-566)) (-295 |#2|))) (-15 -3040 ((-52) |#2| (-1175) (-295 |#2|))) (-15 -3040 ((-52) (-1 |#2| (-566)) (-295 |#2|) (-1232 (-566)))) (-15 -3040 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-566)))) (-15 -3040 ((-52) (-1 |#2| (-409 (-566))) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566)))) (-15 -3040 ((-52) |#2| (-1175) (-295 |#2|) (-1232 (-409 (-566))) (-409 (-566)))))
-((-4270 ((|#2| |#2| |#1|) 15)) (-1795 (((-644 |#2|) |#2| (-644 |#2|) |#1| (-921)) 82)) (-1655 (((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921)) 72)))
-(((-462 |#1| |#2|) (-10 -7 (-15 -1655 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -1795 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -4270 (|#2| |#2| |#1|))) (-308) (-1241 |#1|)) (T -462))
-((-4270 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1241 *3)))) (-1795 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1241 *4)) (-4 *4 (-308)) (-5 *1 (-462 *4 *3)))) (-1655 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1241 *5)) (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5))) (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3)))))
-(-10 -7 (-15 -1655 ((-2 (|:| |plist| (-644 |#2|)) (|:| |modulo| |#1|)) |#2| (-644 |#2|) |#1| (-921))) (-15 -1795 ((-644 |#2|) |#2| (-644 |#2|) |#1| (-921))) (-15 -4270 (|#2| |#2| |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 28)) (-2338 (($ |#3|) 25)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-4358 (($ $) 32)) (-1973 (($ |#2| |#4| $) 33)) (-4145 (($ |#2| (-713 |#3| |#4| |#5|)) 24)) (-4323 (((-713 |#3| |#4| |#5|) $) 15)) (-3831 ((|#3| $) 19)) (-2949 ((|#4| $) 17)) (-4334 ((|#2| $) 29)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1513 (($ |#2| |#3| |#4|) 26)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 36 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-463 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -4334 (|#2| $)) (-15 -4323 ((-713 |#3| |#4| |#5|) $)) (-15 -2949 (|#4| $)) (-15 -3831 (|#3| $)) (-15 -4358 ($ $)) (-15 -4145 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -2338 ($ |#3|)) (-15 -1513 ($ |#2| |#3| |#4|)) (-15 -1973 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-644 (-1175)) (-172) (-850) (-238 (-3991 |#1|) (-771)) (-1 (-112) (-2 (|:| -2430 |#3|) (|:| -3428 |#4|)) (-2 (|:| -2430 |#3|) (|:| -3428 |#4|))) (-949 |#2| |#4| (-864 |#1|))) (T -463))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3991 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *6)) (-2 (|:| -2430 *5) (|:| -3428 *6)))) (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-850)) (-4 *2 (-949 *4 *6 (-864 *3))))) (-4334 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3991 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2430 *4) (|:| -3428 *5)) (-2 (|:| -2430 *4) (|:| -3428 *5)))) (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *2 *5 (-864 *3))))) (-4323 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *6 (-238 (-3991 *3) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *6)) (-2 (|:| -2430 *5) (|:| -3428 *6)))) (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8)) (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3))))) (-2949 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *2)) (-2 (|:| -2430 *5) (|:| -3428 *2)))) (-4 *2 (-238 (-3991 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3))))) (-3831 (*1 *2 *1) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3991 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *5)) (-2 (|:| -2430 *2) (|:| -3428 *5)))) (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-4358 (*1 *1 *1) (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172)) (-4 *5 (-238 (-3991 *2) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2430 *4) (|:| -3428 *5)) (-2 (|:| -2430 *4) (|:| -3428 *5)))) (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850)) (-4 *7 (-949 *3 *5 (-864 *2))))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850)) (-4 *6 (-238 (-3991 *4) (-771))) (-14 *7 (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *6)) (-2 (|:| -2430 *5) (|:| -3428 *6)))) (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4))))) (-2338 (*1 *1 *2) (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172)) (-4 *5 (-238 (-3991 *3) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *5)) (-2 (|:| -2430 *2) (|:| -3428 *5)))) (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850)) (-4 *7 (-949 *4 *5 (-864 *3))))) (-1513 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172)) (-4 *4 (-238 (-3991 *5) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2430 *3) (|:| -3428 *4)) (-2 (|:| -2430 *3) (|:| -3428 *4)))) (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850)) (-4 *7 (-949 *2 *4 (-864 *5))))) (-1973 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172)) (-4 *3 (-238 (-3991 *4) (-771))) (-14 *6 (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *3)) (-2 (|:| -2430 *5) (|:| -3428 *3)))) (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850)) (-4 *7 (-949 *2 *3 (-864 *4))))))
-(-13 (-717 |#6|) (-717 |#2|) (-10 -8 (-15 -4334 (|#2| $)) (-15 -4323 ((-713 |#3| |#4| |#5|) $)) (-15 -2949 (|#4| $)) (-15 -3831 (|#3| $)) (-15 -4358 ($ $)) (-15 -4145 ($ |#2| (-713 |#3| |#4| |#5|))) (-15 -2338 ($ |#3|)) (-15 -1513 ($ |#2| |#3| |#4|)) (-15 -1973 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2517 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
-(((-464 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2517 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -2725 ($ |#4|)) (-15 -2691 (|#4| $)) (-15 -2702 (|#4| $))))) (T -464))
-((-2517 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793)) (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3)) (-5 *1 (-464 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1038 (-409 (-566))) (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))))
-(-10 -7 (-15 -2517 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-3979 (((-112) $ $) NIL)) (-4170 (((-644 |#3|) $) 41)) (-1323 (((-112) $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-558)))) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3281 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1740 (((-112) $) NIL (|has| |#1| (-558)))) (-3807 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1312 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1407 (((-112) $) NIL (|has| |#1| (-558)))) (-4185 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) 49)) (-3343 (($ (-644 |#4|)) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-1752 (($ |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4415)))) (-1523 (((-644 |#4|) $) 18 (|has| $ (-6 -4415)))) (-3779 ((|#3| $) 47)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#4|) $) 14 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-3023 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 21)) (-2054 (((-644 |#3|) $) NIL)) (-2314 (((-112) |#3| $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-1944 (((-1119) $) NIL)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 39)) (-3906 (($) 17)) (-1958 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) 16)) (-2150 (((-538) $) NIL (|has| |#4| (-614 (-538)))) (($ (-644 |#4|)) 51)) (-2738 (($ (-644 |#4|)) 13)) (-3317 (($ $ |#3|) NIL)) (-3756 (($ $ |#3|) NIL)) (-1811 (($ $ |#3|) NIL)) (-2725 (((-862) $) 38) (((-644 |#4|) $) 50)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 30)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-465 |#1| |#2| |#3| |#4|) (-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2150 ($ (-644 |#4|))) (-6 -4415) (-6 -4416))) (-1049) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -465))
-((-2150 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-465 *3 *4 *5 *6)))))
-(-13 (-976 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2150 ($ (-644 |#4|))) (-6 -4415) (-6 -4416)))
-((-3200 (($) 11)) (-3214 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-466 |#1| |#2| |#3|) (-10 -8 (-15 -3214 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3200 (|#1|))) (-467 |#2| |#3|) (-172) (-23)) (T -466))
-NIL
-(-10 -8 (-15 -3214 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3200 (|#1|)))
-((-3979 (((-112) $ $) 7)) (-2023 (((-3 |#1| "failed") $) 27)) (-3343 ((|#1| $) 28)) (-3839 (($ $ $) 24)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3838 ((|#2| $) 20)) (-2725 (((-862) $) 12) (($ |#1|) 26)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 25 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 16) (($ $ $) 14)) (-2897 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-467 |#1| |#2|) (-140) (-172) (-23)) (T -467))
-((-3214 (*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3839 (*1 *1 *1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-472 |t#1| |t#2|) (-1038 |t#1|) (-10 -8 (-15 (-3214) ($) -3854) (-15 -3839 ($ $ $))))
-(((-102) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-472 |#1| |#2|) . T) ((-1038 |#1|) . T) ((-1099) . T))
-((-4072 (((-1265 (-1265 (-566))) (-1265 (-1265 (-566))) (-921)) 29)) (-3852 (((-1265 (-1265 (-566))) (-921)) 24)))
-(((-468) (-10 -7 (-15 -4072 ((-1265 (-1265 (-566))) (-1265 (-1265 (-566))) (-921))) (-15 -3852 ((-1265 (-1265 (-566))) (-921))))) (T -468))
-((-3852 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1265 (-1265 (-566)))) (-5 *1 (-468)))) (-4072 (*1 *2 *2 *3) (-12 (-5 *2 (-1265 (-1265 (-566)))) (-5 *3 (-921)) (-5 *1 (-468)))))
-(-10 -7 (-15 -4072 ((-1265 (-1265 (-566))) (-1265 (-1265 (-566))) (-921))) (-15 -3852 ((-1265 (-1265 (-566))) (-921))))
-((-1622 (((-566) (-566)) 32) (((-566)) 24)) (-2526 (((-566) (-566)) 28) (((-566)) 20)) (-2458 (((-566) (-566)) 30) (((-566)) 22)) (-2708 (((-112) (-112)) 14) (((-112)) 12)) (-2196 (((-112) (-112)) 13) (((-112)) 11)) (-4150 (((-112) (-112)) 26) (((-112)) 17)))
-(((-469) (-10 -7 (-15 -2196 ((-112))) (-15 -2708 ((-112))) (-15 -2196 ((-112) (-112))) (-15 -2708 ((-112) (-112))) (-15 -4150 ((-112))) (-15 -2458 ((-566))) (-15 -2526 ((-566))) (-15 -1622 ((-566))) (-15 -4150 ((-112) (-112))) (-15 -2458 ((-566) (-566))) (-15 -2526 ((-566) (-566))) (-15 -1622 ((-566) (-566))))) (T -469))
-((-1622 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2526 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2458 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-4150 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-1622 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2526 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-2458 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469)))) (-4150 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-2708 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-2708 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))) (-2196 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))))
-(-10 -7 (-15 -2196 ((-112))) (-15 -2708 ((-112))) (-15 -2196 ((-112) (-112))) (-15 -2708 ((-112) (-112))) (-15 -4150 ((-112))) (-15 -2458 ((-566))) (-15 -2526 ((-566))) (-15 -1622 ((-566))) (-15 -4150 ((-112) (-112))) (-15 -2458 ((-566) (-566))) (-15 -2526 ((-566) (-566))) (-15 -1622 ((-566) (-566))))
-((-3979 (((-112) $ $) NIL)) (-3418 (((-644 (-381)) $) 34) (((-644 (-381)) $ (-644 (-381))) 146)) (-1845 (((-644 (-1093 (-381))) $) 16) (((-644 (-1093 (-381))) $ (-644 (-1093 (-381)))) 142)) (-1928 (((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874))) 58)) (-3391 (((-644 (-644 (-943 (-225)))) $) 137)) (-3011 (((-1270) $ (-943 (-225)) (-874)) 163)) (-2190 (($ $) 136) (($ (-644 (-644 (-943 (-225))))) 149) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921))) 148) (($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264))) 150)) (-1390 (((-1157) $) NIL)) (-3476 (((-566) $) 110)) (-1944 (((-1119) $) NIL)) (-4124 (($) 147)) (-2665 (((-644 (-225)) (-644 (-644 (-943 (-225))))) 89)) (-4206 (((-1270) $ (-644 (-943 (-225))) (-874) (-874) (-921)) 155) (((-1270) $ (-943 (-225))) 157) (((-1270) $ (-943 (-225)) (-874) (-874) (-921)) 156)) (-2725 (((-862) $) 169) (($ (-644 (-644 (-943 (-225))))) 164)) (-1479 (((-112) $ $) NIL)) (-2716 (((-1270) $ (-943 (-225))) 162)) (-2817 (((-112) $ $) NIL)))
-(((-470) (-13 (-1099) (-10 -8 (-15 -4124 ($)) (-15 -2190 ($ $)) (-15 -2190 ($ (-644 (-644 (-943 (-225)))))) (-15 -2190 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -2190 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -3391 ((-644 (-644 (-943 (-225)))) $)) (-15 -3476 ((-566) $)) (-15 -1845 ((-644 (-1093 (-381))) $)) (-15 -1845 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3418 ((-644 (-381)) $)) (-15 -3418 ((-644 (-381)) $ (-644 (-381)))) (-15 -4206 ((-1270) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -4206 ((-1270) $ (-943 (-225)))) (-15 -4206 ((-1270) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -2716 ((-1270) $ (-943 (-225)))) (-15 -3011 ((-1270) $ (-943 (-225)) (-874))) (-15 -2725 ($ (-644 (-644 (-943 (-225)))))) (-15 -2725 ((-862) $)) (-15 -1928 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -2665 ((-644 (-225)) (-644 (-644 (-943 (-225))))))))) (T -470))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-470)))) (-4124 (*1 *1) (-5 *1 (-470))) (-2190 (*1 *1 *1) (-5 *1 (-470))) (-2190 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-2190 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *1 (-470)))) (-2190 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470)))) (-1845 (*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-1845 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-3418 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470)))) (-4206 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1270)) (-5 *1 (-470)))) (-4206 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1270)) (-5 *1 (-470)))) (-4206 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *2 (-1270)) (-5 *1 (-470)))) (-2716 (*1 *2 *1 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1270)) (-5 *1 (-470)))) (-3011 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1270)) (-5 *1 (-470)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))) (-1928 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874))) (-5 *1 (-470)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225))) (-5 *1 (-470)))))
-(-13 (-1099) (-10 -8 (-15 -4124 ($)) (-15 -2190 ($ $)) (-15 -2190 ($ (-644 (-644 (-943 (-225)))))) (-15 -2190 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)))) (-15 -2190 ($ (-644 (-644 (-943 (-225)))) (-644 (-874)) (-644 (-874)) (-644 (-921)) (-644 (-264)))) (-15 -3391 ((-644 (-644 (-943 (-225)))) $)) (-15 -3476 ((-566) $)) (-15 -1845 ((-644 (-1093 (-381))) $)) (-15 -1845 ((-644 (-1093 (-381))) $ (-644 (-1093 (-381))))) (-15 -3418 ((-644 (-381)) $)) (-15 -3418 ((-644 (-381)) $ (-644 (-381)))) (-15 -4206 ((-1270) $ (-644 (-943 (-225))) (-874) (-874) (-921))) (-15 -4206 ((-1270) $ (-943 (-225)))) (-15 -4206 ((-1270) $ (-943 (-225)) (-874) (-874) (-921))) (-15 -2716 ((-1270) $ (-943 (-225)))) (-15 -3011 ((-1270) $ (-943 (-225)) (-874))) (-15 -2725 ($ (-644 (-644 (-943 (-225)))))) (-15 -2725 ((-862) $)) (-15 -1928 ((-644 (-644 (-943 (-225)))) (-644 (-644 (-943 (-225)))) (-644 (-874)))) (-15 -2665 ((-644 (-225)) (-644 (-644 (-943 (-225))))))))
-((-2905 (($ $) NIL) (($ $ $) 11)))
-(((-471 |#1| |#2| |#3|) (-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|))) (-472 |#2| |#3|) (-172) (-23)) (T -471))
-NIL
-(-10 -8 (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3838 ((|#2| $) 20)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 16) (($ $ $) 14)) (-2897 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
-(((-472 |#1| |#2|) (-140) (-172) (-23)) (T -472))
-((-3838 (*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-3200 (*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2905 (*1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2897 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-2905 (*1 *1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
-(-13 (-1099) (-10 -8 (-15 -3838 (|t#2| $)) (-15 (-3200) ($) -3854) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2905 ($ $)) (-15 -2897 ($ $ $)) (-15 -2905 ($ $ $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-1839 (((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|))) 137)) (-3753 (((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 134)) (-4182 (((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))) 86)))
-(((-473 |#1| |#2| |#3|) (-10 -7 (-15 -3753 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -1839 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -4182 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|))))) (-644 (-1175)) (-454) (-454)) (T -473))
-((-4182 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-2 (|:| |dpolys| (-644 (-247 *5 *6))) (|:| |coords| (-644 (-566))))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454)))) (-1839 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6)) (-4 *6 (-454)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454)))))
-(-10 -7 (-15 -3753 ((-644 (-644 (-247 |#1| |#2|))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -1839 ((-3 (-644 (-483 |#1| |#2|)) "failed") (-644 (-483 |#1| |#2|)) (-644 (-864 |#1|)))) (-15 -4182 ((-2 (|:| |dpolys| (-644 (-247 |#1| |#2|))) (|:| |coords| (-644 (-566)))) (-644 (-247 |#1| |#2|)) (-644 (-864 |#1|)))))
-((-2313 (((-3 $ "failed") $) 11)) (-2558 (($ $ $) 23)) (-1726 (($ $ $) 24)) (-2916 (($ $ $) 9)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 22)))
-(((-474 |#1|) (-10 -8 (-15 -1726 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-475)) (T -474))
-NIL
-(-10 -8 (-15 -1726 (|#1| |#1| |#1|)) (-15 -2558 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2916 (|#1| |#1| |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))))
-((-3979 (((-112) $ $) 7)) (-2633 (($) 19 T CONST)) (-2313 (((-3 $ "failed") $) 16)) (-3842 (((-112) $) 18)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 25)) (-1944 (((-1119) $) 11)) (-2558 (($ $ $) 22)) (-1726 (($ $ $) 21)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3214 (($) 20 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15)))
-(((-475) (-140)) (T -475))
-((-4282 (*1 *1 *1) (-4 *1 (-475))) (-2916 (*1 *1 *1 *1) (-4 *1 (-475))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566)))) (-2558 (*1 *1 *1 *1) (-4 *1 (-475))) (-1726 (*1 *1 *1 *1) (-4 *1 (-475))))
-(-13 (-726) (-10 -8 (-15 -4282 ($ $)) (-15 -2916 ($ $ $)) (-15 ** ($ $ (-566))) (-6 -4412) (-15 -2558 ($ $ $)) (-15 -1726 ($ $ $))))
-(((-102) . T) ((-613 (-862)) . T) ((-726) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 18)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-3564 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3648 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-409 (-566))) NIL) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) 25)) (-1565 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1879 (($ $) 29 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 35 (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200))))) (($ $ (-1261 |#2|)) 30 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-409 (-566))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1535 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 28 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1261 |#2|)) 16)) (-3838 (((-409 (-566)) $) NIL)) (-3658 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1261 |#2|)) NIL) (($ (-1250 |#1| |#2| |#3|)) 9) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3623 ((|#1| $ (-409 (-566))) NIL)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) 21)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) 27)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-476 |#1| |#2| |#3|) (-13 (-1246 |#1|) (-10 -8 (-15 -2725 ($ (-1261 |#2|))) (-15 -2725 ($ (-1250 |#1| |#2| |#3|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -476))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-476 *3 *4 *5)))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(-13 (-1246 |#1|) (-10 -8 (-15 -2725 ($ (-1261 |#2|))) (-15 -2725 ($ (-1250 |#1| |#2| |#3|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|)))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2506 (((-1270) $ |#1| |#1|) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#2| $ |#1| |#2|) 18)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) 19)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) 16)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) NIL)) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 ((|#1| $) NIL (|has| |#1| (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 ((|#1| $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2838 (((-644 |#1|) $) NIL)) (-3932 (((-112) |#1| $) NIL)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-4063 (((-644 |#1|) $) NIL)) (-3054 (((-112) |#1| $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#2| $) NIL (|has| |#1| (-850)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-477 |#1| |#2| |#3| |#4|) (-1191 |#1| |#2|) (-1099) (-1099) (-1191 |#1| |#2|) |#2|) (T -477))
-NIL
-(-1191 |#1| |#2|)
-((-3979 (((-112) $ $) NIL)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3599 (((-644 $) (-644 |#4|)) NIL)) (-4170 (((-644 |#3|) $) NIL)) (-1323 (((-112) $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3351 ((|#4| |#4| $) NIL)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3281 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2633 (($) NIL T CONST)) (-1740 (((-112) $) 29 (|has| |#1| (-558)))) (-3807 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1312 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1407 (((-112) $) NIL (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4185 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3343 (($ (-644 |#4|)) NIL)) (-3781 (((-3 $ "failed") $) 45)) (-1673 ((|#4| |#4| $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-1752 (($ |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3427 ((|#4| |#4| $) NIL)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) NIL)) (-1523 (((-644 |#4|) $) 18 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3779 ((|#3| $) 38)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#4|) $) 19 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-3023 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 23)) (-2054 (((-644 |#3|) $) NIL)) (-2314 (((-112) |#3| $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1774 (((-3 |#4| "failed") $) 42)) (-3304 (((-644 |#4|) $) NIL)) (-2751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1642 ((|#4| |#4| $) NIL)) (-4249 (((-112) $ $) NIL)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2117 ((|#4| |#4| $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-3 |#4| "failed") $) 40)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3521 (((-3 $ "failed") $ |#4|) 58)) (-3964 (($ $ |#4|) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 17)) (-3906 (($) 14)) (-3838 (((-771) $) NIL)) (-1958 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) 13)) (-2150 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 22)) (-3317 (($ $ |#3|) 52)) (-3756 (($ $ |#3|) 54)) (-2352 (($ $) NIL)) (-1811 (($ $ |#3|) NIL)) (-2725 (((-862) $) 35) (((-644 |#4|) $) 46)) (-3526 (((-771) $) NIL (|has| |#3| (-370)))) (-1479 (((-112) $ $) NIL)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-2610 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-2817 (((-112) $ $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-478 |#1| |#2| |#3| |#4|) (-1208 |#1| |#2| |#3| |#4|) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -478))
-NIL
-(-1208 |#1| |#2| |#3| |#4|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-3343 (((-566) $) NIL) (((-409 (-566)) $) NIL)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-2722 (($) 17)) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2150 (((-381) $) 21) (((-225) $) 24) (((-409 (-1171 (-566))) $) 18) (((-538) $) 53)) (-2725 (((-862) $) 51) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (((-225) $) 23) (((-381) $) 20)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) 37 T CONST)) (-3214 (($) 8 T CONST)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-479) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -2722 ($))))) (T -479))
-((-2722 (*1 *1) (-5 *1 (-479))))
-(-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))) (-1022) (-613 (-225)) (-613 (-381)) (-614 (-409 (-1171 (-566)))) (-614 (-538)) (-10 -8 (-15 -2722 ($))))
-((-3979 (((-112) $ $) NIL)) (-3516 (((-1134) $) 11)) (-3502 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-480) (-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))) (T -480))
-((-3502 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480)))))
-(-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2506 (((-1270) $ |#1| |#1|) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#2| $ |#1| |#2|) 16)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) 20)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) 18)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) NIL)) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 ((|#1| $) NIL (|has| |#1| (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 ((|#1| $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2838 (((-644 |#1|) $) 13)) (-3932 (((-112) |#1| $) NIL)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-4063 (((-644 |#1|) $) NIL)) (-3054 (((-112) |#1| $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#2| $) NIL (|has| |#1| (-850)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 19)) (-3282 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 11 (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3991 (((-771) $) 15 (|has| $ (-6 -4415)))))
-(((-481 |#1| |#2| |#3|) (-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415))) (-1099) (-1099) (-1157)) (T -481))
-NIL
-(-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415)))
-((-2575 (((-566) (-566) (-566)) 19)) (-3285 (((-112) (-566) (-566) (-566) (-566)) 28)) (-3198 (((-1265 (-644 (-566))) (-771) (-771)) 44)))
-(((-482) (-10 -7 (-15 -2575 ((-566) (-566) (-566))) (-15 -3285 ((-112) (-566) (-566) (-566) (-566))) (-15 -3198 ((-1265 (-644 (-566))) (-771) (-771))))) (T -482))
-((-3198 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1265 (-644 (-566)))) (-5 *1 (-482)))) (-3285 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482)))) (-2575 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482)))))
-(-10 -7 (-15 -2575 ((-566) (-566) (-566))) (-15 -3285 ((-112) (-566) (-566) (-566) (-566))) (-15 -3198 ((-1265 (-644 (-566))) (-771) (-771))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-864 |#1|)) $) NIL)) (-3983 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-1780 (($ $) NIL (|has| |#2| (-558)))) (-3286 (((-112) $) NIL (|has| |#2| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2885 (($ $) NIL (|has| |#2| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-3343 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2994 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3596 (($ $ (-644 (-566))) NIL)) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#2| (-909)))) (-2385 (($ $ |#2| (-484 (-3991 |#1|) (-771)) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-4157 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#2| (-484 (-3991 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-864 |#1|)) NIL)) (-4090 (((-484 (-3991 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-1336 (($ (-1 (-484 (-3991 |#1|) (-771)) (-484 (-3991 |#1|) (-771))) $) NIL)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1742 (((-3 (-864 |#1|) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#2| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1390 (((-1157) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3428 (-771))) "failed") $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#2| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#2| (-909)))) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-2061 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3009 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3838 (((-484 (-3991 |#1|) (-771)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-4330 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ (-409 (-566))) NIL (-2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-484 (-3991 |#1|) (-771))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#2| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-483 |#1| |#2|) (-13 (-949 |#2| (-484 (-3991 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -3596 ($ $ (-644 (-566)))))) (-644 (-1175)) (-1049)) (T -483))
-((-3596 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4)) (-14 *3 (-644 (-1175))) (-4 *4 (-1049)))))
-(-13 (-949 |#2| (-484 (-3991 |#1|) (-771)) (-864 |#1|)) (-10 -8 (-15 -3596 ($ $ (-644 (-566))))))
-((-3979 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3545 (((-112) $) NIL (|has| |#2| (-131)))) (-2338 (($ (-921)) NIL (|has| |#2| (-1049)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-3288 (($ $ $) NIL (|has| |#2| (-793)))) (-4113 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2261 (((-112) $ (-771)) NIL)) (-3733 (((-771)) NIL (|has| |#2| (-370)))) (-1859 (((-566) $) NIL (|has| |#2| (-848)))) (-2858 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-3343 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-3717 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-2313 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-3424 (($) NIL (|has| |#2| (-370)))) (-3031 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ (-566)) 15)) (-3421 (((-112) $) NIL (|has| |#2| (-848)))) (-1523 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL (|has| |#2| (-726)))) (-2307 (((-112) $) NIL (|has| |#2| (-848)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2565 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3023 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-4138 (((-921) $) NIL (|has| |#2| (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#2| (-1099)))) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-2430 (($ (-921)) NIL (|has| |#2| (-370)))) (-1944 (((-1119) $) NIL (|has| |#2| (-1099)))) (-3771 ((|#2| $) NIL (|has| (-566) (-850)))) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-1836 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-4059 (($ (-1265 |#2|)) NIL)) (-4356 (((-134)) NIL (|has| |#2| (-365)))) (-3009 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-1958 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-1265 |#2|) $) NIL) (($ (-566)) NIL (-2676 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2875 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-1479 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2610 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2274 (($ $) NIL (|has| |#2| (-848)))) (-3200 (($) NIL (|has| |#2| (-131)) CONST)) (-3214 (($) NIL (|has| |#2| (-726)) CONST)) (-1316 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-2865 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2844 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2817 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2854 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2833 (((-112) $ $) 21 (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-2897 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-484 |#1| |#2|) (-238 |#1| |#2|) (-771) (-793)) (T -484))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-700))) (-4 *1 (-443)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) (-4 *1 (-443)))))
+(-13 (-398) (-10 -8 (-15 -4101 ($ (-1266 (-700)))) (-15 -4101 ($ (-645 (-331)))) (-15 -4101 ($ (-331))) (-15 -4101 ($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1216) . T))
+((-3417 (((-3 $ "failed") (-1266 (-317 (-381)))) 21) (((-3 $ "failed") (-1266 (-317 (-567)))) 19) (((-3 $ "failed") (-1266 (-953 (-381)))) 17) (((-3 $ "failed") (-1266 (-953 (-567)))) 15) (((-3 $ "failed") (-1266 (-410 (-953 (-381))))) 13) (((-3 $ "failed") (-1266 (-410 (-953 (-567))))) 11)) (-1621 (($ (-1266 (-317 (-381)))) 22) (($ (-1266 (-317 (-567)))) 20) (($ (-1266 (-953 (-381)))) 18) (($ (-1266 (-953 (-567)))) 16) (($ (-1266 (-410 (-953 (-381))))) 14) (($ (-1266 (-410 (-953 (-567))))) 12)) (-1774 (((-1271) $) 7)) (-4101 (((-863) $) 8) (($ (-645 (-331))) 25) (($ (-331)) 24) (($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) 23)))
+(((-444) (-140)) (T -444))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331))))) (-4 *1 (-444)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1266 (-317 (-381)))) (-4 *1 (-444)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-1266 (-317 (-381)))) (-4 *1 (-444)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1266 (-317 (-567)))) (-4 *1 (-444)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-1266 (-317 (-567)))) (-4 *1 (-444)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1266 (-953 (-381)))) (-4 *1 (-444)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-1266 (-953 (-381)))) (-4 *1 (-444)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1266 (-953 (-567)))) (-4 *1 (-444)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-1266 (-953 (-567)))) (-4 *1 (-444)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1266 (-410 (-953 (-381))))) (-4 *1 (-444)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-1266 (-410 (-953 (-381))))) (-4 *1 (-444)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-1266 (-410 (-953 (-567))))) (-4 *1 (-444)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-1266 (-410 (-953 (-567))))) (-4 *1 (-444)))))
+(-13 (-398) (-10 -8 (-15 -4101 ($ (-645 (-331)))) (-15 -4101 ($ (-331))) (-15 -4101 ($ (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))) (-15 -1621 ($ (-1266 (-317 (-381))))) (-15 -3417 ((-3 $ "failed") (-1266 (-317 (-381))))) (-15 -1621 ($ (-1266 (-317 (-567))))) (-15 -3417 ((-3 $ "failed") (-1266 (-317 (-567))))) (-15 -1621 ($ (-1266 (-953 (-381))))) (-15 -3417 ((-3 $ "failed") (-1266 (-953 (-381))))) (-15 -1621 ($ (-1266 (-953 (-567))))) (-15 -3417 ((-3 $ "failed") (-1266 (-953 (-567))))) (-15 -1621 ($ (-1266 (-410 (-953 (-381)))))) (-15 -3417 ((-3 $ "failed") (-1266 (-410 (-953 (-381)))))) (-15 -1621 ($ (-1266 (-410 (-953 (-567)))))) (-15 -3417 ((-3 $ "failed") (-1266 (-410 (-953 (-567))))))))
+(((-614 (-863)) . T) ((-398) . T) ((-1216) . T))
+((-3190 (((-112)) 18)) (-2120 (((-112) (-112)) 19)) (-4177 (((-112)) 14)) (-1383 (((-112) (-112)) 15)) (-3609 (((-112)) 16)) (-4025 (((-112) (-112)) 17)) (-3517 (((-922) (-922)) 22) (((-922)) 21)) (-2273 (((-772) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567))))) 52)) (-3091 (((-922) (-922)) 24) (((-922)) 23)) (-3614 (((-2 (|:| -2537 (-567)) (|:| -2807 (-645 |#1|))) |#1|) 97)) (-1838 (((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567))))))) 178)) (-2109 (((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112)) 211)) (-3241 (((-421 |#1|) |#1| (-772) (-772)) 226) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 223) (((-421 |#1|) |#1| (-645 (-772))) 225) (((-421 |#1|) |#1| (-772)) 224) (((-421 |#1|) |#1|) 222)) (-2446 (((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772) (-112)) 228) (((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772)) 229) (((-3 |#1| "failed") (-922) |#1| (-645 (-772))) 231) (((-3 |#1| "failed") (-922) |#1| (-772)) 230) (((-3 |#1| "failed") (-922) |#1|) 232)) (-2296 (((-421 |#1|) |#1| (-772) (-772)) 221) (((-421 |#1|) |#1| (-645 (-772)) (-772)) 217) (((-421 |#1|) |#1| (-645 (-772))) 219) (((-421 |#1|) |#1| (-772)) 218) (((-421 |#1|) |#1|) 216)) (-2817 (((-112) |#1|) 44)) (-3882 (((-738 (-772)) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567))))) 102)) (-3872 (((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112) (-1102 (-772)) (-772)) 215)))
+(((-445 |#1|) (-10 -7 (-15 -1838 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))))) (-15 -3882 ((-738 (-772)) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))))) (-15 -3091 ((-922))) (-15 -3091 ((-922) (-922))) (-15 -3517 ((-922))) (-15 -3517 ((-922) (-922))) (-15 -2273 ((-772) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))))) (-15 -3614 ((-2 (|:| -2537 (-567)) (|:| -2807 (-645 |#1|))) |#1|)) (-15 -3190 ((-112))) (-15 -2120 ((-112) (-112))) (-15 -4177 ((-112))) (-15 -1383 ((-112) (-112))) (-15 -2817 ((-112) |#1|)) (-15 -3609 ((-112))) (-15 -4025 ((-112) (-112))) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -2296 ((-421 |#1|) |#1| (-772))) (-15 -2296 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2296 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2296 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3241 ((-421 |#1|) |#1|)) (-15 -3241 ((-421 |#1|) |#1| (-772))) (-15 -3241 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3241 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3241 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1|)) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-772))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772) (-112))) (-15 -2109 ((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112))) (-15 -3872 ((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112) (-1102 (-772)) (-772)))) (-1242 (-567))) (T -445))
+((-3872 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1102 (-772))) (-5 *6 (-772)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567))))))) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2446 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1242 (-567))))) (-2446 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1242 (-567))))) (-2446 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2)) (-4 *2 (-1242 (-567))))) (-2446 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-922)) (-5 *4 (-772)) (-5 *1 (-445 *2)) (-4 *2 (-1242 (-567))))) (-2446 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2)) (-4 *2 (-1242 (-567))))) (-3241 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3241 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3241 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3241 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3241 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2296 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2296 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3609 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2817 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-1383 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-4177 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2120 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3190 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3614 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2537 (-567)) (|:| -2807 (-645 *3)))) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-2273 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2296 *4) (|:| -3677 (-567))))) (-4 *4 (-1242 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))) (-3517 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3517 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3091 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3091 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2296 *4) (|:| -3677 (-567))))) (-4 *4 (-1242 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4)))) (-1838 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| *4) (|:| -3259 (-567))))))) (-4 *4 (-1242 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4)))))
+(-10 -7 (-15 -1838 ((-421 |#1|) (-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))))) (-15 -3882 ((-738 (-772)) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))))) (-15 -3091 ((-922))) (-15 -3091 ((-922) (-922))) (-15 -3517 ((-922))) (-15 -3517 ((-922) (-922))) (-15 -2273 ((-772) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))))) (-15 -3614 ((-2 (|:| -2537 (-567)) (|:| -2807 (-645 |#1|))) |#1|)) (-15 -3190 ((-112))) (-15 -2120 ((-112) (-112))) (-15 -4177 ((-112))) (-15 -1383 ((-112) (-112))) (-15 -2817 ((-112) |#1|)) (-15 -3609 ((-112))) (-15 -4025 ((-112) (-112))) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -2296 ((-421 |#1|) |#1| (-772))) (-15 -2296 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -2296 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -2296 ((-421 |#1|) |#1| (-772) (-772))) (-15 -3241 ((-421 |#1|) |#1|)) (-15 -3241 ((-421 |#1|) |#1| (-772))) (-15 -3241 ((-421 |#1|) |#1| (-645 (-772)))) (-15 -3241 ((-421 |#1|) |#1| (-645 (-772)) (-772))) (-15 -3241 ((-421 |#1|) |#1| (-772) (-772))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1|)) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-772))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772))) (-15 -2446 ((-3 |#1| "failed") (-922) |#1| (-645 (-772)) (-772) (-112))) (-15 -2109 ((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112))) (-15 -3872 ((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112) (-1102 (-772)) (-772))))
+((-3273 (((-567) |#2|) 52) (((-567) |#2| (-772)) 51)) (-4386 (((-567) |#2|) 67)) (-2244 ((|#3| |#2|) 26)) (-3751 ((|#3| |#2| (-922)) 15)) (-3036 ((|#3| |#2|) 16)) (-1350 ((|#3| |#2|) 9)) (-3080 ((|#3| |#2|) 10)) (-1309 ((|#3| |#2| (-922)) 74) ((|#3| |#2|) 34)) (-3097 (((-567) |#2|) 69)))
+(((-446 |#1| |#2| |#3|) (-10 -7 (-15 -3097 ((-567) |#2|)) (-15 -1309 (|#3| |#2|)) (-15 -1309 (|#3| |#2| (-922))) (-15 -4386 ((-567) |#2|)) (-15 -3273 ((-567) |#2| (-772))) (-15 -3273 ((-567) |#2|)) (-15 -3751 (|#3| |#2| (-922))) (-15 -2244 (|#3| |#2|)) (-15 -1350 (|#3| |#2|)) (-15 -3080 (|#3| |#2|)) (-15 -3036 (|#3| |#2|))) (-1050) (-1242 |#1|) (-13 (-407) (-1039 |#1|) (-365) (-1201) (-285))) (T -446))
+((-3036 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4)))) (-3080 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4)))) (-1350 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4)))) (-2244 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4)))) (-3751 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1201) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1242 *5)))) (-3273 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1242 *4)) (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))))) (-3273 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1242 *5)) (-4 *6 (-13 (-407) (-1039 *5) (-365) (-1201) (-285))))) (-4386 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1242 *4)) (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))))) (-1309 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1201) (-285))) (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1242 *5)))) (-1309 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))) (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4)))) (-3097 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5)) (-4 *3 (-1242 *4)) (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))))))
+(-10 -7 (-15 -3097 ((-567) |#2|)) (-15 -1309 (|#3| |#2|)) (-15 -1309 (|#3| |#2| (-922))) (-15 -4386 ((-567) |#2|)) (-15 -3273 ((-567) |#2| (-772))) (-15 -3273 ((-567) |#2|)) (-15 -3751 (|#3| |#2| (-922))) (-15 -2244 (|#3| |#2|)) (-15 -1350 (|#3| |#2|)) (-15 -3080 (|#3| |#2|)) (-15 -3036 (|#3| |#2|)))
+((-2680 ((|#2| (-1266 |#1|)) 45)) (-4250 ((|#2| |#2| |#1|) 61)) (-1730 ((|#2| |#2| |#1|) 53)) (-3315 ((|#2| |#2|) 49)) (-3782 (((-112) |#2|) 36)) (-2647 (((-645 |#2|) (-922) (-421 |#2|)) 24)) (-2446 ((|#2| (-922) (-421 |#2|)) 28)) (-3882 (((-738 (-772)) (-421 |#2|)) 33)))
+(((-447 |#1| |#2|) (-10 -7 (-15 -3782 ((-112) |#2|)) (-15 -2680 (|#2| (-1266 |#1|))) (-15 -3315 (|#2| |#2|)) (-15 -1730 (|#2| |#2| |#1|)) (-15 -4250 (|#2| |#2| |#1|)) (-15 -3882 ((-738 (-772)) (-421 |#2|))) (-15 -2446 (|#2| (-922) (-421 |#2|))) (-15 -2647 ((-645 |#2|) (-922) (-421 |#2|)))) (-1050) (-1242 |#1|)) (T -447))
+((-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-421 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-1050)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-421 *2)) (-4 *2 (-1242 *5)) (-5 *1 (-447 *5 *2)) (-4 *5 (-1050)))) (-3882 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-1050)) (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))) (-4250 (*1 *2 *2 *3) (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1242 *3)))) (-1730 (*1 *2 *2 *3) (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1242 *3)))) (-3315 (*1 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1242 *3)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-1266 *4)) (-4 *4 (-1050)) (-4 *2 (-1242 *4)) (-5 *1 (-447 *4 *2)))) (-3782 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -3782 ((-112) |#2|)) (-15 -2680 (|#2| (-1266 |#1|))) (-15 -3315 (|#2| |#2|)) (-15 -1730 (|#2| |#2| |#1|)) (-15 -4250 (|#2| |#2| |#1|)) (-15 -3882 ((-738 (-772)) (-421 |#2|))) (-15 -2446 (|#2| (-922) (-421 |#2|))) (-15 -2647 ((-645 |#2|) (-922) (-421 |#2|))))
+((-3931 (((-772)) 59)) (-3191 (((-772)) 29 (|has| |#1| (-407))) (((-772) (-772)) 28 (|has| |#1| (-407)))) (-3951 (((-567) |#1|) 25 (|has| |#1| (-407)))) (-2425 (((-567) |#1|) 27 (|has| |#1| (-407)))) (-2827 (((-772)) 58) (((-772) (-772)) 57)) (-2669 ((|#1| (-772) (-567)) 37)) (-2182 (((-1271)) 61)))
+(((-448 |#1|) (-10 -7 (-15 -2669 (|#1| (-772) (-567))) (-15 -2827 ((-772) (-772))) (-15 -2827 ((-772))) (-15 -3931 ((-772))) (-15 -2182 ((-1271))) (IF (|has| |#1| (-407)) (PROGN (-15 -2425 ((-567) |#1|)) (-15 -3951 ((-567) |#1|)) (-15 -3191 ((-772) (-772))) (-15 -3191 ((-772)))) |%noBranch|)) (-1050)) (T -448))
+((-3191 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-3951 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-2425 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))) (-2182 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-3931 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-2827 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))) (-2669 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1050)))))
+(-10 -7 (-15 -2669 (|#1| (-772) (-567))) (-15 -2827 ((-772) (-772))) (-15 -2827 ((-772))) (-15 -3931 ((-772))) (-15 -2182 ((-1271))) (IF (|has| |#1| (-407)) (PROGN (-15 -2425 ((-567) |#1|)) (-15 -3951 ((-567) |#1|)) (-15 -3191 ((-772) (-772))) (-15 -3191 ((-772)))) |%noBranch|))
+((-3539 (((-645 (-567)) (-567)) 76)) (-1665 (((-112) (-169 (-567))) 82)) (-2296 (((-421 (-169 (-567))) (-169 (-567))) 75)))
+(((-449) (-10 -7 (-15 -2296 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -3539 ((-645 (-567)) (-567))) (-15 -1665 ((-112) (-169 (-567)))))) (T -449))
+((-1665 (*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449)))) (-3539 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449)) (-5 *3 (-169 (-567))))))
+(-10 -7 (-15 -2296 ((-421 (-169 (-567))) (-169 (-567)))) (-15 -3539 ((-645 (-567)) (-567))) (-15 -1665 ((-112) (-169 (-567)))))
+((-1307 ((|#4| |#4| (-645 |#4|)) 82)) (-3096 (((-645 |#4|) (-645 |#4|) (-1158) (-1158)) 22) (((-645 |#4|) (-645 |#4|) (-1158)) 21) (((-645 |#4|) (-645 |#4|)) 13)))
+(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1307 (|#4| |#4| (-645 |#4|))) (-15 -3096 ((-645 |#4|) (-645 |#4|))) (-15 -3096 ((-645 |#4|) (-645 |#4|) (-1158))) (-15 -3096 ((-645 |#4|) (-645 |#4|) (-1158) (-1158)))) (-308) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -450))
+((-3096 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3096 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6)))) (-1307 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1307 (|#4| |#4| (-645 |#4|))) (-15 -3096 ((-645 |#4|) (-645 |#4|))) (-15 -3096 ((-645 |#4|) (-645 |#4|) (-1158))) (-15 -3096 ((-645 |#4|) (-645 |#4|) (-1158) (-1158))))
+((-2859 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 91) (((-645 (-645 |#4|)) (-645 |#4|)) 90) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112)) 84) (((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|)) 85)) (-3865 (((-645 (-645 |#4|)) (-645 |#4|) (-112)) 55) (((-645 (-645 |#4|)) (-645 |#4|)) 77)))
+(((-451 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3865 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3865 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|) (-112)))) (-13 (-308) (-147)) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -451))
+((-2859 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-2859 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2859 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-2859 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3865 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8))) (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))) (-3865 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(-10 -7 (-15 -3865 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -3865 ((-645 (-645 |#4|)) (-645 |#4|) (-112))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|) (-645 |#4|) (-112))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|))) (-15 -2859 ((-645 (-645 |#4|)) (-645 |#4|) (-112))))
+((-2255 (((-772) |#4|) 12)) (-4144 (((-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|)))) 39)) (-2990 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 51)) (-1801 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 54)) (-4308 ((|#4| |#4| (-645 |#4|)) 56)) (-3308 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|)) 98)) (-2735 (((-1271) |#4|) 61)) (-4094 (((-1271) (-645 |#4|)) 71)) (-1744 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567)) 68)) (-2366 (((-1271) (-567)) 113)) (-1418 (((-645 |#4|) (-645 |#4|)) 105)) (-1955 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|)) |#4| (-772)) 31)) (-1765 (((-567) |#4|) 110)) (-3213 ((|#4| |#4|) 37)) (-3548 (((-645 |#4|) (-645 |#4|) (-567) (-567)) 76)) (-3250 (((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567)) 126)) (-3829 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2315 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 80)) (-4264 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 78)) (-1927 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2980 (((-112) |#2| |#2|) 77)) (-1824 (((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 50)) (-2998 (((-112) |#2| |#2| |#2| |#2|) 82)) (-1821 ((|#4| |#4| (-645 |#4|)) 99)))
+(((-452 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1821 (|#4| |#4| (-645 |#4|))) (-15 -4308 (|#4| |#4| (-645 |#4|))) (-15 -3548 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2315 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2980 ((-112) |#2| |#2|)) (-15 -2998 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1824 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1927 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4264 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3308 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -3213 (|#4| |#4|)) (-15 -4144 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|))))) (-15 -1801 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2990 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1418 ((-645 |#4|) (-645 |#4|))) (-15 -1765 ((-567) |#4|)) (-15 -2735 ((-1271) |#4|)) (-15 -1744 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -3250 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -4094 ((-1271) (-645 |#4|))) (-15 -2366 ((-1271) (-567))) (-15 -3829 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1955 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|)) |#4| (-772))) (-15 -2255 ((-772) |#4|))) (-455) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -452))
+((-2255 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1955 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -3586 *4))) (-5 *5 (-772)) (-4 *4 (-950 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-452 *6 *7 *8 *4)))) (-3829 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1271)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-4094 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1271)) (-5 *1 (-452 *4 *5 *6 *7)))) (-3250 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-1744 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *4)))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1271)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1765 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567)) (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-1418 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-2990 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-794)) (-4 *2 (-950 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2)) (-4 *4 (-455)) (-4 *6 (-851)))) (-4144 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 *3)))) (-5 *4 (-772)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))) (-3213 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-3308 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-452 *5 *6 *7 *3)))) (-4264 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-794)) (-4 *6 (-950 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *4 *3 *5 *6)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))) (-1824 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-794)) (-4 *3 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *3)))) (-2998 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))) (-2980 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))) (-3548 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *7)))) (-4308 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))) (-1821 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(-10 -7 (-15 -1821 (|#4| |#4| (-645 |#4|))) (-15 -4308 (|#4| |#4| (-645 |#4|))) (-15 -3548 ((-645 |#4|) (-645 |#4|) (-567) (-567))) (-15 -2315 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2980 ((-112) |#2| |#2|)) (-15 -2998 ((-112) |#2| |#2| |#2| |#2|)) (-15 -1824 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1927 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4264 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3308 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-645 |#4|))) (-15 -3213 (|#4| |#4|)) (-15 -4144 ((-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|))) |#4| (-772) (-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|))))) (-15 -1801 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2990 ((-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-645 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1418 ((-645 |#4|) (-645 |#4|))) (-15 -1765 ((-567) |#4|)) (-15 -2735 ((-1271) |#4|)) (-15 -1744 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567))) (-15 -3250 ((-567) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-567) (-567) (-567) (-567))) (-15 -4094 ((-1271) (-645 |#4|))) (-15 -2366 ((-1271) (-567))) (-15 -3829 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1955 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-772)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-772)) (|:| -3586 |#4|)) |#4| (-772))) (-15 -2255 ((-772) |#4|)))
+((-2923 ((|#4| |#4| (-645 |#4|)) 20 (|has| |#1| (-365)))) (-2085 (((-645 |#4|) (-645 |#4|) (-1158) (-1158)) 46) (((-645 |#4|) (-645 |#4|) (-1158)) 45) (((-645 |#4|) (-645 |#4|)) 34)))
+(((-453 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2085 ((-645 |#4|) (-645 |#4|))) (-15 -2085 ((-645 |#4|) (-645 |#4|) (-1158))) (-15 -2085 ((-645 |#4|) (-645 |#4|) (-1158) (-1158))) (IF (|has| |#1| (-365)) (-15 -2923 (|#4| |#4| (-645 |#4|))) |%noBranch|)) (-455) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -453))
+((-2923 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-365)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *2)))) (-2085 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2085 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-453 *4 *5 *6 *7)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2085 ((-645 |#4|) (-645 |#4|))) (-15 -2085 ((-645 |#4|) (-645 |#4|) (-1158))) (-15 -2085 ((-645 |#4|) (-645 |#4|) (-1158) (-1158))) (IF (|has| |#1| (-365)) (-15 -2923 (|#4| |#4| (-645 |#4|))) |%noBranch|))
+((-3245 (($ $ $) 14) (($ (-645 $)) 21)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 46)) (-3276 (($ $ $) NIL) (($ (-645 $)) 22)))
+(((-454 |#1|) (-10 -8 (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3245 (|#1| (-645 |#1|))) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3276 (|#1| (-645 |#1|))) (-15 -3276 (|#1| |#1| |#1|))) (-455)) (T -454))
+NIL
+(-10 -8 (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3245 (|#1| (-645 |#1|))) (-15 -3245 (|#1| |#1| |#1|)) (-15 -3276 (|#1| (-645 |#1|))) (-15 -3276 (|#1| |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2245 (((-3 $ "failed") $ $) 48)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-455) (-140)) (T -455))
+((-3276 (*1 *1 *1 *1) (-4 *1 (-455))) (-3276 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-3245 (*1 *1 *1 *1) (-4 *1 (-455))) (-3245 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455)))) (-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-455)))))
+(-13 (-559) (-10 -8 (-15 -3276 ($ $ $)) (-15 -3276 ($ (-645 $))) (-15 -3245 ($ $ $)) (-15 -3245 ($ (-645 $))) (-15 -1819 ((-1172 $) (-1172 $) (-1172 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4135 (((-3 $ "failed")) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1502 (((-1266 (-690 (-410 (-953 |#1|)))) (-1266 $)) NIL) (((-1266 (-690 (-410 (-953 |#1|))))) NIL)) (-3429 (((-1266 $)) NIL)) (-4061 (($) NIL T CONST)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL)) (-4040 (((-3 $ "failed")) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-1743 (((-690 (-410 (-953 |#1|))) (-1266 $)) NIL) (((-690 (-410 (-953 |#1|)))) NIL)) (-4042 (((-410 (-953 |#1|)) $) NIL)) (-4380 (((-690 (-410 (-953 |#1|))) $ (-1266 $)) NIL) (((-690 (-410 (-953 |#1|))) $) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-1400 (((-1172 (-953 (-410 (-953 |#1|))))) NIL (|has| (-410 (-953 |#1|)) (-365))) (((-1172 (-410 (-953 |#1|)))) 94 (|has| |#1| (-559)))) (-3356 (($ $ (-922)) NIL)) (-3511 (((-410 (-953 |#1|)) $) NIL)) (-1411 (((-1172 (-410 (-953 |#1|))) $) 92 (|has| (-410 (-953 |#1|)) (-559)))) (-2152 (((-410 (-953 |#1|)) (-1266 $)) NIL) (((-410 (-953 |#1|))) NIL)) (-4214 (((-1172 (-410 (-953 |#1|))) $) NIL)) (-3920 (((-112)) NIL)) (-3499 (($ (-1266 (-410 (-953 |#1|))) (-1266 $)) 118) (($ (-1266 (-410 (-953 |#1|)))) NIL)) (-4014 (((-3 $ "failed") $) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-2432 (((-922)) NIL)) (-3831 (((-112)) NIL)) (-1866 (($ $ (-922)) NIL)) (-3352 (((-112)) NIL)) (-1843 (((-112)) NIL)) (-3443 (((-112)) NIL)) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL)) (-2743 (((-3 $ "failed")) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-2719 (((-690 (-410 (-953 |#1|))) (-1266 $)) NIL) (((-690 (-410 (-953 |#1|)))) NIL)) (-1568 (((-410 (-953 |#1|)) $) NIL)) (-3322 (((-690 (-410 (-953 |#1|))) $ (-1266 $)) NIL) (((-690 (-410 (-953 |#1|))) $) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-2778 (((-1172 (-953 (-410 (-953 |#1|))))) NIL (|has| (-410 (-953 |#1|)) (-365))) (((-1172 (-410 (-953 |#1|)))) 93 (|has| |#1| (-559)))) (-3747 (($ $ (-922)) NIL)) (-1380 (((-410 (-953 |#1|)) $) NIL)) (-2575 (((-1172 (-410 (-953 |#1|))) $) 87 (|has| (-410 (-953 |#1|)) (-559)))) (-3385 (((-410 (-953 |#1|)) (-1266 $)) NIL) (((-410 (-953 |#1|))) NIL)) (-2632 (((-1172 (-410 (-953 |#1|))) $) NIL)) (-2095 (((-112)) NIL)) (-2451 (((-1158) $) NIL)) (-3387 (((-112)) NIL)) (-4064 (((-112)) NIL)) (-1815 (((-112)) NIL)) (-3339 (((-1120) $) NIL)) (-2845 (((-410 (-953 |#1|)) $ $) 78 (|has| |#1| (-559)))) (-1341 (((-410 (-953 |#1|)) $) 104 (|has| |#1| (-559)))) (-3598 (((-410 (-953 |#1|)) $) 108 (|has| |#1| (-559)))) (-2301 (((-1172 (-410 (-953 |#1|))) $) 98 (|has| |#1| (-559)))) (-1614 (((-410 (-953 |#1|))) 79 (|has| |#1| (-559)))) (-3917 (((-410 (-953 |#1|)) $ $) 71 (|has| |#1| (-559)))) (-2803 (((-410 (-953 |#1|)) $) 103 (|has| |#1| (-559)))) (-2271 (((-410 (-953 |#1|)) $) 107 (|has| |#1| (-559)))) (-1941 (((-1172 (-410 (-953 |#1|))) $) 97 (|has| |#1| (-559)))) (-2819 (((-410 (-953 |#1|))) 75 (|has| |#1| (-559)))) (-1494 (($) 114) (($ (-1176)) 122) (($ (-1266 (-1176))) 121) (($ (-1266 $)) 109) (($ (-1176) (-1266 $)) 120) (($ (-1266 (-1176)) (-1266 $)) 119)) (-3451 (((-112)) NIL)) (-1552 (((-410 (-953 |#1|)) $ (-567)) NIL)) (-3216 (((-1266 (-410 (-953 |#1|))) $ (-1266 $)) 111) (((-690 (-410 (-953 |#1|))) (-1266 $) (-1266 $)) NIL) (((-1266 (-410 (-953 |#1|))) $) 45) (((-690 (-410 (-953 |#1|))) (-1266 $)) NIL)) (-3542 (((-1266 (-410 (-953 |#1|))) $) NIL) (($ (-1266 (-410 (-953 |#1|)))) 42)) (-2539 (((-645 (-953 (-410 (-953 |#1|)))) (-1266 $)) NIL) (((-645 (-953 (-410 (-953 |#1|))))) NIL) (((-645 (-953 |#1|)) (-1266 $)) 112 (|has| |#1| (-559))) (((-645 (-953 |#1|))) 113 (|has| |#1| (-559)))) (-4272 (($ $ $) NIL)) (-1911 (((-112)) NIL)) (-4101 (((-863) $) NIL) (($ (-1266 (-410 (-953 |#1|)))) NIL)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 67)) (-2411 (((-645 (-1266 (-410 (-953 |#1|))))) NIL (|has| (-410 (-953 |#1|)) (-559)))) (-3280 (($ $ $ $) NIL)) (-3854 (((-112)) NIL)) (-1992 (($ (-690 (-410 (-953 |#1|))) $) NIL)) (-1816 (($ $ $) NIL)) (-3239 (((-112)) NIL)) (-3244 (((-112)) NIL)) (-4307 (((-112)) NIL)) (-1468 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) 110)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 63) (($ $ (-410 (-953 |#1|))) NIL) (($ (-410 (-953 |#1|)) $) NIL) (($ (-1142 |#2| (-410 (-953 |#1|))) $) NIL)))
+(((-456 |#1| |#2| |#3| |#4|) (-13 (-420 (-410 (-953 |#1|))) (-649 (-1142 |#2| (-410 (-953 |#1|)))) (-10 -8 (-15 -4101 ($ (-1266 (-410 (-953 |#1|))))) (-15 -2546 ((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed"))) (-15 -3817 ((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed"))) (-15 -1494 ($)) (-15 -1494 ($ (-1176))) (-15 -1494 ($ (-1266 (-1176)))) (-15 -1494 ($ (-1266 $))) (-15 -1494 ($ (-1176) (-1266 $))) (-15 -1494 ($ (-1266 (-1176)) (-1266 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -2778 ((-1172 (-410 (-953 |#1|))))) (-15 -1941 ((-1172 (-410 (-953 |#1|))) $)) (-15 -2803 ((-410 (-953 |#1|)) $)) (-15 -2271 ((-410 (-953 |#1|)) $)) (-15 -1400 ((-1172 (-410 (-953 |#1|))))) (-15 -2301 ((-1172 (-410 (-953 |#1|))) $)) (-15 -1341 ((-410 (-953 |#1|)) $)) (-15 -3598 ((-410 (-953 |#1|)) $)) (-15 -3917 ((-410 (-953 |#1|)) $ $)) (-15 -2819 ((-410 (-953 |#1|)))) (-15 -2845 ((-410 (-953 |#1|)) $ $)) (-15 -1614 ((-410 (-953 |#1|)))) (-15 -2539 ((-645 (-953 |#1|)) (-1266 $))) (-15 -2539 ((-645 (-953 |#1|))))) |%noBranch|))) (-172) (-922) (-645 (-1176)) (-1266 (-690 |#1|))) (T -456))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1266 (-410 (-953 *3)))) (-4 *3 (-172)) (-14 *6 (-1266 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))))) (-2546 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2557 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-3817 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-456 *3 *4 *5 *6)) (|:| -2557 (-645 (-456 *3 *4 *5 *6))))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-1494 (*1 *1) (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922)) (-14 *4 (-645 (-1176))) (-14 *5 (-1266 (-690 *2))))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 *2)) (-14 *6 (-1266 (-690 *3))))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-1266 (-1176))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-1494 (*1 *1 *2) (-12 (-5 *2 (-1266 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-1494 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-645 *2)) (-14 *7 (-1266 (-690 *4))))) (-1494 (*1 *1 *2 *3) (-12 (-5 *2 (-1266 (-1176))) (-5 *3 (-1266 (-456 *4 *5 *6 *7))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-645 (-1176))) (-14 *7 (-1266 (-690 *4))))) (-2778 (*1 *2) (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-1400 (*1 *2) (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-2301 (*1 *2 *1) (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-3917 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-2819 (*1 *2) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-2845 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-1614 (*1 *2) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))) (-2539 (*1 *2 *3) (-12 (-5 *3 (-1266 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-953 *4))) (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172)) (-14 *5 (-922)) (-14 *6 (-645 (-1176))) (-14 *7 (-1266 (-690 *4))))) (-2539 (*1 *2) (-12 (-5 *2 (-645 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(-13 (-420 (-410 (-953 |#1|))) (-649 (-1142 |#2| (-410 (-953 |#1|)))) (-10 -8 (-15 -4101 ($ (-1266 (-410 (-953 |#1|))))) (-15 -2546 ((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed"))) (-15 -3817 ((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed"))) (-15 -1494 ($)) (-15 -1494 ($ (-1176))) (-15 -1494 ($ (-1266 (-1176)))) (-15 -1494 ($ (-1266 $))) (-15 -1494 ($ (-1176) (-1266 $))) (-15 -1494 ($ (-1266 (-1176)) (-1266 $))) (IF (|has| |#1| (-559)) (PROGN (-15 -2778 ((-1172 (-410 (-953 |#1|))))) (-15 -1941 ((-1172 (-410 (-953 |#1|))) $)) (-15 -2803 ((-410 (-953 |#1|)) $)) (-15 -2271 ((-410 (-953 |#1|)) $)) (-15 -1400 ((-1172 (-410 (-953 |#1|))))) (-15 -2301 ((-1172 (-410 (-953 |#1|))) $)) (-15 -1341 ((-410 (-953 |#1|)) $)) (-15 -3598 ((-410 (-953 |#1|)) $)) (-15 -3917 ((-410 (-953 |#1|)) $ $)) (-15 -2819 ((-410 (-953 |#1|)))) (-15 -2845 ((-410 (-953 |#1|)) $ $)) (-15 -1614 ((-410 (-953 |#1|)))) (-15 -2539 ((-645 (-953 |#1|)) (-1266 $))) (-15 -2539 ((-645 (-953 |#1|))))) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 18)) (-2449 (((-645 (-865 |#1|)) $) 92)) (-2260 (((-1172 $) $ (-865 |#1|)) 55) (((-1172 |#2|) $) 143)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-3602 (($ $) NIL (|has| |#2| (-559)))) (-2119 (((-112) $) NIL (|has| |#2| (-559)))) (-3238 (((-772) $) 27) (((-772) $ (-645 (-865 |#1|))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1396 (($ $) NIL (|has| |#2| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#2| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) 53) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-1621 ((|#2| $) 51) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-2414 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-2071 (($ $ (-645 (-567))) 98)) (-2637 (($ $) 85)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#2| (-910)))) (-3564 (($ $ |#2| |#3| $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) 68)) (-2434 (($ (-1172 |#2|) (-865 |#1|)) 148) (($ (-1172 $) (-865 |#1|)) 61)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) 71)) (-2422 (($ |#2| |#3|) 38) (($ $ (-865 |#1|) (-772)) 40) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-865 |#1|)) NIL)) (-4185 ((|#3| $) NIL) (((-772) $ (-865 |#1|)) 59) (((-645 (-772)) $ (-645 (-865 |#1|))) 66)) (-1599 (($ (-1 |#3| |#3|) $) NIL)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-3300 (((-3 (-865 |#1|) "failed") $) 48)) (-2599 (($ $) NIL)) (-2613 ((|#2| $) 50)) (-3245 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2451 (((-1158) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4164 (-772))) "failed") $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) 49)) (-2583 ((|#2| $) 141)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#2| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) 154 (|has| |#2| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) 105) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) 111) (($ $ (-865 |#1|) $) 103) (($ $ (-645 (-865 |#1|)) (-645 $)) 129)) (-3347 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1930 (($ $ (-865 |#1|)) 62) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3677 ((|#3| $) 84) (((-772) $ (-865 |#1|)) 45) (((-645 (-772)) $ (-645 (-865 |#1|))) 65)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1640 ((|#2| $) 150 (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4101 (((-863) $) 179) (($ (-567)) NIL) (($ |#2|) 104) (($ (-865 |#1|)) 42) (($ (-410 (-567))) NIL (-2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ |#3|) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1468 (($) 22 T CONST)) (-1484 (($) 31 T CONST)) (-2692 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#2|) 81 (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 136)) (** (($ $ (-922)) NIL) (($ $ (-772)) 134)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) 80) (($ $ |#2|) NIL)))
+(((-457 |#1| |#2| |#3|) (-13 (-950 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -2071 ($ $ (-645 (-567)))))) (-645 (-1176)) (-1050) (-238 (-2268 |#1|) (-772))) (T -457))
+((-2071 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1176))) (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-238 (-2268 *3) (-772))))))
+(-13 (-950 |#2| |#3| (-865 |#1|)) (-10 -8 (-15 -2071 ($ $ (-645 (-567))))))
+((-2563 (((-112) |#1| (-645 |#2|)) 94)) (-2352 (((-3 (-1266 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|)) 103)) (-2609 (((-3 (-645 |#2|) "failed") |#2| |#1| (-1266 (-645 |#2|))) 105)) (-2362 ((|#2| |#2| |#1|) 35)) (-1670 (((-772) |#2| (-645 |#2|)) 26)))
+(((-458 |#1| |#2|) (-10 -7 (-15 -2362 (|#2| |#2| |#1|)) (-15 -1670 ((-772) |#2| (-645 |#2|))) (-15 -2352 ((-3 (-1266 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2609 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1266 (-645 |#2|)))) (-15 -2563 ((-112) |#1| (-645 |#2|)))) (-308) (-1242 |#1|)) (T -458))
+((-2563 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-1242 *3)) (-4 *3 (-308)) (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))) (-2609 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1266 (-645 *3))) (-4 *4 (-308)) (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1242 *4)))) (-2352 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1242 *4)) (-5 *2 (-1266 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))) (-1670 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-308)) (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))) (-2362 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1242 *3)))))
+(-10 -7 (-15 -2362 (|#2| |#2| |#1|)) (-15 -1670 ((-772) |#2| (-645 |#2|))) (-15 -2352 ((-3 (-1266 (-645 |#2|)) "failed") (-772) |#1| (-645 |#2|))) (-15 -2609 ((-3 (-645 |#2|) "failed") |#2| |#1| (-1266 (-645 |#2|)))) (-15 -2563 ((-112) |#1| (-645 |#2|))))
+((-2296 (((-421 |#5|) |#5|) 24)))
+(((-459 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2296 ((-421 |#5|) |#5|))) (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176))))) (-794) (-559) (-559) (-950 |#4| |#2| |#1|)) (T -459))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176)))))) (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559)) (-4 *3 (-950 *7 *5 *4)))))
+(-10 -7 (-15 -2296 ((-421 |#5|) |#5|)))
+((-3670 ((|#3|) 40)) (-1819 (((-1172 |#4|) (-1172 |#4|) (-1172 |#4|)) 36)))
+(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1819 ((-1172 |#4|) (-1172 |#4|) (-1172 |#4|))) (-15 -3670 (|#3|))) (-794) (-851) (-910) (-950 |#3| |#1| |#2|)) (T -460))
+((-3670 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910)) (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-950 *2 *3 *4)))) (-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-910)) (-5 *1 (-460 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1819 ((-1172 |#4|) (-1172 |#4|) (-1172 |#4|))) (-15 -3670 (|#3|)))
+((-2296 (((-421 (-1172 |#1|)) (-1172 |#1|)) 43)))
+(((-461 |#1|) (-10 -7 (-15 -2296 ((-421 (-1172 |#1|)) (-1172 |#1|)))) (-308)) (T -461))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1172 *4))) (-5 *1 (-461 *4)) (-5 *3 (-1172 *4)))))
+(-10 -7 (-15 -2296 ((-421 (-1172 |#1|)) (-1172 |#1|))))
+((-2511 (((-52) |#2| (-1176) (-295 |#2|) (-1233 (-772))) 44) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-772))) 43) (((-52) |#2| (-1176) (-295 |#2|)) 36) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 29)) (-2009 (((-52) |#2| (-1176) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567))) 88) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567))) 87) (((-52) |#2| (-1176) (-295 |#2|) (-1233 (-567))) 86) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-567))) 85) (((-52) |#2| (-1176) (-295 |#2|)) 80) (((-52) (-1 |#2| (-567)) (-295 |#2|)) 79)) (-2535 (((-52) |#2| (-1176) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567))) 74) (((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567))) 72)) (-2524 (((-52) |#2| (-1176) (-295 |#2|) (-1233 (-567))) 51) (((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-567))) 50)))
+(((-462 |#1| |#2|) (-10 -7 (-15 -2511 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2511 ((-52) |#2| (-1176) (-295 |#2|))) (-15 -2511 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-772)))) (-15 -2511 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-772)))) (-15 -2524 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-567)))) (-15 -2524 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-567)))) (-15 -2535 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567)))) (-15 -2535 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567)))) (-15 -2009 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2009 ((-52) |#2| (-1176) (-295 |#2|))) (-15 -2009 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-567)))) (-15 -2009 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-567)))) (-15 -2009 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567)))) (-15 -2009 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567))))) (-13 (-559) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|))) (T -462))
+((-2009 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *8))) (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-2009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1233 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1201) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-2009 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2009 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1233 (-567))) (-4 *7 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2009 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))) (-2535 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-410 (-567)))) (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *8))) (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *8 *3)))) (-2535 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8)) (-5 *5 (-1233 (-410 (-567)))) (-5 *6 (-410 (-567))) (-4 *8 (-13 (-27) (-1201) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *8)))) (-2524 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2524 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1233 (-567))) (-4 *7 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2511 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-772))) (-4 *3 (-13 (-27) (-1201) (-433 *7))) (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *7 *3)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1233 (-772))) (-4 *7 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *7)))) (-2511 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *6 *3)))) (-2511 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6)) (-4 *6 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52)) (-5 *1 (-462 *5 *6)))))
+(-10 -7 (-15 -2511 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2511 ((-52) |#2| (-1176) (-295 |#2|))) (-15 -2511 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-772)))) (-15 -2511 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-772)))) (-15 -2524 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-567)))) (-15 -2524 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-567)))) (-15 -2535 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567)))) (-15 -2535 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567)))) (-15 -2009 ((-52) (-1 |#2| (-567)) (-295 |#2|))) (-15 -2009 ((-52) |#2| (-1176) (-295 |#2|))) (-15 -2009 ((-52) (-1 |#2| (-567)) (-295 |#2|) (-1233 (-567)))) (-15 -2009 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-567)))) (-15 -2009 ((-52) (-1 |#2| (-410 (-567))) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567)))) (-15 -2009 ((-52) |#2| (-1176) (-295 |#2|) (-1233 (-410 (-567))) (-410 (-567)))))
+((-2362 ((|#2| |#2| |#1|) 15)) (-3716 (((-645 |#2|) |#2| (-645 |#2|) |#1| (-922)) 82)) (-1756 (((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-922)) 72)))
+(((-463 |#1| |#2|) (-10 -7 (-15 -1756 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-922))) (-15 -3716 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-922))) (-15 -2362 (|#2| |#2| |#1|))) (-308) (-1242 |#1|)) (T -463))
+((-2362 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1242 *3)))) (-3716 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-645 *3)) (-5 *5 (-922)) (-4 *3 (-1242 *4)) (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))) (-1756 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1242 *5)) (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5))) (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3)))))
+(-10 -7 (-15 -1756 ((-2 (|:| |plist| (-645 |#2|)) (|:| |modulo| |#1|)) |#2| (-645 |#2|) |#1| (-922))) (-15 -3716 ((-645 |#2|) |#2| (-645 |#2|) |#1| (-922))) (-15 -2362 (|#2| |#2| |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 28)) (-4245 (($ |#3|) 25)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-2637 (($ $) 32)) (-1737 (($ |#2| |#4| $) 33)) (-2422 (($ |#2| (-714 |#3| |#4| |#5|)) 24)) (-2599 (((-714 |#3| |#4| |#5|) $) 15)) (-3618 ((|#3| $) 19)) (-2054 ((|#4| $) 17)) (-2613 ((|#2| $) 29)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-2903 (($ |#2| |#3| |#4|) 26)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 36 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 34)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-464 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2613 (|#2| $)) (-15 -2599 ((-714 |#3| |#4| |#5|) $)) (-15 -2054 (|#4| $)) (-15 -3618 (|#3| $)) (-15 -2637 ($ $)) (-15 -2422 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -4245 ($ |#3|)) (-15 -2903 ($ |#2| |#3| |#4|)) (-15 -1737 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-645 (-1176)) (-172) (-851) (-238 (-2268 |#1|) (-772)) (-1 (-112) (-2 (|:| -3811 |#3|) (|:| -4164 |#4|)) (-2 (|:| -3811 |#3|) (|:| -4164 |#4|))) (-950 |#2| |#4| (-865 |#1|))) (T -464))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172)) (-4 *6 (-238 (-2268 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *6)) (-2 (|:| -3811 *5) (|:| -4164 *6)))) (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851)) (-4 *2 (-950 *4 *6 (-865 *3))))) (-2613 (*1 *2 *1) (-12 (-14 *3 (-645 (-1176))) (-4 *5 (-238 (-2268 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3811 *4) (|:| -4164 *5)) (-2 (|:| -3811 *4) (|:| -4164 *5)))) (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-950 *2 *5 (-865 *3))))) (-2599 (*1 *2 *1) (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172)) (-4 *6 (-238 (-2268 *3) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *6)) (-2 (|:| -3811 *5) (|:| -4164 *6)))) (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8)) (-4 *5 (-851)) (-4 *8 (-950 *4 *6 (-865 *3))))) (-2054 (*1 *2 *1) (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *2)) (-2 (|:| -3811 *5) (|:| -4164 *2)))) (-4 *2 (-238 (-2268 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7)) (-4 *5 (-851)) (-4 *7 (-950 *4 *2 (-865 *3))))) (-3618 (*1 *2 *1) (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172)) (-4 *5 (-238 (-2268 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *5)) (-2 (|:| -3811 *2) (|:| -4164 *5)))) (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *7 (-950 *4 *5 (-865 *3))))) (-2637 (*1 *1 *1) (-12 (-14 *2 (-645 (-1176))) (-4 *3 (-172)) (-4 *5 (-238 (-2268 *2) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3811 *4) (|:| -4164 *5)) (-2 (|:| -3811 *4) (|:| -4164 *5)))) (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851)) (-4 *7 (-950 *3 *5 (-865 *2))))) (-2422 (*1 *1 *2 *3) (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851)) (-4 *6 (-238 (-2268 *4) (-772))) (-14 *7 (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *6)) (-2 (|:| -3811 *5) (|:| -4164 *6)))) (-14 *4 (-645 (-1176))) (-4 *2 (-172)) (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-950 *2 *6 (-865 *4))))) (-4245 (*1 *1 *2) (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172)) (-4 *5 (-238 (-2268 *3) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *5)) (-2 (|:| -3811 *2) (|:| -4164 *5)))) (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851)) (-4 *7 (-950 *4 *5 (-865 *3))))) (-2903 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-645 (-1176))) (-4 *2 (-172)) (-4 *4 (-238 (-2268 *5) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3811 *3) (|:| -4164 *4)) (-2 (|:| -3811 *3) (|:| -4164 *4)))) (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851)) (-4 *7 (-950 *2 *4 (-865 *5))))) (-1737 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-645 (-1176))) (-4 *2 (-172)) (-4 *3 (-238 (-2268 *4) (-772))) (-14 *6 (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *3)) (-2 (|:| -3811 *5) (|:| -4164 *3)))) (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851)) (-4 *7 (-950 *2 *3 (-865 *4))))))
+(-13 (-718 |#6|) (-718 |#2|) (-10 -8 (-15 -2613 (|#2| $)) (-15 -2599 ((-714 |#3| |#4| |#5|) $)) (-15 -2054 (|#4| $)) (-15 -3618 (|#3| $)) (-15 -2637 ($ $)) (-15 -2422 ($ |#2| (-714 |#3| |#4| |#5|))) (-15 -4245 ($ |#3|)) (-15 -2903 ($ |#2| |#3| |#4|)) (-15 -1737 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-2405 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39)))
+(((-465 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2405 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-794) (-851) (-559) (-950 |#3| |#1| |#2|) (-13 (-1039 (-410 (-567))) (-365) (-10 -8 (-15 -4101 ($ |#4|)) (-15 -4067 (|#4| $)) (-15 -4078 (|#4| $))))) (T -465))
+((-2405 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794)) (-4 *6 (-559)) (-4 *7 (-950 *6 *5 *3)) (-5 *1 (-465 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1039 (-410 (-567))) (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))))
+(-10 -7 (-15 -2405 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2449 (((-645 |#3|) $) 41)) (-1416 (((-112) $) NIL)) (-2739 (((-112) $) NIL (|has| |#1| (-559)))) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-1551 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-3289 (((-112) $) NIL (|has| |#1| (-559)))) (-3407 (((-112) $ $) NIL (|has| |#1| (-559)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1579 (((-112) $) NIL (|has| |#1| (-559)))) (-2786 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) 49)) (-1621 (($ (-645 |#4|)) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-3138 (($ |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4416)))) (-2896 (((-645 |#4|) $) 18 (|has| $ (-6 -4416)))) (-4280 ((|#3| $) 47)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#4|) $) 14 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-4392 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 21)) (-4360 (((-645 |#3|) $) NIL)) (-4023 (((-112) |#3| $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-3339 (((-1120) $) NIL)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-2297 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 39)) (-3164 (($) 17)) (-3349 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) 16)) (-3542 (((-539) $) NIL (|has| |#4| (-615 (-539)))) (($ (-645 |#4|)) 51)) (-4114 (($ (-645 |#4|)) 13)) (-2485 (($ $ |#3|) NIL)) (-4090 (($ $ |#3|) NIL)) (-2716 (($ $ |#3|) NIL)) (-4101 (((-863) $) 38) (((-645 |#4|) $) 50)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 30)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-466 |#1| |#2| |#3| |#4|) (-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3542 ($ (-645 |#4|))) (-6 -4416) (-6 -4417))) (-1050) (-794) (-851) (-1065 |#1| |#2| |#3|)) (T -466))
+((-3542 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6)))))
+(-13 (-977 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3542 ($ (-645 |#4|))) (-6 -4416) (-6 -4417)))
+((-1468 (($) 11)) (-1484 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-467 |#1| |#2| |#3|) (-10 -8 (-15 -1484 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1468 (|#1|))) (-468 |#2| |#3|) (-172) (-23)) (T -467))
+NIL
+(-10 -8 (-15 -1484 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1468 (|#1|)))
+((-2257 (((-112) $ $) 7)) (-3417 (((-3 |#1| "failed") $) 27)) (-1621 ((|#1| $) 28)) (-3687 (($ $ $) 24)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3677 ((|#2| $) 20)) (-4101 (((-863) $) 12) (($ |#1|) 26)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 25 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 16) (($ $ $) 14)) (-3146 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-468 |#1| |#2|) (-140) (-172) (-23)) (T -468))
+((-1484 (*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3687 (*1 *1 *1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-473 |t#1| |t#2|) (-1039 |t#1|) (-10 -8 (-15 (-1484) ($) -2131) (-15 -3687 ($ $ $))))
+(((-102) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-473 |#1| |#2|) . T) ((-1039 |#1|) . T) ((-1100) . T))
+((-4037 (((-1266 (-1266 (-567))) (-1266 (-1266 (-567))) (-922)) 29)) (-3805 (((-1266 (-1266 (-567))) (-922)) 24)))
+(((-469) (-10 -7 (-15 -4037 ((-1266 (-1266 (-567))) (-1266 (-1266 (-567))) (-922))) (-15 -3805 ((-1266 (-1266 (-567))) (-922))))) (T -469))
+((-3805 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1266 (-1266 (-567)))) (-5 *1 (-469)))) (-4037 (*1 *2 *2 *3) (-12 (-5 *2 (-1266 (-1266 (-567)))) (-5 *3 (-922)) (-5 *1 (-469)))))
+(-10 -7 (-15 -4037 ((-1266 (-1266 (-567))) (-1266 (-1266 (-567))) (-922))) (-15 -3805 ((-1266 (-1266 (-567))) (-922))))
+((-1355 (((-567) (-567)) 32) (((-567)) 24)) (-2502 (((-567) (-567)) 28) (((-567)) 20)) (-3062 (((-567) (-567)) 30) (((-567)) 22)) (-3570 (((-112) (-112)) 14) (((-112)) 12)) (-2183 (((-112) (-112)) 13) (((-112)) 11)) (-3634 (((-112) (-112)) 26) (((-112)) 17)))
+(((-470) (-10 -7 (-15 -2183 ((-112))) (-15 -3570 ((-112))) (-15 -2183 ((-112) (-112))) (-15 -3570 ((-112) (-112))) (-15 -3634 ((-112))) (-15 -3062 ((-567))) (-15 -2502 ((-567))) (-15 -1355 ((-567))) (-15 -3634 ((-112) (-112))) (-15 -3062 ((-567) (-567))) (-15 -2502 ((-567) (-567))) (-15 -1355 ((-567) (-567))))) (T -470))
+((-1355 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3062 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-1355 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-2502 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3062 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470)))) (-3634 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3570 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2183 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-3570 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))) (-2183 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(-10 -7 (-15 -2183 ((-112))) (-15 -3570 ((-112))) (-15 -2183 ((-112) (-112))) (-15 -3570 ((-112) (-112))) (-15 -3634 ((-112))) (-15 -3062 ((-567))) (-15 -2502 ((-567))) (-15 -1355 ((-567))) (-15 -3634 ((-112) (-112))) (-15 -3062 ((-567) (-567))) (-15 -2502 ((-567) (-567))) (-15 -1355 ((-567) (-567))))
+((-2257 (((-112) $ $) NIL)) (-1700 (((-645 (-381)) $) 34) (((-645 (-381)) $ (-645 (-381))) 146)) (-3040 (((-645 (-1094 (-381))) $) 16) (((-645 (-1094 (-381))) $ (-645 (-1094 (-381)))) 142)) (-2626 (((-645 (-645 (-944 (-225)))) (-645 (-645 (-944 (-225)))) (-645 (-875))) 58)) (-1971 (((-645 (-645 (-944 (-225)))) $) 137)) (-1976 (((-1271) $ (-944 (-225)) (-875)) 163)) (-2118 (($ $) 136) (($ (-645 (-645 (-944 (-225))))) 149) (($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922))) 148) (($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)) (-645 (-264))) 150)) (-2451 (((-1158) $) NIL)) (-1762 (((-567) $) 110)) (-3339 (((-1120) $) NIL)) (-3401 (($) 147)) (-4320 (((-645 (-225)) (-645 (-645 (-944 (-225))))) 89)) (-2975 (((-1271) $ (-645 (-944 (-225))) (-875) (-875) (-922)) 155) (((-1271) $ (-944 (-225))) 157) (((-1271) $ (-944 (-225)) (-875) (-875) (-922)) 156)) (-4101 (((-863) $) 169) (($ (-645 (-645 (-944 (-225))))) 164)) (-3739 (((-112) $ $) NIL)) (-3647 (((-1271) $ (-944 (-225))) 162)) (-3052 (((-112) $ $) NIL)))
+(((-471) (-13 (-1100) (-10 -8 (-15 -3401 ($)) (-15 -2118 ($ $)) (-15 -2118 ($ (-645 (-645 (-944 (-225)))))) (-15 -2118 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)))) (-15 -2118 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)) (-645 (-264)))) (-15 -1971 ((-645 (-645 (-944 (-225)))) $)) (-15 -1762 ((-567) $)) (-15 -3040 ((-645 (-1094 (-381))) $)) (-15 -3040 ((-645 (-1094 (-381))) $ (-645 (-1094 (-381))))) (-15 -1700 ((-645 (-381)) $)) (-15 -1700 ((-645 (-381)) $ (-645 (-381)))) (-15 -2975 ((-1271) $ (-645 (-944 (-225))) (-875) (-875) (-922))) (-15 -2975 ((-1271) $ (-944 (-225)))) (-15 -2975 ((-1271) $ (-944 (-225)) (-875) (-875) (-922))) (-15 -3647 ((-1271) $ (-944 (-225)))) (-15 -1976 ((-1271) $ (-944 (-225)) (-875))) (-15 -4101 ($ (-645 (-645 (-944 (-225)))))) (-15 -4101 ((-863) $)) (-15 -2626 ((-645 (-645 (-944 (-225)))) (-645 (-645 (-944 (-225)))) (-645 (-875)))) (-15 -4320 ((-645 (-225)) (-645 (-645 (-944 (-225))))))))) (T -471))
+((-4101 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471)))) (-3401 (*1 *1) (-5 *1 (-471))) (-2118 (*1 *1 *1) (-5 *1 (-471))) (-2118 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) (-2118 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-922))) (-5 *1 (-471)))) (-2118 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) (-5 *4 (-645 (-922))) (-5 *5 (-645 (-264))) (-5 *1 (-471)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-471)))) (-3040 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-471)))) (-1700 (*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-1700 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471)))) (-2975 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *2 (-1271)) (-5 *1 (-471)))) (-2975 (*1 *2 *1 *3) (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1271)) (-5 *1 (-471)))) (-2975 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *2 (-1271)) (-5 *1 (-471)))) (-3647 (*1 *2 *1 *3) (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1271)) (-5 *1 (-471)))) (-1976 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *2 (-1271)) (-5 *1 (-471)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875))) (-5 *1 (-471)))) (-4320 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-645 (-225))) (-5 *1 (-471)))))
+(-13 (-1100) (-10 -8 (-15 -3401 ($)) (-15 -2118 ($ $)) (-15 -2118 ($ (-645 (-645 (-944 (-225)))))) (-15 -2118 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)))) (-15 -2118 ($ (-645 (-645 (-944 (-225)))) (-645 (-875)) (-645 (-875)) (-645 (-922)) (-645 (-264)))) (-15 -1971 ((-645 (-645 (-944 (-225)))) $)) (-15 -1762 ((-567) $)) (-15 -3040 ((-645 (-1094 (-381))) $)) (-15 -3040 ((-645 (-1094 (-381))) $ (-645 (-1094 (-381))))) (-15 -1700 ((-645 (-381)) $)) (-15 -1700 ((-645 (-381)) $ (-645 (-381)))) (-15 -2975 ((-1271) $ (-645 (-944 (-225))) (-875) (-875) (-922))) (-15 -2975 ((-1271) $ (-944 (-225)))) (-15 -2975 ((-1271) $ (-944 (-225)) (-875) (-875) (-922))) (-15 -3647 ((-1271) $ (-944 (-225)))) (-15 -1976 ((-1271) $ (-944 (-225)) (-875))) (-15 -4101 ($ (-645 (-645 (-944 (-225)))))) (-15 -4101 ((-863) $)) (-15 -2626 ((-645 (-645 (-944 (-225)))) (-645 (-645 (-944 (-225)))) (-645 (-875)))) (-15 -4320 ((-645 (-225)) (-645 (-645 (-944 (-225))))))))
+((-3156 (($ $) NIL) (($ $ $) 11)))
+(((-472 |#1| |#2| |#3|) (-10 -8 (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|))) (-473 |#2| |#3|) (-172) (-23)) (T -472))
+NIL
+(-10 -8 (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3677 ((|#2| $) 20)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 16) (($ $ $) 14)) (-3146 (($ $ $) 15)) (* (($ |#1| $) 18) (($ $ |#1|) 17)))
+(((-473 |#1| |#2|) (-140) (-172) (-23)) (T -473))
+((-3677 (*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-1468 (*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))))
+(-13 (-1100) (-10 -8 (-15 -3677 (|t#2| $)) (-15 (-1468) ($) -2131) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3156 ($ $)) (-15 -3146 ($ $ $)) (-15 -3156 ($ $ $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2972 (((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|))) 137)) (-4082 (((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 134)) (-3888 (((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))) 86)))
+(((-474 |#1| |#2| |#3|) (-10 -7 (-15 -4082 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -2972 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3888 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|))))) (-645 (-1176)) (-455) (-455)) (T -474))
+((-3888 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1176))) (-4 *6 (-455)) (-5 *2 (-2 (|:| |dpolys| (-645 (-247 *5 *6))) (|:| |coords| (-645 (-567))))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))) (-2972 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6)) (-4 *6 (-455)))) (-4082 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1176))) (-4 *6 (-455)) (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
+(-10 -7 (-15 -4082 ((-645 (-645 (-247 |#1| |#2|))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -2972 ((-3 (-645 (-484 |#1| |#2|)) "failed") (-645 (-484 |#1| |#2|)) (-645 (-865 |#1|)))) (-15 -3888 ((-2 (|:| |dpolys| (-645 (-247 |#1| |#2|))) (|:| |coords| (-645 (-567)))) (-645 (-247 |#1| |#2|)) (-645 (-865 |#1|)))))
+((-4014 (((-3 $ "failed") $) 11)) (-1443 (($ $ $) 23)) (-4272 (($ $ $) 24)) (-3168 (($ $ $) 9)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 22)))
+(((-475 |#1|) (-10 -8 (-15 -4272 (|#1| |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3168 (|#1| |#1| |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922)))) (-476)) (T -475))
+NIL
+(-10 -8 (-15 -4272 (|#1| |#1| |#1|)) (-15 -1443 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3168 (|#1| |#1| |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))))
+((-2257 (((-112) $ $) 7)) (-4061 (($) 19 T CONST)) (-4014 (((-3 $ "failed") $) 16)) (-3714 (((-112) $) 18)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 25)) (-3339 (((-1120) $) 11)) (-1443 (($ $ $) 22)) (-4272 (($ $ $) 21)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1484 (($) 20 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15)))
+(((-476) (-140)) (T -476))
+((-2559 (*1 *1 *1) (-4 *1 (-476))) (-3168 (*1 *1 *1 *1) (-4 *1 (-476))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567)))) (-1443 (*1 *1 *1 *1) (-4 *1 (-476))) (-4272 (*1 *1 *1 *1) (-4 *1 (-476))))
+(-13 (-727) (-10 -8 (-15 -2559 ($ $)) (-15 -3168 ($ $ $)) (-15 ** ($ $ (-567))) (-6 -4413) (-15 -1443 ($ $ $)) (-15 -4272 ($ $ $))))
+(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 18)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3030 (((-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-1772 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1798 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-410 (-567))) NIL) (($ $ (-1082) (-410 (-567))) NIL) (($ $ (-645 (-1082)) (-645 (-410 (-567)))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) 25)) (-2942 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2113 (($ $) 29 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 35 (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201))))) (($ $ (-1262 |#2|)) 30 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-410 (-567))) NIL)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2910 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) 28 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1262 |#2|)) 16)) (-3677 (((-410 (-567)) $) NIL)) (-1810 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1262 |#2|)) NIL) (($ (-1251 |#1| |#2| |#3|)) 9) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2339 ((|#1| $ (-410 (-567))) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) 21)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) 27)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-477 |#1| |#2| |#3|) (-13 (-1247 |#1|) (-10 -8 (-15 -4101 ($ (-1262 |#2|))) (-15 -4101 ($ (-1251 |#1| |#2| |#3|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|))) (-1050) (-1176) |#1|) (T -477))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1176)) (-14 *5 *3) (-5 *1 (-477 *3 *4 *5)))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-477 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(-13 (-1247 |#1|) (-10 -8 (-15 -4101 ($ (-1262 |#2|))) (-15 -4101 ($ (-1251 |#1| |#2| |#3|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|)))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2275 (((-1271) $ |#1| |#1|) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#2| $ |#1| |#2|) 18)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) 19)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) 16)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) NIL)) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 ((|#1| $) NIL (|has| |#1| (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 ((|#1| $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3004 (((-645 |#1|) $) NIL)) (-2121 (((-112) |#1| $) NIL)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3940 (((-645 |#1|) $) NIL)) (-1664 (((-112) |#1| $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#2| $) NIL (|has| |#1| (-851)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-478 |#1| |#2| |#3| |#4|) (-1192 |#1| |#2|) (-1100) (-1100) (-1192 |#1| |#2|) |#2|) (T -478))
+NIL
+(-1192 |#1| |#2|)
+((-2257 (((-112) $ $) NIL)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) NIL)) (-2102 (((-645 $) (-645 |#4|)) NIL)) (-2449 (((-645 |#3|) $) NIL)) (-1416 (((-112) $) NIL)) (-2739 (((-112) $) NIL (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1508 ((|#4| |#4| $) NIL)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-1551 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4061 (($) NIL T CONST)) (-3289 (((-112) $) 29 (|has| |#1| (-559)))) (-3407 (((-112) $ $) NIL (|has| |#1| (-559)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1579 (((-112) $) NIL (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2786 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) NIL)) (-1621 (($ (-645 |#4|)) NIL)) (-2061 (((-3 $ "failed") $) 45)) (-3816 ((|#4| |#4| $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-3138 (($ |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4155 ((|#4| |#4| $) NIL)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) NIL)) (-2896 (((-645 |#4|) $) 18 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4280 ((|#3| $) 38)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#4|) $) 19 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-4392 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 23)) (-4360 (((-645 |#3|) $) NIL)) (-4023 (((-112) |#3| $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3162 (((-3 |#4| "failed") $) 42)) (-2331 (((-645 |#4|) $) NIL)) (-2750 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) NIL)) (-2137 (((-112) $ $) NIL)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2703 ((|#4| |#4| $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-3 |#4| "failed") $) 40)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3809 (((-3 $ "failed") $ |#4|) 58)) (-2436 (($ $ |#4|) NIL)) (-2297 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 17)) (-3164 (($) 14)) (-3677 (((-772) $) NIL)) (-3349 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) 13)) (-3542 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 22)) (-2485 (($ $ |#3|) 52)) (-4090 (($ $ |#3|) 54)) (-4367 (($ $) NIL)) (-2716 (($ $ |#3|) NIL)) (-4101 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2718 (((-772) $) NIL (|has| |#3| (-370)))) (-3739 (((-112) $ $) NIL)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-2012 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) NIL)) (-2447 (((-112) |#3| $) NIL)) (-3052 (((-112) $ $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-479 |#1| |#2| |#3| |#4|) (-1209 |#1| |#2| |#3| |#4|) (-559) (-794) (-851) (-1065 |#1| |#2| |#3|)) (T -479))
+NIL
+(-1209 |#1| |#2| |#3| |#4|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-1621 (((-567) $) NIL) (((-410 (-567)) $) NIL)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4098 (($) 17)) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-3542 (((-381) $) 21) (((-225) $) 24) (((-410 (-1172 (-567))) $) 18) (((-539) $) 53)) (-4101 (((-863) $) 51) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (((-225) $) 23) (((-381) $) 20)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) 37 T CONST)) (-1484 (($) 8 T CONST)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-480) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))) (-1023) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1172 (-567)))) (-615 (-539)) (-10 -8 (-15 -4098 ($))))) (T -480))
+((-4098 (*1 *1) (-5 *1 (-480))))
+(-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))) (-1023) (-614 (-225)) (-614 (-381)) (-615 (-410 (-1172 (-567)))) (-615 (-539)) (-10 -8 (-15 -4098 ($))))
+((-2257 (((-112) $ $) NIL)) (-2606 (((-1135) $) 11)) (-1787 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 17) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-481) (-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))) (T -481))
+((-1787 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-481)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-481)))))
+(-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2275 (((-1271) $ |#1| |#1|) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#2| $ |#1| |#2|) 16)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) 20)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) 18)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) NIL)) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 ((|#1| $) NIL (|has| |#1| (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 ((|#1| $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3004 (((-645 |#1|) $) 13)) (-2121 (((-112) |#1| $) NIL)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3940 (((-645 |#1|) $) NIL)) (-1664 (((-112) |#1| $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#2| $) NIL (|has| |#1| (-851)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 19)) (-1552 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 11 (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2268 (((-772) $) 15 (|has| $ (-6 -4416)))))
+(((-482 |#1| |#2| |#3|) (-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416))) (-1100) (-1100) (-1158)) (T -482))
+NIL
+(-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416)))
+((-1682 (((-567) (-567) (-567)) 19)) (-2106 (((-112) (-567) (-567) (-567) (-567)) 28)) (-1466 (((-1266 (-645 (-567))) (-772) (-772)) 44)))
+(((-483) (-10 -7 (-15 -1682 ((-567) (-567) (-567))) (-15 -2106 ((-112) (-567) (-567) (-567) (-567))) (-15 -1466 ((-1266 (-645 (-567))) (-772) (-772))))) (T -483))
+((-1466 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1266 (-645 (-567)))) (-5 *1 (-483)))) (-2106 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))) (-1682 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483)))))
+(-10 -7 (-15 -1682 ((-567) (-567) (-567))) (-15 -2106 ((-112) (-567) (-567) (-567) (-567))) (-15 -1466 ((-1266 (-645 (-567))) (-772) (-772))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-865 |#1|)) $) NIL)) (-2260 (((-1172 $) $ (-865 |#1|)) NIL) (((-1172 |#2|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-3602 (($ $) NIL (|has| |#2| (-559)))) (-2119 (((-112) $) NIL (|has| |#2| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1396 (($ $) NIL (|has| |#2| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#2| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-1621 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-2414 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-2071 (($ $ (-645 (-567))) NIL)) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#2| (-910)))) (-3564 (($ $ |#2| (-485 (-2268 |#1|) (-772)) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2434 (($ (-1172 |#2|) (-865 |#1|)) NIL) (($ (-1172 $) (-865 |#1|)) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#2| (-485 (-2268 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-865 |#1|)) NIL)) (-4185 (((-485 (-2268 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-1599 (($ (-1 (-485 (-2268 |#1|) (-772)) (-485 (-2268 |#1|) (-772))) $) NIL)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-3300 (((-3 (-865 |#1|) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#2| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2451 (((-1158) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4164 (-772))) "failed") $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#2| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#2| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3347 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1930 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3677 (((-485 (-2268 |#1|) (-772)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1640 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ (-410 (-567))) NIL (-2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-485 (-2268 |#1|) (-772))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-484 |#1| |#2|) (-13 (-950 |#2| (-485 (-2268 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2071 ($ $ (-645 (-567)))))) (-645 (-1176)) (-1050)) (T -484))
+((-2071 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4)) (-14 *3 (-645 (-1176))) (-4 *4 (-1050)))))
+(-13 (-950 |#2| (-485 (-2268 |#1|) (-772)) (-865 |#1|)) (-10 -8 (-15 -2071 ($ $ (-645 (-567))))))
+((-2257 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-2865 (((-112) $) NIL (|has| |#2| (-131)))) (-4245 (($ (-922)) NIL (|has| |#2| (-1050)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2140 (($ $ $) NIL (|has| |#2| (-794)))) (-4377 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1580 (((-112) $ (-772)) NIL)) (-2013 (((-772)) NIL (|has| |#2| (-370)))) (-3179 (((-567) $) NIL (|has| |#2| (-849)))) (-4230 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1100)))) (-1621 (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) ((|#2| $) NIL (|has| |#2| (-1100)))) (-1920 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1050)))) (-4014 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1649 (($) NIL (|has| |#2| (-370)))) (-1303 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ (-567)) 15)) (-4095 (((-112) $) NIL (|has| |#2| (-849)))) (-2896 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL (|has| |#2| (-727)))) (-3948 (((-112) $) NIL (|has| |#2| (-849)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-1542 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-4392 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-3527 (((-922) $) NIL (|has| |#2| (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#2| (-1100)))) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3811 (($ (-922)) NIL (|has| |#2| (-370)))) (-3339 (((-1120) $) NIL (|has| |#2| (-1100)))) (-2048 ((|#2| $) NIL (|has| (-567) (-851)))) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-2945 ((|#2| $ $) NIL (|has| |#2| (-1050)))) (-2345 (($ (-1266 |#2|)) NIL)) (-1948 (((-134)) NIL (|has| |#2| (-365)))) (-1930 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3349 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-1266 |#2|) $) NIL) (($ (-567)) NIL (-2909 (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (($ |#2|) NIL (|has| |#2| (-1100))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2686 (((-772)) NIL (|has| |#2| (-1050)) CONST)) (-3739 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-2012 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-1771 (($ $) NIL (|has| |#2| (-849)))) (-1468 (($) NIL (|has| |#2| (-131)) CONST)) (-1484 (($) NIL (|has| |#2| (-727)) CONST)) (-2692 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3109 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3085 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3052 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-3098 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3075 (((-112) $ $) 21 (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $ $) NIL (|has| |#2| (-1050))) (($ $) NIL (|has| |#2| (-1050)))) (-3146 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-922)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1050))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-485 |#1| |#2|) (-238 |#1| |#2|) (-772) (-794)) (T -485))
NIL
(-238 |#1| |#2|)
-((-3979 (((-112) $ $) NIL)) (-2361 (((-644 (-508)) $) 14)) (-3534 (((-508) $) 12)) (-1390 (((-1157) $) NIL)) (-1760 (($ (-508) (-644 (-508))) 10)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-485) (-13 (-1082) (-10 -8 (-15 -1760 ($ (-508) (-644 (-508)))) (-15 -3534 ((-508) $)) (-15 -2361 ((-644 (-508)) $))))) (T -485))
-((-1760 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485)))))
-(-13 (-1082) (-10 -8 (-15 -1760 ($ (-508) (-644 (-508)))) (-15 -3534 ((-508) $)) (-15 -2361 ((-644 (-508)) $))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) NIL)) (-2633 (($) NIL T CONST)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-3169 (($ $ $) 50)) (-3848 (($ $ $) 49)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3936 ((|#1| $) 40)) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2668 ((|#1| $) 41)) (-1619 (($ |#1| $) 18)) (-4195 (($ (-644 |#1|)) 19)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1613 ((|#1| $) 34)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 11)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 47)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) 29 (|has| $ (-6 -4415)))))
-(((-486 |#1|) (-13 (-968 |#1|) (-10 -8 (-15 -4195 ($ (-644 |#1|))))) (-850)) (T -486))
-((-4195 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3)))))
-(-13 (-968 |#1|) (-10 -8 (-15 -4195 ($ (-644 |#1|)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2553 (($ $) 72)) (-3769 (((-112) $) NIL)) (-1390 (((-1157) $) NIL)) (-2603 (((-415 |#2| (-409 |#2|) |#3| |#4|) $) 45)) (-1944 (((-1119) $) NIL)) (-2723 (((-3 |#4| "failed") $) 118)) (-4263 (($ (-415 |#2| (-409 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-566)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-2442 (((-2 (|:| -2596 (-415 |#2| (-409 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-2725 (((-862) $) 111)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 32 T CONST)) (-2817 (((-112) $ $) 122)) (-2905 (($ $) 78) (($ $ $) NIL)) (-2897 (($ $ $) 73)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 79)))
-(((-487 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -487))
+((-2257 (((-112) $ $) NIL)) (-3192 (((-645 (-509)) $) 14)) (-1817 (((-509) $) 12)) (-2451 (((-1158) $) NIL)) (-3437 (($ (-509) (-645 (-509))) 10)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 21) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-486) (-13 (-1083) (-10 -8 (-15 -3437 ($ (-509) (-645 (-509)))) (-15 -1817 ((-509) $)) (-15 -3192 ((-645 (-509)) $))))) (T -486))
+((-3437 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-509))) (-5 *2 (-509)) (-5 *1 (-486)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486)))) (-3192 (*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-486)))))
+(-13 (-1083) (-10 -8 (-15 -3437 ($ (-509) (-645 (-509)))) (-15 -1817 ((-509) $)) (-15 -3192 ((-645 (-509)) $))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) NIL)) (-4061 (($) NIL T CONST)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-3492 (($ $ $) 50)) (-3768 (($ $ $) 49)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1802 ((|#1| $) 40)) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4341 ((|#1| $) 41)) (-1336 (($ |#1| $) 18)) (-2877 (($ (-645 |#1|)) 19)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-4394 ((|#1| $) 34)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 11)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 47)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) 29 (|has| $ (-6 -4416)))))
+(((-487 |#1|) (-13 (-969 |#1|) (-10 -8 (-15 -2877 ($ (-645 |#1|))))) (-851)) (T -487))
+((-2877 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3)))))
+(-13 (-969 |#1|) (-10 -8 (-15 -2877 ($ (-645 |#1|)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3402 (($ $) 72)) (-4206 (((-112) $) NIL)) (-2451 (((-1158) $) NIL)) (-1956 (((-416 |#2| (-410 |#2|) |#3| |#4|) $) 45)) (-3339 (((-1120) $) NIL)) (-4099 (((-3 |#4| "failed") $) 118)) (-2277 (($ (-416 |#2| (-410 |#2|) |#3| |#4|)) 82) (($ |#4|) 31) (($ |#1| |#1|) 128) (($ |#1| |#1| (-567)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 141)) (-2912 (((-2 (|:| -3978 (-416 |#2| (-410 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47)) (-4101 (((-863) $) 111)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 32 T CONST)) (-3052 (((-112) $ $) 122)) (-3156 (($ $) 78) (($ $ $) NIL)) (-3146 (($ $ $) 73)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 79)))
+(((-488 |#1| |#2| |#3| |#4|) (-337 |#1| |#2| |#3| |#4|) (-365) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -488))
NIL
(-337 |#1| |#2| |#3| |#4|)
-((-4363 (((-566) (-644 (-566))) 55)) (-2112 ((|#1| (-644 |#1|)) 97)) (-4067 (((-644 |#1|) (-644 |#1|)) 98)) (-3885 (((-644 |#1|) (-644 |#1|)) 100)) (-1885 ((|#1| (-644 |#1|)) 99)) (-4330 (((-644 (-566)) (-644 |#1|)) 58)))
-(((-488 |#1|) (-10 -7 (-15 -1885 (|#1| (-644 |#1|))) (-15 -2112 (|#1| (-644 |#1|))) (-15 -3885 ((-644 |#1|) (-644 |#1|))) (-15 -4067 ((-644 |#1|) (-644 |#1|))) (-15 -4330 ((-644 (-566)) (-644 |#1|))) (-15 -4363 ((-566) (-644 (-566))))) (-1241 (-566))) (T -488))
-((-4363 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4)) (-4 *4 (-1241 *2)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1241 (-566))) (-5 *2 (-644 (-566))) (-5 *1 (-488 *4)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1241 (-566))) (-5 *1 (-488 *3)))) (-3885 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1241 (-566))) (-5 *1 (-488 *3)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1241 (-566))))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1241 (-566))))))
-(-10 -7 (-15 -1885 (|#1| (-644 |#1|))) (-15 -2112 (|#1| (-644 |#1|))) (-15 -3885 ((-644 |#1|) (-644 |#1|))) (-15 -4067 ((-644 |#1|) (-644 |#1|))) (-15 -4330 ((-644 (-566)) (-644 |#1|))) (-15 -4363 ((-566) (-644 (-566)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 (((-566) $) NIL (|has| (-566) (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| (-566) (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-566) (-1038 (-566))))) (-3343 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-566) (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| (-566) (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 (((-566) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2307 (((-112) $) NIL (|has| (-566) (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-566) (-850)))) (-2101 (($ (-1 (-566) (-566)) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-566) (-1150)) CONST)) (-1659 (($ (-409 (-566))) 9)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) NIL)) (-2311 (((-566) $) NIL (|has| (-566) (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3792 (((-771) $) NIL)) (-3282 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3233 (($ $) NIL)) (-2702 (((-566) $) NIL)) (-2150 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 8) (($ (-566)) NIL) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL) (((-1004 16) $) 10)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2875 (((-771)) NIL T CONST)) (-2119 (((-566) $) NIL (|has| (-566) (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| (-566) (-820)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2865 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2916 (($ $ $) NIL) (($ (-566) (-566)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) NIL) (($ $ (-566)) NIL)))
-(((-489) (-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -1659 ($ (-409 (-566))))))) (T -489))
-((-2941 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))) (-1659 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))))
-(-13 (-992 (-566)) (-613 (-409 (-566))) (-613 (-1004 16)) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -1659 ($ (-409 (-566))))))
-((-2565 (((-644 |#2|) $) 29)) (-3938 (((-112) |#2| $) 34)) (-1900 (((-112) (-1 (-112) |#2|) $) 24)) (-1754 (($ $ (-644 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-644 |#2|) (-644 |#2|)) NIL)) (-1958 (((-771) (-1 (-112) |#2|) $) 28) (((-771) |#2| $) 32)) (-2725 (((-862) $) 43)) (-2610 (((-112) (-1 (-112) |#2|) $) 23)) (-2817 (((-112) $ $) 37)) (-3991 (((-771) $) 18)))
-(((-490 |#1| |#2|) (-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#2| |#2|)) (-15 -1754 (|#1| |#1| (-295 |#2|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3938 ((-112) |#2| |#1|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -2565 ((-644 |#2|) |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3991 ((-771) |#1|))) (-491 |#2|) (-1215)) (T -490))
-NIL
-(-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#2| |#2|)) (-15 -1754 (|#1| |#1| (-295 |#2|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#2|)))) (-15 -3938 ((-112) |#2| |#1|)) (-15 -1958 ((-771) |#2| |#1|)) (-15 -2565 ((-644 |#2|) |#1|)) (-15 -1958 ((-771) (-1 (-112) |#2|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3991 ((-771) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-2633 (($) 7 T CONST)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-491 |#1|) (-140) (-1215)) (T -491))
-((-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3)) (-4 *3 (-1215)))) (-3023 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4416)) (-4 *1 (-491 *3)) (-4 *3 (-1215)))) (-2610 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *4)) (-4 *4 (-1215)) (-5 *2 (-112)))) (-1900 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *4)) (-4 *4 (-1215)) (-5 *2 (-112)))) (-1958 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *4)) (-4 *4 (-1215)) (-5 *2 (-771)))) (-1523 (*1 *2 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215)) (-5 *2 (-644 *3)))) (-2565 (*1 *2 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215)) (-5 *2 (-644 *3)))) (-1958 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215)) (-4 *3 (-1099)) (-5 *2 (-771)))) (-3938 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |t#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |t#1| (-1099)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2101 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4416)) (-15 -3023 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4415)) (PROGN (-15 -2610 ((-112) (-1 (-112) |t#1|) $)) (-15 -1900 ((-112) (-1 (-112) |t#1|) $)) (-15 -1958 ((-771) (-1 (-112) |t#1|) $)) (-15 -1523 ((-644 |t#1|) $)) (-15 -2565 ((-644 |t#1|) $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -1958 ((-771) |t#1| $)) (-15 -3938 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-2725 ((|#1| $) 6) (($ |#1|) 9)))
-(((-492 |#1|) (-140) (-1215)) (T -492))
-NIL
-(-13 (-613 |t#1|) (-616 |t#1|))
-(((-616 |#1|) . T) ((-613 |#1|) . T))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1354 (($ (-1157)) 8)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 15) (((-1157) $) 12)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 11)))
-(((-493) (-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -1354 ($ (-1157)))))) (T -493))
-((-1354 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493)))))
-(-13 (-1099) (-613 (-1157)) (-10 -8 (-15 -1354 ($ (-1157)))))
-((-3622 (($ $) 15)) (-3601 (($ $) 24)) (-3648 (($ $) 12)) (-3658 (($ $) 10)) (-3635 (($ $) 17)) (-3612 (($ $) 22)))
-(((-494 |#1|) (-10 -8 (-15 -3612 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3658 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3601 (|#1| |#1|)) (-15 -3622 (|#1| |#1|))) (-495)) (T -494))
-NIL
-(-10 -8 (-15 -3612 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3658 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3601 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)))
-((-3622 (($ $) 11)) (-3601 (($ $) 10)) (-3648 (($ $) 9)) (-3658 (($ $) 8)) (-3635 (($ $) 7)) (-3612 (($ $) 6)))
-(((-495) (-140)) (T -495))
-((-3622 (*1 *1 *1) (-4 *1 (-495))) (-3601 (*1 *1 *1) (-4 *1 (-495))) (-3648 (*1 *1 *1) (-4 *1 (-495))) (-3658 (*1 *1 *1) (-4 *1 (-495))) (-3635 (*1 *1 *1) (-4 *1 (-495))) (-3612 (*1 *1 *1) (-4 *1 (-495))))
-(-13 (-10 -8 (-15 -3612 ($ $)) (-15 -3635 ($ $)) (-15 -3658 ($ $)) (-15 -3648 ($ $)) (-15 -3601 ($ $)) (-15 -3622 ($ $))))
-((-4018 (((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)) 54)))
-(((-496 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|)))) (-365) (-1241 |#1|) (-13 (-365) (-147) (-724 |#1| |#2|)) (-1241 |#3|)) (T -496))
-((-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3)) (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1241 *7)))))
-(-10 -7 (-15 -4018 ((-420 |#4|) |#4| (-1 (-420 |#2|) |#2|))))
-((-3979 (((-112) $ $) NIL)) (-1454 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-3542 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-3545 (((-112) $) 39)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3309 (((-112) $ $) 73)) (-3860 (((-644 (-612 $)) $) 50)) (-4113 (((-3 $ "failed") $ $) NIL)) (-1713 (($ $ (-295 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4028 (($ $) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-1748 (((-644 $) (-1171 $) (-1175)) NIL) (((-644 $) (-1171 $)) NIL) (((-644 $) (-952 $)) NIL)) (-2563 (($ (-1171 $) (-1175)) NIL) (($ (-1171 $)) NIL) (($ (-952 $)) NIL)) (-2023 (((-3 (-612 $) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL)) (-3343 (((-612 $) $) NIL) (((-566) $) NIL) (((-409 (-566)) $) 55)) (-3919 (($ $ $) NIL)) (-3717 (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-409 (-566)))) (|:| |vec| (-1265 (-409 (-566))))) (-689 $) (-1265 $)) NIL) (((-689 (-409 (-566))) (-689 $)) NIL)) (-2553 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3206 (($ $) NIL) (($ (-644 $)) NIL)) (-3684 (((-644 (-114)) $) NIL)) (-3959 (((-114) (-114)) NIL)) (-3842 (((-112) $) 42)) (-1687 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-2691 (((-1124 (-566) (-612 $)) $) 37)) (-2810 (($ $ (-566)) NIL)) (-3202 (((-1171 $) (-1171 $) (-612 $)) 87) (((-1171 $) (-1171 $) (-644 (-612 $))) 62) (($ $ (-612 $)) 76) (($ $ (-644 (-612 $))) 77)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2391 (((-1171 $) (-612 $)) 74 (|has| $ (-1049)))) (-2101 (($ (-1 $ $) (-612 $)) NIL)) (-3308 (((-3 (-612 $) "failed") $) NIL)) (-1853 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-3944 (((-644 (-612 $)) $) NIL)) (-2770 (($ (-114) $) NIL) (($ (-114) (-644 $)) NIL)) (-3044 (((-112) $ (-114)) NIL) (((-112) $ (-1175)) NIL)) (-4282 (($ $) NIL)) (-1695 (((-771) $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ (-644 $)) NIL) (($ $ $) NIL)) (-3761 (((-112) $ $) NIL) (((-112) $ (-1175)) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3934 (((-112) $) NIL (|has| $ (-1038 (-566))))) (-1754 (($ $ (-612 $) $) NIL) (($ $ (-644 (-612 $)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-1175)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-1175) (-1 $ (-644 $))) NIL) (($ $ (-1175) (-1 $ $)) NIL) (($ $ (-644 (-114)) (-644 (-1 $ $))) NIL) (($ $ (-644 (-114)) (-644 (-1 $ (-644 $)))) NIL) (($ $ (-114) (-1 $ (-644 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3792 (((-771) $) NIL)) (-3282 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-644 $)) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2220 (($ $) NIL) (($ $ $) NIL)) (-3009 (($ $ (-771)) NIL) (($ $) 36)) (-2702 (((-1124 (-566) (-612 $)) $) 20)) (-2880 (($ $) NIL (|has| $ (-1049)))) (-2150 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-2725 (((-862) $) NIL) (($ (-612 $)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-1124 (-566) (-612 $))) 21)) (-2875 (((-771)) NIL T CONST)) (-3016 (($ $) NIL) (($ (-644 $)) NIL)) (-2827 (((-112) (-114)) 93)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) 10 T CONST)) (-3214 (($) 22 T CONST)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2817 (((-112) $ $) 24)) (-2916 (($ $ $) 44)) (-2905 (($ $ $) NIL) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-409 (-566))) NIL) (($ $ (-566)) 48) (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ $ $) 27) (($ (-566) $) NIL) (($ (-771) $) NIL) (($ (-921) $) NIL)))
-(((-497) (-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2725 ($ (-1124 (-566) (-612 $)))) (-15 -2691 ((-1124 (-566) (-612 $)) $)) (-15 -2702 ((-1124 (-566) (-612 $)) $)) (-15 -2553 ($ $)) (-15 -3309 ((-112) $ $)) (-15 -3202 ((-1171 $) (-1171 $) (-612 $))) (-15 -3202 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -3202 ($ $ (-612 $))) (-15 -3202 ($ $ (-644 (-612 $))))))) (T -497))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-2702 (*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497)))) (-2553 (*1 *1 *1) (-5 *1 (-497))) (-3309 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497)))) (-3202 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497)))) (-3202 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497)))) (-5 *1 (-497)))) (-3202 (*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497)))) (-3202 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497)))))
-(-13 (-303) (-27) (-1038 (-566)) (-1038 (-409 (-566))) (-639 (-566)) (-1022) (-639 (-409 (-566))) (-147) (-614 (-169 (-381))) (-233) (-10 -8 (-15 -2725 ($ (-1124 (-566) (-612 $)))) (-15 -2691 ((-1124 (-566) (-612 $)) $)) (-15 -2702 ((-1124 (-566) (-612 $)) $)) (-15 -2553 ($ $)) (-15 -3309 ((-112) $ $)) (-15 -3202 ((-1171 $) (-1171 $) (-612 $))) (-15 -3202 ((-1171 $) (-1171 $) (-644 (-612 $)))) (-15 -3202 ($ $ (-612 $))) (-15 -3202 ($ $ (-644 (-612 $))))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) |#1|) 47 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 41)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) 21)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 17 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) 44 (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) 15 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 19)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 46) (($ $ (-1232 (-566))) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 24)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) 11 (|has| $ (-6 -4415)))))
-(((-498 |#1| |#2|) (-19 |#1|) (-1215) (-566)) (T -498))
+((-1994 (((-567) (-645 (-567))) 55)) (-3794 ((|#1| (-645 |#1|)) 97)) (-3982 (((-645 |#1|) (-645 |#1|)) 98)) (-2961 (((-645 |#1|) (-645 |#1|)) 100)) (-3276 ((|#1| (-645 |#1|)) 99)) (-1640 (((-645 (-567)) (-645 |#1|)) 58)))
+(((-489 |#1|) (-10 -7 (-15 -3276 (|#1| (-645 |#1|))) (-15 -3794 (|#1| (-645 |#1|))) (-15 -2961 ((-645 |#1|) (-645 |#1|))) (-15 -3982 ((-645 |#1|) (-645 |#1|))) (-15 -1640 ((-645 (-567)) (-645 |#1|))) (-15 -1994 ((-567) (-645 (-567))))) (-1242 (-567))) (T -489))
+((-1994 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4)) (-4 *4 (-1242 *2)))) (-1640 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1242 (-567))) (-5 *2 (-645 (-567))) (-5 *1 (-489 *4)))) (-3982 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1242 (-567))) (-5 *1 (-489 *3)))) (-2961 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1242 (-567))) (-5 *1 (-489 *3)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1242 (-567))))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1242 (-567))))))
+(-10 -7 (-15 -3276 (|#1| (-645 |#1|))) (-15 -3794 (|#1| (-645 |#1|))) (-15 -2961 ((-645 |#1|) (-645 |#1|))) (-15 -3982 ((-645 |#1|) (-645 |#1|))) (-15 -1640 ((-645 (-567)) (-645 |#1|))) (-15 -1994 ((-567) (-645 (-567)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 (((-567) $) NIL (|has| (-567) (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| (-567) (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (|has| (-567) (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-567) (-1039 (-567))))) (-1621 (((-567) $) NIL) (((-1176) $) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-567) (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| (-567) (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 (((-567) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| (-567) (-1151)))) (-3948 (((-112) $) NIL (|has| (-567) (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-567) (-851)))) (-3494 (($ (-1 (-567) (-567)) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-567) (-1151)) CONST)) (-1795 (($ (-410 (-567))) 9)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) NIL)) (-3992 (((-567) $) NIL (|has| (-567) (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1176)) (-645 (-567))) NIL (|has| (-567) (-517 (-1176) (-567)))) (($ $ (-1176) (-567)) NIL (|has| (-567) (-517 (-1176) (-567))))) (-4369 (((-772) $) NIL)) (-1552 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2870 (($ $) NIL)) (-4078 (((-567) $) NIL)) (-3542 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 8) (($ (-567)) NIL) (($ (-1176)) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) NIL) (((-1005 16) $) 10)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-2686 (((-772)) NIL T CONST)) (-2721 (((-567) $) NIL (|has| (-567) (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| (-567) (-821)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3109 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3168 (($ $ $) NIL) (($ (-567) (-567)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) NIL) (($ $ (-567)) NIL)))
+(((-490) (-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 16)) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -1795 ($ (-410 (-567))))))) (T -490))
+((-1987 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))) (-1795 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))))
+(-13 (-993 (-567)) (-614 (-410 (-567))) (-614 (-1005 16)) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -1795 ($ (-410 (-567))))))
+((-1542 (((-645 |#2|) $) 29)) (-2176 (((-112) |#2| $) 34)) (-2297 (((-112) (-1 (-112) |#2|) $) 24)) (-3140 (($ $ (-645 (-295 |#2|))) 13) (($ $ (-295 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-645 |#2|) (-645 |#2|)) NIL)) (-3349 (((-772) (-1 (-112) |#2|) $) 28) (((-772) |#2| $) 32)) (-4101 (((-863) $) 43)) (-2012 (((-112) (-1 (-112) |#2|) $) 23)) (-3052 (((-112) $ $) 37)) (-2268 (((-772) $) 18)))
+(((-491 |#1| |#2|) (-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#2| |#2|)) (-15 -3140 (|#1| |#1| (-295 |#2|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2176 ((-112) |#2| |#1|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -1542 ((-645 |#2|) |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2268 ((-772) |#1|))) (-492 |#2|) (-1216)) (T -491))
+NIL
+(-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#2| |#2|)) (-15 -3140 (|#1| |#1| (-295 |#2|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#2|)))) (-15 -2176 ((-112) |#2| |#1|)) (-15 -3349 ((-772) |#2| |#1|)) (-15 -1542 ((-645 |#2|) |#1|)) (-15 -3349 ((-772) (-1 (-112) |#2|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2268 ((-772) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-4061 (($) 7 T CONST)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-492 |#1|) (-140) (-1216)) (T -492))
+((-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1216)))) (-4392 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *3)) (-4 *3 (-1216)))) (-2012 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4416)) (-4 *1 (-492 *4)) (-4 *4 (-1216)) (-5 *2 (-112)))) (-2297 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4416)) (-4 *1 (-492 *4)) (-4 *4 (-1216)) (-5 *2 (-112)))) (-3349 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4416)) (-4 *1 (-492 *4)) (-4 *4 (-1216)) (-5 *2 (-772)))) (-2896 (*1 *2 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216)) (-5 *2 (-645 *3)))) (-1542 (*1 *2 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216)) (-5 *2 (-645 *3)))) (-3349 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216)) (-4 *3 (-1100)) (-5 *2 (-772)))) (-2176 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |t#1| (-1100)) (-6 (-1100)) |%noBranch|) (IF (|has| |t#1| (-1100)) (IF (|has| |t#1| (-310 |t#1|)) (-6 (-310 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3494 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4417)) (-15 -4392 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4416)) (PROGN (-15 -2012 ((-112) (-1 (-112) |t#1|) $)) (-15 -2297 ((-112) (-1 (-112) |t#1|) $)) (-15 -3349 ((-772) (-1 (-112) |t#1|) $)) (-15 -2896 ((-645 |t#1|) $)) (-15 -1542 ((-645 |t#1|) $)) (IF (|has| |t#1| (-1100)) (PROGN (-15 -3349 ((-772) |t#1| $)) (-15 -2176 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-4101 ((|#1| $) 6) (($ |#1|) 9)))
+(((-493 |#1|) (-140) (-1216)) (T -493))
+NIL
+(-13 (-614 |t#1|) (-617 |t#1|))
+(((-617 |#1|) . T) ((-614 |#1|) . T))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3950 (($ (-1158)) 8)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 15) (((-1158) $) 12)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 11)))
+(((-494) (-13 (-1100) (-614 (-1158)) (-10 -8 (-15 -3950 ($ (-1158)))))) (T -494))
+((-3950 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-494)))))
+(-13 (-1100) (-614 (-1158)) (-10 -8 (-15 -3950 ($ (-1158)))))
+((-1772 (($ $) 15)) (-1747 (($ $) 24)) (-1798 (($ $) 12)) (-1810 (($ $) 10)) (-1784 (($ $) 17)) (-1757 (($ $) 22)))
+(((-495 |#1|) (-10 -8 (-15 -1757 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1810 (|#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1772 (|#1| |#1|))) (-496)) (T -495))
+NIL
+(-10 -8 (-15 -1757 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1810 (|#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1772 (|#1| |#1|)))
+((-1772 (($ $) 11)) (-1747 (($ $) 10)) (-1798 (($ $) 9)) (-1810 (($ $) 8)) (-1784 (($ $) 7)) (-1757 (($ $) 6)))
+(((-496) (-140)) (T -496))
+((-1772 (*1 *1 *1) (-4 *1 (-496))) (-1747 (*1 *1 *1) (-4 *1 (-496))) (-1798 (*1 *1 *1) (-4 *1 (-496))) (-1810 (*1 *1 *1) (-4 *1 (-496))) (-1784 (*1 *1 *1) (-4 *1 (-496))) (-1757 (*1 *1 *1) (-4 *1 (-496))))
+(-13 (-10 -8 (-15 -1757 ($ $)) (-15 -1784 ($ $)) (-15 -1810 ($ $)) (-15 -1798 ($ $)) (-15 -1747 ($ $)) (-15 -1772 ($ $))))
+((-2296 (((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)) 54)))
+(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|)))) (-365) (-1242 |#1|) (-13 (-365) (-147) (-725 |#1| |#2|)) (-1242 |#3|)) (T -497))
+((-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365)) (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3)) (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1242 *7)))))
+(-10 -7 (-15 -2296 ((-421 |#4|) |#4| (-1 (-421 |#2|) |#2|))))
+((-2257 (((-112) $ $) NIL)) (-3519 (((-645 $) (-1172 $) (-1176)) NIL) (((-645 $) (-1172 $)) NIL) (((-645 $) (-953 $)) NIL)) (-2836 (($ (-1172 $) (-1176)) NIL) (($ (-1172 $)) NIL) (($ (-953 $)) NIL)) (-2865 (((-112) $) 39)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2389 (((-112) $ $) 73)) (-2138 (((-645 (-613 $)) $) 50)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3099 (($ $ (-295 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-2307 (($ $) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-3348 (((-645 $) (-1172 $) (-1176)) NIL) (((-645 $) (-1172 $)) NIL) (((-645 $) (-953 $)) NIL)) (-1515 (($ (-1172 $) (-1176)) NIL) (($ (-1172 $)) NIL) (($ (-953 $)) NIL)) (-3417 (((-3 (-613 $) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL)) (-1621 (((-613 $) $) NIL) (((-567) $) NIL) (((-410 (-567)) $) 55)) (-2197 (($ $ $) NIL)) (-1920 (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-410 (-567)))) (|:| |vec| (-1266 (-410 (-567))))) (-690 $) (-1266 $)) NIL) (((-690 (-410 (-567))) (-690 $)) NIL)) (-3402 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-3775 (($ $) NIL) (($ (-645 $)) NIL)) (-1583 (((-645 (-114)) $) NIL)) (-2236 (((-114) (-114)) NIL)) (-3714 (((-112) $) 42)) (-3937 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-4067 (((-1125 (-567) (-613 $)) $) 37)) (-3287 (($ $ (-567)) NIL)) (-3751 (((-1172 $) (-1172 $) (-613 $)) 87) (((-1172 $) (-1172 $) (-645 (-613 $))) 62) (($ $ (-613 $)) 76) (($ $ (-645 (-613 $))) 77)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3612 (((-1172 $) (-613 $)) 74 (|has| $ (-1050)))) (-3494 (($ (-1 $ $) (-613 $)) NIL)) (-2378 (((-3 (-613 $) "failed") $) NIL)) (-3245 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-2224 (((-645 (-613 $)) $) NIL)) (-4147 (($ (-114) $) NIL) (($ (-114) (-645 $)) NIL)) (-1527 (((-112) $ (-114)) NIL) (((-112) $ (-1176)) NIL)) (-2559 (($ $) NIL)) (-3080 (((-772) $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ (-645 $)) NIL) (($ $ $) NIL)) (-4151 (((-112) $ $) NIL) (((-112) $ (-1176)) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2143 (((-112) $) NIL (|has| $ (-1039 (-567))))) (-3140 (($ $ (-613 $) $) NIL) (($ $ (-645 (-613 $)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-1176)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-1176) (-1 $ (-645 $))) NIL) (($ $ (-1176) (-1 $ $)) NIL) (($ $ (-645 (-114)) (-645 (-1 $ $))) NIL) (($ $ (-645 (-114)) (-645 (-1 $ (-645 $)))) NIL) (($ $ (-114) (-1 $ (-645 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4369 (((-772) $) NIL)) (-1552 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-645 $)) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2468 (($ $) NIL) (($ $ $) NIL)) (-1930 (($ $ (-772)) NIL) (($ $) 36)) (-4078 (((-1125 (-567) (-613 $)) $) 20)) (-2713 (($ $) NIL (|has| $ (-1050)))) (-3542 (((-381) $) 101) (((-225) $) 109) (((-169 (-381)) $) 117)) (-4101 (((-863) $) NIL) (($ (-613 $)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-1125 (-567) (-613 $))) 21)) (-2686 (((-772)) NIL T CONST)) (-4385 (($ $) NIL) (($ (-645 $)) NIL)) (-2214 (((-112) (-114)) 93)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) 10 T CONST)) (-1484 (($) 22 T CONST)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3052 (((-112) $ $) 24)) (-3168 (($ $ $) 44)) (-3156 (($ $ $) NIL) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-410 (-567))) NIL) (($ $ (-567)) 48) (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ $ $) 27) (($ (-567) $) NIL) (($ (-772) $) NIL) (($ (-922) $) NIL)))
+(((-498) (-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4101 ($ (-1125 (-567) (-613 $)))) (-15 -4067 ((-1125 (-567) (-613 $)) $)) (-15 -4078 ((-1125 (-567) (-613 $)) $)) (-15 -3402 ($ $)) (-15 -2389 ((-112) $ $)) (-15 -3751 ((-1172 $) (-1172 $) (-613 $))) (-15 -3751 ((-1172 $) (-1172 $) (-645 (-613 $)))) (-15 -3751 ($ $ (-613 $))) (-15 -3751 ($ $ (-645 (-613 $))))))) (T -498))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1125 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-4078 (*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-498)))) (-5 *1 (-498)))) (-3402 (*1 *1 *1) (-5 *1 (-498))) (-2389 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 (-498))) (-5 *3 (-645 (-613 (-498)))) (-5 *1 (-498)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498)))) (-3751 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498)))))
+(-13 (-303) (-27) (-1039 (-567)) (-1039 (-410 (-567))) (-640 (-567)) (-1023) (-640 (-410 (-567))) (-147) (-615 (-169 (-381))) (-233) (-10 -8 (-15 -4101 ($ (-1125 (-567) (-613 $)))) (-15 -4067 ((-1125 (-567) (-613 $)) $)) (-15 -4078 ((-1125 (-567) (-613 $)) $)) (-15 -3402 ($ $)) (-15 -2389 ((-112) $ $)) (-15 -3751 ((-1172 $) (-1172 $) (-613 $))) (-15 -3751 ((-1172 $) (-1172 $) (-645 (-613 $)))) (-15 -3751 ($ $ (-613 $))) (-15 -3751 ($ $ (-645 (-613 $))))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) |#1|) 47 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 41)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) 21)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 17 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) 44 (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 32 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 38)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) 15 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 19)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 46) (($ $ (-1233 (-567))) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 24)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) 11 (|has| $ (-6 -4416)))))
+(((-499 |#1| |#2|) (-19 |#1|) (-1216) (-567)) (T -499))
NIL
(-19 |#1|)
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) (-566) |#1|) NIL)) (-1629 (($ $ (-566) (-498 |#1| |#3|)) NIL)) (-3918 (($ $ (-566) (-498 |#1| |#2|)) NIL)) (-2633 (($) NIL T CONST)) (-1703 (((-498 |#1| |#3|) $ (-566)) NIL)) (-3031 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2975 ((|#1| $ (-566) (-566)) NIL)) (-1523 (((-644 |#1|) $) NIL)) (-2368 (((-771) $) NIL)) (-2631 (($ (-771) (-771) |#1|) NIL)) (-2378 (((-771) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2110 (((-566) $) NIL)) (-4086 (((-566) $) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2952 (((-566) $) NIL)) (-4280 (((-566) $) NIL)) (-3023 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-1428 (((-498 |#1| |#2|) $ (-566)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-499 |#1| |#2| |#3|) (-57 |#1| (-498 |#1| |#3|) (-498 |#1| |#2|)) (-1215) (-566) (-566)) (T -499))
-NIL
-(-57 |#1| (-498 |#1| |#3|) (-498 |#1| |#2|))
-((-4289 (((-644 (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771)) 33)) (-1537 (((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771)) 43)) (-2936 (((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)) 111)))
-(((-500 |#1| |#2| |#3|) (-10 -7 (-15 -1537 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -4289 ((-644 (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -2936 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771)))) (-351) (-1241 |#1|) (-1241 |#2|)) (T -500))
-((-2936 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-2 (|:| -2227 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7))))) (-5 *5 (-771)) (-4 *8 (-1241 *7)) (-4 *7 (-1241 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -2227 (-689 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-689 *7)))) (-5 *1 (-500 *6 *7 *8)))) (-4289 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1241 *5)) (-5 *2 (-644 (-2 (|:| -2227 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6))))) (-5 *1 (-500 *5 *6 *7)) (-5 *3 (-2 (|:| -2227 (-689 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-689 *6)))) (-4 *7 (-1241 *6)))) (-1537 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1241 *3)) (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6)) (-4 *6 (-1241 *5)))))
-(-10 -7 (-15 -1537 ((-644 (-1171 |#1|)) |#1| (-771) (-771) (-771))) (-15 -4289 ((-644 (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-771) (-771))) (-15 -2936 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) (-644 |#3|) (-644 (-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) (-771))))
-((-2154 (((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))) 74)) (-3020 ((|#1| (-689 |#1|) |#1| (-771)) 27)) (-3957 (((-771) (-771) (-771)) 36)) (-3472 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 54)) (-1580 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 62) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 59)) (-4234 ((|#1| (-689 |#1|) (-689 |#1|) |#1| (-566)) 31)) (-1858 ((|#1| (-689 |#1|)) 18)))
-(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -1858 (|#1| (-689 |#1|))) (-15 -3020 (|#1| (-689 |#1|) |#1| (-771))) (-15 -4234 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -3957 ((-771) (-771) (-771))) (-15 -1580 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1580 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -3472 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2154 ((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|)))))) (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))) (-1241 |#1|) (-411 |#1| |#2|)) (T -501))
-((-2154 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3472 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-1580 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-1580 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-3957 (*1 *2 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))) (-4234 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-566)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *5 (-1241 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-3020 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-689 *2)) (-5 *4 (-771)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-4 *5 (-1241 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-689 *2)) (-4 *4 (-1241 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $))))) (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4)))))
-(-10 -7 (-15 -1858 (|#1| (-689 |#1|))) (-15 -3020 (|#1| (-689 |#1|) |#1| (-771))) (-15 -4234 (|#1| (-689 |#1|) (-689 |#1|) |#1| (-566))) (-15 -3957 ((-771) (-771) (-771))) (-15 -1580 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -1580 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -3472 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2154 ((-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))) (-2 (|:| -2227 (-689 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-689 |#1|))))))
-((-3979 (((-112) $ $) NIL)) (-4001 (($ $) NIL)) (-3171 (($ $ $) 40)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) $) NIL (|has| (-112) (-850))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3190 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-850)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-3370 (($ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2858 (((-112) $ (-1232 (-566)) (-112)) NIL (|has| $ (-6 -4416))) (((-112) $ (-566) (-112)) 42 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-1752 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-2553 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-3031 (((-112) $ (-566) (-112)) NIL (|has| $ (-6 -4416)))) (-2975 (((-112) $ (-566)) NIL)) (-2388 (((-566) (-112) $ (-566)) NIL (|has| (-112) (-1099))) (((-566) (-112) $) NIL (|has| (-112) (-1099))) (((-566) (-1 (-112) (-112)) $) NIL)) (-1523 (((-644 (-112)) $) NIL (|has| $ (-6 -4415)))) (-3157 (($ $ $) 38)) (-3129 (($ $) NIL)) (-3120 (($ $ $) NIL)) (-2631 (($ (-771) (-112)) 27)) (-2336 (($ $ $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 8 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL)) (-3848 (($ $ $) NIL (|has| (-112) (-850))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-2565 (((-644 (-112)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL)) (-3023 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1510 (($ $ $ (-566)) NIL) (($ (-112) $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-112) $) NIL (|has| (-566) (-850)))) (-3567 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3598 (($ $ (-112)) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-112)) (-644 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099)))) (($ $ (-644 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099))))) (-1948 (((-644 (-112)) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 28)) (-3282 (($ $ (-1232 (-566))) NIL) (((-112) $ (-566)) 22) (((-112) $ (-566) (-112)) NIL)) (-1302 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-1958 (((-771) (-112) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-112) (-1099)))) (((-771) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) 29)) (-2150 (((-538) $) NIL (|has| (-112) (-614 (-538))))) (-2738 (($ (-644 (-112))) NIL)) (-4007 (($ (-644 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2725 (((-862) $) 26)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4415)))) (-3144 (($ $ $) 36)) (-4049 (($ $ $) NIL)) (-3776 (($ $ $) 45)) (-3787 (($ $) 43)) (-3763 (($ $ $) 44)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 30)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 31)) (-4036 (($ $ $) NIL)) (-3991 (((-771) $) 13 (|has| $ (-6 -4415)))))
-(((-502 |#1|) (-13 (-123) (-10 -8 (-15 -3787 ($ $)) (-15 -3776 ($ $ $)) (-15 -3763 ($ $ $)))) (-566)) (T -502))
-((-3787 (*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-3776 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))) (-3763 (*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566)))))
-(-13 (-123) (-10 -8 (-15 -3787 ($ $)) (-15 -3776 ($ $ $)) (-15 -3763 ($ $ $))))
-((-3588 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|)) 35)) (-2760 (((-1171 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1171 |#4|)) 22)) (-3337 (((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|))) 49)) (-3809 (((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
-(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2760 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -2760 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3588 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3337 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -3809 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|))) (-1049) (-1241 |#1|) (-1241 |#2|) (-1049)) (T -503))
-((-3809 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *6 (-1241 *5)) (-5 *2 (-1171 (-1171 *7))) (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1241 *6)))) (-3337 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-1241 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8)) (-4 *7 (-1241 *6)))) (-3588 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1241 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1241 *2)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *4 (-1241 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7)) (-4 *6 (-1241 *4)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1241 *5)) (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1241 *2)))))
-(-10 -7 (-15 -2760 (|#2| (-1 |#1| |#4|) (-1171 |#4|))) (-15 -2760 ((-1171 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3588 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1171 |#4|))) (-15 -3337 ((-3 (-689 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-689 (-1171 |#4|)))) (-15 -3809 ((-1171 (-1171 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-3979 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1397 (((-1270) $) 25)) (-3282 (((-1157) $ (-1175)) 30)) (-2498 (((-1270) $) 17)) (-2725 (((-862) $) 27) (($ (-1157)) 26)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 11)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 9)))
-(((-504) (-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $)) (-15 -2725 ($ (-1157)))))) (T -504))
-((-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-504)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-504)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-504)))))
-(-13 (-850) (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $)) (-15 -1397 ((-1270) $)) (-15 -2725 ($ (-1157)))))
-((-1624 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-1602 ((|#1| |#4|) 10)) (-2153 ((|#3| |#4|) 17)))
-(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1602 (|#1| |#4|)) (-15 -2153 (|#3| |#4|)) (-15 -1624 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-558) (-992 |#1|) (-375 |#1|) (-375 |#2|)) (T -505))
-((-1624 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-2153 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4)) (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))))
-(-10 -7 (-15 -1602 (|#1| |#4|)) (-15 -2153 (|#3| |#4|)) (-15 -1624 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-3979 (((-112) $ $) NIL)) (-2221 (((-112) $ (-644 |#3|)) 126) (((-112) $) 127)) (-3545 (((-112) $) 178)) (-3088 (($ $ |#4|) 117) (($ $ |#4| (-644 |#3|)) 121)) (-2288 (((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|)) 171 (|has| |#3| (-614 (-1175))))) (-2383 (($ $ $) 105) (($ $ |#4|) 103)) (-3842 (((-112) $) 177)) (-2276 (($ $) 131)) (-1390 (((-1157) $) NIL)) (-1799 (($ $ $) 97) (($ (-644 $)) 99)) (-3032 (((-112) |#4| $) 129)) (-3329 (((-112) $ $) 82)) (-2603 (($ (-644 |#4|)) 104)) (-1944 (((-1119) $) NIL)) (-2194 (($ (-644 |#4|)) 175)) (-2003 (((-112) $) 176)) (-4371 (($ $) 85)) (-2142 (((-644 |#4|) $) 73)) (-3811 (((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|)) NIL)) (-1552 (((-112) |#4| $) 89)) (-4356 (((-566) $ (-644 |#3|)) 133) (((-566) $) 134)) (-2725 (((-862) $) 174) (($ (-644 |#4|)) 100)) (-1479 (((-112) $ $) NIL)) (-3574 (($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $))) NIL)) (-2817 (((-112) $ $) 84)) (-2897 (($ $ $) 107)) (** (($ $ (-771)) 115)) (* (($ $ $) 113)))
-(((-506 |#1| |#2| |#3| |#4|) (-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -2897 ($ $ $)) (-15 -3842 ((-112) $)) (-15 -3545 ((-112) $)) (-15 -1552 ((-112) |#4| $)) (-15 -3329 ((-112) $ $)) (-15 -3032 ((-112) |#4| $)) (-15 -2221 ((-112) $ (-644 |#3|))) (-15 -2221 ((-112) $)) (-15 -1799 ($ $ $)) (-15 -1799 ($ (-644 $))) (-15 -2383 ($ $ $)) (-15 -2383 ($ $ |#4|)) (-15 -4371 ($ $)) (-15 -3811 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -3574 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -4356 ((-566) $ (-644 |#3|))) (-15 -4356 ((-566) $)) (-15 -2276 ($ $)) (-15 -2603 ($ (-644 |#4|))) (-15 -2194 ($ (-644 |#4|))) (-15 -2003 ((-112) $)) (-15 -2142 ((-644 |#4|) $)) (-15 -2725 ($ (-644 |#4|))) (-15 -3088 ($ $ |#4|)) (-15 -3088 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -2288 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -506))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2897 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3842 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3545 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-1552 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-3329 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-3032 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))) (-2221 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-2221 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-1799 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-1799 (*1 *1 *2) (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2383 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-4371 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-3811 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4)) (|:| |genIdeal| (-506 *4 *5 *6 *7)))) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3)) (|:| |genIdeal| (-506 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-4356 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))) (-4356 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2276 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850)) (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-2603 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-2194 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-2003 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2142 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))) (-3088 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))) (-3088 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175))) (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4))))) (-5 *1 (-506 *4 *5 *6 *7)))))
-(-13 (-1099) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 -2897 ($ $ $)) (-15 -3842 ((-112) $)) (-15 -3545 ((-112) $)) (-15 -1552 ((-112) |#4| $)) (-15 -3329 ((-112) $ $)) (-15 -3032 ((-112) |#4| $)) (-15 -2221 ((-112) $ (-644 |#3|))) (-15 -2221 ((-112) $)) (-15 -1799 ($ $ $)) (-15 -1799 ($ (-644 $))) (-15 -2383 ($ $ $)) (-15 -2383 ($ $ |#4|)) (-15 -4371 ($ $)) (-15 -3811 ((-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)) $ (-644 |#3|))) (-15 -3574 ($ (-2 (|:| |mval| (-689 |#1|)) (|:| |invmval| (-689 |#1|)) (|:| |genIdeal| $)))) (-15 -4356 ((-566) $ (-644 |#3|))) (-15 -4356 ((-566) $)) (-15 -2276 ($ $)) (-15 -2603 ($ (-644 |#4|))) (-15 -2194 ($ (-644 |#4|))) (-15 -2003 ((-112) $)) (-15 -2142 ((-644 |#4|) $)) (-15 -2725 ($ (-644 |#4|))) (-15 -3088 ($ $ |#4|)) (-15 -3088 ($ $ |#4| (-644 |#3|))) (IF (|has| |#3| (-614 (-1175))) (-15 -2288 ((-1164 (-644 (-952 |#1|)) (-644 (-295 (-952 |#1|)))) (-644 |#4|))) |%noBranch|)))
-((-3725 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 176)) (-1931 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 177)) (-2600 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 129)) (-1968 (((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) NIL)) (-1548 (((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) 179)) (-3261 (((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))) 195)))
-(((-507 |#1| |#2|) (-10 -7 (-15 -3725 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1931 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1968 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2600 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1548 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3261 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|))))) (-644 (-1175)) (-771)) (T -507))
-((-3261 (*1 *2 *2 *3) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *1 (-507 *4 *5)))) (-1548 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-644 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566)))))) (-5 *1 (-507 *4 *5)) (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))))) (-2600 (*1 *2 *2) (-12 (-5 *2 (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4)))) (-1968 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4) (-247 *4 (-409 (-566))))) (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5)))))
-(-10 -7 (-15 -3725 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1931 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1968 ((-112) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -2600 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -1548 ((-644 (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566))))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))))) (-15 -3261 ((-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-506 (-409 (-566)) (-240 |#2| (-771)) (-864 |#1|) (-247 |#1| (-409 (-566)))) (-644 (-864 |#1|)))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4035 (($) 6)) (-2725 (((-862) $) 12) (((-1175) $) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 8)))
-(((-508) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -4035 ($))))) (T -508))
-((-4035 (*1 *1) (-5 *1 (-508))))
-(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -4035 ($))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-3323 ((|#2| $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 12 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) 11) (($ $ $) 35)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21)))
-(((-509 |#1| |#2|) (-13 (-21) (-511 |#1| |#2|)) (-21) (-850)) (T -509))
-NIL
-(-13 (-21) (-511 |#1| |#2|))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 13)) (-2633 (($) NIL T CONST)) (-4358 (($ $) 41)) (-4145 (($ |#1| |#2|) 38)) (-2101 (($ (-1 |#1| |#1|) $) 40)) (-3323 ((|#2| $) NIL)) (-4334 ((|#1| $) 42)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 10 T CONST)) (-2817 (((-112) $ $) NIL)) (-2897 (($ $ $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 36)))
-(((-510 |#1| |#2|) (-13 (-23) (-511 |#1| |#2|)) (-23) (-850)) (T -510))
-NIL
-(-13 (-23) (-511 |#1| |#2|))
-((-3979 (((-112) $ $) 7)) (-4358 (($ $) 14)) (-4145 (($ |#1| |#2|) 17)) (-2101 (($ (-1 |#1| |#1|) $) 18)) (-3323 ((|#2| $) 15)) (-4334 ((|#1| $) 16)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-511 |#1| |#2|) (-140) (-1099) (-850)) (T -511))
-((-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-511 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-850)))) (-4145 (*1 *1 *2 *3) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099)))) (-3323 (*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850)))))
-(-13 (-1099) (-10 -8 (-15 -2101 ($ (-1 |t#1| |t#1|) $)) (-15 -4145 ($ |t#1| |t#2|)) (-15 -4334 (|t#1| $)) (-15 -3323 (|t#2| $)) (-15 -4358 ($ $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-3323 ((|#2| $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 22)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL)))
-(((-512 |#1| |#2|) (-13 (-792) (-511 |#1| |#2|)) (-792) (-850)) (T -512))
-NIL
-(-13 (-792) (-511 |#1| |#2|))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-3288 (($ $ $) 23)) (-4113 (((-3 $ "failed") $ $) 19)) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-3323 ((|#2| $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL)))
-(((-513 |#1| |#2|) (-13 (-793) (-511 |#1| |#2|)) (-793) (-850)) (T -513))
-NIL
-(-13 (-793) (-511 |#1| |#2|))
-((-3979 (((-112) $ $) NIL)) (-4358 (($ $) 32)) (-4145 (($ |#1| |#2|) 28)) (-2101 (($ (-1 |#1| |#1|) $) 30)) (-3323 ((|#2| $) 34)) (-4334 ((|#1| $) 33)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 27)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 20)))
-(((-514 |#1| |#2|) (-511 |#1| |#2|) (-1099) (-850)) (T -514))
-NIL
-(-511 |#1| |#2|)
-((-1754 (($ $ (-644 |#2|) (-644 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-515 |#1| |#2| |#3|) (-10 -8 (-15 -1754 (|#1| |#1| |#2| |#3|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#3|)))) (-516 |#2| |#3|) (-1099) (-1215)) (T -515))
-NIL
-(-10 -8 (-15 -1754 (|#1| |#1| |#2| |#3|)) (-15 -1754 (|#1| |#1| (-644 |#2|) (-644 |#3|))))
-((-1754 (($ $ (-644 |#1|) (-644 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-516 |#1| |#2|) (-140) (-1099) (-1215)) (T -516))
-((-1754 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1215)))) (-1754 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1215)))))
-(-13 (-10 -8 (-15 -1754 ($ $ |t#1| |t#2|)) (-15 -1754 ($ $ (-644 |t#1|) (-644 |t#2|)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 17)) (-3564 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|))) $) 19)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3733 (((-771) $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-2654 ((|#1| $ (-566)) 24)) (-3049 ((|#2| $ (-566)) 22)) (-2990 (($ (-1 |#1| |#1|) $) 48)) (-1745 (($ (-1 |#2| |#2|) $) 45)) (-1390 (((-1157) $) NIL)) (-3697 (($ $ $) 55 (|has| |#2| (-792)))) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 44) (($ |#1|) NIL)) (-3623 ((|#2| |#1| $) 51)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 11 T CONST)) (-2817 (((-112) $ $) 30)) (-2897 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-921) $) NIL) (($ (-771) $) 37) (($ |#2| |#1|) 32)))
-(((-517 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1099) (-131) |#2|) (T -517))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) (-567) |#1|) NIL)) (-1417 (($ $ (-567) (-499 |#1| |#3|)) NIL)) (-3264 (($ $ (-567) (-499 |#1| |#2|)) NIL)) (-4061 (($) NIL T CONST)) (-4074 (((-499 |#1| |#3|) $ (-567)) NIL)) (-1303 ((|#1| $ (-567) (-567) |#1|) NIL)) (-4344 ((|#1| $ (-567) (-567)) NIL)) (-2896 (((-645 |#1|) $) NIL)) (-4300 (((-772) $) NIL)) (-4012 (($ (-772) (-772) |#1|) NIL)) (-4311 (((-772) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-3776 (((-567) $) NIL)) (-4176 (((-567) $) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1977 (((-567) $) NIL)) (-2467 (((-567) $) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-3295 (((-499 |#1| |#2|) $ (-567)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-500 |#1| |#2| |#3|) (-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|)) (-1216) (-567) (-567)) (T -500))
+NIL
+(-57 |#1| (-499 |#1| |#3|) (-499 |#1| |#2|))
+((-2566 (((-645 (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772)) 33)) (-3113 (((-645 (-1172 |#1|)) |#1| (-772) (-772) (-772)) 43)) (-1942 (((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)) 111)))
+(((-501 |#1| |#2| |#3|) (-10 -7 (-15 -3113 ((-645 (-1172 |#1|)) |#1| (-772) (-772) (-772))) (-15 -2566 ((-645 (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -1942 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772)))) (-351) (-1242 |#1|) (-1242 |#2|)) (T -501))
+((-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-2 (|:| -2557 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7))))) (-5 *5 (-772)) (-4 *8 (-1242 *7)) (-4 *7 (-1242 *6)) (-4 *6 (-351)) (-5 *2 (-2 (|:| -2557 (-690 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-690 *7)))) (-5 *1 (-501 *6 *7 *8)))) (-2566 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1242 *5)) (-5 *2 (-645 (-2 (|:| -2557 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6))))) (-5 *1 (-501 *5 *6 *7)) (-5 *3 (-2 (|:| -2557 (-690 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-690 *6)))) (-4 *7 (-1242 *6)))) (-3113 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1242 *3)) (-5 *2 (-645 (-1172 *3))) (-5 *1 (-501 *3 *5 *6)) (-4 *6 (-1242 *5)))))
+(-10 -7 (-15 -3113 ((-645 (-1172 |#1|)) |#1| (-772) (-772) (-772))) (-15 -2566 ((-645 (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-772) (-772))) (-15 -1942 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) (-645 |#3|) (-645 (-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) (-772))))
+((-3022 (((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))) 74)) (-4389 ((|#1| (-690 |#1|) |#1| (-772)) 27)) (-2380 (((-772) (-772) (-772)) 36)) (-3448 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 54)) (-2267 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 62) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 59)) (-3252 ((|#1| (-690 |#1|) (-690 |#1|) |#1| (-567)) 31)) (-3167 ((|#1| (-690 |#1|)) 18)))
+(((-502 |#1| |#2| |#3|) (-10 -7 (-15 -3167 (|#1| (-690 |#1|))) (-15 -4389 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3252 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -2380 ((-772) (-772) (-772))) (-15 -2267 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2267 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -3448 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3022 ((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|)))))) (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))) (-1242 |#1|) (-412 |#1| |#2|)) (T -502))
+((-3022 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3448 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2267 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2267 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-2380 (*1 *2 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))) (-3252 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-567)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *5 (-1242 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-4389 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-690 *2)) (-5 *4 (-772)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-4 *5 (-1242 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-690 *2)) (-4 *4 (-1242 *2)) (-4 *2 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $))))) (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4)))))
+(-10 -7 (-15 -3167 (|#1| (-690 |#1|))) (-15 -4389 (|#1| (-690 |#1|) |#1| (-772))) (-15 -3252 (|#1| (-690 |#1|) (-690 |#1|) |#1| (-567))) (-15 -2380 ((-772) (-772) (-772))) (-15 -2267 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2267 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -3448 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3022 ((-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))) (-2 (|:| -2557 (-690 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-690 |#1|))))))
+((-2257 (((-112) $ $) NIL)) (-2278 (($ $) NIL)) (-1439 (($ $ $) 40)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) $) NIL (|has| (-112) (-851))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-3655 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-112) (-851)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-1594 (($ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-4230 (((-112) $ (-1233 (-567)) (-112)) NIL (|has| $ (-6 -4417))) (((-112) $ (-567) (-112)) 42 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-3138 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-3402 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-1303 (((-112) $ (-567) (-112)) NIL (|has| $ (-6 -4417)))) (-4344 (((-112) $ (-567)) NIL)) (-3771 (((-567) (-112) $ (-567)) NIL (|has| (-112) (-1100))) (((-567) (-112) $) NIL (|has| (-112) (-1100))) (((-567) (-1 (-112) (-112)) $) NIL)) (-2896 (((-645 (-112)) $) NIL (|has| $ (-6 -4416)))) (-1424 (($ $ $) 38)) (-1397 (($ $) NIL)) (-4167 (($ $ $) NIL)) (-4012 (($ (-772) (-112)) 27)) (-4226 (($ $ $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 8 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL)) (-3768 (($ $ $) NIL (|has| (-112) (-851))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1542 (((-645 (-112)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL)) (-4392 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-112) (-112) (-112)) $ $) 35) (($ (-1 (-112) (-112)) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-2884 (($ $ $ (-567)) NIL) (($ (-112) $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-112) $) NIL (|has| (-567) (-851)))) (-3050 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-2092 (($ $ (-112)) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-112)) (-645 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-295 (-112))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100)))) (($ $ (-645 (-295 (-112)))) NIL (-12 (|has| (-112) (-310 (-112))) (|has| (-112) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100))))) (-1412 (((-645 (-112)) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 28)) (-1552 (($ $ (-1233 (-567))) NIL) (((-112) $ (-567)) 22) (((-112) $ (-567) (-112)) NIL)) (-2675 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-3349 (((-772) (-112) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-112) (-1100)))) (((-772) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) 29)) (-3542 (((-539) $) NIL (|has| (-112) (-615 (-539))))) (-4114 (($ (-645 (-112))) NIL)) (-2285 (($ (-645 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-4101 (((-863) $) 26)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4416)))) (-1410 (($ $ $) 36)) (-2328 (($ $ $) NIL)) (-2053 (($ $ $) 45)) (-2066 (($ $) 43)) (-2042 (($ $ $) 44)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 30)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 31)) (-2316 (($ $ $) NIL)) (-2268 (((-772) $) 13 (|has| $ (-6 -4416)))))
+(((-503 |#1|) (-13 (-123) (-10 -8 (-15 -2066 ($ $)) (-15 -2053 ($ $ $)) (-15 -2042 ($ $ $)))) (-567)) (T -503))
+((-2066 (*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-2053 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))) (-2042 (*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567)))))
+(-13 (-123) (-10 -8 (-15 -2066 ($ $)) (-15 -2053 ($ $ $)) (-15 -2042 ($ $ $))))
+((-3260 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1172 |#4|)) 35)) (-2821 (((-1172 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1172 |#4|)) 22)) (-1348 (((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1172 |#4|))) 49)) (-3426 (((-1172 (-1172 |#4|)) (-1 |#4| |#1|) |#3|) 58)))
+(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2821 (|#2| (-1 |#1| |#4|) (-1172 |#4|))) (-15 -2821 ((-1172 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3260 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1172 |#4|))) (-15 -1348 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1172 |#4|)))) (-15 -3426 ((-1172 (-1172 |#4|)) (-1 |#4| |#1|) |#3|))) (-1050) (-1242 |#1|) (-1242 |#2|) (-1050)) (T -504))
+((-3426 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *6 (-1242 *5)) (-5 *2 (-1172 (-1172 *7))) (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1242 *6)))) (-1348 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-690 (-1172 *8))) (-4 *5 (-1050)) (-4 *8 (-1050)) (-4 *6 (-1242 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8)) (-4 *7 (-1242 *6)))) (-3260 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1172 *7)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *2 (-1242 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1242 *2)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *4 (-1242 *5)) (-5 *2 (-1172 *7)) (-5 *1 (-504 *5 *4 *6 *7)) (-4 *6 (-1242 *4)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1172 *7)) (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *2 (-1242 *5)) (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1242 *2)))))
+(-10 -7 (-15 -2821 (|#2| (-1 |#1| |#4|) (-1172 |#4|))) (-15 -2821 ((-1172 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3260 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1172 |#4|))) (-15 -1348 ((-3 (-690 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-690 (-1172 |#4|)))) (-15 -3426 ((-1172 (-1172 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2257 (((-112) $ $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1450 (((-1271) $) 25)) (-1552 (((-1158) $ (-1176)) 30)) (-3877 (((-1271) $) 17)) (-4101 (((-863) $) 27) (($ (-1158)) 26)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 11)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 9)))
+(((-505) (-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $)) (-15 -4101 ($ (-1158)))))) (T -505))
+((-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1158)) (-5 *1 (-505)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-505)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-505)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-505)))))
+(-13 (-851) (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $)) (-15 -1450 ((-1271) $)) (-15 -4101 ($ (-1158)))))
+((-1371 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2532 ((|#1| |#4|) 10)) (-3013 ((|#3| |#4|) 17)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2532 (|#1| |#4|)) (-15 -3013 (|#3| |#4|)) (-15 -1371 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-559) (-993 |#1|) (-375 |#1|) (-375 |#2|)) (T -506))
+((-1371 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5)))) (-3013 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-4 *2 (-375 *4)) (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-375 *4)))))
+(-10 -7 (-15 -2532 (|#1| |#4|)) (-15 -3013 (|#3| |#4|)) (-15 -1371 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2257 (((-112) $ $) NIL)) (-2482 (((-112) $ (-645 |#3|)) 126) (((-112) $) 127)) (-2865 (((-112) $) 178)) (-3873 (($ $ |#4|) 117) (($ $ |#4| (-645 |#3|)) 121)) (-1915 (((-1165 (-645 (-953 |#1|)) (-645 (-295 (-953 |#1|)))) (-645 |#4|)) 171 (|has| |#3| (-615 (-1176))))) (-3545 (($ $ $) 105) (($ $ |#4|) 103)) (-3714 (((-112) $) 177)) (-1796 (($ $) 131)) (-2451 (((-1158) $) NIL)) (-3754 (($ $ $) 97) (($ (-645 $)) 99)) (-1376 (((-112) |#4| $) 129)) (-2633 (((-112) $ $) 82)) (-1956 (($ (-645 |#4|)) 104)) (-3339 (((-1120) $) NIL)) (-2161 (($ (-645 |#4|)) 175)) (-3890 (((-112) $) 176)) (-2085 (($ $) 85)) (-2928 (((-645 |#4|) $) 73)) (-3444 (((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|)) NIL)) (-1995 (((-112) |#4| $) 89)) (-1948 (((-567) $ (-645 |#3|)) 133) (((-567) $) 134)) (-4101 (((-863) $) 174) (($ (-645 |#4|)) 100)) (-3739 (((-112) $ $) NIL)) (-3133 (($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $))) NIL)) (-3052 (((-112) $ $) 84)) (-3146 (($ $ $) 107)) (** (($ $ (-772)) 115)) (* (($ $ $) 113)))
+(((-507 |#1| |#2| |#3| |#4|) (-13 (-1100) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3146 ($ $ $)) (-15 -3714 ((-112) $)) (-15 -2865 ((-112) $)) (-15 -1995 ((-112) |#4| $)) (-15 -2633 ((-112) $ $)) (-15 -1376 ((-112) |#4| $)) (-15 -2482 ((-112) $ (-645 |#3|))) (-15 -2482 ((-112) $)) (-15 -3754 ($ $ $)) (-15 -3754 ($ (-645 $))) (-15 -3545 ($ $ $)) (-15 -3545 ($ $ |#4|)) (-15 -2085 ($ $)) (-15 -3444 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -3133 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1948 ((-567) $ (-645 |#3|))) (-15 -1948 ((-567) $)) (-15 -1796 ($ $)) (-15 -1956 ($ (-645 |#4|))) (-15 -2161 ($ (-645 |#4|))) (-15 -3890 ((-112) $)) (-15 -2928 ((-645 |#4|) $)) (-15 -4101 ($ (-645 |#4|))) (-15 -3873 ($ $ |#4|)) (-15 -3873 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1176))) (-15 -1915 ((-1165 (-645 (-953 |#1|)) (-645 (-295 (-953 |#1|)))) (-645 |#4|))) |%noBranch|))) (-365) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -507))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-3714 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2865 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1995 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-2633 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1376 (*1 *2 *3 *1) (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))) (-2482 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-2482 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-3545 (*1 *1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-3545 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-2085 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-3444 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4)) (|:| |genIdeal| (-507 *4 *5 *6 *7)))) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-3133 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3)) (|:| |genIdeal| (-507 *3 *4 *5 *6)))) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1948 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))) (-1948 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-1796 (*1 *1 *1) (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851)) (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-1956 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-2161 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-3890 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-2928 (*1 *2 *1) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))) (-3873 (*1 *1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))) (-3873 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794)) (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-950 *4 *5 *6)))) (-1915 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *6 (-615 (-1176))) (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1165 (-645 (-953 *4)) (-645 (-295 (-953 *4))))) (-5 *1 (-507 *4 *5 *6 *7)))))
+(-13 (-1100) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 -3146 ($ $ $)) (-15 -3714 ((-112) $)) (-15 -2865 ((-112) $)) (-15 -1995 ((-112) |#4| $)) (-15 -2633 ((-112) $ $)) (-15 -1376 ((-112) |#4| $)) (-15 -2482 ((-112) $ (-645 |#3|))) (-15 -2482 ((-112) $)) (-15 -3754 ($ $ $)) (-15 -3754 ($ (-645 $))) (-15 -3545 ($ $ $)) (-15 -3545 ($ $ |#4|)) (-15 -2085 ($ $)) (-15 -3444 ((-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)) $ (-645 |#3|))) (-15 -3133 ($ (-2 (|:| |mval| (-690 |#1|)) (|:| |invmval| (-690 |#1|)) (|:| |genIdeal| $)))) (-15 -1948 ((-567) $ (-645 |#3|))) (-15 -1948 ((-567) $)) (-15 -1796 ($ $)) (-15 -1956 ($ (-645 |#4|))) (-15 -2161 ($ (-645 |#4|))) (-15 -3890 ((-112) $)) (-15 -2928 ((-645 |#4|) $)) (-15 -4101 ($ (-645 |#4|))) (-15 -3873 ($ $ |#4|)) (-15 -3873 ($ $ |#4| (-645 |#3|))) (IF (|has| |#3| (-615 (-1176))) (-15 -1915 ((-1165 (-645 (-953 |#1|)) (-645 (-295 (-953 |#1|)))) (-645 |#4|))) |%noBranch|)))
+((-2002 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 176)) (-4390 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 177)) (-3983 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 129)) (-1665 (((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) NIL)) (-1960 (((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) 179)) (-3150 (((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))) 195)))
+(((-508 |#1| |#2|) (-10 -7 (-15 -2002 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4390 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1665 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3983 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1960 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3150 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|))))) (-645 (-1176)) (-772)) (T -508))
+((-3150 (*1 *2 *2 *3) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *1 (-508 *4 *5)))) (-1960 (*1 *2 *3) (-12 (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *2 (-645 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567)))))) (-5 *1 (-508 *4 *5)) (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))))) (-3983 (*1 *2 *2) (-12 (-5 *2 (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1176))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))) (-1665 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4) (-247 *4 (-410 (-567))))) (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *2 (-112)) (-5 *1 (-508 *4 *5)))))
+(-10 -7 (-15 -2002 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -4390 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1665 ((-112) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3983 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -1960 ((-645 (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567))))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))))) (-15 -3150 ((-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-507 (-410 (-567)) (-240 |#2| (-772)) (-865 |#1|) (-247 |#1| (-410 (-567)))) (-645 (-865 |#1|)))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1848 (($) 6)) (-4101 (((-863) $) 12) (((-1176) $) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 8)))
+(((-509) (-13 (-1100) (-614 (-1176)) (-10 -8 (-15 -1848 ($))))) (T -509))
+((-1848 (*1 *1) (-5 *1 (-509))))
+(-13 (-1100) (-614 (-1176)) (-10 -8 (-15 -1848 ($))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-2422 (($ |#1| |#2|) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2555 ((|#2| $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 12 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) 11) (($ $ $) 35)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21)))
+(((-510 |#1| |#2|) (-13 (-21) (-512 |#1| |#2|)) (-21) (-851)) (T -510))
+NIL
+(-13 (-21) (-512 |#1| |#2|))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 13)) (-4061 (($) NIL T CONST)) (-2637 (($ $) 41)) (-2422 (($ |#1| |#2|) 38)) (-3494 (($ (-1 |#1| |#1|) $) 40)) (-2555 ((|#2| $) NIL)) (-2613 ((|#1| $) 42)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 10 T CONST)) (-3052 (((-112) $ $) NIL)) (-3146 (($ $ $) 26)) (* (($ (-922) $) NIL) (($ (-772) $) 36)))
+(((-511 |#1| |#2|) (-13 (-23) (-512 |#1| |#2|)) (-23) (-851)) (T -511))
+NIL
+(-13 (-23) (-512 |#1| |#2|))
+((-2257 (((-112) $ $) 7)) (-2637 (($ $) 14)) (-2422 (($ |#1| |#2|) 17)) (-3494 (($ (-1 |#1| |#1|) $) 18)) (-2555 ((|#2| $) 15)) (-2613 ((|#1| $) 16)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-512 |#1| |#2|) (-140) (-1100) (-851)) (T -512))
+((-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-851)))) (-2422 (*1 *1 *2 *3) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-851)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1100)))) (-2555 (*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-851)))) (-2637 (*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-851)))))
+(-13 (-1100) (-10 -8 (-15 -3494 ($ (-1 |t#1| |t#1|) $)) (-15 -2422 ($ |t#1| |t#2|)) (-15 -2613 (|t#1| $)) (-15 -2555 (|t#2| $)) (-15 -2637 ($ $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-2422 (($ |#1| |#2|) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2555 ((|#2| $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 22)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL)))
+(((-513 |#1| |#2|) (-13 (-793) (-512 |#1| |#2|)) (-793) (-851)) (T -513))
+NIL
+(-13 (-793) (-512 |#1| |#2|))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2140 (($ $ $) 23)) (-4377 (((-3 $ "failed") $ $) 19)) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-2422 (($ |#1| |#2|) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2555 ((|#2| $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL)))
+(((-514 |#1| |#2|) (-13 (-794) (-512 |#1| |#2|)) (-794) (-851)) (T -514))
+NIL
+(-13 (-794) (-512 |#1| |#2|))
+((-2257 (((-112) $ $) NIL)) (-2637 (($ $) 32)) (-2422 (($ |#1| |#2|) 28)) (-3494 (($ (-1 |#1| |#1|) $) 30)) (-2555 ((|#2| $) 34)) (-2613 ((|#1| $) 33)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 27)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 20)))
+(((-515 |#1| |#2|) (-512 |#1| |#2|) (-1100) (-851)) (T -515))
+NIL
+(-512 |#1| |#2|)
+((-3140 (($ $ (-645 |#2|) (-645 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-516 |#1| |#2| |#3|) (-10 -8 (-15 -3140 (|#1| |#1| |#2| |#3|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#3|)))) (-517 |#2| |#3|) (-1100) (-1216)) (T -516))
+NIL
+(-10 -8 (-15 -3140 (|#1| |#1| |#2| |#3|)) (-15 -3140 (|#1| |#1| (-645 |#2|) (-645 |#3|))))
+((-3140 (($ $ (-645 |#1|) (-645 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-517 |#1| |#2|) (-140) (-1100) (-1216)) (T -517))
+((-3140 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5)) (-4 *4 (-1100)) (-4 *5 (-1216)))) (-3140 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1216)))))
+(-13 (-10 -8 (-15 -3140 ($ $ |t#1| |t#2|)) (-15 -3140 ($ $ (-645 |t#1|) (-645 |t#2|)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 17)) (-3030 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|))) $) 19)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2013 (((-772) $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-4234 ((|#1| $ (-567)) 24)) (-1595 ((|#2| $ (-567)) 22)) (-2383 (($ (-1 |#1| |#1|) $) 48)) (-3318 (($ (-1 |#2| |#2|) $) 45)) (-2451 (((-1158) $) NIL)) (-1726 (($ $ $) 55 (|has| |#2| (-793)))) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 44) (($ |#1|) NIL)) (-2339 ((|#2| |#1| $) 51)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 11 T CONST)) (-3052 (((-112) $ $) 30)) (-3146 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-922) $) NIL) (($ (-772) $) 37) (($ |#2| |#1|) 32)))
+(((-518 |#1| |#2| |#3|) (-324 |#1| |#2|) (-1100) (-131) |#2|) (T -518))
NIL
(-324 |#1| |#2|)
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-3569 (((-112) (-112)) 32)) (-2858 ((|#1| $ (-566) |#1|) 42 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) |#1|) $) 80)) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-1985 (($ $) 84 (|has| |#1| (-1099)))) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 67)) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3045 (($ $ (-566)) 19)) (-2612 (((-771) $) 13)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) 31)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 29 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3169 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) 28 (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1619 (($ $ $ (-566)) 76) (($ |#1| $ (-566)) 60)) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-4298 (($ (-644 |#1|)) 43)) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) 24 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 63)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 21)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 56) (($ $ (-1232 (-566))) NIL)) (-1503 (($ $ (-1232 (-566))) 74) (($ $ (-566)) 68)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) 64 (|has| $ (-6 -4416)))) (-2878 (($ $) 54)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) NIL)) (-2011 (($ $ $) 65) (($ $ |#1|) 62)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) 22 (|has| $ (-6 -4415)))))
-(((-518 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -4298 ($ (-644 |#1|))) (-15 -2612 ((-771) $)) (-15 -3045 ($ $ (-566))) (-15 -3569 ((-112) (-112))))) (-1215) (-566)) (T -518))
-((-4298 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-518 *3 *4)) (-14 *4 (-566)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1215)) (-14 *4 (-566)))) (-3045 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1215)) (-14 *4 *2))) (-3569 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1215)) (-14 *4 (-566)))))
-(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -4298 ($ (-644 |#1|))) (-15 -2612 ((-771) $)) (-15 -3045 ($ $ (-566))) (-15 -3569 ((-112) (-112)))))
-((-3979 (((-112) $ $) NIL)) (-1913 (((-1134) $) 11)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1815 (((-1134) $) 13)) (-2607 (((-1134) $) 9)) (-2725 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-519) (-13 (-1082) (-10 -8 (-15 -2607 ((-1134) $)) (-15 -1913 ((-1134) $)) (-15 -1815 ((-1134) $))))) (T -519))
-((-2607 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))))
-(-13 (-1082) (-10 -8 (-15 -2607 ((-1134) $)) (-15 -1913 ((-1134) $)) (-15 -1815 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| (-583 |#1|) (-370)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL (|has| (-583 |#1|) (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-583 |#1|) "failed") $) NIL)) (-3343 (((-583 |#1|) $) NIL)) (-1452 (($ (-1265 (-583 |#1|))) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-583 |#1|) (-370)))) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-583 |#1|) (-370)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL (|has| (-583 |#1|) (-370)))) (-1963 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-4205 (($ $ (-771)) NIL (-2676 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370)))) (($ $) NIL (-2676 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-1968 (((-112) $) NIL)) (-3077 (((-921) $) NIL (|has| (-583 |#1|) (-370))) (((-833 (-921)) $) NIL (-2676 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| (-583 |#1|) (-370)))) (-3778 (((-112) $) NIL (|has| (-583 |#1|) (-370)))) (-3202 (((-583 |#1|) $) NIL) (($ $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-3869 (((-3 $ "failed") $) NIL (|has| (-583 |#1|) (-370)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 (-583 |#1|)) $) NIL) (((-1171 $) $ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-4138 (((-921) $) NIL (|has| (-583 |#1|) (-370)))) (-2535 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370)))) (-3777 (((-1171 (-583 |#1|)) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-1171 (-583 |#1|)) "failed") $ $) NIL (|has| (-583 |#1|) (-370)))) (-2195 (($ $ (-1171 (-583 |#1|))) NIL (|has| (-583 |#1|) (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-583 |#1|) (-370)) CONST)) (-2430 (($ (-921)) NIL (|has| (-583 |#1|) (-370)))) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-2723 (($) NIL (|has| (-583 |#1|) (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| (-583 |#1|) (-370)))) (-4018 (((-420 $) $) NIL)) (-2438 (((-833 (-921))) NIL) (((-921)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-771) $) NIL (|has| (-583 |#1|) (-370))) (((-3 (-771) "failed") $ $) NIL (-2676 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-4356 (((-134)) NIL)) (-3009 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-3838 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-2880 (((-1171 (-583 |#1|))) NIL)) (-1344 (($) NIL (|has| (-583 |#1|) (-370)))) (-2014 (($) NIL (|has| (-583 |#1|) (-370)))) (-2803 (((-1265 (-583 |#1|)) $) NIL) (((-689 (-583 |#1|)) (-1265 $)) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| (-583 |#1|) (-370)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-583 |#1|)) NIL)) (-2655 (($ $) NIL (|has| (-583 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2676 (|has| (-583 |#1|) (-145)) (|has| (-583 |#1|) (-370))))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL) (((-1265 $) (-921)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-1316 (($ $) NIL (|has| (-583 |#1|) (-370))) (($ $ (-771)) NIL (|has| (-583 |#1|) (-370)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL) (($ $ (-583 |#1|)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-583 |#1|)) NIL) (($ (-583 |#1|) $) NIL)))
-(((-520 |#1| |#2|) (-330 (-583 |#1|)) (-921) (-921)) (T -520))
-NIL
-(-330 (-583 |#1|))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) (-566) |#1|) 51)) (-1629 (($ $ (-566) |#4|) NIL)) (-3918 (($ $ (-566) |#5|) NIL)) (-2633 (($) NIL T CONST)) (-1703 ((|#4| $ (-566)) NIL)) (-3031 ((|#1| $ (-566) (-566) |#1|) 50)) (-2975 ((|#1| $ (-566) (-566)) 45)) (-1523 (((-644 |#1|) $) NIL)) (-2368 (((-771) $) 33)) (-2631 (($ (-771) (-771) |#1|) 30)) (-2378 (((-771) $) 38)) (-2429 (((-112) $ (-771)) NIL)) (-2110 (((-566) $) 31)) (-4086 (((-566) $) 32)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2952 (((-566) $) 37)) (-4280 (((-566) $) 39)) (-3023 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) 55 (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 14)) (-3906 (($) 16)) (-3282 ((|#1| $ (-566) (-566)) 48) ((|#1| $ (-566) (-566) |#1|) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-1428 ((|#5| $ (-566)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-521 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1215) (-566) (-566) (-375 |#1|) (-375 |#1|)) (T -521))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-3072 (((-112) (-112)) 32)) (-4230 ((|#1| $ (-567) |#1|) 42 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) |#1|) $) 80)) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-1861 (($ $) 84 (|has| |#1| (-1100)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) NIL (|has| |#1| (-1100))) (($ (-1 (-112) |#1|) $) 67)) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-1539 (($ $ (-567)) 19)) (-2036 (((-772) $) 13)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) 31)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 29 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3492 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 58)) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) 59) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) 28 (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-1336 (($ $ $ (-567)) 76) (($ |#1| $ (-567)) 60)) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2651 (($ (-645 |#1|)) 43)) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) 24 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 63)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 21)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 56) (($ $ (-1233 (-567))) NIL)) (-2816 (($ $ (-1233 (-567))) 74) (($ $ (-567)) 68)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) 64 (|has| $ (-6 -4417)))) (-4247 (($ $) 54)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) NIL)) (-3962 (($ $ $) 65) (($ $ |#1|) 62)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) 61) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) 22 (|has| $ (-6 -4416)))))
+(((-519 |#1| |#2|) (-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2651 ($ (-645 |#1|))) (-15 -2036 ((-772) $)) (-15 -1539 ($ $ (-567))) (-15 -3072 ((-112) (-112))))) (-1216) (-567)) (T -519))
+((-2651 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-519 *3 *4)) (-14 *4 (-567)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1216)) (-14 *4 (-567)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1216)) (-14 *4 *2))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1216)) (-14 *4 (-567)))))
+(-13 (-19 |#1|) (-283 |#1|) (-10 -8 (-15 -2651 ($ (-645 |#1|))) (-15 -2036 ((-772) $)) (-15 -1539 ($ $ (-567))) (-15 -3072 ((-112) (-112)))))
+((-2257 (((-112) $ $) NIL)) (-2450 (((-1135) $) 11)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2751 (((-1135) $) 13)) (-3989 (((-1135) $) 9)) (-4101 (((-863) $) 19) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-520) (-13 (-1083) (-10 -8 (-15 -3989 ((-1135) $)) (-15 -2450 ((-1135) $)) (-15 -2751 ((-1135) $))))) (T -520))
+((-3989 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-520)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-520)))) (-2751 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-520)))))
+(-13 (-1083) (-10 -8 (-15 -3989 ((-1135) $)) (-15 -2450 ((-1135) $)) (-15 -2751 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| (-584 |#1|) (-370)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL (|has| (-584 |#1|) (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-584 |#1|) "failed") $) NIL)) (-1621 (((-584 |#1|) $) NIL)) (-3499 (($ (-1266 (-584 |#1|))) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-584 |#1|) (-370)))) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-584 |#1|) (-370)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL (|has| (-584 |#1|) (-370)))) (-1596 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-2966 (($ $ (-772)) NIL (-2909 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370)))) (($ $) NIL (-2909 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1665 (((-112) $) NIL)) (-1909 (((-922) $) NIL (|has| (-584 |#1|) (-370))) (((-834 (-922)) $) NIL (-2909 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| (-584 |#1|) (-370)))) (-4270 (((-112) $) NIL (|has| (-584 |#1|) (-370)))) (-3751 (((-584 |#1|) $) NIL) (($ $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-2802 (((-3 $ "failed") $) NIL (|has| (-584 |#1|) (-370)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 (-584 |#1|)) $) NIL) (((-1172 $) $ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-3527 (((-922) $) NIL (|has| (-584 |#1|) (-370)))) (-2617 (((-1172 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370)))) (-4260 (((-1172 (-584 |#1|)) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-1172 (-584 |#1|)) "failed") $ $) NIL (|has| (-584 |#1|) (-370)))) (-2173 (($ $ (-1172 (-584 |#1|))) NIL (|has| (-584 |#1|) (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-584 |#1|) (-370)) CONST)) (-3811 (($ (-922)) NIL (|has| (-584 |#1|) (-370)))) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-4099 (($) NIL (|has| (-584 |#1|) (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| (-584 |#1|) (-370)))) (-2296 (((-421 $) $) NIL)) (-2888 (((-834 (-922))) NIL) (((-922)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-772) $) NIL (|has| (-584 |#1|) (-370))) (((-3 (-772) "failed") $ $) NIL (-2909 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-1948 (((-134)) NIL)) (-1930 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-3677 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-2713 (((-1172 (-584 |#1|))) NIL)) (-1698 (($) NIL (|has| (-584 |#1|) (-370)))) (-3995 (($) NIL (|has| (-584 |#1|) (-370)))) (-3216 (((-1266 (-584 |#1|)) $) NIL) (((-690 (-584 |#1|)) (-1266 $)) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| (-584 |#1|) (-370)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-584 |#1|)) NIL)) (-4242 (($ $) NIL (|has| (-584 |#1|) (-370))) (((-3 $ "failed") $) NIL (-2909 (|has| (-584 |#1|) (-145)) (|has| (-584 |#1|) (-370))))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL) (((-1266 $) (-922)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-2692 (($ $) NIL (|has| (-584 |#1|) (-370))) (($ $ (-772)) NIL (|has| (-584 |#1|) (-370)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL) (($ $ (-584 |#1|)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-584 |#1|)) NIL) (($ (-584 |#1|) $) NIL)))
+(((-521 |#1| |#2|) (-330 (-584 |#1|)) (-922) (-922)) (T -521))
+NIL
+(-330 (-584 |#1|))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) (-567) |#1|) 51)) (-1417 (($ $ (-567) |#4|) NIL)) (-3264 (($ $ (-567) |#5|) NIL)) (-4061 (($) NIL T CONST)) (-4074 ((|#4| $ (-567)) NIL)) (-1303 ((|#1| $ (-567) (-567) |#1|) 50)) (-4344 ((|#1| $ (-567) (-567)) 45)) (-2896 (((-645 |#1|) $) NIL)) (-4300 (((-772) $) 33)) (-4012 (($ (-772) (-772) |#1|) 30)) (-4311 (((-772) $) 38)) (-2805 (((-112) $ (-772)) NIL)) (-3776 (((-567) $) 31)) (-4176 (((-567) $) 32)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1977 (((-567) $) 37)) (-2467 (((-567) $) 39)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) 55 (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 14)) (-3164 (($) 16)) (-1552 ((|#1| $ (-567) (-567)) 48) ((|#1| $ (-567) (-567) |#1|) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-3295 ((|#5| $ (-567)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-522 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1216) (-567) (-567) (-375 |#1|) (-375 |#1|)) (T -522))
NIL
(-57 |#1| |#4| |#5|)
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) NIL)) (-4088 ((|#1| $) NIL)) (-1829 (($ $) NIL)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) 73 (|has| $ (-6 -4416)))) (-1305 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3190 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4416)))) (-3370 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-2363 (($ $ $) 23 (|has| $ (-6 -4416)))) (-3478 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) 21 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4416))) (($ $ "rest" $) 24 (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) |#1|) $) NIL)) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-4075 ((|#1| $) NIL)) (-2633 (($) NIL T CONST)) (-1970 (($ $) 28 (|has| $ (-6 -4416)))) (-1921 (($ $) 29)) (-3781 (($ $) 18) (($ $ (-771)) 35)) (-1985 (($ $) 66 (|has| |#1| (-1099)))) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-1752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-4336 (((-112) $) NIL)) (-2388 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-1523 (((-644 |#1|) $) 27 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 31 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3169 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3848 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3641 (($ |#1|) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) NIL)) (-1390 (((-1157) $) 62 (|has| |#1| (-1099)))) (-1774 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-1619 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1510 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) 13) (($ $ (-771)) NIL)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1890 (((-112) $) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 12)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) 17)) (-3906 (($) 16)) (-3282 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1232 (-566))) NIL) ((|#1| $ (-566)) NIL) ((|#1| $ (-566) |#1|) NIL)) (-4104 (((-566) $ $) NIL)) (-1503 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-1302 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-3810 (((-112) $) 39)) (-4278 (($ $) NIL)) (-4160 (($ $) NIL (|has| $ (-6 -4416)))) (-2251 (((-771) $) NIL)) (-2546 (($ $) 44)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) 40)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 26)) (-2011 (($ $ $) 65) (($ $ |#1|) NIL)) (-4007 (($ $ $) NIL) (($ |#1| $) 10) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-2725 (((-862) $) 54 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) 58 (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) 9 (|has| $ (-6 -4415)))))
-(((-522 |#1| |#2|) (-666 |#1|) (-1215) (-566)) (T -522))
-NIL
-(-666 |#1|)
-((-2594 ((|#4| |#4|) 37)) (-4153 (((-771) |#4|) 45)) (-2883 (((-771) |#4|) 46)) (-3260 (((-644 |#3|) |#4|) 56 (|has| |#3| (-6 -4416)))) (-1764 (((-3 |#4| "failed") |#4|) 70)) (-1875 ((|#4| |#4|) 62)) (-3586 ((|#1| |#4|) 61)))
-(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2594 (|#4| |#4|)) (-15 -4153 ((-771) |#4|)) (-15 -2883 ((-771) |#4|)) (IF (|has| |#3| (-6 -4416)) (-15 -3260 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -3586 (|#1| |#4|)) (-15 -1875 (|#4| |#4|)) (-15 -1764 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -523))
-((-1764 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-1875 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-3260 (*1 *2 *3) (-12 (|has| *6 (-6 -4416)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2594 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(-10 -7 (-15 -2594 (|#4| |#4|)) (-15 -4153 ((-771) |#4|)) (-15 -2883 ((-771) |#4|)) (IF (|has| |#3| (-6 -4416)) (-15 -3260 ((-644 |#3|) |#4|)) |%noBranch|) (-15 -3586 (|#1| |#4|)) (-15 -1875 (|#4| |#4|)) (-15 -1764 ((-3 |#4| "failed") |#4|)))
-((-2594 ((|#8| |#4|) 20)) (-3260 (((-644 |#3|) |#4|) 29 (|has| |#7| (-6 -4416)))) (-1764 (((-3 |#8| "failed") |#4|) 23)))
-(((-524 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2594 (|#8| |#4|)) (-15 -1764 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4416)) (-15 -3260 ((-644 |#3|) |#4|)) |%noBranch|)) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-992 |#1|) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -524))
-((-3260 (*1 *2 *3) (-12 (|has| *9 (-6 -4416)) (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-644 *6)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6)) (-4 *10 (-687 *7 *8 *9)))) (-1764 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9)) (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))))
-(-10 -7 (-15 -2594 (|#8| |#4|)) (-15 -1764 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4416)) (-15 -3260 ((-644 |#3|) |#4|)) |%noBranch|))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3739 (($ (-771) (-771)) NIL)) (-4292 (($ $ $) NIL)) (-2453 (($ (-602 |#1| |#3|)) NIL) (($ $) NIL)) (-2192 (((-112) $) NIL)) (-2564 (($ $ (-566) (-566)) 21)) (-3341 (($ $ (-566) (-566)) NIL)) (-3812 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-2410 (($ $) NIL)) (-2988 (((-112) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3928 (($ $ (-566) (-566) $) NIL)) (-2858 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1629 (($ $ (-566) (-602 |#1| |#3|)) NIL)) (-3918 (($ $ (-566) (-602 |#1| |#2|)) NIL)) (-2092 (($ (-771) |#1|) NIL)) (-2633 (($) NIL T CONST)) (-2594 (($ $) 30 (|has| |#1| (-308)))) (-1703 (((-602 |#1| |#3|) $ (-566)) NIL)) (-4153 (((-771) $) 33 (|has| |#1| (-558)))) (-3031 ((|#1| $ (-566) (-566) |#1|) NIL)) (-2975 ((|#1| $ (-566) (-566)) NIL)) (-1523 (((-644 |#1|) $) NIL)) (-2883 (((-771) $) 35 (|has| |#1| (-558)))) (-3260 (((-644 (-602 |#1| |#2|)) $) 38 (|has| |#1| (-558)))) (-2368 (((-771) $) NIL)) (-2631 (($ (-771) (-771) |#1|) NIL)) (-2378 (((-771) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-4362 ((|#1| $) 28 (|has| |#1| (-6 (-4417 "*"))))) (-2110 (((-566) $) 10)) (-4086 (((-566) $) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2952 (((-566) $) 13)) (-4280 (((-566) $) NIL)) (-2656 (($ (-644 (-644 |#1|))) NIL)) (-3023 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3662 (((-644 (-644 |#1|)) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1764 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-4228 (($ $ $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) NIL)) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-2626 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL)) (-3988 (((-112) $) NIL)) (-3586 ((|#1| $) 26 (|has| |#1| (-6 (-4417 "*"))))) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-1428 (((-602 |#1| |#2|) $ (-566)) NIL)) (-2725 (($ (-602 |#1| |#2|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-4004 (((-112) $) NIL)) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $ $) NIL) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-602 |#1| |#2|) $ (-602 |#1| |#2|)) NIL) (((-602 |#1| |#3|) (-602 |#1| |#3|) $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-525 |#1| |#2| |#3|) (-687 |#1| (-602 |#1| |#3|) (-602 |#1| |#2|)) (-1049) (-566) (-566)) (T -525))
-NIL
-(-687 |#1| (-602 |#1| |#3|) (-602 |#1| |#2|))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-4239 (((-644 (-1214)) $) 13)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL) (($ (-644 (-1214))) 11)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-526) (-13 (-1082) (-10 -8 (-15 -2725 ($ (-644 (-1214)))) (-15 -4239 ((-644 (-1214)) $))))) (T -526))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-526)))) (-4239 (*1 *2 *1) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-526)))))
-(-13 (-1082) (-10 -8 (-15 -2725 ($ (-644 (-1214)))) (-15 -4239 ((-644 (-1214)) $))))
-((-3979 (((-112) $ $) NIL)) (-2162 (((-1134) $) 14)) (-1390 (((-1157) $) NIL)) (-1909 (((-508) $) 11)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 21) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-527) (-13 (-1082) (-10 -8 (-15 -1909 ((-508) $)) (-15 -2162 ((-1134) $))))) (T -527))
-((-1909 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527)))))
-(-13 (-1082) (-10 -8 (-15 -1909 ((-508) $)) (-15 -2162 ((-1134) $))))
-((-2649 (((-691 (-1223)) $) 15)) (-1600 (((-691 (-1221)) $) 39)) (-2709 (((-691 (-1220)) $) 30)) (-1778 (((-691 (-551)) $) 12)) (-1676 (((-691 (-549)) $) 43)) (-3914 (((-691 (-548)) $) 34)) (-1789 (((-771) $ (-128)) 55)))
-(((-528 |#1|) (-10 -8 (-15 -1789 ((-771) |#1| (-128))) (-15 -1600 ((-691 (-1221)) |#1|)) (-15 -1676 ((-691 (-549)) |#1|)) (-15 -2709 ((-691 (-1220)) |#1|)) (-15 -3914 ((-691 (-548)) |#1|)) (-15 -2649 ((-691 (-1223)) |#1|)) (-15 -1778 ((-691 (-551)) |#1|))) (-529)) (T -528))
-NIL
-(-10 -8 (-15 -1789 ((-771) |#1| (-128))) (-15 -1600 ((-691 (-1221)) |#1|)) (-15 -1676 ((-691 (-549)) |#1|)) (-15 -2709 ((-691 (-1220)) |#1|)) (-15 -3914 ((-691 (-548)) |#1|)) (-15 -2649 ((-691 (-1223)) |#1|)) (-15 -1778 ((-691 (-551)) |#1|)))
-((-2649 (((-691 (-1223)) $) 12)) (-1600 (((-691 (-1221)) $) 8)) (-2709 (((-691 (-1220)) $) 10)) (-1778 (((-691 (-551)) $) 13)) (-1676 (((-691 (-549)) $) 9)) (-3914 (((-691 (-548)) $) 11)) (-1789 (((-771) $ (-128)) 7)) (-1601 (((-691 (-129)) $) 14)) (-4381 (($ $) 6)))
-(((-529) (-140)) (T -529))
-((-1601 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129))))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551))))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1223))))) (-3914 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548))))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220))))) (-1676 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549))))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1221))))) (-1789 (*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771)))))
-(-13 (-173) (-10 -8 (-15 -1601 ((-691 (-129)) $)) (-15 -1778 ((-691 (-551)) $)) (-15 -2649 ((-691 (-1223)) $)) (-15 -3914 ((-691 (-548)) $)) (-15 -2709 ((-691 (-1220)) $)) (-15 -1676 ((-691 (-549)) $)) (-15 -1600 ((-691 (-1221)) $)) (-15 -1789 ((-771) $ (-128)))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) NIL)) (-2369 ((|#1| $) NIL)) (-3221 (($ $) NIL)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) 73 (|has| $ (-6 -4417)))) (-2530 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3655 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4417)))) (-1594 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-3371 (($ $ $) 23 (|has| $ (-6 -4417)))) (-3487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) 21 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4417))) (($ $ "rest" $) 24 (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) |#1|) $) NIL)) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-2357 ((|#1| $) NIL)) (-4061 (($) NIL T CONST)) (-1695 (($ $) 28 (|has| $ (-6 -4417)))) (-3315 (($ $) 29)) (-2061 (($ $) 18) (($ $ (-772)) 35)) (-1861 (($ $) 66 (|has| |#1| (-1100)))) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) NIL (|has| |#1| (-1100))) (($ (-1 (-112) |#1|) $) NIL)) (-3138 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-1714 (((-112) $) NIL)) (-3771 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100))) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2896 (((-645 |#1|) $) 27 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 31 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3492 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-3768 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1924 (($ |#1|) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) NIL)) (-2451 (((-1158) $) 62 (|has| |#1| (-1100)))) (-3162 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-1336 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2884 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) 13) (($ $ (-772)) NIL)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2216 (((-112) $) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 12)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) 17)) (-3164 (($) 16)) (-1552 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1233 (-567))) NIL) ((|#1| $ (-567)) NIL) ((|#1| $ (-567) |#1|) NIL)) (-4304 (((-567) $ $) NIL)) (-2816 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-2675 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-3436 (((-112) $) 39)) (-2443 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4417)))) (-1449 (((-772) $) NIL)) (-1344 (($ $) 44)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) 40)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 26)) (-3962 (($ $ $) 65) (($ $ |#1|) NIL)) (-2285 (($ $ $) NIL) (($ |#1| $) 10) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4101 (((-863) $) 54 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) 58 (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) 9 (|has| $ (-6 -4416)))))
+(((-523 |#1| |#2|) (-667 |#1|) (-1216) (-567)) (T -523))
+NIL
+(-667 |#1|)
+((-1876 ((|#4| |#4|) 37)) (-2432 (((-772) |#4|) 45)) (-1375 (((-772) |#4|) 46)) (-3137 (((-645 |#3|) |#4|) 56 (|has| |#3| (-6 -4417)))) (-3475 (((-3 |#4| "failed") |#4|) 70)) (-2080 ((|#4| |#4|) 62)) (-3240 ((|#1| |#4|) 61)))
+(((-524 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1876 (|#4| |#4|)) (-15 -2432 ((-772) |#4|)) (-15 -1375 ((-772) |#4|)) (IF (|has| |#3| (-6 -4417)) (-15 -3137 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -3240 (|#1| |#4|)) (-15 -2080 (|#4| |#4|)) (-15 -3475 ((-3 |#4| "failed") |#4|))) (-365) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -524))
+((-3475 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2080 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3240 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365)) (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-3137 (*1 *2 *3) (-12 (|has| *6 (-6 -4417)) (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1375 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2432 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(-10 -7 (-15 -1876 (|#4| |#4|)) (-15 -2432 ((-772) |#4|)) (-15 -1375 ((-772) |#4|)) (IF (|has| |#3| (-6 -4417)) (-15 -3137 ((-645 |#3|) |#4|)) |%noBranch|) (-15 -3240 (|#1| |#4|)) (-15 -2080 (|#4| |#4|)) (-15 -3475 ((-3 |#4| "failed") |#4|)))
+((-1876 ((|#8| |#4|) 20)) (-3137 (((-645 |#3|) |#4|) 29 (|has| |#7| (-6 -4417)))) (-3475 (((-3 |#8| "failed") |#4|) 23)))
+(((-525 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1876 (|#8| |#4|)) (-15 -3475 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4417)) (-15 -3137 ((-645 |#3|) |#4|)) |%noBranch|)) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-993 |#1|) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -525))
+((-3137 (*1 *2 *3) (-12 (|has| *9 (-6 -4417)) (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)) (-5 *2 (-645 *6)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6)) (-4 *10 (-688 *7 *8 *9)))) (-3475 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9)) (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6)) (-4 *8 (-375 *7)) (-4 *9 (-375 *7)))))
+(-10 -7 (-15 -1876 (|#8| |#4|)) (-15 -3475 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4417)) (-15 -3137 ((-645 |#3|) |#4|)) |%noBranch|))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2019 (($ (-772) (-772)) NIL)) (-2592 (($ $ $) NIL)) (-3008 (($ (-603 |#1| |#3|)) NIL) (($ $) NIL)) (-2141 (((-112) $) NIL)) (-1529 (($ $ (-567) (-567)) 21)) (-1381 (($ $ (-567) (-567)) NIL)) (-3453 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3788 (($ $) NIL)) (-2358 (((-112) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2098 (($ $ (-567) (-567) $) NIL)) (-4230 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-1417 (($ $ (-567) (-603 |#1| |#3|)) NIL)) (-3264 (($ $ (-567) (-603 |#1| |#2|)) NIL)) (-3617 (($ (-772) |#1|) NIL)) (-4061 (($) NIL T CONST)) (-1876 (($ $) 30 (|has| |#1| (-308)))) (-4074 (((-603 |#1| |#3|) $ (-567)) NIL)) (-2432 (((-772) $) 33 (|has| |#1| (-559)))) (-1303 ((|#1| $ (-567) (-567) |#1|) NIL)) (-4344 ((|#1| $ (-567) (-567)) NIL)) (-2896 (((-645 |#1|) $) NIL)) (-1375 (((-772) $) 35 (|has| |#1| (-559)))) (-3137 (((-645 (-603 |#1| |#2|)) $) 38 (|has| |#1| (-559)))) (-4300 (((-772) $) NIL)) (-4012 (($ (-772) (-772) |#1|) NIL)) (-4311 (((-772) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1982 ((|#1| $) 28 (|has| |#1| (-6 (-4418 "*"))))) (-3776 (((-567) $) 10)) (-4176 (((-567) $) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1977 (((-567) $) 13)) (-2467 (((-567) $) NIL)) (-4036 (($ (-645 (-645 |#1|))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1343 (((-645 (-645 |#1|)) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3475 (((-3 $ "failed") $) 42 (|has| |#1| (-365)))) (-3203 (($ $ $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) NIL)) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-4008 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL)) (-2685 (((-112) $) NIL)) (-3240 ((|#1| $) 26 (|has| |#1| (-6 (-4418 "*"))))) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-3295 (((-603 |#1| |#2|) $ (-567)) NIL)) (-4101 (($ (-603 |#1| |#2|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-1463 (((-112) $) NIL)) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $ $) NIL) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-603 |#1| |#2|) $ (-603 |#1| |#2|)) NIL) (((-603 |#1| |#3|) (-603 |#1| |#3|) $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-526 |#1| |#2| |#3|) (-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|)) (-1050) (-567) (-567)) (T -526))
+NIL
+(-688 |#1| (-603 |#1| |#3|) (-603 |#1| |#2|))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3304 (((-645 (-1215)) $) 13)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 19) (($ (-1181)) NIL) (((-1181) $) NIL) (($ (-645 (-1215))) 11)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-527) (-13 (-1083) (-10 -8 (-15 -4101 ($ (-645 (-1215)))) (-15 -3304 ((-645 (-1215)) $))))) (T -527))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-527)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-527)))))
+(-13 (-1083) (-10 -8 (-15 -4101 ($ (-645 (-1215)))) (-15 -3304 ((-645 (-1215)) $))))
+((-2257 (((-112) $ $) NIL)) (-3103 (((-1135) $) 14)) (-2451 (((-1158) $) NIL)) (-2403 (((-509) $) 11)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 21) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-528) (-13 (-1083) (-10 -8 (-15 -2403 ((-509) $)) (-15 -3103 ((-1135) $))))) (T -528))
+((-2403 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-528)))))
+(-13 (-1083) (-10 -8 (-15 -2403 ((-509) $)) (-15 -3103 ((-1135) $))))
+((-4197 (((-692 (-1224)) $) 15)) (-2507 (((-692 (-1222)) $) 39)) (-3581 (((-692 (-1221)) $) 30)) (-3583 (((-692 (-552)) $) 12)) (-3842 (((-692 (-550)) $) 43)) (-3228 (((-692 (-549)) $) 34)) (-3669 (((-772) $ (-128)) 55)))
+(((-529 |#1|) (-10 -8 (-15 -3669 ((-772) |#1| (-128))) (-15 -2507 ((-692 (-1222)) |#1|)) (-15 -3842 ((-692 (-550)) |#1|)) (-15 -3581 ((-692 (-1221)) |#1|)) (-15 -3228 ((-692 (-549)) |#1|)) (-15 -4197 ((-692 (-1224)) |#1|)) (-15 -3583 ((-692 (-552)) |#1|))) (-530)) (T -529))
+NIL
+(-10 -8 (-15 -3669 ((-772) |#1| (-128))) (-15 -2507 ((-692 (-1222)) |#1|)) (-15 -3842 ((-692 (-550)) |#1|)) (-15 -3581 ((-692 (-1221)) |#1|)) (-15 -3228 ((-692 (-549)) |#1|)) (-15 -4197 ((-692 (-1224)) |#1|)) (-15 -3583 ((-692 (-552)) |#1|)))
+((-4197 (((-692 (-1224)) $) 12)) (-2507 (((-692 (-1222)) $) 8)) (-3581 (((-692 (-1221)) $) 10)) (-3583 (((-692 (-552)) $) 13)) (-3842 (((-692 (-550)) $) 9)) (-3228 (((-692 (-549)) $) 11)) (-3669 (((-772) $ (-128)) 7)) (-2518 (((-692 (-129)) $) 14)) (-4021 (($ $) 6)))
+(((-530) (-140)) (T -530))
+((-2518 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))) (-4197 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))) (-3228 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1221))))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))) (-2507 (*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1222))))) (-3669 (*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(-13 (-173) (-10 -8 (-15 -2518 ((-692 (-129)) $)) (-15 -3583 ((-692 (-552)) $)) (-15 -4197 ((-692 (-1224)) $)) (-15 -3228 ((-692 (-549)) $)) (-15 -3581 ((-692 (-1221)) $)) (-15 -3842 ((-692 (-550)) $)) (-15 -2507 ((-692 (-1222)) $)) (-15 -3669 ((-772) $ (-128)))))
(((-173) . T))
-((-1569 (((-1171 |#1|) (-771)) 115)) (-2717 (((-1265 |#1|) (-1265 |#1|) (-921)) 108)) (-1404 (((-1270) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) |#1|) 124)) (-3124 (((-1265 |#1|) (-1265 |#1|) (-771)) 53)) (-3424 (((-1265 |#1|) (-921)) 110)) (-3986 (((-1265 |#1|) (-1265 |#1|) (-566)) 30)) (-4144 (((-1171 |#1|) (-1265 |#1|)) 116)) (-3029 (((-1265 |#1|) (-921)) 137)) (-3778 (((-112) (-1265 |#1|)) 120)) (-3202 (((-1265 |#1|) (-1265 |#1|) (-921)) 100)) (-2323 (((-1171 |#1|) (-1265 |#1|)) 131)) (-4138 (((-921) (-1265 |#1|)) 96)) (-4282 (((-1265 |#1|) (-1265 |#1|)) 38)) (-2430 (((-1265 |#1|) (-921) (-921)) 140)) (-1881 (((-1265 |#1|) (-1265 |#1|) (-1119) (-1119)) 29)) (-3156 (((-1265 |#1|) (-1265 |#1|) (-771) (-1119)) 54)) (-2227 (((-1265 (-1265 |#1|)) (-921)) 136)) (-2916 (((-1265 |#1|) (-1265 |#1|) (-1265 |#1|)) 121)) (** (((-1265 |#1|) (-1265 |#1|) (-566)) 67)) (* (((-1265 |#1|) (-1265 |#1|) (-1265 |#1|)) 31)))
-(((-530 |#1|) (-10 -7 (-15 -1404 ((-1270) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) |#1|)) (-15 -3424 ((-1265 |#1|) (-921))) (-15 -2430 ((-1265 |#1|) (-921) (-921))) (-15 -4144 ((-1171 |#1|) (-1265 |#1|))) (-15 -1569 ((-1171 |#1|) (-771))) (-15 -3156 ((-1265 |#1|) (-1265 |#1|) (-771) (-1119))) (-15 -3124 ((-1265 |#1|) (-1265 |#1|) (-771))) (-15 -1881 ((-1265 |#1|) (-1265 |#1|) (-1119) (-1119))) (-15 -3986 ((-1265 |#1|) (-1265 |#1|) (-566))) (-15 ** ((-1265 |#1|) (-1265 |#1|) (-566))) (-15 * ((-1265 |#1|) (-1265 |#1|) (-1265 |#1|))) (-15 -2916 ((-1265 |#1|) (-1265 |#1|) (-1265 |#1|))) (-15 -3202 ((-1265 |#1|) (-1265 |#1|) (-921))) (-15 -2717 ((-1265 |#1|) (-1265 |#1|) (-921))) (-15 -4282 ((-1265 |#1|) (-1265 |#1|))) (-15 -4138 ((-921) (-1265 |#1|))) (-15 -3778 ((-112) (-1265 |#1|))) (-15 -2227 ((-1265 (-1265 |#1|)) (-921))) (-15 -3029 ((-1265 |#1|) (-921))) (-15 -2323 ((-1171 |#1|) (-1265 |#1|)))) (-351)) (T -530))
-((-2323 (*1 *2 *3) (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1265 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-2227 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1265 (-1265 *4))) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-3778 (*1 *2 *3) (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-530 *4)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-921)) (-5 *1 (-530 *4)))) (-4282 (*1 *2 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (-2717 (*1 *2 *2 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3202 (*1 *2 *2 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-921)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-2916 (*1 *2 *2 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3986 (*1 *2 *2 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-566)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-1881 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-1119)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3124 (*1 *2 *2 *3) (-12 (-5 *2 (-1265 *4)) (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-530 *4)))) (-3156 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1265 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351)) (-5 *1 (-530 *5)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4)))) (-2430 (*1 *2 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1265 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-3424 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1265 *4)) (-5 *1 (-530 *4)) (-4 *4 (-351)))) (-1404 (*1 *2 *3 *4) (-12 (-5 *3 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119)))))) (-4 *4 (-351)) (-5 *2 (-1270)) (-5 *1 (-530 *4)))))
-(-10 -7 (-15 -1404 ((-1270) (-1265 (-644 (-2 (|:| -2465 |#1|) (|:| -2430 (-1119))))) |#1|)) (-15 -3424 ((-1265 |#1|) (-921))) (-15 -2430 ((-1265 |#1|) (-921) (-921))) (-15 -4144 ((-1171 |#1|) (-1265 |#1|))) (-15 -1569 ((-1171 |#1|) (-771))) (-15 -3156 ((-1265 |#1|) (-1265 |#1|) (-771) (-1119))) (-15 -3124 ((-1265 |#1|) (-1265 |#1|) (-771))) (-15 -1881 ((-1265 |#1|) (-1265 |#1|) (-1119) (-1119))) (-15 -3986 ((-1265 |#1|) (-1265 |#1|) (-566))) (-15 ** ((-1265 |#1|) (-1265 |#1|) (-566))) (-15 * ((-1265 |#1|) (-1265 |#1|) (-1265 |#1|))) (-15 -2916 ((-1265 |#1|) (-1265 |#1|) (-1265 |#1|))) (-15 -3202 ((-1265 |#1|) (-1265 |#1|) (-921))) (-15 -2717 ((-1265 |#1|) (-1265 |#1|) (-921))) (-15 -4282 ((-1265 |#1|) (-1265 |#1|))) (-15 -4138 ((-921) (-1265 |#1|))) (-15 -3778 ((-112) (-1265 |#1|))) (-15 -2227 ((-1265 (-1265 |#1|)) (-921))) (-15 -3029 ((-1265 |#1|) (-921))) (-15 -2323 ((-1171 |#1|) (-1265 |#1|))))
-((-2649 (((-691 (-1223)) $) NIL)) (-1600 (((-691 (-1221)) $) NIL)) (-2709 (((-691 (-1220)) $) NIL)) (-1778 (((-691 (-551)) $) NIL)) (-1676 (((-691 (-549)) $) NIL)) (-3914 (((-691 (-548)) $) NIL)) (-1789 (((-771) $ (-128)) NIL)) (-1601 (((-691 (-129)) $) 26)) (-1632 (((-1119) $ (-1119)) 31)) (-2388 (((-1119) $) 30)) (-3103 (((-112) $) 20)) (-3263 (($ (-390)) 14) (($ (-1157)) 16)) (-3401 (((-112) $) 27)) (-2725 (((-862) $) 34)) (-4381 (($ $) 28)))
-(((-531) (-13 (-529) (-613 (-862)) (-10 -8 (-15 -3263 ($ (-390))) (-15 -3263 ($ (-1157))) (-15 -3401 ((-112) $)) (-15 -3103 ((-112) $)) (-15 -2388 ((-1119) $)) (-15 -1632 ((-1119) $ (-1119)))))) (T -531))
-((-3263 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531)))) (-3263 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))) (-1632 (*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))))
-(-13 (-529) (-613 (-862)) (-10 -8 (-15 -3263 ($ (-390))) (-15 -3263 ($ (-1157))) (-15 -3401 ((-112) $)) (-15 -3103 ((-112) $)) (-15 -2388 ((-1119) $)) (-15 -1632 ((-1119) $ (-1119)))))
-((-3227 (((-1 |#1| |#1|) |#1|) 11)) (-3358 (((-1 |#1| |#1|)) 10)))
-(((-532 |#1|) (-10 -7 (-15 -3358 ((-1 |#1| |#1|))) (-15 -3227 ((-1 |#1| |#1|) |#1|))) (-13 (-726) (-25))) (T -532))
-((-3227 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25))))) (-3358 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25))))))
-(-10 -7 (-15 -3358 ((-1 |#1| |#1|))) (-15 -3227 ((-1 |#1| |#1|) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-3288 (($ $ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-4145 (($ (-771) |#1|) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-2101 (($ (-1 (-771) (-771)) $) NIL)) (-3323 ((|#1| $) NIL)) (-4334 (((-771) $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 27)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL)))
-(((-533 |#1|) (-13 (-793) (-511 (-771) |#1|)) (-850)) (T -533))
-NIL
-(-13 (-793) (-511 (-771) |#1|))
-((-3241 (((-644 |#2|) (-1171 |#1|) |#3|) 98)) (-1711 (((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))) 114)) (-1638 (((-1171 |#1|) (-689 |#1|)) 110)))
-(((-534 |#1| |#2| |#3|) (-10 -7 (-15 -1638 ((-1171 |#1|) (-689 |#1|))) (-15 -3241 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -1711 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|))))) (-365) (-365) (-13 (-365) (-848))) (T -534))
-((-1711 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6))) (-4 *6 (-365)) (-5 *2 (-644 (-2 (|:| |outval| *7) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *7)))))) (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848))))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6)) (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4)) (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848))))))
-(-10 -7 (-15 -1638 ((-1171 |#1|) (-689 |#1|))) (-15 -3241 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -1711 ((-644 (-2 (|:| |outval| |#2|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#2|))))) (-689 |#1|) |#3| (-1 (-420 (-1171 |#1|)) (-1171 |#1|)))))
-((-2005 (((-691 (-1223)) $ (-1223)) NIL)) (-2525 (((-691 (-551)) $ (-551)) NIL)) (-4354 (((-771) $ (-128)) 41)) (-1650 (((-691 (-129)) $ (-129)) 42)) (-2649 (((-691 (-1223)) $) NIL)) (-1600 (((-691 (-1221)) $) NIL)) (-2709 (((-691 (-1220)) $) NIL)) (-1778 (((-691 (-551)) $) NIL)) (-1676 (((-691 (-549)) $) NIL)) (-3914 (((-691 (-548)) $) NIL)) (-1789 (((-771) $ (-128)) 37)) (-1601 (((-691 (-129)) $) 39)) (-2203 (((-112) $) 29)) (-4096 (((-691 $) (-581) (-954)) 19) (((-691 $) (-493) (-954)) 26)) (-2725 (((-862) $) 49)) (-4381 (($ $) 43)))
-(((-535) (-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -4096 ((-691 $) (-493) (-954)))))) (T -535))
-((-4096 (*1 *2 *3 *4) (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535))) (-5 *1 (-535)))))
-(-13 (-767 (-581)) (-613 (-862)) (-10 -8 (-15 -4096 ((-691 $) (-493) (-954)))))
-((-3891 (((-843 (-566))) 12)) (-3901 (((-843 (-566))) 14)) (-2736 (((-833 (-566))) 9)))
-(((-536) (-10 -7 (-15 -2736 ((-833 (-566)))) (-15 -3891 ((-843 (-566)))) (-15 -3901 ((-843 (-566)))))) (T -536))
-((-3901 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-3891 (*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536)))) (-2736 (*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536)))))
-(-10 -7 (-15 -2736 ((-833 (-566)))) (-15 -3891 ((-843 (-566)))) (-15 -3901 ((-843 (-566)))))
-((-4343 (((-538) (-1175)) 15)) (-3177 ((|#1| (-538)) 20)))
-(((-537 |#1|) (-10 -7 (-15 -4343 ((-538) (-1175))) (-15 -3177 (|#1| (-538)))) (-1215)) (T -537))
-((-3177 (*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1215)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4)) (-4 *4 (-1215)))))
-(-10 -7 (-15 -4343 ((-538) (-1175))) (-15 -3177 (|#1| (-538))))
-((-3979 (((-112) $ $) NIL)) (-3000 (((-1157) $) 55)) (-2289 (((-112) $) 51)) (-1731 (((-1175) $) 52)) (-1363 (((-112) $) 49)) (-4198 (((-1157) $) 50)) (-2613 (($ (-1157)) 56)) (-4329 (((-112) $) NIL)) (-1709 (((-112) $) NIL)) (-2530 (((-112) $) NIL)) (-1390 (((-1157) $) NIL)) (-1306 (($ $ (-644 (-1175))) 21)) (-3177 (((-52) $) 23)) (-3855 (((-112) $) NIL)) (-1755 (((-566) $) NIL)) (-1944 (((-1119) $) NIL)) (-1729 (($ $ (-644 (-1175)) (-1175)) 73)) (-1405 (((-112) $) NIL)) (-1449 (((-225) $) NIL)) (-3881 (($ $) 44)) (-2888 (((-862) $) NIL)) (-1451 (((-112) $ $) NIL)) (-3282 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-4099 (((-644 $) $) 30)) (-2357 (((-1175) (-644 $)) 57)) (-2150 (($ (-1157)) NIL) (($ (-1175)) 19) (($ (-566)) 8) (($ (-225)) 28) (($ (-862)) NIL) (($ (-644 $)) 65) (((-1103) $) 12) (($ (-1103)) 13)) (-2762 (((-1175) (-1175) (-644 $)) 60)) (-2725 (((-862) $) 54)) (-3661 (($ $) 59)) (-3652 (($ $) 58)) (-3249 (($ $ (-644 $)) 66)) (-1479 (((-112) $ $) NIL)) (-2189 (((-112) $) 29)) (-3200 (($) 9 T CONST)) (-3214 (($) 11 T CONST)) (-2817 (((-112) $ $) 74)) (-2916 (($ $ $) 82)) (-2897 (($ $ $) 75)) (** (($ $ (-771)) 81) (($ $ (-566)) 80)) (* (($ $ $) 76)) (-3991 (((-566) $) NIL)))
-(((-538) (-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -3177 ((-52) $)) (-15 -2150 ($ (-1103))) (-15 -3249 ($ $ (-644 $))) (-15 -1729 ($ $ (-644 (-1175)) (-1175))) (-15 -1306 ($ $ (-644 (-1175)))) (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 -2916 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 0 ($) -3854) (-15 1 ($) -3854) (-15 -3881 ($ $)) (-15 -3000 ((-1157) $)) (-15 -2613 ($ (-1157))) (-15 -2357 ((-1175) (-644 $))) (-15 -2762 ((-1175) (-1175) (-644 $)))))) (T -538))
-((-3177 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-538)))) (-3249 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538)))) (-1729 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538)))) (-1306 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538)))) (-2897 (*1 *1 *1 *1) (-5 *1 (-538))) (* (*1 *1 *1 *1) (-5 *1 (-538))) (-2916 (*1 *1 *1 *1) (-5 *1 (-538))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538)))) (-3200 (*1 *1) (-5 *1 (-538))) (-3214 (*1 *1) (-5 *1 (-538))) (-3881 (*1 *1 *1) (-5 *1 (-538))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-2613 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))) (-2357 (*1 *2 *3) (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538)))) (-2762 (*1 *2 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538)))))
-(-13 (-1102 (-1157) (-1175) (-566) (-225) (-862)) (-614 (-1103)) (-10 -8 (-15 -3177 ((-52) $)) (-15 -2150 ($ (-1103))) (-15 -3249 ($ $ (-644 $))) (-15 -1729 ($ $ (-644 (-1175)) (-1175))) (-15 -1306 ($ $ (-644 (-1175)))) (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 -2916 ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ (-566))) (-15 (-3200) ($) -3854) (-15 (-3214) ($) -3854) (-15 -3881 ($ $)) (-15 -3000 ((-1157) $)) (-15 -2613 ($ (-1157))) (-15 -2357 ((-1175) (-644 $))) (-15 -2762 ((-1175) (-1175) (-644 $)))))
-((-1606 ((|#2| |#2|) 17)) (-3257 ((|#2| |#2|) 13)) (-3237 ((|#2| |#2| (-566) (-566)) 20)) (-3274 ((|#2| |#2|) 15)))
-(((-539 |#1| |#2|) (-10 -7 (-15 -3257 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -3237 (|#2| |#2| (-566) (-566)))) (-13 (-558) (-147)) (-1256 |#1|)) (T -539))
-((-3237 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2)) (-4 *2 (-1256 *4)))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1256 *3)))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1256 *3)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2)) (-4 *2 (-1256 *3)))))
-(-10 -7 (-15 -3257 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -3237 (|#2| |#2| (-566) (-566))))
-((-2435 (((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))) 32)) (-4367 (((-644 |#2|) (-952 |#1|) |#3|) 54) (((-644 |#2|) (-1171 |#1|) |#3|) 53)) (-3062 (((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|) 106)))
-(((-540 |#1| |#2| |#3|) (-10 -7 (-15 -4367 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -4367 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -3062 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -2435 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175))))) (-454) (-365) (-13 (-365) (-848))) (T -540))
-((-2435 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365)) (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848))))) (-3062 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-848))))) (-4367 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))) (-4367 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6)) (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))))
-(-10 -7 (-15 -4367 ((-644 |#2|) (-1171 |#1|) |#3|)) (-15 -4367 ((-644 |#2|) (-952 |#1|) |#3|)) (-15 -3062 ((-644 (-644 |#2|)) (-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)) |#3|)) (-15 -2435 ((-644 (-295 (-952 |#2|))) (-644 |#2|) (-644 (-1175)))))
-((-4270 ((|#2| |#2| |#1|) 17)) (-4022 ((|#2| (-644 |#2|)) 31)) (-3118 ((|#2| (-644 |#2|)) 52)))
-(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4022 (|#2| (-644 |#2|))) (-15 -3118 (|#2| (-644 |#2|))) (-15 -4270 (|#2| |#2| |#1|))) (-308) (-1241 |#1|) |#1| (-1 |#1| |#1| (-771))) (T -541))
-((-4270 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771))) (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1241 *3)))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1241 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771))))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1241 *4)) (-5 *1 (-541 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771))))))
-(-10 -7 (-15 -4022 (|#2| (-644 |#2|))) (-15 -3118 (|#2| (-644 |#2|))) (-15 -4270 (|#2| |#2| |#1|)))
-((-4018 (((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 89) (((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|))) 218)))
-(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -4018 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|))))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -542))
-((-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3)) (-4 *3 (-949 *7 *6 *5)))))
-(-10 -7 (-15 -4018 ((-420 |#4|) |#4| (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))) (-15 -4018 ((-420 (-1171 |#4|)) (-1171 |#4|) (-1 (-420 (-1171 |#3|)) (-1171 |#3|)))))
-((-1606 ((|#4| |#4|) 74)) (-3257 ((|#4| |#4|) 70)) (-3237 ((|#4| |#4| (-566) (-566)) 76)) (-3274 ((|#4| |#4|) 72)))
-(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3257 (|#4| |#4|)) (-15 -3274 (|#4| |#4|)) (-15 -1606 (|#4| |#4|)) (-15 -3237 (|#4| |#4| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1241 |#1|) (-724 |#1| |#2|) (-1256 |#3|)) (T -543))
-((-3237 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-4 *5 (-1241 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2)) (-4 *2 (-1256 *6)))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1241 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1256 *5)))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1241 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1256 *5)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1241 *3)) (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1256 *5)))))
-(-10 -7 (-15 -3257 (|#4| |#4|)) (-15 -3274 (|#4| |#4|)) (-15 -1606 (|#4| |#4|)) (-15 -3237 (|#4| |#4| (-566) (-566))))
-((-1606 ((|#2| |#2|) 27)) (-3257 ((|#2| |#2|) 23)) (-3237 ((|#2| |#2| (-566) (-566)) 29)) (-3274 ((|#2| |#2|) 25)))
-(((-544 |#1| |#2|) (-10 -7 (-15 -3257 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -3237 (|#2| |#2| (-566) (-566)))) (-13 (-365) (-370) (-614 (-566))) (-1256 |#1|)) (T -544))
-((-3237 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3))) (-5 *1 (-544 *4 *2)) (-4 *2 (-1256 *4)))) (-1606 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1256 *3)))) (-3274 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1256 *3)))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2)) (-4 *2 (-1256 *3)))))
-(-10 -7 (-15 -3257 (|#2| |#2|)) (-15 -3274 (|#2| |#2|)) (-15 -1606 (|#2| |#2|)) (-15 -3237 (|#2| |#2| (-566) (-566))))
-((-3554 (((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)) 18) (((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|)) 14) (((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|)) 32)))
-(((-545 |#1| |#2|) (-10 -7 (-15 -3554 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3554 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3554 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|)))) (-1049) (-1241 |#1|)) (T -545))
-((-3554 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1241 *4)))) (-3554 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1241 *4)))) (-3554 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049)) (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1241 *5)))))
-(-10 -7 (-15 -3554 ((-3 (-566) "failed") |#2| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3554 ((-3 (-566) "failed") |#2| |#1| (-566) (-1 (-3 (-566) "failed") |#1|))) (-15 -3554 ((-3 (-566) "failed") |#2| |#1| (-1 (-3 (-566) "failed") |#1|))))
-((-3523 (($ $ $) 84)) (-2555 (((-420 $) $) 52)) (-2023 (((-3 (-566) "failed") $) 64)) (-3343 (((-566) $) 42)) (-4388 (((-3 (-409 (-566)) "failed") $) 79)) (-1929 (((-112) $) 26)) (-1847 (((-409 (-566)) $) 77)) (-1968 (((-112) $) 55)) (-1826 (($ $ $ $) 92)) (-3421 (((-112) $) 17)) (-1549 (($ $ $) 62)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 74)) (-3869 (((-3 $ "failed") $) 69)) (-2086 (($ $) 24)) (-2063 (($ $ $) 90)) (-1342 (($) 65)) (-2062 (($ $) 58)) (-4018 (((-420 $) $) 50)) (-3934 (((-112) $) 15)) (-3792 (((-771) $) 32)) (-3009 (($ $ (-771)) NIL) (($ $) 11)) (-2878 (($ $) 18)) (-2150 (((-566) $) NIL) (((-538) $) 41) (((-892 (-566)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-2875 (((-771)) 9)) (-1761 (((-112) $ $) 21)) (-1672 (($ $ $) 60)))
-(((-546 |#1|) (-10 -8 (-15 -2063 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1| |#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -3934 ((-112) |#1|)) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -2150 ((-225) |#1|)) (-15 -2150 ((-381) |#1|)) (-15 -1549 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2150 ((-566) |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3421 ((-112) |#1|)) (-15 -3792 ((-771) |#1|)) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -2875 ((-771)))) (-547)) (T -546))
-((-2875 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-546 *3)) (-4 *3 (-547)))))
-(-10 -8 (-15 -2063 (|#1| |#1| |#1|)) (-15 -1826 (|#1| |#1| |#1| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -2878 (|#1| |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -3523 (|#1| |#1| |#1|)) (-15 -1761 ((-112) |#1| |#1|)) (-15 -3934 ((-112) |#1|)) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -2150 ((-225) |#1|)) (-15 -2150 ((-381) |#1|)) (-15 -1549 (|#1| |#1| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 -1672 (|#1| |#1| |#1|)) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2150 ((-566) |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3421 ((-112) |#1|)) (-15 -3792 ((-771) |#1|)) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -2875 ((-771))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-3523 (($ $ $) 90)) (-4113 (((-3 $ "failed") $ $) 20)) (-4312 (($ $ $ $) 79)) (-2885 (($ $) 57)) (-2555 (((-420 $) $) 58)) (-2068 (((-112) $ $) 130)) (-1859 (((-566) $) 119)) (-2724 (($ $ $) 93)) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 111)) (-3343 (((-566) $) 112)) (-3919 (($ $ $) 134)) (-3717 (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 109) (((-689 (-566)) (-689 $)) 108)) (-2313 (((-3 $ "failed") $) 37)) (-4388 (((-3 (-409 (-566)) "failed") $) 87)) (-1929 (((-112) $) 89)) (-1847 (((-409 (-566)) $) 88)) (-3424 (($) 86) (($ $) 85)) (-3930 (($ $ $) 133)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 128)) (-1968 (((-112) $) 59)) (-1826 (($ $ $ $) 77)) (-3042 (($ $ $) 91)) (-3421 (((-112) $) 121)) (-1549 (($ $ $) 102)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 105)) (-3842 (((-112) $) 35)) (-1687 (((-112) $) 97)) (-3869 (((-3 $ "failed") $) 99)) (-2307 (((-112) $) 120)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 137)) (-2485 (($ $ $ $) 78)) (-3075 (($ $ $) 122)) (-3936 (($ $ $) 123)) (-2086 (($ $) 81)) (-1653 (($ $) 94)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-2063 (($ $ $) 76)) (-1342 (($) 98 T CONST)) (-3517 (($ $) 83)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-2062 (($ $) 103)) (-4018 (((-420 $) $) 56)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 135)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 129)) (-3934 (((-112) $) 96)) (-3792 (((-771) $) 131)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 132)) (-3009 (($ $ (-771)) 116) (($ $) 114)) (-4302 (($ $) 82)) (-2878 (($ $) 84)) (-2150 (((-566) $) 113) (((-538) $) 107) (((-892 (-566)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 110)) (-2875 (((-771)) 32 T CONST)) (-1761 (((-112) $ $) 92)) (-1672 (($ $ $) 104)) (-1479 (((-112) $ $) 9)) (-1792 (($) 95)) (-1597 (((-112) $ $) 45)) (-1804 (($ $ $ $) 80)) (-2274 (($ $) 118)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-771)) 117) (($ $) 115)) (-2865 (((-112) $ $) 125)) (-2844 (((-112) $ $) 126)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 124)) (-2833 (((-112) $ $) 127)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-547) (-140)) (T -547))
-((-1687 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-1792 (*1 *1) (-4 *1 (-547))) (-1653 (*1 *1 *1) (-4 *1 (-547))) (-2724 (*1 *1 *1 *1) (-4 *1 (-547))) (-1761 (*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-3042 (*1 *1 *1 *1) (-4 *1 (-547))) (-3523 (*1 *1 *1 *1) (-4 *1 (-547))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-4388 (*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566))))) (-3424 (*1 *1) (-4 *1 (-547))) (-3424 (*1 *1 *1) (-4 *1 (-547))) (-2878 (*1 *1 *1) (-4 *1 (-547))) (-3517 (*1 *1 *1) (-4 *1 (-547))) (-4302 (*1 *1 *1) (-4 *1 (-547))) (-2086 (*1 *1 *1) (-4 *1 (-547))) (-1804 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-4312 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-2485 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-1826 (*1 *1 *1 *1 *1) (-4 *1 (-547))) (-2063 (*1 *1 *1 *1) (-4 *1 (-547))))
-(-13 (-1219) (-308) (-820) (-233) (-614 (-566)) (-1038 (-566)) (-639 (-566)) (-614 (-538)) (-614 (-892 (-566))) (-886 (-566)) (-143) (-1022) (-147) (-1150) (-10 -8 (-15 -1687 ((-112) $)) (-15 -3934 ((-112) $)) (-6 -4414) (-15 -1792 ($)) (-15 -1653 ($ $)) (-15 -2724 ($ $ $)) (-15 -1761 ((-112) $ $)) (-15 -3042 ($ $ $)) (-15 -3523 ($ $ $)) (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $)) (-15 -3424 ($)) (-15 -3424 ($ $)) (-15 -2878 ($ $)) (-15 -3517 ($ $)) (-15 -4302 ($ $)) (-15 -2086 ($ $)) (-15 -1804 ($ $ $ $)) (-15 -4312 ($ $ $ $)) (-15 -2485 ($ $ $ $)) (-15 -1826 ($ $ $ $)) (-15 -2063 ($ $ $)) (-6 -4413)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-143) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-538)) . T) ((-614 (-566)) . T) ((-614 (-892 (-566))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-639 (-566)) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-820) . T) ((-848) . T) ((-850) . T) ((-886 (-566)) . T) ((-920) . T) ((-1022) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) . T) ((-1219) . T))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-548) (-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))) (T -548))
-((-2633 (*1 *1) (-5 *1 (-548))))
-(-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))
+((-2139 (((-1172 |#1|) (-772)) 115)) (-4093 (((-1266 |#1|) (-1266 |#1|) (-922)) 108)) (-1533 (((-1271) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) |#1|) 124)) (-4196 (((-1266 |#1|) (-1266 |#1|) (-772)) 53)) (-1649 (((-1266 |#1|) (-922)) 110)) (-2664 (((-1266 |#1|) (-1266 |#1|) (-567)) 30)) (-3586 (((-1172 |#1|) (-1266 |#1|)) 116)) (-1359 (((-1266 |#1|) (-922)) 137)) (-4270 (((-112) (-1266 |#1|)) 120)) (-3751 (((-1266 |#1|) (-1266 |#1|) (-922)) 100)) (-4110 (((-1172 |#1|) (-1266 |#1|)) 131)) (-3527 (((-922) (-1266 |#1|)) 96)) (-2559 (((-1266 |#1|) (-1266 |#1|)) 38)) (-3811 (((-1266 |#1|) (-922) (-922)) 140)) (-2132 (((-1266 |#1|) (-1266 |#1|) (-1120) (-1120)) 29)) (-3373 (((-1266 |#1|) (-1266 |#1|) (-772) (-1120)) 54)) (-2557 (((-1266 (-1266 |#1|)) (-922)) 136)) (-3168 (((-1266 |#1|) (-1266 |#1|) (-1266 |#1|)) 121)) (** (((-1266 |#1|) (-1266 |#1|) (-567)) 67)) (* (((-1266 |#1|) (-1266 |#1|) (-1266 |#1|)) 31)))
+(((-531 |#1|) (-10 -7 (-15 -1533 ((-1271) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) |#1|)) (-15 -1649 ((-1266 |#1|) (-922))) (-15 -3811 ((-1266 |#1|) (-922) (-922))) (-15 -3586 ((-1172 |#1|) (-1266 |#1|))) (-15 -2139 ((-1172 |#1|) (-772))) (-15 -3373 ((-1266 |#1|) (-1266 |#1|) (-772) (-1120))) (-15 -4196 ((-1266 |#1|) (-1266 |#1|) (-772))) (-15 -2132 ((-1266 |#1|) (-1266 |#1|) (-1120) (-1120))) (-15 -2664 ((-1266 |#1|) (-1266 |#1|) (-567))) (-15 ** ((-1266 |#1|) (-1266 |#1|) (-567))) (-15 * ((-1266 |#1|) (-1266 |#1|) (-1266 |#1|))) (-15 -3168 ((-1266 |#1|) (-1266 |#1|) (-1266 |#1|))) (-15 -3751 ((-1266 |#1|) (-1266 |#1|) (-922))) (-15 -4093 ((-1266 |#1|) (-1266 |#1|) (-922))) (-15 -2559 ((-1266 |#1|) (-1266 |#1|))) (-15 -3527 ((-922) (-1266 |#1|))) (-15 -4270 ((-112) (-1266 |#1|))) (-15 -2557 ((-1266 (-1266 |#1|)) (-922))) (-15 -1359 ((-1266 |#1|) (-922))) (-15 -4110 ((-1172 |#1|) (-1266 |#1|)))) (-351)) (T -531))
+((-4110 (*1 *2 *3) (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-1172 *4)) (-5 *1 (-531 *4)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1266 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1266 (-1266 *4))) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-4270 (*1 *2 *3) (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-531 *4)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-922)) (-5 *1 (-531 *4)))) (-2559 (*1 *2 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (-4093 (*1 *2 *2 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-922)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3751 (*1 *2 *2 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-922)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3168 (*1 *2 *2 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2664 (*1 *2 *2 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-567)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-2132 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-1120)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-4196 (*1 *2 *2 *3) (-12 (-5 *2 (-1266 *4)) (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-531 *4)))) (-3373 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1266 *5)) (-5 *3 (-772)) (-5 *4 (-1120)) (-4 *5 (-351)) (-5 *1 (-531 *5)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1172 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-3586 (*1 *2 *3) (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-1172 *4)) (-5 *1 (-531 *4)))) (-3811 (*1 *2 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1266 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1266 *4)) (-5 *1 (-531 *4)) (-4 *4 (-351)))) (-1533 (*1 *2 *3 *4) (-12 (-5 *3 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120)))))) (-4 *4 (-351)) (-5 *2 (-1271)) (-5 *1 (-531 *4)))))
+(-10 -7 (-15 -1533 ((-1271) (-1266 (-645 (-2 (|:| -3843 |#1|) (|:| -3811 (-1120))))) |#1|)) (-15 -1649 ((-1266 |#1|) (-922))) (-15 -3811 ((-1266 |#1|) (-922) (-922))) (-15 -3586 ((-1172 |#1|) (-1266 |#1|))) (-15 -2139 ((-1172 |#1|) (-772))) (-15 -3373 ((-1266 |#1|) (-1266 |#1|) (-772) (-1120))) (-15 -4196 ((-1266 |#1|) (-1266 |#1|) (-772))) (-15 -2132 ((-1266 |#1|) (-1266 |#1|) (-1120) (-1120))) (-15 -2664 ((-1266 |#1|) (-1266 |#1|) (-567))) (-15 ** ((-1266 |#1|) (-1266 |#1|) (-567))) (-15 * ((-1266 |#1|) (-1266 |#1|) (-1266 |#1|))) (-15 -3168 ((-1266 |#1|) (-1266 |#1|) (-1266 |#1|))) (-15 -3751 ((-1266 |#1|) (-1266 |#1|) (-922))) (-15 -4093 ((-1266 |#1|) (-1266 |#1|) (-922))) (-15 -2559 ((-1266 |#1|) (-1266 |#1|))) (-15 -3527 ((-922) (-1266 |#1|))) (-15 -4270 ((-112) (-1266 |#1|))) (-15 -2557 ((-1266 (-1266 |#1|)) (-922))) (-15 -1359 ((-1266 |#1|) (-922))) (-15 -4110 ((-1172 |#1|) (-1266 |#1|))))
+((-4197 (((-692 (-1224)) $) NIL)) (-2507 (((-692 (-1222)) $) NIL)) (-3581 (((-692 (-1221)) $) NIL)) (-3583 (((-692 (-552)) $) NIL)) (-3842 (((-692 (-550)) $) NIL)) (-3228 (((-692 (-549)) $) NIL)) (-3669 (((-772) $ (-128)) NIL)) (-2518 (((-692 (-129)) $) 26)) (-1460 (((-1120) $ (-1120)) 31)) (-3771 (((-1120) $) 30)) (-3996 (((-112) $) 20)) (-3174 (($ (-391)) 14) (($ (-1158)) 16)) (-3912 (((-112) $) 27)) (-4101 (((-863) $) 34)) (-4021 (($ $) 28)))
+(((-532) (-13 (-530) (-614 (-863)) (-10 -8 (-15 -3174 ($ (-391))) (-15 -3174 ($ (-1158))) (-15 -3912 ((-112) $)) (-15 -3996 ((-112) $)) (-15 -3771 ((-1120) $)) (-15 -1460 ((-1120) $ (-1120)))))) (T -532))
+((-3174 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))) (-3174 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-532)))) (-3912 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-532)))) (-1460 (*1 *2 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-532)))))
+(-13 (-530) (-614 (-863)) (-10 -8 (-15 -3174 ($ (-391))) (-15 -3174 ($ (-1158))) (-15 -3912 ((-112) $)) (-15 -3996 ((-112) $)) (-15 -3771 ((-1120) $)) (-15 -1460 ((-1120) $ (-1120)))))
+((-1498 (((-1 |#1| |#1|) |#1|) 11)) (-1588 (((-1 |#1| |#1|)) 10)))
+(((-533 |#1|) (-10 -7 (-15 -1588 ((-1 |#1| |#1|))) (-15 -1498 ((-1 |#1| |#1|) |#1|))) (-13 (-727) (-25))) (T -533))
+((-1498 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))) (-1588 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
+(-10 -7 (-15 -1588 ((-1 |#1| |#1|))) (-15 -1498 ((-1 |#1| |#1|) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2140 (($ $ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-2422 (($ (-772) |#1|) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-3494 (($ (-1 (-772) (-772)) $) NIL)) (-2555 ((|#1| $) NIL)) (-2613 (((-772) $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 27)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL)))
+(((-534 |#1|) (-13 (-794) (-512 (-772) |#1|)) (-851)) (T -534))
+NIL
+(-13 (-794) (-512 (-772) |#1|))
+((-2950 (((-645 |#2|) (-1172 |#1|) |#3|) 98)) (-4153 (((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1172 |#1|)) (-1172 |#1|))) 114)) (-1545 (((-1172 |#1|) (-690 |#1|)) 110)))
+(((-535 |#1| |#2| |#3|) (-10 -7 (-15 -1545 ((-1172 |#1|) (-690 |#1|))) (-15 -2950 ((-645 |#2|) (-1172 |#1|) |#3|)) (-15 -4153 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1172 |#1|)) (-1172 |#1|))))) (-365) (-365) (-13 (-365) (-849))) (T -535))
+((-4153 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1172 *6)) (-1172 *6))) (-4 *6 (-365)) (-5 *2 (-645 (-2 (|:| |outval| *7) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *7)))))) (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))) (-2950 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6)) (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1172 *4)) (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849))))))
+(-10 -7 (-15 -1545 ((-1172 |#1|) (-690 |#1|))) (-15 -2950 ((-645 |#2|) (-1172 |#1|) |#3|)) (-15 -4153 ((-645 (-2 (|:| |outval| |#2|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#2|))))) (-690 |#1|) |#3| (-1 (-421 (-1172 |#1|)) (-1172 |#1|)))))
+((-3908 (((-692 (-1224)) $ (-1224)) NIL)) (-2492 (((-692 (-552)) $ (-552)) NIL)) (-1925 (((-772) $ (-128)) 41)) (-1703 (((-692 (-129)) $ (-129)) 42)) (-4197 (((-692 (-1224)) $) NIL)) (-2507 (((-692 (-1222)) $) NIL)) (-3581 (((-692 (-1221)) $) NIL)) (-3583 (((-692 (-552)) $) NIL)) (-3842 (((-692 (-550)) $) NIL)) (-3228 (((-692 (-549)) $) NIL)) (-3669 (((-772) $ (-128)) 37)) (-2518 (((-692 (-129)) $) 39)) (-2270 (((-112) $) 29)) (-4238 (((-692 $) (-582) (-955)) 19) (((-692 $) (-494) (-955)) 26)) (-4101 (((-863) $) 49)) (-4021 (($ $) 43)))
+(((-536) (-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -4238 ((-692 $) (-494) (-955)))))) (T -536))
+((-4238 (*1 *2 *3 *4) (-12 (-5 *3 (-494)) (-5 *4 (-955)) (-5 *2 (-692 (-536))) (-5 *1 (-536)))))
+(-13 (-768 (-582)) (-614 (-863)) (-10 -8 (-15 -4238 ((-692 $) (-494) (-955)))))
+((-2169 (((-844 (-567))) 12)) (-2180 (((-844 (-567))) 14)) (-4112 (((-834 (-567))) 9)))
+(((-537) (-10 -7 (-15 -4112 ((-834 (-567)))) (-15 -2169 ((-844 (-567)))) (-15 -2180 ((-844 (-567)))))) (T -537))
+((-2180 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-2169 (*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537)))) (-4112 (*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537)))))
+(-10 -7 (-15 -4112 ((-834 (-567)))) (-15 -2169 ((-844 (-567)))) (-15 -2180 ((-844 (-567)))))
+((-1806 (((-539) (-1176)) 15)) (-1442 ((|#1| (-539)) 20)))
+(((-538 |#1|) (-10 -7 (-15 -1806 ((-539) (-1176))) (-15 -1442 (|#1| (-539)))) (-1216)) (T -538))
+((-1442 (*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1216)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-539)) (-5 *1 (-538 *4)) (-4 *4 (-1216)))))
+(-10 -7 (-15 -1806 ((-539) (-1176))) (-15 -1442 (|#1| (-539))))
+((-2257 (((-112) $ $) NIL)) (-2475 (((-1158) $) 55)) (-1928 (((-112) $) 51)) (-3118 (((-1176) $) 52)) (-1701 (((-112) $) 49)) (-2478 (((-1158) $) 50)) (-3891 (($ (-1158)) 56)) (-1626 (((-112) $) NIL)) (-4132 (((-112) $) NIL)) (-2551 (((-112) $) NIL)) (-2451 (((-1158) $) NIL)) (-2678 (($ $ (-645 (-1176))) 21)) (-1442 (((-52) $) 23)) (-3822 (((-112) $) NIL)) (-3142 (((-567) $) NIL)) (-3339 (((-1120) $) NIL)) (-3116 (($ $ (-645 (-1176)) (-1176)) 73)) (-1550 (((-112) $) NIL)) (-2822 (((-225) $) NIL)) (-2159 (($ $) 44)) (-4256 (((-863) $) NIL)) (-2823 (((-112) $ $) NIL)) (-1552 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2381 (((-645 $) $) 30)) (-3744 (((-1176) (-645 $)) 57)) (-3542 (($ (-1158)) NIL) (($ (-1176)) 19) (($ (-567)) 8) (($ (-225)) 28) (($ (-863)) NIL) (($ (-645 $)) 65) (((-1104) $) 12) (($ (-1104)) 13)) (-4139 (((-1176) (-1176) (-645 $)) 60)) (-4101 (((-863) $) 54)) (-1947 (($ $) 59)) (-1935 (($ $) 58)) (-3023 (($ $ (-645 $)) 66)) (-3739 (((-112) $ $) NIL)) (-2107 (((-112) $) 29)) (-1468 (($) 9 T CONST)) (-1484 (($) 11 T CONST)) (-3052 (((-112) $ $) 74)) (-3168 (($ $ $) 82)) (-3146 (($ $ $) 75)) (** (($ $ (-772)) 81) (($ $ (-567)) 80)) (* (($ $ $) 76)) (-2268 (((-567) $) NIL)))
+(((-539) (-13 (-1103 (-1158) (-1176) (-567) (-225) (-863)) (-615 (-1104)) (-10 -8 (-15 -1442 ((-52) $)) (-15 -3542 ($ (-1104))) (-15 -3023 ($ $ (-645 $))) (-15 -3116 ($ $ (-645 (-1176)) (-1176))) (-15 -2678 ($ $ (-645 (-1176)))) (-15 -3146 ($ $ $)) (-15 * ($ $ $)) (-15 -3168 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 0 ($) -2131) (-15 1 ($) -2131) (-15 -2159 ($ $)) (-15 -2475 ((-1158) $)) (-15 -3891 ($ (-1158))) (-15 -3744 ((-1176) (-645 $))) (-15 -4139 ((-1176) (-1176) (-645 $)))))) (T -539))
+((-1442 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-1104)) (-5 *1 (-539)))) (-3023 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))) (-3116 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-1176)) (-5 *1 (-539)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-539)))) (-3146 (*1 *1 *1 *1) (-5 *1 (-539))) (* (*1 *1 *1 *1) (-5 *1 (-539))) (-3168 (*1 *1 *1 *1) (-5 *1 (-539))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539)))) (-1468 (*1 *1) (-5 *1 (-539))) (-1484 (*1 *1) (-5 *1 (-539))) (-2159 (*1 *1 *1) (-5 *1 (-539))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-539)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-539)))) (-3744 (*1 *2 *3) (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1176)) (-5 *1 (-539)))) (-4139 (*1 *2 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-539))) (-5 *1 (-539)))))
+(-13 (-1103 (-1158) (-1176) (-567) (-225) (-863)) (-615 (-1104)) (-10 -8 (-15 -1442 ((-52) $)) (-15 -3542 ($ (-1104))) (-15 -3023 ($ $ (-645 $))) (-15 -3116 ($ $ (-645 (-1176)) (-1176))) (-15 -2678 ($ $ (-645 (-1176)))) (-15 -3146 ($ $ $)) (-15 * ($ $ $)) (-15 -3168 ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ (-567))) (-15 (-1468) ($) -2131) (-15 (-1484) ($) -2131) (-15 -2159 ($ $)) (-15 -2475 ((-1158) $)) (-15 -3891 ($ (-1158))) (-15 -3744 ((-1176) (-645 $))) (-15 -4139 ((-1176) (-1176) (-645 $)))))
+((-2570 ((|#2| |#2|) 17)) (-3104 ((|#2| |#2|) 13)) (-2917 ((|#2| |#2| (-567) (-567)) 20)) (-3266 ((|#2| |#2|) 15)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -3104 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-567) (-567)))) (-13 (-559) (-147)) (-1257 |#1|)) (T -540))
+((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2)) (-4 *2 (-1257 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1257 *3)))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1257 *3)))) (-3104 (*1 *2 *2) (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2)) (-4 *2 (-1257 *3)))))
+(-10 -7 (-15 -3104 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-567) (-567))))
+((-2855 (((-645 (-295 (-953 |#2|))) (-645 |#2|) (-645 (-1176))) 32)) (-2038 (((-645 |#2|) (-953 |#1|) |#3|) 54) (((-645 |#2|) (-1172 |#1|) |#3|) 53)) (-1776 (((-645 (-645 |#2|)) (-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176)) |#3|) 106)))
+(((-541 |#1| |#2| |#3|) (-10 -7 (-15 -2038 ((-645 |#2|) (-1172 |#1|) |#3|)) (-15 -2038 ((-645 |#2|) (-953 |#1|) |#3|)) (-15 -1776 ((-645 (-645 |#2|)) (-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176)) |#3|)) (-15 -2855 ((-645 (-295 (-953 |#2|))) (-645 |#2|) (-645 (-1176))))) (-455) (-365) (-13 (-365) (-849))) (T -541))
+((-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1176))) (-4 *6 (-365)) (-5 *2 (-645 (-295 (-953 *6)))) (-5 *1 (-541 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))) (-1776 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1176))) (-4 *6 (-455)) (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365)) (-4 *5 (-13 (-365) (-849))))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6)) (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -2038 ((-645 |#2|) (-1172 |#1|) |#3|)) (-15 -2038 ((-645 |#2|) (-953 |#1|) |#3|)) (-15 -1776 ((-645 (-645 |#2|)) (-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176)) |#3|)) (-15 -2855 ((-645 (-295 (-953 |#2|))) (-645 |#2|) (-645 (-1176)))))
+((-2362 ((|#2| |#2| |#1|) 17)) (-1692 ((|#2| (-645 |#2|)) 31)) (-4148 ((|#2| (-645 |#2|)) 52)))
+(((-542 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1692 (|#2| (-645 |#2|))) (-15 -4148 (|#2| (-645 |#2|))) (-15 -2362 (|#2| |#2| |#1|))) (-308) (-1242 |#1|) |#1| (-1 |#1| |#1| (-772))) (T -542))
+((-2362 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772))) (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1242 *3)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1242 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))) (-1692 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1242 *4)) (-5 *1 (-542 *4 *2 *5 *6)) (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
+(-10 -7 (-15 -1692 (|#2| (-645 |#2|))) (-15 -4148 (|#2| (-645 |#2|))) (-15 -2362 (|#2| |#2| |#1|)))
+((-2296 (((-421 (-1172 |#4|)) (-1172 |#4|) (-1 (-421 (-1172 |#3|)) (-1172 |#3|))) 89) (((-421 |#4|) |#4| (-1 (-421 (-1172 |#3|)) (-1172 |#3|))) 218)))
+(((-543 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-421 |#4|) |#4| (-1 (-421 (-1172 |#3|)) (-1172 |#3|)))) (-15 -2296 ((-421 (-1172 |#4|)) (-1172 |#4|) (-1 (-421 (-1172 |#3|)) (-1172 |#3|))))) (-851) (-794) (-13 (-308) (-147)) (-950 |#3| |#2| |#1|)) (T -543))
+((-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1172 *7)) (-1172 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-950 *7 *6 *5)) (-5 *2 (-421 (-1172 *8))) (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1172 *8)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 (-1172 *7)) (-1172 *7))) (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3)) (-4 *3 (-950 *7 *6 *5)))))
+(-10 -7 (-15 -2296 ((-421 |#4|) |#4| (-1 (-421 (-1172 |#3|)) (-1172 |#3|)))) (-15 -2296 ((-421 (-1172 |#4|)) (-1172 |#4|) (-1 (-421 (-1172 |#3|)) (-1172 |#3|)))))
+((-2570 ((|#4| |#4|) 74)) (-3104 ((|#4| |#4|) 70)) (-2917 ((|#4| |#4| (-567) (-567)) 76)) (-3266 ((|#4| |#4|) 72)))
+(((-544 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3104 (|#4| |#4|)) (-15 -3266 (|#4| |#4|)) (-15 -2570 (|#4| |#4|)) (-15 -2917 (|#4| |#4| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1242 |#1|) (-725 |#1| |#2|) (-1257 |#3|)) (T -544))
+((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-4 *5 (-1242 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2)) (-4 *2 (-1257 *6)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1242 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1257 *5)))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1242 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1257 *5)))) (-3104 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1242 *3)) (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1257 *5)))))
+(-10 -7 (-15 -3104 (|#4| |#4|)) (-15 -3266 (|#4| |#4|)) (-15 -2570 (|#4| |#4|)) (-15 -2917 (|#4| |#4| (-567) (-567))))
+((-2570 ((|#2| |#2|) 27)) (-3104 ((|#2| |#2|) 23)) (-2917 ((|#2| |#2| (-567) (-567)) 29)) (-3266 ((|#2| |#2|) 25)))
+(((-545 |#1| |#2|) (-10 -7 (-15 -3104 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-567) (-567)))) (-13 (-365) (-370) (-615 (-567))) (-1257 |#1|)) (T -545))
+((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3))) (-5 *1 (-545 *4 *2)) (-4 *2 (-1257 *4)))) (-2570 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1257 *3)))) (-3266 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1257 *3)))) (-3104 (*1 *2 *2) (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2)) (-4 *2 (-1257 *3)))))
+(-10 -7 (-15 -3104 (|#2| |#2|)) (-15 -3266 (|#2| |#2|)) (-15 -2570 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-567) (-567))))
+((-2946 (((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)) 18) (((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|)) 14) (((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|)) 32)))
+(((-546 |#1| |#2|) (-10 -7 (-15 -2946 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2946 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2946 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|)))) (-1050) (-1242 |#1|)) (T -546))
+((-2946 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1242 *4)))) (-2946 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1242 *4)))) (-2946 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1050)) (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1242 *5)))))
+(-10 -7 (-15 -2946 ((-3 (-567) "failed") |#2| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2946 ((-3 (-567) "failed") |#2| |#1| (-567) (-1 (-3 (-567) "failed") |#1|))) (-15 -2946 ((-3 (-567) "failed") |#2| |#1| (-1 (-3 (-567) "failed") |#1|))))
+((-3824 (($ $ $) 84)) (-1401 (((-421 $) $) 52)) (-3417 (((-3 (-567) "failed") $) 64)) (-1621 (((-567) $) 42)) (-4092 (((-3 (-410 (-567)) "failed") $) 79)) (-4379 (((-112) $) 26)) (-3061 (((-410 (-567)) $) 77)) (-1665 (((-112) $) 55)) (-2854 (($ $ $ $) 92)) (-4095 (((-112) $) 17)) (-1969 (($ $ $) 62)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 74)) (-2802 (((-3 $ "failed") $) 69)) (-3479 (($ $) 24)) (-3365 (($ $ $) 90)) (-2596 (($) 65)) (-3354 (($ $) 58)) (-2296 (((-421 $) $) 50)) (-2143 (((-112) $) 15)) (-4369 (((-772) $) 32)) (-1930 (($ $ (-772)) NIL) (($ $) 11)) (-4247 (($ $) 18)) (-3542 (((-567) $) NIL) (((-539) $) 41) (((-893 (-567)) $) 45) (((-381) $) 35) (((-225) $) 38)) (-2686 (((-772)) 9)) (-3446 (((-112) $ $) 21)) (-3806 (($ $ $) 60)))
+(((-547 |#1|) (-10 -8 (-15 -3365 (|#1| |#1| |#1|)) (-15 -2854 (|#1| |#1| |#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -3446 ((-112) |#1| |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -3542 ((-225) |#1|)) (-15 -3542 ((-381) |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -3806 (|#1| |#1| |#1|)) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3542 ((-567) |#1|)) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -4095 ((-112) |#1|)) (-15 -4369 ((-772) |#1|)) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -1665 ((-112) |#1|)) (-15 -2686 ((-772)))) (-548)) (T -547))
+((-2686 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548)))))
+(-10 -8 (-15 -3365 (|#1| |#1| |#1|)) (-15 -2854 (|#1| |#1| |#1| |#1|)) (-15 -3479 (|#1| |#1|)) (-15 -4247 (|#1| |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -3824 (|#1| |#1| |#1|)) (-15 -3446 ((-112) |#1| |#1|)) (-15 -2143 ((-112) |#1|)) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -3542 ((-225) |#1|)) (-15 -3542 ((-381) |#1|)) (-15 -1969 (|#1| |#1| |#1|)) (-15 -3354 (|#1| |#1|)) (-15 -3806 (|#1| |#1| |#1|)) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3542 ((-567) |#1|)) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -4095 ((-112) |#1|)) (-15 -4369 ((-772) |#1|)) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -1665 ((-112) |#1|)) (-15 -2686 ((-772))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-3824 (($ $ $) 90)) (-4377 (((-3 $ "failed") $ $) 20)) (-2765 (($ $ $ $) 79)) (-1396 (($ $) 57)) (-1401 (((-421 $) $) 58)) (-3405 (((-112) $ $) 130)) (-3179 (((-567) $) 119)) (-4100 (($ $ $) 93)) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 111)) (-1621 (((-567) $) 112)) (-2197 (($ $ $) 134)) (-1920 (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 109) (((-690 (-567)) (-690 $)) 108)) (-4014 (((-3 $ "failed") $) 37)) (-4092 (((-3 (-410 (-567)) "failed") $) 87)) (-4379 (((-112) $) 89)) (-3061 (((-410 (-567)) $) 88)) (-1649 (($) 86) (($ $) 85)) (-2210 (($ $ $) 133)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 128)) (-1665 (((-112) $) 59)) (-2854 (($ $ $ $) 77)) (-1499 (($ $ $) 91)) (-4095 (((-112) $) 121)) (-1969 (($ $ $) 102)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 105)) (-3714 (((-112) $) 35)) (-3937 (((-112) $) 97)) (-2802 (((-3 $ "failed") $) 99)) (-3948 (((-112) $) 120)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 137)) (-3302 (($ $ $ $) 78)) (-2056 (($ $ $) 122)) (-1802 (($ $ $) 123)) (-3479 (($ $) 81)) (-3036 (($ $) 94)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-3365 (($ $ $) 76)) (-2596 (($) 98 T CONST)) (-2462 (($ $) 83)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-3354 (($ $) 103)) (-2296 (((-421 $) $) 56)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 136) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 135)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 129)) (-2143 (((-112) $) 96)) (-4369 (((-772) $) 131)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 132)) (-1930 (($ $ (-772)) 116) (($ $) 114)) (-2932 (($ $) 82)) (-4247 (($ $) 84)) (-3542 (((-567) $) 113) (((-539) $) 107) (((-893 (-567)) $) 106) (((-381) $) 101) (((-225) $) 100)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 110)) (-2686 (((-772)) 32 T CONST)) (-3446 (((-112) $ $) 92)) (-3806 (($ $ $) 104)) (-3739 (((-112) $ $) 9)) (-3183 (($) 95)) (-2469 (((-112) $ $) 45)) (-2648 (($ $ $ $) 80)) (-1771 (($ $) 118)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-772)) 117) (($ $) 115)) (-3109 (((-112) $ $) 125)) (-3085 (((-112) $ $) 126)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 124)) (-3075 (((-112) $ $) 127)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-548) (-140)) (T -548))
+((-3937 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-2143 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3183 (*1 *1) (-4 *1 (-548))) (-3036 (*1 *1 *1) (-4 *1 (-548))) (-4100 (*1 *1 *1 *1) (-4 *1 (-548))) (-3446 (*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-1499 (*1 *1 *1 *1) (-4 *1 (-548))) (-3824 (*1 *1 *1 *1) (-4 *1 (-548))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-4092 (*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567))))) (-1649 (*1 *1) (-4 *1 (-548))) (-1649 (*1 *1 *1) (-4 *1 (-548))) (-4247 (*1 *1 *1) (-4 *1 (-548))) (-2462 (*1 *1 *1) (-4 *1 (-548))) (-2932 (*1 *1 *1) (-4 *1 (-548))) (-3479 (*1 *1 *1) (-4 *1 (-548))) (-2648 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2765 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3302 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-2854 (*1 *1 *1 *1 *1) (-4 *1 (-548))) (-3365 (*1 *1 *1 *1) (-4 *1 (-548))))
+(-13 (-1220) (-308) (-821) (-233) (-615 (-567)) (-1039 (-567)) (-640 (-567)) (-615 (-539)) (-615 (-893 (-567))) (-887 (-567)) (-143) (-1023) (-147) (-1151) (-10 -8 (-15 -3937 ((-112) $)) (-15 -2143 ((-112) $)) (-6 -4415) (-15 -3183 ($)) (-15 -3036 ($ $)) (-15 -4100 ($ $ $)) (-15 -3446 ((-112) $ $)) (-15 -1499 ($ $ $)) (-15 -3824 ($ $ $)) (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $)) (-15 -1649 ($)) (-15 -1649 ($ $)) (-15 -4247 ($ $)) (-15 -2462 ($ $)) (-15 -2932 ($ $)) (-15 -3479 ($ $)) (-15 -2648 ($ $ $ $)) (-15 -2765 ($ $ $ $)) (-15 -3302 ($ $ $ $)) (-15 -2854 ($ $ $ $)) (-15 -3365 ($ $ $)) (-6 -4414)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-143) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-539)) . T) ((-615 (-567)) . T) ((-615 (-893 (-567))) . T) ((-233) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-640 (-567)) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-821) . T) ((-849) . T) ((-851) . T) ((-887 (-567)) . T) ((-921) . T) ((-1023) . T) ((-1039 (-567)) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) . T) ((-1220) . T))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-549) (-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))) (T -549))
+((-4061 (*1 *1) (-5 *1 (-549))))
+(-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-549) (-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))) (T -549))
-((-2633 (*1 *1) (-5 *1 (-549))))
-(-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-550) (-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))) (T -550))
+((-4061 (*1 *1) (-5 *1 (-550))))
+(-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-550) (-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))) (T -550))
-((-2633 (*1 *1) (-5 *1 (-550))))
-(-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-551) (-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))) (T -551))
+((-4061 (*1 *1) (-5 *1 (-551))))
+(-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-551) (-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))) (T -551))
-((-2633 (*1 *1) (-5 *1 (-551))))
-(-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-552) (-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))) (T -552))
+((-4061 (*1 *1) (-5 *1 (-552))))
+(-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2506 (((-1270) $ |#1| |#1|) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) NIL)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) NIL)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) NIL)) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 ((|#1| $) NIL (|has| |#1| (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 ((|#1| $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2838 (((-644 |#1|) $) NIL)) (-3932 (((-112) |#1| $) NIL)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-4063 (((-644 |#1|) $) NIL)) (-3054 (((-112) |#1| $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#2| $) NIL (|has| |#1| (-850)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-552 |#1| |#2| |#3|) (-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415))) (-1099) (-1099) (-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415)))) (T -552))
-NIL
-(-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415)))
-((-1750 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))) 50)))
-(((-553 |#1| |#2|) (-10 -7 (-15 -1750 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|))))) (-558) (-13 (-27) (-432 |#1|))) (T -553))
-((-1750 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3))) (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3)) (-5 *1 (-553 *6 *3)))))
-(-10 -7 (-15 -1750 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-1 (-1171 |#2|) (-1171 |#2|)))))
-((-2627 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2873 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2973 (((-587 |#5|) |#5| (-1 |#3| |#3|)) 222)))
-(((-554 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2973 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2627 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2873 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-558) (-1038 (-566))) (-13 (-27) (-432 |#1|)) (-1241 |#2|) (-1241 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -554))
-((-2873 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *7 (-1241 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-2627 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1241 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1241 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-2973 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1241 *6)) (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-4 *8 (-1241 (-409 *7))) (-5 *2 (-587 *3)) (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
-(-10 -7 (-15 -2973 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2627 ((-587 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2873 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1420 (((-112) (-566) (-566)) 12)) (-4115 (((-566) (-566)) 7)) (-3550 (((-566) (-566) (-566)) 10)))
-(((-555) (-10 -7 (-15 -4115 ((-566) (-566))) (-15 -3550 ((-566) (-566) (-566))) (-15 -1420 ((-112) (-566) (-566))))) (T -555))
-((-1420 (*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555)))) (-3550 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555)))) (-4115 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555)))))
-(-10 -7 (-15 -4115 ((-566) (-566))) (-15 -3550 ((-566) (-566) (-566))) (-15 -1420 ((-112) (-566) (-566))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-3755 ((|#1| $) 67)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-3622 (($ $) 97)) (-3474 (($ $) 80)) (-3288 ((|#1| $) 68)) (-4113 (((-3 $ "failed") $ $) 20)) (-4028 (($ $) 79)) (-3601 (($ $) 96)) (-3449 (($ $) 81)) (-3648 (($ $) 95)) (-3500 (($ $) 82)) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 75)) (-3343 (((-566) $) 76)) (-2313 (((-3 $ "failed") $) 37)) (-3348 (($ |#1| |#1|) 72)) (-3421 (((-112) $) 66)) (-2722 (($) 107)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 78)) (-2307 (((-112) $) 65)) (-3075 (($ $ $) 113)) (-3936 (($ $ $) 112)) (-1565 (($ $) 104)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-2894 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-409 (-566))) 70)) (-4335 ((|#1| $) 69)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-3967 (((-3 $ "failed") $ $) 48)) (-1535 (($ $) 105)) (-3658 (($ $) 94)) (-3515 (($ $) 83)) (-3635 (($ $) 93)) (-3488 (($ $) 84)) (-3612 (($ $) 92)) (-3461 (($ $) 85)) (-3038 (((-112) $ |#1|) 64)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-566)) 74)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3696 (($ $) 103)) (-3553 (($ $) 91)) (-1597 (((-112) $ $) 45)) (-3670 (($ $) 102)) (-3528 (($ $) 90)) (-3719 (($ $) 101)) (-3577 (($ $) 89)) (-3076 (($ $) 100)) (-3589 (($ $) 88)) (-3705 (($ $) 99)) (-3566 (($ $) 87)) (-3682 (($ $) 98)) (-3541 (($ $) 86)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2865 (((-112) $ $) 110)) (-2844 (((-112) $ $) 109)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 111)) (-2833 (((-112) $ $) 108)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106) (($ $ (-409 (-566))) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-556 |#1|) (-140) (-13 (-406) (-1200))) (T -556))
-((-2894 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))) (-3348 (*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))) (-2894 (*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))) (-2894 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1200))))) (-4335 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))) (-3755 (*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))) (-3421 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1200))) (-5 *2 (-112)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1200))) (-5 *2 (-112)))) (-3038 (*1 *2 *1 *3) (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1200))) (-5 *2 (-112)))))
-(-13 (-454) (-850) (-1200) (-1002) (-1038 (-566)) (-10 -8 (-6 -1551) (-15 -2894 ($ |t#1| |t#1|)) (-15 -3348 ($ |t#1| |t#1|)) (-15 -2894 ($ |t#1|)) (-15 -2894 ($ (-409 (-566)))) (-15 -4335 (|t#1| $)) (-15 -3288 (|t#1| $)) (-15 -3755 (|t#1| $)) (-15 -3421 ((-112) $)) (-15 -2307 ((-112) $)) (-15 -3038 ((-112) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-454) . T) ((-495) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-850) . T) ((-1002) . T) ((-1038 (-566)) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1200) . T) ((-1203) . T))
-((-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 9)) (-1780 (($ $) 11)) (-3286 (((-112) $) 20)) (-2313 (((-3 $ "failed") $) 16)) (-1597 (((-112) $ $) 22)))
-(((-557 |#1|) (-10 -8 (-15 -3286 ((-112) |#1|)) (-15 -1597 ((-112) |#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -2920 ((-2 (|:| -4082 |#1|) (|:| -4402 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|))) (-558)) (T -557))
-NIL
-(-10 -8 (-15 -3286 ((-112) |#1|)) (-15 -1597 ((-112) |#1| |#1|)) (-15 -1780 (|#1| |#1|)) (-15 -2920 ((-2 (|:| -4082 |#1|) (|:| -4402 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ $) 48)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-558) (-140)) (T -558))
-((-3967 (*1 *1 *1 *1) (|partial| -4 *1 (-558))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4082 *1) (|:| -4402 *1) (|:| |associate| *1))) (-4 *1 (-558)))) (-1780 (*1 *1 *1) (-4 *1 (-558))) (-1597 (*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))) (-3286 (*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))))
-(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -3967 ((-3 $ "failed") $ $)) (-15 -2920 ((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $)) (-15 -1780 ($ $)) (-15 -1597 ((-112) $ $)) (-15 -3286 ((-112) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3916 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|)) 38)) (-2965 (((-587 |#2|) |#2| (-1175)) 63)) (-3647 (((-3 |#2| "failed") |#2| (-1175)) 156)) (-4210 (((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))) 159)) (-1837 (((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|) 41)))
-(((-559 |#1| |#2|) (-10 -7 (-15 -1837 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -3916 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -3647 ((-3 |#2| "failed") |#2| (-1175))) (-15 -2965 ((-587 |#2|) |#2| (-1175))) (-15 -4210 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|))))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|))) (T -559))
-((-4210 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3))) (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *7))) (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3))) (-5 *1 (-559 *7 *3)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-3647 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))) (-3916 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *6 *3)))) (-1837 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))))
-(-10 -7 (-15 -1837 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) |#2|)) (-15 -3916 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1175) (-644 |#2|))) (-15 -3647 ((-3 |#2| "failed") |#2| (-1175))) (-15 -2965 ((-587 |#2|) |#2| (-1175))) (-15 -4210 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1175) (-612 |#2|) (-644 (-612 |#2|)))))
-((-2555 (((-420 |#1|) |#1|) 19)) (-4018 (((-420 |#1|) |#1|) 34)) (-1531 (((-3 |#1| "failed") |#1|) 51)) (-3326 (((-420 |#1|) |#1|) 64)))
-(((-560 |#1|) (-10 -7 (-15 -4018 ((-420 |#1|) |#1|)) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -3326 ((-420 |#1|) |#1|)) (-15 -1531 ((-3 |#1| "failed") |#1|))) (-547)) (T -560))
-((-1531 (*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547)))) (-3326 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-2555 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))))
-(-10 -7 (-15 -4018 ((-420 |#1|) |#1|)) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -3326 ((-420 |#1|) |#1|)) (-15 -1531 ((-3 |#1| "failed") |#1|)))
-((-2604 (($) 9)) (-2943 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-2838 (((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-1619 (($ (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-4025 (($ (-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2484 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-1948 (((-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-4171 (((-1270)) 12)))
-(((-561) (-10 -8 (-15 -2604 ($)) (-15 -4171 ((-1270))) (-15 -2838 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4025 ($ (-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1619 ($ (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2943 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1948 ((-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2484 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -561))
-((-2484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-1948 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-2943 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-561)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-561)))) (-4025 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-561)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-561)))) (-4171 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-561)))) (-2604 (*1 *1) (-5 *1 (-561))))
-(-10 -8 (-15 -2604 ($)) (-15 -4171 ((-1270))) (-15 -2838 ((-644 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -4025 ($ (-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1619 ($ (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2943 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1948 ((-644 (-2 (|:| -3476 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2484 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1155 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3192 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-3983 (((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|)) 35)) (-2788 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|)) 115)) (-2010 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 85) (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 55)) (-3013 (((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|))) 92) (((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|)) 114)) (-3127 (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|)) 116)) (-1538 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))) 135 (|has| |#3| (-656 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|)) 134 (|has| |#3| (-656 |#2|)))) (-4157 ((|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|) 53)) (-2542 (((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|)) 34)))
-(((-562 |#1| |#2| |#3|) (-10 -7 (-15 -2010 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -2010 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3013 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -3013 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2788 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -2788 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3127 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -3127 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3983 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -4157 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -2542 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -1538 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -1538 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1200)) (-1099)) (T -562))
-((-1538 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4))) (-4 *4 (-13 (-432 *7) (-27) (-1200))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-1538 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4)) (-4 *4 (-13 (-432 *7) (-27) (-1200))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-2542 (*1 *2 *3 *4) (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1200))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7)) (-5 *3 (-1171 *6)) (-4 *7 (-1099)))) (-4157 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2)) (-4 *2 (-13 (-432 *5) (-27) (-1200))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099)))) (-3983 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7)) (-5 *5 (-1171 *3)) (-4 *7 (-1099)))) (-3127 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-3127 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2)) (-4 *2 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))) (-2788 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1200))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-2788 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3)) (-4 *3 (-13 (-432 *7) (-27) (-1200))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))) (-3013 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-3013 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3))) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-2010 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))) (-2010 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))))
-(-10 -7 (-15 -2010 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -2010 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3013 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| |#2| (-1171 |#2|))) (-15 -3013 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2| (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -2788 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) |#2| (-1171 |#2|))) (-15 -2788 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3127 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) |#2| (-1171 |#2|))) (-15 -3127 ((-3 |#2| "failed") |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)) (-612 |#2|) |#2| (-409 (-1171 |#2|)))) (-15 -3983 ((-1171 (-409 (-1171 |#2|))) |#2| (-612 |#2|) (-612 |#2|) (-1171 |#2|))) (-15 -4157 (|#2| (-1171 (-409 (-1171 |#2|))) (-612 |#2|) |#2|)) (-15 -2542 ((-1171 (-409 (-1171 |#2|))) (-1171 |#2|) (-612 |#2|))) (IF (|has| |#3| (-656 |#2|)) (PROGN (-15 -1538 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) |#2| (-1171 |#2|))) (-15 -1538 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-612 |#2|) |#2| (-409 (-1171 |#2|))))) |%noBranch|))
-((-2360 (((-566) (-566) (-771)) 90)) (-2165 (((-566) (-566)) 88)) (-2805 (((-566) (-566)) 86)) (-2359 (((-566) (-566)) 92)) (-2962 (((-566) (-566) (-566)) 70)) (-3069 (((-566) (-566) (-566)) 67)) (-3433 (((-409 (-566)) (-566)) 30)) (-4338 (((-566) (-566)) 36)) (-1489 (((-566) (-566)) 79)) (-2365 (((-566) (-566)) 51)) (-2923 (((-644 (-566)) (-566)) 85)) (-2936 (((-566) (-566) (-566) (-566) (-566)) 63)) (-1626 (((-409 (-566)) (-566)) 60)))
-(((-563) (-10 -7 (-15 -1626 ((-409 (-566)) (-566))) (-15 -2936 ((-566) (-566) (-566) (-566) (-566))) (-15 -2923 ((-644 (-566)) (-566))) (-15 -2365 ((-566) (-566))) (-15 -1489 ((-566) (-566))) (-15 -4338 ((-566) (-566))) (-15 -3433 ((-409 (-566)) (-566))) (-15 -3069 ((-566) (-566) (-566))) (-15 -2962 ((-566) (-566) (-566))) (-15 -2359 ((-566) (-566))) (-15 -2805 ((-566) (-566))) (-15 -2165 ((-566) (-566))) (-15 -2360 ((-566) (-566) (-771))))) (T -563))
-((-2360 (*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563)))) (-2165 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2359 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2962 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3069 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-3433 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-4338 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2365 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-2923 (*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))) (-2936 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))) (-1626 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))))
-(-10 -7 (-15 -1626 ((-409 (-566)) (-566))) (-15 -2936 ((-566) (-566) (-566) (-566) (-566))) (-15 -2923 ((-644 (-566)) (-566))) (-15 -2365 ((-566) (-566))) (-15 -1489 ((-566) (-566))) (-15 -4338 ((-566) (-566))) (-15 -3433 ((-409 (-566)) (-566))) (-15 -3069 ((-566) (-566) (-566))) (-15 -2962 ((-566) (-566) (-566))) (-15 -2359 ((-566) (-566))) (-15 -2805 ((-566) (-566))) (-15 -2165 ((-566) (-566))) (-15 -2360 ((-566) (-566) (-771))))
-((-2006 (((-2 (|:| |answer| |#4|) (|:| -3284 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
-(((-564 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-2 (|:| |answer| |#4|) (|:| -3284 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -564))
-((-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365)) (-4 *7 (-1241 (-409 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3284 *3))) (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))))
-(-10 -7 (-15 -2006 ((-2 (|:| |answer| |#4|) (|:| -3284 |#4|)) |#4| (-1 |#2| |#2|))))
-((-2006 (((-2 (|:| |answer| (-409 |#2|)) (|:| -3284 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 18)))
-(((-565 |#1| |#2|) (-10 -7 (-15 -2006 ((-2 (|:| |answer| (-409 |#2|)) (|:| -3284 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1241 |#1|)) (T -565))
-((-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-409 *6)) (|:| -3284 (-409 *6)) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6)))))
-(-10 -7 (-15 -2006 ((-2 (|:| |answer| (-409 |#2|)) (|:| -3284 (-409 |#2|)) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 30)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 97)) (-1780 (($ $) 98)) (-3286 (((-112) $) NIL)) (-3523 (($ $ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4312 (($ $ $ $) 52)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL)) (-2724 (($ $ $) 92)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL)) (-3343 (((-566) $) NIL)) (-3919 (($ $ $) 54)) (-3717 (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 77) (((-689 (-566)) (-689 $)) 73)) (-2313 (((-3 $ "failed") $) 94)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL)) (-1929 (((-112) $) NIL)) (-1847 (((-409 (-566)) $) NIL)) (-3424 (($) 79) (($ $) 80)) (-3930 (($ $ $) 91)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-1826 (($ $ $ $) NIL)) (-3042 (($ $ $) 70)) (-3421 (((-112) $) NIL)) (-1549 (($ $ $) NIL)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3842 (((-112) $) 34)) (-1687 (((-112) $) 86)) (-3869 (((-3 $ "failed") $) NIL)) (-2307 (((-112) $) 43)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2485 (($ $ $ $) 55)) (-3075 (($ $ $) 88)) (-3936 (($ $ $) 87)) (-2086 (($ $) NIL)) (-1653 (($ $) 49)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) 69)) (-2063 (($ $ $) NIL)) (-1342 (($) NIL T CONST)) (-3517 (($ $) 38)) (-1944 (((-1119) $) 42)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 129)) (-1885 (($ $ $) 95) (($ (-644 $)) NIL)) (-2062 (($ $) NIL)) (-4018 (((-420 $) $) 115)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL)) (-3967 (((-3 $ "failed") $ $) 113)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3934 (((-112) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 90)) (-3009 (($ $ (-771)) NIL) (($ $) NIL)) (-4302 (($ $) 40)) (-2878 (($ $) 36)) (-2150 (((-566) $) 48) (((-538) $) 64) (((-892 (-566)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1157) $) 66)) (-2725 (((-862) $) 46) (($ (-566)) 47) (($ $) NIL) (($ (-566)) 47)) (-2875 (((-771)) NIL T CONST)) (-1761 (((-112) $ $) NIL)) (-1672 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-1792 (($) 35)) (-1597 (((-112) $ $) NIL)) (-1804 (($ $ $ $) 51)) (-2274 (($ $) 78)) (-3200 (($) 6 T CONST)) (-3214 (($) 31 T CONST)) (-2331 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1270) (-822) $) 28) (((-1270) (-822) $ (-112)) 29)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2865 (((-112) $ $) 50)) (-2844 (((-112) $ $) 81)) (-2817 (((-112) $ $) 33)) (-2854 (((-112) $ $) 83)) (-2833 (((-112) $ $) 10)) (-2905 (($ $) 16) (($ $ $) 39)) (-2897 (($ $ $) 37)) (** (($ $ (-921)) NIL) (($ $ (-771)) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 84) (($ $ $) 53)))
-(((-566) (-13 (-547) (-614 (-1157)) (-828) (-10 -7 (-6 -4402) (-6 -4407) (-6 -4403) (-6 -4397)))) (T -566))
-NIL
-(-13 (-547) (-614 (-1157)) (-828) (-10 -7 (-6 -4402) (-6 -4407) (-6 -4403) (-6 -4397)))
-((-1303 (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062)) 119) (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769)) 121)) (-1879 (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175)) 197) (((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157)) 196) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062)) 201) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381)) 202) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381)) 203) (((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381))))) 204) (((-1035) (-317 (-381)) (-1093 (-843 (-381)))) 192) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381)) 191) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381)) 187) (((-1035) (-769)) 179) (((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062)) 186)))
-(((-567) (-10 -7 (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -1879 ((-1035) (-769))) (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -1879 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -1879 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175))))) (T -567))
-((-1879 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381)))) (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1303 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035)))) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381))))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567)))) (-1879 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381)))) (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567)))))
-(-10 -7 (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381) (-1062))) (-15 -1879 ((-1035) (-769))) (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-1093 (-843 (-381))))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381))) (-15 -1879 ((-1035) (-317 (-381)) (-644 (-1093 (-843 (-381)))) (-381) (-381) (-1062))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))) (-769) (-1062))) (-15 -1879 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1157))) (-15 -1879 ((-3 (-1035) "failed") (-317 (-381)) (-1091 (-843 (-381))) (-1175))))
-((-1421 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|)) 198)) (-2780 (((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|)) 99)) (-4203 (((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|) 194)) (-4318 (((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175))) 203)) (-1541 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175)) 212 (|has| |#3| (-656 |#2|)))))
-(((-568 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -4203 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -1421 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -4318 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -1541 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))) (-13 (-432 |#1|) (-27) (-1200)) (-1099)) (T -568))
-((-1541 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175)) (-4 *4 (-13 (-432 *7) (-27) (-1200))) (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))) (-4318 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-612 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-4 *2 (-13 (-432 *5) (-27) (-1200))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099)))) (-1421 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1200))) (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1099)))) (-4203 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1200))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3))) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099)))) (-2780 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1200))) (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566)))) (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099)))))
-(-10 -7 (-15 -2780 ((-587 |#2|) |#2| (-612 |#2|) (-612 |#2|))) (-15 -4203 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-612 |#2|) (-612 |#2|) |#2|)) (-15 -1421 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-612 |#2|) (-612 |#2|) (-644 |#2|))) (-15 -4318 ((-3 |#2| "failed") |#2| |#2| |#2| (-612 |#2|) (-612 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1175)))) (IF (|has| |#3| (-656 |#2|)) (-15 -1541 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2227 (-644 |#2|))) |#3| |#2| (-612 |#2|) (-612 |#2|) (-1175))) |%noBranch|))
-((-4073 (((-2 (|:| -2516 |#2|) (|:| |nconst| |#2|)) |#2| (-1175)) 64)) (-2047 (((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|)) 175 (-12 (|has| |#2| (-1138)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 154 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566)))))) (-1758 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)) 156 (-12 (|has| |#2| (-629)) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-886 (-566)))))))
-(((-569 |#1| |#2|) (-10 -7 (-15 -4073 ((-2 (|:| -2516 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -1758 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -2047 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -2047 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1038 (-566)) (-454) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|))) (T -569))
-((-2047 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138)) (-4 *2 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *1 (-569 *5 *2)))) (-2047 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-1758 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566))) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-629)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-4073 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566)))) (-5 *2 (-2 (|:| -2516 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))))
-(-10 -7 (-15 -4073 ((-2 (|:| -2516 |#2|) (|:| |nconst| |#2|)) |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (PROGN (IF (|has| |#2| (-629)) (PROGN (-15 -1758 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) (-15 -2047 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) (IF (|has| |#2| (-1138)) (-15 -2047 ((-3 |#2| "failed") |#2| (-1175) (-843 |#2|) (-843 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-3963 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))) 41)) (-1879 (((-587 (-409 |#2|)) (-409 |#2|)) 28)) (-3607 (((-3 (-409 |#2|) "failed") (-409 |#2|)) 17)) (-3277 (((-3 (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|)) 48)))
-(((-570 |#1| |#2|) (-10 -7 (-15 -1879 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -3607 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -3277 ((-3 (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -3963 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566))) (-1241 |#1|)) (T -570))
-((-3963 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *5 *6)))) (-3277 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| -2070 (-409 *5)) (|:| |coeff| (-409 *5)))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))) (-3607 (*1 *2 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4)))) (-1879 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1241 *4)) (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))))
-(-10 -7 (-15 -1879 ((-587 (-409 |#2|)) (-409 |#2|))) (-15 -3607 ((-3 (-409 |#2|) "failed") (-409 |#2|))) (-15 -3277 ((-3 (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-409 |#2|))) (-15 -3963 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-644 (-409 |#2|)))))
-((-1937 (((-3 (-566) "failed") |#1|) 14)) (-3855 (((-112) |#1|) 13)) (-1755 (((-566) |#1|) 9)))
-(((-571 |#1|) (-10 -7 (-15 -1755 ((-566) |#1|)) (-15 -3855 ((-112) |#1|)) (-15 -1937 ((-3 (-566) "failed") |#1|))) (-1038 (-566))) (T -571))
-((-1937 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))) (-3855 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566))))) (-1755 (*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))))
-(-10 -7 (-15 -1755 ((-566) |#1|)) (-15 -3855 ((-112) |#1|)) (-15 -1937 ((-3 (-566) "failed") |#1|)))
-((-3666 (((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|)))) 48)) (-2379 (((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175)) 28)) (-4308 (((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175)) 23)) (-3265 (((-3 (-2 (|:| -2070 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 35)))
-(((-572 |#1|) (-10 -7 (-15 -2379 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -4308 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -3666 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -3265 ((-3 (-2 (|:| -2070 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))))) (-13 (-558) (-1038 (-566)) (-147))) (T -572))
-((-3265 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| -2070 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5))))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5))))) (-3666 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6)))) (-4308 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4)))) (-2379 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147))) (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5))))))
-(-10 -7 (-15 -2379 ((-587 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -4308 ((-3 (-409 (-952 |#1|)) "failed") (-409 (-952 |#1|)) (-1175))) (-15 -3666 ((-3 (-2 (|:| |mainpart| (-409 (-952 |#1|))) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 (-952 |#1|))) (|:| |logand| (-409 (-952 |#1|))))))) "failed") (-409 (-952 |#1|)) (-1175) (-644 (-409 (-952 |#1|))))) (-15 -3265 ((-3 (-2 (|:| -2070 (-409 (-952 |#1|))) (|:| |coeff| (-409 (-952 |#1|)))) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))))
-((-3979 (((-112) $ $) 75)) (-3545 (((-112) $) 48)) (-3755 ((|#1| $) 39)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) 79)) (-3622 (($ $) 140)) (-3474 (($ $) 119)) (-3288 ((|#1| $) 37)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $) NIL)) (-3601 (($ $) 142)) (-3449 (($ $) 115)) (-3648 (($ $) 144)) (-3500 (($ $) 123)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) 94)) (-3343 (((-566) $) 96)) (-2313 (((-3 $ "failed") $) 78)) (-3348 (($ |#1| |#1|) 35)) (-3421 (((-112) $) 44)) (-2722 (($) 105)) (-3842 (((-112) $) 55)) (-2810 (($ $ (-566)) NIL)) (-2307 (((-112) $) 45)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1565 (($ $) 107)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-2894 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-409 (-566))) 93)) (-4335 ((|#1| $) 36)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) 81) (($ (-644 $)) NIL)) (-3967 (((-3 $ "failed") $ $) 80)) (-1535 (($ $) 109)) (-3658 (($ $) 148)) (-3515 (($ $) 121)) (-3635 (($ $) 150)) (-3488 (($ $) 125)) (-3612 (($ $) 146)) (-3461 (($ $) 117)) (-3038 (((-112) $ |#1|) 42)) (-2725 (((-862) $) 101) (($ (-566)) 83) (($ $) NIL) (($ (-566)) 83)) (-2875 (((-771)) 103 T CONST)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) 162)) (-3553 (($ $) 131)) (-1597 (((-112) $ $) NIL)) (-3670 (($ $) 160)) (-3528 (($ $) 127)) (-3719 (($ $) 158)) (-3577 (($ $) 138)) (-3076 (($ $) 156)) (-3589 (($ $) 136)) (-3705 (($ $) 154)) (-3566 (($ $) 133)) (-3682 (($ $) 152)) (-3541 (($ $) 129)) (-3200 (($) 30 T CONST)) (-3214 (($) 10 T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 49)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 47)) (-2905 (($ $) 53) (($ $ $) 54)) (-2897 (($ $ $) 52)) (** (($ $ (-921)) 71) (($ $ (-771)) NIL) (($ $ $) 111) (($ $ (-409 (-566))) 164)) (* (($ (-921) $) 66) (($ (-771) $) NIL) (($ (-566) $) 65) (($ $ $) 61)))
-(((-573 |#1|) (-556 |#1|) (-13 (-406) (-1200))) (T -573))
-NIL
-(-556 |#1|)
-((-4078 (((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566))) 27)))
-(((-574) (-10 -7 (-15 -4078 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566)))))) (T -574))
-((-4078 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566))) (-5 *1 (-574)))))
-(-10 -7 (-15 -4078 ((-3 (-644 (-1171 (-566))) "failed") (-644 (-1171 (-566))) (-1171 (-566)))))
-((-1888 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175)) 19)) (-2145 (((-644 (-612 |#2|)) (-644 |#2|) (-1175)) 23)) (-2672 (((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|))) 11)) (-1321 ((|#2| |#2| (-1175)) 59 (|has| |#1| (-558)))) (-2549 ((|#2| |#2| (-1175)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-454))))) (-2445 (((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175)) 25)) (-2335 (((-612 |#2|) (-644 (-612 |#2|))) 24)) (-3904 (((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-629)) (|has| |#2| (-1038 (-1175))) (|has| |#1| (-614 (-892 (-566)))) (|has| |#1| (-454)) (|has| |#1| (-886 (-566)))))))
-(((-575 |#1| |#2|) (-10 -7 (-15 -1888 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -2335 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -2445 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -2672 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -2145 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -1321 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -2549 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3904 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1099) (-432 |#1|)) (T -575))
-((-3904 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-587 *3) *3 (-1175))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1175))) (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7)) (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454)) (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3)) (-5 *1 (-575 *7 *3)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4)))) (-1321 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6)))) (-2672 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099)) (-5 *1 (-575 *3 *4)))) (-2445 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *6))) (-5 *4 (-1175)) (-5 *2 (-612 *6)) (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *1 (-575 *5 *6)))) (-2335 (*1 *2 *3) (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5)) (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4)))) (-1888 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4)) (-4 *4 (-1099)) (-5 *1 (-575 *4 *5)))))
-(-10 -7 (-15 -1888 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-1175))) (-15 -2335 ((-612 |#2|) (-644 (-612 |#2|)))) (-15 -2445 ((-612 |#2|) (-612 |#2|) (-644 (-612 |#2|)) (-1175))) (-15 -2672 ((-644 (-612 |#2|)) (-644 (-612 |#2|)) (-644 (-612 |#2|)))) (-15 -2145 ((-644 (-612 |#2|)) (-644 |#2|) (-1175))) (IF (|has| |#1| (-558)) (-15 -1321 (|#2| |#2| (-1175))) |%noBranch|) (IF (|has| |#1| (-454)) (IF (|has| |#2| (-285)) (PROGN (-15 -2549 (|#2| |#2| (-1175))) (IF (|has| |#1| (-614 (-892 (-566)))) (IF (|has| |#1| (-886 (-566))) (IF (|has| |#2| (-629)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3904 ((-587 |#2|) |#2| (-1175) (-1 (-587 |#2|) |#2| (-1175)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1175)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4177 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|)) 202)) (-3310 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|))) 178)) (-1962 (((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|))) 175)) (-1499 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-2236 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-1656 (((-3 (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|)) 205)) (-2960 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|)) 208)) (-1591 (((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|)) 90)) (-2386 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-2001 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|))) 182)) (-3165 (((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 170)) (-3150 (((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|)) 193)) (-4058 (((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|)) 213)))
-(((-576 |#1| |#2|) (-10 -7 (-15 -2236 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3150 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -4177 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -2960 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -4058 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -3310 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -2001 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -1656 ((-3 (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -1962 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -1499 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3165 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -1591 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2386 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1241 |#1|)) (T -576))
-((-2386 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-576 *5 *3)))) (-1591 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-3165 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-623 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -1627 *4) (|:| |sol?| (-112))) (-566) *4)) (-4 *4 (-365)) (-4 *5 (-1241 *4)) (-5 *1 (-576 *4 *5)))) (-1499 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2070 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1241 *4)))) (-1962 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7))) (-4 *7 (-1241 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-576 *6 *7)))) (-1656 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2070 (-409 *6)) (|:| |coeff| (-409 *6)))) (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))) (-2001 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -1627 *7) (|:| |sol?| (-112))) (-566) *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1241 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-3310 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2070 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1241 *7)) (-5 *3 (-409 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-576 *7 *8)))) (-4058 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1627 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1241 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -2070 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-2960 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2070 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1241 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6)) (-2 (|:| -2070 (-409 *7)) (|:| |coeff| (-409 *7))) "failed")) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-4177 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1241 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-3150 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -1627 *6) (|:| |sol?| (-112))) (-566) *6)) (-4 *6 (-365)) (-4 *7 (-1241 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))) (-2236 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2070 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1241 *6)) (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6))) (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))))
-(-10 -7 (-15 -2236 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3150 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -4177 ((-2 (|:| |answer| (-587 (-409 |#2|))) (|:| |a0| |#1|)) (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-644 |#1|) "failed") (-566) |#1| |#1|))) (-15 -2960 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-409 |#2|))) (-15 -4058 ((-3 (-2 (|:| |answer| (-409 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-409 |#2|))) (-15 -3310 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-644 (-409 |#2|)))) (-15 -2001 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|))))))) (|:| |a0| |#1|)) "failed") (-409 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|) (-644 (-409 |#2|)))) (-15 -1656 ((-3 (-2 (|:| -2070 (-409 |#2|)) (|:| |coeff| (-409 |#2|))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-409 |#2|))) (-15 -1962 ((-3 (-2 (|:| |mainpart| (-409 |#2|)) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| (-409 |#2|)) (|:| |logand| (-409 |#2|)))))) "failed") (-409 |#2|) (-1 |#2| |#2|) (-644 (-409 |#2|)))) (-15 -1499 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3165 ((-3 (-623 |#1| |#2|) "failed") (-623 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -1627 |#1|) (|:| |sol?| (-112))) (-566) |#1|))) (-15 -1591 ((-2 (|:| |ir| (-587 (-409 |#2|))) (|:| |specpart| (-409 |#2|)) (|:| |polypart| |#2|)) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2386 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-4222 (((-3 |#2| "failed") |#2| (-1175) (-1175)) 10)))
-(((-577 |#1| |#2|) (-10 -7 (-15 -4222 ((-3 |#2| "failed") |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-959) (-1138) (-29 |#1|))) (T -577))
-((-4222 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1200) (-959) (-1138) (-29 *4))))))
-(-10 -7 (-15 -4222 ((-3 |#2| "failed") |#2| (-1175) (-1175))))
-((-2005 (((-691 (-1223)) $ (-1223)) 26)) (-2525 (((-691 (-551)) $ (-551)) 25)) (-4354 (((-771) $ (-128)) 27)) (-1650 (((-691 (-129)) $ (-129)) 24)) (-2649 (((-691 (-1223)) $) 12)) (-1600 (((-691 (-1221)) $) 8)) (-2709 (((-691 (-1220)) $) 10)) (-1778 (((-691 (-551)) $) 13)) (-1676 (((-691 (-549)) $) 9)) (-3914 (((-691 (-548)) $) 11)) (-1789 (((-771) $ (-128)) 7)) (-1601 (((-691 (-129)) $) 14)) (-4381 (($ $) 6)))
-(((-578) (-140)) (T -578))
-NIL
-(-13 (-529) (-860))
-(((-173) . T) ((-529) . T) ((-860) . T))
-((-2005 (((-691 (-1223)) $ (-1223)) NIL)) (-2525 (((-691 (-551)) $ (-551)) NIL)) (-4354 (((-771) $ (-128)) NIL)) (-1650 (((-691 (-129)) $ (-129)) NIL)) (-2649 (((-691 (-1223)) $) NIL)) (-1600 (((-691 (-1221)) $) NIL)) (-2709 (((-691 (-1220)) $) NIL)) (-1778 (((-691 (-551)) $) NIL)) (-1676 (((-691 (-549)) $) NIL)) (-3914 (((-691 (-548)) $) NIL)) (-1789 (((-771) $ (-128)) NIL)) (-1601 (((-691 (-129)) $) NIL)) (-3103 (((-112) $) NIL)) (-2761 (($ (-390)) 14) (($ (-1157)) 16)) (-2725 (((-862) $) NIL)) (-4381 (($ $) NIL)))
-(((-579) (-13 (-578) (-613 (-862)) (-10 -8 (-15 -2761 ($ (-390))) (-15 -2761 ($ (-1157))) (-15 -3103 ((-112) $))))) (T -579))
-((-2761 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579)))) (-2761 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579)))))
-(-13 (-578) (-613 (-862)) (-10 -8 (-15 -2761 ($ (-390))) (-15 -2761 ($ (-1157))) (-15 -3103 ((-112) $))))
-((-3979 (((-112) $ $) NIL)) (-2926 (($) 7 T CONST)) (-1390 (((-1157) $) NIL)) (-2538 (($) 6 T CONST)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 14)) (-3434 (($) 8 T CONST)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 10)))
-(((-580) (-13 (-1099) (-10 -8 (-15 -2538 ($) -3854) (-15 -2926 ($) -3854) (-15 -3434 ($) -3854)))) (T -580))
-((-2538 (*1 *1) (-5 *1 (-580))) (-2926 (*1 *1) (-5 *1 (-580))) (-3434 (*1 *1) (-5 *1 (-580))))
-(-13 (-1099) (-10 -8 (-15 -2538 ($) -3854) (-15 -2926 ($) -3854) (-15 -3434 ($) -3854)))
-((-3979 (((-112) $ $) NIL)) (-1413 (((-691 $) (-493)) 21)) (-1390 (((-1157) $) NIL)) (-3297 (($ (-1157)) 14)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 34)) (-1952 (((-213 4 (-129)) $) 24)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 26)))
-(((-581) (-13 (-1099) (-10 -8 (-15 -3297 ($ (-1157))) (-15 -1952 ((-213 4 (-129)) $)) (-15 -1413 ((-691 $) (-493)))))) (T -581))
-((-3297 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581)))) (-1952 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581)))) (-1413 (*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581)))))
-(-13 (-1099) (-10 -8 (-15 -3297 ($ (-1157))) (-15 -1952 ((-213 4 (-129)) $)) (-15 -1413 ((-691 $) (-493)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $ (-566)) 77)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-1884 (($ (-1171 (-566)) (-566)) 83)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) 68)) (-3525 (($ $) 43)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-3077 (((-771) $) 16)) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2689 (((-566)) 37)) (-3210 (((-566) $) 41)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3964 (($ $ (-566)) 24)) (-3967 (((-3 $ "failed") $ $) 73)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) 17)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 74)) (-2016 (((-1155 (-566)) $) 19)) (-3965 (($ $) 26)) (-2725 (((-862) $) 104) (($ (-566)) 63) (($ $) NIL)) (-2875 (((-771)) 15 T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-1551 (((-566) $ (-566)) 46)) (-3200 (($) 44 T CONST)) (-3214 (($) 21 T CONST)) (-2817 (((-112) $ $) 54)) (-2905 (($ $) 62) (($ $ $) 48)) (-2897 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 64) (($ $ $) 65)))
-(((-582 |#1| |#2|) (-869 |#1|) (-566) (-112)) (T -582))
-NIL
-(-869 |#1|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 30)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-3374 (((-1188 (-921) (-771)) (-566)) 59)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 $ "failed") $) 97)) (-3343 (($ $) 96)) (-1452 (($ (-1265 $)) 95)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) 44)) (-3424 (($) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) 61)) (-1963 (((-112) $) NIL)) (-4205 (($ $) NIL) (($ $ (-771)) NIL)) (-1968 (((-112) $) NIL)) (-3077 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-3842 (((-112) $) NIL)) (-3029 (($) 49 (|has| $ (-370)))) (-3778 (((-112) $) NIL (|has| $ (-370)))) (-3202 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-3869 (((-3 $ "failed") $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) 106)) (-4138 (((-921) $) 67)) (-2535 (((-1171 $) $) NIL (|has| $ (-370)))) (-3777 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-2195 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL T CONST)) (-2430 (($ (-921)) 60)) (-4274 (((-112) $) 89)) (-1944 (((-1119) $) NIL)) (-2723 (($) 28 (|has| $ (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 54)) (-4018 (((-420 $) $) NIL)) (-2438 (((-921)) 88) (((-833 (-921))) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-4356 (((-134)) NIL)) (-3009 (($ $ (-771)) NIL) (($ $) NIL)) (-3838 (((-921) $) 87) (((-833 (-921)) $) NIL)) (-2880 (((-1171 $)) 104)) (-1344 (($) 66)) (-2014 (($) 50 (|has| $ (-370)))) (-2803 (((-689 $) (-1265 $)) NIL) (((-1265 $) $) 93)) (-2150 (((-566) $) 40)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) 42) (($ $) NIL) (($ (-409 (-566))) NIL)) (-2655 (((-3 $ "failed") $) NIL) (($ $) 107)) (-2875 (((-771)) 51 T CONST)) (-1479 (((-112) $ $) 109)) (-2227 (((-1265 $) (-921)) 99) (((-1265 $)) 98)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) 31 T CONST)) (-3214 (($) 27 T CONST)) (-3940 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 34)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 83) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-583 |#1|) (-13 (-351) (-330 $) (-614 (-566))) (-921)) (T -583))
-NIL
-(-13 (-351) (-330 $) (-614 (-566)))
-((-1635 (((-1270) (-1157)) 10)))
-(((-584) (-10 -7 (-15 -1635 ((-1270) (-1157))))) (T -584))
-((-1635 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-584)))))
-(-10 -7 (-15 -1635 ((-1270) (-1157))))
-((-3993 (((-587 |#2|) (-587 |#2|)) 42)) (-3240 (((-644 |#2|) (-587 |#2|)) 44)) (-2022 ((|#2| (-587 |#2|)) 50)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -3993 ((-587 |#2|) (-587 |#2|))) (-15 -3240 ((-644 |#2|) (-587 |#2|))) (-15 -2022 (|#2| (-587 |#2|)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-29 |#1|) (-1200))) (T -585))
-((-2022 (*1 *2 *3) (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1200))) (-5 *1 (-585 *4 *2)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1200))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5)) (-5 *1 (-585 *4 *5)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1200))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-585 *3 *4)))))
-(-10 -7 (-15 -3993 ((-587 |#2|) (-587 |#2|))) (-15 -3240 ((-644 |#2|) (-587 |#2|))) (-15 -2022 (|#2| (-587 |#2|))))
-((-2101 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|)) 30)))
-(((-586 |#1| |#2|) (-10 -7 (-15 -2101 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -2101 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2101 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2101 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -586))
-((-2101 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-586 *5 *6)))) (-2101 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-586 *5 *2)))) (-2101 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2070 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -2070 *6) (|:| |coeff| *6))) (-5 *1 (-586 *5 *6)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-587 *6)) (-5 *1 (-586 *5 *6)))))
-(-10 -7 (-15 -2101 ((-587 |#2|) (-1 |#2| |#1|) (-587 |#1|))) (-15 -2101 ((-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2070 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2101 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2101 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 76)) (-3343 ((|#1| $) NIL)) (-2070 ((|#1| $) 30)) (-3151 (((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3215 (($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3284 (((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $) 31)) (-1390 (((-1157) $) NIL)) (-2283 (($ |#1| |#1|) 38) (($ |#1| (-1175)) 49 (|has| |#1| (-1038 (-1175))))) (-1944 (((-1119) $) NIL)) (-2238 (((-112) $) 35)) (-3009 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1175)) 89 (|has| |#1| (-900 (-1175))))) (-2725 (((-862) $) 112) (($ |#1|) 29)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 18 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) 17) (($ $ $) NIL)) (-2897 (($ $ $) 85)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 16) (($ (-409 (-566)) $) 41) (($ $ (-409 (-566))) NIL)))
-(((-587 |#1|) (-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -3215 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2070 (|#1| $)) (-15 -3284 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -3151 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2238 ((-112) $)) (-15 -2283 ($ |#1| |#1|)) (-15 -3009 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3009 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -2283 ($ |#1| (-1175))) |%noBranch|))) (-365)) (T -587))
-((-3215 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2)) (|:| |logand| (-1171 *2))))) (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-587 *2)))) (-2070 (*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3284 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3)) (|:| |logand| (-1171 *3))))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365)))) (-2283 (*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3009 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365)))) (-3009 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2)) (-5 *3 (-1175)))) (-2283 (*1 *1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3)) (-4 *2 (-365)))))
-(-13 (-717 (-409 (-566))) (-1038 |#1|) (-10 -8 (-15 -3215 ($ |#1| (-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) (-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2070 (|#1| $)) (-15 -3284 ((-644 (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 |#1|)) (|:| |logand| (-1171 |#1|)))) $)) (-15 -3151 ((-644 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2238 ((-112) $)) (-15 -2283 ($ |#1| |#1|)) (-15 -3009 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-900 (-1175))) (-15 -3009 (|#1| $ (-1175))) |%noBranch|) (IF (|has| |#1| (-1038 (-1175))) (-15 -2283 ($ |#1| (-1175))) |%noBranch|)))
-((-2744 (((-112) |#1|) 16)) (-1953 (((-3 |#1| "failed") |#1|) 14)) (-1857 (((-2 (|:| -1792 |#1|) (|:| -3428 (-771))) |#1|) 39) (((-3 |#1| "failed") |#1| (-771)) 18)) (-1327 (((-112) |#1| (-771)) 19)) (-1298 ((|#1| |#1|) 43)) (-3287 ((|#1| |#1| (-771)) 46)))
-(((-588 |#1|) (-10 -7 (-15 -1327 ((-112) |#1| (-771))) (-15 -1857 ((-3 |#1| "failed") |#1| (-771))) (-15 -1857 ((-2 (|:| -1792 |#1|) (|:| -3428 (-771))) |#1|)) (-15 -3287 (|#1| |#1| (-771))) (-15 -2744 ((-112) |#1|)) (-15 -1953 ((-3 |#1| "failed") |#1|)) (-15 -1298 (|#1| |#1|))) (-547)) (T -588))
-((-1298 (*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-1953 (*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-2744 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-3287 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-1857 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| -3428 (-771)))) (-5 *1 (-588 *3)) (-4 *3 (-547)))) (-1857 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))) (-1327 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547)))))
-(-10 -7 (-15 -1327 ((-112) |#1| (-771))) (-15 -1857 ((-3 |#1| "failed") |#1| (-771))) (-15 -1857 ((-2 (|:| -1792 |#1|) (|:| -3428 (-771))) |#1|)) (-15 -3287 (|#1| |#1| (-771))) (-15 -2744 ((-112) |#1|)) (-15 -1953 ((-3 |#1| "failed") |#1|)) (-15 -1298 (|#1| |#1|)))
-((-2576 (((-1171 |#1|) (-921)) 44)))
-(((-589 |#1|) (-10 -7 (-15 -2576 ((-1171 |#1|) (-921)))) (-351)) (T -589))
-((-2576 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4)) (-4 *4 (-351)))))
-(-10 -7 (-15 -2576 ((-1171 |#1|) (-921))))
-((-3993 (((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|)))) 27)) (-1879 (((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 34 (|has| |#1| (-147)))) (-3240 (((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|)))) 19)) (-2460 (((-317 |#1|) (-409 (-952 |#1|)) (-1175)) 32 (|has| |#1| (-147)))) (-2022 (((-317 |#1|) (-587 (-409 (-952 |#1|)))) 21)))
-(((-590 |#1|) (-10 -7 (-15 -3993 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -3240 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -2022 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -1879 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -2460 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|)) (-13 (-454) (-1038 (-566)) (-639 (-566)))) (T -590))
-((-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5)) (-5 *1 (-590 *5)))) (-1879 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4)) (-5 *1 (-590 *4)))) (-3240 (*1 *2 *3) (-12 (-5 *3 (-587 (-409 (-952 *4)))) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-587 (-409 (-952 *3)))) (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3)))))
-(-10 -7 (-15 -3993 ((-587 (-409 (-952 |#1|))) (-587 (-409 (-952 |#1|))))) (-15 -3240 ((-644 (-317 |#1|)) (-587 (-409 (-952 |#1|))))) (-15 -2022 ((-317 |#1|) (-587 (-409 (-952 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -1879 ((-3 (-317 |#1|) (-644 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -2460 ((-317 |#1|) (-409 (-952 |#1|)) (-1175)))) |%noBranch|))
-((-3594 (((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566)))) 78) (((-644 (-689 (-566))) (-644 (-566))) 79) (((-689 (-566)) (-644 (-566)) (-905 (-566))) 72)) (-3030 (((-771) (-644 (-566))) 69)))
-(((-591) (-10 -7 (-15 -3030 ((-771) (-644 (-566)))) (-15 -3594 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -3594 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -3594 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566))))))) (T -591))
-((-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-591)))) (-3030 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591)))))
-(-10 -7 (-15 -3030 ((-771) (-644 (-566)))) (-15 -3594 ((-689 (-566)) (-644 (-566)) (-905 (-566)))) (-15 -3594 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -3594 ((-644 (-689 (-566))) (-644 (-566)) (-644 (-905 (-566))))))
-((-2071 (((-644 |#5|) |#5| (-112)) 100)) (-1831 (((-112) |#5| (-644 |#5|)) 34)))
-(((-592 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2071 ((-644 |#5|) |#5| (-112))) (-15 -1831 ((-112) |#5| (-644 |#5|)))) (-13 (-308) (-147)) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -592))
-((-1831 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-592 *5 *6 *7 *8 *3)))) (-2071 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3)) (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2071 ((-644 |#5|) |#5| (-112))) (-15 -1831 ((-112) |#5| (-644 |#5|))))
-((-3979 (((-112) $ $) NIL)) (-3516 (((-1134) $) 11)) (-3502 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-593) (-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))) (T -593))
-((-3502 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593)))))
-(-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))
-((-3979 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-4069 (($ $) 38)) (-2840 (($ $) NIL)) (-4093 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1956 (((-112) $ $) 68)) (-1933 (((-112) $ $ (-566)) 62)) (-3993 (((-644 $) $ (-144)) 76) (((-644 $) $ (-141)) 77)) (-1305 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-3190 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-850))))) (-3370 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 (((-144) $ (-566) (-144)) 59 (|has| $ (-6 -4416))) (((-144) $ (-1232 (-566)) (-144)) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1935 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3604 (($ $ (-1232 (-566)) $) 57)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-1752 (($ (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4415))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4415)))) (-3031 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4416)))) (-2975 (((-144) $ (-566)) NIL)) (-1976 (((-112) $ $) 95)) (-2388 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 65 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 63) (((-566) (-141) $ (-566)) 67)) (-1523 (((-644 (-144)) $) NIL (|has| $ (-6 -4415)))) (-2631 (($ (-771) (-144)) 9)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 32 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| (-144) (-850)))) (-3848 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-2565 (((-644 (-144)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-2605 (((-566) $) 47 (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-144) (-850)))) (-4360 (((-112) $ $ (-144)) 96)) (-2451 (((-771) $ $ (-144)) 93)) (-3023 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1667 (($ $) 41)) (-2396 (($ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1945 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-1390 (((-1157) $) 43 (|has| (-144) (-1099)))) (-1510 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) 27)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-566) $) 92) (((-1119) $) NIL (|has| (-144) (-1099)))) (-3771 (((-144) $) NIL (|has| (-566) (-850)))) (-3567 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3598 (($ $ (-144)) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-1948 (((-644 (-144)) $) NIL)) (-4246 (((-112) $) 15)) (-3906 (($) 10)) (-3282 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) 69) (($ $ (-1232 (-566))) 25) (($ $ $) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-3199 (($ $ $ (-566)) 84 (|has| $ (-6 -4416)))) (-2878 (($ $) 20)) (-2150 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-2738 (($ (-644 (-144))) NIL)) (-4007 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-644 $)) 85)) (-2725 (($ (-144)) NIL) (((-862) $) 31 (|has| (-144) (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| (-144) (-1099)))) (-2610 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2817 (((-112) $ $) 17 (|has| (-144) (-1099)))) (-2854 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2833 (((-112) $ $) 18 (|has| (-144) (-850)))) (-3991 (((-771) $) 16 (|has| $ (-6 -4415)))))
-(((-594 |#1|) (-13 (-1143) (-10 -8 (-15 -1944 ((-566) $)))) (-566)) (T -594))
-((-1944 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2))))
-(-13 (-1143) (-10 -8 (-15 -1944 ((-566) $))))
-((-4134 (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|)) 32)))
-(((-595 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4134 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -4134 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|)) (T -595))
-((-4134 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-4134 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793)) (-4 *4 (-850)) (-4 *7 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566)))) (-5 *1 (-595 *6 *4 *7 *3)))))
-(-10 -7 (-15 -4134 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2| (-1093 |#4|))) (-15 -4134 ((-2 (|:| |num| |#4|) (|:| |den| (-566))) |#4| |#2|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 72)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-566)) 58) (($ $ (-566) (-566)) 59)) (-3564 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 65)) (-1706 (($ $) 110)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2483 (((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566))) 243)) (-3040 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 36)) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-2039 (((-112) $) NIL)) (-3077 (((-566) $) 63) (((-566) $ (-566)) 64)) (-3842 (((-112) $) NIL)) (-2248 (($ $ (-921)) 84)) (-1912 (($ (-1 |#1| (-566)) $) 81)) (-3819 (((-112) $) 26)) (-4145 (($ |#1| (-566)) 22) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) 76)) (-2520 (($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 13)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1879 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-3621 (((-3 $ "failed") $ $ (-112)) 109)) (-1966 (($ $ $) 117)) (-1944 (((-1119) $) NIL)) (-2658 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 15)) (-2370 (((-1026 (-843 (-566))) $) 14)) (-3964 (($ $ (-566)) 47)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-3282 ((|#1| $ (-566)) 62) (($ $ $) NIL (|has| (-566) (-1111)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-3838 (((-566) $) NIL)) (-3965 (($ $) 48)) (-2725 (((-862) $) NIL) (($ (-566)) 29) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 28 (|has| |#1| (-172)))) (-3623 ((|#1| $ (-566)) 61)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) 39 T CONST)) (-2737 ((|#1| $) NIL)) (-2791 (($ $) 201 (|has| |#1| (-38 (-409 (-566)))))) (-3324 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-1910 (($ $) 205 (|has| |#1| (-38 (-409 (-566)))))) (-4291 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-2710 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-1464 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-1783 (($ $ (-409 (-566))) 179 (|has| |#1| (-38 (-409 (-566)))))) (-4065 (($ $ |#1|) 159 (|has| |#1| (-38 (-409 (-566)))))) (-3113 (($ $) 207 (|has| |#1| (-38 (-409 (-566)))))) (-2585 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-3225 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-3767 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-3168 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-1534 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-2902 (($ $) 203 (|has| |#1| (-38 (-409 (-566)))))) (-3879 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-1723 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-2265 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3196 (($ $) 209 (|has| |#1| (-38 (-409 (-566)))))) (-4043 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-4132 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-3846 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-2945 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-2785 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-3321 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-4083 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-2327 (($ $) 211 (|has| |#1| (-38 (-409 (-566)))))) (-1546 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1551 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3200 (($) 30 T CONST)) (-3214 (($) 40 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2817 (((-112) $ $) 74)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) 92) (($ $ $) 73)) (-2897 (($ $ $) 89)) (** (($ $ (-921)) NIL) (($ $ (-771)) 112)) (* (($ (-921) $) 99) (($ (-771) $) 97) (($ (-566) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-596 |#1|) (-13 (-1243 |#1| (-566)) (-10 -8 (-15 -2520 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -2370 ((-1026 (-843 (-566))) $)) (-15 -2658 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -3040 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3819 ((-112) $)) (-15 -1912 ($ (-1 |#1| (-566)) $)) (-15 -3621 ((-3 $ "failed") $ $ (-112))) (-15 -1706 ($ $)) (-15 -1966 ($ $ $)) (-15 -2483 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $)) (-15 -4065 ($ $ |#1|)) (-15 -1783 ($ $ (-409 (-566)))) (-15 -2585 ($ $)) (-15 -3113 ($ $)) (-15 -4291 ($ $)) (-15 -3879 ($ $)) (-15 -3324 ($ $)) (-15 -1534 ($ $)) (-15 -1464 ($ $)) (-15 -3767 ($ $)) (-15 -4043 ($ $)) (-15 -1546 ($ $)) (-15 -2265 ($ $)) (-15 -4083 ($ $)) (-15 -3846 ($ $)) (-15 -2785 ($ $)) (-15 -1910 ($ $)) (-15 -2902 ($ $)) (-15 -2791 ($ $)) (-15 -3168 ($ $)) (-15 -2710 ($ $)) (-15 -3225 ($ $)) (-15 -3196 ($ $)) (-15 -2327 ($ $)) (-15 -1723 ($ $)) (-15 -3321 ($ $)) (-15 -4132 ($ $)) (-15 -2945 ($ $))) |%noBranch|))) (-1049)) (T -596))
-((-3819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-2520 (*1 *1 *2 *3) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049)) (-5 *1 (-596 *4)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-1912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-596 *3)))) (-3621 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))) (-1706 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-1966 (*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))) (-2483 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6)))) (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566))) (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6)))) (-1879 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4065 (*1 *1 *1 *2) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1783 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1049)))) (-2585 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3113 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4291 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3879 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3324 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1534 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1464 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3767 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4043 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1546 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2265 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4083 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3846 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2785 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1910 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2902 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2791 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3168 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2710 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3225 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3196 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2327 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-1723 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-3321 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-4132 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))) (-2945 (*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(-13 (-1243 |#1| (-566)) (-10 -8 (-15 -2520 ($ (-1026 (-843 (-566))) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -2370 ((-1026 (-843 (-566))) $)) (-15 -2658 ((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $)) (-15 -3040 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))))) (-15 -3819 ((-112) $)) (-15 -1912 ($ (-1 |#1| (-566)) $)) (-15 -3621 ((-3 $ "failed") $ $ (-112))) (-15 -1706 ($ $)) (-15 -1966 ($ $ $)) (-15 -2483 ((-862) (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) (-1026 (-843 (-566))) (-1175) |#1| (-409 (-566)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $)) (-15 -4065 ($ $ |#1|)) (-15 -1783 ($ $ (-409 (-566)))) (-15 -2585 ($ $)) (-15 -3113 ($ $)) (-15 -4291 ($ $)) (-15 -3879 ($ $)) (-15 -3324 ($ $)) (-15 -1534 ($ $)) (-15 -1464 ($ $)) (-15 -3767 ($ $)) (-15 -4043 ($ $)) (-15 -1546 ($ $)) (-15 -2265 ($ $)) (-15 -4083 ($ $)) (-15 -3846 ($ $)) (-15 -2785 ($ $)) (-15 -1910 ($ $)) (-15 -2902 ($ $)) (-15 -2791 ($ $)) (-15 -3168 ($ $)) (-15 -2710 ($ $)) (-15 -3225 ($ $)) (-15 -3196 ($ $)) (-15 -2327 ($ $)) (-15 -1723 ($ $)) (-15 -3321 ($ $)) (-15 -4132 ($ $)) (-15 -2945 ($ $))) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-3040 (($ (-1155 |#1|)) 9)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) 48)) (-2039 (((-112) $) 58)) (-3077 (((-771) $) 63) (((-771) $ (-771)) 62)) (-3842 (((-112) $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ $) 50 (|has| |#1| (-558)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-1155 |#1|) $) 29)) (-2875 (((-771)) 57 T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) 10 T CONST)) (-3214 (($) 14 T CONST)) (-2817 (((-112) $ $) 28)) (-2905 (($ $) 36) (($ $ $) 16)) (-2897 (($ $ $) 31)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-566)) 42)))
-(((-597 |#1|) (-13 (-1049) (-10 -8 (-15 -3624 ((-1155 |#1|) $)) (-15 -3040 ($ (-1155 |#1|))) (-15 -2039 ((-112) $)) (-15 -3077 ((-771) $)) (-15 -3077 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|))) (-1049)) (T -597))
-((-3624 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (-3077 (*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-597 *3)) (-4 *3 (-1049)))))
-(-13 (-1049) (-10 -8 (-15 -3624 ((-1155 |#1|) $)) (-15 -3040 ($ (-1155 |#1|))) (-15 -2039 ((-112) $)) (-15 -3077 ((-771) $)) (-15 -3077 ((-771) $ (-771))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-566))) (IF (|has| |#1| (-558)) (-6 (-558)) |%noBranch|)))
-((-2101 (((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)) 15)))
-(((-598 |#1| |#2|) (-10 -7 (-15 -2101 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|)))) (-1215) (-1215)) (T -598))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-601 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-601 *6)) (-5 *1 (-598 *5 *6)))))
-(-10 -7 (-15 -2101 ((-601 |#2|) (-1 |#2| |#1|) (-601 |#1|))))
-((-2101 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)) 20) (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|)) 19) (((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|)) 18)))
-(((-599 |#1| |#2| |#3|) (-10 -7 (-15 -2101 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -2101 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -2101 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|)))) (-1215) (-1215) (-1215)) (T -599))
-((-2101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-2101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-1155 *8)) (-5 *1 (-599 *6 *7 *8)))) (-2101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-601 *7)) (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-601 *8)) (-5 *1 (-599 *6 *7 *8)))))
-(-10 -7 (-15 -2101 ((-601 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-601 |#2|))) (-15 -2101 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-601 |#2|))) (-15 -2101 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-601 |#1|) (-1155 |#2|))))
-((-2229 ((|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))) 57)) (-3505 (((-169 |#2|) |#3|) 121)) (-3629 ((|#3| (-169 |#2|)) 46)) (-4260 ((|#2| |#3|) 21)) (-1978 ((|#3| |#2|) 35)))
-(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -3629 (|#3| (-169 |#2|))) (-15 -4260 (|#2| |#3|)) (-15 -1978 (|#3| |#2|)) (-15 -3505 ((-169 |#2|) |#3|)) (-15 -2229 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175))))) (-558) (-13 (-432 |#1|) (-1002) (-1200)) (-13 (-432 (-169 |#1|)) (-1002) (-1200))) (T -600))
-((-2229 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175))) (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1200))) (-4 *5 (-558)) (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1200))))) (-3505 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3)) (-4 *5 (-13 (-432 *4) (-1002) (-1200))) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1200))))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1200))) (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1200))))) (-4260 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1200))) (-5 *1 (-600 *4 *2 *3)) (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1200))))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1200))) (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1200))) (-5 *1 (-600 *4 *5 *2)))))
-(-10 -7 (-15 -3629 (|#3| (-169 |#2|))) (-15 -4260 (|#2| |#3|)) (-15 -1978 (|#3| |#2|)) (-15 -3505 ((-169 |#2|) |#3|)) (-15 -2229 (|#3| |#3| (-644 (-612 |#3|)) (-644 (-1175)))))
-((-3281 (($ (-1 (-112) |#1|) $) 17)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-3198 (($ (-1 |#1| |#1|) |#1|) 9)) (-3254 (($ (-1 (-112) |#1|) $) 13)) (-3268 (($ (-1 (-112) |#1|) $) 15)) (-2738 (((-1155 |#1|) $) 18)) (-2725 (((-862) $) NIL)))
-(((-601 |#1|) (-13 (-613 (-862)) (-10 -8 (-15 -2101 ($ (-1 |#1| |#1|) $)) (-15 -3254 ($ (-1 (-112) |#1|) $)) (-15 -3268 ($ (-1 (-112) |#1|) $)) (-15 -3281 ($ (-1 (-112) |#1|) $)) (-15 -3198 ($ (-1 |#1| |#1|) |#1|)) (-15 -2738 ((-1155 |#1|) $)))) (-1215)) (T -601))
-((-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3)))) (-3254 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3)))) (-3268 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3)))) (-3281 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3)))) (-3198 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3)))) (-2738 (*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1215)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -2101 ($ (-1 |#1| |#1|) $)) (-15 -3254 ($ (-1 (-112) |#1|) $)) (-15 -3268 ($ (-1 (-112) |#1|) $)) (-15 -3281 ($ (-1 (-112) |#1|) $)) (-15 -3198 ($ (-1 |#1| |#1|) |#1|)) (-15 -2738 ((-1155 |#1|) $))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3739 (($ (-771)) NIL (|has| |#1| (-23)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2152 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2267 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-1864 (((-112) $ (-771)) NIL)) (-1653 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1836 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-1049)))) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) NIL)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2905 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2897 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-602 |#1| |#2|) (-1263 |#1|) (-1215) (-566)) (T -602))
-NIL
-(-1263 |#1|)
-((-2506 (((-1270) $ |#2| |#2|) 36)) (-2239 ((|#2| $) 23)) (-2605 ((|#2| $) 21)) (-3023 (($ (-1 |#3| |#3|) $) 32)) (-2101 (($ (-1 |#3| |#3|) $) 30)) (-3771 ((|#3| $) 26)) (-3598 (($ $ |#3|) 33)) (-1346 (((-112) |#3| $) 17)) (-1948 (((-644 |#3|) $) 15)) (-3282 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-603 |#1| |#2| |#3|) (-10 -8 (-15 -2506 ((-1270) |#1| |#2| |#2|)) (-15 -3598 (|#1| |#1| |#3|)) (-15 -3771 (|#3| |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2605 (|#2| |#1|)) (-15 -1346 ((-112) |#3| |#1|)) (-15 -1948 ((-644 |#3|) |#1|)) (-15 -3282 (|#3| |#1| |#2|)) (-15 -3282 (|#3| |#1| |#2| |#3|)) (-15 -3023 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2101 (|#1| (-1 |#3| |#3|) |#1|))) (-604 |#2| |#3|) (-1099) (-1215)) (T -603))
-NIL
-(-10 -8 (-15 -2506 ((-1270) |#1| |#2| |#2|)) (-15 -3598 (|#1| |#1| |#3|)) (-15 -3771 (|#3| |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2605 (|#2| |#1|)) (-15 -1346 ((-112) |#3| |#1|)) (-15 -1948 ((-644 |#3|) |#1|)) (-15 -3282 (|#3| |#1| |#2|)) (-15 -3282 (|#3| |#1| |#2| |#3|)) (-15 -3023 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2101 (|#1| (-1 |#3| |#3|) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#2| (-1099)))) (-2506 (((-1270) $ |#1| |#1|) 41 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4416)))) (-2633 (($) 7 T CONST)) (-3031 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) 52)) (-1523 (((-644 |#2|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2239 ((|#1| $) 44 (|has| |#1| (-850)))) (-2565 (((-644 |#2|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415))))) (-2605 ((|#1| $) 45 (|has| |#1| (-850)))) (-3023 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#2| (-1099)))) (-4063 (((-644 |#1|) $) 47)) (-3054 (((-112) |#1| $) 48)) (-1944 (((-1119) $) 21 (|has| |#2| (-1099)))) (-3771 ((|#2| $) 43 (|has| |#1| (-850)))) (-3598 (($ $ |#2|) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-1958 (((-771) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4415))) (((-771) |#2| $) 29 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#2| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#2| (-1099)))) (-2610 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#2| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-604 |#1| |#2|) (-140) (-1099) (-1215)) (T -604))
-((-1948 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1215)) (-5 *2 (-644 *4)))) (-3054 (*1 *2 *3 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1215)) (-5 *2 (-112)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1215)) (-5 *2 (-644 *3)))) (-1346 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1215)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1215)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1215)) (-4 *2 (-1099)) (-4 *2 (-850)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850)) (-4 *2 (-1215)))) (-3598 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215)))) (-2506 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1215)) (-5 *2 (-1270)))))
-(-13 (-491 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -1948 ((-644 |t#2|) $)) (-15 -3054 ((-112) |t#1| $)) (-15 -4063 ((-644 |t#1|) $)) (IF (|has| |t#2| (-1099)) (IF (|has| $ (-6 -4415)) (-15 -1346 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-850)) (PROGN (-15 -2605 (|t#1| $)) (-15 -2239 (|t#1| $)) (-15 -3771 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4416)) (PROGN (-15 -3598 ($ $ |t#2|)) (-15 -2506 ((-1270) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#2| (-1099)) ((-613 (-862)) -2676 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-1099) |has| |#2| (-1099)) ((-1215) . T))
-((-2725 (((-862) $) 19) (($ (-129)) 13) (((-129) $) 14)))
-(((-605) (-13 (-613 (-862)) (-492 (-129)))) (T -605))
-NIL
-(-13 (-613 (-862)) (-492 (-129)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1214) $) 14) (($ (-644 (-1214))) 13)) (-2157 (((-644 (-1214)) $) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-606) (-13 (-1082) (-613 (-1214)) (-10 -8 (-15 -2725 ($ (-644 (-1214)))) (-15 -2157 ((-644 (-1214)) $))))) (T -606))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-606)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-606)))))
-(-13 (-1082) (-613 (-1214)) (-10 -8 (-15 -2725 ($ (-644 (-1214)))) (-15 -2157 ((-644 (-1214)) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4082 (((-3 $ "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-3677 (((-1265 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1265 (-689 |#1|)) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-3470 (((-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2633 (($) NIL T CONST)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3748 (((-3 $ "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3371 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-4383 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3793 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2784 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3668 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3801 (($ $ (-921)) NIL)) (-2701 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3035 (((-1171 |#1|) $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2822 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-3770 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1685 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1452 (($ (-1265 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1265 |#1|) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2313 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4153 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-2745 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2284 (($ $ (-921)) NIL)) (-1375 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2282 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3164 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3531 (((-3 $ "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4306 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2567 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1431 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-4220 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3223 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3510 (($ $ (-921)) NIL)) (-1625 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3012 (((-1171 |#1|) $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3158 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2234 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2187 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1390 (((-1157) $) NIL)) (-3804 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2318 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1981 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1944 (((-1119) $) NIL)) (-2073 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3282 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-2803 (((-689 |#1|) (-1265 $)) NIL (|has| |#2| (-419 |#1|))) (((-1265 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1265 $) (-1265 $)) NIL (|has| |#2| (-369 |#1|))) (((-1265 |#1|) $ (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2150 (($ (-1265 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1265 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3643 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-1726 (($ $ $) NIL)) (-3716 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2725 (((-862) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL (|has| |#2| (-419 |#1|)))) (-2847 (((-644 (-1265 |#1|))) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2481 (($ $ $ $) NIL)) (-3086 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3709 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-2586 (($ $ $) NIL)) (-2477 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3272 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3137 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3200 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-607 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2725 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -607))
-((-2725 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-607 *3 *2)) (-4 *2 (-744 *3)))))
-(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2725 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-1572 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) 39)) (-2619 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL) (($) NIL)) (-2506 (((-1270) $ (-1157) (-1157)) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-1157) |#1|) 49)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#1| "failed") (-1157) $) 52)) (-2633 (($) NIL T CONST)) (-4281 (($ $ (-1157)) 25)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099))))) (-2367 (((-3 |#1| "failed") (-1157) $) 53) (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (($ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (|has| $ (-6 -4415)))) (-1752 (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (($ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099))))) (-2553 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099))))) (-2096 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) 38)) (-3031 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-1157)) NIL)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415))) (((-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-2042 (($ $) 54)) (-3099 (($ (-390)) 23) (($ (-390) (-1157)) 22)) (-3534 (((-390) $) 40)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415))) (((-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (((-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099))))) (-2605 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-2838 (((-644 (-1157)) $) 45)) (-3932 (((-112) (-1157) $) NIL)) (-1647 (((-1157) $) 41)) (-2668 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL)) (-4063 (((-644 (-1157)) $) NIL)) (-3054 (((-112) (-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 ((|#1| $) NIL (|has| (-1157) (-850)))) (-3567 (((-3 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) "failed") (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ $ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ $ (-644 (-295 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 43)) (-3282 ((|#1| $ (-1157) |#1|) NIL) ((|#1| $ (-1157)) 48)) (-1873 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL) (($) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (((-771) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (((-771) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL)) (-2725 (((-862) $) 21)) (-4381 (($ $) 26)) (-1479 (((-112) $ $) NIL)) (-3619 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20)) (-3991 (((-771) $) 47 (|has| $ (-6 -4415)))))
-(((-608 |#1|) (-13 (-366 (-390) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) (-1191 (-1157) |#1|) (-10 -8 (-6 -4415) (-15 -2042 ($ $)))) (-1099)) (T -608))
-((-2042 (*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099)))))
-(-13 (-366 (-390) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) (-1191 (-1157) |#1|) (-10 -8 (-6 -4415) (-15 -2042 ($ $))))
-((-3938 (((-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) $) 16)) (-2838 (((-644 |#2|) $) 20)) (-3932 (((-112) |#2| $) 12)))
-(((-609 |#1| |#2| |#3|) (-10 -8 (-15 -2838 ((-644 |#2|) |#1|)) (-15 -3932 ((-112) |#2| |#1|)) (-15 -3938 ((-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|))) (-610 |#2| |#3|) (-1099) (-1099)) (T -609))
-NIL
-(-10 -8 (-15 -2838 ((-644 |#2|) |#1|)) (-15 -3932 ((-112) |#2| |#1|)) (-15 -3938 ((-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 56 (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) 62)) (-2633 (($) 7 T CONST)) (-3806 (($ $) 59 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 47 (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) 63)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 55 (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 57 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 54 (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 53 (|has| $ (-6 -4415)))) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-2838 (((-644 |#1|) $) 64)) (-3932 (((-112) |#1| $) 65)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 40)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 41)) (-1944 (((-1119) $) 21 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 52)) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 42)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) 27 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 26 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 25 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 24 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1873 (($) 50) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 49)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 32 (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 51)) (-2725 (((-862) $) 18 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 43)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-610 |#1| |#2|) (-140) (-1099) (-1099)) (T -610))
-((-3932 (*1 *2 *3 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-112)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-5 *2 (-644 *3)))) (-2367 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-2629 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))))
-(-13 (-229 (-2 (|:| -3476 |t#1|) (|:| -2484 |t#2|))) (-10 -8 (-15 -3932 ((-112) |t#1| $)) (-15 -2838 ((-644 |t#1|) $)) (-15 -2367 ((-3 |t#2| "failed") |t#1| $)) (-15 -2629 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((-102) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) ((-613 (-862)) -2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-491 #0#) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-1099) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) ((-1215) . T))
-((-3456 (((-612 |#2|) |#1|) 17)) (-4133 (((-3 |#1| "failed") (-612 |#2|)) 21)))
-(((-611 |#1| |#2|) (-10 -7 (-15 -3456 ((-612 |#2|) |#1|)) (-15 -4133 ((-3 |#1| "failed") (-612 |#2|)))) (-1099) (-1099)) (T -611))
-((-4133 (*1 *2 *3) (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-611 *2 *4)))) (-3456 (*1 *2 *3) (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))))
-(-10 -7 (-15 -3456 ((-612 |#2|) |#1|)) (-15 -4133 ((-3 |#1| "failed") (-612 |#2|))))
-((-3979 (((-112) $ $) NIL)) (-3762 (((-3 (-1175) "failed") $) 48)) (-3797 (((-1270) $ (-771)) 24)) (-2388 (((-771) $) 23)) (-3959 (((-114) $) 12)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-2770 (($ (-114) (-644 |#1|) (-771)) 34) (($ (-1175)) 35)) (-3044 (((-112) $ (-114)) 18) (((-112) $ (-1175)) 16)) (-1695 (((-771) $) 20)) (-1944 (((-1119) $) NIL)) (-2150 (((-892 (-566)) $) 96 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 103 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 89 (|has| |#1| (-614 (-538))))) (-2725 (((-862) $) 73)) (-1479 (((-112) $ $) NIL)) (-2711 (((-644 |#1|) $) 22)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 52)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 54)))
-(((-612 |#1|) (-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -3959 ((-114) $)) (-15 -2711 ((-644 |#1|) $)) (-15 -1695 ((-771) $)) (-15 -2770 ($ (-114) (-644 |#1|) (-771))) (-15 -2770 ($ (-1175))) (-15 -3762 ((-3 (-1175) "failed") $)) (-15 -3044 ((-112) $ (-114))) (-15 -3044 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-1099)) (T -612))
-((-3959 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2711 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-2770 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-1099)) (-5 *1 (-612 *5)))) (-2770 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3762 (*1 *2 *1) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))) (-3044 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))) (-3044 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099)))))
-(-13 (-132) (-850) (-884 |#1|) (-10 -8 (-15 -3959 ((-114) $)) (-15 -2711 ((-644 |#1|) $)) (-15 -1695 ((-771) $)) (-15 -2770 ($ (-114) (-644 |#1|) (-771))) (-15 -2770 ($ (-1175))) (-15 -3762 ((-3 (-1175) "failed") $)) (-15 -3044 ((-112) $ (-114))) (-15 -3044 ((-112) $ (-1175))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|)))
-((-2725 ((|#1| $) 6)))
-(((-613 |#1|) (-140) (-1215)) (T -613))
-((-2725 (*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1215)))))
-(-13 (-10 -8 (-15 -2725 (|t#1| $))))
-((-2150 ((|#1| $) 6)))
-(((-614 |#1|) (-140) (-1215)) (T -614))
-((-2150 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1215)))))
-(-13 (-10 -8 (-15 -2150 (|t#1| $))))
-((-3346 (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)) 15) (((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 16)))
-(((-615 |#1| |#2|) (-10 -7 (-15 -3346 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -3346 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|)))) (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566)))) (-1241 |#1|)) (T -615))
-((-3346 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6)))) (-3346 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5)) (-5 *3 (-409 *5)))))
-(-10 -7 (-15 -3346 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))) (-15 -3346 ((-3 (-1171 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 (-420 |#2|) |#2|))))
-((-2725 (($ |#1|) 6)))
-(((-616 |#1|) (-140) (-1215)) (T -616))
-((-2725 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1215)))))
-(-13 (-10 -8 (-15 -2725 ($ |t#1|))))
-((-3979 (((-112) $ $) NIL)) (-1876 (($) 14 T CONST)) (-2977 (($) 15 T CONST)) (-3157 (($ $ $) 29)) (-3129 (($ $) 27)) (-1390 (((-1157) $) NIL)) (-1825 (($ $ $) 30)) (-1944 (((-1119) $) NIL)) (-1894 (($) 11 T CONST)) (-2845 (($ $ $) 31)) (-2725 (((-862) $) 35)) (-3185 (((-112) $ (|[\|\|]| -1894)) 24) (((-112) $ (|[\|\|]| -1876)) 26) (((-112) $ (|[\|\|]| -2977)) 21)) (-1479 (((-112) $ $) NIL)) (-3144 (($ $ $) 28)) (-2817 (((-112) $ $) 18)))
-(((-617) (-13 (-967) (-10 -8 (-15 -1876 ($) -3854) (-15 -3185 ((-112) $ (|[\|\|]| -1894))) (-15 -3185 ((-112) $ (|[\|\|]| -1876))) (-15 -3185 ((-112) $ (|[\|\|]| -2977)))))) (T -617))
-((-1876 (*1 *1) (-5 *1 (-617))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1894)) (-5 *2 (-112)) (-5 *1 (-617)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1876)) (-5 *2 (-112)) (-5 *1 (-617)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2977)) (-5 *2 (-112)) (-5 *1 (-617)))))
-(-13 (-967) (-10 -8 (-15 -1876 ($) -3854) (-15 -3185 ((-112) $ (|[\|\|]| -1894))) (-15 -3185 ((-112) $ (|[\|\|]| -1876))) (-15 -3185 ((-112) $ (|[\|\|]| -2977)))))
-((-2150 (($ |#1|) 6)))
-(((-618 |#1|) (-140) (-1215)) (T -618))
-((-2150 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1215)))))
-(-13 (-10 -8 (-15 -2150 ($ |t#1|))))
-((-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10)))
-(((-619 |#1| |#2|) (-10 -8 (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-620 |#2|) (-1049)) (T -619))
-NIL
-(-10 -8 (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 41)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
-(((-620 |#1|) (-140) (-1049)) (T -620))
-((-2725 (*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1049)))))
-(-13 (-1049) (-648 |t#1|) (-10 -8 (-15 -2725 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-1859 (((-566) $) NIL (|has| |#1| (-848)))) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3421 (((-112) $) NIL (|has| |#1| (-848)))) (-3842 (((-112) $) NIL)) (-2691 ((|#1| $) 13)) (-2307 (((-112) $) NIL (|has| |#1| (-848)))) (-3075 (($ $ $) NIL (|has| |#1| (-848)))) (-3936 (($ $ $) NIL (|has| |#1| (-848)))) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2702 ((|#3| $) 15)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL)) (-2875 (((-771)) 20 T CONST)) (-1479 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| |#1| (-848)))) (-3200 (($) NIL T CONST)) (-3214 (($) 12 T CONST)) (-2865 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2916 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-621 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -2916 ($ $ |#3|)) (-15 -2916 ($ |#1| |#3|)) (-15 -2691 (|#1| $)) (-15 -2702 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -621))
-((-2916 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-2916 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-2691 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-2702 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (-15 -2916 ($ $ |#3|)) (-15 -2916 ($ |#1| |#3|)) (-15 -2691 (|#1| $)) (-15 -2702 (|#3| $))))
-((-3890 ((|#2| |#2| (-1175) (-1175)) 16)))
-(((-622 |#1| |#2|) (-10 -7 (-15 -3890 (|#2| |#2| (-1175) (-1175)))) (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-959) (-29 |#1|))) (T -622))
-((-3890 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1200) (-959) (-29 *4))))))
-(-10 -7 (-15 -3890 (|#2| |#2| (-1175) (-1175))))
-((-3979 (((-112) $ $) 64)) (-3545 (((-112) $) 58)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4227 ((|#1| $) 55)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3951 (((-2 (|:| -1719 $) (|:| -4167 (-409 |#2|))) (-409 |#2|)) 111 (|has| |#1| (-365)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) 27)) (-2313 (((-3 $ "failed") $) 88)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-3077 (((-566) $) 22)) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) 40)) (-4145 (($ |#1| (-566)) 24)) (-4334 ((|#1| $) 57)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ $) 93)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3792 (((-771) $) 115 (|has| |#1| (-365)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 114 (|has| |#1| (-365)))) (-3009 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3838 (((-566) $) 38)) (-2150 (((-409 |#2|) $) 47)) (-2725 (((-862) $) 69) (($ (-566)) 35) (($ $) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 34) (($ |#2|) 25)) (-3623 ((|#1| $ (-566)) 72)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) 9 T CONST)) (-3214 (($) 14 T CONST)) (-1316 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2817 (((-112) $ $) 21)) (-2905 (($ $) 51) (($ $ $) NIL)) (-2897 (($ $ $) 90)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 29) (($ $ $) 49)))
-(((-623 |#1| |#2|) (-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -3819 ((-112) $)) (-15 -3838 ((-566) $)) (-15 -3077 ((-566) $)) (-15 -4358 ($ $)) (-15 -4334 (|#1| $)) (-15 -4227 (|#1| $)) (-15 -3623 (|#1| $ (-566))) (-15 -4145 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -3951 ((-2 (|:| -1719 $) (|:| -4167 (-409 |#2|))) (-409 |#2|)))) |%noBranch|))) (-558) (-1241 |#1|)) (T -623))
-((-3819 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1241 *3)))) (-3838 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1241 *3)))) (-3077 (*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4)) (-4 *4 (-1241 *3)))) (-4358 (*1 *1 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1241 *2)))) (-4334 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1241 *2)))) (-4227 (*1 *2 *1) (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1241 *2)))) (-3623 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1241 *2)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4)) (-4 *4 (-1241 *2)))) (-3951 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| -1719 (-623 *4 *5)) (|:| -4167 (-409 *5)))) (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5)))))
-(-13 (-231 |#2|) (-558) (-614 (-409 |#2|)) (-413 |#1|) (-1038 |#2|) (-10 -8 (-15 -3819 ((-112) $)) (-15 -3838 ((-566) $)) (-15 -3077 ((-566) $)) (-15 -4358 ($ $)) (-15 -4334 (|#1| $)) (-15 -4227 (|#1| $)) (-15 -3623 (|#1| $ (-566))) (-15 -4145 ($ |#1| (-566))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -3951 ((-2 (|:| -1719 $) (|:| -4167 (-409 |#2|))) (-409 |#2|)))) |%noBranch|)))
-((-3599 (((-644 |#6|) (-644 |#4|) (-112)) 54)) (-1668 ((|#6| |#6|) 48)))
-(((-624 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1668 (|#6| |#6|)) (-15 -3599 ((-644 |#6|) (-644 |#4|) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|) (-1108 |#1| |#2| |#3| |#4|)) (T -624))
-((-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *10)) (-5 *1 (-624 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *10 (-1108 *5 *6 *7 *8)))) (-1668 (*1 *2 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1668 (|#6| |#6|)) (-15 -3599 ((-644 |#6|) (-644 |#4|) (-112))))
-((-1408 (((-112) |#3| (-771) (-644 |#3|)) 32)) (-1919 (((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1502 (-644 (-2 (|:| |irr| |#4|) (|:| -1737 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)) 73)))
-(((-625 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1408 ((-112) |#3| (-771) (-644 |#3|))) (-15 -1919 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1502 (-644 (-2 (|:| |irr| |#4|) (|:| -1737 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|)))) (-850) (-793) (-308) (-949 |#3| |#2| |#1|)) (T -625))
-((-1919 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1502 (-644 (-2 (|:| |irr| *10) (|:| -1737 (-566))))))) (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308)) (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793)) (-5 *2 (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3) (|:| |corrfact| (-644 (-1171 *3))))) (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3))))) (-1408 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850)) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8)) (-4 *8 (-949 *3 *7 *6)))))
-(-10 -7 (-15 -1408 ((-112) |#3| (-771) (-644 |#3|))) (-15 -1919 ((-3 (-2 (|:| |polfac| (-644 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-644 (-1171 |#3|)))) "failed") |#3| (-644 (-1171 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1502 (-644 (-2 (|:| |irr| |#4|) (|:| -1737 (-566)))))) (-644 |#3|) (-644 |#1|) (-644 |#3|))))
-((-3979 (((-112) $ $) NIL)) (-3516 (((-1134) $) 11)) (-3502 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-626) (-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))) (T -626))
-((-3502 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))) (-3516 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626)))))
-(-13 (-1082) (-10 -8 (-15 -3502 ((-1134) $)) (-15 -3516 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-1509 (((-644 |#1|) $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-3746 (($ $) 77)) (-1565 (((-664 |#1| |#2|) $) 60)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 81)) (-2508 (((-644 (-295 |#2|)) $ $) 42)) (-1944 (((-1119) $) NIL)) (-1535 (($ (-664 |#1| |#2|)) 56)) (-2558 (($ $ $) NIL)) (-1726 (($ $ $) NIL)) (-2725 (((-862) $) 66) (((-1280 |#1| |#2|) $) NIL) (((-1285 |#1| |#2|) $) 74)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 61 T CONST)) (-2171 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) 41)) (-2087 (((-644 (-664 |#1| |#2|)) (-644 |#1|)) 73)) (-1893 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) 46)) (-2817 (((-112) $ $) 62)) (-2916 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 52)))
-(((-627 |#1| |#2| |#3|) (-13 (-475) (-10 -8 (-15 -1535 ($ (-664 |#1| |#2|))) (-15 -1565 ((-664 |#1| |#2|) $)) (-15 -1893 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -2725 ((-1280 |#1| |#2|) $)) (-15 -2725 ((-1285 |#1| |#2|) $)) (-15 -3746 ($ $)) (-15 -1509 ((-644 |#1|) $)) (-15 -2087 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -2171 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -2508 ((-644 (-295 |#2|)) $ $)))) (-850) (-13 (-172) (-717 (-409 (-566)))) (-921)) (T -627))
-((-1535 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5)) (-14 *5 (-921)))) (-1565 (*1 *2 *1) (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-3746 (*1 *1 *1) (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2087 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5))) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566))))) (-14 *6 (-921)))) (-2171 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4)))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))) (-2508 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850)) (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))))
-(-13 (-475) (-10 -8 (-15 -1535 ($ (-664 |#1| |#2|))) (-15 -1565 ((-664 |#1| |#2|) $)) (-15 -1893 ((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $)) (-15 -2725 ((-1280 |#1| |#2|) $)) (-15 -2725 ((-1285 |#1| |#2|) $)) (-15 -3746 ($ $)) (-15 -1509 ((-644 |#1|) $)) (-15 -2087 ((-644 (-664 |#1| |#2|)) (-644 |#1|))) (-15 -2171 ((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $)) (-15 -2508 ((-644 (-295 |#2|)) $ $))))
-((-3599 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 103) (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 77)) (-2259 (((-112) (-644 (-780 |#1| (-864 |#2|)))) 26)) (-1914 (((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)) 102)) (-2064 (((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112)) 76)) (-4371 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) 30)) (-2859 (((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|)))) 29)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -2259 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -2859 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -4371 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -2064 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -1914 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3599 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3599 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112)))) (-454) (-644 (-1175))) (T -628))
-((-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6))))) (-5 *1 (-628 *5 *6)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-628 *5 *6)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-2859 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454)) (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454)) (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)))))
-(-10 -7 (-15 -2259 ((-112) (-644 (-780 |#1| (-864 |#2|))))) (-15 -2859 ((-3 (-644 (-780 |#1| (-864 |#2|))) "failed") (-644 (-780 |#1| (-864 |#2|))))) (-15 -4371 ((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))))) (-15 -2064 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -1914 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3599 ((-644 (-1046 |#1| |#2|)) (-644 (-780 |#1| (-864 |#2|))) (-112))) (-15 -3599 ((-644 (-1145 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|)))) (-644 (-780 |#1| (-864 |#2|))) (-112))))
-((-3622 (($ $) 38)) (-3474 (($ $) 21)) (-3601 (($ $) 37)) (-3449 (($ $) 22)) (-3648 (($ $) 36)) (-3500 (($ $) 23)) (-2722 (($) 48)) (-1565 (($ $) 45)) (-2468 (($ $) 17)) (-2283 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6)) (-1535 (($ $) 46)) (-3393 (($ $) 15)) (-3436 (($ $) 16)) (-3658 (($ $) 35)) (-3515 (($ $) 24)) (-3635 (($ $) 34)) (-3488 (($ $) 25)) (-3612 (($ $) 33)) (-3461 (($ $) 26)) (-3696 (($ $) 44)) (-3553 (($ $) 32)) (-3670 (($ $) 43)) (-3528 (($ $) 31)) (-3719 (($ $) 42)) (-3577 (($ $) 30)) (-3076 (($ $) 41)) (-3589 (($ $) 29)) (-3705 (($ $) 40)) (-3566 (($ $) 28)) (-3682 (($ $) 39)) (-3541 (($ $) 27)) (-2097 (($ $) 19)) (-3159 (($ $) 20)) (-2106 (($ $) 18)) (** (($ $ $) 47)))
-(((-629) (-140)) (T -629))
-((-3159 (*1 *1 *1) (-4 *1 (-629))) (-2097 (*1 *1 *1) (-4 *1 (-629))) (-2106 (*1 *1 *1) (-4 *1 (-629))) (-2468 (*1 *1 *1) (-4 *1 (-629))) (-3436 (*1 *1 *1) (-4 *1 (-629))) (-3393 (*1 *1 *1) (-4 *1 (-629))))
-(-13 (-959) (-1200) (-10 -8 (-15 -3159 ($ $)) (-15 -2097 ($ $)) (-15 -2106 ($ $)) (-15 -2468 ($ $)) (-15 -3436 ($ $)) (-15 -3393 ($ $))))
-(((-35) . T) ((-95) . T) ((-285) . T) ((-495) . T) ((-959) . T) ((-1200) . T) ((-1203) . T))
-((-3959 (((-114) (-114)) 88)) (-2468 ((|#2| |#2|) 28)) (-2283 ((|#2| |#2| (-1091 |#2|)) 84) ((|#2| |#2| (-1175)) 50)) (-3393 ((|#2| |#2|) 27)) (-3436 ((|#2| |#2|) 29)) (-2827 (((-112) (-114)) 33)) (-2097 ((|#2| |#2|) 24)) (-3159 ((|#2| |#2|) 26)) (-2106 ((|#2| |#2|) 25)))
-(((-630 |#1| |#2|) (-10 -7 (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -3159 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -2283 (|#2| |#2| (-1175))) (-15 -2283 (|#2| |#2| (-1091 |#2|)))) (-558) (-13 (-432 |#1|) (-1002) (-1200))) (T -630))
-((-2283 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1200))) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)))) (-2283 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1200))))) (-3436 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1200))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1200))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1200))))) (-2106 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1200))))) (-2097 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1200))))) (-3159 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2)) (-4 *2 (-13 (-432 *3) (-1002) (-1200))))) (-3959 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4)) (-4 *4 (-13 (-432 *3) (-1002) (-1200))))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1200))))))
-(-10 -7 (-15 -2827 ((-112) (-114))) (-15 -3959 ((-114) (-114))) (-15 -3159 (|#2| |#2|)) (-15 -2097 (|#2| |#2|)) (-15 -2106 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3436 (|#2| |#2|)) (-15 -2283 (|#2| |#2| (-1175))) (-15 -2283 (|#2| |#2| (-1091 |#2|))))
-((-1300 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-4048 (((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 93)) (-3152 (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 95) (((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|)) 94)) (-1517 (((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|))) 138)) (-2369 (((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 108)) (-1401 (((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|))) 148)) (-3468 (((-1265 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|))) 72)) (-1501 (((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|))) 48)) (-4271 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 64)) (-4213 (((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|))) 116)))
-(((-631 |#1| |#2|) (-10 -7 (-15 -1517 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -1401 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -4048 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -3152 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -3152 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -1501 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -3468 ((-1265 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -4213 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -2369 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4271 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1300 ((-483 |#1| |#2|) (-247 |#1| |#2|)))) (-644 (-1175)) (-454)) (T -631))
-((-1300 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5)))) (-4271 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-2369 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4)) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))) (-4213 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454)) (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6)) (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1265 *6)) (-5 *1 (-631 *5 *6)))) (-1501 (*1 *2 *2) (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-631 *3 *4)))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-3152 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5)) (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6)) (-4 *6 (-454)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5)))) (-1401 (*1 *2 *3) (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566))))) (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5))))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *2 (-2 (|:| |gblist| (-644 (-247 *4 *5))) (|:| |gvlist| (-644 (-566))))) (-5 *1 (-631 *4 *5)))))
-(-10 -7 (-15 -1517 ((-2 (|:| |gblist| (-644 (-247 |#1| |#2|))) (|:| |gvlist| (-644 (-566)))) (-644 (-483 |#1| |#2|)))) (-15 -1401 ((-2 (|:| |glbase| (-644 (-247 |#1| |#2|))) (|:| |glval| (-644 (-566)))) (-644 (-247 |#1| |#2|)))) (-15 -4048 ((-644 (-247 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -3152 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -3152 ((-483 |#1| |#2|) (-644 (-483 |#1| |#2|)) (-864 |#1|))) (-15 -1501 ((-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -3468 ((-1265 |#2|) (-483 |#1| |#2|) (-644 (-483 |#1| |#2|)))) (-15 -4213 ((-247 |#1| |#2|) (-644 |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -2369 ((-644 (-483 |#1| |#2|)) (-864 |#1|) (-644 (-483 |#1| |#2|)) (-644 (-483 |#1| |#2|)))) (-15 -4271 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-644 (-247 |#1| |#2|)))) (-15 -1300 ((-483 |#1| |#2|) (-247 |#1| |#2|))))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) NIL)) (-2506 (((-1270) $ (-1157) (-1157)) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 (((-52) $ (-1157) (-52)) 16) (((-52) $ (-1175) (-52)) 17)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 (-52) "failed") (-1157) $) NIL)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099))))) (-2367 (($ (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-3 (-52) "failed") (-1157) $) NIL)) (-1752 (($ (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $ (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (((-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $ (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-3031 (((-52) $ (-1157) (-52)) NIL (|has| $ (-6 -4416)))) (-2975 (((-52) $ (-1157)) NIL)) (-1523 (((-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-644 (-52)) $) NIL (|has| $ (-6 -4415)))) (-2042 (($ $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2565 (((-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-644 (-52)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099))))) (-2605 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-2547 (($ (-390)) 9)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099))))) (-2838 (((-644 (-1157)) $) NIL)) (-3932 (((-112) (-1157) $) NIL)) (-2668 (((-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) $) NIL)) (-1619 (($ (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) $) NIL)) (-4063 (((-644 (-1157)) $) NIL)) (-3054 (((-112) (-1157) $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099))))) (-3771 (((-52) $) NIL (|has| (-1157) (-850)))) (-3567 (((-3 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) "failed") (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL)) (-3598 (($ $ (-52)) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (($ $ (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099))))) (-1948 (((-644 (-52)) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 (((-52) $ (-1157)) 14) (((-52) $ (-1157) (-52)) NIL) (((-52) $ (-1175)) 15)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 (-52))) (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-632) (-13 (-1191 (-1157) (-52)) (-10 -8 (-15 -2547 ($ (-390))) (-15 -2042 ($ $)) (-15 -3282 ((-52) $ (-1175))) (-15 -2858 ((-52) $ (-1175) (-52)))))) (T -632))
-((-2547 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632)))) (-2042 (*1 *1 *1) (-5 *1 (-632))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632)))) (-2858 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632)))))
-(-13 (-1191 (-1157) (-52)) (-10 -8 (-15 -2547 ($ (-390))) (-15 -2042 ($ $)) (-15 -3282 ((-52) $ (-1175))) (-15 -2858 ((-52) $ (-1175) (-52)))))
-((-2916 (($ $ |#2|) 10)))
-(((-633 |#1| |#2|) (-10 -8 (-15 -2916 (|#1| |#1| |#2|))) (-634 |#2|) (-172)) (T -633))
-NIL
-(-10 -8 (-15 -2916 (|#1| |#1| |#2|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2738 (($ $ $) 34)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-634 |#1|) (-140) (-172)) (T -634))
-((-2738 (*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)))) (-2916 (*1 *1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
-(-13 (-717 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2738 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -2916 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4082 (((-3 $ "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-3677 (((-1265 (-689 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-1265 (-689 |#1|)) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-3470 (((-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2633 (($) NIL T CONST)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3748 (((-3 $ "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3371 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-4383 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3793 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2784 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3668 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3801 (($ $ (-921)) NIL)) (-2701 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3035 (((-1171 |#1|) $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2822 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-3770 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-1685 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1452 (($ (-1265 |#1|)) NIL (|has| |#2| (-419 |#1|))) (($ (-1265 |#1|) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2313 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4153 (((-921)) NIL (|has| |#2| (-369 |#1|)))) (-2745 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2284 (($ $ (-921)) NIL)) (-1375 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2282 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3164 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3531 (((-3 $ "failed")) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-4306 (((-689 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2567 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1431 (((-689 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) $ (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-4220 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3223 (((-1171 (-952 |#1|))) NIL (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-365))))) (-3510 (($ $ (-921)) NIL)) (-1625 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3012 (((-1171 |#1|) $) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-3158 ((|#1|) NIL (|has| |#2| (-419 |#1|))) ((|#1| (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2234 (((-1171 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2187 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1390 (((-1157) $) NIL)) (-3804 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2318 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1981 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1944 (((-1119) $) NIL)) (-2073 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3282 ((|#1| $ (-566)) NIL (|has| |#2| (-419 |#1|)))) (-2803 (((-689 |#1|) (-1265 $)) NIL (|has| |#2| (-419 |#1|))) (((-1265 |#1|) $) NIL (|has| |#2| (-419 |#1|))) (((-689 |#1|) (-1265 $) (-1265 $)) NIL (|has| |#2| (-369 |#1|))) (((-1265 |#1|) $ (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-2150 (($ (-1265 |#1|)) NIL (|has| |#2| (-419 |#1|))) (((-1265 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-3643 (((-644 (-952 |#1|))) NIL (|has| |#2| (-419 |#1|))) (((-644 (-952 |#1|)) (-1265 $)) NIL (|has| |#2| (-369 |#1|)))) (-1726 (($ $ $) NIL)) (-3716 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2725 (((-862) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL (|has| |#2| (-419 |#1|)))) (-2847 (((-644 (-1265 |#1|))) NIL (-2676 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-558))) (-12 (|has| |#2| (-419 |#1|)) (|has| |#1| (-558)))))) (-2481 (($ $ $ $) NIL)) (-3086 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3709 (($ (-689 |#1|) $) NIL (|has| |#2| (-419 |#1|)))) (-2586 (($ $ $) NIL)) (-2477 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3272 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3137 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) 20)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-635 |#1| |#2|) (-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2725 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-744 |#1|)) (T -635))
-((-2725 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-744 *3)))))
-(-13 (-744 |#1|) (-613 |#2|) (-10 -8 (-15 -2725 ($ |#2|)) (IF (|has| |#2| (-419 |#1|)) (-6 (-419 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
-((-2455 (((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)) 106) (((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|))) 131)) (-2098 (((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|))) 136)))
-(((-636 |#1| |#2|) (-10 -7 (-15 -2455 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -2098 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -2455 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157)))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|))) (T -636))
-((-2455 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157)) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3)))) (-2098 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-833 *3))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))) (-2455 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1200) (-432 *5))) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-636 *5 *3)))))
-(-10 -7 (-15 -2455 ((-3 (-843 |#2|) (-2 (|:| |leftHandLimit| (-3 (-843 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-843 |#2|) "failed"))) "failed") |#2| (-295 (-843 |#2|)))) (-15 -2098 ((-3 (-833 |#2|) "failed") |#2| (-295 (-833 |#2|)))) (-15 -2455 ((-3 (-843 |#2|) "failed") |#2| (-295 |#2|) (-1157))))
-((-2455 (((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)) 86) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 20) (((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|)))) 35)) (-2098 (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 23) (((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|)))) 43)))
-(((-637 |#1|) (-10 -7 (-15 -2455 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -2455 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2098 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -2098 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2455 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157)))) (-454)) (T -637))
-((-2455 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157)) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3)) (-5 *1 (-637 *6)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5)))) (-2098 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))) (-2455 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-454)) (-5 *2 (-3 (-843 *3) (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed")) (|:| |rightHandLimit| (-3 (-843 *3) "failed"))) "failed")) (-5 *1 (-637 *5)))) (-2455 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454)) (-5 *2 (-3 (-843 (-409 (-952 *5))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))) "failed")) (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5))))))
-(-10 -7 (-15 -2455 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-843 (-952 |#1|))))) (-15 -2455 ((-3 (-843 (-409 (-952 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-843 (-409 (-952 |#1|))) "failed"))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2098 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-833 (-952 |#1|))))) (-15 -2098 ((-833 (-409 (-952 |#1|))) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -2455 ((-3 (-843 (-409 (-952 |#1|))) "failed") (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))) (-1157))))
-((-4084 (((-3 (-1265 (-409 |#1|)) "failed") (-1265 |#2|) |#2|) 64 (-3129 (|has| |#1| (-365)))) (((-3 (-1265 |#1|) "failed") (-1265 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-4095 (((-112) (-1265 |#2|)) 33)) (-1694 (((-3 (-1265 |#1|) "failed") (-1265 |#2|)) 40)))
-(((-638 |#1| |#2|) (-10 -7 (-15 -4095 ((-112) (-1265 |#2|))) (-15 -1694 ((-3 (-1265 |#1|) "failed") (-1265 |#2|))) (IF (|has| |#1| (-365)) (-15 -4084 ((-3 (-1265 |#1|) "failed") (-1265 |#2|) |#2|)) (-15 -4084 ((-3 (-1265 (-409 |#1|)) "failed") (-1265 |#2|) |#2|)))) (-558) (-639 |#1|)) (T -638))
-((-4084 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 *5)) (-3129 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1265 (-409 *5))) (-5 *1 (-638 *5 *4)))) (-4084 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365)) (-4 *5 (-558)) (-5 *2 (-1265 *5)) (-5 *1 (-638 *5 *4)))) (-1694 (*1 *2 *3) (|partial| -12 (-5 *3 (-1265 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-1265 *4)) (-5 *1 (-638 *4 *5)))) (-4095 (*1 *2 *3) (-12 (-5 *3 (-1265 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-638 *4 *5)))))
-(-10 -7 (-15 -4095 ((-112) (-1265 |#2|))) (-15 -1694 ((-3 (-1265 |#1|) "failed") (-1265 |#2|))) (IF (|has| |#1| (-365)) (-15 -4084 ((-3 (-1265 |#1|) "failed") (-1265 |#2|) |#2|)) (-15 -4084 ((-3 (-1265 (-409 |#1|)) "failed") (-1265 |#2|) |#2|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-3717 (((-689 |#1|) (-689 $)) 40) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 39)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-639 |#1|) (-140) (-1049)) (T -639))
-((-3717 (*1 *2 *3) (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049)) (-5 *2 (-689 *4)))) (-3717 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *1)) (-5 *4 (-1265 *1)) (-4 *1 (-639 *5)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -3444 (-689 *5)) (|:| |vec| (-1265 *5)))))))
-(-13 (-1049) (-10 -8 (-15 -3717 ((-689 |t#1|) (-689 $))) (-15 -3717 ((-2 (|:| -3444 (-689 |t#1|)) (|:| |vec| (-1265 |t#1|))) (-689 $) (-1265 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 16 T CONST)) (-2817 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
-(((-640 |#1|) (-140) (-1057)) (T -640))
-NIL
-(-13 (-646 |t#1|) (-1051 |t#1|))
-(((-102) . T) ((-613 (-862)) . T) ((-646 |#1|) . T) ((-1051 |#1|) . T) ((-1099) . T))
-((-2451 ((|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|) 17) ((|#2| (-644 |#1|) (-644 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|)) 12)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -2451 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -2451 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -2451 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -2451 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -2451 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -2451 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|)))) (-1099) (-1215)) (T -641))
-((-2451 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1099)) (-4 *2 (-1215)) (-5 *1 (-641 *5 *2)))) (-2451 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1215)) (-5 *1 (-641 *5 *6)))) (-2451 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1215)) (-5 *1 (-641 *5 *2)))) (-2451 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099)) (-4 *5 (-1215)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5)))) (-2451 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099)) (-4 *2 (-1215)) (-5 *1 (-641 *5 *2)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099)) (-4 *6 (-1215)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6)))))
-(-10 -7 (-15 -2451 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|))) (-15 -2451 (|#2| (-644 |#1|) (-644 |#2|) |#1|)) (-15 -2451 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) |#2|)) (-15 -2451 (|#2| (-644 |#1|) (-644 |#2|) |#1| |#2|)) (-15 -2451 ((-1 |#2| |#1|) (-644 |#1|) (-644 |#2|) (-1 |#2| |#1|))) (-15 -2451 (|#2| (-644 |#1|) (-644 |#2|) |#1| (-1 |#2| |#1|))))
-((-4123 (((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 16)) (-2553 ((|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|) 18)) (-2101 (((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)) 13)))
-(((-642 |#1| |#2|) (-10 -7 (-15 -4123 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2101 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|)))) (-1215) (-1215)) (T -642))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-644 *6)) (-5 *1 (-642 *5 *6)))) (-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1215)) (-4 *2 (-1215)) (-5 *1 (-642 *5 *2)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1215)) (-4 *5 (-1215)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5)))))
-(-10 -7 (-15 -4123 ((-644 |#2|) (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-644 |#1|) |#2|)) (-15 -2101 ((-644 |#2|) (-1 |#2| |#1|) (-644 |#1|))))
-((-2101 (((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)) 21)))
-(((-643 |#1| |#2| |#3|) (-10 -7 (-15 -2101 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|)))) (-1215) (-1215) (-1215)) (T -643))
-((-2101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7)) (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-644 *8)) (-5 *1 (-643 *6 *7 *8)))))
-(-10 -7 (-15 -2101 ((-644 |#3|) (-1 |#3| |#1| |#2|) (-644 |#1|) (-644 |#2|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) NIL)) (-4088 ((|#1| $) NIL)) (-1829 (($ $) NIL)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) $) NIL (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3190 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-3370 (($ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-2363 (($ $ $) NIL (|has| $ (-6 -4416)))) (-3478 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4416))) (($ $ "rest" $) NIL (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-3698 (($ $ $) 37 (|has| |#1| (-1099)))) (-3687 (($ $ $) 41 (|has| |#1| (-1099)))) (-3675 (($ $ $) 44 (|has| |#1| (-1099)))) (-1607 (($ (-1 (-112) |#1|) $) NIL)) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-4075 ((|#1| $) NIL)) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3781 (($ $) 23) (($ $ (-771)) NIL)) (-1985 (($ $) NIL (|has| |#1| (-1099)))) (-3806 (($ $) 36 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) NIL (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) NIL)) (-1752 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-4336 (((-112) $) NIL)) (-2388 (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099))) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) NIL)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3117 (((-112) $) 11)) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1518 (($) 9 T CONST)) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3169 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3848 (($ $ $) NIL (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3641 (($ |#1|) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1774 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-1619 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-1510 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) 20) (($ $ (-771)) NIL)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1890 (((-112) $) NIL)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) 39)) (-3906 (($) 38)) (-3282 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1232 (-566))) NIL) ((|#1| $ (-566)) 42) ((|#1| $ (-566) |#1|) NIL)) (-4104 (((-566) $ $) NIL)) (-1503 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-1302 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-3810 (((-112) $) NIL)) (-4278 (($ $) NIL)) (-4160 (($ $) NIL (|has| $ (-6 -4416)))) (-2251 (((-771) $) NIL)) (-2546 (($ $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) 53 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) NIL)) (-2120 (($ |#1| $) 12)) (-2011 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4007 (($ $ $) 35) (($ |#1| $) 43) (($ (-644 $)) NIL) (($ $ |#1|) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1874 (($ $ $) 13)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2331 (((-1157) $) 31 (|has| |#1| (-828))) (((-1157) $ (-112)) 32 (|has| |#1| (-828))) (((-1270) (-822) $) 33 (|has| |#1| (-828))) (((-1270) (-822) $ (-112)) 34 (|has| |#1| (-828)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-644 |#1|) (-13 (-666 |#1|) (-10 -8 (-15 -1518 ($) -3854) (-15 -3117 ((-112) $)) (-15 -2120 ($ |#1| $)) (-15 -1874 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -3698 ($ $ $)) (-15 -3687 ($ $ $)) (-15 -3675 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|))) (-1215)) (T -644))
-((-1518 (*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1215)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1215)))) (-2120 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1215)))) (-1874 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1215)))) (-3698 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1215)))) (-3687 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1215)))) (-3675 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1215)))))
-(-13 (-666 |#1|) (-10 -8 (-15 -1518 ($) -3854) (-15 -3117 ((-112) $)) (-15 -2120 ($ |#1| $)) (-15 -1874 ($ $ $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -3698 ($ $ $)) (-15 -3687 ($ $ $)) (-15 -3675 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-828)) (-6 (-828)) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 11) (($ (-1180)) NIL) (((-1180) $) NIL) ((|#1| $) 8)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-645 |#1|) (-13 (-1082) (-613 |#1|)) (-1099)) (T -645))
-NIL
-(-13 (-1082) (-613 |#1|))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 16 T CONST)) (-2817 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
-(((-646 |#1|) (-140) (-1057)) (T -646))
-((-3200 (*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057)))))
-(-13 (-1099) (-10 -8 (-15 (-3200) ($) -3854) (-15 -3545 ((-112) $)) (-15 * ($ |t#1| $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3794 (($ |#1| |#1| $) 46)) (-2261 (((-112) $ (-771)) NIL)) (-1607 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1985 (($ $) 48)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) 59 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 9 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 37)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2668 ((|#1| $) 50)) (-1619 (($ |#1| $) 29) (($ |#1| $ (-771)) 45)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1613 ((|#1| $) 53)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 23)) (-3906 (($) 28)) (-2172 (((-112) $) 57)) (-1727 (((-644 (-2 (|:| -2484 |#1|) (|:| -1958 (-771)))) $) 69)) (-1873 (($) 26) (($ (-644 |#1|)) 19)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) 66 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 20)) (-2150 (((-538) $) 34 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) NIL)) (-2725 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 24)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 71 (|has| |#1| (-1099)))) (-3991 (((-771) $) 17 (|has| $ (-6 -4415)))))
-(((-647 |#1|) (-13 (-695 |#1|) (-10 -8 (-6 -4415) (-15 -2172 ((-112) $)) (-15 -3794 ($ |#1| |#1| $)))) (-1099)) (T -647))
-((-2172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099)))) (-3794 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099)))))
-(-13 (-695 |#1|) (-10 -8 (-6 -4415) (-15 -2172 ((-112) $)) (-15 -3794 ($ |#1| |#1| $))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27)))
-(((-648 |#1|) (-140) (-1057)) (T -648))
-NIL
-(-13 (-21) (-646 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771) $) 17)) (-3188 (($ $ |#1|) 69)) (-1970 (($ $) 39)) (-1921 (($ $) 37)) (-2023 (((-3 |#1| "failed") $) 61)) (-3343 ((|#1| $) NIL)) (-3457 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-2799 (((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566)) 56)) (-2654 ((|#1| $ (-566)) 35)) (-1681 ((|#2| $ (-566)) 34)) (-2990 (($ (-1 |#1| |#1|) $) 41)) (-3903 (($ (-1 |#2| |#2|) $) 47)) (-2371 (($) 11)) (-1964 (($ |#1| |#2|) 24)) (-3558 (($ (-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|)))) 25)) (-3552 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|))) $) 14)) (-2298 (($ |#1| $) 71)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3043 (((-112) $ $) 76)) (-2725 (((-862) $) 21) (($ |#1|) 18)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 27)))
-(((-649 |#1| |#2| |#3|) (-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -2799 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -3552 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|))) $)) (-15 -1964 ($ |#1| |#2|)) (-15 -3558 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|))))) (-15 -1681 (|#2| $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -1921 ($ $)) (-15 -1970 ($ $)) (-15 -3733 ((-771) $)) (-15 -2371 ($)) (-15 -3188 ($ $ |#1|)) (-15 -2298 ($ |#1| $)) (-15 -3457 ($ |#1| |#2| $)) (-15 -3457 ($ $ $)) (-15 -3043 ((-112) $ $)) (-15 -3903 ($ (-1 |#2| |#2|) $)) (-15 -2990 ($ (-1 |#1| |#1|) $)))) (-1099) (-23) |#2|) (T -649))
-((-2799 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862)) (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 *4)))) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-1964 (*1 *1 *2 *3) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 *4)))) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)))) (-1681 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5)) (-4 *4 (-1099)) (-14 *5 *2))) (-2654 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1921 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-2371 (*1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3188 (*1 *1 *1 *2) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-2298 (*1 *1 *2 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3457 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3457 (*1 *1 *1 *1) (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23)) (-14 *4 *3))) (-3043 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))) (-3903 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)))) (-2990 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1099) (-1038 |#1|) (-10 -8 (-15 -2799 ((-862) $ (-1 (-862) (-862) (-862)) (-1 (-862) (-862) (-862)) (-566))) (-15 -3552 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|))) $)) (-15 -1964 ($ |#1| |#2|)) (-15 -3558 ($ (-644 (-2 (|:| |gen| |#1|) (|:| -1535 |#2|))))) (-15 -1681 (|#2| $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -1921 ($ $)) (-15 -1970 ($ $)) (-15 -3733 ((-771) $)) (-15 -2371 ($)) (-15 -3188 ($ $ |#1|)) (-15 -2298 ($ |#1| $)) (-15 -3457 ($ |#1| |#2| $)) (-15 -3457 ($ $ $)) (-15 -3043 ((-112) $ $)) (-15 -3903 ($ (-1 |#2| |#2|) $)) (-15 -2990 ($ (-1 |#1| |#1|) $))))
-((-2605 (((-566) $) 31)) (-1510 (($ |#2| $ (-566)) 27) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) 12)) (-3054 (((-112) (-566) $) 18)) (-4007 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-644 $)) NIL)))
-(((-650 |#1| |#2|) (-10 -8 (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -4007 (|#1| (-644 |#1|))) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -2605 ((-566) |#1|)) (-15 -4063 ((-644 (-566)) |#1|)) (-15 -3054 ((-112) (-566) |#1|))) (-651 |#2|) (-1215)) (T -650))
-NIL
-(-10 -8 (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -4007 (|#1| (-644 |#1|))) (-15 -4007 (|#1| |#1| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -2605 ((-566) |#1|)) (-15 -4063 ((-644 (-566)) |#1|)) (-15 -3054 ((-112) (-566) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 59 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-3806 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 52)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 43 (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3598 (($ $ |#1|) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1232 (-566))) 64)) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 71)) (-4007 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-651 |#1|) (-140) (-1215)) (T -651))
-((-2631 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1215)))) (-4007 (*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1215)))) (-4007 (*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1215)))) (-4007 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1215)))) (-4007 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1215)))) (-2101 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-651 *3)) (-4 *3 (-1215)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1215)))) (-1302 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1215)))) (-1302 (*1 *1 *1 *2) (-12 (-5 *2 (-1232 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1215)))) (-1510 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1215)))) (-1510 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1215)))) (-2858 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1232 (-566))) (|has| *1 (-6 -4416)) (-4 *1 (-651 *2)) (-4 *2 (-1215)))))
-(-13 (-604 (-566) |t#1|) (-151 |t#1|) (-10 -8 (-15 -2631 ($ (-771) |t#1|)) (-15 -4007 ($ $ |t#1|)) (-15 -4007 ($ |t#1| $)) (-15 -4007 ($ $ $)) (-15 -4007 ($ (-644 $))) (-15 -2101 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3282 ($ $ (-1232 (-566)))) (-15 -1302 ($ $ (-566))) (-15 -1302 ($ $ (-1232 (-566)))) (-15 -1510 ($ |t#1| $ (-566))) (-15 -1510 ($ $ $ (-566))) (IF (|has| $ (-6 -4416)) (-15 -2858 (|t#1| $ (-1232 (-566)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-1409 (((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) "failed") |#3| |#2| (-1175)) 44)))
-(((-652 |#1| |#2| |#3|) (-10 -7 (-15 -1409 ((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -1409 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1200) (-959)) (-656 |#2|)) (T -652))
-((-1409 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1200) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-652 *6 *2 *3)) (-4 *3 (-656 *2)))) (-1409 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1200) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2227 (-644 *4)))) (-5 *1 (-652 *6 *4 *3)) (-4 *3 (-656 *4)))))
-(-10 -7 (-15 -1409 ((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) "failed") |#3| |#2| (-1175))) (-15 -1409 ((-3 |#2| "failed") |#3| |#2| (-1175) |#2| (-644 |#2|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-3019 (($ $) NIL (|has| |#1| (-365)))) (-2644 (($ $ $) NIL (|has| |#1| (-365)))) (-4327 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-365)))) (-3616 (($ $ $) NIL (|has| |#1| (-365)))) (-2987 (($ $ $) NIL (|has| |#1| (-365)))) (-1430 (($ $ $) NIL (|has| |#1| (-365)))) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3633 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454)))) (-3842 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) NIL)) (-1592 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-1411 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-4090 (((-771) $) NIL)) (-1395 (($ $ $) NIL (|has| |#1| (-365)))) (-1529 (($ $ $) NIL (|has| |#1| (-365)))) (-3339 (($ $ $) NIL (|has| |#1| (-365)))) (-3972 (($ $ $) NIL (|has| |#1| (-365)))) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-1654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4159 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3282 ((|#1| $ |#1|) NIL)) (-1308 (($ $ $) NIL (|has| |#1| (-365)))) (-3838 (((-771) $) NIL)) (-4330 ((|#1| $) NIL (|has| |#1| (-454)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3709 ((|#1| $ |#1| |#1|) NIL)) (-4295 (($ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($) NIL)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-653 |#1|) (-656 |#1|) (-233)) (T -653))
-NIL
-(-656 |#1|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-3019 (($ $) NIL (|has| |#1| (-365)))) (-2644 (($ $ $) NIL (|has| |#1| (-365)))) (-4327 (($ $ (-771)) NIL (|has| |#1| (-365)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-365)))) (-3616 (($ $ $) NIL (|has| |#1| (-365)))) (-2987 (($ $ $) NIL (|has| |#1| (-365)))) (-1430 (($ $ $) NIL (|has| |#1| (-365)))) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3633 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454)))) (-3842 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) NIL)) (-1592 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-1411 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-4090 (((-771) $) NIL)) (-1395 (($ $ $) NIL (|has| |#1| (-365)))) (-1529 (($ $ $) NIL (|has| |#1| (-365)))) (-3339 (($ $ $) NIL (|has| |#1| (-365)))) (-3972 (($ $ $) NIL (|has| |#1| (-365)))) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-1654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4159 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3282 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1308 (($ $ $) NIL (|has| |#1| (-365)))) (-3838 (((-771) $) NIL)) (-4330 ((|#1| $) NIL (|has| |#1| (-454)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3709 ((|#1| $ |#1| |#1|) NIL)) (-4295 (($ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($) NIL)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-654 |#1| |#2|) (-13 (-656 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-648 |#1|) (-10 -8 (-15 -3009 ($ $))))) (T -654))
-NIL
-(-13 (-656 |#1|) (-287 |#2| |#2|))
-((-3019 (($ $) 29)) (-4295 (($ $) 27)) (-1316 (($) 13)))
-(((-655 |#1| |#2|) (-10 -8 (-15 -3019 (|#1| |#1|)) (-15 -4295 (|#1| |#1|)) (-15 -1316 (|#1|))) (-656 |#2|) (-1049)) (T -655))
-NIL
-(-10 -8 (-15 -3019 (|#1| |#1|)) (-15 -4295 (|#1| |#1|)) (-15 -1316 (|#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-3019 (($ $) 87 (|has| |#1| (-365)))) (-2644 (($ $ $) 89 (|has| |#1| (-365)))) (-4327 (($ $ (-771)) 88 (|has| |#1| (-365)))) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2029 (($ $ $) 50 (|has| |#1| (-365)))) (-3616 (($ $ $) 51 (|has| |#1| (-365)))) (-2987 (($ $ $) 53 (|has| |#1| (-365)))) (-1430 (($ $ $) 48 (|has| |#1| (-365)))) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 47 (|has| |#1| (-365)))) (-4136 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3633 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 52 (|has| |#1| (-365)))) (-2023 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-3343 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-4358 (($ $) 69)) (-2313 (((-3 $ "failed") $) 37)) (-1520 (($ $) 60 (|has| |#1| (-454)))) (-3842 (((-112) $) 35)) (-4145 (($ |#1| (-771)) 67)) (-1592 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 62 (|has| |#1| (-558)))) (-1411 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63 (|has| |#1| (-558)))) (-4090 (((-771) $) 71)) (-1395 (($ $ $) 57 (|has| |#1| (-365)))) (-1529 (($ $ $) 58 (|has| |#1| (-365)))) (-3339 (($ $ $) 46 (|has| |#1| (-365)))) (-3972 (($ $ $) 55 (|has| |#1| (-365)))) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 54 (|has| |#1| (-365)))) (-1654 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-4159 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 59 (|has| |#1| (-365)))) (-4334 ((|#1| $) 70)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-3282 ((|#1| $ |#1|) 92)) (-1308 (($ $ $) 86 (|has| |#1| (-365)))) (-3838 (((-771) $) 72)) (-4330 ((|#1| $) 61 (|has| |#1| (-454)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-3624 (((-644 |#1|) $) 66)) (-3623 ((|#1| $ (-771)) 68)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3709 ((|#1| $ |#1| |#1|) 65)) (-4295 (($ $) 90)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($) 91)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-656 |#1|) (-140) (-1049)) (T -656))
-((-1316 (*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-4295 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)))) (-2644 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-4327 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365)))) (-3019 (*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1308 (*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(-13 (-852 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -1316 ($)) (-15 -4295 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -2644 ($ $ $)) (-15 -4327 ($ $ (-771))) (-15 -3019 ($ $)) (-15 -1308 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-287 |#1| |#1|) . T) ((-413 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-852 |#1|) . T))
-((-2452 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 87 (|has| |#1| (-27)))) (-4018 (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))) 86 (|has| |#1| (-27))) (((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 19)))
-(((-657 |#1| |#2|) (-10 -7 (-15 -4018 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4018 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -2452 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1241 |#1|)) (T -657))
-((-2452 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4)) (-5 *2 (-644 (-653 (-409 *5)))) (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-5 *2 (-644 (-653 (-409 *6)))) (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6))))))
-(-10 -7 (-15 -4018 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4018 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|)))) (-15 -2452 ((-644 (-653 (-409 |#2|))) (-653 (-409 |#2|))))) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-3019 (($ $) NIL (|has| |#1| (-365)))) (-2644 (($ $ $) 28 (|has| |#1| (-365)))) (-4327 (($ $ (-771)) 31 (|has| |#1| (-365)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-365)))) (-3616 (($ $ $) NIL (|has| |#1| (-365)))) (-2987 (($ $ $) NIL (|has| |#1| (-365)))) (-1430 (($ $ $) NIL (|has| |#1| (-365)))) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3633 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454)))) (-3842 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) NIL)) (-1592 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-1411 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-4090 (((-771) $) NIL)) (-1395 (($ $ $) NIL (|has| |#1| (-365)))) (-1529 (($ $ $) NIL (|has| |#1| (-365)))) (-3339 (($ $ $) NIL (|has| |#1| (-365)))) (-3972 (($ $ $) NIL (|has| |#1| (-365)))) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-1654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4159 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3282 ((|#1| $ |#1|) 24)) (-1308 (($ $ $) 33 (|has| |#1| (-365)))) (-3838 (((-771) $) NIL)) (-4330 ((|#1| $) NIL (|has| |#1| (-454)))) (-2725 (((-862) $) 20) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3709 ((|#1| $ |#1| |#1|) 23)) (-4295 (($ $) NIL)) (-3200 (($) 21 T CONST)) (-3214 (($) 8 T CONST)) (-1316 (($) NIL)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-658 |#1| |#2|) (-656 |#1|) (-1049) (-1 |#1| |#1|)) (T -658))
-NIL
-(-656 |#1|)
-((-2644 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-4327 ((|#2| |#2| (-771) (-1 |#1| |#1|)) 48)) (-1308 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
-(((-659 |#1| |#2|) (-10 -7 (-15 -2644 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4327 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -1308 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -659))
-((-1308 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4)))) (-4327 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5)))) (-2644 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2)) (-4 *2 (-656 *4)))))
-(-10 -7 (-15 -2644 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4327 (|#2| |#2| (-771) (-1 |#1| |#1|))) (-15 -1308 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-4049 (($ $ $) 9)))
-(((-660 |#1|) (-10 -8 (-15 -4049 (|#1| |#1| |#1|))) (-661)) (T -660))
-NIL
-(-10 -8 (-15 -4049 (|#1| |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-4001 (($ $) 10)) (-4049 (($ $ $) 8)) (-2817 (((-112) $ $) 6)) (-4036 (($ $ $) 9)))
-(((-661) (-140)) (T -661))
-((-4001 (*1 *1 *1) (-4 *1 (-661))) (-4036 (*1 *1 *1 *1) (-4 *1 (-661))) (-4049 (*1 *1 *1 *1) (-4 *1 (-661))))
-(-13 (-102) (-10 -8 (-15 -4001 ($ $)) (-15 -4036 ($ $ $)) (-15 -4049 ($ $ $))))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2275 (((-1271) $ |#1| |#1|) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#2| $ |#1| |#2|) NIL)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) NIL)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) NIL)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) NIL)) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 ((|#1| $) NIL (|has| |#1| (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 ((|#1| $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3004 (((-645 |#1|) $) NIL)) (-2121 (((-112) |#1| $) NIL)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3940 (((-645 |#1|) $) NIL)) (-1664 (((-112) |#1| $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#2| $) NIL (|has| |#1| (-851)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-553 |#1| |#2| |#3|) (-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416))) (-1100) (-1100) (-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416)))) (T -553))
+NIL
+(-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416)))
+((-3369 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1172 |#2|) (-1172 |#2|))) 50)))
+(((-554 |#1| |#2|) (-10 -7 (-15 -3369 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1172 |#2|) (-1172 |#2|))))) (-559) (-13 (-27) (-433 |#1|))) (T -554))
+((-3369 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1172 *3) (-1172 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3)) (-5 *1 (-554 *6 *3)))))
+(-10 -7 (-15 -3369 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-1 (-1172 |#2|) (-1172 |#2|)))))
+((-4019 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 218)) (-2665 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 214)) (-2215 (((-588 |#5|) |#5| (-1 |#3| |#3|)) 222)))
+(((-555 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2215 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4019 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2665 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-559) (-1039 (-567))) (-13 (-27) (-433 |#1|)) (-1242 |#2|) (-1242 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -555))
+((-2665 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *7 (-1242 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2)) (-4 *2 (-344 *5 *6 *7)))) (-4019 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1242 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) (-4 *8 (-1242 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1242 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) (-4 *8 (-1242 (-410 *7))) (-5 *2 (-588 *3)) (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+(-10 -7 (-15 -2215 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4019 ((-588 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2665 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-3243 (((-112) (-567) (-567)) 12)) (-1299 (((-567) (-567)) 7)) (-2911 (((-567) (-567) (-567)) 10)))
+(((-556) (-10 -7 (-15 -1299 ((-567) (-567))) (-15 -2911 ((-567) (-567) (-567))) (-15 -3243 ((-112) (-567) (-567))))) (T -556))
+((-3243 (*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))) (-2911 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))) (-1299 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
+(-10 -7 (-15 -1299 ((-567) (-567))) (-15 -2911 ((-567) (-567) (-567))) (-15 -3243 ((-112) (-567) (-567))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2034 ((|#1| $) 67)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-1772 (($ $) 97)) (-1605 (($ $) 80)) (-2140 ((|#1| $) 68)) (-4377 (((-3 $ "failed") $ $) 20)) (-2307 (($ $) 79)) (-1747 (($ $) 96)) (-1577 (($ $) 81)) (-1798 (($ $) 95)) (-1632 (($ $) 82)) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 75)) (-1621 (((-567) $) 76)) (-4014 (((-3 $ "failed") $) 37)) (-1461 (($ |#1| |#1|) 72)) (-4095 (((-112) $) 66)) (-4098 (($) 107)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 78)) (-3948 (((-112) $) 65)) (-2056 (($ $ $) 113)) (-1802 (($ $ $) 112)) (-2942 (($ $) 104)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-1479 (($ |#1| |#1|) 73) (($ |#1|) 71) (($ (-410 (-567))) 70)) (-1699 ((|#1| $) 69)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2245 (((-3 $ "failed") $ $) 48)) (-2910 (($ $) 105)) (-1810 (($ $) 94)) (-1647 (($ $) 83)) (-1784 (($ $) 93)) (-1618 (($ $) 84)) (-1757 (($ $) 92)) (-1592 (($ $) 85)) (-1454 (((-112) $ |#1|) 64)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-567)) 74)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1847 (($ $) 103)) (-1690 (($ $) 91)) (-2469 (((-112) $ $) 45)) (-1823 (($ $) 102)) (-1660 (($ $) 90)) (-1869 (($ $) 101)) (-1719 (($ $) 89)) (-1345 (($ $) 100)) (-1733 (($ $) 88)) (-1858 (($ $) 99)) (-1704 (($ $) 87)) (-1834 (($ $) 98)) (-1673 (($ $) 86)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3109 (((-112) $ $) 110)) (-3085 (((-112) $ $) 109)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 111)) (-3075 (((-112) $ $) 108)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ $) 106) (($ $ (-410 (-567))) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-557 |#1|) (-140) (-13 (-407) (-1201))) (T -557))
+((-1479 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))) (-1461 (*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))) (-1479 (*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))) (-1479 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1201))))) (-1699 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))) (-4095 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1201))) (-5 *2 (-112)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1201))) (-5 *2 (-112)))) (-1454 (*1 *2 *1 *3) (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1201))) (-5 *2 (-112)))))
+(-13 (-455) (-851) (-1201) (-1003) (-1039 (-567)) (-10 -8 (-6 -2927) (-15 -1479 ($ |t#1| |t#1|)) (-15 -1461 ($ |t#1| |t#1|)) (-15 -1479 ($ |t#1|)) (-15 -1479 ($ (-410 (-567)))) (-15 -1699 (|t#1| $)) (-15 -2140 (|t#1| $)) (-15 -2034 (|t#1| $)) (-15 -4095 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -1454 ((-112) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-285) . T) ((-291) . T) ((-455) . T) ((-496) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-851) . T) ((-1003) . T) ((-1039 (-567)) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1201) . T) ((-1204) . T))
+((-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 9)) (-3602 (($ $) 11)) (-2119 (((-112) $) 20)) (-4014 (((-3 $ "failed") $) 16)) (-2469 (((-112) $ $) 22)))
+(((-558 |#1|) (-10 -8 (-15 -2119 ((-112) |#1|)) (-15 -2469 ((-112) |#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -1785 ((-2 (|:| -4135 |#1|) (|:| -4403 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|))) (-559)) (T -558))
+NIL
+(-10 -8 (-15 -2119 ((-112) |#1|)) (-15 -2469 ((-112) |#1| |#1|)) (-15 -3602 (|#1| |#1|)) (-15 -1785 ((-2 (|:| -4135 |#1|) (|:| -4403 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ $) 48)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-559) (-140)) (T -559))
+((-2245 (*1 *1 *1 *1) (|partial| -4 *1 (-559))) (-1785 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4135 *1) (|:| -4403 *1) (|:| |associate| *1))) (-4 *1 (-559)))) (-3602 (*1 *1 *1) (-4 *1 (-559))) (-2469 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
+(-13 (-172) (-38 $) (-291) (-10 -8 (-15 -2245 ((-3 $ "failed") $ $)) (-15 -1785 ((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $)) (-15 -3602 ($ $)) (-15 -2469 ((-112) $ $)) (-15 -2119 ((-112) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3247 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1176) (-645 |#2|)) 38)) (-2123 (((-588 |#2|) |#2| (-1176)) 63)) (-2590 (((-3 |#2| "failed") |#2| (-1176)) 156)) (-3009 (((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1176) (-613 |#2|) (-645 (-613 |#2|))) 159)) (-2954 (((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1176) |#2|) 41)))
+(((-560 |#1| |#2|) (-10 -7 (-15 -2954 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1176) |#2|)) (-15 -3247 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1176) (-645 |#2|))) (-15 -2590 ((-3 |#2| "failed") |#2| (-1176))) (-15 -2123 ((-588 |#2|) |#2| (-1176))) (-15 -3009 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1176) (-613 |#2|) (-645 (-613 |#2|))))) (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|))) (T -560))
+((-3009 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1176)) (-5 *6 (-645 (-613 *3))) (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *7))) (-4 *7 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3))) (-5 *1 (-560 *7 *3)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-2590 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1176)) (-4 *4 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))) (-3247 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *6 *3)))) (-2954 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1176)) (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))))
+(-10 -7 (-15 -2954 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1176) |#2|)) (-15 -3247 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1176) (-645 |#2|))) (-15 -2590 ((-3 |#2| "failed") |#2| (-1176))) (-15 -2123 ((-588 |#2|) |#2| (-1176))) (-15 -3009 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1176) (-613 |#2|) (-645 (-613 |#2|)))))
+((-1401 (((-421 |#1|) |#1|) 19)) (-2296 (((-421 |#1|) |#1|) 34)) (-3065 (((-3 |#1| "failed") |#1|) 51)) (-2594 (((-421 |#1|) |#1|) 64)))
+(((-561 |#1|) (-10 -7 (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -2594 ((-421 |#1|) |#1|)) (-15 -3065 ((-3 |#1| "failed") |#1|))) (-548)) (T -561))
+((-3065 (*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))) (-2594 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-1401 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))))
+(-10 -7 (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -2594 ((-421 |#1|) |#1|)) (-15 -3065 ((-3 |#1| "failed") |#1|)))
+((-1965 (($) 9)) (-4313 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-3004 (((-645 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-1336 (($ (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-1734 (($ (-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3859 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-1412 (((-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3791 (((-1271)) 12)))
+(((-562) (-10 -8 (-15 -1965 ($)) (-15 -3791 ((-1271))) (-15 -3004 ((-645 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1734 ($ (-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1336 ($ (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4313 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1412 ((-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3859 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -562))
+((-3859 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-4313 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-562)))) (-1336 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-562)))) (-1734 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-562)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-562)))) (-3791 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-562)))) (-1965 (*1 *1) (-5 *1 (-562))))
+(-10 -8 (-15 -1965 ($)) (-15 -3791 ((-1271))) (-15 -3004 ((-645 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1734 ($ (-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1336 ($ (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4313 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1412 ((-645 (-2 (|:| -1762 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3859 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1156 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3674 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-2260 (((-1172 (-410 (-1172 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1172 |#2|)) 35)) (-3069 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1172 |#2|)) 115)) (-3952 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|))) 85) (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1172 |#2|)) 55)) (-2588 (((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1172 |#2|))) 92) (((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1172 |#2|)) 114)) (-4221 (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)) (-613 |#2|) |#2| (-410 (-1172 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)) |#2| (-1172 |#2|)) 116)) (-3124 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|))) 135 (|has| |#3| (-657 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1172 |#2|)) 134 (|has| |#3| (-657 |#2|)))) (-2434 ((|#2| (-1172 (-410 (-1172 |#2|))) (-613 |#2|) |#2|) 53)) (-3392 (((-1172 (-410 (-1172 |#2|))) (-1172 |#2|) (-613 |#2|)) 34)))
+(((-563 |#1| |#2| |#3|) (-10 -7 (-15 -3952 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1172 |#2|))) (-15 -3952 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -2588 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1172 |#2|))) (-15 -2588 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -3069 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1172 |#2|))) (-15 -3069 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -4221 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)) |#2| (-1172 |#2|))) (-15 -4221 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)) (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -2260 ((-1172 (-410 (-1172 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1172 |#2|))) (-15 -2434 (|#2| (-1172 (-410 (-1172 |#2|))) (-613 |#2|) |#2|)) (-15 -3392 ((-1172 (-410 (-1172 |#2|))) (-1172 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3124 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1172 |#2|))) (-15 -3124 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|))))) |%noBranch|)) (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1201)) (-1100)) (T -563))
+((-3124 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1172 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1201))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1100)))) (-3124 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1172 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1201))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1100)))) (-3392 (*1 *2 *3 *4) (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1201))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1172 (-410 (-1172 *6)))) (-5 *1 (-563 *5 *6 *7)) (-5 *3 (-1172 *6)) (-4 *7 (-1100)))) (-2434 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1172 (-410 (-1172 *2)))) (-5 *4 (-613 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1201))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1100)))) (-2260 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-1172 (-410 (-1172 *3)))) (-5 *1 (-563 *6 *3 *7)) (-5 *5 (-1172 *3)) (-4 *7 (-1100)))) (-4221 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1176))) (-5 *5 (-410 (-1172 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1100)))) (-4221 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1176))) (-5 *5 (-1172 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1100)))) (-3069 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-410 (-1172 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1201))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1100)))) (-3069 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1172 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1201))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1100)))) (-2588 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1172 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100)))) (-2588 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1172 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3))) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100)))) (-3952 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1172 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100)))) (-3952 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-613 *3)) (-5 *5 (-1172 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100)))))
+(-10 -7 (-15 -3952 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) |#2| (-1172 |#2|))) (-15 -3952 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -2588 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| |#2| (-1172 |#2|))) (-15 -2588 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2| (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -3069 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) |#2| (-1172 |#2|))) (-15 -3069 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -4221 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)) |#2| (-1172 |#2|))) (-15 -4221 ((-3 |#2| "failed") |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)) (-613 |#2|) |#2| (-410 (-1172 |#2|)))) (-15 -2260 ((-1172 (-410 (-1172 |#2|))) |#2| (-613 |#2|) (-613 |#2|) (-1172 |#2|))) (-15 -2434 (|#2| (-1172 (-410 (-1172 |#2|))) (-613 |#2|) |#2|)) (-15 -3392 ((-1172 (-410 (-1172 |#2|))) (-1172 |#2|) (-613 |#2|))) (IF (|has| |#3| (-657 |#2|)) (PROGN (-15 -3124 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) |#2| (-1172 |#2|))) (-15 -3124 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-613 |#2|) |#2| (-410 (-1172 |#2|))))) |%noBranch|))
+((-3350 (((-567) (-567) (-772)) 90)) (-3125 (((-567) (-567)) 88)) (-3237 (((-567) (-567)) 86)) (-3341 (((-567) (-567)) 92)) (-2090 (((-567) (-567) (-567)) 70)) (-1850 (((-567) (-567) (-567)) 67)) (-4210 (((-410 (-567)) (-567)) 30)) (-1740 (((-567) (-567)) 36)) (-2691 (((-567) (-567)) 79)) (-3390 (((-567) (-567)) 51)) (-1812 (((-645 (-567)) (-567)) 85)) (-1942 (((-567) (-567) (-567) (-567) (-567)) 63)) (-1392 (((-410 (-567)) (-567)) 60)))
+(((-564) (-10 -7 (-15 -1392 ((-410 (-567)) (-567))) (-15 -1942 ((-567) (-567) (-567) (-567) (-567))) (-15 -1812 ((-645 (-567)) (-567))) (-15 -3390 ((-567) (-567))) (-15 -2691 ((-567) (-567))) (-15 -1740 ((-567) (-567))) (-15 -4210 ((-410 (-567)) (-567))) (-15 -1850 ((-567) (-567) (-567))) (-15 -2090 ((-567) (-567) (-567))) (-15 -3341 ((-567) (-567))) (-15 -3237 ((-567) (-567))) (-15 -3125 ((-567) (-567))) (-15 -3350 ((-567) (-567) (-772))))) (T -564))
+((-3350 (*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3341 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2090 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1850 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-4210 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-1740 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-2691 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-3390 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1812 (*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))) (-1942 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
+(-10 -7 (-15 -1392 ((-410 (-567)) (-567))) (-15 -1942 ((-567) (-567) (-567) (-567) (-567))) (-15 -1812 ((-645 (-567)) (-567))) (-15 -3390 ((-567) (-567))) (-15 -2691 ((-567) (-567))) (-15 -1740 ((-567) (-567))) (-15 -4210 ((-410 (-567)) (-567))) (-15 -1850 ((-567) (-567) (-567))) (-15 -2090 ((-567) (-567) (-567))) (-15 -3341 ((-567) (-567))) (-15 -3237 ((-567) (-567))) (-15 -3125 ((-567) (-567))) (-15 -3350 ((-567) (-567) (-772))))
+((-3915 (((-2 (|:| |answer| |#4|) (|:| -2096 |#4|)) |#4| (-1 |#2| |#2|)) 56)))
+(((-565 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3915 ((-2 (|:| |answer| |#4|) (|:| -2096 |#4|)) |#4| (-1 |#2| |#2|)))) (-365) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -565))
+((-3915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365)) (-4 *7 (-1242 (-410 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2096 *3))) (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7)))))
+(-10 -7 (-15 -3915 ((-2 (|:| |answer| |#4|) (|:| -2096 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3915 (((-2 (|:| |answer| (-410 |#2|)) (|:| -2096 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 18)))
+(((-566 |#1| |#2|) (-10 -7 (-15 -3915 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2096 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1242 |#1|)) (T -566))
+((-3915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| (-410 *6)) (|:| -2096 (-410 *6)) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6)))))
+(-10 -7 (-15 -3915 ((-2 (|:| |answer| (-410 |#2|)) (|:| -2096 (-410 |#2|)) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 30)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 97)) (-3602 (($ $) 98)) (-2119 (((-112) $) NIL)) (-3824 (($ $ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2765 (($ $ $ $) 52)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL)) (-4100 (($ $ $) 92)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL)) (-1621 (((-567) $) NIL)) (-2197 (($ $ $) 54)) (-1920 (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 77) (((-690 (-567)) (-690 $)) 73)) (-4014 (((-3 $ "failed") $) 94)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL)) (-4379 (((-112) $) NIL)) (-3061 (((-410 (-567)) $) NIL)) (-1649 (($) 79) (($ $) 80)) (-2210 (($ $ $) 91)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-2854 (($ $ $ $) NIL)) (-1499 (($ $ $) 70)) (-4095 (((-112) $) NIL)) (-1969 (($ $ $) NIL)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-3714 (((-112) $) 34)) (-3937 (((-112) $) 86)) (-2802 (((-3 $ "failed") $) NIL)) (-3948 (((-112) $) 43)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3302 (($ $ $ $) 55)) (-2056 (($ $ $) 88)) (-1802 (($ $ $) 87)) (-3479 (($ $) NIL)) (-3036 (($ $) 49)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) 69)) (-3365 (($ $ $) NIL)) (-2596 (($) NIL T CONST)) (-2462 (($ $) 38)) (-3339 (((-1120) $) 42)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 129)) (-3276 (($ $ $) 95) (($ (-645 $)) NIL)) (-3354 (($ $) NIL)) (-2296 (((-421 $) $) 115)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL)) (-2245 (((-3 $ "failed") $ $) 113)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2143 (((-112) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 90)) (-1930 (($ $ (-772)) NIL) (($ $) NIL)) (-2932 (($ $) 40)) (-4247 (($ $) 36)) (-3542 (((-567) $) 48) (((-539) $) 64) (((-893 (-567)) $) NIL) (((-381) $) 58) (((-225) $) 61) (((-1158) $) 66)) (-4101 (((-863) $) 46) (($ (-567)) 47) (($ $) NIL) (($ (-567)) 47)) (-2686 (((-772)) NIL T CONST)) (-3446 (((-112) $ $) NIL)) (-3806 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3183 (($) 35)) (-2469 (((-112) $ $) NIL)) (-2648 (($ $ $ $) 51)) (-1771 (($ $) 78)) (-1468 (($) 6 T CONST)) (-1484 (($) 31 T CONST)) (-4184 (((-1158) $) 26) (((-1158) $ (-112)) 27) (((-1271) (-823) $) 28) (((-1271) (-823) $ (-112)) 29)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3109 (((-112) $ $) 50)) (-3085 (((-112) $ $) 81)) (-3052 (((-112) $ $) 33)) (-3098 (((-112) $ $) 83)) (-3075 (((-112) $ $) 10)) (-3156 (($ $) 16) (($ $ $) 39)) (-3146 (($ $ $) 37)) (** (($ $ (-922)) NIL) (($ $ (-772)) 85)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 84) (($ $ $) 53)))
+(((-567) (-13 (-548) (-615 (-1158)) (-829) (-10 -7 (-6 -4403) (-6 -4408) (-6 -4404) (-6 -4398)))) (T -567))
+NIL
+(-13 (-548) (-615 (-1158)) (-829) (-10 -7 (-6 -4403) (-6 -4408) (-6 -4404) (-6 -4398)))
+((-2509 (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))) (-770) (-1063)) 119) (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))) (-770)) 121)) (-2113 (((-3 (-1036) "failed") (-317 (-381)) (-1092 (-844 (-381))) (-1176)) 197) (((-3 (-1036) "failed") (-317 (-381)) (-1092 (-844 (-381))) (-1158)) 196) (((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381) (-381) (-1063)) 201) (((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381) (-381)) 202) (((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381)) 203) (((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381))))) 204) (((-1036) (-317 (-381)) (-1094 (-844 (-381)))) 192) (((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381)) 191) (((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381) (-381)) 187) (((-1036) (-770)) 179) (((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381) (-381) (-1063)) 186)))
+(((-568) (-10 -7 (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381) (-381) (-1063))) (-15 -2113 ((-1036) (-770))) (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381) (-381) (-1063))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))) (-770))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))) (-770) (-1063))) (-15 -2113 ((-3 (-1036) "failed") (-317 (-381)) (-1092 (-844 (-381))) (-1158))) (-15 -2113 ((-3 (-1036) "failed") (-317 (-381)) (-1092 (-844 (-381))) (-1176))))) (T -568))
+((-2113 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1092 (-844 (-381)))) (-5 *5 (-1176)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1092 (-844 (-381)))) (-5 *5 (-1158)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-1063)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036)))) (-5 *1 (-568)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036)))) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381))))) (-5 *5 (-381)) (-5 *6 (-1063)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381))))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381))))) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1036)) (-5 *1 (-568)))) (-2113 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381)))) (-5 *5 (-381)) (-5 *6 (-1063)) (-5 *2 (-1036)) (-5 *1 (-568)))))
+(-10 -7 (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381) (-381) (-1063))) (-15 -2113 ((-1036) (-770))) (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-1094 (-844 (-381))))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381) (-381))) (-15 -2113 ((-1036) (-317 (-381)) (-645 (-1094 (-844 (-381)))) (-381) (-381) (-1063))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))) (-770))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))) (-770) (-1063))) (-15 -2113 ((-3 (-1036) "failed") (-317 (-381)) (-1092 (-844 (-381))) (-1158))) (-15 -2113 ((-3 (-1036) "failed") (-317 (-381)) (-1092 (-844 (-381))) (-1176))))
+((-3254 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|)) 198)) (-2991 (((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|)) 99)) (-2948 (((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|) 194)) (-1489 (((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176))) 203)) (-3158 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1176)) 212 (|has| |#3| (-657 |#2|)))))
+(((-569 |#1| |#2| |#3|) (-10 -7 (-15 -2991 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -2948 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -3254 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -1489 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)))) (IF (|has| |#3| (-657 |#2|)) (-15 -3158 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1176))) |%noBranch|)) (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))) (-13 (-433 |#1|) (-27) (-1201)) (-1100)) (T -569))
+((-3158 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-613 *4)) (-5 *6 (-1176)) (-4 *4 (-13 (-433 *7) (-27) (-1201))) (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1100)))) (-1489 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-613 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1176))) (-4 *2 (-13 (-433 *5) (-27) (-1201))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1100)))) (-3254 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1201))) (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1100)))) (-2948 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1201))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3))) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1100)))) (-2991 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1201))) (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567)))) (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1100)))))
+(-10 -7 (-15 -2991 ((-588 |#2|) |#2| (-613 |#2|) (-613 |#2|))) (-15 -2948 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-613 |#2|) (-613 |#2|) |#2|)) (-15 -3254 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-613 |#2|) (-613 |#2|) (-645 |#2|))) (-15 -1489 ((-3 |#2| "failed") |#2| |#2| |#2| (-613 |#2|) (-613 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1176)))) (IF (|has| |#3| (-657 |#2|)) (-15 -3158 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2557 (-645 |#2|))) |#3| |#2| (-613 |#2|) (-613 |#2|) (-1176))) |%noBranch|))
+((-4046 (((-2 (|:| -2395 |#2|) (|:| |nconst| |#2|)) |#2| (-1176)) 64)) (-4296 (((-3 |#2| "failed") |#2| (-1176) (-844 |#2|) (-844 |#2|)) 175 (-12 (|has| |#2| (-1139)) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-887 (-567))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176)) 154 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-887 (-567)))))) (-3418 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176)) 156 (-12 (|has| |#2| (-630)) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-887 (-567)))))))
+(((-570 |#1| |#2|) (-10 -7 (-15 -4046 ((-2 (|:| -2395 |#2|) (|:| |nconst| |#2|)) |#2| (-1176))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -3418 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176))) (-15 -4296 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176)))) |%noBranch|) (IF (|has| |#2| (-1139)) (-15 -4296 ((-3 |#2| "failed") |#2| (-1176) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1039 (-567)) (-455) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|))) (T -570))
+((-4296 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1176)) (-5 *4 (-844 *2)) (-4 *2 (-1139)) (-4 *2 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567))) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *1 (-570 *5 *2)))) (-4296 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1176)) (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567))) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-3418 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1176)) (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567))) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-630)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-4046 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567)))) (-5 *2 (-2 (|:| -2395 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))))
+(-10 -7 (-15 -4046 ((-2 (|:| -2395 |#2|) (|:| |nconst| |#2|)) |#2| (-1176))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (PROGN (IF (|has| |#2| (-630)) (PROGN (-15 -3418 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176))) (-15 -4296 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176)))) |%noBranch|) (IF (|has| |#2| (-1139)) (-15 -4296 ((-3 |#2| "failed") |#2| (-1176) (-844 |#2|) (-844 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-2419 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))) 41)) (-2113 (((-588 (-410 |#2|)) (-410 |#2|)) 28)) (-2177 (((-3 (-410 |#2|) "failed") (-410 |#2|)) 17)) (-2040 (((-3 (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|)) 48)))
+(((-571 |#1| |#2|) (-10 -7 (-15 -2113 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -2177 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2040 ((-3 (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2419 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1039 (-567))) (-1242 |#1|)) (T -571))
+((-2419 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-571 *5 *6)))) (-2040 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| -3424 (-410 *5)) (|:| |coeff| (-410 *5)))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))) (-2177 (*1 *2 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-13 (-365) (-147) (-1039 (-567)))) (-5 *1 (-571 *3 *4)))) (-2113 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1242 *4)) (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))))
+(-10 -7 (-15 -2113 ((-588 (-410 |#2|)) (-410 |#2|))) (-15 -2177 ((-3 (-410 |#2|) "failed") (-410 |#2|))) (-15 -2040 ((-3 (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-410 |#2|))) (-15 -2419 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-645 (-410 |#2|)))))
+((-1324 (((-3 (-567) "failed") |#1|) 14)) (-3822 (((-112) |#1|) 13)) (-3142 (((-567) |#1|) 9)))
+(((-572 |#1|) (-10 -7 (-15 -3142 ((-567) |#1|)) (-15 -3822 ((-112) |#1|)) (-15 -1324 ((-3 (-567) "failed") |#1|))) (-1039 (-567))) (T -572))
+((-1324 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2)))) (-3822 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1039 (-567))))) (-3142 (*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2)))))
+(-10 -7 (-15 -3142 ((-567) |#1|)) (-15 -3822 ((-112) |#1|)) (-15 -1324 ((-3 (-567) "failed") |#1|)))
+((-1379 (((-3 (-2 (|:| |mainpart| (-410 (-953 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-953 |#1|))) (|:| |logand| (-410 (-953 |#1|))))))) "failed") (-410 (-953 |#1|)) (-1176) (-645 (-410 (-953 |#1|)))) 48)) (-3505 (((-588 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-1176)) 28)) (-2729 (((-3 (-410 (-953 |#1|)) "failed") (-410 (-953 |#1|)) (-1176)) 23)) (-3196 (((-3 (-2 (|:| -3424 (-410 (-953 |#1|))) (|:| |coeff| (-410 (-953 |#1|)))) "failed") (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|))) 35)))
+(((-573 |#1|) (-10 -7 (-15 -3505 ((-588 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-1176))) (-15 -2729 ((-3 (-410 (-953 |#1|)) "failed") (-410 (-953 |#1|)) (-1176))) (-15 -1379 ((-3 (-2 (|:| |mainpart| (-410 (-953 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-953 |#1|))) (|:| |logand| (-410 (-953 |#1|))))))) "failed") (-410 (-953 |#1|)) (-1176) (-645 (-410 (-953 |#1|))))) (-15 -3196 ((-3 (-2 (|:| -3424 (-410 (-953 |#1|))) (|:| |coeff| (-410 (-953 |#1|)))) "failed") (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|))))) (-13 (-559) (-1039 (-567)) (-147))) (T -573))
+((-3196 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567)) (-147))) (-5 *2 (-2 (|:| -3424 (-410 (-953 *5))) (|:| |coeff| (-410 (-953 *5))))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-953 *5))))) (-1379 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-645 (-410 (-953 *6)))) (-5 *3 (-410 (-953 *6))) (-4 *6 (-13 (-559) (-1039 (-567)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6)))) (-2729 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567)) (-147))) (-5 *1 (-573 *4)))) (-3505 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567)) (-147))) (-5 *2 (-588 (-410 (-953 *5)))) (-5 *1 (-573 *5)) (-5 *3 (-410 (-953 *5))))))
+(-10 -7 (-15 -3505 ((-588 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-1176))) (-15 -2729 ((-3 (-410 (-953 |#1|)) "failed") (-410 (-953 |#1|)) (-1176))) (-15 -1379 ((-3 (-2 (|:| |mainpart| (-410 (-953 |#1|))) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 (-953 |#1|))) (|:| |logand| (-410 (-953 |#1|))))))) "failed") (-410 (-953 |#1|)) (-1176) (-645 (-410 (-953 |#1|))))) (-15 -3196 ((-3 (-2 (|:| -3424 (-410 (-953 |#1|))) (|:| |coeff| (-410 (-953 |#1|)))) "failed") (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|)))))
+((-2257 (((-112) $ $) 75)) (-2865 (((-112) $) 48)) (-2034 ((|#1| $) 39)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) 79)) (-1772 (($ $) 140)) (-1605 (($ $) 119)) (-2140 ((|#1| $) 37)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $) NIL)) (-1747 (($ $) 142)) (-1577 (($ $) 115)) (-1798 (($ $) 144)) (-1632 (($ $) 123)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) 94)) (-1621 (((-567) $) 96)) (-4014 (((-3 $ "failed") $) 78)) (-1461 (($ |#1| |#1|) 35)) (-4095 (((-112) $) 44)) (-4098 (($) 105)) (-3714 (((-112) $) 55)) (-3287 (($ $ (-567)) NIL)) (-3948 (((-112) $) 45)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2942 (($ $) 107)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-1479 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-410 (-567))) 93)) (-1699 ((|#1| $) 36)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) 81) (($ (-645 $)) NIL)) (-2245 (((-3 $ "failed") $ $) 80)) (-2910 (($ $) 109)) (-1810 (($ $) 148)) (-1647 (($ $) 121)) (-1784 (($ $) 150)) (-1618 (($ $) 125)) (-1757 (($ $) 146)) (-1592 (($ $) 117)) (-1454 (((-112) $ |#1|) 42)) (-4101 (((-863) $) 101) (($ (-567)) 83) (($ $) NIL) (($ (-567)) 83)) (-2686 (((-772)) 103 T CONST)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) 162)) (-1690 (($ $) 131)) (-2469 (((-112) $ $) NIL)) (-1823 (($ $) 160)) (-1660 (($ $) 127)) (-1869 (($ $) 158)) (-1719 (($ $) 138)) (-1345 (($ $) 156)) (-1733 (($ $) 136)) (-1858 (($ $) 154)) (-1704 (($ $) 133)) (-1834 (($ $) 152)) (-1673 (($ $) 129)) (-1468 (($) 30 T CONST)) (-1484 (($) 10 T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 49)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 47)) (-3156 (($ $) 53) (($ $ $) 54)) (-3146 (($ $ $) 52)) (** (($ $ (-922)) 71) (($ $ (-772)) NIL) (($ $ $) 111) (($ $ (-410 (-567))) 164)) (* (($ (-922) $) 66) (($ (-772) $) NIL) (($ (-567) $) 65) (($ $ $) 61)))
+(((-574 |#1|) (-557 |#1|) (-13 (-407) (-1201))) (T -574))
+NIL
+(-557 |#1|)
+((-4087 (((-3 (-645 (-1172 (-567))) "failed") (-645 (-1172 (-567))) (-1172 (-567))) 27)))
+(((-575) (-10 -7 (-15 -4087 ((-3 (-645 (-1172 (-567))) "failed") (-645 (-1172 (-567))) (-1172 (-567)))))) (T -575))
+((-4087 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1172 (-567)))) (-5 *3 (-1172 (-567))) (-5 *1 (-575)))))
+(-10 -7 (-15 -4087 ((-3 (-645 (-1172 (-567))) "failed") (-645 (-1172 (-567))) (-1172 (-567)))))
+((-2191 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1176)) 19)) (-2959 (((-645 (-613 |#2|)) (-645 |#2|) (-1176)) 23)) (-4051 (((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|))) 11)) (-1402 ((|#2| |#2| (-1176)) 59 (|has| |#1| (-559)))) (-1361 ((|#2| |#2| (-1176)) 87 (-12 (|has| |#2| (-285)) (|has| |#1| (-455))))) (-2947 (((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1176)) 25)) (-4217 (((-613 |#2|) (-645 (-613 |#2|))) 24)) (-3151 (((-588 |#2|) |#2| (-1176) (-1 (-588 |#2|) |#2| (-1176)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176))) 115 (-12 (|has| |#2| (-285)) (|has| |#2| (-630)) (|has| |#2| (-1039 (-1176))) (|has| |#1| (-615 (-893 (-567)))) (|has| |#1| (-455)) (|has| |#1| (-887 (-567)))))))
+(((-576 |#1| |#2|) (-10 -7 (-15 -2191 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1176))) (-15 -4217 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -2947 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1176))) (-15 -4051 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -2959 ((-645 (-613 |#2|)) (-645 |#2|) (-1176))) (IF (|has| |#1| (-559)) (-15 -1402 (|#2| |#2| (-1176))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -1361 (|#2| |#2| (-1176))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1039 (-1176))) (-15 -3151 ((-588 |#2|) |#2| (-1176) (-1 (-588 |#2|) |#2| (-1176)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1100) (-433 |#1|)) (T -576))
+((-3151 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-588 *3) *3 (-1176))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1176))) (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1039 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1176)) (-4 *7 (-615 (-893 (-567)))) (-4 *7 (-455)) (-4 *7 (-887 (-567))) (-4 *7 (-1100)) (-5 *2 (-588 *3)) (-5 *1 (-576 *7 *3)))) (-1361 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-455)) (-4 *4 (-1100)) (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))) (-1402 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-4 *4 (-1100)) (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-1176)) (-4 *6 (-433 *5)) (-4 *5 (-1100)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))) (-4051 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1100)) (-5 *1 (-576 *3 *4)))) (-2947 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1176)) (-5 *2 (-613 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1100)) (-5 *1 (-576 *5 *6)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1100)) (-5 *2 (-613 *5)) (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))) (-2191 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1176)) (-4 *5 (-433 *4)) (-4 *4 (-1100)) (-5 *1 (-576 *4 *5)))))
+(-10 -7 (-15 -2191 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-1176))) (-15 -4217 ((-613 |#2|) (-645 (-613 |#2|)))) (-15 -2947 ((-613 |#2|) (-613 |#2|) (-645 (-613 |#2|)) (-1176))) (-15 -4051 ((-645 (-613 |#2|)) (-645 (-613 |#2|)) (-645 (-613 |#2|)))) (-15 -2959 ((-645 (-613 |#2|)) (-645 |#2|) (-1176))) (IF (|has| |#1| (-559)) (-15 -1402 (|#2| |#2| (-1176))) |%noBranch|) (IF (|has| |#1| (-455)) (IF (|has| |#2| (-285)) (PROGN (-15 -1361 (|#2| |#2| (-1176))) (IF (|has| |#1| (-615 (-893 (-567)))) (IF (|has| |#1| (-887 (-567))) (IF (|has| |#2| (-630)) (IF (|has| |#2| (-1039 (-1176))) (-15 -3151 ((-588 |#2|) |#2| (-1176) (-1 (-588 |#2|) |#2| (-1176)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1176)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3846 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|)) 202)) (-2400 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|))) 178)) (-1581 (((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|))) 175)) (-2776 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 166)) (-2654 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 189)) (-1770 (((-3 (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|)) 205)) (-2070 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|)) 208)) (-2398 (((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|)) 90)) (-3574 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-3874 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|))) 182)) (-3452 (((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 170)) (-3314 (((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|)) 193)) (-2068 (((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|)) 213)))
+(((-577 |#1| |#2|) (-10 -7 (-15 -2654 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3314 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -3846 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -2070 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -2068 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2400 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -3874 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -1770 ((-3 (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1581 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -2776 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3452 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2398 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3574 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-365) (-1242 |#1|)) (T -577))
+((-3574 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-577 *5 *3)))) (-2398 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6)) (|:| |polypart| *6))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-3452 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-624 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3005 *4) (|:| |sol?| (-112))) (-567) *4)) (-4 *4 (-365)) (-4 *5 (-1242 *4)) (-5 *1 (-577 *4 *5)))) (-2776 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3424 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1242 *4)))) (-1581 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7))) (-4 *7 (-1242 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-577 *6 *7)))) (-1770 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3424 (-410 *6)) (|:| |coeff| (-410 *6)))) (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))) (-3874 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3005 *7) (|:| |sol?| (-112))) (-567) *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1242 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2400 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3424 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1242 *7)) (-5 *3 (-410 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-577 *7 *8)))) (-2068 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3005 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1242 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -3424 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2070 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3424 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1242 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6)) (-2 (|:| -3424 (-410 *7)) (|:| |coeff| (-410 *7))) "failed")) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3846 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365)) (-4 *7 (-1242 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-3314 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3005 *6) (|:| |sol?| (-112))) (-567) *6)) (-4 *6 (-365)) (-4 *7 (-1242 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))) (-2654 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3424 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-365)) (-4 *7 (-1242 *6)) (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6))) (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(-10 -7 (-15 -2654 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3314 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -3846 ((-2 (|:| |answer| (-588 (-410 |#2|))) (|:| |a0| |#1|)) (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-645 |#1|) "failed") (-567) |#1| |#1|))) (-15 -2070 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-410 |#2|))) (-15 -2068 ((-3 (-2 (|:| |answer| (-410 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-410 |#2|))) (-15 -2400 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-645 (-410 |#2|)))) (-15 -3874 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|))))))) (|:| |a0| |#1|)) "failed") (-410 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|) (-645 (-410 |#2|)))) (-15 -1770 ((-3 (-2 (|:| -3424 (-410 |#2|)) (|:| |coeff| (-410 |#2|))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-410 |#2|))) (-15 -1581 ((-3 (-2 (|:| |mainpart| (-410 |#2|)) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| (-410 |#2|)) (|:| |logand| (-410 |#2|)))))) "failed") (-410 |#2|) (-1 |#2| |#2|) (-645 (-410 |#2|)))) (-15 -2776 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3452 ((-3 (-624 |#1| |#2|) "failed") (-624 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3005 |#1|) (|:| |sol?| (-112))) (-567) |#1|))) (-15 -2398 ((-2 (|:| |ir| (-588 (-410 |#2|))) (|:| |specpart| (-410 |#2|)) (|:| |polypart| |#2|)) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3574 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3147 (((-3 |#2| "failed") |#2| (-1176) (-1176)) 10)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -3147 ((-3 |#2| "failed") |#2| (-1176) (-1176)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-960) (-1139) (-29 |#1|))) (T -578))
+((-3147 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1176)) (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1201) (-960) (-1139) (-29 *4))))))
+(-10 -7 (-15 -3147 ((-3 |#2| "failed") |#2| (-1176) (-1176))))
+((-3908 (((-692 (-1224)) $ (-1224)) 26)) (-2492 (((-692 (-552)) $ (-552)) 25)) (-1925 (((-772) $ (-128)) 27)) (-1703 (((-692 (-129)) $ (-129)) 24)) (-4197 (((-692 (-1224)) $) 12)) (-2507 (((-692 (-1222)) $) 8)) (-3581 (((-692 (-1221)) $) 10)) (-3583 (((-692 (-552)) $) 13)) (-3842 (((-692 (-550)) $) 9)) (-3228 (((-692 (-549)) $) 11)) (-3669 (((-772) $ (-128)) 7)) (-2518 (((-692 (-129)) $) 14)) (-4021 (($ $) 6)))
+(((-579) (-140)) (T -579))
+NIL
+(-13 (-530) (-861))
+(((-173) . T) ((-530) . T) ((-861) . T))
+((-3908 (((-692 (-1224)) $ (-1224)) NIL)) (-2492 (((-692 (-552)) $ (-552)) NIL)) (-1925 (((-772) $ (-128)) NIL)) (-1703 (((-692 (-129)) $ (-129)) NIL)) (-4197 (((-692 (-1224)) $) NIL)) (-2507 (((-692 (-1222)) $) NIL)) (-3581 (((-692 (-1221)) $) NIL)) (-3583 (((-692 (-552)) $) NIL)) (-3842 (((-692 (-550)) $) NIL)) (-3228 (((-692 (-549)) $) NIL)) (-3669 (((-772) $ (-128)) NIL)) (-2518 (((-692 (-129)) $) NIL)) (-3996 (((-112) $) NIL)) (-2832 (($ (-391)) 14) (($ (-1158)) 16)) (-4101 (((-863) $) NIL)) (-4021 (($ $) NIL)))
+(((-580) (-13 (-579) (-614 (-863)) (-10 -8 (-15 -2832 ($ (-391))) (-15 -2832 ($ (-1158))) (-15 -3996 ((-112) $))))) (T -580))
+((-2832 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))) (-2832 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-580)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580)))))
+(-13 (-579) (-614 (-863)) (-10 -8 (-15 -2832 ($ (-391))) (-15 -2832 ($ (-1158))) (-15 -3996 ((-112) $))))
+((-2257 (((-112) $ $) NIL)) (-4293 (($) 7 T CONST)) (-2451 (((-1158) $) NIL)) (-3919 (($) 6 T CONST)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 14)) (-4218 (($) 8 T CONST)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 10)))
+(((-581) (-13 (-1100) (-10 -8 (-15 -3919 ($) -2131) (-15 -4293 ($) -2131) (-15 -4218 ($) -2131)))) (T -581))
+((-3919 (*1 *1) (-5 *1 (-581))) (-4293 (*1 *1) (-5 *1 (-581))) (-4218 (*1 *1) (-5 *1 (-581))))
+(-13 (-1100) (-10 -8 (-15 -3919 ($) -2131) (-15 -4293 ($) -2131) (-15 -4218 ($) -2131)))
+((-2257 (((-112) $ $) NIL)) (-2787 (((-692 $) (-494)) 21)) (-2451 (((-1158) $) NIL)) (-2246 (($ (-1158)) 14)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 34)) (-1467 (((-213 4 (-129)) $) 24)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 26)))
+(((-582) (-13 (-1100) (-10 -8 (-15 -2246 ($ (-1158))) (-15 -1467 ((-213 4 (-129)) $)) (-15 -2787 ((-692 $) (-494)))))) (T -582))
+((-2246 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-582)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582)))))
+(-13 (-1100) (-10 -8 (-15 -2246 ($ (-1158))) (-15 -1467 ((-213 4 (-129)) $)) (-15 -2787 ((-692 $) (-494)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $ (-567)) 77)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-2167 (($ (-1172 (-567)) (-567)) 83)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) 68)) (-3844 (($ $) 43)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1909 (((-772) $) 16)) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3416 (((-567)) 37)) (-3812 (((-567) $) 41)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2436 (($ $ (-567)) 24)) (-2245 (((-3 $ "failed") $ $) 73)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) 17)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 74)) (-4018 (((-1156 (-567)) $) 19)) (-2448 (($ $) 26)) (-4101 (((-863) $) 104) (($ (-567)) 63) (($ $) NIL)) (-2686 (((-772)) 15 T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-2927 (((-567) $ (-567)) 46)) (-1468 (($) 44 T CONST)) (-1484 (($) 21 T CONST)) (-3052 (((-112) $ $) 54)) (-3156 (($ $) 62) (($ $ $) 48)) (-3146 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 64) (($ $ $) 65)))
+(((-583 |#1| |#2|) (-870 |#1|) (-567) (-112)) (T -583))
+NIL
+(-870 |#1|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 30)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-1783 (((-1189 (-922) (-772)) (-567)) 59)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 $ "failed") $) 97)) (-1621 (($ $) 96)) (-3499 (($ (-1266 $)) 95)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) 44)) (-1649 (($) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) 61)) (-1596 (((-112) $) NIL)) (-2966 (($ $) NIL) (($ $ (-772)) NIL)) (-1665 (((-112) $) NIL)) (-1909 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3714 (((-112) $) NIL)) (-1359 (($) 49 (|has| $ (-370)))) (-4270 (((-112) $) NIL (|has| $ (-370)))) (-3751 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-2802 (((-3 $ "failed") $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 $) $ (-922)) NIL (|has| $ (-370))) (((-1172 $) $) 106)) (-3527 (((-922) $) 67)) (-2617 (((-1172 $) $) NIL (|has| $ (-370)))) (-4260 (((-3 (-1172 $) "failed") $ $) NIL (|has| $ (-370))) (((-1172 $) $) NIL (|has| $ (-370)))) (-2173 (($ $ (-1172 $)) NIL (|has| $ (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL T CONST)) (-3811 (($ (-922)) 60)) (-2407 (((-112) $) 89)) (-3339 (((-1120) $) NIL)) (-4099 (($) 28 (|has| $ (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 54)) (-2296 (((-421 $) $) NIL)) (-2888 (((-922)) 88) (((-834 (-922))) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1948 (((-134)) NIL)) (-1930 (($ $ (-772)) NIL) (($ $) NIL)) (-3677 (((-922) $) 87) (((-834 (-922)) $) NIL)) (-2713 (((-1172 $)) 104)) (-1698 (($) 66)) (-3995 (($) 50 (|has| $ (-370)))) (-3216 (((-690 $) (-1266 $)) NIL) (((-1266 $) $) 93)) (-3542 (((-567) $) 40)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) 42) (($ $) NIL) (($ (-410 (-567))) NIL)) (-4242 (((-3 $ "failed") $) NIL) (($ $) 107)) (-2686 (((-772)) 51 T CONST)) (-3739 (((-112) $ $) 109)) (-2557 (((-1266 $) (-922)) 99) (((-1266 $)) 98)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) 31 T CONST)) (-1484 (($) 27 T CONST)) (-2202 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 34)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 83) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-584 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-922)) (T -584))
+NIL
+(-13 (-351) (-330 $) (-615 (-567)))
+((-1506 (((-1271) (-1158)) 10)))
+(((-585) (-10 -7 (-15 -1506 ((-1271) (-1158))))) (T -585))
+((-1506 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-585)))))
+(-10 -7 (-15 -1506 ((-1271) (-1158))))
+((-2714 (((-588 |#2|) (-588 |#2|)) 42)) (-1511 (((-645 |#2|) (-588 |#2|)) 44)) (-4080 ((|#2| (-588 |#2|)) 50)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -2714 ((-588 |#2|) (-588 |#2|))) (-15 -1511 ((-645 |#2|) (-588 |#2|))) (-15 -4080 (|#2| (-588 |#2|)))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-29 |#1|) (-1201))) (T -586))
+((-4080 (*1 *2 *3) (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1201))) (-5 *1 (-586 *4 *2)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1201))) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-645 *5)) (-5 *1 (-586 *4 *5)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1201))) (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-586 *3 *4)))))
+(-10 -7 (-15 -2714 ((-588 |#2|) (-588 |#2|))) (-15 -1511 ((-645 |#2|) (-588 |#2|))) (-15 -4080 (|#2| (-588 |#2|))))
+((-3494 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|)) 30)))
+(((-587 |#1| |#2|) (-10 -7 (-15 -3494 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3494 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3494 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3494 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-365) (-365)) (T -587))
+((-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-587 *5 *6)))) (-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2)))) (-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3424 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-2 (|:| -3424 *6) (|:| |coeff| *6))) (-5 *1 (-587 *5 *6)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365)) (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6)))))
+(-10 -7 (-15 -3494 ((-588 |#2|) (-1 |#2| |#1|) (-588 |#1|))) (-15 -3494 ((-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3424 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3494 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3494 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 76)) (-1621 ((|#1| $) NIL)) (-3424 ((|#1| $) 30)) (-3323 (((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-2710 (($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 |#1|)) (|:| |logand| (-1172 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-2096 (((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 |#1|)) (|:| |logand| (-1172 |#1|)))) $) 31)) (-2451 (((-1158) $) NIL)) (-1857 (($ |#1| |#1|) 38) (($ |#1| (-1176)) 49 (|has| |#1| (-1039 (-1176))))) (-3339 (((-1120) $) NIL)) (-1313 (((-112) $) 35)) (-1930 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1176)) 89 (|has| |#1| (-901 (-1176))))) (-4101 (((-863) $) 112) (($ |#1|) 29)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 18 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) 17) (($ $ $) NIL)) (-3146 (($ $ $) 85)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 16) (($ (-410 (-567)) $) 41) (($ $ (-410 (-567))) NIL)))
+(((-588 |#1|) (-13 (-718 (-410 (-567))) (-1039 |#1|) (-10 -8 (-15 -2710 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 |#1|)) (|:| |logand| (-1172 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3424 (|#1| $)) (-15 -2096 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 |#1|)) (|:| |logand| (-1172 |#1|)))) $)) (-15 -3323 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1313 ((-112) $)) (-15 -1857 ($ |#1| |#1|)) (-15 -1930 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-901 (-1176))) (-15 -1930 (|#1| $ (-1176))) |%noBranch|) (IF (|has| |#1| (-1039 (-1176))) (-15 -1857 ($ |#1| (-1176))) |%noBranch|))) (-365)) (T -588))
+((-2710 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 *2)) (|:| |logand| (-1172 *2))))) (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-365)) (-5 *1 (-588 *2)))) (-3424 (*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 *3)) (|:| |logand| (-1172 *3))))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-3323 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-1313 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))) (-1857 (*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1930 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365)))) (-1930 (*1 *2 *1 *3) (-12 (-4 *2 (-365)) (-4 *2 (-901 *3)) (-5 *1 (-588 *2)) (-5 *3 (-1176)))) (-1857 (*1 *1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *1 (-588 *2)) (-4 *2 (-1039 *3)) (-4 *2 (-365)))))
+(-13 (-718 (-410 (-567))) (-1039 |#1|) (-10 -8 (-15 -2710 ($ |#1| (-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 |#1|)) (|:| |logand| (-1172 |#1|)))) (-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3424 (|#1| $)) (-15 -2096 ((-645 (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 |#1|)) (|:| |logand| (-1172 |#1|)))) $)) (-15 -3323 ((-645 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1313 ((-112) $)) (-15 -1857 ($ |#1| |#1|)) (-15 -1930 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-901 (-1176))) (-15 -1930 (|#1| $ (-1176))) |%noBranch|) (IF (|has| |#1| (-1039 (-1176))) (-15 -1857 ($ |#1| (-1176))) |%noBranch|)))
+((-3821 (((-112) |#1|) 16)) (-1482 (((-3 |#1| "failed") |#1|) 14)) (-3153 (((-2 (|:| -3183 |#1|) (|:| -4164 (-772))) |#1|) 39) (((-3 |#1| "failed") |#1| (-772)) 18)) (-1474 (((-112) |#1| (-772)) 19)) (-3037 ((|#1| |#1|) 43)) (-2127 ((|#1| |#1| (-772)) 46)))
+(((-589 |#1|) (-10 -7 (-15 -1474 ((-112) |#1| (-772))) (-15 -3153 ((-3 |#1| "failed") |#1| (-772))) (-15 -3153 ((-2 (|:| -3183 |#1|) (|:| -4164 (-772))) |#1|)) (-15 -2127 (|#1| |#1| (-772))) (-15 -3821 ((-112) |#1|)) (-15 -1482 ((-3 |#1| "failed") |#1|)) (-15 -3037 (|#1| |#1|))) (-548)) (T -589))
+((-3037 (*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1482 (*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3821 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-2127 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-3153 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3183 *3) (|:| -4164 (-772)))) (-5 *1 (-589 *3)) (-4 *3 (-548)))) (-3153 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))) (-1474 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
+(-10 -7 (-15 -1474 ((-112) |#1| (-772))) (-15 -3153 ((-3 |#1| "failed") |#1| (-772))) (-15 -3153 ((-2 (|:| -3183 |#1|) (|:| -4164 (-772))) |#1|)) (-15 -2127 (|#1| |#1| (-772))) (-15 -3821 ((-112) |#1|)) (-15 -1482 ((-3 |#1| "failed") |#1|)) (-15 -3037 (|#1| |#1|)))
+((-1696 (((-1172 |#1|) (-922)) 44)))
+(((-590 |#1|) (-10 -7 (-15 -1696 ((-1172 |#1|) (-922)))) (-351)) (T -590))
+((-1696 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-590 *4)) (-4 *4 (-351)))))
+(-10 -7 (-15 -1696 ((-1172 |#1|) (-922))))
+((-2714 (((-588 (-410 (-953 |#1|))) (-588 (-410 (-953 |#1|)))) 27)) (-2113 (((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-953 |#1|)) (-1176)) 34 (|has| |#1| (-147)))) (-1511 (((-645 (-317 |#1|)) (-588 (-410 (-953 |#1|)))) 19)) (-3074 (((-317 |#1|) (-410 (-953 |#1|)) (-1176)) 32 (|has| |#1| (-147)))) (-4080 (((-317 |#1|) (-588 (-410 (-953 |#1|)))) 21)))
+(((-591 |#1|) (-10 -7 (-15 -2714 ((-588 (-410 (-953 |#1|))) (-588 (-410 (-953 |#1|))))) (-15 -1511 ((-645 (-317 |#1|)) (-588 (-410 (-953 |#1|))))) (-15 -4080 ((-317 |#1|) (-588 (-410 (-953 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2113 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-953 |#1|)) (-1176))) (-15 -3074 ((-317 |#1|) (-410 (-953 |#1|)) (-1176)))) |%noBranch|)) (-13 (-455) (-1039 (-567)) (-640 (-567)))) (T -591))
+((-3074 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *5)) (-5 *1 (-591 *5)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-147)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5)))) (-4080 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-953 *4)))) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *4)) (-5 *1 (-591 *4)))) (-1511 (*1 *2 *3) (-12 (-5 *3 (-588 (-410 (-953 *4)))) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-588 (-410 (-953 *3)))) (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-591 *3)))))
+(-10 -7 (-15 -2714 ((-588 (-410 (-953 |#1|))) (-588 (-410 (-953 |#1|))))) (-15 -1511 ((-645 (-317 |#1|)) (-588 (-410 (-953 |#1|))))) (-15 -4080 ((-317 |#1|) (-588 (-410 (-953 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -2113 ((-3 (-317 |#1|) (-645 (-317 |#1|))) (-410 (-953 |#1|)) (-1176))) (-15 -3074 ((-317 |#1|) (-410 (-953 |#1|)) (-1176)))) |%noBranch|))
+((-2059 (((-645 (-690 (-567))) (-645 (-567)) (-645 (-906 (-567)))) 78) (((-645 (-690 (-567))) (-645 (-567))) 79) (((-690 (-567)) (-645 (-567)) (-906 (-567))) 72)) (-1368 (((-772) (-645 (-567))) 69)))
+(((-592) (-10 -7 (-15 -1368 ((-772) (-645 (-567)))) (-15 -2059 ((-690 (-567)) (-645 (-567)) (-906 (-567)))) (-15 -2059 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2059 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-906 (-567))))))) (T -592))
+((-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-906 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))) (-2059 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-567))) (-5 *4 (-906 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-592)))) (-1368 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592)))))
+(-10 -7 (-15 -1368 ((-772) (-645 (-567)))) (-15 -2059 ((-690 (-567)) (-645 (-567)) (-906 (-567)))) (-15 -2059 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -2059 ((-645 (-690 (-567))) (-645 (-567)) (-645 (-906 (-567))))))
+((-3434 (((-645 |#5|) |#5| (-112)) 100)) (-2897 (((-112) |#5| (-645 |#5|)) 34)))
+(((-593 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3434 ((-645 |#5|) |#5| (-112))) (-15 -2897 ((-112) |#5| (-645 |#5|)))) (-13 (-308) (-147)) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1109 |#1| |#2| |#3| |#4|)) (T -593))
+((-2897 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1109 *5 *6 *7 *8)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-593 *5 *6 *7 *8 *3)))) (-3434 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-645 *3)) (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1109 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3434 ((-645 |#5|) |#5| (-112))) (-15 -2897 ((-112) |#5| (-645 |#5|))))
+((-2257 (((-112) $ $) NIL)) (-2606 (((-1135) $) 11)) (-1787 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 17) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-594) (-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))) (T -594))
+((-1787 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-594)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-594)))))
+(-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))
+((-2257 (((-112) $ $) NIL (|has| (-144) (-1100)))) (-4004 (($ $) 38)) (-2346 (($ $) NIL)) (-4211 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-3884 (((-112) $ $) 68)) (-3868 (((-112) $ $ (-567)) 62)) (-2714 (((-645 $) $ (-144)) 76) (((-645 $) $ (-141)) 77)) (-2530 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-3655 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-851))))) (-1594 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 (((-144) $ (-567) (-144)) 59 (|has| $ (-6 -4417))) (((-144) $ (-1233 (-567)) (-144)) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-3328 (($ $ (-144)) 81) (($ $ (-141)) 82)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2147 (($ $ (-1233 (-567)) $) 57)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-3138 (($ (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4416))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4416)))) (-1303 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4417)))) (-4344 (((-144) $ (-567)) NIL)) (-3902 (((-112) $ $) 95)) (-3771 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1100))) (((-567) (-144) $ (-567)) 65 (|has| (-144) (-1100))) (((-567) $ $ (-567)) 63) (((-567) (-141) $ (-567)) 67)) (-2896 (((-645 (-144)) $) NIL (|has| $ (-6 -4416)))) (-4012 (($ (-772) (-144)) 9)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 32 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| (-144) (-851)))) (-3768 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-1542 (((-645 (-144)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1979 (((-567) $) 47 (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-144) (-851)))) (-2639 (((-112) $ $ (-144)) 96)) (-3828 (((-772) $ $ (-144)) 93)) (-4392 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1879 (($ $) 41)) (-3660 (($ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3340 (($ $ (-144)) 78) (($ $ (-141)) 79)) (-2451 (((-1158) $) 43 (|has| (-144) (-1100)))) (-2884 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) 27)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-567) $) 92) (((-1120) $) NIL (|has| (-144) (-1100)))) (-2048 (((-144) $) NIL (|has| (-567) (-851)))) (-3050 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2092 (($ $ (-144)) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1412 (((-645 (-144)) $) NIL)) (-3353 (((-112) $) 15)) (-3164 (($) 10)) (-1552 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) 69) (($ $ (-1233 (-567))) 25) (($ $ $) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-3732 (($ $ $ (-567)) 84 (|has| $ (-6 -4417)))) (-4247 (($ $) 20)) (-3542 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4114 (($ (-645 (-144))) NIL)) (-2285 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-645 $)) 85)) (-4101 (($ (-144)) NIL) (((-863) $) 31 (|has| (-144) (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| (-144) (-1100)))) (-2012 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| (-144) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-144) (-851)))) (-3052 (((-112) $ $) 17 (|has| (-144) (-1100)))) (-3098 (((-112) $ $) NIL (|has| (-144) (-851)))) (-3075 (((-112) $ $) 18 (|has| (-144) (-851)))) (-2268 (((-772) $) 16 (|has| $ (-6 -4416)))))
+(((-595 |#1|) (-13 (-1144) (-10 -8 (-15 -3339 ((-567) $)))) (-567)) (T -595))
+((-3339 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-595 *3)) (-14 *3 *2))))
+(-13 (-1144) (-10 -8 (-15 -3339 ((-567) $))))
+((-2282 (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1094 |#4|)) 32)))
+(((-596 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2282 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1094 |#4|))) (-15 -2282 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|))) (-794) (-851) (-559) (-950 |#3| |#1| |#2|)) (T -596))
+((-2282 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) (-2282 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1094 *3)) (-4 *3 (-950 *7 *6 *4)) (-4 *6 (-794)) (-4 *4 (-851)) (-4 *7 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567)))) (-5 *1 (-596 *6 *4 *7 *3)))))
+(-10 -7 (-15 -2282 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2| (-1094 |#4|))) (-15 -2282 ((-2 (|:| |num| |#4|) (|:| |den| (-567))) |#4| |#2|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 72)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-567)) 58) (($ $ (-567) (-567)) 59)) (-3030 (((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 65)) (-4108 (($ $) 110)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3292 (((-863) (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1027 (-844 (-567))) (-1176) |#1| (-410 (-567))) 243)) (-2009 (($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 36)) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-4222 (((-112) $) NIL)) (-1909 (((-567) $) 63) (((-567) $ (-567)) 64)) (-3714 (((-112) $) NIL)) (-1406 (($ $ (-922)) 84)) (-2440 (($ (-1 |#1| (-567)) $) 81)) (-3523 (((-112) $) 26)) (-2422 (($ |#1| (-567)) 22) (($ $ (-1082) (-567)) NIL) (($ $ (-645 (-1082)) (-645 (-567))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) 76)) (-2427 (($ (-1027 (-844 (-567))) (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 13)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-2113 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-2324 (((-3 $ "failed") $ $ (-112)) 109)) (-1636 (($ $ $) 117)) (-3339 (((-1120) $) NIL)) (-4261 (((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 15)) (-3430 (((-1027 (-844 (-567))) $) 14)) (-2436 (($ $ (-567)) 47)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-1552 ((|#1| $ (-567)) 62) (($ $ $) NIL (|has| (-567) (-1112)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 78 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3677 (((-567) $) NIL)) (-2448 (($ $) 48)) (-4101 (((-863) $) NIL) (($ (-567)) 29) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2339 ((|#1| $ (-567)) 61)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) 39 T CONST)) (-4113 ((|#1| $) NIL)) (-3106 (($ $) 201 (|has| |#1| (-38 (-410 (-567)))))) (-2568 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-2413 (($ $) 205 (|has| |#1| (-38 (-410 (-567)))))) (-2579 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-3591 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-3606 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3621 (($ $ (-410 (-567))) 179 (|has| |#1| (-38 (-410 (-567)))))) (-3959 (($ $ |#1|) 159 (|has| |#1| (-38 (-410 (-567)))))) (-4103 (($ $) 207 (|has| |#1| (-38 (-410 (-567)))))) (-1805 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2800 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-4188 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-3482 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-3090 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-1578 (($ $) 203 (|has| |#1| (-38 (-410 (-567)))))) (-2906 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-4243 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-1646 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-3713 (($ $) 209 (|has| |#1| (-38 (-410 (-567)))))) (-1916 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-3478 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-3752 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-2006 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-3048 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-2531 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-4146 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-4154 (($ $) 211 (|has| |#1| (-38 (-410 (-567)))))) (-1937 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-2927 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1468 (($) 30 T CONST)) (-1484 (($) 40 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3052 (((-112) $ $) 74)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) 92) (($ $ $) 73)) (-3146 (($ $ $) 89)) (** (($ $ (-922)) NIL) (($ $ (-772)) 112)) (* (($ (-922) $) 99) (($ (-772) $) 97) (($ (-567) $) 94) (($ $ $) 105) (($ $ |#1|) NIL) (($ |#1| $) 124) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-597 |#1|) (-13 (-1244 |#1| (-567)) (-10 -8 (-15 -2427 ($ (-1027 (-844 (-567))) (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3430 ((-1027 (-844 (-567))) $)) (-15 -4261 ((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -2009 ($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3523 ((-112) $)) (-15 -2440 ($ (-1 |#1| (-567)) $)) (-15 -2324 ((-3 $ "failed") $ $ (-112))) (-15 -4108 ($ $)) (-15 -1636 ($ $ $)) (-15 -3292 ((-863) (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1027 (-844 (-567))) (-1176) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $)) (-15 -3959 ($ $ |#1|)) (-15 -3621 ($ $ (-410 (-567)))) (-15 -1805 ($ $)) (-15 -4103 ($ $)) (-15 -2579 ($ $)) (-15 -2906 ($ $)) (-15 -2568 ($ $)) (-15 -3090 ($ $)) (-15 -3606 ($ $)) (-15 -4188 ($ $)) (-15 -1916 ($ $)) (-15 -1937 ($ $)) (-15 -1646 ($ $)) (-15 -4146 ($ $)) (-15 -3752 ($ $)) (-15 -3048 ($ $)) (-15 -2413 ($ $)) (-15 -1578 ($ $)) (-15 -3106 ($ $)) (-15 -3482 ($ $)) (-15 -3591 ($ $)) (-15 -2800 ($ $)) (-15 -3713 ($ $)) (-15 -4154 ($ $)) (-15 -4243 ($ $)) (-15 -2531 ($ $)) (-15 -3478 ($ $)) (-15 -2006 ($ $))) |%noBranch|))) (-1050)) (T -597))
+((-3523 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-2427 (*1 *1 *2 *3) (-12 (-5 *2 (-1027 (-844 (-567)))) (-5 *3 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1050)) (-5 *1 (-597 *4)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-1027 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1050)) (-5 *1 (-597 *3)))) (-2440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-597 *3)))) (-2324 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050)))) (-4108 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050)))) (-1636 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050)))) (-3292 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *6)))) (-5 *4 (-1027 (-844 (-567)))) (-5 *5 (-1176)) (-5 *7 (-410 (-567))) (-4 *6 (-1050)) (-5 *2 (-863)) (-5 *1 (-597 *6)))) (-2113 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3959 (*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3621 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1050)))) (-1805 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4103 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2906 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2568 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3090 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3606 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4188 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1916 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1937 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1646 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4146 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3752 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3048 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2413 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-1578 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3482 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3591 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2800 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3713 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4154 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-4243 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2531 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-3478 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))) (-2006 (*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(-13 (-1244 |#1| (-567)) (-10 -8 (-15 -2427 ($ (-1027 (-844 (-567))) (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3430 ((-1027 (-844 (-567))) $)) (-15 -4261 ((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $)) (-15 -2009 ($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))))) (-15 -3523 ((-112) $)) (-15 -2440 ($ (-1 |#1| (-567)) $)) (-15 -2324 ((-3 $ "failed") $ $ (-112))) (-15 -4108 ($ $)) (-15 -1636 ($ $ $)) (-15 -3292 ((-863) (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) (-1027 (-844 (-567))) (-1176) |#1| (-410 (-567)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $)) (-15 -3959 ($ $ |#1|)) (-15 -3621 ($ $ (-410 (-567)))) (-15 -1805 ($ $)) (-15 -4103 ($ $)) (-15 -2579 ($ $)) (-15 -2906 ($ $)) (-15 -2568 ($ $)) (-15 -3090 ($ $)) (-15 -3606 ($ $)) (-15 -4188 ($ $)) (-15 -1916 ($ $)) (-15 -1937 ($ $)) (-15 -1646 ($ $)) (-15 -4146 ($ $)) (-15 -3752 ($ $)) (-15 -3048 ($ $)) (-15 -2413 ($ $)) (-15 -1578 ($ $)) (-15 -3106 ($ $)) (-15 -3482 ($ $)) (-15 -3591 ($ $)) (-15 -2800 ($ $)) (-15 -3713 ($ $)) (-15 -4154 ($ $)) (-15 -4243 ($ $)) (-15 -2531 ($ $)) (-15 -3478 ($ $)) (-15 -2006 ($ $))) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-2009 (($ (-1156 |#1|)) 9)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) 48)) (-4222 (((-112) $) 58)) (-1909 (((-772) $) 63) (((-772) $ (-772)) 62)) (-3714 (((-112) $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ $) 50 (|has| |#1| (-559)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-1156 |#1|) $) 29)) (-2686 (((-772)) 57 T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) 10 T CONST)) (-1484 (($) 14 T CONST)) (-3052 (((-112) $ $) 28)) (-3156 (($ $) 36) (($ $ $) 16)) (-3146 (($ $ $) 31)) (** (($ $ (-922)) NIL) (($ $ (-772)) 55)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-567)) 42)))
+(((-598 |#1|) (-13 (-1050) (-10 -8 (-15 -2350 ((-1156 |#1|) $)) (-15 -2009 ($ (-1156 |#1|))) (-15 -4222 ((-112) $)) (-15 -1909 ((-772) $)) (-15 -1909 ((-772) $ (-772))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|))) (-1050)) (T -598))
+((-2350 (*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-598 *3)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (-1909 (*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1050)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1050)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1050)))))
+(-13 (-1050) (-10 -8 (-15 -2350 ((-1156 |#1|) $)) (-15 -2009 ($ (-1156 |#1|))) (-15 -4222 ((-112) $)) (-15 -1909 ((-772) $)) (-15 -1909 ((-772) $ (-772))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-567))) (IF (|has| |#1| (-559)) (-6 (-559)) |%noBranch|)))
+((-3494 (((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)) 15)))
+(((-599 |#1| |#2|) (-10 -7 (-15 -3494 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|)))) (-1216) (-1216)) (T -599))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6)))))
+(-10 -7 (-15 -3494 ((-602 |#2|) (-1 |#2| |#1|) (-602 |#1|))))
+((-3494 (((-1156 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1156 |#2|)) 20) (((-1156 |#3|) (-1 |#3| |#1| |#2|) (-1156 |#1|) (-602 |#2|)) 19) (((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|)) 18)))
+(((-600 |#1| |#2| |#3|) (-10 -7 (-15 -3494 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3494 ((-1156 |#3|) (-1 |#3| |#1| |#2|) (-1156 |#1|) (-602 |#2|))) (-15 -3494 ((-1156 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1156 |#2|)))) (-1216) (-1216) (-1216)) (T -600))
+((-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1156 *7)) (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-1156 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1156 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-1156 *8)) (-5 *1 (-600 *6 *7 *8)))) (-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7)) (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-602 *8)) (-5 *1 (-600 *6 *7 *8)))))
+(-10 -7 (-15 -3494 ((-602 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-602 |#2|))) (-15 -3494 ((-1156 |#3|) (-1 |#3| |#1| |#2|) (-1156 |#1|) (-602 |#2|))) (-15 -3494 ((-1156 |#3|) (-1 |#3| |#1| |#2|) (-602 |#1|) (-1156 |#2|))))
+((-2585 ((|#3| |#3| (-645 (-613 |#3|)) (-645 (-1176))) 57)) (-3698 (((-169 |#2|) |#3|) 121)) (-2406 ((|#3| (-169 |#2|)) 46)) (-2243 ((|#2| |#3|) 21)) (-1777 ((|#3| |#2|) 35)))
+(((-601 |#1| |#2| |#3|) (-10 -7 (-15 -2406 (|#3| (-169 |#2|))) (-15 -2243 (|#2| |#3|)) (-15 -1777 (|#3| |#2|)) (-15 -3698 ((-169 |#2|) |#3|)) (-15 -2585 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1176))))) (-559) (-13 (-433 |#1|) (-1003) (-1201)) (-13 (-433 (-169 |#1|)) (-1003) (-1201))) (T -601))
+((-2585 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1176))) (-4 *2 (-13 (-433 (-169 *5)) (-1003) (-1201))) (-4 *5 (-559)) (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1003) (-1201))))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1003) (-1201))) (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1201))))) (-1777 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1201))) (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1003) (-1201))))) (-2243 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1003) (-1201))) (-5 *1 (-601 *4 *2 *3)) (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1201))))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1201))) (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1201))) (-5 *1 (-601 *4 *5 *2)))))
+(-10 -7 (-15 -2406 (|#3| (-169 |#2|))) (-15 -2243 (|#2| |#3|)) (-15 -1777 (|#3| |#2|)) (-15 -3698 ((-169 |#2|) |#3|)) (-15 -2585 (|#3| |#3| (-645 (-613 |#3|)) (-645 (-1176)))))
+((-1551 (($ (-1 (-112) |#1|) $) 17)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1466 (($ (-1 |#1| |#1|) |#1|) 9)) (-1525 (($ (-1 (-112) |#1|) $) 13)) (-1538 (($ (-1 (-112) |#1|) $) 15)) (-4114 (((-1156 |#1|) $) 18)) (-4101 (((-863) $) NIL)))
+(((-602 |#1|) (-13 (-614 (-863)) (-10 -8 (-15 -3494 ($ (-1 |#1| |#1|) $)) (-15 -1525 ($ (-1 (-112) |#1|) $)) (-15 -1538 ($ (-1 (-112) |#1|) $)) (-15 -1551 ($ (-1 (-112) |#1|) $)) (-15 -1466 ($ (-1 |#1| |#1|) |#1|)) (-15 -4114 ((-1156 |#1|) $)))) (-1216)) (T -602))
+((-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3)))) (-1525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3)))) (-1538 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3)))) (-1551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3)))) (-1466 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3)))) (-4114 (*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1216)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3494 ($ (-1 |#1| |#1|) $)) (-15 -1525 ($ (-1 (-112) |#1|) $)) (-15 -1538 ($ (-1 (-112) |#1|) $)) (-15 -1551 ($ (-1 (-112) |#1|) $)) (-15 -1466 ($ (-1 |#1| |#1|) |#1|)) (-15 -4114 ((-1156 |#1|) $))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2019 (($ (-772)) NIL (|has| |#1| (-23)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-3543 (((-690 |#1|) $ $) NIL (|has| |#1| (-1050)))) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1674 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-3230 (((-112) $ (-772)) NIL)) (-3036 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2945 ((|#1| $ $) NIL (|has| |#1| (-1050)))) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2673 (($ $ $) NIL (|has| |#1| (-1050)))) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) NIL)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3146 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-603 |#1| |#2|) (-1264 |#1|) (-1216) (-567)) (T -603))
+NIL
+(-1264 |#1|)
+((-2275 (((-1271) $ |#2| |#2|) 36)) (-1321 ((|#2| $) 23)) (-1979 ((|#2| $) 21)) (-4392 (($ (-1 |#3| |#3|) $) 32)) (-3494 (($ (-1 |#3| |#3|) $) 30)) (-2048 ((|#3| $) 26)) (-2092 (($ $ |#3|) 33)) (-1728 (((-112) |#3| $) 17)) (-1412 (((-645 |#3|) $) 15)) (-1552 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-604 |#1| |#2| |#3|) (-10 -8 (-15 -2275 ((-1271) |#1| |#2| |#2|)) (-15 -2092 (|#1| |#1| |#3|)) (-15 -2048 (|#3| |#1|)) (-15 -1321 (|#2| |#1|)) (-15 -1979 (|#2| |#1|)) (-15 -1728 ((-112) |#3| |#1|)) (-15 -1412 ((-645 |#3|) |#1|)) (-15 -1552 (|#3| |#1| |#2|)) (-15 -1552 (|#3| |#1| |#2| |#3|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3494 (|#1| (-1 |#3| |#3|) |#1|))) (-605 |#2| |#3|) (-1100) (-1216)) (T -604))
+NIL
+(-10 -8 (-15 -2275 ((-1271) |#1| |#2| |#2|)) (-15 -2092 (|#1| |#1| |#3|)) (-15 -2048 (|#3| |#1|)) (-15 -1321 (|#2| |#1|)) (-15 -1979 (|#2| |#1|)) (-15 -1728 ((-112) |#3| |#1|)) (-15 -1412 ((-645 |#3|) |#1|)) (-15 -1552 (|#3| |#1| |#2|)) (-15 -1552 (|#3| |#1| |#2| |#3|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3494 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#2| (-1100)))) (-2275 (((-1271) $ |#1| |#1|) 41 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4417)))) (-4061 (($) 7 T CONST)) (-1303 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) 52)) (-2896 (((-645 |#2|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1321 ((|#1| $) 44 (|has| |#1| (-851)))) (-1542 (((-645 |#2|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) 28 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416))))) (-1979 ((|#1| $) 45 (|has| |#1| (-851)))) (-4392 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#2| (-1100)))) (-3940 (((-645 |#1|) $) 47)) (-1664 (((-112) |#1| $) 48)) (-3339 (((-1120) $) 21 (|has| |#2| (-1100)))) (-2048 ((|#2| $) 43 (|has| |#1| (-851)))) (-2092 (($ $ |#2|) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) 27 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) 26 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) 24 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#2| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#2| $ |#1| |#2|) 51) ((|#2| $ |#1|) 50)) (-3349 (((-772) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4416))) (((-772) |#2| $) 29 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#2| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#2| (-1100)))) (-2012 (((-112) (-1 (-112) |#2|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#2| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-605 |#1| |#2|) (-140) (-1100) (-1216)) (T -605))
+((-1412 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1216)) (-5 *2 (-645 *4)))) (-1664 (*1 *2 *3 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1216)) (-5 *2 (-112)))) (-3940 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1216)) (-5 *2 (-645 *3)))) (-1728 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1100)) (-4 *3 (-1216)) (-4 *3 (-1100)) (-5 *2 (-112)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1216)) (-4 *2 (-1100)) (-4 *2 (-851)))) (-1321 (*1 *2 *1) (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1216)) (-4 *2 (-1100)) (-4 *2 (-851)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1100)) (-4 *3 (-851)) (-4 *2 (-1216)))) (-2092 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216)))) (-2275 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1216)) (-5 *2 (-1271)))))
+(-13 (-492 |t#2|) (-289 |t#1| |t#2|) (-10 -8 (-15 -1412 ((-645 |t#2|) $)) (-15 -1664 ((-112) |t#1| $)) (-15 -3940 ((-645 |t#1|) $)) (IF (|has| |t#2| (-1100)) (IF (|has| $ (-6 -4416)) (-15 -1728 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-851)) (PROGN (-15 -1979 (|t#1| $)) (-15 -1321 (|t#1| $)) (-15 -2048 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4417)) (PROGN (-15 -2092 ($ $ |t#2|)) (-15 -2275 ((-1271) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#2| (-1100)) ((-614 (-863)) -2909 (|has| |#2| (-1100)) (|has| |#2| (-614 (-863)))) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-1100) |has| |#2| (-1100)) ((-1216) . T))
+((-4101 (((-863) $) 19) (($ (-129)) 13) (((-129) $) 14)))
+(((-606) (-13 (-614 (-863)) (-493 (-129)))) (T -606))
+NIL
+(-13 (-614 (-863)) (-493 (-129)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL) (($ (-1181)) NIL) (((-1181) $) NIL) (((-1215) $) 14) (($ (-645 (-1215))) 13)) (-3550 (((-645 (-1215)) $) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-607) (-13 (-1083) (-614 (-1215)) (-10 -8 (-15 -4101 ($ (-645 (-1215)))) (-15 -3550 ((-645 (-1215)) $))))) (T -607))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-607)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-607)))))
+(-13 (-1083) (-614 (-1215)) (-10 -8 (-15 -4101 ($ (-645 (-1215)))) (-15 -3550 ((-645 (-1215)) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4135 (((-3 $ "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1502 (((-1266 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1266 (-690 |#1|)) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3429 (((-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4061 (($) NIL T CONST)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4040 (((-3 $ "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1743 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4042 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4380 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3038 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1400 (((-1172 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3356 (($ $ (-922)) NIL)) (-3511 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1411 (((-1172 |#1|) $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2152 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4214 (((-1172 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3920 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3499 (($ (-1266 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1266 |#1|) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4014 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2432 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-3831 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1866 (($ $ (-922)) NIL)) (-3352 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1843 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3443 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2743 (((-3 $ "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2719 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-1568 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3322 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3123 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2778 (((-1172 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3747 (($ $ (-922)) NIL)) (-1380 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2575 (((-1172 |#1|) $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3385 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-2632 (((-1172 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2095 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2451 (((-1158) $) NIL)) (-3387 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4064 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1815 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3339 (((-1120) $) NIL)) (-3451 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1552 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-3216 (((-690 |#1|) (-1266 $)) NIL (|has| |#2| (-420 |#1|))) (((-1266 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1266 $) (-1266 $)) NIL (|has| |#2| (-369 |#1|))) (((-1266 |#1|) $ (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3542 (($ (-1266 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1266 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2539 (((-645 (-953 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-953 |#1|)) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4272 (($ $ $) NIL)) (-1911 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4101 (((-863) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL (|has| |#2| (-420 |#1|)))) (-2411 (((-645 (-1266 |#1|))) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3280 (($ $ $ $) NIL)) (-3854 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1992 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-1816 (($ $ $) NIL)) (-3239 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3244 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4307 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1468 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) 24)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-608 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4101 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -608))
+((-4101 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3)))))
+(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4101 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2172 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) 39)) (-4001 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL) (($) NIL)) (-2275 (((-1271) $ (-1158) (-1158)) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-1158) |#1|) 49)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#1| "failed") (-1158) $) 52)) (-4061 (($) NIL T CONST)) (-2481 (($ $ (-1158)) 25)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100))))) (-3410 (((-3 |#1| "failed") (-1158) $) 53) (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (($ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (|has| $ (-6 -4416)))) (-3138 (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (($ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100))))) (-3402 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100))))) (-3654 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) 38)) (-1303 ((|#1| $ (-1158) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-1158)) NIL)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416))) (((-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-4248 (($ $) 54)) (-1367 (($ (-391)) 23) (($ (-391) (-1158)) 22)) (-1817 (((-391) $) 40)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-1158) $) NIL (|has| (-1158) (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416))) (((-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (((-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100))))) (-1979 (((-1158) $) NIL (|has| (-1158) (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3004 (((-645 (-1158)) $) 45)) (-2121 (((-112) (-1158) $) NIL)) (-1658 (((-1158) $) 41)) (-4341 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL)) (-3940 (((-645 (-1158)) $) NIL)) (-1664 (((-112) (-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 ((|#1| $) NIL (|has| (-1158) (-851)))) (-3050 (((-3 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) "failed") (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ $ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ $ (-645 (-295 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 43)) (-1552 ((|#1| $ (-1158) |#1|) NIL) ((|#1| $ (-1158)) 48)) (-2069 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL) (($) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (((-772) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (((-772) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL)) (-4101 (((-863) $) 21)) (-4021 (($ $) 26)) (-3739 (((-112) $ $) NIL)) (-2299 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20)) (-2268 (((-772) $) 47 (|has| $ (-6 -4416)))))
+(((-609 |#1|) (-13 (-366 (-391) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) (-1192 (-1158) |#1|) (-10 -8 (-6 -4416) (-15 -4248 ($ $)))) (-1100)) (T -609))
+((-4248 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1100)))))
+(-13 (-366 (-391) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) (-1192 (-1158) |#1|) (-10 -8 (-6 -4416) (-15 -4248 ($ $))))
+((-2176 (((-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) $) 16)) (-3004 (((-645 |#2|) $) 20)) (-2121 (((-112) |#2| $) 12)))
+(((-610 |#1| |#2| |#3|) (-10 -8 (-15 -3004 ((-645 |#2|) |#1|)) (-15 -2121 ((-112) |#2| |#1|)) (-15 -2176 ((-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|))) (-611 |#2| |#3|) (-1100) (-1100)) (T -610))
+NIL
+(-10 -8 (-15 -3004 ((-645 |#2|) |#1|)) (-15 -2121 ((-112) |#2| |#1|)) (-15 -2176 ((-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 56 (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) 62)) (-4061 (($) 7 T CONST)) (-2084 (($ $) 59 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 47 (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) 63)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 55 (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 57 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 54 (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 53 (|has| $ (-6 -4416)))) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-3004 (((-645 |#1|) $) 64)) (-2121 (((-112) |#1| $) 65)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 40)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 41)) (-3339 (((-1120) $) 21 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 52)) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 42)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) 27 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 26 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 25 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 24 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-2069 (($) 50) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 49)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 32 (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 51)) (-4101 (((-863) $) 18 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 43)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-611 |#1| |#2|) (-140) (-1100) (-1100)) (T -611))
+((-2121 (*1 *2 *3 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-5 *2 (-112)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-5 *2 (-645 *3)))) (-3410 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))) (-4010 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))))
+(-13 (-229 (-2 (|:| -1762 |t#1|) (|:| -3859 |t#2|))) (-10 -8 (-15 -2121 ((-112) |t#1| $)) (-15 -3004 ((-645 |t#1|) $)) (-15 -3410 ((-3 |t#2| "failed") |t#1| $)) (-15 -4010 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((-102) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) ((-614 (-863)) -2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-492 #0#) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-1100) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) ((-1216) . T))
+((-3319 (((-613 |#2|) |#1|) 17)) (-3488 (((-3 |#1| "failed") (-613 |#2|)) 21)))
+(((-612 |#1| |#2|) (-10 -7 (-15 -3319 ((-613 |#2|) |#1|)) (-15 -3488 ((-3 |#1| "failed") (-613 |#2|)))) (-1100) (-1100)) (T -612))
+((-3488 (*1 *2 *3) (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1100)) (-4 *2 (-1100)) (-5 *1 (-612 *2 *4)))) (-3319 (*1 *2 *3) (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))))
+(-10 -7 (-15 -3319 ((-613 |#2|) |#1|)) (-15 -3488 ((-3 |#1| "failed") (-613 |#2|))))
+((-2257 (((-112) $ $) NIL)) (-4160 (((-3 (-1176) "failed") $) 48)) (-1302 (((-1271) $ (-772)) 24)) (-3771 (((-772) $) 23)) (-2236 (((-114) $) 12)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-4147 (($ (-114) (-645 |#1|) (-772)) 34) (($ (-1176)) 35)) (-1527 (((-112) $ (-114)) 18) (((-112) $ (-1176)) 16)) (-3080 (((-772) $) 20)) (-3339 (((-1120) $) NIL)) (-3542 (((-893 (-567)) $) 96 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 103 (|has| |#1| (-615 (-893 (-381))))) (((-539) $) 89 (|has| |#1| (-615 (-539))))) (-4101 (((-863) $) 73)) (-3739 (((-112) $ $) NIL)) (-3600 (((-645 |#1|) $) 22)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 52)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 54)))
+(((-613 |#1|) (-13 (-132) (-851) (-885 |#1|) (-10 -8 (-15 -2236 ((-114) $)) (-15 -3600 ((-645 |#1|) $)) (-15 -3080 ((-772) $)) (-15 -4147 ($ (-114) (-645 |#1|) (-772))) (-15 -4147 ($ (-1176))) (-15 -4160 ((-3 (-1176) "failed") $)) (-15 -1527 ((-112) $ (-114))) (-15 -1527 ((-112) $ (-1176))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-1100)) (T -613))
+((-2236 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1100)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1100)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1100)))) (-4147 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1100)) (-5 *1 (-613 *5)))) (-4147 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-613 *3)) (-4 *3 (-1100)))) (-4160 (*1 *2 *1) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-613 *3)) (-4 *3 (-1100)))) (-1527 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1100)))) (-1527 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1100)))))
+(-13 (-132) (-851) (-885 |#1|) (-10 -8 (-15 -2236 ((-114) $)) (-15 -3600 ((-645 |#1|) $)) (-15 -3080 ((-772) $)) (-15 -4147 ($ (-114) (-645 |#1|) (-772))) (-15 -4147 ($ (-1176))) (-15 -4160 ((-3 (-1176) "failed") $)) (-15 -1527 ((-112) $ (-114))) (-15 -1527 ((-112) $ (-1176))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
+((-4101 ((|#1| $) 6)))
+(((-614 |#1|) (-140) (-1216)) (T -614))
+((-4101 (*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1216)))))
+(-13 (-10 -8 (-15 -4101 (|t#1| $))))
+((-3542 ((|#1| $) 6)))
+(((-615 |#1|) (-140) (-1216)) (T -615))
+((-3542 (*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1216)))))
+(-13 (-10 -8 (-15 -3542 (|t#1| $))))
+((-1432 (((-3 (-1172 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)) 15) (((-3 (-1172 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 16)))
+(((-616 |#1| |#2|) (-10 -7 (-15 -1432 ((-3 (-1172 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -1432 ((-3 (-1172 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|)))) (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567)))) (-1242 |#1|)) (T -616))
+((-1432 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-1172 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))) (-1432 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4)) (-5 *2 (-1172 (-410 *5))) (-5 *1 (-616 *4 *5)) (-5 *3 (-410 *5)))))
+(-10 -7 (-15 -1432 ((-3 (-1172 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))) (-15 -1432 ((-3 (-1172 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 (-421 |#2|) |#2|))))
+((-4101 (($ |#1|) 6)))
+(((-617 |#1|) (-140) (-1216)) (T -617))
+((-4101 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1216)))))
+(-13 (-10 -8 (-15 -4101 ($ |t#1|))))
+((-2257 (((-112) $ $) NIL)) (-3271 (($) 14 T CONST)) (-4345 (($) 15 T CONST)) (-1424 (($ $ $) 29)) (-1397 (($ $) 27)) (-2451 (((-1158) $) NIL)) (-2844 (($ $ $) 30)) (-3339 (((-1120) $) NIL)) (-3286 (($) 11 T CONST)) (-2392 (($ $ $) 31)) (-4101 (((-863) $) 35)) (-1453 (((-112) $ (|[\|\|]| -3286)) 24) (((-112) $ (|[\|\|]| -3271)) 26) (((-112) $ (|[\|\|]| -4345)) 21)) (-3739 (((-112) $ $) NIL)) (-1410 (($ $ $) 28)) (-3052 (((-112) $ $) 18)))
+(((-618) (-13 (-968) (-10 -8 (-15 -3271 ($) -2131) (-15 -1453 ((-112) $ (|[\|\|]| -3286))) (-15 -1453 ((-112) $ (|[\|\|]| -3271))) (-15 -1453 ((-112) $ (|[\|\|]| -4345)))))) (T -618))
+((-3271 (*1 *1) (-5 *1 (-618))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3286)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3271)) (-5 *2 (-112)) (-5 *1 (-618)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -4345)) (-5 *2 (-112)) (-5 *1 (-618)))))
+(-13 (-968) (-10 -8 (-15 -3271 ($) -2131) (-15 -1453 ((-112) $ (|[\|\|]| -3286))) (-15 -1453 ((-112) $ (|[\|\|]| -3271))) (-15 -1453 ((-112) $ (|[\|\|]| -4345)))))
+((-3542 (($ |#1|) 6)))
+(((-619 |#1|) (-140) (-1216)) (T -619))
+((-3542 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1216)))))
+(-13 (-10 -8 (-15 -3542 ($ |t#1|))))
+((-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10)))
+(((-620 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-621 |#2|) (-1050)) (T -620))
+NIL
+(-10 -8 (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 41)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#1| $) 42)))
+(((-621 |#1|) (-140) (-1050)) (T -621))
+((-4101 (*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1050)))))
+(-13 (-1050) (-649 |t#1|) (-10 -8 (-15 -4101 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3179 (((-567) $) NIL (|has| |#1| (-849)))) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-4095 (((-112) $) NIL (|has| |#1| (-849)))) (-3714 (((-112) $) NIL)) (-4067 ((|#1| $) 13)) (-3948 (((-112) $) NIL (|has| |#1| (-849)))) (-2056 (($ $ $) NIL (|has| |#1| (-849)))) (-1802 (($ $ $) NIL (|has| |#1| (-849)))) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4078 ((|#3| $) 15)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL)) (-2686 (((-772)) 20 T CONST)) (-3739 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-849)))) (-1468 (($) NIL T CONST)) (-1484 (($) 12 T CONST)) (-3109 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3168 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-622 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3168 ($ $ |#3|)) (-15 -3168 ($ |#1| |#3|)) (-15 -4067 (|#1| $)) (-15 -4078 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -622))
+((-3168 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3168 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-4067 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-4078 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (-15 -3168 ($ $ |#3|)) (-15 -3168 ($ |#1| |#3|)) (-15 -4067 (|#1| $)) (-15 -4078 (|#3| $))))
+((-3015 ((|#2| |#2| (-1176) (-1176)) 16)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -3015 (|#2| |#2| (-1176) (-1176)))) (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-960) (-29 |#1|))) (T -623))
+((-3015 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1201) (-960) (-29 *4))))))
+(-10 -7 (-15 -3015 (|#2| |#2| (-1176) (-1176))))
+((-2257 (((-112) $ $) 64)) (-2865 (((-112) $) 58)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-3193 ((|#1| $) 55)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2320 (((-2 (|:| -4208 $) (|:| -3765 (-410 |#2|))) (-410 |#2|)) 111 (|has| |#1| (-365)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 99) (((-3 |#2| "failed") $) 95)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) 27)) (-4014 (((-3 $ "failed") $) 88)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1909 (((-567) $) 22)) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) 40)) (-2422 (($ |#1| (-567)) 24)) (-2613 ((|#1| $) 57)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) 101 (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2245 (((-3 $ "failed") $ $) 93)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-772) $) 115 (|has| |#1| (-365)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 114 (|has| |#1| (-365)))) (-1930 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3677 (((-567) $) 38)) (-3542 (((-410 |#2|) $) 47)) (-4101 (((-863) $) 69) (($ (-567)) 35) (($ $) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 34) (($ |#2|) 25)) (-2339 ((|#1| $ (-567)) 72)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) 9 T CONST)) (-1484 (($) 14 T CONST)) (-2692 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3052 (((-112) $ $) 21)) (-3156 (($ $) 51) (($ $ $) NIL)) (-3146 (($ $ $) 90)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 29) (($ $ $) 49)))
+(((-624 |#1| |#2|) (-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1039 |#2|) (-10 -8 (-15 -3523 ((-112) $)) (-15 -3677 ((-567) $)) (-15 -1909 ((-567) $)) (-15 -2637 ($ $)) (-15 -2613 (|#1| $)) (-15 -3193 (|#1| $)) (-15 -2339 (|#1| $ (-567))) (-15 -2422 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2320 ((-2 (|:| -4208 $) (|:| -3765 (-410 |#2|))) (-410 |#2|)))) |%noBranch|))) (-559) (-1242 |#1|)) (T -624))
+((-3523 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1242 *3)))) (-3677 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1242 *3)))) (-1909 (*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4)) (-4 *4 (-1242 *3)))) (-2637 (*1 *1 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1242 *2)))) (-2613 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1242 *2)))) (-3193 (*1 *2 *1) (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1242 *2)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1242 *2)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4)) (-4 *4 (-1242 *2)))) (-2320 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| -4208 (-624 *4 *5)) (|:| -3765 (-410 *5)))) (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5)))))
+(-13 (-231 |#2|) (-559) (-615 (-410 |#2|)) (-414 |#1|) (-1039 |#2|) (-10 -8 (-15 -3523 ((-112) $)) (-15 -3677 ((-567) $)) (-15 -1909 ((-567) $)) (-15 -2637 ($ $)) (-15 -2613 (|#1| $)) (-15 -3193 (|#1| $)) (-15 -2339 (|#1| $ (-567))) (-15 -2422 ($ |#1| (-567))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-6 (-308)) (-15 -2320 ((-2 (|:| -4208 $) (|:| -3765 (-410 |#2|))) (-410 |#2|)))) |%noBranch|)))
+((-2102 (((-645 |#6|) (-645 |#4|) (-112)) 54)) (-1890 ((|#6| |#6|) 48)))
+(((-625 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1890 (|#6| |#6|)) (-15 -2102 ((-645 |#6|) (-645 |#4|) (-112)))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3| |#4|) (-1109 |#1| |#2| |#3| |#4|)) (T -625))
+((-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10)) (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *10 (-1109 *5 *6 *7 *8)))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *2 (-1109 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1890 (|#6| |#6|)) (-15 -2102 ((-645 |#6|) (-645 |#4|) (-112))))
+((-1589 (((-112) |#3| (-772) (-645 |#3|)) 32)) (-2525 (((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1172 |#3|)))) "failed") |#3| (-645 (-1172 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2807 (-645 (-2 (|:| |irr| |#4|) (|:| -3259 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)) 73)))
+(((-626 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1589 ((-112) |#3| (-772) (-645 |#3|))) (-15 -2525 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1172 |#3|)))) "failed") |#3| (-645 (-1172 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2807 (-645 (-2 (|:| |irr| |#4|) (|:| -3259 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|)))) (-851) (-794) (-308) (-950 |#3| |#2| |#1|)) (T -626))
+((-2525 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2807 (-645 (-2 (|:| |irr| *10) (|:| -3259 (-567))))))) (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308)) (-4 *10 (-950 *3 *9 *8)) (-4 *9 (-794)) (-5 *2 (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3) (|:| |corrfact| (-645 (-1172 *3))))) (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1172 *3))))) (-1589 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851)) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8)) (-4 *8 (-950 *3 *7 *6)))))
+(-10 -7 (-15 -1589 ((-112) |#3| (-772) (-645 |#3|))) (-15 -2525 ((-3 (-2 (|:| |polfac| (-645 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-645 (-1172 |#3|)))) "failed") |#3| (-645 (-1172 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2807 (-645 (-2 (|:| |irr| |#4|) (|:| -3259 (-567)))))) (-645 |#3|) (-645 |#1|) (-645 |#3|))))
+((-2257 (((-112) $ $) NIL)) (-2606 (((-1135) $) 11)) (-1787 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 17) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-627) (-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))) (T -627))
+((-1787 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-627)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-627)))))
+(-13 (-1083) (-10 -8 (-15 -1787 ((-1135) $)) (-15 -2606 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-2881 (((-645 |#1|) $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-4020 (($ $) 77)) (-2942 (((-665 |#1| |#2|) $) 60)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 81)) (-2300 (((-645 (-295 |#2|)) $ $) 42)) (-3339 (((-1120) $) NIL)) (-2910 (($ (-665 |#1| |#2|)) 56)) (-1443 (($ $ $) NIL)) (-4272 (($ $ $) NIL)) (-4101 (((-863) $) 66) (((-1281 |#1| |#2|) $) NIL) (((-1286 |#1| |#2|) $) 74)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 61 T CONST)) (-3197 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) 41)) (-3568 (((-645 (-665 |#1| |#2|)) (-645 |#1|)) 73)) (-2250 (((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $) 46)) (-3052 (((-112) $ $) 62)) (-3168 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 52)))
+(((-628 |#1| |#2| |#3|) (-13 (-476) (-10 -8 (-15 -2910 ($ (-665 |#1| |#2|))) (-15 -2942 ((-665 |#1| |#2|) $)) (-15 -2250 ((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $)) (-15 -4101 ((-1281 |#1| |#2|) $)) (-15 -4101 ((-1286 |#1| |#2|) $)) (-15 -4020 ($ $)) (-15 -2881 ((-645 |#1|) $)) (-15 -3568 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3197 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -2300 ((-645 (-295 |#2|)) $ $)))) (-851) (-13 (-172) (-718 (-410 (-567)))) (-922)) (T -628))
+((-2910 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5)) (-14 *5 (-922)))) (-2942 (*1 *2 *1) (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-894 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-4020 (*1 *1 *1) (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-922)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-3568 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5))) (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567))))) (-14 *6 (-922)))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4)))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))) (-2300 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851)) (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))))
+(-13 (-476) (-10 -8 (-15 -2910 ($ (-665 |#1| |#2|))) (-15 -2942 ((-665 |#1| |#2|) $)) (-15 -2250 ((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $)) (-15 -4101 ((-1281 |#1| |#2|) $)) (-15 -4101 ((-1286 |#1| |#2|) $)) (-15 -4020 ($ $)) (-15 -2881 ((-645 |#1|) $)) (-15 -3568 ((-645 (-665 |#1| |#2|)) (-645 |#1|))) (-15 -3197 ((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $)) (-15 -2300 ((-645 (-295 |#2|)) $ $))))
+((-2102 (((-645 (-1146 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 103) (((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 77)) (-1560 (((-112) (-645 (-781 |#1| (-865 |#2|)))) 26)) (-2463 (((-645 (-1146 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)) 102)) (-3375 (((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112)) 76)) (-2085 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) 30)) (-2519 (((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|)))) 29)))
+(((-629 |#1| |#2|) (-10 -7 (-15 -1560 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2519 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -2085 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3375 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2463 ((-645 (-1146 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2102 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2102 ((-645 (-1146 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112)))) (-455) (-645 (-1176))) (T -629))
+((-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1146 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-629 *5 *6)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1146 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6))))) (-5 *1 (-629 *5 *6)))) (-3375 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-629 *5 *6)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1176))) (-5 *1 (-629 *3 *4)))) (-2519 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455)) (-14 *4 (-645 (-1176))) (-5 *1 (-629 *3 *4)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455)) (-14 *5 (-645 (-1176))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5)))))
+(-10 -7 (-15 -1560 ((-112) (-645 (-781 |#1| (-865 |#2|))))) (-15 -2519 ((-3 (-645 (-781 |#1| (-865 |#2|))) "failed") (-645 (-781 |#1| (-865 |#2|))))) (-15 -2085 ((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))))) (-15 -3375 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2463 ((-645 (-1146 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2102 ((-645 (-1047 |#1| |#2|)) (-645 (-781 |#1| (-865 |#2|))) (-112))) (-15 -2102 ((-645 (-1146 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|)))) (-645 (-781 |#1| (-865 |#2|))) (-112))))
+((-1772 (($ $) 38)) (-1605 (($ $) 21)) (-1747 (($ $) 37)) (-1577 (($ $) 22)) (-1798 (($ $) 36)) (-1632 (($ $) 23)) (-4098 (($) 48)) (-2942 (($ $) 45)) (-3847 (($ $) 17)) (-1857 (($ $ (-1092 $)) 7) (($ $ (-1176)) 6)) (-2910 (($ $) 46)) (-1519 (($ $) 15)) (-1562 (($ $) 16)) (-1810 (($ $) 35)) (-1647 (($ $) 24)) (-1784 (($ $) 34)) (-1618 (($ $) 25)) (-1757 (($ $) 33)) (-1592 (($ $) 26)) (-1847 (($ $) 44)) (-1690 (($ $) 32)) (-1823 (($ $) 43)) (-1660 (($ $) 31)) (-1869 (($ $) 42)) (-1719 (($ $) 30)) (-1345 (($ $) 41)) (-1733 (($ $) 29)) (-1858 (($ $) 40)) (-1704 (($ $) 28)) (-1834 (($ $) 39)) (-1673 (($ $) 27)) (-3664 (($ $) 19)) (-3395 (($ $) 20)) (-3740 (($ $) 18)) (** (($ $ $) 47)))
+(((-630) (-140)) (T -630))
+((-3395 (*1 *1 *1) (-4 *1 (-630))) (-3664 (*1 *1 *1) (-4 *1 (-630))) (-3740 (*1 *1 *1) (-4 *1 (-630))) (-3847 (*1 *1 *1) (-4 *1 (-630))) (-1562 (*1 *1 *1) (-4 *1 (-630))) (-1519 (*1 *1 *1) (-4 *1 (-630))))
+(-13 (-960) (-1201) (-10 -8 (-15 -3395 ($ $)) (-15 -3664 ($ $)) (-15 -3740 ($ $)) (-15 -3847 ($ $)) (-15 -1562 ($ $)) (-15 -1519 ($ $))))
+(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-960) . T) ((-1201) . T) ((-1204) . T))
+((-2236 (((-114) (-114)) 88)) (-3847 ((|#2| |#2|) 28)) (-1857 ((|#2| |#2| (-1092 |#2|)) 84) ((|#2| |#2| (-1176)) 50)) (-1519 ((|#2| |#2|) 27)) (-1562 ((|#2| |#2|) 29)) (-2214 (((-112) (-114)) 33)) (-3664 ((|#2| |#2|) 24)) (-3395 ((|#2| |#2|) 26)) (-3740 ((|#2| |#2|) 25)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -3395 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3740 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1857 (|#2| |#2| (-1176))) (-15 -1857 (|#2| |#2| (-1092 |#2|)))) (-559) (-13 (-433 |#1|) (-1003) (-1201))) (T -631))
+((-1857 (*1 *2 *2 *3) (-12 (-5 *3 (-1092 *2)) (-4 *2 (-13 (-433 *4) (-1003) (-1201))) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)))) (-1857 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2)) (-4 *2 (-13 (-433 *4) (-1003) (-1201))))) (-1562 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1201))))) (-1519 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1201))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1201))))) (-3740 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1201))))) (-3664 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1201))))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2)) (-4 *2 (-13 (-433 *3) (-1003) (-1201))))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4)) (-4 *4 (-13 (-433 *3) (-1003) (-1201))))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1201))))))
+(-10 -7 (-15 -2214 ((-112) (-114))) (-15 -2236 ((-114) (-114))) (-15 -3395 (|#2| |#2|)) (-15 -3664 (|#2| |#2|)) (-15 -3740 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -1519 (|#2| |#2|)) (-15 -1562 (|#2| |#2|)) (-15 -1857 (|#2| |#2| (-1176))) (-15 -1857 (|#2| |#2| (-1092 |#2|))))
+((-2484 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-1975 (((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 93)) (-3334 (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 95) (((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|)) 94)) (-2939 (((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|))) 138)) (-3419 (((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 108)) (-1509 (((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|))) 148)) (-3409 (((-1266 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|))) 72)) (-2798 (((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|))) 48)) (-2375 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 64)) (-3043 (((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|))) 116)))
+(((-632 |#1| |#2|) (-10 -7 (-15 -2939 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -1509 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -1975 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3334 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3334 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -2798 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3409 ((-1266 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -3043 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -3419 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2375 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2484 ((-484 |#1| |#2|) (-247 |#1| |#2|)))) (-645 (-1176)) (-455)) (T -632))
+((-2484 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))) (-2375 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-3419 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4)) (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))) (-3043 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455)) (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1176))) (-5 *1 (-632 *5 *6)))) (-3409 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6)) (-14 *5 (-645 (-1176))) (-4 *6 (-455)) (-5 *2 (-1266 *6)) (-5 *1 (-632 *5 *6)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1176))) (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))) (-3334 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1176))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-3334 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5)) (-14 *5 (-645 (-1176))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6)) (-4 *6 (-455)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))) (-1509 (*1 *2 *3) (-12 (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567))))) (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *2 (-2 (|:| |gblist| (-645 (-247 *4 *5))) (|:| |gvlist| (-645 (-567))))) (-5 *1 (-632 *4 *5)))))
+(-10 -7 (-15 -2939 ((-2 (|:| |gblist| (-645 (-247 |#1| |#2|))) (|:| |gvlist| (-645 (-567)))) (-645 (-484 |#1| |#2|)))) (-15 -1509 ((-2 (|:| |glbase| (-645 (-247 |#1| |#2|))) (|:| |glval| (-645 (-567)))) (-645 (-247 |#1| |#2|)))) (-15 -1975 ((-645 (-247 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3334 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -3334 ((-484 |#1| |#2|) (-645 (-484 |#1| |#2|)) (-865 |#1|))) (-15 -2798 ((-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -3409 ((-1266 |#2|) (-484 |#1| |#2|) (-645 (-484 |#1| |#2|)))) (-15 -3043 ((-247 |#1| |#2|) (-645 |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -3419 ((-645 (-484 |#1| |#2|)) (-865 |#1|) (-645 (-484 |#1| |#2|)) (-645 (-484 |#1| |#2|)))) (-15 -2375 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-645 (-247 |#1| |#2|)))) (-15 -2484 ((-484 |#1| |#2|) (-247 |#1| |#2|))))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) NIL)) (-2275 (((-1271) $ (-1158) (-1158)) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 (((-52) $ (-1158) (-52)) 16) (((-52) $ (-1176) (-52)) 17)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 (-52) "failed") (-1158) $) NIL)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100))))) (-3410 (($ (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-3 (-52) "failed") (-1158) $) NIL)) (-3138 (($ (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $ (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (((-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $ (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-1303 (((-52) $ (-1158) (-52)) NIL (|has| $ (-6 -4417)))) (-4344 (((-52) $ (-1158)) NIL)) (-2896 (((-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-645 (-52)) $) NIL (|has| $ (-6 -4416)))) (-4248 (($ $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-1158) $) NIL (|has| (-1158) (-851)))) (-1542 (((-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-645 (-52)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100))))) (-1979 (((-1158) $) NIL (|has| (-1158) (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3928 (($ (-391)) 9)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100))))) (-3004 (((-645 (-1158)) $) NIL)) (-2121 (((-112) (-1158) $) NIL)) (-4341 (((-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) $) NIL)) (-1336 (($ (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) $) NIL)) (-3940 (((-645 (-1158)) $) NIL)) (-1664 (((-112) (-1158) $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100))))) (-2048 (((-52) $) NIL (|has| (-1158) (-851)))) (-3050 (((-3 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) "failed") (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL)) (-2092 (($ $ (-52)) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (($ $ (-295 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (($ $ (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (($ $ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100))))) (-1412 (((-645 (-52)) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 (((-52) $ (-1158)) 14) (((-52) $ (-1158) (-52)) NIL) (((-52) $ (-1176)) 15)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 (-52))) (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-633) (-13 (-1192 (-1158) (-52)) (-10 -8 (-15 -3928 ($ (-391))) (-15 -4248 ($ $)) (-15 -1552 ((-52) $ (-1176))) (-15 -4230 ((-52) $ (-1176) (-52)))))) (T -633))
+((-3928 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))) (-4248 (*1 *1 *1) (-5 *1 (-633))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-633)))) (-4230 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1176)) (-5 *1 (-633)))))
+(-13 (-1192 (-1158) (-52)) (-10 -8 (-15 -3928 ($ (-391))) (-15 -4248 ($ $)) (-15 -1552 ((-52) $ (-1176))) (-15 -4230 ((-52) $ (-1176) (-52)))))
+((-3168 (($ $ |#2|) 10)))
+(((-634 |#1| |#2|) (-10 -8 (-15 -3168 (|#1| |#1| |#2|))) (-635 |#2|) (-172)) (T -634))
+NIL
+(-10 -8 (-15 -3168 (|#1| |#1| |#2|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4114 (($ $ $) 34)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 33 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-635 |#1|) (-140) (-172)) (T -635))
+((-4114 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
+(-13 (-718 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -4114 ($ $ $)) (IF (|has| |t#1| (-365)) (-15 -3168 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4135 (((-3 $ "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1502 (((-1266 (-690 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-1266 (-690 |#1|)) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3429 (((-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4061 (($) NIL T CONST)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-4040 (((-3 $ "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1743 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4042 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-4380 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3038 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-1400 (((-1172 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3356 (($ $ (-922)) NIL)) (-3511 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-1411 (((-1172 |#1|) $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2152 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4214 (((-1172 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-3920 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3499 (($ (-1266 |#1|)) NIL (|has| |#2| (-420 |#1|))) (($ (-1266 |#1|) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4014 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2432 (((-922)) NIL (|has| |#2| (-369 |#1|)))) (-3831 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1866 (($ $ (-922)) NIL)) (-3352 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1843 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3443 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2743 (((-3 $ "failed")) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2719 (((-690 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-1568 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-3322 (((-690 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) $ (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3123 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-2778 (((-1172 (-953 |#1|))) NIL (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-365))))) (-3747 (($ $ (-922)) NIL)) (-1380 ((|#1| $) NIL (|has| |#2| (-369 |#1|)))) (-2575 (((-1172 |#1|) $) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3385 ((|#1|) NIL (|has| |#2| (-420 |#1|))) ((|#1| (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-2632 (((-1172 |#1|) $) NIL (|has| |#2| (-369 |#1|)))) (-2095 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-2451 (((-1158) $) NIL)) (-3387 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4064 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1815 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3339 (((-1120) $) NIL)) (-3451 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1552 ((|#1| $ (-567)) NIL (|has| |#2| (-420 |#1|)))) (-3216 (((-690 |#1|) (-1266 $)) NIL (|has| |#2| (-420 |#1|))) (((-1266 |#1|) $) NIL (|has| |#2| (-420 |#1|))) (((-690 |#1|) (-1266 $) (-1266 $)) NIL (|has| |#2| (-369 |#1|))) (((-1266 |#1|) $ (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-3542 (($ (-1266 |#1|)) NIL (|has| |#2| (-420 |#1|))) (((-1266 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-2539 (((-645 (-953 |#1|))) NIL (|has| |#2| (-420 |#1|))) (((-645 (-953 |#1|)) (-1266 $)) NIL (|has| |#2| (-369 |#1|)))) (-4272 (($ $ $) NIL)) (-1911 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4101 (((-863) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL (|has| |#2| (-420 |#1|)))) (-2411 (((-645 (-1266 |#1|))) NIL (-2909 (-12 (|has| |#2| (-369 |#1|)) (|has| |#1| (-559))) (-12 (|has| |#2| (-420 |#1|)) (|has| |#1| (-559)))))) (-3280 (($ $ $ $) NIL)) (-3854 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1992 (($ (-690 |#1|) $) NIL (|has| |#2| (-420 |#1|)))) (-1816 (($ $ $) NIL)) (-3239 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-3244 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-4307 (((-112)) NIL (|has| |#2| (-369 |#1|)))) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) 20)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-636 |#1| |#2|) (-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4101 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|))) (-172) (-745 |#1|)) (T -636))
+((-4101 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3)))))
+(-13 (-745 |#1|) (-614 |#2|) (-10 -8 (-15 -4101 ($ |#2|)) (IF (|has| |#2| (-420 |#1|)) (-6 (-420 |#1|)) |%noBranch|) (IF (|has| |#2| (-369 |#1|)) (-6 (-369 |#1|)) |%noBranch|)))
+((-3029 (((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1158)) 106) (((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|))) 131)) (-3675 (((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|))) 136)))
+(((-637 |#1| |#2|) (-10 -7 (-15 -3029 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -3675 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -3029 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1158)))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|))) (T -637))
+((-3029 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1158)) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3)))) (-3675 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-295 (-834 *3))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1201) (-433 *5))) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-637 *5 *3)))))
+(-10 -7 (-15 -3029 ((-3 (-844 |#2|) (-2 (|:| |leftHandLimit| (-3 (-844 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-844 |#2|) "failed"))) "failed") |#2| (-295 (-844 |#2|)))) (-15 -3675 ((-3 (-834 |#2|) "failed") |#2| (-295 (-834 |#2|)))) (-15 -3029 ((-3 (-844 |#2|) "failed") |#2| (-295 |#2|) (-1158))))
+((-3029 (((-3 (-844 (-410 (-953 |#1|))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))) (-1158)) 86) (((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|)))) 20) (((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-844 (-953 |#1|)))) 35)) (-3675 (((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|)))) 23) (((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-834 (-953 |#1|)))) 43)))
+(((-638 |#1|) (-10 -7 (-15 -3029 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-844 (-953 |#1|))))) (-15 -3029 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3675 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-834 (-953 |#1|))))) (-15 -3675 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3029 ((-3 (-844 (-410 (-953 |#1|))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))) (-1158)))) (-455)) (T -638))
+((-3029 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-295 (-410 (-953 *6)))) (-5 *5 (-1158)) (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3)) (-5 *1 (-638 *6)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))) (-3675 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-834 (-953 *5)))) (-4 *5 (-455)) (-5 *2 (-834 (-410 (-953 *5)))) (-5 *1 (-638 *5)) (-5 *3 (-410 (-953 *5))))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-455)) (-5 *2 (-3 (-844 *3) (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed")) (|:| |rightHandLimit| (-3 (-844 *3) "failed"))) "failed")) (-5 *1 (-638 *5)))) (-3029 (*1 *2 *3 *4) (-12 (-5 *4 (-295 (-844 (-953 *5)))) (-4 *5 (-455)) (-5 *2 (-3 (-844 (-410 (-953 *5))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 *5))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 *5))) "failed"))) "failed")) (-5 *1 (-638 *5)) (-5 *3 (-410 (-953 *5))))))
+(-10 -7 (-15 -3029 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-844 (-953 |#1|))))) (-15 -3029 ((-3 (-844 (-410 (-953 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-844 (-410 (-953 |#1|))) "failed"))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3675 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-834 (-953 |#1|))))) (-15 -3675 ((-834 (-410 (-953 |#1|))) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3029 ((-3 (-844 (-410 (-953 |#1|))) "failed") (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))) (-1158))))
+((-4157 (((-3 (-1266 (-410 |#1|)) "failed") (-1266 |#2|) |#2|) 64 (-1397 (|has| |#1| (-365)))) (((-3 (-1266 |#1|) "failed") (-1266 |#2|) |#2|) 49 (|has| |#1| (-365)))) (-4228 (((-112) (-1266 |#2|)) 33)) (-4000 (((-3 (-1266 |#1|) "failed") (-1266 |#2|)) 40)))
+(((-639 |#1| |#2|) (-10 -7 (-15 -4228 ((-112) (-1266 |#2|))) (-15 -4000 ((-3 (-1266 |#1|) "failed") (-1266 |#2|))) (IF (|has| |#1| (-365)) (-15 -4157 ((-3 (-1266 |#1|) "failed") (-1266 |#2|) |#2|)) (-15 -4157 ((-3 (-1266 (-410 |#1|)) "failed") (-1266 |#2|) |#2|)))) (-559) (-640 |#1|)) (T -639))
+((-4157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 *5)) (-1397 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1266 (-410 *5))) (-5 *1 (-639 *5 *4)))) (-4157 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365)) (-4 *5 (-559)) (-5 *2 (-1266 *5)) (-5 *1 (-639 *5 *4)))) (-4000 (*1 *2 *3) (|partial| -12 (-5 *3 (-1266 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-1266 *4)) (-5 *1 (-639 *4 *5)))) (-4228 (*1 *2 *3) (-12 (-5 *3 (-1266 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
+(-10 -7 (-15 -4228 ((-112) (-1266 |#2|))) (-15 -4000 ((-3 (-1266 |#1|) "failed") (-1266 |#2|))) (IF (|has| |#1| (-365)) (-15 -4157 ((-3 (-1266 |#1|) "failed") (-1266 |#2|) |#2|)) (-15 -4157 ((-3 (-1266 (-410 |#1|)) "failed") (-1266 |#2|) |#2|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-1920 (((-690 |#1|) (-690 $)) 40) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 39)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-640 |#1|) (-140) (-1050)) (T -640))
+((-1920 (*1 *2 *3) (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1050)) (-5 *2 (-690 *4)))) (-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *1)) (-5 *4 (-1266 *1)) (-4 *1 (-640 *5)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -4302 (-690 *5)) (|:| |vec| (-1266 *5)))))))
+(-13 (-1050) (-10 -8 (-15 -1920 ((-690 |t#1|) (-690 $))) (-15 -1920 ((-2 (|:| -4302 (-690 |t#1|)) (|:| |vec| (-1266 |t#1|))) (-690 $) (-1266 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 16 T CONST)) (-3052 (((-112) $ $) 6)) (* (($ |#1| $) 14) (($ $ |#1|) 19)))
+(((-641 |#1|) (-140) (-1058)) (T -641))
+NIL
+(-13 (-647 |t#1|) (-1052 |t#1|))
+(((-102) . T) ((-614 (-863)) . T) ((-647 |#1|) . T) ((-1052 |#1|) . T) ((-1100) . T))
+((-3828 ((|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|) 17) ((|#2| (-645 |#1|) (-645 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|)) 12)))
+(((-642 |#1| |#2|) (-10 -7 (-15 -3828 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -3828 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -3828 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -3828 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -3828 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -3828 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|)))) (-1100) (-1216)) (T -642))
+((-3828 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1100)) (-4 *2 (-1216)) (-5 *1 (-642 *5 *2)))) (-3828 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1100)) (-4 *6 (-1216)) (-5 *1 (-642 *5 *6)))) (-3828 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1100)) (-4 *2 (-1216)) (-5 *1 (-642 *5 *2)))) (-3828 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1100)) (-4 *5 (-1216)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5)))) (-3828 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1100)) (-4 *2 (-1216)) (-5 *1 (-642 *5 *2)))) (-3828 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1100)) (-4 *6 (-1216)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6)))))
+(-10 -7 (-15 -3828 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|))) (-15 -3828 (|#2| (-645 |#1|) (-645 |#2|) |#1|)) (-15 -3828 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) |#2|)) (-15 -3828 (|#2| (-645 |#1|) (-645 |#2|) |#1| |#2|)) (-15 -3828 ((-1 |#2| |#1|) (-645 |#1|) (-645 |#2|) (-1 |#2| |#1|))) (-15 -3828 (|#2| (-645 |#1|) (-645 |#2|) |#1| (-1 |#2| |#1|))))
+((-3391 (((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 16)) (-3402 ((|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|) 18)) (-3494 (((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)) 13)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -3391 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3494 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|)))) (-1216) (-1216)) (T -643))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6)))) (-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1216)) (-4 *2 (-1216)) (-5 *1 (-643 *5 *2)))) (-3391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1216)) (-4 *5 (-1216)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5)))))
+(-10 -7 (-15 -3391 ((-645 |#2|) (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-645 |#1|) |#2|)) (-15 -3494 ((-645 |#2|) (-1 |#2| |#1|) (-645 |#1|))))
+((-3494 (((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)) 21)))
+(((-644 |#1| |#2| |#3|) (-10 -7 (-15 -3494 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|)))) (-1216) (-1216) (-1216)) (T -644))
+((-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7)) (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-645 *8)) (-5 *1 (-644 *6 *7 *8)))))
+(-10 -7 (-15 -3494 ((-645 |#3|) (-1 |#3| |#1| |#2|) (-645 |#1|) (-645 |#2|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) NIL)) (-2369 ((|#1| $) NIL)) (-3221 (($ $) NIL)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) $) NIL (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-3655 (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-1594 (($ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-3371 (($ $ $) NIL (|has| $ (-6 -4417)))) (-3487 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4417))) (($ $ "rest" $) NIL (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-1980 (($ $ $) 37 (|has| |#1| (-1100)))) (-1966 (($ $ $) 41 (|has| |#1| (-1100)))) (-1957 (($ $ $) 44 (|has| |#1| (-1100)))) (-2581 (($ (-1 (-112) |#1|) $) NIL)) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-2357 ((|#1| $) NIL)) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2061 (($ $) 23) (($ $ (-772)) NIL)) (-1861 (($ $) NIL (|has| |#1| (-1100)))) (-2084 (($ $) 36 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) NIL (|has| |#1| (-1100))) (($ (-1 (-112) |#1|) $) NIL)) (-3138 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-1714 (((-112) $) NIL)) (-3771 (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100))) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) (-1 (-112) |#1|) $) NIL)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-1385 (((-112) $) 11)) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2890 (($) 9 T CONST)) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3492 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-3768 (($ $ $) NIL (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 40 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1924 (($ |#1|) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3162 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-1336 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-2884 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) 20) (($ $ (-772)) NIL)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2216 (((-112) $) NIL)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) 39)) (-3164 (($) 38)) (-1552 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1233 (-567))) NIL) ((|#1| $ (-567)) 42) ((|#1| $ (-567) |#1|) NIL)) (-4304 (((-567) $ $) NIL)) (-2816 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-2675 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-3436 (((-112) $) NIL)) (-2443 (($ $) NIL)) (-3709 (($ $) NIL (|has| $ (-6 -4417)))) (-1449 (((-772) $) NIL)) (-1344 (($ $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) 53 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) NIL)) (-3513 (($ |#1| $) 12)) (-3962 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2285 (($ $ $) 35) (($ |#1| $) 43) (($ (-645 $)) NIL) (($ $ |#1|) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3267 (($ $ $) 13)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4184 (((-1158) $) 31 (|has| |#1| (-829))) (((-1158) $ (-112)) 32 (|has| |#1| (-829))) (((-1271) (-823) $) 33 (|has| |#1| (-829))) (((-1271) (-823) $ (-112)) 34 (|has| |#1| (-829)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-645 |#1|) (-13 (-667 |#1|) (-10 -8 (-15 -2890 ($) -2131) (-15 -1385 ((-112) $)) (-15 -3513 ($ |#1| $)) (-15 -3267 ($ $ $)) (IF (|has| |#1| (-1100)) (PROGN (-15 -1980 ($ $ $)) (-15 -1966 ($ $ $)) (-15 -1957 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|))) (-1216)) (T -645))
+((-2890 (*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1216)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1216)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1216)))) (-3267 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1216)))) (-1980 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-1216)))) (-1966 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-1216)))) (-1957 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-1216)))))
+(-13 (-667 |#1|) (-10 -8 (-15 -2890 ($) -2131) (-15 -1385 ((-112) $)) (-15 -3513 ($ |#1| $)) (-15 -3267 ($ $ $)) (IF (|has| |#1| (-1100)) (PROGN (-15 -1980 ($ $ $)) (-15 -1966 ($ $ $)) (-15 -1957 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-829)) (-6 (-829)) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 11) (($ (-1181)) NIL) (((-1181) $) NIL) ((|#1| $) 8)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-646 |#1|) (-13 (-1083) (-614 |#1|)) (-1100)) (T -646))
+NIL
+(-13 (-1083) (-614 |#1|))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 16 T CONST)) (-3052 (((-112) $ $) 6)) (* (($ |#1| $) 14)))
+(((-647 |#1|) (-140) (-1058)) (T -647))
+((-1468 (*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1058)))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1058)))))
+(-13 (-1100) (-10 -8 (-15 (-1468) ($) -2131) (-15 -2865 ((-112) $)) (-15 * ($ |t#1| $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2073 (($ |#1| |#1| $) 46)) (-1580 (((-112) $ (-772)) NIL)) (-2581 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1861 (($ $) 48)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) 59 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 9 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 37)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4341 ((|#1| $) 50)) (-1336 (($ |#1| $) 29) (($ |#1| $ (-772)) 45)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4394 ((|#1| $) 53)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 23)) (-3164 (($) 28)) (-3204 (((-112) $) 57)) (-4281 (((-645 (-2 (|:| -3859 |#1|) (|:| -3349 (-772)))) $) 69)) (-2069 (($) 26) (($ (-645 |#1|)) 19)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) 66 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 20)) (-3542 (((-539) $) 34 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) NIL)) (-4101 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 24)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 71 (|has| |#1| (-1100)))) (-2268 (((-772) $) 17 (|has| $ (-6 -4416)))))
+(((-648 |#1|) (-13 (-696 |#1|) (-10 -8 (-6 -4416) (-15 -3204 ((-112) $)) (-15 -2073 ($ |#1| |#1| $)))) (-1100)) (T -648))
+((-3204 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1100)))) (-2073 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1100)))))
+(-13 (-696 |#1|) (-10 -8 (-6 -4416) (-15 -3204 ((-112) $)) (-15 -2073 ($ |#1| |#1| $))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27)))
+(((-649 |#1|) (-140) (-1058)) (T -649))
+NIL
+(-13 (-21) (-647 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772) $) 17)) (-3636 (($ $ |#1|) 69)) (-1695 (($ $) 39)) (-3315 (($ $) 37)) (-3417 (((-3 |#1| "failed") $) 61)) (-1621 ((|#1| $) NIL)) (-1746 (($ |#1| |#2| $) 79) (($ $ $) 81)) (-3188 (((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567)) 56)) (-4234 ((|#1| $ (-567)) 35)) (-3885 ((|#2| $ (-567)) 34)) (-2383 (($ (-1 |#1| |#1|) $) 41)) (-3136 (($ (-1 |#2| |#2|) $) 47)) (-3438 (($) 11)) (-1608 (($ |#1| |#2|) 24)) (-2984 (($ (-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|)))) 25)) (-2934 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|))) $) 14)) (-3870 (($ |#1| $) 71)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1512 (((-112) $ $) 76)) (-4101 (((-863) $) 21) (($ |#1|) 18)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 27)))
+(((-650 |#1| |#2| |#3|) (-13 (-1100) (-1039 |#1|) (-10 -8 (-15 -3188 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -2934 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|))) $)) (-15 -1608 ($ |#1| |#2|)) (-15 -2984 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|))))) (-15 -3885 (|#2| $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3315 ($ $)) (-15 -1695 ($ $)) (-15 -2013 ((-772) $)) (-15 -3438 ($)) (-15 -3636 ($ $ |#1|)) (-15 -3870 ($ |#1| $)) (-15 -1746 ($ |#1| |#2| $)) (-15 -1746 ($ $ $)) (-15 -1512 ((-112) $ $)) (-15 -3136 ($ (-1 |#2| |#2|) $)) (-15 -2383 ($ (-1 |#1| |#1|) $)))) (-1100) (-23) |#2|) (T -650))
+((-3188 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863)) (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1100)) (-4 *6 (-23)) (-14 *7 *6))) (-2934 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 *4)))) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100)) (-4 *4 (-23)) (-14 *5 *4))) (-1608 (*1 *1 *2 *3) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 *4)))) (-4 *3 (-1100)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5)) (-4 *4 (-1100)) (-14 *5 *2))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *2 (-1100)) (-5 *1 (-650 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3315 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-1695 (*1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100)) (-4 *4 (-23)) (-14 *5 *4))) (-3438 (*1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-3636 (*1 *1 *1 *2) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-3870 (*1 *1 *2 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-1746 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-1746 (*1 *1 *1 *1) (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23)) (-14 *4 *3))) (-1512 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100)) (-4 *4 (-23)) (-14 *5 *4))) (-3136 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-650 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1100) (-1039 |#1|) (-10 -8 (-15 -3188 ((-863) $ (-1 (-863) (-863) (-863)) (-1 (-863) (-863) (-863)) (-567))) (-15 -2934 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|))) $)) (-15 -1608 ($ |#1| |#2|)) (-15 -2984 ($ (-645 (-2 (|:| |gen| |#1|) (|:| -2910 |#2|))))) (-15 -3885 (|#2| $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -3315 ($ $)) (-15 -1695 ($ $)) (-15 -2013 ((-772) $)) (-15 -3438 ($)) (-15 -3636 ($ $ |#1|)) (-15 -3870 ($ |#1| $)) (-15 -1746 ($ |#1| |#2| $)) (-15 -1746 ($ $ $)) (-15 -1512 ((-112) $ $)) (-15 -3136 ($ (-1 |#2| |#2|) $)) (-15 -2383 ($ (-1 |#1| |#1|) $))))
+((-1979 (((-567) $) 31)) (-2884 (($ |#2| $ (-567)) 27) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) 12)) (-1664 (((-112) (-567) $) 18)) (-2285 (($ $ |#2|) 24) (($ |#2| $) 25) (($ $ $) NIL) (($ (-645 $)) NIL)))
+(((-651 |#1| |#2|) (-10 -8 (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2285 (|#1| (-645 |#1|))) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -1979 ((-567) |#1|)) (-15 -3940 ((-645 (-567)) |#1|)) (-15 -1664 ((-112) (-567) |#1|))) (-652 |#2|) (-1216)) (T -651))
+NIL
+(-10 -8 (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2285 (|#1| (-645 |#1|))) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -1979 ((-567) |#1|)) (-15 -3940 ((-645 (-567)) |#1|)) (-15 -1664 ((-112) (-567) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 59 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-2084 (($ $) 79 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#1| $) 78 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 52)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 43 (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2092 (($ $ |#1|) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1233 (-567))) 64)) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 71)) (-2285 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-652 |#1|) (-140) (-1216)) (T -652))
+((-4012 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1216)))) (-2285 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1216)))) (-2285 (*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1216)))) (-2285 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1216)))) (-2285 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1216)))) (-3494 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1216)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1216)))) (-2675 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1216)))) (-2675 (*1 *1 *1 *2) (-12 (-5 *2 (-1233 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1216)))) (-2884 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1216)))) (-2884 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1216)))) (-4230 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1233 (-567))) (|has| *1 (-6 -4417)) (-4 *1 (-652 *2)) (-4 *2 (-1216)))))
+(-13 (-605 (-567) |t#1|) (-151 |t#1|) (-10 -8 (-15 -4012 ($ (-772) |t#1|)) (-15 -2285 ($ $ |t#1|)) (-15 -2285 ($ |t#1| $)) (-15 -2285 ($ $ $)) (-15 -2285 ($ (-645 $))) (-15 -3494 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1552 ($ $ (-1233 (-567)))) (-15 -2675 ($ $ (-567))) (-15 -2675 ($ $ (-1233 (-567)))) (-15 -2884 ($ |t#1| $ (-567))) (-15 -2884 ($ $ $ (-567))) (IF (|has| $ (-6 -4417)) (-15 -4230 (|t#1| $ (-1233 (-567)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-1607 (((-3 |#2| "failed") |#3| |#2| (-1176) |#2| (-645 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) "failed") |#3| |#2| (-1176)) 44)))
+(((-653 |#1| |#2| |#3|) (-10 -7 (-15 -1607 ((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) "failed") |#3| |#2| (-1176))) (-15 -1607 ((-3 |#2| "failed") |#3| |#2| (-1176) |#2| (-645 |#2|)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1201) (-960)) (-657 |#2|)) (T -653))
+((-1607 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1201) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2)))) (-1607 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1176)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1201) (-960))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2557 (-645 *4)))) (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -1607 ((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) "failed") |#3| |#2| (-1176))) (-15 -1607 ((-3 |#2| "failed") |#3| |#2| (-1176) |#2| (-645 |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4378 (($ $) NIL (|has| |#1| (-365)))) (-4161 (($ $ $) NIL (|has| |#1| (-365)))) (-1600 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4137 (($ $ $) NIL (|has| |#1| (-365)))) (-2276 (($ $ $) NIL (|has| |#1| (-365)))) (-2348 (($ $ $) NIL (|has| |#1| (-365)))) (-3313 (($ $ $) NIL (|has| |#1| (-365)))) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-3507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2454 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455)))) (-3714 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) NIL)) (-2408 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-1634 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-4185 (((-772) $) NIL)) (-1423 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL (|has| |#1| (-365)))) (-1365 (($ $ $) NIL (|has| |#1| (-365)))) (-2523 (($ $ $) NIL (|has| |#1| (-365)))) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-1745 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3700 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1552 ((|#1| $ |#1|) NIL)) (-2547 (($ $ $) NIL (|has| |#1| (-365)))) (-3677 (((-772) $) NIL)) (-1640 ((|#1| $) NIL (|has| |#1| (-455)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1992 ((|#1| $ |#1| |#1|) NIL)) (-2630 (($ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($) NIL)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-654 |#1|) (-657 |#1|) (-233)) (T -654))
+NIL
+(-657 |#1|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4378 (($ $) NIL (|has| |#1| (-365)))) (-4161 (($ $ $) NIL (|has| |#1| (-365)))) (-1600 (($ $ (-772)) NIL (|has| |#1| (-365)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4137 (($ $ $) NIL (|has| |#1| (-365)))) (-2276 (($ $ $) NIL (|has| |#1| (-365)))) (-2348 (($ $ $) NIL (|has| |#1| (-365)))) (-3313 (($ $ $) NIL (|has| |#1| (-365)))) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-3507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2454 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455)))) (-3714 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) NIL)) (-2408 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-1634 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-4185 (((-772) $) NIL)) (-1423 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL (|has| |#1| (-365)))) (-1365 (($ $ $) NIL (|has| |#1| (-365)))) (-2523 (($ $ $) NIL (|has| |#1| (-365)))) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-1745 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3700 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1552 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2547 (($ $ $) NIL (|has| |#1| (-365)))) (-3677 (((-772) $) NIL)) (-1640 ((|#1| $) NIL (|has| |#1| (-455)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1992 ((|#1| $ |#1| |#1|) NIL)) (-2630 (($ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($) NIL)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-655 |#1| |#2|) (-13 (-657 |#1|) (-287 |#2| |#2|)) (-233) (-13 (-649 |#1|) (-10 -8 (-15 -1930 ($ $))))) (T -655))
+NIL
+(-13 (-657 |#1|) (-287 |#2| |#2|))
+((-4378 (($ $) 29)) (-2630 (($ $) 27)) (-2692 (($) 13)))
+(((-656 |#1| |#2|) (-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -2692 (|#1|))) (-657 |#2|) (-1050)) (T -656))
+NIL
+(-10 -8 (-15 -4378 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -2692 (|#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4378 (($ $) 87 (|has| |#1| (-365)))) (-4161 (($ $ $) 89 (|has| |#1| (-365)))) (-1600 (($ $ (-772)) 88 (|has| |#1| (-365)))) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4137 (($ $ $) 50 (|has| |#1| (-365)))) (-2276 (($ $ $) 51 (|has| |#1| (-365)))) (-2348 (($ $ $) 53 (|has| |#1| (-365)))) (-3313 (($ $ $) 48 (|has| |#1| (-365)))) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 47 (|has| |#1| (-365)))) (-3507 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2454 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 52 (|has| |#1| (-365)))) (-3417 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-1621 (((-567) $) 79 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 75)) (-2637 (($ $) 69)) (-4014 (((-3 $ "failed") $) 37)) (-2958 (($ $) 60 (|has| |#1| (-455)))) (-3714 (((-112) $) 35)) (-2422 (($ |#1| (-772)) 67)) (-2408 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 62 (|has| |#1| (-559)))) (-1634 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63 (|has| |#1| (-559)))) (-4185 (((-772) $) 71)) (-1423 (($ $ $) 57 (|has| |#1| (-365)))) (-3045 (($ $ $) 58 (|has| |#1| (-365)))) (-1365 (($ $ $) 46 (|has| |#1| (-365)))) (-2523 (($ $ $) 55 (|has| |#1| (-365)))) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 54 (|has| |#1| (-365)))) (-1745 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-3700 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 59 (|has| |#1| (-365)))) (-2613 ((|#1| $) 70)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-1552 ((|#1| $ |#1|) 92)) (-2547 (($ $ $) 86 (|has| |#1| (-365)))) (-3677 (((-772) $) 72)) (-1640 ((|#1| $) 61 (|has| |#1| (-455)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 73)) (-2350 (((-645 |#1|) $) 66)) (-2339 ((|#1| $ (-772)) 68)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1992 ((|#1| $ |#1| |#1|) 65)) (-2630 (($ $) 90)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($) 91)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-657 |#1|) (-140) (-1050)) (T -657))
+((-2692 (*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)))) (-2630 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)))) (-4161 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1600 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1050)) (-4 *3 (-365)))) (-4378 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2547 (*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(-13 (-853 |t#1|) (-287 |t#1| |t#1|) (-10 -8 (-15 -2692 ($)) (-15 -2630 ($ $)) (IF (|has| |t#1| (-365)) (PROGN (-15 -4161 ($ $ $)) (-15 -1600 ($ $ (-772))) (-15 -4378 ($ $)) (-15 -2547 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-287 |#1| |#1|) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-853 |#1|) . T))
+((-2996 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 87 (|has| |#1| (-27)))) (-2296 (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))) 86 (|has| |#1| (-27))) (((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 19)))
+(((-658 |#1| |#2|) (-10 -7 (-15 -2296 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2296 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -2996 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|)) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1242 |#1|)) (T -658))
+((-2996 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4)) (-5 *2 (-645 (-654 (-410 *5)))) (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-5 *2 (-645 (-654 (-410 *6)))) (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6))))))
+(-10 -7 (-15 -2296 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2296 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|)))) (-15 -2996 ((-645 (-654 (-410 |#2|))) (-654 (-410 |#2|))))) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4378 (($ $) NIL (|has| |#1| (-365)))) (-4161 (($ $ $) 28 (|has| |#1| (-365)))) (-1600 (($ $ (-772)) 31 (|has| |#1| (-365)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4137 (($ $ $) NIL (|has| |#1| (-365)))) (-2276 (($ $ $) NIL (|has| |#1| (-365)))) (-2348 (($ $ $) NIL (|has| |#1| (-365)))) (-3313 (($ $ $) NIL (|has| |#1| (-365)))) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-3507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2454 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455)))) (-3714 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) NIL)) (-2408 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-1634 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-4185 (((-772) $) NIL)) (-1423 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL (|has| |#1| (-365)))) (-1365 (($ $ $) NIL (|has| |#1| (-365)))) (-2523 (($ $ $) NIL (|has| |#1| (-365)))) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-1745 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3700 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-1552 ((|#1| $ |#1|) 24)) (-2547 (($ $ $) 33 (|has| |#1| (-365)))) (-3677 (((-772) $) NIL)) (-1640 ((|#1| $) NIL (|has| |#1| (-455)))) (-4101 (((-863) $) 20) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1992 ((|#1| $ |#1| |#1|) 23)) (-2630 (($ $) NIL)) (-1468 (($) 21 T CONST)) (-1484 (($) 8 T CONST)) (-2692 (($) NIL)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-659 |#1| |#2|) (-657 |#1|) (-1050) (-1 |#1| |#1|)) (T -659))
+NIL
+(-657 |#1|)
+((-4161 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-1600 ((|#2| |#2| (-772) (-1 |#1| |#1|)) 48)) (-2547 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72)))
+(((-660 |#1| |#2|) (-10 -7 (-15 -4161 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1600 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -2547 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -660))
+((-2547 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))) (-1600 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))) (-4161 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2)) (-4 *2 (-657 *4)))))
+(-10 -7 (-15 -4161 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1600 (|#2| |#2| (-772) (-1 |#1| |#1|))) (-15 -2547 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2328 (($ $ $) 9)))
+(((-661 |#1|) (-10 -8 (-15 -2328 (|#1| |#1| |#1|))) (-662)) (T -661))
+NIL
+(-10 -8 (-15 -2328 (|#1| |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2278 (($ $) 10)) (-2328 (($ $ $) 8)) (-3052 (((-112) $ $) 6)) (-2316 (($ $ $) 9)))
+(((-662) (-140)) (T -662))
+((-2278 (*1 *1 *1) (-4 *1 (-662))) (-2316 (*1 *1 *1 *1) (-4 *1 (-662))) (-2328 (*1 *1 *1 *1) (-4 *1 (-662))))
+(-13 (-102) (-10 -8 (-15 -2278 ($ $)) (-15 -2316 ($ $ $)) (-15 -2328 ($ $ $))))
(((-102) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 15)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2691 ((|#1| $) 23)) (-3075 (($ $ $) NIL (|has| |#1| (-791)))) (-3936 (($ $ $) NIL (|has| |#1| (-791)))) (-1390 (((-1157) $) 48)) (-1944 (((-1119) $) NIL)) (-2702 ((|#3| $) 24)) (-2725 (((-862) $) 43)) (-1479 (((-112) $ $) 22)) (-3200 (($) 10 T CONST)) (-2865 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2817 (((-112) $ $) 20)) (-2854 (((-112) $ $) NIL (|has| |#1| (-791)))) (-2833 (((-112) $ $) 26 (|has| |#1| (-791)))) (-2916 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-2905 (($ $) 17) (($ $ $) NIL)) (-2897 (($ $ $) 29)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
-(((-662 |#1| |#2| |#3|) (-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -2916 ($ $ |#3|)) (-15 -2916 ($ |#1| |#3|)) (-15 -2691 (|#1| $)) (-15 -2702 (|#3| $)))) (-717 |#2|) (-172) (|SubsetCategory| (-726) |#2|)) (T -662))
-((-2916 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)) (-4 *2 (|SubsetCategory| (-726) *4)))) (-2916 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-662 *2 *4 *3)) (-4 *2 (-717 *4)) (-4 *3 (|SubsetCategory| (-726) *4)))) (-2691 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-726) *3)))) (-2702 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4)))))
-(-13 (-717 |#2|) (-10 -8 (IF (|has| |#1| (-791)) (-6 (-791)) |%noBranch|) (-15 -2916 ($ $ |#3|)) (-15 -2916 ($ |#1| |#3|)) (-15 -2691 (|#1| $)) (-15 -2702 (|#3| $))))
-((-3751 (((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)) 33)))
-(((-663 |#1|) (-10 -7 (-15 -3751 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|)))) (-909)) (T -663))
-((-3751 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4)) (-4 *4 (-909)) (-5 *1 (-663 *4)))))
-(-10 -7 (-15 -3751 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-1509 (((-644 |#1|) $) 84)) (-1728 (($ $ (-771)) 94)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-4060 (((-1289 |#1| |#2|) (-1289 |#1| |#2|) $) 50)) (-2023 (((-3 (-672 |#1|) "failed") $) NIL)) (-3343 (((-672 |#1|) $) NIL)) (-4358 (($ $) 93)) (-2436 (((-771) $) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-3562 (($ (-672 |#1|) |#2|) 70)) (-3746 (($ $) 89)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1324 (((-1289 |#1| |#2|) (-1289 |#1| |#2|) $) 49)) (-2127 (((-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4323 (((-672 |#1|) $) NIL)) (-4334 ((|#2| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1754 (($ $ |#1| $) 32) (($ $ (-644 |#1|) (-644 $)) 34)) (-3838 (((-771) $) 91)) (-2738 (($ $ $) 20) (($ (-672 |#1|) (-672 |#1|)) 79) (($ (-672 |#1|) $) 77) (($ $ (-672 |#1|)) 78)) (-2725 (((-862) $) NIL) (($ |#1|) 76) (((-1280 |#1| |#2|) $) 60) (((-1289 |#1| |#2|) $) 43) (($ (-672 |#1|)) 27)) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-672 |#1|)) NIL)) (-1702 ((|#2| (-1289 |#1| |#2|) $) 45)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 23 T CONST)) (-1893 (((-644 (-2 (|:| |k| (-672 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4385 (((-3 $ "failed") (-1280 |#1| |#2|)) 62)) (-4140 (($ (-672 |#1|)) 14)) (-2817 (((-112) $ $) 46)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $) 68) (($ $ $) NIL)) (-2897 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-672 |#1|)) NIL)))
-(((-664 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -4385 ((-3 $ "failed") (-1280 |#1| |#2|))) (-15 -2738 ($ (-672 |#1|) (-672 |#1|))) (-15 -2738 ($ (-672 |#1|) $)) (-15 -2738 ($ $ (-672 |#1|))))) (-850) (-172)) (T -664))
-((-4385 (*1 *1 *2) (|partial| -12 (-5 *2 (-1280 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-664 *3 *4)))) (-2738 (*1 *1 *2 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-2738 (*1 *1 *2 *1) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4)) (-4 *4 (-172)))))
-(-13 (-376 |#1| |#2|) (-384 |#2| (-672 |#1|)) (-10 -8 (-15 -4385 ((-3 $ "failed") (-1280 |#1| |#2|))) (-15 -2738 ($ (-672 |#1|) (-672 |#1|))) (-15 -2738 ($ (-672 |#1|) $)) (-15 -2738 ($ $ (-672 |#1|)))))
-((-1305 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3190 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1607 (($ (-1 (-112) |#2|) $) 29)) (-1970 (($ $) 67)) (-1985 (($ $) 78)) (-2367 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-2553 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-2388 (((-566) |#2| $ (-566)) 75) (((-566) |#2| $) NIL) (((-566) (-1 (-112) |#2|) $) 56)) (-2631 (($ (-771) |#2|) 65)) (-3169 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3848 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2101 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-3641 (($ |#2|) 15)) (-1619 (($ $ $ (-566)) 42) (($ |#2| $ (-566)) 40)) (-3567 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-1503 (($ $ (-1232 (-566))) 51) (($ $ (-566)) 44)) (-3199 (($ $ $ (-566)) 74)) (-2878 (($ $) 72)) (-2833 (((-112) $ $) 80)))
-(((-665 |#1| |#2|) (-10 -8 (-15 -3641 (|#1| |#2|)) (-15 -1503 (|#1| |#1| (-566))) (-15 -1503 (|#1| |#1| (-1232 (-566)))) (-15 -2367 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1619 (|#1| |#2| |#1| (-566))) (-15 -1619 (|#1| |#1| |#1| (-566))) (-15 -3169 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2367 (|#1| |#2| |#1|)) (-15 -1985 (|#1| |#1|)) (-15 -3169 (|#1| |#1| |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1305 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2388 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -2388 ((-566) |#2| |#1|)) (-15 -2388 ((-566) |#2| |#1| (-566))) (-15 -3848 (|#1| |#1| |#1|)) (-15 -1305 ((-112) |#1|)) (-15 -3199 (|#1| |#1| |#1| (-566))) (-15 -1970 (|#1| |#1|)) (-15 -3190 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3567 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| (-771) |#2|)) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2878 (|#1| |#1|))) (-666 |#2|) (-1215)) (T -665))
-NIL
-(-10 -8 (-15 -3641 (|#1| |#2|)) (-15 -1503 (|#1| |#1| (-566))) (-15 -1503 (|#1| |#1| (-1232 (-566)))) (-15 -2367 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1619 (|#1| |#2| |#1| (-566))) (-15 -1619 (|#1| |#1| |#1| (-566))) (-15 -3169 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1607 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2367 (|#1| |#2| |#1|)) (-15 -1985 (|#1| |#1|)) (-15 -3169 (|#1| |#1| |#1|)) (-15 -3848 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1305 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2388 ((-566) (-1 (-112) |#2|) |#1|)) (-15 -2388 ((-566) |#2| |#1|)) (-15 -2388 ((-566) |#2| |#1| (-566))) (-15 -3848 (|#1| |#1| |#1|)) (-15 -1305 ((-112) |#1|)) (-15 -3199 (|#1| |#1| |#1| (-566))) (-15 -1970 (|#1| |#1|)) (-15 -3190 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3190 (|#1| |#1|)) (-15 -2833 ((-112) |#1| |#1|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2553 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3567 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2631 (|#1| (-771) |#2|)) (-15 -2101 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2878 (|#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-4088 ((|#1| $) 66)) (-1829 (($ $) 68)) (-2506 (((-1270) $ (-566) (-566)) 98 (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) 53 (|has| $ (-6 -4416)))) (-1305 (((-112) $) 143 (|has| |#1| (-850))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3190 (($ $) 147 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4416)))) (-3370 (($ $) 142 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-2363 (($ $ $) 57 (|has| $ (-6 -4416)))) (-3478 ((|#1| $ |#1|) 55 (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) 59 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4416))) (($ $ "rest" $) 56 (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 118 (|has| $ (-6 -4416))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-1607 (($ (-1 (-112) |#1|) $) 130)) (-3281 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4415)))) (-4075 ((|#1| $) 67)) (-2633 (($) 7 T CONST)) (-1970 (($ $) 145 (|has| $ (-6 -4416)))) (-1921 (($ $) 135)) (-3781 (($ $) 74) (($ $ (-771)) 72)) (-1985 (($ $) 132 (|has| |#1| (-1099)))) (-3806 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ |#1| $) 131 (|has| |#1| (-1099))) (($ (-1 (-112) |#1|) $) 126)) (-1752 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4415))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3031 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 88)) (-4336 (((-112) $) 84)) (-2388 (((-566) |#1| $ (-566)) 140 (|has| |#1| (-1099))) (((-566) |#1| $) 139 (|has| |#1| (-1099))) (((-566) (-1 (-112) |#1|) $) 138)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2631 (($ (-771) |#1|) 109)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 96 (|has| (-566) (-850)))) (-3075 (($ $ $) 148 (|has| |#1| (-850)))) (-3169 (($ $ $) 133 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3848 (($ $ $) 141 (|has| |#1| (-850))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 95 (|has| (-566) (-850)))) (-3936 (($ $ $) 149 (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3641 (($ |#1|) 123)) (-1864 (((-112) $ (-771)) 10)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1774 ((|#1| $) 71) (($ $ (-771)) 69)) (-1619 (($ $ $ (-566)) 128) (($ |#1| $ (-566)) 127)) (-1510 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-4063 (((-644 (-566)) $) 93)) (-3054 (((-112) (-566) $) 92)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 77) (($ $ (-771)) 75)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3598 (($ $ |#1|) 97 (|has| $ (-6 -4416)))) (-1890 (((-112) $) 85)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 91)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1232 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-4104 (((-566) $ $) 45)) (-1503 (($ $ (-1232 (-566))) 125) (($ $ (-566)) 124)) (-1302 (($ $ (-1232 (-566))) 115) (($ $ (-566)) 114)) (-3810 (((-112) $) 47)) (-4278 (($ $) 63)) (-4160 (($ $) 60 (|has| $ (-6 -4416)))) (-2251 (((-771) $) 64)) (-2546 (($ $) 65)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3199 (($ $ $ (-566)) 144 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 108)) (-2011 (($ $ $) 62) (($ $ |#1|) 61)) (-4007 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) 151 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 152 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2854 (((-112) $ $) 150 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 153 (|has| |#1| (-850)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-666 |#1|) (-140) (-1215)) (T -666))
-((-3641 (*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1215)))))
-(-13 (-1148 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -3641 ($ |t#1|))))
-(((-34) . T) ((-102) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1010 |#1|) . T) ((-1099) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1148 |#1|) . T) ((-1215) . T) ((-1253 |#1|) . T))
-((-1409 (((-644 (-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|))))) (-644 (-644 |#1|)) (-644 (-1265 |#1|))) 22) (((-644 (-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|))))) (-689 |#1|) (-644 (-1265 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-644 (-644 |#1|)) (-1265 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-689 |#1|) (-1265 |#1|)) 14)) (-4153 (((-771) (-689 |#1|) (-1265 |#1|)) 30)) (-2222 (((-3 (-1265 |#1|) "failed") (-689 |#1|) (-1265 |#1|)) 24)) (-1603 (((-112) (-689 |#1|) (-1265 |#1|)) 27)))
-(((-667 |#1|) (-10 -7 (-15 -1409 ((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-689 |#1|) (-1265 |#1|))) (-15 -1409 ((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-644 (-644 |#1|)) (-1265 |#1|))) (-15 -1409 ((-644 (-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|))))) (-689 |#1|) (-644 (-1265 |#1|)))) (-15 -1409 ((-644 (-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|))))) (-644 (-644 |#1|)) (-644 (-1265 |#1|)))) (-15 -2222 ((-3 (-1265 |#1|) "failed") (-689 |#1|) (-1265 |#1|))) (-15 -1603 ((-112) (-689 |#1|) (-1265 |#1|))) (-15 -4153 ((-771) (-689 |#1|) (-1265 |#1|)))) (-365)) (T -667))
-((-4153 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-667 *5)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-667 *5)))) (-2222 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1265 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *1 (-667 *4)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1265 *5) "failed")) (|:| -2227 (-644 (-1265 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1265 *5))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| |particular| (-3 (-1265 *5) "failed")) (|:| -2227 (-644 (-1265 *5)))))) (-5 *1 (-667 *5)) (-5 *4 (-644 (-1265 *5))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1265 *5) "failed")) (|:| -2227 (-644 (-1265 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1265 *5)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1265 *5) "failed")) (|:| -2227 (-644 (-1265 *5))))) (-5 *1 (-667 *5)) (-5 *4 (-1265 *5)))))
-(-10 -7 (-15 -1409 ((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-689 |#1|) (-1265 |#1|))) (-15 -1409 ((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-644 (-644 |#1|)) (-1265 |#1|))) (-15 -1409 ((-644 (-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|))))) (-689 |#1|) (-644 (-1265 |#1|)))) (-15 -1409 ((-644 (-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|))))) (-644 (-644 |#1|)) (-644 (-1265 |#1|)))) (-15 -2222 ((-3 (-1265 |#1|) "failed") (-689 |#1|) (-1265 |#1|))) (-15 -1603 ((-112) (-689 |#1|) (-1265 |#1|))) (-15 -4153 ((-771) (-689 |#1|) (-1265 |#1|))))
-((-1409 (((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|)))) |#4| (-644 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|))) |#4| |#3|) 60)) (-4153 (((-771) |#4| |#3|) 18)) (-2222 (((-3 |#3| "failed") |#4| |#3|) 21)) (-1603 (((-112) |#4| |#3|) 14)))
-(((-668 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1409 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|))) |#4| |#3|)) (-15 -1409 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -2222 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1603 ((-112) |#4| |#3|)) (-15 -4153 ((-771) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4416))) (-13 (-375 |#1|) (-10 -7 (-6 -4416))) (-687 |#1| |#2| |#3|)) (T -668))
-((-4153 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-5 *2 (-771)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-1603 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-5 *2 (-112)) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-2222 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4416)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416)))) (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2)))) (-1409 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-5 *2 (-644 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2227 (-644 *7))))) (-5 *1 (-668 *5 *6 *7 *3)) (-5 *4 (-644 *7)) (-4 *3 (-687 *5 *6 *7)))) (-1409 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))))
-(-10 -7 (-15 -1409 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|))) |#4| |#3|)) (-15 -1409 ((-644 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|)))) |#4| (-644 |#3|))) (-15 -2222 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1603 ((-112) |#4| |#3|)) (-15 -4153 ((-771) |#4| |#3|)))
-((-1558 (((-2 (|:| |particular| (-3 (-1265 (-409 |#4|)) "failed")) (|:| -2227 (-644 (-1265 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)) 52)))
-(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1558 ((-2 (|:| |particular| (-3 (-1265 (-409 |#4|)) "failed")) (|:| -2227 (-644 (-1265 (-409 |#4|))))) (-644 |#4|) (-644 |#3|)))) (-558) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -669))
-((-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |particular| (-3 (-1265 (-409 *8)) "failed")) (|:| -2227 (-644 (-1265 (-409 *8)))))) (-5 *1 (-669 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1558 ((-2 (|:| |particular| (-3 (-1265 (-409 |#4|)) "failed")) (|:| -2227 (-644 (-1265 (-409 |#4|))))) (-644 |#4|) (-644 |#3|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4082 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-2717 ((|#2| $) NIL)) (-2192 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3677 (((-1265 (-689 |#2|))) NIL) (((-1265 (-689 |#2|)) (-1265 $)) NIL)) (-2988 (((-112) $) NIL)) (-3470 (((-1265 $)) 44)) (-2261 (((-112) $ (-771)) NIL)) (-2092 (($ |#2|) NIL)) (-2633 (($) NIL T CONST)) (-2594 (($ $) NIL (|has| |#2| (-308)))) (-1703 (((-240 |#1| |#2|) $ (-566)) NIL)) (-3522 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-3748 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-3371 (((-689 |#2|)) NIL) (((-689 |#2|) (-1265 $)) NIL)) (-4383 ((|#2| $) NIL)) (-3793 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1265 $)) NIL)) (-2784 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-3668 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-3801 (($ $ (-921)) NIL)) (-2701 ((|#2| $) NIL)) (-3035 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-2822 ((|#2|) NIL) ((|#2| (-1265 $)) NIL)) (-3770 (((-1171 |#2|) $) NIL)) (-1685 (((-112)) NIL)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-1452 (($ (-1265 |#2|)) NIL) (($ (-1265 |#2|) (-1265 $)) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-4153 (((-771) $) NIL (|has| |#2| (-558))) (((-921)) 45)) (-2975 ((|#2| $ (-566) (-566)) NIL)) (-2745 (((-112)) NIL)) (-2284 (($ $ (-921)) NIL)) (-1523 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL)) (-2883 (((-771) $) NIL (|has| |#2| (-558)))) (-3260 (((-644 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-558)))) (-2368 (((-771) $) NIL)) (-1375 (((-112)) NIL)) (-2378 (((-771) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-4362 ((|#2| $) NIL (|has| |#2| (-6 (-4417 "*"))))) (-2110 (((-566) $) NIL)) (-4086 (((-566) $) NIL)) (-2565 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2952 (((-566) $) NIL)) (-4280 (((-566) $) NIL)) (-2656 (($ (-644 (-644 |#2|))) NIL)) (-3023 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3662 (((-644 (-644 |#2|)) $) NIL)) (-2282 (((-112)) NIL)) (-3164 (((-112)) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-2861 (((-3 (-2 (|:| |particular| $) (|:| -2227 (-644 $))) "failed")) NIL (|has| |#2| (-558)))) (-3531 (((-3 $ "failed")) NIL (|has| |#2| (-558)))) (-4306 (((-689 |#2|)) NIL) (((-689 |#2|) (-1265 $)) NIL)) (-2567 ((|#2| $) NIL)) (-1431 (((-689 |#2|) $) NIL) (((-689 |#2|) $ (-1265 $)) NIL)) (-4220 (((-3 $ "failed") $) NIL (|has| |#2| (-558)))) (-3223 (((-1171 (-952 |#2|))) NIL (|has| |#2| (-365)))) (-3510 (($ $ (-921)) NIL)) (-1625 ((|#2| $) NIL)) (-3012 (((-1171 |#2|) $) NIL (|has| |#2| (-558)))) (-3158 ((|#2|) NIL) ((|#2| (-1265 $)) NIL)) (-2234 (((-1171 |#2|) $) NIL)) (-2187 (((-112)) NIL)) (-1390 (((-1157) $) NIL)) (-3804 (((-112)) NIL)) (-2318 (((-112)) NIL)) (-1981 (((-112)) NIL)) (-1764 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-1944 (((-1119) $) NIL)) (-2073 (((-112)) NIL)) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) 30) ((|#2| $ (-566)) NIL)) (-3009 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1858 ((|#2| $) NIL)) (-2626 (($ (-644 |#2|)) NIL)) (-3988 (((-112) $) NIL)) (-2617 (((-240 |#1| |#2|) $) NIL)) (-3586 ((|#2| $) NIL (|has| |#2| (-6 (-4417 "*"))))) (-1958 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2878 (($ $) NIL)) (-2803 (((-689 |#2|) (-1265 $)) NIL) (((-1265 |#2|) $) NIL) (((-689 |#2|) (-1265 $) (-1265 $)) NIL) (((-1265 |#2|) $ (-1265 $)) 33)) (-2150 (($ (-1265 |#2|)) NIL) (((-1265 |#2|) $) NIL)) (-3643 (((-644 (-952 |#2|))) NIL) (((-644 (-952 |#2|)) (-1265 $)) NIL)) (-1726 (($ $ $) NIL)) (-3716 (((-112)) NIL)) (-1428 (((-240 |#1| |#2|) $ (-566)) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 43)) (-2847 (((-644 (-1265 |#2|))) NIL (|has| |#2| (-558)))) (-2481 (($ $ $ $) NIL)) (-3086 (((-112)) NIL)) (-3709 (($ (-689 |#2|) $) NIL)) (-2610 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-4004 (((-112) $) NIL)) (-2586 (($ $ $) NIL)) (-2477 (((-112)) NIL)) (-3272 (((-112)) NIL)) (-3137 (((-112)) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-670 |#1| |#2|) (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-419 |#2|)) (-921) (-172)) (T -670))
-NIL
-(-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-419 |#2|))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4218 (((-644 (-1134)) $) 10)) (-2725 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-671) (-13 (-1082) (-10 -8 (-15 -4218 ((-644 (-1134)) $))))) (T -671))
-((-4218 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671)))))
-(-13 (-1082) (-10 -8 (-15 -4218 ((-644 (-1134)) $))))
-((-3979 (((-112) $ $) NIL)) (-1509 (((-644 |#1|) $) NIL)) (-1627 (($ $) 67)) (-2935 (((-112) $) NIL)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1923 (((-3 $ "failed") (-819 |#1|)) 27)) (-2473 (((-112) (-819 |#1|)) 17)) (-3966 (($ (-819 |#1|)) 28)) (-4320 (((-112) $ $) 36)) (-1653 (((-921) $) 43)) (-1616 (($ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4018 (((-644 $) (-819 |#1|)) 19)) (-2725 (((-862) $) 51) (($ |#1|) 40) (((-819 |#1|) $) 47) (((-677 |#1|) $) 52)) (-1479 (((-112) $ $) NIL)) (-1586 (((-59 (-644 $)) (-644 |#1|) (-921)) 72)) (-3728 (((-644 $) (-644 |#1|) (-921)) 76)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 68)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 46)))
-(((-672 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 -2935 ((-112) $)) (-15 -1616 ($ $)) (-15 -1627 ($ $)) (-15 -1653 ((-921) $)) (-15 -4320 ((-112) $ $)) (-15 -2725 ((-819 |#1|) $)) (-15 -2725 ((-677 |#1|) $)) (-15 -4018 ((-644 $) (-819 |#1|))) (-15 -2473 ((-112) (-819 |#1|))) (-15 -3966 ($ (-819 |#1|))) (-15 -1923 ((-3 $ "failed") (-819 |#1|))) (-15 -1509 ((-644 |#1|) $)) (-15 -1586 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -3728 ((-644 $) (-644 |#1|) (-921))))) (-850)) (T -672))
-((-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-1616 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-4320 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-4018 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4))) (-5 *1 (-672 *4)))) (-2473 (*1 *2 *3) (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112)) (-5 *1 (-672 *4)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-1923 (*1 *1 *2) (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850)))) (-1586 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5)))) (-3728 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850)) (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5)))))
-(-13 (-850) (-1038 |#1|) (-10 -8 (-15 -2935 ((-112) $)) (-15 -1616 ($ $)) (-15 -1627 ($ $)) (-15 -1653 ((-921) $)) (-15 -4320 ((-112) $ $)) (-15 -2725 ((-819 |#1|) $)) (-15 -2725 ((-677 |#1|) $)) (-15 -4018 ((-644 $) (-819 |#1|))) (-15 -2473 ((-112) (-819 |#1|))) (-15 -3966 ($ (-819 |#1|))) (-15 -1923 ((-3 $ "failed") (-819 |#1|))) (-15 -1509 ((-644 |#1|) $)) (-15 -1586 ((-59 (-644 $)) (-644 |#1|) (-921))) (-15 -3728 ((-644 $) (-644 |#1|) (-921)))))
-((-2465 ((|#2| $) 103)) (-1829 (($ $) 124)) (-2261 (((-112) $ (-771)) 35)) (-3781 (($ $) 112) (($ $ (-771)) 115)) (-4336 (((-112) $) 125)) (-4116 (((-644 $) $) 99)) (-3886 (((-112) $ $) 95)) (-2429 (((-112) $ (-771)) 33)) (-2239 (((-566) $) 69)) (-2605 (((-566) $) 68)) (-1864 (((-112) $ (-771)) 31)) (-1396 (((-112) $) 101)) (-1774 ((|#2| $) 116) (($ $ (-771)) 120)) (-1510 (($ $ $ (-566)) 86) (($ |#2| $ (-566)) 85)) (-4063 (((-644 (-566)) $) 67)) (-3054 (((-112) (-566) $) 61)) (-3771 ((|#2| $) NIL) (($ $ (-771)) 111)) (-3964 (($ $ (-566)) 128)) (-1890 (((-112) $) 127)) (-1900 (((-112) (-1 (-112) |#2|) $) 44)) (-1948 (((-644 |#2|) $) 48)) (-3282 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1232 (-566))) 82) ((|#2| $ (-566)) 59) ((|#2| $ (-566) |#2|) 60)) (-4104 (((-566) $ $) 94)) (-1302 (($ $ (-1232 (-566))) 81) (($ $ (-566)) 75)) (-3810 (((-112) $) 90)) (-4278 (($ $) 108)) (-2251 (((-771) $) 107)) (-2546 (($ $) 106)) (-2738 (($ (-644 |#2|)) 55)) (-3965 (($ $) 129)) (-4202 (((-644 $) $) 93)) (-1379 (((-112) $ $) 92)) (-2610 (((-112) (-1 (-112) |#2|) $) 43)) (-2817 (((-112) $ $) 20)) (-3991 (((-771) $) 41)))
-(((-673 |#1| |#2|) (-10 -8 (-15 -3965 (|#1| |#1|)) (-15 -3964 (|#1| |#1| (-566))) (-15 -4336 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -3282 (|#2| |#1| (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566))) (-15 -1948 ((-644 |#2|) |#1|)) (-15 -3054 ((-112) (-566) |#1|)) (-15 -4063 ((-644 (-566)) |#1|)) (-15 -2605 ((-566) |#1|)) (-15 -2239 ((-566) |#1|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -1302 (|#1| |#1| (-566))) (-15 -1302 (|#1| |#1| (-1232 (-566)))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -4278 (|#1| |#1|)) (-15 -2251 ((-771) |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1774 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "last")) (-15 -1774 (|#2| |#1|)) (-15 -3781 (|#1| |#1| (-771))) (-15 -3282 (|#1| |#1| "rest")) (-15 -3781 (|#1| |#1|)) (-15 -3771 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "first")) (-15 -3771 (|#2| |#1|)) (-15 -3886 ((-112) |#1| |#1|)) (-15 -1379 ((-112) |#1| |#1|)) (-15 -4104 ((-566) |#1| |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -3282 (|#2| |#1| "value")) (-15 -2465 (|#2| |#1|)) (-15 -1396 ((-112) |#1|)) (-15 -4116 ((-644 |#1|) |#1|)) (-15 -4202 ((-644 |#1|) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771)))) (-674 |#2|) (-1215)) (T -673))
-NIL
-(-10 -8 (-15 -3965 (|#1| |#1|)) (-15 -3964 (|#1| |#1| (-566))) (-15 -4336 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -3282 (|#2| |#1| (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566))) (-15 -1948 ((-644 |#2|) |#1|)) (-15 -3054 ((-112) (-566) |#1|)) (-15 -4063 ((-644 (-566)) |#1|)) (-15 -2605 ((-566) |#1|)) (-15 -2239 ((-566) |#1|)) (-15 -2738 (|#1| (-644 |#2|))) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -1302 (|#1| |#1| (-566))) (-15 -1302 (|#1| |#1| (-1232 (-566)))) (-15 -1510 (|#1| |#2| |#1| (-566))) (-15 -1510 (|#1| |#1| |#1| (-566))) (-15 -4278 (|#1| |#1|)) (-15 -2251 ((-771) |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1774 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "last")) (-15 -1774 (|#2| |#1|)) (-15 -3781 (|#1| |#1| (-771))) (-15 -3282 (|#1| |#1| "rest")) (-15 -3781 (|#1| |#1|)) (-15 -3771 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "first")) (-15 -3771 (|#2| |#1|)) (-15 -3886 ((-112) |#1| |#1|)) (-15 -1379 ((-112) |#1| |#1|)) (-15 -4104 ((-566) |#1| |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -3282 (|#2| |#1| "value")) (-15 -2465 (|#2| |#1|)) (-15 -1396 ((-112) |#1|)) (-15 -4116 ((-644 |#1|) |#1|)) (-15 -4202 ((-644 |#1|) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -1900 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771))))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-4088 ((|#1| $) 66)) (-1829 (($ $) 68)) (-2506 (((-1270) $ (-566) (-566)) 98 (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) 53 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-2363 (($ $ $) 57 (|has| $ (-6 -4416)))) (-3478 ((|#1| $ |#1|) 55 (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) 59 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4416))) (($ $ "rest" $) 56 (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 118 (|has| $ (-6 -4416))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 103)) (-4075 ((|#1| $) 67)) (-2633 (($) 7 T CONST)) (-4303 (($ $) 125)) (-3781 (($ $) 74) (($ $ (-771)) 72)) (-3806 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 104)) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3031 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 88)) (-4336 (((-112) $) 84)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4061 (((-771) $) 124)) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2631 (($ (-771) |#1|) 109)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 96 (|has| (-566) (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 95 (|has| (-566) (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1864 (((-112) $ (-771)) 10)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-3774 (($ $) 127)) (-4050 (((-112) $) 128)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1774 ((|#1| $) 71) (($ $ (-771)) 69)) (-1510 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-4063 (((-644 (-566)) $) 93)) (-3054 (((-112) (-566) $) 92)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-2783 ((|#1| $) 126)) (-3771 ((|#1| $) 77) (($ $ (-771)) 75)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3598 (($ $ |#1|) 97 (|has| $ (-6 -4416)))) (-3964 (($ $ (-566)) 123)) (-1890 (((-112) $) 85)) (-2400 (((-112) $) 129)) (-3246 (((-112) $) 130)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 91)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1232 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-4104 (((-566) $ $) 45)) (-1302 (($ $ (-1232 (-566))) 115) (($ $ (-566)) 114)) (-3810 (((-112) $) 47)) (-4278 (($ $) 63)) (-4160 (($ $) 60 (|has| $ (-6 -4416)))) (-2251 (((-771) $) 64)) (-2546 (($ $) 65)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 108)) (-2011 (($ $ $) 62 (|has| $ (-6 -4416))) (($ $ |#1|) 61 (|has| $ (-6 -4416)))) (-4007 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-3965 (($ $) 122)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-674 |#1|) (-140) (-1215)) (T -674))
-((-1752 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1215)))) (-3281 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1215)))) (-3246 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))) (-4050 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))) (-3774 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215)))) (-2783 (*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215)))) (-4303 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-674 *3)) (-4 *3 (-1215)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215)))))
-(-13 (-1148 |t#1|) (-10 -8 (-15 -1752 ($ (-1 (-112) |t#1|) $)) (-15 -3281 ($ (-1 (-112) |t#1|) $)) (-15 -3246 ((-112) $)) (-15 -2400 ((-112) $)) (-15 -4050 ((-112) $)) (-15 -3774 ($ $)) (-15 -2783 (|t#1| $)) (-15 -4303 ($ $)) (-15 -4061 ((-771) $)) (-15 -3964 ($ $ (-566))) (-15 -3965 ($ $))))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1148 |#1|) . T) ((-1215) . T) ((-1253 |#1|) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-4121 (($ (-771) (-771) (-771)) 55 (|has| |#1| (-1049)))) (-2261 (((-112) $ (-771)) NIL)) (-3742 ((|#1| $ (-771) (-771) (-771) |#1|) 49)) (-2633 (($) NIL T CONST)) (-3457 (($ $ $) 60 (|has| |#1| (-1049)))) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3603 (((-1265 (-771)) $) 12)) (-1618 (($ (-1175) $ $) 37)) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-4319 (($ (-771)) 57 (|has| |#1| (-1049)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-771) (-771) (-771)) 46)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2738 (($ (-644 (-644 (-644 |#1|)))) 70)) (-2725 (($ (-958 (-958 (-958 |#1|)))) 23) (((-958 (-958 (-958 |#1|))) $) 19) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-675 |#1|) (-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -4121 ($ (-771) (-771) (-771))) (-15 -4319 ($ (-771))) (-15 -3457 ($ $ $))) |%noBranch|) (-15 -2738 ($ (-644 (-644 (-644 |#1|))))) (-15 -3282 (|#1| $ (-771) (-771) (-771))) (-15 -3742 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -2725 ($ (-958 (-958 (-958 |#1|))))) (-15 -2725 ((-958 (-958 (-958 |#1|))) $)) (-15 -1618 ($ (-1175) $ $)) (-15 -3603 ((-1265 (-771)) $)))) (-1099)) (T -675))
-((-4121 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-4319 (*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049)) (-4 *3 (-1099)))) (-3457 (*1 *1 *1 *1) (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-3282 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-3742 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1099)) (-5 *1 (-675 *3)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-1618 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-1265 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099)))))
-(-13 (-491 |#1|) (-10 -8 (IF (|has| |#1| (-1049)) (PROGN (-15 -4121 ($ (-771) (-771) (-771))) (-15 -4319 ($ (-771))) (-15 -3457 ($ $ $))) |%noBranch|) (-15 -2738 ($ (-644 (-644 (-644 |#1|))))) (-15 -3282 (|#1| $ (-771) (-771) (-771))) (-15 -3742 (|#1| $ (-771) (-771) (-771) |#1|)) (-15 -2725 ($ (-958 (-958 (-958 |#1|))))) (-15 -2725 ((-958 (-958 (-958 |#1|))) $)) (-15 -1618 ($ (-1175) $ $)) (-15 -3603 ((-1265 (-771)) $))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-3096 (((-485) $) 10)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 19) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-1134) $) 12)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-676) (-13 (-1082) (-10 -8 (-15 -3096 ((-485) $)) (-15 -3546 ((-1134) $))))) (T -676))
-((-3096 (*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676)))))
-(-13 (-1082) (-10 -8 (-15 -3096 ((-485) $)) (-15 -3546 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-1509 (((-644 |#1|) $) 15)) (-1627 (($ $) 19)) (-2935 (((-112) $) 20)) (-2023 (((-3 |#1| "failed") $) 23)) (-3343 ((|#1| $) 21)) (-3781 (($ $) 37)) (-3746 (($ $) 25)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-4320 (((-112) $ $) 47)) (-1653 (((-921) $) 40)) (-1616 (($ $) 18)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 ((|#1| $) 36)) (-2725 (((-862) $) 32) (($ |#1|) 24) (((-819 |#1|) $) 28)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 13)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 44)) (* (($ $ $) 35)))
-(((-677 |#1|) (-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2725 ((-819 |#1|) $)) (-15 -3771 (|#1| $)) (-15 -1616 ($ $)) (-15 -1653 ((-921) $)) (-15 -4320 ((-112) $ $)) (-15 -3746 ($ $)) (-15 -3781 ($ $)) (-15 -2935 ((-112) $)) (-15 -1627 ($ $)) (-15 -1509 ((-644 |#1|) $)))) (-850)) (T -677))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-3771 (*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-1616 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-4320 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-3746 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850)))) (-1627 (*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850)))))
-(-13 (-850) (-1038 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2725 ((-819 |#1|) $)) (-15 -3771 (|#1| $)) (-15 -1616 ($ $)) (-15 -1653 ((-921) $)) (-15 -4320 ((-112) $ $)) (-15 -3746 ($ $)) (-15 -3781 ($ $)) (-15 -2935 ((-112) $)) (-15 -1627 ($ $)) (-15 -1509 ((-644 |#1|) $))))
-((-3868 ((|#1| (-1 |#1| (-771) |#1|) (-771) |#1|) 14)) (-1460 ((|#1| (-1 |#1| |#1|) (-771) |#1|) 12)))
-(((-678 |#1|) (-10 -7 (-15 -1460 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -3868 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|))) (-1099)) (T -678))
-((-3868 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2)))) (-1460 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099)) (-5 *1 (-678 *2)))))
-(-10 -7 (-15 -1460 (|#1| (-1 |#1| |#1|) (-771) |#1|)) (-15 -3868 (|#1| (-1 |#1| (-771) |#1|) (-771) |#1|)))
-((-2420 ((|#2| |#1| |#2|) 9)) (-2411 ((|#1| |#1| |#2|) 8)))
-(((-679 |#1| |#2|) (-10 -7 (-15 -2411 (|#1| |#1| |#2|)) (-15 -2420 (|#2| |#1| |#2|))) (-1099) (-1099)) (T -679))
-((-2420 (*1 *2 *3 *2) (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-2411 (*1 *2 *2 *3) (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
-(-10 -7 (-15 -2411 (|#1| |#1| |#2|)) (-15 -2420 (|#2| |#1| |#2|)))
-((-4209 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -4209 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1099) (-1099) (-1099)) (T -680))
-((-4209 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2)))))
-(-10 -7 (-15 -4209 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-2231 (((-1214) $) 21)) (-2183 (((-644 (-1214)) $) 19)) (-3784 (($ (-644 (-1214)) (-1214)) 14)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 29) (($ (-1180)) NIL) (((-1180) $) NIL) (((-1214) $) 22) (($ (-1117)) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-681) (-13 (-1082) (-613 (-1214)) (-10 -8 (-15 -2725 ($ (-1117))) (-15 -3784 ($ (-644 (-1214)) (-1214))) (-15 -2183 ((-644 (-1214)) $)) (-15 -2231 ((-1214) $))))) (T -681))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-681)))) (-3784 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1214))) (-5 *3 (-1214)) (-5 *1 (-681)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-681)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-681)))))
-(-13 (-1082) (-613 (-1214)) (-10 -8 (-15 -2725 ($ (-1117))) (-15 -3784 ($ (-644 (-1214)) (-1214))) (-15 -2183 ((-644 (-1214)) $)) (-15 -2231 ((-1214) $))))
-((-3868 (((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)) 29)) (-3388 (((-1 |#1|) |#1|) 8)) (-2596 ((|#1| |#1|) 23)) (-2204 (((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2725 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-771)) 26)))
-(((-682 |#1|) (-10 -7 (-15 -3388 ((-1 |#1|) |#1|)) (-15 -2725 ((-1 |#1|) |#1|)) (-15 -2204 (|#1| (-1 |#1| |#1|))) (-15 -2204 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -2596 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -3868 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|)))) (-1099)) (T -682))
-((-3868 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099)) (-5 *1 (-682 *4)))) (-2596 (*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-2204 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566)) (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099)))) (-3388 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099)))))
-(-10 -7 (-15 -3388 ((-1 |#1|) |#1|)) (-15 -2725 ((-1 |#1|) |#1|)) (-15 -2204 (|#1| (-1 |#1| |#1|))) (-15 -2204 ((-644 |#1|) (-1 (-644 |#1|) (-644 |#1|)) (-566))) (-15 -2596 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-771))) (-15 -3868 ((-1 |#1| (-771) |#1|) (-1 |#1| (-771) |#1|))))
-((-2198 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1926 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3854 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2516 (((-1 |#2| |#1|) |#2|) 11)))
-(((-683 |#1| |#2|) (-10 -7 (-15 -2516 ((-1 |#2| |#1|) |#2|)) (-15 -1926 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3854 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2198 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1099) (-1099)) (T -683))
-((-2198 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)) (-4 *4 (-1099)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5)))) (-2516 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099)) (-4 *3 (-1099)))))
-(-10 -7 (-15 -2516 ((-1 |#2| |#1|) |#2|)) (-15 -1926 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3854 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2198 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-3872 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3055 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3128 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4379 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1458 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-684 |#1| |#2| |#3|) (-10 -7 (-15 -3055 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3128 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4379 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1458 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3872 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1099) (-1099) (-1099)) (T -684))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-1 *7 *5)) (-5 *1 (-684 *5 *6 *7)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099)))) (-4379 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099)) (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6)))))
-(-10 -7 (-15 -3055 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3128 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4379 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1458 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3872 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2553 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2101 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-685 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2101 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2101 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2553 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1049) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|) (-1049) (-375 |#5|) (-375 |#5|) (-687 |#5| |#6| |#7|)) (T -685))
-((-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9)))) (-2101 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1049)) (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))))
-(-10 -7 (-15 -2101 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2101 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2553 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-3739 (($ (-771) (-771)) 43)) (-4292 (($ $ $) 71)) (-2453 (($ |#3|) 66) (($ $) 67)) (-2192 (((-112) $) 38)) (-2564 (($ $ (-566) (-566)) 82)) (-3341 (($ $ (-566) (-566)) 83)) (-3812 (($ $ (-566) (-566) (-566) (-566)) 88)) (-2410 (($ $) 69)) (-2988 (((-112) $) 15)) (-3928 (($ $ (-566) (-566) $) 89)) (-2858 ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) 87)) (-2092 (($ (-771) |#2|) 53)) (-2656 (($ (-644 (-644 |#2|))) 51)) (-3662 (((-644 (-644 |#2|)) $) 78)) (-4228 (($ $ $) 70)) (-3967 (((-3 $ "failed") $ |#2|) 121)) (-3282 ((|#2| $ (-566) (-566)) NIL) ((|#2| $ (-566) (-566) |#2|) NIL) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-2626 (($ (-644 |#2|)) 54) (($ (-644 $)) 56)) (-3988 (((-112) $) 28)) (-2725 (($ |#4|) 61) (((-862) $) NIL)) (-4004 (((-112) $) 40)) (-2916 (($ $ |#2|) 123)) (-2905 (($ $ $) 93) (($ $) 96)) (-2897 (($ $ $) 91)) (** (($ $ (-771)) 110) (($ $ (-566)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-566) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
-(((-686 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2725 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2916 (|#1| |#1| |#2|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| (-566) (-566) |#1|)) (-15 -3812 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -3341 (|#1| |#1| (-566) (-566))) (-15 -2564 (|#1| |#1| (-566) (-566))) (-15 -2858 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -3282 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -3662 ((-644 (-644 |#2|)) |#1|)) (-15 -4292 (|#1| |#1| |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -2453 (|#1| |#3|)) (-15 -2725 (|#1| |#4|)) (-15 -2626 (|#1| (-644 |#1|))) (-15 -2626 (|#1| (-644 |#2|))) (-15 -2092 (|#1| (-771) |#2|)) (-15 -2656 (|#1| (-644 (-644 |#2|)))) (-15 -3739 (|#1| (-771) (-771))) (-15 -4004 ((-112) |#1|)) (-15 -2192 ((-112) |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -2988 ((-112) |#1|)) (-15 -2858 (|#2| |#1| (-566) (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) (-566)))) (-687 |#2| |#3| |#4|) (-1049) (-375 |#2|) (-375 |#2|)) (T -686))
-NIL
-(-10 -8 (-15 -2725 ((-862) |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2916 (|#1| |#1| |#2|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-771))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -3928 (|#1| |#1| (-566) (-566) |#1|)) (-15 -3812 (|#1| |#1| (-566) (-566) (-566) (-566))) (-15 -3341 (|#1| |#1| (-566) (-566))) (-15 -2564 (|#1| |#1| (-566) (-566))) (-15 -2858 (|#1| |#1| (-644 (-566)) (-644 (-566)) |#1|)) (-15 -3282 (|#1| |#1| (-644 (-566)) (-644 (-566)))) (-15 -3662 ((-644 (-644 |#2|)) |#1|)) (-15 -4292 (|#1| |#1| |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2453 (|#1| |#1|)) (-15 -2453 (|#1| |#3|)) (-15 -2725 (|#1| |#4|)) (-15 -2626 (|#1| (-644 |#1|))) (-15 -2626 (|#1| (-644 |#2|))) (-15 -2092 (|#1| (-771) |#2|)) (-15 -2656 (|#1| (-644 (-644 |#2|)))) (-15 -3739 (|#1| (-771) (-771))) (-15 -4004 ((-112) |#1|)) (-15 -2192 ((-112) |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -2988 ((-112) |#1|)) (-15 -2858 (|#2| |#1| (-566) (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) (-566))))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3739 (($ (-771) (-771)) 98)) (-4292 (($ $ $) 88)) (-2453 (($ |#2|) 92) (($ $) 91)) (-2192 (((-112) $) 100)) (-2564 (($ $ (-566) (-566)) 84)) (-3341 (($ $ (-566) (-566)) 83)) (-3812 (($ $ (-566) (-566) (-566) (-566)) 82)) (-2410 (($ $) 90)) (-2988 (((-112) $) 102)) (-2261 (((-112) $ (-771)) 8)) (-3928 (($ $ (-566) (-566) $) 81)) (-2858 ((|#1| $ (-566) (-566) |#1|) 45) (($ $ (-644 (-566)) (-644 (-566)) $) 85)) (-1629 (($ $ (-566) |#2|) 43)) (-3918 (($ $ (-566) |#3|) 42)) (-2092 (($ (-771) |#1|) 96)) (-2633 (($) 7 T CONST)) (-2594 (($ $) 68 (|has| |#1| (-308)))) (-1703 ((|#2| $ (-566)) 47)) (-4153 (((-771) $) 67 (|has| |#1| (-558)))) (-3031 ((|#1| $ (-566) (-566) |#1|) 44)) (-2975 ((|#1| $ (-566) (-566)) 49)) (-1523 (((-644 |#1|) $) 31)) (-2883 (((-771) $) 66 (|has| |#1| (-558)))) (-3260 (((-644 |#3|) $) 65 (|has| |#1| (-558)))) (-2368 (((-771) $) 52)) (-2631 (($ (-771) (-771) |#1|) 58)) (-2378 (((-771) $) 51)) (-2429 (((-112) $ (-771)) 9)) (-4362 ((|#1| $) 63 (|has| |#1| (-6 (-4417 "*"))))) (-2110 (((-566) $) 56)) (-4086 (((-566) $) 54)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2952 (((-566) $) 55)) (-4280 (((-566) $) 53)) (-2656 (($ (-644 (-644 |#1|))) 97)) (-3023 (($ (-1 |#1| |#1|) $) 35)) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-3662 (((-644 (-644 |#1|)) $) 87)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1764 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-4228 (($ $ $) 89)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) 57)) (-3967 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-558)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) (-566)) 50) ((|#1| $ (-566) (-566) |#1|) 48) (($ $ (-644 (-566)) (-644 (-566))) 86)) (-2626 (($ (-644 |#1|)) 95) (($ (-644 $)) 94)) (-3988 (((-112) $) 101)) (-3586 ((|#1| $) 64 (|has| |#1| (-6 (-4417 "*"))))) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-1428 ((|#3| $ (-566)) 46)) (-2725 (($ |#3|) 93) (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-4004 (((-112) $) 99)) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2916 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-2905 (($ $ $) 79) (($ $) 78)) (-2897 (($ $ $) 80)) (** (($ $ (-771)) 71) (($ $ (-566)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-566) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-687 |#1| |#2| |#3|) (-140) (-1049) (-375 |t#1|) (-375 |t#1|)) (T -687))
-((-2988 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-4004 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-3739 (*1 *1 *2 *2) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2656 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2092 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2725 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-2453 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-2453 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2410 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4228 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-4292 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3))))) (-3282 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2858 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2564 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3341 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3812 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3928 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2897 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2905 (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2905 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-687 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-687 *3 *2 *4)) (-4 *3 (-1049)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3967 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558)))) (-2916 (*1 *1 *1 *2) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-2594 (*1 *1 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049)))) (-1764 (*1 *1 *1) (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4416) (-6 -4415) (-15 -2988 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -2192 ((-112) $)) (-15 -4004 ((-112) $)) (-15 -3739 ($ (-771) (-771))) (-15 -2656 ($ (-644 (-644 |t#1|)))) (-15 -2092 ($ (-771) |t#1|)) (-15 -2626 ($ (-644 |t#1|))) (-15 -2626 ($ (-644 $))) (-15 -2725 ($ |t#3|)) (-15 -2453 ($ |t#2|)) (-15 -2453 ($ $)) (-15 -2410 ($ $)) (-15 -4228 ($ $ $)) (-15 -4292 ($ $ $)) (-15 -3662 ((-644 (-644 |t#1|)) $)) (-15 -3282 ($ $ (-644 (-566)) (-644 (-566)))) (-15 -2858 ($ $ (-644 (-566)) (-644 (-566)) $)) (-15 -2564 ($ $ (-566) (-566))) (-15 -3341 ($ $ (-566) (-566))) (-15 -3812 ($ $ (-566) (-566) (-566) (-566))) (-15 -3928 ($ $ (-566) (-566) $)) (-15 -2897 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2905 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-566) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-771))) (IF (|has| |t#1| (-558)) (-15 -3967 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2916 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -2594 ($ $)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -4153 ((-771) $)) (-15 -2883 ((-771) $)) (-15 -3260 ((-644 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4417 "*"))) (PROGN (-15 -3586 (|t#1| $)) (-15 -4362 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -1764 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-57 |#1| |#2| |#3|) . T) ((-1215) . T))
-((-2594 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-4153 (((-771) |#4|) 125 (|has| |#1| (-558)))) (-2883 (((-771) |#4|) 101 (|has| |#1| (-558)))) (-3260 (((-644 |#3|) |#4|) 108 (|has| |#1| (-558)))) (-4040 (((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-4362 ((|#1| |#4|) 57)) (-3166 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-558)))) (-1764 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-4142 ((|#4| |#4|) 93 (|has| |#1| (-558)))) (-3808 ((|#4| |#4| |#1| (-566) (-566)) 65)) (-4002 ((|#4| |#4| (-566) (-566)) 60)) (-2115 ((|#4| |#4| |#1| (-566) (-566)) 70)) (-3586 ((|#1| |#4|) 103)) (-4295 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-558)))))
-(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3586 (|#1| |#4|)) (-15 -4362 (|#1| |#4|)) (-15 -4002 (|#4| |#4| (-566) (-566))) (-15 -3808 (|#4| |#4| |#1| (-566) (-566))) (-15 -2115 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -4153 ((-771) |#4|)) (-15 -2883 ((-771) |#4|)) (-15 -3260 ((-644 |#3|) |#4|)) (-15 -4142 (|#4| |#4|)) (-15 -3166 ((-3 |#4| "failed") |#4|)) (-15 -4295 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2594 (|#4| |#4|)) (-15 -4040 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1764 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -688))
-((-1764 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-4040 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5)))) (-2594 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-4295 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-3166 (*1 *2 *2) (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-4142 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3260 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2883 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-4153 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2115 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-3808 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2)) (-4 *2 (-687 *3 *5 *6)))) (-4002 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2)) (-4 *2 (-687 *4 *5 *6)))) (-4362 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))) (-3586 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5)))))
-(-10 -7 (-15 -3586 (|#1| |#4|)) (-15 -4362 (|#1| |#4|)) (-15 -4002 (|#4| |#4| (-566) (-566))) (-15 -3808 (|#4| |#4| |#1| (-566) (-566))) (-15 -2115 (|#4| |#4| |#1| (-566) (-566))) (IF (|has| |#1| (-558)) (PROGN (-15 -4153 ((-771) |#4|)) (-15 -2883 ((-771) |#4|)) (-15 -3260 ((-644 |#3|) |#4|)) (-15 -4142 (|#4| |#4|)) (-15 -3166 ((-3 |#4| "failed") |#4|)) (-15 -4295 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -2594 (|#4| |#4|)) (-15 -4040 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1764 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3739 (($ (-771) (-771)) 64)) (-4292 (($ $ $) NIL)) (-2453 (($ (-1265 |#1|)) NIL) (($ $) NIL)) (-2192 (((-112) $) NIL)) (-2564 (($ $ (-566) (-566)) 22)) (-3341 (($ $ (-566) (-566)) NIL)) (-3812 (($ $ (-566) (-566) (-566) (-566)) NIL)) (-2410 (($ $) NIL)) (-2988 (((-112) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3928 (($ $ (-566) (-566) $) NIL)) (-2858 ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566)) $) NIL)) (-1629 (($ $ (-566) (-1265 |#1|)) NIL)) (-3918 (($ $ (-566) (-1265 |#1|)) NIL)) (-2092 (($ (-771) |#1|) 37)) (-2633 (($) NIL T CONST)) (-2594 (($ $) 46 (|has| |#1| (-308)))) (-1703 (((-1265 |#1|) $ (-566)) NIL)) (-4153 (((-771) $) 48 (|has| |#1| (-558)))) (-3031 ((|#1| $ (-566) (-566) |#1|) 69)) (-2975 ((|#1| $ (-566) (-566)) NIL)) (-1523 (((-644 |#1|) $) NIL)) (-2883 (((-771) $) 50 (|has| |#1| (-558)))) (-3260 (((-644 (-1265 |#1|)) $) 53 (|has| |#1| (-558)))) (-2368 (((-771) $) 32)) (-2631 (($ (-771) (-771) |#1|) 28)) (-2378 (((-771) $) 33)) (-2429 (((-112) $ (-771)) NIL)) (-4362 ((|#1| $) 44 (|has| |#1| (-6 (-4417 "*"))))) (-2110 (((-566) $) 10)) (-4086 (((-566) $) 11)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2952 (((-566) $) 14)) (-4280 (((-566) $) 65)) (-2656 (($ (-644 (-644 |#1|))) NIL)) (-3023 (($ (-1 |#1| |#1|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3662 (((-644 (-644 |#1|)) $) 76)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1764 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-4228 (($ $ $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3598 (($ $ |#1|) NIL)) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) (-566)) NIL) ((|#1| $ (-566) (-566) |#1|) NIL) (($ $ (-644 (-566)) (-644 (-566))) NIL)) (-2626 (($ (-644 |#1|)) NIL) (($ (-644 $)) NIL) (($ (-1265 |#1|)) 70)) (-3988 (((-112) $) NIL)) (-3586 ((|#1| $) 42 (|has| |#1| (-6 (-4417 "*"))))) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2150 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-1428 (((-1265 |#1|) $ (-566)) NIL)) (-2725 (($ (-1265 |#1|)) NIL) (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-4004 (((-112) $) NIL)) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $ $) NIL) (($ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) 38) (($ $ (-566)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-566) $) NIL) (((-1265 |#1|) $ (-1265 |#1|)) NIL) (((-1265 |#1|) (-1265 |#1|) $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-689 |#1|) (-13 (-687 |#1| (-1265 |#1|) (-1265 |#1|)) (-10 -8 (-15 -2626 ($ (-1265 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1764 ((-3 $ "failed") $)) |%noBranch|))) (-1049)) (T -689))
-((-1764 (*1 *1 *1) (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3)))))
-(-13 (-687 |#1| (-1265 |#1|) (-1265 |#1|)) (-10 -8 (-15 -2626 ($ (-1265 |#1|))) (IF (|has| |#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -1764 ((-3 $ "failed") $)) |%noBranch|)))
-((-2060 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 37)) (-3775 (((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|) 34)) (-2059 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771)) 43)) (-2934 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 27)) (-3874 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|)) 31) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 29)) (-3365 (((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|)) 33)) (-2790 (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 25)) (** (((-689 |#1|) (-689 |#1|) (-771)) 46)))
-(((-690 |#1|) (-10 -7 (-15 -2790 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2934 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3874 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3874 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3365 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -3775 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2060 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2059 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771)))) (-1049)) (T -690))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-2059 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-690 *4)))) (-2060 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3775 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3365 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3874 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-3874 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-2934 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))))
-(-10 -7 (-15 -2790 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2934 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3874 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3874 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -3365 ((-689 |#1|) (-689 |#1|) |#1| (-689 |#1|))) (-15 -3775 ((-689 |#1|) (-689 |#1|) (-689 |#1|) |#1|)) (-15 -2060 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2059 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-689 |#1|) (-771))) (-15 ** ((-689 |#1|) (-689 |#1|) (-771))))
-((-2023 (((-3 |#1| "failed") $) 18)) (-3343 ((|#1| $) NIL)) (-3690 (($) 7 T CONST)) (-2677 (($ |#1|) 8)) (-2725 (($ |#1|) 16) (((-862) $) 23)) (-3185 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -3690)) 11)) (-2908 ((|#1| $) 15)))
-(((-691 |#1|) (-13 (-1260) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -2677 ($ |#1|)) (-15 -3185 ((-112) $ (|[\|\|]| |#1|))) (-15 -3185 ((-112) $ (|[\|\|]| -3690))) (-15 -2908 (|#1| $)) (-15 -3690 ($) -3854))) (-613 (-862))) (T -691))
-((-2677 (*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112)) (-5 *1 (-691 *4)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3690)) (-5 *2 (-112)) (-5 *1 (-691 *4)) (-4 *4 (-613 (-862))))) (-2908 (*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))) (-3690 (*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))))
-(-13 (-1260) (-1038 |#1|) (-613 (-862)) (-10 -8 (-15 -2677 ($ |#1|)) (-15 -3185 ((-112) $ (|[\|\|]| |#1|))) (-15 -3185 ((-112) $ (|[\|\|]| -3690))) (-15 -2908 (|#1| $)) (-15 -3690 ($) -3854)))
-((-2480 ((|#2| |#2| |#4|) 33)) (-4316 (((-689 |#2|) |#3| |#4|) 39)) (-3922 (((-689 |#2|) |#2| |#4|) 38)) (-2158 (((-1265 |#2|) |#2| |#4|) 16)) (-1504 ((|#2| |#3| |#4|) 32)) (-1860 (((-689 |#2|) |#3| |#4| (-771) (-771)) 50)) (-1854 (((-689 |#2|) |#2| |#4| (-771)) 49)))
-(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2158 ((-1265 |#2|) |#2| |#4|)) (-15 -1504 (|#2| |#3| |#4|)) (-15 -2480 (|#2| |#2| |#4|)) (-15 -3922 ((-689 |#2|) |#2| |#4|)) (-15 -1854 ((-689 |#2|) |#2| |#4| (-771))) (-15 -4316 ((-689 |#2|) |#3| |#4|)) (-15 -1860 ((-689 |#2|) |#3| |#4| (-771) (-771)))) (-1099) (-900 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4415)))) (T -692))
-((-1860 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6)) (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4415)))))) (-4316 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6)) (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))) (-1854 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6)) (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4415)))))) (-3922 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))) (-2480 (*1 *2 *2 *3) (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4415)))))) (-1504 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))) (-2158 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1265 *3)) (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))))
-(-10 -7 (-15 -2158 ((-1265 |#2|) |#2| |#4|)) (-15 -1504 (|#2| |#3| |#4|)) (-15 -2480 (|#2| |#2| |#4|)) (-15 -3922 ((-689 |#2|) |#2| |#4|)) (-15 -1854 ((-689 |#2|) |#2| |#4| (-771))) (-15 -4316 ((-689 |#2|) |#3| |#4|)) (-15 -1860 ((-689 |#2|) |#3| |#4| (-771) (-771))))
-((-1624 (((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)) 20)) (-1602 ((|#1| (-689 |#2|)) 9)) (-2153 (((-689 |#1|) (-689 |#2|)) 18)))
-(((-693 |#1| |#2|) (-10 -7 (-15 -1602 (|#1| (-689 |#2|))) (-15 -2153 ((-689 |#1|) (-689 |#2|))) (-15 -1624 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|)))) (-558) (-992 |#1|)) (T -693))
-((-1624 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4))) (-5 *1 (-693 *4 *5)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558)) (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-693 *2 *4)))))
-(-10 -7 (-15 -1602 (|#1| (-689 |#2|))) (-15 -2153 ((-689 |#1|) (-689 |#2|))) (-15 -1624 ((-2 (|:| |num| (-689 |#1|)) (|:| |den| |#1|)) (-689 |#2|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3561 (((-689 (-699))) NIL) (((-689 (-699)) (-1265 $)) NIL)) (-2717 (((-699) $) NIL)) (-3622 (($ $) NIL (|has| (-699) (-1200)))) (-3474 (($ $) NIL (|has| (-699) (-1200)))) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| (-699) (-351)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-2885 (($ $) NIL (-2676 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-2555 (((-420 $) $) NIL (-2676 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-4028 (($ $) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1200))))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-2068 (((-112) $ $) NIL (|has| (-699) (-308)))) (-3733 (((-771)) NIL (|has| (-699) (-370)))) (-3601 (($ $) NIL (|has| (-699) (-1200)))) (-3449 (($ $) NIL (|has| (-699) (-1200)))) (-3648 (($ $) NIL (|has| (-699) (-1200)))) (-3500 (($ $) NIL (|has| (-699) (-1200)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-699) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-3343 (((-566) $) NIL) (((-699) $) NIL) (((-409 (-566)) $) NIL (|has| (-699) (-1038 (-409 (-566)))))) (-1452 (($ (-1265 (-699))) NIL) (($ (-1265 (-699)) (-1265 $)) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-699) (-351)))) (-3919 (($ $ $) NIL (|has| (-699) (-308)))) (-2340 (((-689 (-699)) $) NIL) (((-689 (-699)) $ (-1265 $)) NIL)) (-3717 (((-689 (-699)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-699))) (|:| |vec| (-1265 (-699)))) (-689 $) (-1265 $)) NIL) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-699) (-639 (-566)))) (((-689 (-566)) (-689 $)) NIL (|has| (-699) (-639 (-566))))) (-2553 (((-3 $ "failed") (-409 (-1171 (-699)))) NIL (|has| (-699) (-365))) (($ (-1171 (-699))) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-4041 (((-699) $) 29)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-699) (-547)))) (-1929 (((-112) $) NIL (|has| (-699) (-547)))) (-1847 (((-409 (-566)) $) NIL (|has| (-699) (-547)))) (-4153 (((-921)) NIL)) (-3424 (($) NIL (|has| (-699) (-370)))) (-3930 (($ $ $) NIL (|has| (-699) (-308)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| (-699) (-308)))) (-4183 (($) NIL (|has| (-699) (-351)))) (-1963 (((-112) $) NIL (|has| (-699) (-351)))) (-4205 (($ $) NIL (|has| (-699) (-351))) (($ $ (-771)) NIL (|has| (-699) (-351)))) (-1968 (((-112) $) NIL (-2676 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-4341 (((-2 (|:| |r| (-699)) (|:| |phi| (-699))) $) NIL (-12 (|has| (-699) (-1059)) (|has| (-699) (-1200))))) (-2722 (($) NIL (|has| (-699) (-1200)))) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-699) (-886 (-381)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-699) (-886 (-566))))) (-3077 (((-833 (-921)) $) NIL (|has| (-699) (-351))) (((-921) $) NIL (|has| (-699) (-351)))) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1200))))) (-3202 (((-699) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| (-699) (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-2323 (((-1171 (-699)) $) NIL (|has| (-699) (-365)))) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-2101 (($ (-1 (-699) (-699)) $) NIL)) (-4138 (((-921) $) NIL (|has| (-699) (-370)))) (-1565 (($ $) NIL (|has| (-699) (-1200)))) (-2542 (((-1171 (-699)) $) NIL)) (-1853 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| (-699) (-365)))) (-1342 (($) NIL (|has| (-699) (-351)) CONST)) (-2430 (($ (-921)) NIL (|has| (-699) (-370)))) (-3892 (($) NIL)) (-4052 (((-699) $) 31)) (-1944 (((-1119) $) NIL)) (-2723 (($) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-699) (-308)))) (-1885 (($ (-644 $)) NIL (|has| (-699) (-308))) (($ $ $) NIL (|has| (-699) (-308)))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| (-699) (-351)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-699) (-308)) (|has| (-699) (-909))))) (-4018 (((-420 $) $) NIL (-2676 (-12 (|has| (-699) (-308)) (|has| (-699) (-909))) (|has| (-699) (-365))))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-699) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| (-699) (-308)))) (-3967 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-699)) NIL (|has| (-699) (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-699) (-308)))) (-1535 (($ $) NIL (|has| (-699) (-1200)))) (-1754 (($ $ (-1175) (-699)) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-1175)) (-644 (-699))) NIL (|has| (-699) (-516 (-1175) (-699)))) (($ $ (-644 (-295 (-699)))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-295 (-699))) NIL (|has| (-699) (-310 (-699)))) (($ $ (-699) (-699)) NIL (|has| (-699) (-310 (-699)))) (($ $ (-644 (-699)) (-644 (-699))) NIL (|has| (-699) (-310 (-699))))) (-3792 (((-771) $) NIL (|has| (-699) (-308)))) (-3282 (($ $ (-699)) NIL (|has| (-699) (-287 (-699) (-699))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| (-699) (-308)))) (-2061 (((-699)) NIL) (((-699) (-1265 $)) NIL)) (-2816 (((-3 (-771) "failed") $ $) NIL (|has| (-699) (-351))) (((-771) $) NIL (|has| (-699) (-351)))) (-3009 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-1436 (((-689 (-699)) (-1265 $) (-1 (-699) (-699))) NIL (|has| (-699) (-365)))) (-2880 (((-1171 (-699))) NIL)) (-3658 (($ $) NIL (|has| (-699) (-1200)))) (-3515 (($ $) NIL (|has| (-699) (-1200)))) (-1344 (($) NIL (|has| (-699) (-351)))) (-3635 (($ $) NIL (|has| (-699) (-1200)))) (-3488 (($ $) NIL (|has| (-699) (-1200)))) (-3612 (($ $) NIL (|has| (-699) (-1200)))) (-3461 (($ $) NIL (|has| (-699) (-1200)))) (-2803 (((-689 (-699)) (-1265 $)) NIL) (((-1265 (-699)) $) NIL) (((-689 (-699)) (-1265 $) (-1265 $)) NIL) (((-1265 (-699)) $ (-1265 $)) NIL)) (-2150 (((-538) $) NIL (|has| (-699) (-614 (-538)))) (((-169 (-225)) $) NIL (|has| (-699) (-1022))) (((-169 (-381)) $) NIL (|has| (-699) (-1022))) (((-892 (-381)) $) NIL (|has| (-699) (-614 (-892 (-381))))) (((-892 (-566)) $) NIL (|has| (-699) (-614 (-892 (-566))))) (($ (-1171 (-699))) NIL) (((-1171 (-699)) $) NIL) (($ (-1265 (-699))) NIL) (((-1265 (-699)) $) NIL)) (-2558 (($ $) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-2676 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-351))))) (-1561 (($ (-699) (-699)) 12)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-566)) NIL) (($ (-699)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-566))) 19) (($ (-169 (-699))) 28) (($ (-169 (-701))) 25) (((-169 (-381)) $) 33) (($ (-409 (-566))) NIL (-2676 (|has| (-699) (-1038 (-409 (-566)))) (|has| (-699) (-365))))) (-2655 (($ $) NIL (|has| (-699) (-351))) (((-3 $ "failed") $) NIL (-2676 (-12 (|has| (-699) (-308)) (|has| $ (-145)) (|has| (-699) (-909))) (|has| (-699) (-145))))) (-1707 (((-1171 (-699)) $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) NIL)) (-3696 (($ $) NIL (|has| (-699) (-1200)))) (-3553 (($ $) NIL (|has| (-699) (-1200)))) (-1597 (((-112) $ $) NIL)) (-3670 (($ $) NIL (|has| (-699) (-1200)))) (-3528 (($ $) NIL (|has| (-699) (-1200)))) (-3719 (($ $) NIL (|has| (-699) (-1200)))) (-3577 (($ $) NIL (|has| (-699) (-1200)))) (-2711 (((-699) $) NIL (|has| (-699) (-1200)))) (-3076 (($ $) NIL (|has| (-699) (-1200)))) (-3589 (($ $) NIL (|has| (-699) (-1200)))) (-3705 (($ $) NIL (|has| (-699) (-1200)))) (-3566 (($ $) NIL (|has| (-699) (-1200)))) (-3682 (($ $) NIL (|has| (-699) (-1200)))) (-3541 (($ $) NIL (|has| (-699) (-1200)))) (-2274 (($ $) NIL (|has| (-699) (-1059)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-1 (-699) (-699))) NIL) (($ $ (-1 (-699) (-699)) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-1175)) NIL (|has| (-699) (-900 (-1175)))) (($ $ (-771)) NIL (|has| (-699) (-233))) (($ $) NIL (|has| (-699) (-233)))) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL (|has| (-699) (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| (-699) (-1200))) (($ $ (-409 (-566))) NIL (-12 (|has| (-699) (-1002)) (|has| (-699) (-1200)))) (($ $ (-566)) NIL (|has| (-699) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ (-699) $) NIL) (($ $ (-699)) NIL) (($ (-409 (-566)) $) NIL (|has| (-699) (-365))) (($ $ (-409 (-566))) NIL (|has| (-699) (-365)))))
-(((-694) (-13 (-389) (-166 (-699)) (-10 -8 (-15 -2725 ($ (-169 (-381)))) (-15 -2725 ($ (-169 (-566)))) (-15 -2725 ($ (-169 (-699)))) (-15 -2725 ($ (-169 (-701)))) (-15 -2725 ((-169 (-381)) $))))) (T -694))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-169 (-566))) (-5 *1 (-694)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-694)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-169 (-701))) (-5 *1 (-694)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694)))))
-(-13 (-389) (-166 (-699)) (-10 -8 (-15 -2725 ($ (-169 (-381)))) (-15 -2725 ($ (-169 (-566)))) (-15 -2725 ($ (-169 (-699)))) (-15 -2725 ($ (-169 (-701)))) (-15 -2725 ((-169 (-381)) $))))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-1607 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1985 (($ $) 63)) (-3806 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ |#1| $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1727 (((-644 (-2 (|:| -2484 |#1|) (|:| -1958 (-771)))) $) 62)) (-1873 (($) 50) (($ (-644 |#1|)) 49)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 51)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-695 |#1|) (-140) (-1099)) (T -695))
-((-1619 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-1985 (*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099)))) (-1727 (*1 *2 *1) (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-2 (|:| -2484 *3) (|:| -1958 (-771))))))))
-(-13 (-235 |t#1|) (-10 -8 (-15 -1619 ($ |t#1| $ (-771))) (-15 -1985 ($ $)) (-15 -1727 ((-644 (-2 (|:| -2484 |t#1|) (|:| -1958 (-771)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-2808 (((-644 |#1|) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))) (-566)) 66)) (-2911 ((|#1| |#1| (-566)) 62)) (-1885 ((|#1| |#1| |#1| (-566)) 46)) (-4018 (((-644 |#1|) |#1| (-566)) 49)) (-3799 ((|#1| |#1| (-566) |#1| (-566)) 40)) (-2634 (((-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))) |#1| (-566)) 61)))
-(((-696 |#1|) (-10 -7 (-15 -1885 (|#1| |#1| |#1| (-566))) (-15 -2911 (|#1| |#1| (-566))) (-15 -4018 ((-644 |#1|) |#1| (-566))) (-15 -2634 ((-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))) |#1| (-566))) (-15 -2808 ((-644 |#1|) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))) (-566))) (-15 -3799 (|#1| |#1| (-566) |#1| (-566)))) (-1241 (-566))) (T -696))
-((-3799 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1241 *3)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| -4018 *5) (|:| -3838 (-566))))) (-5 *4 (-566)) (-4 *5 (-1241 *4)) (-5 *2 (-644 *5)) (-5 *1 (-696 *5)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -4018 *3) (|:| -3838 *4)))) (-5 *1 (-696 *3)) (-4 *3 (-1241 *4)))) (-4018 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3)) (-4 *3 (-1241 *4)))) (-2911 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1241 *3)))) (-1885 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1241 *3)))))
-(-10 -7 (-15 -1885 (|#1| |#1| |#1| (-566))) (-15 -2911 (|#1| |#1| (-566))) (-15 -4018 ((-644 |#1|) |#1| (-566))) (-15 -2634 ((-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))) |#1| (-566))) (-15 -2808 ((-644 |#1|) (-644 (-2 (|:| -4018 |#1|) (|:| -3838 (-566)))) (-566))) (-15 -3799 (|#1| |#1| (-566) |#1| (-566))))
-((-4164 (((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2292 (((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 56) (((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 58) (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 60)) (-2652 (((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264))) NIL)) (-4217 (((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264))) 61)))
-(((-697) (-10 -7 (-15 -2292 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2292 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2292 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4217 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2652 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4164 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -697))
-((-4164 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697)))) (-2652 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-4217 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-2292 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697)))) (-2292 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))) (-2292 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697)))))
-(-10 -7 (-15 -2292 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2292 ((-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2292 ((-1132 (-225)) (-1132 (-225)) (-1 (-943 (-225)) (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4217 ((-1132 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1093 (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -2652 ((-1132 (-225)) (-317 (-566)) (-317 (-566)) (-317 (-566)) (-1 (-225) (-225)) (-1093 (-225)) (-644 (-264)))) (-15 -4164 ((-1 (-943 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
-((-4018 (((-420 (-1171 |#4|)) (-1171 |#4|)) 86) (((-420 |#4|) |#4|) 270)))
-(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-420 |#4|) |#4|)) (-15 -4018 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-351) (-949 |#3| |#2| |#1|)) (T -698))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))))
-(-10 -7 (-15 -4018 ((-420 |#4|) |#4|)) (-15 -4018 ((-420 (-1171 |#4|)) (-1171 |#4|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 100)) (-4191 (((-566) $) 34)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-1807 (($ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4028 (($ $) NIL)) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL)) (-2633 (($) NIL T CONST)) (-3995 (($ $) NIL)) (-2023 (((-3 (-566) "failed") $) 89) (((-3 (-409 (-566)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-3343 (((-566) $) 91) (((-409 (-566)) $) 83) (((-381) $) 84)) (-3919 (($ $ $) 112)) (-2313 (((-3 $ "failed") $) 103)) (-3930 (($ $ $) 111)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3006 (((-921)) 93) (((-921) (-921)) 92)) (-3421 (((-112) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL)) (-3077 (((-566) $) NIL)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL)) (-3202 (($ $) NIL)) (-2307 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2931 (((-566) (-566)) 97) (((-566)) 98)) (-3075 (($ $ $) NIL) (($) NIL (-12 (-3129 (|has| $ (-6 -4398))) (-3129 (|has| $ (-6 -4406)))))) (-1814 (((-566) (-566)) 95) (((-566)) 96)) (-3936 (($ $ $) NIL) (($) NIL (-12 (-3129 (|has| $ (-6 -4398))) (-3129 (|has| $ (-6 -4406)))))) (-1497 (((-566) $) 17)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 107)) (-1834 (((-921) (-566)) NIL (|has| $ (-6 -4406)))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL)) (-2311 (($ $) NIL)) (-1449 (($ (-566) (-566)) NIL) (($ (-566) (-566) (-921)) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) 108)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3428 (((-566) $) 24)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 110)) (-2016 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4406)))) (-2773 (((-921) (-566)) NIL (|has| $ (-6 -4406)))) (-2150 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) NIL)) (-2725 (((-862) $) 68) (($ (-566)) 79) (($ $) NIL) (($ (-409 (-566))) 82) (($ (-566)) 79) (($ (-409 (-566))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-701)) 71)) (-2875 (((-771)) 122 T CONST)) (-2823 (($ (-566) (-566) (-921)) 59)) (-2119 (($ $) NIL)) (-3194 (((-921)) NIL) (((-921) (-921)) NIL (|has| $ (-6 -4406)))) (-1479 (((-112) $ $) NIL)) (-1792 (((-921)) 46) (((-921) (-921)) 94)) (-1597 (((-112) $ $) NIL)) (-2274 (($ $) NIL)) (-3200 (($) 37 T CONST)) (-3214 (($) 18 T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 99)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 121)) (-2916 (($ $ $) 81)) (-2905 (($ $) 118) (($ $ $) 119)) (-2897 (($ $ $) 117)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 106)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 113) (($ $ $) 104) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-699) (-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -3006 ((-921) (-921))) (-15 -3006 ((-921))) (-15 -1792 ((-921) (-921))) (-15 -1814 ((-566) (-566))) (-15 -1814 ((-566))) (-15 -2931 ((-566) (-566))) (-15 -2931 ((-566))) (-15 -2725 ((-381) $)) (-15 -2725 ($ (-701))) (-15 -1497 ((-566) $)) (-15 -3428 ((-566) $)) (-15 -2823 ($ (-566) (-566) (-921)))))) (T -699))
-((-3428 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-3006 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-1814 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2931 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2931 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-699)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-699)))) (-2823 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699)))))
-(-13 (-406) (-389) (-365) (-1038 (-381)) (-1038 (-409 (-566))) (-147) (-10 -8 (-15 -3006 ((-921) (-921))) (-15 -3006 ((-921))) (-15 -1792 ((-921) (-921))) (-15 -1814 ((-566) (-566))) (-15 -1814 ((-566))) (-15 -2931 ((-566) (-566))) (-15 -2931 ((-566))) (-15 -2725 ((-381) $)) (-15 -2725 ($ (-701))) (-15 -1497 ((-566) $)) (-15 -3428 ((-566) $)) (-15 -2823 ($ (-566) (-566) (-921)))))
-((-2750 (((-689 |#1|) (-689 |#1|) |#1| |#1|) 88)) (-2594 (((-689 |#1|) (-689 |#1|) |#1|) 67)) (-1526 (((-689 |#1|) (-689 |#1|) |#1|) 89)) (-3407 (((-689 |#1|) (-689 |#1|)) 68)) (-4040 (((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|) 87)))
-(((-700 |#1|) (-10 -7 (-15 -3407 ((-689 |#1|) (-689 |#1|))) (-15 -2594 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -1526 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2750 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -4040 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|))) (-308)) (T -700))
-((-4040 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-700 *3)) (-4 *3 (-308)))) (-2750 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-1526 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-2594 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))) (-3407 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))))
-(-10 -7 (-15 -3407 ((-689 |#1|) (-689 |#1|))) (-15 -2594 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -1526 ((-689 |#1|) (-689 |#1|) |#1|)) (-15 -2750 ((-689 |#1|) (-689 |#1|) |#1| |#1|)) (-15 -4040 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3523 (($ $ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4312 (($ $ $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL)) (-2724 (($ $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) 31)) (-3343 (((-566) $) 29)) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL)) (-1929 (((-112) $) NIL)) (-1847 (((-409 (-566)) $) NIL)) (-3424 (($ $) NIL) (($) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-1826 (($ $ $ $) NIL)) (-3042 (($ $ $) NIL)) (-3421 (((-112) $) NIL)) (-1549 (($ $ $) NIL)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3842 (((-112) $) NIL)) (-1687 (((-112) $) NIL)) (-3869 (((-3 $ "failed") $) NIL)) (-2307 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2485 (($ $ $ $) NIL)) (-3075 (($ $ $) NIL)) (-1614 (((-921) (-921)) 10) (((-921)) 9)) (-3936 (($ $ $) NIL)) (-2086 (($ $) NIL)) (-1653 (($ $) NIL)) (-1853 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-2063 (($ $ $) NIL)) (-1342 (($) NIL T CONST)) (-3517 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ (-644 $)) NIL) (($ $ $) NIL)) (-2062 (($ $) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3934 (((-112) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL) (($ $ (-771)) NIL)) (-4302 (($ $) NIL)) (-2878 (($ $) NIL)) (-2150 (((-225) $) NIL) (((-381) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (((-566) $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) 28) (($ $) NIL) (($ (-566)) 28) (((-317 $) (-317 (-566))) 18)) (-2875 (((-771)) NIL T CONST)) (-1761 (((-112) $ $) NIL)) (-1672 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-1792 (($) NIL)) (-1597 (((-112) $ $) NIL)) (-1804 (($ $ $ $) NIL)) (-2274 (($ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $) NIL) (($ $ (-771)) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL)))
-(((-701) (-13 (-389) (-547) (-10 -8 (-15 -1614 ((-921) (-921))) (-15 -1614 ((-921))) (-15 -2725 ((-317 $) (-317 (-566))))))) (T -701))
-((-1614 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-1614 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-317 (-566))) (-5 *2 (-317 (-701))) (-5 *1 (-701)))))
-(-13 (-389) (-547) (-10 -8 (-15 -1614 ((-921) (-921))) (-15 -1614 ((-921))) (-15 -2725 ((-317 $) (-317 (-566))))))
-((-1366 (((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)) 19)) (-1954 (((-1 |#4| |#2| |#3|) (-1175)) 12)))
-(((-702 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1954 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -1366 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175)))) (-614 (-538)) (-1215) (-1215) (-1215)) (T -702))
-((-1366 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7)) (-4 *3 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215)) (-4 *7 (-1215)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7)) (-4 *4 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215)) (-4 *7 (-1215)))))
-(-10 -7 (-15 -1954 ((-1 |#4| |#2| |#3|) (-1175))) (-15 -1366 ((-1 |#4| |#2| |#3|) |#1| (-1175) (-1175))))
-((-3992 (((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)) 43) (((-1 (-225) (-225)) |#1| (-1175)) 48)))
-(((-703 |#1|) (-10 -7 (-15 -3992 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -3992 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175)))) (-614 (-538))) (T -703))
-((-3992 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538))))) (-3992 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3)) (-4 *3 (-614 (-538))))))
-(-10 -7 (-15 -3992 ((-1 (-225) (-225)) |#1| (-1175))) (-15 -3992 ((-1 (-225) (-225) (-225)) |#1| (-1175) (-1175))))
-((-1729 (((-1175) |#1| (-1175) (-644 (-1175))) 10) (((-1175) |#1| (-1175) (-1175) (-1175)) 13) (((-1175) |#1| (-1175) (-1175)) 12) (((-1175) |#1| (-1175)) 11)))
-(((-704 |#1|) (-10 -7 (-15 -1729 ((-1175) |#1| (-1175))) (-15 -1729 ((-1175) |#1| (-1175) (-1175))) (-15 -1729 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -1729 ((-1175) |#1| (-1175) (-644 (-1175))))) (-614 (-538))) (T -704))
-((-1729 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-1729 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-1729 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))) (-1729 (*1 *2 *3 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538))))))
-(-10 -7 (-15 -1729 ((-1175) |#1| (-1175))) (-15 -1729 ((-1175) |#1| (-1175) (-1175))) (-15 -1729 ((-1175) |#1| (-1175) (-1175) (-1175))) (-15 -1729 ((-1175) |#1| (-1175) (-644 (-1175)))))
-((-3356 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-705 |#1| |#2|) (-10 -7 (-15 -3356 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1215) (-1215)) (T -705))
-((-3356 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-705 *3 *4)) (-4 *3 (-1215)) (-4 *4 (-1215)))))
-(-10 -7 (-15 -3356 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-1889 (((-1 |#3| |#2|) (-1175)) 11)) (-1366 (((-1 |#3| |#2|) |#1| (-1175)) 21)))
-(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -1889 ((-1 |#3| |#2|) (-1175))) (-15 -1366 ((-1 |#3| |#2|) |#1| (-1175)))) (-614 (-538)) (-1215) (-1215)) (T -706))
-((-1366 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6)) (-4 *3 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215)))))
-(-10 -7 (-15 -1889 ((-1 |#3| |#2|) (-1175))) (-15 -1366 ((-1 |#3| |#2|) |#1| (-1175))))
-((-2500 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1265 (-644 (-1171 |#3|))) |#3|) 95)) (-1542 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|) 113)) (-3201 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1265 (-644 (-1171 |#3|))) |#3|) 47)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3201 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1265 (-644 (-1171 |#3|))) |#3|)) (-15 -1542 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -2500 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1265 (-644 (-1171 |#3|))) |#3|))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -707))
-((-2500 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13)) (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13)) (-5 *7 (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| *13))))) (-5 *8 (-644 (-771))) (-5 *9 (-1265 (-644 (-1171 *10)))) (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12)) (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13)))) (-1542 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9))) (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771))) (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11)) (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12))) (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12)))) (-3201 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11)) (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771))) (-5 *7 (-1265 (-644 (-1171 *8)))) (-4 *10 (-850)) (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793)) (-5 *1 (-707 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3201 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 |#3|) (-644 (-771)) (-644 (-1171 |#4|)) (-1265 (-644 (-1171 |#3|))) |#3|)) (-15 -1542 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#3|)) (-644 |#3|) (-644 |#4|) (-644 (-771)) |#3|)) (-15 -2500 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-644 |#2|) (-644 (-1171 |#4|)) (-644 |#3|) (-644 |#4|) (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| |#4|)))) (-644 (-771)) (-1265 (-644 (-1171 |#3|))) |#3|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-4358 (($ $) 48)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-4145 (($ |#1| (-771)) 46)) (-4090 (((-771) $) 50)) (-4334 ((|#1| $) 49)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3838 (((-771) $) 51)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-3623 ((|#1| $ (-771)) 47)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
-(((-708 |#1|) (-140) (-1049)) (T -708))
-((-3838 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-3623 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049)))))
-(-13 (-1049) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3838 ((-771) $)) (-15 -4090 ((-771) $)) (-15 -4334 (|t#1| $)) (-15 -4358 ($ $)) (-15 -3623 (|t#1| $ (-771))) (-15 -4145 ($ |t#1| (-771)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-2101 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-709 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2101 (|#6| (-1 |#4| |#1|) |#3|))) (-558) (-1241 |#1|) (-1241 (-409 |#2|)) (-558) (-1241 |#4|) (-1241 (-409 |#5|))) (T -709))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558)) (-4 *6 (-1241 *5)) (-4 *2 (-1241 (-409 *8))) (-5 *1 (-709 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1241 (-409 *6))) (-4 *8 (-1241 *7)))))
-(-10 -7 (-15 -2101 (|#6| (-1 |#4| |#1|) |#3|)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2427 (((-1157) (-862)) 39)) (-2498 (((-1270) (-1157)) 32)) (-1487 (((-1157) (-862)) 28)) (-4390 (((-1157) (-862)) 29)) (-2725 (((-862) $) NIL) (((-1157) (-862)) 27)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-710) (-13 (-1099) (-10 -7 (-15 -2725 ((-1157) (-862))) (-15 -1487 ((-1157) (-862))) (-15 -4390 ((-1157) (-862))) (-15 -2427 ((-1157) (-862))) (-15 -2498 ((-1270) (-1157)))))) (T -710))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-2427 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))) (-2498 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-710)))))
-(-13 (-1099) (-10 -7 (-15 -2725 ((-1157) (-862))) (-15 -1487 ((-1157) (-862))) (-15 -4390 ((-1157) (-862))) (-15 -2427 ((-1157) (-862))) (-15 -2498 ((-1270) (-1157)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) NIL)) (-2553 (($ |#1| |#2|) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2689 ((|#2| $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2641 (((-3 $ "failed") $ $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) ((|#1| $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -2689 (|#2| $)) (-15 -2725 (|#1| $)) (-15 -2553 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711))
-((-2689 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2725 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2641 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-365) (-10 -8 (-15 -2689 (|#2| $)) (-15 -2725 (|#1| $)) (-15 -2553 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $))))
-((-3979 (((-112) $ $) 92)) (-3545 (((-112) $) 36)) (-2729 (((-1265 |#1|) $ (-771)) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2437 (($ (-1171 |#1|)) NIL)) (-3983 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3921 (($ $ $) NIL (|has| |#1| (-558)))) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3733 (((-771)) 56 (|has| |#1| (-370)))) (-2166 (($ $ (-771)) NIL)) (-1867 (($ $ (-771)) NIL)) (-1790 ((|#2| |#2|) 52)) (-3951 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-2994 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) 40)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2553 (($ |#2|) 50)) (-2313 (((-3 $ "failed") $) 102)) (-3424 (($) 61 (|has| |#1| (-370)))) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-1438 (($ $ $) NIL)) (-2297 (($ $ $) NIL (|has| |#1| (-558)))) (-2772 (((-2 (|:| -1702 |#1|) (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-1737 (((-958 $)) 94)) (-2385 (($ $ |#1| (-771) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3077 (((-771) $ $) NIL (|has| |#1| (-558)))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-4157 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2248 (($ $ (-771)) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) 88) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-1081)) NIL) (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2689 ((|#2|) 53)) (-4090 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1336 (($ (-1 (-771) (-771)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1649 (((-1171 |#1|) $) NIL)) (-1742 (((-3 (-1081) "failed") $) NIL)) (-4138 (((-921) $) NIL (|has| |#1| (-370)))) (-2542 ((|#2| $) 49)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) 34)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-1481 (((-2 (|:| -2383 $) (|:| -3033 $)) $ (-771)) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-1081)) (|:| -3428 (-771))) "failed") $) NIL)) (-1879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1342 (($) NIL (|has| |#1| (-1150)) CONST)) (-2430 (($ (-921)) NIL (|has| |#1| (-370)))) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1371 (($ $) 93 (|has| |#1| (-351)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-4374 (((-3 $ "failed") $ (-771)) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 103 (|has| |#1| (-365)))) (-2061 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3009 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3838 (((-771) $) 38) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-4215 (((-958 $)) 42)) (-2035 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2725 (((-862) $) 71) (($ (-566)) NIL) (($ |#1|) 68) (($ (-1081)) NIL) (($ |#2|) 78) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) 73) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) 25 T CONST)) (-1805 (((-1265 |#1|) $) 86)) (-2892 (($ (-1265 |#1|)) 60)) (-3214 (($) 8 T CONST)) (-1316 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1771 (((-1265 |#1|) $) NIL)) (-2817 (((-112) $ $) 79)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) 82) (($ $ $) NIL)) (-2897 (($ $ $) 39)) (** (($ $ (-921)) NIL) (($ $ (-771)) 97)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 67) (($ $ $) 85) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
-(((-712 |#1| |#2|) (-13 (-1241 |#1|) (-616 |#2|) (-10 -8 (-15 -1790 (|#2| |#2|)) (-15 -2689 (|#2|)) (-15 -2553 ($ |#2|)) (-15 -2542 (|#2| $)) (-15 -1805 ((-1265 |#1|) $)) (-15 -2892 ($ (-1265 |#1|))) (-15 -1771 ((-1265 |#1|) $)) (-15 -1737 ((-958 $))) (-15 -4215 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -1371 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1049) (-1241 |#1|)) (T -712))
-((-1790 (*1 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1241 *3)))) (-2689 (*1 *2) (-12 (-4 *2 (-1241 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-2553 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1241 *3)))) (-2542 (*1 *2 *1) (-12 (-4 *2 (-1241 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049)))) (-1805 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1265 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1241 *3)))) (-2892 (*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1241 *3)))) (-1771 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-1265 *3)) (-5 *1 (-712 *3 *4)) (-4 *4 (-1241 *3)))) (-1737 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1241 *3)))) (-4215 (*1 *2) (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4)) (-4 *4 (-1241 *3)))) (-1371 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3)) (-4 *3 (-1241 *2)))))
-(-13 (-1241 |#1|) (-616 |#2|) (-10 -8 (-15 -1790 (|#2| |#2|)) (-15 -2689 (|#2|)) (-15 -2553 ($ |#2|)) (-15 -2542 (|#2| $)) (-15 -1805 ((-1265 |#1|) $)) (-15 -2892 ($ (-1265 |#1|))) (-15 -1771 ((-1265 |#1|) $)) (-15 -1737 ((-958 $))) (-15 -4215 ((-958 $))) (IF (|has| |#1| (-351)) (-15 -1371 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 ((|#1| $) 13)) (-1944 (((-1119) $) NIL)) (-3428 ((|#2| $) 12)) (-2738 (($ |#1| |#2|) 16)) (-2725 (((-862) $) NIL) (($ (-2 (|:| -2430 |#1|) (|:| -3428 |#2|))) 15) (((-2 (|:| -2430 |#1|) (|:| -3428 |#2|)) $) 14)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 11)))
-(((-713 |#1| |#2| |#3|) (-13 (-850) (-492 (-2 (|:| -2430 |#1|) (|:| -3428 |#2|))) (-10 -8 (-15 -3428 (|#2| $)) (-15 -2430 (|#1| $)) (-15 -2738 ($ |#1| |#2|)))) (-850) (-1099) (-1 (-112) (-2 (|:| -2430 |#1|) (|:| -3428 |#2|)) (-2 (|:| -2430 |#1|) (|:| -3428 |#2|)))) (T -713))
-((-3428 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850)) (-14 *4 (-1 (-112) (-2 (|:| -2430 *3) (|:| -3428 *2)) (-2 (|:| -2430 *3) (|:| -3428 *2)))))) (-2430 (*1 *2 *1) (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *3)) (-2 (|:| -2430 *2) (|:| -3428 *3)))))) (-2738 (*1 *1 *2 *3) (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099)) (-14 *4 (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *3)) (-2 (|:| -2430 *2) (|:| -3428 *3)))))))
-(-13 (-850) (-492 (-2 (|:| -2430 |#1|) (|:| -3428 |#2|))) (-10 -8 (-15 -3428 (|#2| $)) (-15 -2430 (|#1| $)) (-15 -2738 ($ |#1| |#2|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 66)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-3343 ((|#1| $) NIL) (((-114) $) 39)) (-2313 (((-3 $ "failed") $) 106)) (-2304 ((|#2| (-114) |#2|) 93)) (-3842 (((-112) $) NIL)) (-2814 (($ |#1| (-363 (-114))) 14)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2358 (($ $ (-1 |#2| |#2|)) 65)) (-2133 (($ $ (-1 |#2| |#2|)) 44)) (-3282 ((|#2| $ |#2|) 33)) (-1987 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2725 (((-862) $) 73) (($ (-566)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) 37 T CONST)) (-1479 (((-112) $ $) NIL)) (-4295 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-3200 (($) 21 T CONST)) (-3214 (($) 9 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) 48) (($ $ $) NIL)) (-2897 (($ $ $) 83)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) 64)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
-(((-714 |#1| |#2|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4295 ($ $)) (-15 -4295 ($ $ $)) (-15 -1987 (|#1| |#1|))) |%noBranch|) (-15 -2133 ($ $ (-1 |#2| |#2|))) (-15 -2358 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2304 (|#2| (-114) |#2|)) (-15 -2814 ($ |#1| (-363 (-114)))))) (-1049) (-648 |#1|)) (T -714))
-((-4295 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-1987 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3)) (-4 *3 (-648 *2)))) (-2133 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (-2358 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4)) (-4 *4 (-648 *3)))) (-2304 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2)) (-4 *2 (-648 *4)))) (-2814 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4)) (-4 *4 (-648 *2)))))
-(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4295 ($ $)) (-15 -4295 ($ $ $)) (-15 -1987 (|#1| |#1|))) |%noBranch|) (-15 -2133 ($ $ (-1 |#2| |#2|))) (-15 -2358 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2304 (|#2| (-114) |#2|)) (-15 -2814 ($ |#1| (-363 (-114))))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 33)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2553 (($ |#1| |#2|) 25)) (-2313 (((-3 $ "failed") $) 51)) (-3842 (((-112) $) 35)) (-2689 ((|#2| $) 12)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 52)) (-1944 (((-1119) $) NIL)) (-2641 (((-3 $ "failed") $ $) 50)) (-2725 (((-862) $) 24) (($ (-566)) 19) ((|#1| $) 13)) (-2875 (((-771)) 28 T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 16 T CONST)) (-3214 (($) 30 T CONST)) (-2817 (((-112) $ $) 41)) (-2905 (($ $) 46) (($ $ $) 40)) (-2897 (($ $ $) 43)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 21) (($ $ $) 20)))
-(((-715 |#1| |#2| |#3| |#4| |#5|) (-13 (-1049) (-10 -8 (-15 -2689 (|#2| $)) (-15 -2725 (|#1| $)) (-15 -2553 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -2313 ((-3 $ "failed") $)) (-15 -4282 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -715))
-((-2313 (*1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2689 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2725 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2553 (*1 *1 *2 *3) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2641 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4282 (*1 *1 *1) (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1049) (-10 -8 (-15 -2689 (|#2| $)) (-15 -2725 (|#1| $)) (-15 -2553 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -2313 ((-3 $ "failed") $)) (-15 -4282 ($ $))))
-((* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-716 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-717 |#2|) (-172)) (T -716))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-717 |#1|) (-140) (-172)) (T -717))
-NIL
-(-13 (-111 |t#1| |t#1|) (-640 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-2724 (($ |#1|) 17) (($ $ |#1|) 20)) (-2673 (($ |#1|) 18) (($ $ |#1|) 21)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3842 (((-112) $) NIL)) (-3247 (($ |#1| |#1| |#1| |#1|) 8)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 16)) (-1944 (((-1119) $) NIL)) (-1754 ((|#1| $ |#1|) 24) (((-833 |#1|) $ (-833 |#1|)) 32)) (-2558 (($ $ $) NIL)) (-1726 (($ $ $) NIL)) (-2725 (((-862) $) 39)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 9 T CONST)) (-2817 (((-112) $ $) 48)) (-2916 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 14)))
-(((-718 |#1|) (-13 (-475) (-10 -8 (-15 -3247 ($ |#1| |#1| |#1| |#1|)) (-15 -2724 ($ |#1|)) (-15 -2673 ($ |#1|)) (-15 -2313 ($)) (-15 -2724 ($ $ |#1|)) (-15 -2673 ($ $ |#1|)) (-15 -2313 ($ $)) (-15 -1754 (|#1| $ |#1|)) (-15 -1754 ((-833 |#1|) $ (-833 |#1|))))) (-365)) (T -718))
-((-3247 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2724 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2673 (*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2313 (*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2724 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2673 (*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-2313 (*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-1754 (*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))) (-1754 (*1 *2 *1 *2) (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3)))))
-(-13 (-475) (-10 -8 (-15 -3247 ($ |#1| |#1| |#1| |#1|)) (-15 -2724 ($ |#1|)) (-15 -2673 ($ |#1|)) (-15 -2313 ($)) (-15 -2724 ($ $ |#1|)) (-15 -2673 ($ $ |#1|)) (-15 -2313 ($ $)) (-15 -1754 (|#1| $ |#1|)) (-15 -1754 ((-833 |#1|) $ (-833 |#1|)))))
-((-3801 (($ $ (-921)) 21)) (-3510 (($ $ (-921)) 22)) (** (($ $ (-921)) 10)))
-(((-719 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -3510 (|#1| |#1| (-921))) (-15 -3801 (|#1| |#1| (-921)))) (-720)) (T -719))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-921))) (-15 -3510 (|#1| |#1| (-921))) (-15 -3801 (|#1| |#1| (-921))))
-((-3979 (((-112) $ $) 7)) (-3801 (($ $ (-921)) 16)) (-3510 (($ $ (-921)) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 17)))
-(((-720) (-140)) (T -720))
-((* (*1 *1 *1 *1) (-4 *1 (-720))) (-3801 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (-3510 (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921)))))
-(-13 (-1099) (-10 -8 (-15 * ($ $ $)) (-15 -3801 ($ $ (-921))) (-15 -3510 ($ $ (-921))) (-15 ** ($ $ (-921)))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3801 (($ $ (-921)) NIL) (($ $ (-771)) 21)) (-3842 (((-112) $) 10)) (-3510 (($ $ (-921)) NIL) (($ $ (-771)) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) 16)))
-(((-721 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -3510 (|#1| |#1| (-771))) (-15 -3801 (|#1| |#1| (-771))) (-15 -3842 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3510 (|#1| |#1| (-921))) (-15 -3801 (|#1| |#1| (-921)))) (-722)) (T -721))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-771))) (-15 -3510 (|#1| |#1| (-771))) (-15 -3801 (|#1| |#1| (-771))) (-15 -3842 ((-112) |#1|)) (-15 ** (|#1| |#1| (-921))) (-15 -3510 (|#1| |#1| (-921))) (-15 -3801 (|#1| |#1| (-921))))
-((-3979 (((-112) $ $) 7)) (-2784 (((-3 $ "failed") $) 18)) (-3801 (($ $ (-921)) 16) (($ $ (-771)) 23)) (-2313 (((-3 $ "failed") $) 20)) (-3842 (((-112) $) 24)) (-4220 (((-3 $ "failed") $) 19)) (-3510 (($ $ (-921)) 15) (($ $ (-771)) 22)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3214 (($) 25 T CONST)) (-2817 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 21)) (* (($ $ $) 17)))
-(((-722) (-140)) (T -722))
-((-3214 (*1 *1) (-4 *1 (-722))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (-3801 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-3510 (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))) (-2313 (*1 *1 *1) (|partial| -4 *1 (-722))) (-4220 (*1 *1 *1) (|partial| -4 *1 (-722))) (-2784 (*1 *1 *1) (|partial| -4 *1 (-722))))
-(-13 (-720) (-10 -8 (-15 (-3214) ($) -3854) (-15 -3842 ((-112) $)) (-15 -3801 ($ $ (-771))) (-15 -3510 ($ $ (-771))) (-15 ** ($ $ (-771))) (-15 -2313 ((-3 $ "failed") $)) (-15 -4220 ((-3 $ "failed") $)) (-15 -2784 ((-3 $ "failed") $))))
-(((-102) . T) ((-613 (-862)) . T) ((-720) . T) ((-1099) . T))
-((-3733 (((-771)) 42)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-3343 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 23)) (-2553 (($ |#3|) NIL) (((-3 $ "failed") (-409 |#3|)) 53)) (-2313 (((-3 $ "failed") $) 73)) (-3424 (($) 47)) (-3202 ((|#2| $) 21)) (-2723 (($) 18)) (-3009 (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-1436 (((-689 |#2|) (-1265 $) (-1 |#2| |#2|)) 68)) (-2150 (((-1265 |#2|) $) NIL) (($ (-1265 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1707 ((|#3| $) 39)) (-2227 (((-1265 $)) 36)))
-(((-723 |#1| |#2| |#3|) (-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3424 (|#1|)) (-15 -3733 ((-771))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1436 ((-689 |#2|) (-1265 |#1|) (-1 |#2| |#2|))) (-15 -2553 ((-3 |#1| "failed") (-409 |#3|))) (-15 -2150 (|#1| |#3|)) (-15 -2553 (|#1| |#3|)) (-15 -2723 (|#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2150 (|#3| |#1|)) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -2227 ((-1265 |#1|))) (-15 -1707 (|#3| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|))) (-724 |#2| |#3|) (-172) (-1241 |#2|)) (T -723))
-((-3733 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-771)) (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5)))))
-(-10 -8 (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3424 (|#1|)) (-15 -3733 ((-771))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -1436 ((-689 |#2|) (-1265 |#1|) (-1 |#2| |#2|))) (-15 -2553 ((-3 |#1| "failed") (-409 |#3|))) (-15 -2150 (|#1| |#3|)) (-15 -2553 (|#1| |#3|)) (-15 -2723 (|#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2150 (|#3| |#1|)) (-15 -2150 (|#1| (-1265 |#2|))) (-15 -2150 ((-1265 |#2|) |#1|)) (-15 -2227 ((-1265 |#1|))) (-15 -1707 (|#3| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -2313 ((-3 |#1| "failed") |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-1780 (($ $) 103 (|has| |#1| (-365)))) (-3286 (((-112) $) 105 (|has| |#1| (-365)))) (-3561 (((-689 |#1|) (-1265 $)) 53) (((-689 |#1|)) 68)) (-2717 ((|#1| $) 59)) (-3374 (((-1188 (-921) (-771)) (-566)) 155 (|has| |#1| (-351)))) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 122 (|has| |#1| (-365)))) (-2555 (((-420 $) $) 123 (|has| |#1| (-365)))) (-2068 (((-112) $ $) 113 (|has| |#1| (-365)))) (-3733 (((-771)) 96 (|has| |#1| (-370)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 178 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 176 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 173)) (-3343 (((-566) $) 177 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 175 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 174)) (-1452 (($ (-1265 |#1|) (-1265 $)) 55) (($ (-1265 |#1|)) 71)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-3919 (($ $ $) 117 (|has| |#1| (-365)))) (-2340 (((-689 |#1|) $ (-1265 $)) 60) (((-689 |#1|) $) 66)) (-3717 (((-689 (-566)) (-689 $)) 172 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 171 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 170) (((-689 |#1|) (-689 $)) 169)) (-2553 (($ |#2|) 166) (((-3 $ "failed") (-409 |#2|)) 163 (|has| |#1| (-365)))) (-2313 (((-3 $ "failed") $) 37)) (-4153 (((-921)) 61)) (-3424 (($) 99 (|has| |#1| (-370)))) (-3930 (($ $ $) 116 (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 111 (|has| |#1| (-365)))) (-4183 (($) 157 (|has| |#1| (-351)))) (-1963 (((-112) $) 158 (|has| |#1| (-351)))) (-4205 (($ $ (-771)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-1968 (((-112) $) 124 (|has| |#1| (-365)))) (-3077 (((-921) $) 160 (|has| |#1| (-351))) (((-833 (-921)) $) 146 (|has| |#1| (-351)))) (-3842 (((-112) $) 35)) (-3202 ((|#1| $) 58)) (-3869 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 120 (|has| |#1| (-365)))) (-2323 ((|#2| $) 51 (|has| |#1| (-365)))) (-4138 (((-921) $) 98 (|has| |#1| (-370)))) (-2542 ((|#2| $) 164)) (-1853 (($ (-644 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-1390 (((-1157) $) 10)) (-4282 (($ $) 125 (|has| |#1| (-365)))) (-1342 (($) 151 (|has| |#1| (-351)) CONST)) (-2430 (($ (-921)) 97 (|has| |#1| (-370)))) (-1944 (((-1119) $) 11)) (-2723 (($) 168)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 110 (|has| |#1| (-365)))) (-1885 (($ (-644 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) 154 (|has| |#1| (-351)))) (-4018 (((-420 $) $) 121 (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 118 (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 112 (|has| |#1| (-365)))) (-3792 (((-771) $) 114 (|has| |#1| (-365)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 115 (|has| |#1| (-365)))) (-2061 ((|#1| (-1265 $)) 54) ((|#1|) 67)) (-2816 (((-771) $) 159 (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) 147 (|has| |#1| (-351)))) (-3009 (($ $) 145 (-2676 (-3144 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 143 (-2676 (-3144 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 141 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 140 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 139 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 138 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-1436 (((-689 |#1|) (-1265 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2880 ((|#2|) 167)) (-1344 (($) 156 (|has| |#1| (-351)))) (-2803 (((-1265 |#1|) $ (-1265 $)) 57) (((-689 |#1|) (-1265 $) (-1265 $)) 56) (((-1265 |#1|) $) 73) (((-689 |#1|) (-1265 $)) 72)) (-2150 (((-1265 |#1|) $) 70) (($ (-1265 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 153 (|has| |#1| (-351)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-409 (-566))) 95 (-2676 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2655 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-1707 ((|#2| $) 52)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-2227 (((-1265 $)) 74)) (-1597 (((-112) $ $) 104 (|has| |#1| (-365)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $) 144 (-2676 (-3144 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) 142 (-2676 (-3144 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) 137 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175))) 136 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1175) (-771)) 135 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-771))) 134 (-3144 (|has| |#1| (-900 (-1175))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-771)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 129 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-409 (-566)) $) 128 (|has| |#1| (-365))) (($ $ (-409 (-566))) 127 (|has| |#1| (-365)))))
-(((-724 |#1| |#2|) (-140) (-172) (-1241 |t#1|)) (T -724))
-((-2723 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1241 *2)))) (-2880 (*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1241 *3)))) (-2553 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1241 *3)))) (-2150 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1241 *3)))) (-2542 (*1 *2 *1) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1241 *3)))) (-2553 (*1 *1 *2) (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-724 *3 *4)))) (-1436 (*1 *2 *3 *4) (-12 (-5 *3 (-1265 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1241 *5)) (-5 *2 (-689 *5)))))
-(-13 (-411 |t#1| |t#2|) (-172) (-614 |t#2|) (-413 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2723 ($)) (-15 -2880 (|t#2|)) (-15 -2553 ($ |t#2|)) (-15 -2150 ($ |t#2|)) (-15 -2542 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -2553 ((-3 $ "failed") (-409 |t#2|))) (-15 -1436 ((-689 |t#1|) (-1265 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2676 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) . T) ((-614 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2676 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-404) |has| |#1| (-351)) ((-370) -2676 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-411 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-558) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 |#1|) . T) ((-640 $) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-717 |#1|) . T) ((-717 $) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175)))) ((-920) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-351)) ((-1219) -2676 (|has| |#1| (-351)) (|has| |#1| (-365))))
-((-2633 (($) 11)) (-2313 (((-3 $ "failed") $) 14)) (-3842 (((-112) $) 10)) (** (($ $ (-921)) NIL) (($ $ (-771)) 20)))
-(((-725 |#1|) (-10 -8 (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -3842 ((-112) |#1|)) (-15 -2633 (|#1|)) (-15 ** (|#1| |#1| (-921)))) (-726)) (T -725))
-NIL
-(-10 -8 (-15 -2313 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-771))) (-15 -3842 ((-112) |#1|)) (-15 -2633 (|#1|)) (-15 ** (|#1| |#1| (-921))))
-((-3979 (((-112) $ $) 7)) (-2633 (($) 19 T CONST)) (-2313 (((-3 $ "failed") $) 16)) (-3842 (((-112) $) 18)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3214 (($) 20 T CONST)) (-2817 (((-112) $ $) 6)) (** (($ $ (-921)) 14) (($ $ (-771)) 17)) (* (($ $ $) 15)))
-(((-726) (-140)) (T -726))
-((-3214 (*1 *1) (-4 *1 (-726))) (-2633 (*1 *1) (-4 *1 (-726))) (-3842 (*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771)))) (-2313 (*1 *1 *1) (|partial| -4 *1 (-726))))
-(-13 (-1111) (-10 -8 (-15 (-3214) ($) -3854) (-15 -2633 ($) -3854) (-15 -3842 ((-112) $)) (-15 ** ($ $ (-771))) (-15 -2313 ((-3 $ "failed") $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1111) . T) ((-1099) . T))
-((-2380 (((-2 (|:| -1741 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3993 (((-2 (|:| -1741 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2085 ((|#2| (-409 |#2|) (-1 |#2| |#2|)) 13)) (-2442 (((-2 (|:| |poly| |#2|) (|:| -1741 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)) 48)))
-(((-727 |#1| |#2|) (-10 -7 (-15 -3993 ((-2 (|:| -1741 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2380 ((-2 (|:| -1741 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2085 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -2442 ((-2 (|:| |poly| |#2|) (|:| -1741 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|)))) (-365) (-1241 |#1|)) (T -727))
-((-2442 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -1741 (-409 *6)) (|:| |special| (-409 *6)))) (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1241 *5)) (-5 *1 (-727 *5 *2)) (-4 *5 (-365)))) (-2380 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1741 (-420 *3)) (|:| |special| (-420 *3)))) (-5 *1 (-727 *5 *3)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1741 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3)))))
-(-10 -7 (-15 -3993 ((-2 (|:| -1741 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2380 ((-2 (|:| -1741 (-420 |#2|)) (|:| |special| (-420 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2085 (|#2| (-409 |#2|) (-1 |#2| |#2|))) (-15 -2442 ((-2 (|:| |poly| |#2|) (|:| -1741 (-409 |#2|)) (|:| |special| (-409 |#2|))) (-409 |#2|) (-1 |#2| |#2|))))
-((-2291 ((|#7| (-644 |#5|) |#6|) NIL)) (-2101 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
-(((-728 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2101 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2291 (|#7| (-644 |#5|) |#6|))) (-850) (-793) (-793) (-1049) (-1049) (-949 |#4| |#2| |#1|) (-949 |#5| |#3| |#1|)) (T -728))
-((-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1049)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-4 *2 (-949 *9 *7 *5)) (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793)) (-4 *4 (-949 *8 *6 *5)))))
-(-10 -7 (-15 -2101 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2291 (|#7| (-644 |#5|) |#6|)))
-((-2101 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2101 (|#7| (-1 |#2| |#1|) |#6|))) (-850) (-850) (-793) (-793) (-1049) (-949 |#5| |#3| |#1|) (-949 |#5| |#4| |#2|)) (T -729))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-850)) (-4 *6 (-850)) (-4 *7 (-793)) (-4 *9 (-1049)) (-4 *2 (-949 *9 *8 *6)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-793)) (-4 *4 (-949 *9 *7 *5)))))
-(-10 -7 (-15 -2101 (|#7| (-1 |#2| |#1|) |#6|)))
-((-4018 (((-420 |#4|) |#4|) 42)))
-(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175))))) (-308) (-949 (-952 |#3|) |#1| |#2|)) (T -730))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175)))))) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-949 (-952 *6) *4 *5)))))
-(-10 -7 (-15 -4018 ((-420 |#4|) |#4|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-864 |#1|)) $) NIL)) (-3983 (((-1171 $) $ (-864 |#1|)) NIL) (((-1171 |#2|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-1780 (($ $) NIL (|has| |#2| (-558)))) (-3286 (((-112) $) NIL (|has| |#2| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-864 |#1|))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2885 (($ $) NIL (|has| |#2| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-864 |#1|) "failed") $) NIL)) (-3343 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-864 |#1|) $) NIL)) (-2994 (($ $ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#2| (-909)))) (-2385 (($ $ |#2| (-533 (-864 |#1|)) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-864 |#1|) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-4157 (($ (-1171 |#2|) (-864 |#1|)) NIL) (($ (-1171 $) (-864 |#1|)) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#2| (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-864 |#1|)) NIL)) (-4090 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-1336 (($ (-1 (-533 (-864 |#1|)) (-533 (-864 |#1|))) $) NIL)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1742 (((-3 (-864 |#1|) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#2| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1390 (((-1157) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-864 |#1|)) (|:| -3428 (-771))) "failed") $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#2| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#2| (-909)))) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-864 |#1|) |#2|) NIL) (($ $ (-644 (-864 |#1|)) (-644 |#2|)) NIL) (($ $ (-864 |#1|) $) NIL) (($ $ (-644 (-864 |#1|)) (-644 $)) NIL)) (-2061 (($ $ (-864 |#1|)) NIL (|has| |#2| (-172)))) (-3009 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-3838 (((-533 (-864 |#1|)) $) NIL) (((-771) $ (-864 |#1|)) NIL) (((-644 (-771)) $ (-644 (-864 |#1|))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-864 |#1|) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-864 |#1|) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-4330 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-864 |#1|)) NIL (|has| |#2| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-864 |#1|)) NIL) (($ $) NIL (|has| |#2| (-558))) (($ (-409 (-566))) NIL (-2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566))))))) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-533 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#2| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-864 |#1|)) NIL) (($ $ (-644 (-864 |#1|))) NIL) (($ $ (-864 |#1|) (-771)) NIL) (($ $ (-644 (-864 |#1|)) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-731 |#1| |#2|) (-949 |#2| (-533 (-864 |#1|)) (-864 |#1|)) (-644 (-1175)) (-1049)) (T -731))
-NIL
-(-949 |#2| (-533 (-864 |#1|)) (-864 |#1|))
-((-3990 (((-2 (|:| -3288 (-952 |#3|)) (|:| -4335 (-952 |#3|))) |#4|) 14)) (-3195 ((|#4| |#4| |#2|) 33)) (-3422 ((|#4| (-409 (-952 |#3|)) |#2|) 64)) (-2907 ((|#4| (-1171 (-952 |#3|)) |#2|) 77)) (-1598 ((|#4| (-1171 |#4|) |#2|) 51)) (-1984 ((|#4| |#4| |#2|) 54)) (-4018 (((-420 |#4|) |#4|) 40)))
-(((-732 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3990 ((-2 (|:| -3288 (-952 |#3|)) (|:| -4335 (-952 |#3|))) |#4|)) (-15 -1984 (|#4| |#4| |#2|)) (-15 -1598 (|#4| (-1171 |#4|) |#2|)) (-15 -3195 (|#4| |#4| |#2|)) (-15 -2907 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -3422 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -4018 ((-420 |#4|) |#4|))) (-793) (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)))) (-558) (-949 (-409 (-952 |#3|)) |#1| |#2|)) (T -732))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))) (-3422 (*1 *2 *3 *4) (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))))) (-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))))) (-3195 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-1598 (*1 *2 *3 *4) (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793)) (-4 *4 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *6 (-558)))) (-1984 (*1 *2 *2 *3) (-12 (-4 *4 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *5 (-558)) (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3)))) (-3990 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *6 (-558)) (-5 *2 (-2 (|:| -3288 (-952 *6)) (|:| -4335 (-952 *6)))) (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))))
-(-10 -7 (-15 -3990 ((-2 (|:| -3288 (-952 |#3|)) (|:| -4335 (-952 |#3|))) |#4|)) (-15 -1984 (|#4| |#4| |#2|)) (-15 -1598 (|#4| (-1171 |#4|) |#2|)) (-15 -3195 (|#4| |#4| |#2|)) (-15 -2907 (|#4| (-1171 (-952 |#3|)) |#2|)) (-15 -3422 (|#4| (-409 (-952 |#3|)) |#2|)) (-15 -4018 ((-420 |#4|) |#4|)))
-((-4018 (((-420 |#4|) |#4|) 54)))
-(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-420 |#4|) |#4|))) (-793) (-850) (-13 (-308) (-147)) (-949 (-409 |#3|) |#1| |#2|)) (T -733))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-949 (-409 *6) *4 *5)))))
-(-10 -7 (-15 -4018 ((-420 |#4|) |#4|)))
-((-2101 (((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)) 18)))
-(((-734 |#1| |#2| |#3|) (-10 -7 (-15 -2101 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|)))) (-1049) (-1049) (-726)) (T -734))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-735 *5 *7)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *7 (-726)) (-5 *2 (-735 *6 *7)) (-5 *1 (-734 *5 *6 *7)))))
-(-10 -7 (-15 -2101 ((-735 |#2| |#3|) (-1 |#2| |#1|) (-735 |#1| |#3|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 38)) (-3564 (((-644 (-2 (|:| -1702 |#1|) (|:| -3562 |#2|))) $) 39)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3733 (((-771)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-3343 ((|#2| $) NIL) ((|#1| $) NIL)) (-4358 (($ $) 104 (|has| |#2| (-850)))) (-2313 (((-3 $ "failed") $) 87)) (-3424 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) 72)) (-2966 (((-644 $) $) 54)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| |#2|) 17)) (-2101 (($ (-1 |#1| |#1|) $) 70)) (-4138 (((-921) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4323 ((|#2| $) 103 (|has| |#2| (-850)))) (-4334 ((|#1| $) 102 (|has| |#2| (-850)))) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 101) (($ (-566)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-644 (-2 (|:| -1702 |#1|) (|:| -3562 |#2|)))) 11)) (-3624 (((-644 |#1|) $) 56)) (-3623 ((|#1| $ |#2|) 117)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 12 T CONST)) (-3214 (($) 46 T CONST)) (-2817 (((-112) $ $) 107)) (-2905 (($ $) 63) (($ $ $) NIL)) (-2897 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-735 |#1| |#2|) (-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -4145 ($ |#1| |#2|)) (-15 -3623 (|#1| $ |#2|)) (-15 -2725 ($ (-644 (-2 (|:| -1702 |#1|) (|:| -3562 |#2|))))) (-15 -3564 ((-644 (-2 (|:| -1702 |#1|) (|:| -3562 |#2|))) $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (-15 -3819 ((-112) $)) (-15 -3624 ((-644 |#1|) $)) (-15 -2966 ((-644 $) $)) (-15 -2436 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -4323 (|#2| $)) (-15 -4334 (|#1| $)) (-15 -4358 ($ $))) |%noBranch|))) (-1049) (-726)) (T -735))
-((-4145 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726)))) (-3623 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -1702 *3) (|:| -3562 *4)))) (-4 *3 (-1049)) (-4 *4 (-726)) (-5 *1 (-735 *3 *4)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -1702 *3) (|:| -3562 *4)))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-735 *3 *4)) (-4 *4 (-726)))) (-3819 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-3624 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2966 (*1 *2 *1) (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-2436 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726)))) (-4323 (*1 *2 *1) (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2)) (-4 *3 (-1049)))) (-4334 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *3 (-726)))) (-4358 (*1 *1 *1) (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049)) (-4 *3 (-726)))))
-(-13 (-1049) (-1038 |#2|) (-1038 |#1|) (-10 -8 (-15 -4145 ($ |#1| |#2|)) (-15 -3623 (|#1| $ |#2|)) (-15 -2725 ($ (-644 (-2 (|:| -1702 |#1|) (|:| -3562 |#2|))))) (-15 -3564 ((-644 (-2 (|:| -1702 |#1|) (|:| -3562 |#2|))) $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (-15 -3819 ((-112) $)) (-15 -3624 ((-644 |#1|) $)) (-15 -2966 ((-644 $) $)) (-15 -2436 ((-771) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-850)) (PROGN (-15 -4323 (|#2| $)) (-15 -4334 (|#1| $)) (-15 -4358 ($ $))) |%noBranch|)))
-((-3979 (((-112) $ $) 19)) (-2672 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3913 (($ $ $) 73)) (-4199 (((-112) $ $) 74)) (-2261 (((-112) $ (-771)) 8)) (-2583 (($ (-644 |#1|)) 69) (($) 68)) (-1607 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1985 (($ $) 63)) (-3806 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ |#1| $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4155 (((-112) $ $) 65)) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22)) (-1799 (($ $ $) 70)) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-1944 (((-1119) $) 21)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1727 (((-644 (-2 (|:| -2484 |#1|) (|:| -1958 (-771)))) $) 62)) (-2818 (($ $ |#1|) 72) (($ $ $) 71)) (-1873 (($) 50) (($ (-644 |#1|)) 49)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 51)) (-2725 (((-862) $) 18)) (-4087 (($ (-644 |#1|)) 67) (($) 66)) (-1479 (((-112) $ $) 23)) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20)) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-736 |#1|) (-140) (-1099)) (T -736))
-NIL
-(-13 (-695 |t#1|) (-1097 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-695 |#1|) . T) ((-1097 |#1|) . T) ((-1099) . T) ((-1215) . T))
-((-3979 (((-112) $ $) NIL)) (-2672 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3913 (($ $ $) 99)) (-4199 (((-112) $ $) 107)) (-2261 (((-112) $ (-771)) NIL)) (-2583 (($ (-644 |#1|)) 26) (($) 17)) (-1607 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1985 (($ $) 85)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) 70 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4415))) (($ |#1| $ (-566)) 75) (($ (-1 (-112) |#1|) $ (-566)) 78)) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (($ |#1| $ (-566)) 80) (($ (-1 (-112) |#1|) $ (-566)) 81)) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 32 (|has| $ (-6 -4415)))) (-4155 (((-112) $ $) 106)) (-3920 (($) 15) (($ |#1|) 28) (($ (-644 |#1|)) 23)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) 38)) (-3938 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 89)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1799 (($ $ $) 97)) (-2668 ((|#1| $) 62)) (-1619 (($ |#1| $) 63) (($ |#1| $ (-771)) 86)) (-1944 (((-1119) $) NIL)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1613 ((|#1| $) 61)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 56)) (-3906 (($) 14)) (-1727 (((-644 (-2 (|:| -2484 |#1|) (|:| -1958 (-771)))) $) 55)) (-2818 (($ $ |#1|) NIL) (($ $ $) 98)) (-1873 (($) 16) (($ (-644 |#1|)) 25)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) 68 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 79)) (-2150 (((-538) $) 36 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 22)) (-2725 (((-862) $) 49)) (-4087 (($ (-644 |#1|)) 27) (($) 18)) (-1479 (((-112) $ $) NIL)) (-3619 (($ (-644 |#1|)) 24)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 103)) (-3991 (((-771) $) 67 (|has| $ (-6 -4415)))))
-(((-737 |#1|) (-13 (-736 |#1|) (-10 -8 (-6 -4415) (-6 -4416) (-15 -3920 ($)) (-15 -3920 ($ |#1|)) (-15 -3920 ($ (-644 |#1|))) (-15 -2565 ((-644 |#1|) $)) (-15 -1752 ($ |#1| $ (-566))) (-15 -1752 ($ (-1 (-112) |#1|) $ (-566))) (-15 -2367 ($ |#1| $ (-566))) (-15 -2367 ($ (-1 (-112) |#1|) $ (-566))))) (-1099)) (T -737))
-((-3920 (*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-3920 (*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-3920 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099)))) (-1752 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-1752 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4)))) (-2367 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099)))) (-2367 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099)) (-5 *1 (-737 *4)))))
-(-13 (-736 |#1|) (-10 -8 (-6 -4415) (-6 -4416) (-15 -3920 ($)) (-15 -3920 ($ |#1|)) (-15 -3920 ($ (-644 |#1|))) (-15 -2565 ((-644 |#1|) $)) (-15 -1752 ($ |#1| $ (-566))) (-15 -1752 ($ (-1 (-112) |#1|) $ (-566))) (-15 -2367 ($ |#1| $ (-566))) (-15 -2367 ($ (-1 (-112) |#1|) $ (-566)))))
-((-1708 (((-1270) (-1157)) 8)))
-(((-738) (-10 -7 (-15 -1708 ((-1270) (-1157))))) (T -738))
-((-1708 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-738)))))
-(-10 -7 (-15 -1708 ((-1270) (-1157))))
-((-2971 (((-644 |#1|) (-644 |#1|) (-644 |#1|)) 15)))
-(((-739 |#1|) (-10 -7 (-15 -2971 ((-644 |#1|) (-644 |#1|) (-644 |#1|)))) (-850)) (T -739))
-((-2971 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3)))))
-(-10 -7 (-15 -2971 ((-644 |#1|) (-644 |#1|) (-644 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 |#2|) $) 148)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 141 (|has| |#1| (-558)))) (-1780 (($ $) 140 (|has| |#1| (-558)))) (-3286 (((-112) $) 138 (|has| |#1| (-558)))) (-3622 (($ $) 97 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 80 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) 20)) (-4028 (($ $) 79 (|has| |#1| (-38 (-409 (-566)))))) (-3601 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-3648 (($ $) 95 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) 18 T CONST)) (-4358 (($ $) 132)) (-2313 (((-3 $ "failed") $) 37)) (-2447 (((-952 |#1|) $ (-771)) 110) (((-952 |#1|) $ (-771) (-771)) 109)) (-2039 (((-112) $) 149)) (-2722 (($) 107 (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-771) $ |#2|) 112) (((-771) $ |#2| (-771)) 111)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 78 (|has| |#1| (-38 (-409 (-566)))))) (-3819 (((-112) $) 130)) (-4145 (($ $ (-644 |#2|) (-644 (-533 |#2|))) 147) (($ $ |#2| (-533 |#2|)) 146) (($ |#1| (-533 |#2|)) 131) (($ $ |#2| (-771)) 114) (($ $ (-644 |#2|) (-644 (-771))) 113)) (-2101 (($ (-1 |#1| |#1|) $) 129)) (-1565 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) 127)) (-4334 ((|#1| $) 126)) (-1390 (((-1157) $) 10)) (-1879 (($ $ |#2|) 108 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) 11)) (-3964 (($ $ (-771)) 115)) (-3967 (((-3 $ "failed") $ $) 142 (|has| |#1| (-558)))) (-1535 (($ $) 105 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (($ $ |#2| $) 123) (($ $ (-644 |#2|) (-644 $)) 122) (($ $ (-644 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-644 $) (-644 $)) 118)) (-3009 (($ $ |#2|) 46) (($ $ (-644 |#2|)) 45) (($ $ |#2| (-771)) 44) (($ $ (-644 |#2|) (-644 (-771))) 43)) (-3838 (((-533 |#2|) $) 128)) (-3658 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 83 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 93 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 84 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 85 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 150)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-558))) (($ (-409 (-566))) 135 (|has| |#1| (-38 (-409 (-566)))))) (-3623 ((|#1| $ (-533 |#2|)) 133) (($ $ |#2| (-771)) 117) (($ $ (-644 |#2|) (-644 (-771))) 116)) (-2655 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3696 (($ $) 103 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 91 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) 139 (|has| |#1| (-558)))) (-3670 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 101 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 89 (|has| |#1| (-38 (-409 (-566)))))) (-3076 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 99 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 87 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 86 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ |#2|) 42) (($ $ (-644 |#2|)) 41) (($ $ |#2| (-771)) 40) (($ $ (-644 |#2|) (-644 (-771))) 39)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ $) 106 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 77 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 136 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
-(((-740 |#1| |#2|) (-140) (-1049) (-850)) (T -740))
-((-3623 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-3623 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-850)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049)) (-4 *2 (-850)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-3077 (*1 *2 *1 *3) (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3077 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-2447 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049)) (-4 *5 (-850)) (-5 *2 (-952 *4)))) (-1879 (*1 *1 *1 *2) (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850)) (-4 *3 (-38 (-409 (-566)))))))
-(-13 (-900 |t#2|) (-973 |t#1| (-533 |t#2|) |t#2|) (-516 |t#2| $) (-310 $) (-10 -8 (-15 -3623 ($ $ |t#2| (-771))) (-15 -3623 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -3964 ($ $ (-771))) (-15 -4145 ($ $ |t#2| (-771))) (-15 -4145 ($ $ (-644 |t#2|) (-644 (-771)))) (-15 -3077 ((-771) $ |t#2|)) (-15 -3077 ((-771) $ |t#2| (-771))) (-15 -2447 ((-952 |t#1|) $ (-771))) (-15 -2447 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $ |t#2|)) (-6 (-1002)) (-6 (-1200))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-533 |#2|)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-291) |has| |#1| (-558)) ((-310 $) . T) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 |#2| $) . T) ((-516 $ $) . T) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 |#2|) . T) ((-973 |#1| #0# |#2|) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1200) |has| |#1| (-38 (-409 (-566)))) ((-1203) |has| |#1| (-38 (-409 (-566)))))
-((-4018 (((-420 (-1171 |#4|)) (-1171 |#4|)) 30) (((-420 |#4|) |#4|) 26)))
-(((-741 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-420 |#4|) |#4|)) (-15 -4018 ((-420 (-1171 |#4|)) (-1171 |#4|)))) (-850) (-793) (-13 (-308) (-147)) (-949 |#3| |#2| |#1|)) (T -741))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))))
-(-10 -7 (-15 -4018 ((-420 |#4|) |#4|)) (-15 -4018 ((-420 (-1171 |#4|)) (-1171 |#4|))))
-((-4353 (((-420 |#4|) |#4| |#2|) 142)) (-3982 (((-420 |#4|) |#4|) NIL)) (-2555 (((-420 (-1171 |#4|)) (-1171 |#4|)) 127) (((-420 |#4|) |#4|) 52)) (-2213 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -4018 (-1171 |#4|)) (|:| -3428 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 81)) (-4037 (((-1171 |#3|) (-1171 |#3|) (-566)) 168)) (-4328 (((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771)) 75)) (-2542 (((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|)) 79)) (-2206 (((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|))) 27)) (-3107 (((-2 (|:| -4144 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566)) 72)) (-1674 (((-566) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566))))) 164)) (-2821 ((|#4| (-566) (-420 |#4|)) 73)) (-2444 (((-112) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566)))) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566))))) NIL)))
-(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2555 ((-420 |#4|) |#4|)) (-15 -2555 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3982 ((-420 |#4|) |#4|)) (-15 -1674 ((-566) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566)))))) (-15 -4353 ((-420 |#4|) |#4| |#2|)) (-15 -3107 ((-2 (|:| -4144 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -2213 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -4018 (-1171 |#4|)) (|:| -3428 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2206 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2821 (|#4| (-566) (-420 |#4|))) (-15 -2444 ((-112) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566)))) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566)))))) (-15 -2542 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -4328 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -4037 ((-1171 |#3|) (-1171 |#3|) (-566)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -742))
-((-4037 (*1 *2 *2 *3) (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-4328 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771)))) (-2542 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10)) (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850)) (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10)) (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5)) (-5 *3 (-1171 *5)))) (-2444 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-2 (|:| -4018 (-1171 *6)) (|:| -3428 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-2821 (*1 *2 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6)) (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-308)))) (-2206 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-5 *2 (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8)) (|:| |Lfact| (-644 (-2 (|:| -4018 (-1171 *8)) (|:| -3428 (-566))))) (|:| |ctpol| *8))) (-5 *1 (-742 *6 *7 *8 *9)))) (-2213 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-644 (-2 (|:| -4018 (-1171 *9)) (|:| -3428 (-566))))))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)))) (-3107 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-5 *2 (-2 (|:| -4144 (-1171 *9)) (|:| |polval| (-1171 *8)))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8)))) (-4353 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4018 (-1171 *6)) (|:| -3428 (-566))))) (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-3982 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))) (-2555 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2555 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))))
-(-10 -7 (-15 -2555 ((-420 |#4|) |#4|)) (-15 -2555 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3982 ((-420 |#4|) |#4|)) (-15 -1674 ((-566) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566)))))) (-15 -4353 ((-420 |#4|) |#4| |#2|)) (-15 -3107 ((-2 (|:| -4144 (-1171 |#4|)) (|:| |polval| (-1171 |#3|))) (-1171 |#4|) (-1171 |#3|) (-566))) (-15 -2213 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-644 (-2 (|:| -4018 (-1171 |#4|)) (|:| -3428 (-566)))))) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2206 ((-2 (|:| |upol| (-1171 |#3|)) (|:| |Lval| (-644 |#3|)) (|:| |Lfact| (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566))))) (|:| |ctpol| |#3|)) (-1171 |#4|) (-644 |#2|) (-644 (-644 |#3|)))) (-15 -2821 (|#4| (-566) (-420 |#4|))) (-15 -2444 ((-112) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566)))) (-644 (-2 (|:| -4018 (-1171 |#3|)) (|:| -3428 (-566)))))) (-15 -2542 ((-3 (-644 (-1171 |#4|)) "failed") (-1171 |#4|) (-1171 |#3|) (-1171 |#3|) |#4| (-644 |#2|) (-644 (-771)) (-644 |#3|))) (-15 -4328 ((-644 (-771)) (-1171 |#4|) (-644 |#2|) (-771))) (-15 -4037 ((-1171 |#3|) (-1171 |#3|) (-566))))
-((-2284 (($ $ (-921)) 17)))
-(((-743 |#1| |#2|) (-10 -8 (-15 -2284 (|#1| |#1| (-921)))) (-744 |#2|) (-172)) (T -743))
-NIL
-(-10 -8 (-15 -2284 (|#1| |#1| (-921))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-3801 (($ $ (-921)) 31)) (-2284 (($ $ (-921)) 38)) (-3510 (($ $ (-921)) 32)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-1726 (($ $ $) 28)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2481 (($ $ $ $) 29)) (-2586 (($ $ $) 27)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-744 |#1|) (-140) (-172)) (T -744))
-((-2284 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172)))))
-(-13 (-761) (-717 |t#1|) (-10 -8 (-15 -2284 ($ $ (-921)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-720) . T) ((-761) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T))
-((-1775 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 25)) (-3634 (((-1035) (-689 (-225)) (-566) (-112) (-566)) 24)))
-(((-745) (-10 -7 (-15 -3634 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -1775 ((-1035) (-689 (-225)) (-566) (-112) (-566))))) (T -745))
-((-1775 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745)))) (-3634 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-745)))))
-(-10 -7 (-15 -3634 ((-1035) (-689 (-225)) (-566) (-112) (-566))) (-15 -1775 ((-1035) (-689 (-225)) (-566) (-112) (-566))))
-((-2623 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) 43)) (-1389 (((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) 39)) (-2419 (((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) 32)))
-(((-746) (-10 -7 (-15 -2419 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -1389 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -2623 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN))))))) (T -746))
-((-2623 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-1389 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035)) (-5 *1 (-746)))) (-2419 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) (-5 *2 (-1035)) (-5 *1 (-746)))))
-(-10 -7 (-15 -2419 ((-1035) (-225) (-225) (-225) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -1389 ((-1035) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN))))) (-15 -2623 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN))))))
-((-2869 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 34)) (-3376 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 33)) (-3259 (((-1035) (-566) (-689 (-225)) (-566)) 32)) (-1498 (((-1035) (-566) (-689 (-225)) (-566)) 31)) (-1352 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 30)) (-3359 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-3139 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-4107 (((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-2246 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-2747 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-4349 (((-1035) (-566) (-689 (-225)) (-566)) 22)) (-2947 (((-1035) (-566) (-689 (-225)) (-566)) 21)))
-(((-747) (-10 -7 (-15 -2947 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4349 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2747 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2246 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4107 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3139 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3359 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1352 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1498 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3259 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3376 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2869 ((-1035) (-566) (-566) (-689 (-225)) (-566))))) (T -747))
-((-2869 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3376 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3259 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1498 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-1352 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3359 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-3139 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-4107 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2246 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2747 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-4349 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))) (-2947 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-747)))))
-(-10 -7 (-15 -2947 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -4349 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -2747 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2246 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4107 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3139 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3359 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1352 ((-1035) (-566) (-566) (-1157) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1498 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3259 ((-1035) (-566) (-689 (-225)) (-566))) (-15 -3376 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2869 ((-1035) (-566) (-566) (-689 (-225)) (-566))))
-((-2302 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1822 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566)) 51)) (-2974 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) 50)) (-2046 (((-1035) (-225) (-225) (-566) (-566) (-566) (-566)) 46)) (-3721 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 45)) (-2216 (((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 44)) (-3815 (((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 43)) (-3366 (((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) 42)) (-2461 (((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) 38)) (-2696 (((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) 37)) (-3264 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) 33)) (-3048 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) 32)))
-(((-748) (-10 -7 (-15 -3048 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -3264 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -2696 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -2461 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -3366 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3815 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2216 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3721 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2046 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -2974 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -1822 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -2302 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))))) (T -748))
-((-2302 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-1822 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2974 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2046 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3721 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2216 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3815 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3366 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2461 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-2696 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3264 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) (-5 *2 (-1035)) (-5 *1 (-748)))) (-3048 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) (-5 *2 (-1035)) (-5 *1 (-748)))))
-(-10 -7 (-15 -3048 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -3264 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -2696 ((-1035) (-225) (-225) (-566) (-689 (-225)) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -2461 ((-1035) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))) (-15 -3366 ((-1035) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3815 ((-1035) (-225) (-225) (-225) (-225) (-566) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2216 ((-1035) (-225) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -3721 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G))))) (-15 -2046 ((-1035) (-225) (-225) (-566) (-566) (-566) (-566))) (-15 -2974 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))) (-15 -1822 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-566))) (-15 -2302 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-225) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))))
-((-3140 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2786 (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390)) 69) (((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2739 (((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) 57)) (-2225 (((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 50)) (-1566 (((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3416 (((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2389 (((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) 42)) (-3785 (((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) 38)))
-(((-749) (-10 -7 (-15 -3785 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2389 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3416 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1566 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2225 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -2739 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -2786 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -2786 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -3140 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -749))
-((-3140 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2786 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2786 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2739 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2225 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035)) (-5 *1 (-749)))) (-1566 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3416 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-2389 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))) (-3785 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))))
-(-10 -7 (-15 -3785 ((-1035) (-225) (-566) (-566) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2389 ((-1035) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -3416 ((-1035) (-225) (-566) (-566) (-225) (-1157) (-225) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -1566 ((-1035) (-225) (-566) (-566) (-1157) (-566) (-225) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))) (-15 -2225 ((-1035) (-689 (-225)) (-689 (-225)) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))) (-15 -2739 ((-1035) (-225) (-225) (-566) (-225) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG))))) (-15 -2786 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))) (-15 -2786 ((-1035) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))) (-390) (-390))) (-15 -3140 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP))))))
-((-2543 (((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566)) 45)) (-4014 (((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) 41)) (-4176 (((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 23)))
-(((-750) (-10 -7 (-15 -4176 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4014 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -2543 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566))))) (T -750))
-((-2543 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225))) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4014 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035)) (-5 *1 (-750)))) (-4176 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-750)))))
-(-10 -7 (-15 -4176 ((-1035) (-566) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4014 ((-1035) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-1157) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY))))) (-15 -2543 ((-1035) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-675 (-225)) (-566))))
-((-4097 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566)) 35)) (-1587 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566)) 34)) (-1971 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566)) 33)) (-4135 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-4056 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-2584 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566)) 27)) (-1982 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 24)) (-1679 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566)) 23)) (-4126 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 22)) (-2628 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 21)))
-(((-751) (-10 -7 (-15 -2628 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4126 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1679 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1982 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2584 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4056 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4135 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1971 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -1587 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -4097 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566))))) (T -751))
-((-4097 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1587 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1971 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4135 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4056 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2584 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1982 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-1679 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-4126 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))) (-2628 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-751)))))
-(-10 -7 (-15 -2628 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -4126 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1679 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1982 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -2584 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-225) (-566))) (-15 -4056 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -4135 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1971 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-689 (-225)) (-225) (-225) (-566))) (-15 -1587 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-225) (-225) (-566))) (-15 -4097 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-689 (-225)) (-225) (-225) (-566))))
-((-3167 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 45)) (-2470 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566)) 44)) (-2560 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566)) 43)) (-3235 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 42)) (-1388 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566)) 41)) (-1418 (((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 40)) (-2454 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566)) 39)) (-3925 (((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566))) 38)) (-3015 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566)) 35)) (-4108 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566)) 34)) (-2300 (((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566)) 33)) (-1938 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 32)) (-3646 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566)) 31)) (-3864 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566)) 30)) (-2872 (((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 29)) (-2180 (((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566)) 28)) (-3050 (((-1035) (-566) (-689 (-225)) (-225) (-566)) 24)) (-4339 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 21)))
-(((-752) (-10 -7 (-15 -4339 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3050 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -2180 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -2872 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3864 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -3646 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -1938 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2300 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -4108 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -3015 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3925 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -2454 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -1418 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -1388 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3235 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2560 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -2470 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3167 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))))) (T -752))
-((-3167 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2470 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2560 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3235 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1388 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1418 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2454 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3925 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3015 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4108 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2300 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-1938 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3646 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3864 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2872 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-2180 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-3050 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))) (-4339 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-752)))))
-(-10 -7 (-15 -4339 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3050 ((-1035) (-566) (-689 (-225)) (-225) (-566))) (-15 -2180 ((-1035) (-566) (-566) (-566) (-225) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-566)) (-566) (-566) (-566))) (-15 -2872 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -3864 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566) (-566) (-566))) (-15 -3646 ((-1035) (-566) (-225) (-225) (-689 (-225)) (-566) (-566) (-225) (-566))) (-15 -1938 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2300 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566))) (-15 -4108 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566))) (-15 -3015 ((-1035) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3925 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)))) (-15 -2454 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566) (-566) (-566) (-225) (-689 (-225)) (-566))) (-15 -1418 ((-1035) (-1157) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -1388 ((-1035) (-1157) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3235 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2560 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))) (-15 -2470 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3167 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566) (-689 (-225)) (-689 (-225)) (-566) (-566) (-566))))
-((-2694 (((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566)) 63)) (-3255 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 62)) (-1846 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) 58)) (-4092 (((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566)) 51)) (-1568 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) 50)) (-2615 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2122 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3496 (((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) 38)))
-(((-753) (-10 -7 (-15 -3496 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2122 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -2615 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -1568 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -4092 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -1846 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -3255 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2694 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566))))) (T -753))
-((-2694 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-3255 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1846 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-4092 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-753)))) (-1568 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2615 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-2122 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1035)) (-5 *1 (-753)))) (-3496 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))))
-(-10 -7 (-15 -3496 ((-1035) (-566) (-225) (-225) (-566) (-225) (-112) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2122 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))) (-15 -2615 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))) (-15 -1568 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))) (-15 -4092 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-566) (-566) (-689 (-225)) (-566))) (-15 -1846 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-225) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-112) (-112) (-112) (-566) (-566) (-689 (-225)) (-689 (-566)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))) (-15 -3255 ((-1035) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-566) (-112) (-225) (-566) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-566) (-566) (-566) (-566) (-566) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-566) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))) (-15 -2694 ((-1035) (-566) (-566) (-566) (-225) (-689 (-225)) (-566) (-689 (-225)) (-566))))
-((-1364 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 47)) (-1903 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566)) 46)) (-3722 (((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 45)) (-2813 (((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 40)) (-4156 (((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566)) 39)) (-3300 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-566)) 36)) (-3217 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566)) 35)) (-2080 (((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566)) 34)) (-2469 (((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566)) 33)) (-3398 (((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566)) 32)))
-(((-754) (-10 -7 (-15 -3398 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -2469 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -2080 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -3217 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -3300 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -4156 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -2813 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3722 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1903 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1364 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -754))
-((-1364 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-1903 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3722 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2813 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-4156 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3300 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3217 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2080 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-2469 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225))) (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754)))) (-3398 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225))) (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1035)) (-5 *1 (-754)))))
-(-10 -7 (-15 -3398 ((-1035) (-566) (-566) (-566) (-566) (-225) (-112) (-112) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-566))) (-15 -2469 ((-1035) (-566) (-566) (-566) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-689 (-566)) (-112) (-225) (-112) (-689 (-566)) (-689 (-225)) (-566))) (-15 -2080 ((-1035) (-566) (-566) (-566) (-566) (-644 (-112)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-225) (-225) (-566))) (-15 -3217 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566))) (-15 -3300 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -4156 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)) (-566))) (-15 -2813 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3722 ((-1035) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1903 ((-1035) (-1157) (-1157) (-566) (-566) (-689 (-169 (-225))) (-566) (-689 (-169 (-225))) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1364 ((-1035) (-1157) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))
-((-2049 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566)) 80)) (-2620 (((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 69)) (-1951 (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390)) 56) (((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) 55)) (-3747 (((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566)) 37)) (-4103 (((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566)) 33)) (-2219 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566)) 30)) (-1663 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 29)) (-3440 (((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 28)) (-3884 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 27)) (-2147 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566)) 26)) (-2017 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 25)) (-1577 (((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 24)) (-2903 (((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566)) 23)) (-1895 (((-1035) (-689 (-225)) (-566) (-566) (-566) (-566)) 22)) (-3894 (((-1035) (-566) (-566) (-689 (-225)) (-566)) 21)))
-(((-755) (-10 -7 (-15 -3894 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1895 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2903 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1577 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2017 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2147 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -3884 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3440 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1663 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2219 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -4103 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -3747 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1951 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -1951 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -2620 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2049 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))) (T -755))
-((-2049 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2620 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1951 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1951 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3747 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-4103 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2219 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1663 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3440 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3884 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2147 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2017 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1577 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-2903 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))) (-1895 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-755)))) (-3894 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-755)))))
-(-10 -7 (-15 -3894 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -1895 ((-1035) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -2903 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1577 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2017 ((-1035) (-566) (-566) (-689 (-225)) (-566))) (-15 -2147 ((-1035) (-566) (-566) (-566) (-566) (-689 (-225)) (-566))) (-15 -3884 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3440 ((-1035) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1663 ((-1035) (-566) (-566) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2219 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566) (-566))) (-15 -4103 ((-1035) (-566) (-566) (-225) (-225) (-566) (-566) (-689 (-225)) (-566))) (-15 -3747 ((-1035) (-566) (-566) (-566) (-225) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -1951 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))))) (-15 -1951 ((-1035) (-566) (-566) (-225) (-566) (-566) (-566) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE))) (-390))) (-15 -2620 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -2049 ((-1035) (-566) (-566) (-566) (-566) (-566) (-112) (-566) (-112) (-566) (-689 (-169 (-225))) (-689 (-169 (-225))) (-566))))
-((-1492 (((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) 64)) (-2471 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566)) 60)) (-2268 (((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3471 (((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566)) 37)) (-3211 (((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566)) 36)) (-3484 (((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566)) 33)) (-1972 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225))) 32)) (-1524 (((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566)) 28)) (-3773 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 27)) (-1432 (((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566)) 26)) (-1331 (((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566)) 22)))
-(((-756) (-10 -7 (-15 -1331 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1432 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3773 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1524 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -1972 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -3484 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3211 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3471 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2268 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -2471 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -1492 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD))))))) (T -756))
-((-1492 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2471 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-2268 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3471 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3211 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3484 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-1972 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-1524 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-756)))) (-3773 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-1432 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-756)))) (-1331 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035)) (-5 *1 (-756)))))
-(-10 -7 (-15 -1331 ((-1035) (-566) (-689 (-169 (-225))) (-566) (-566) (-566) (-566) (-689 (-169 (-225))) (-566))) (-15 -1432 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -3773 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-566))) (-15 -1524 ((-1035) (-689 (-225)) (-566) (-689 (-225)) (-566) (-566) (-566))) (-15 -1972 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-566)) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)))) (-15 -3484 ((-1035) (-566) (-566) (-689 (-225)) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3211 ((-1035) (-566) (-566) (-566) (-225) (-566) (-689 (-225)) (-689 (-225)) (-566))) (-15 -3471 ((-1035) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-566)) (-689 (-225)) (-689 (-566)) (-689 (-566)) (-689 (-225)) (-689 (-225)) (-689 (-566)) (-566))) (-15 -2268 ((-1035) (-566) (-689 (-225)) (-112) (-225) (-566) (-566) (-566) (-566) (-225) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))) (-15 -2471 ((-1035) (-566) (-689 (-225)) (-566) (-689 (-225)) (-689 (-566)) (-566) (-689 (-225)) (-566) (-566) (-566) (-566))) (-15 -1492 ((-1035) (-566) (-566) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-689 (-225)) (-566) (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD))))))
-((-2217 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225))) 29)) (-3236 (((-1035) (-1157) (-566) (-566) (-689 (-225))) 28)) (-1356 (((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225))) 27)) (-2093 (((-1035) (-566) (-566) (-566) (-689 (-225))) 21)))
-(((-757) (-10 -7 (-15 -2093 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -1356 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -3236 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -2217 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)))))) (T -757))
-((-2217 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-3236 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))) (-1356 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757)))) (-2093 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035)) (-5 *1 (-757)))))
-(-10 -7 (-15 -2093 ((-1035) (-566) (-566) (-566) (-689 (-225)))) (-15 -1356 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-689 (-566)) (-566) (-689 (-225)))) (-15 -3236 ((-1035) (-1157) (-566) (-566) (-689 (-225)))) (-15 -2217 ((-1035) (-1157) (-566) (-566) (-689 (-225)) (-566) (-566) (-689 (-225)))))
-((-2287 (((-1035) (-225) (-225) (-225) (-225) (-566)) 62)) (-2109 (((-1035) (-225) (-225) (-225) (-566)) 61)) (-4310 (((-1035) (-225) (-225) (-225) (-566)) 60)) (-3970 (((-1035) (-225) (-225) (-566)) 59)) (-2413 (((-1035) (-225) (-566)) 58)) (-2102 (((-1035) (-225) (-566)) 57)) (-2257 (((-1035) (-225) (-566)) 56)) (-2874 (((-1035) (-225) (-566)) 55)) (-2825 (((-1035) (-225) (-566)) 54)) (-3718 (((-1035) (-225) (-566)) 53)) (-3025 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 52)) (-1906 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 51)) (-2201 (((-1035) (-225) (-566)) 50)) (-2344 (((-1035) (-225) (-566)) 49)) (-2955 (((-1035) (-225) (-566)) 48)) (-2443 (((-1035) (-225) (-566)) 47)) (-2286 (((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566)) 46)) (-1378 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 45)) (-3968 (((-1035) (-1157) (-169 (-225)) (-1157) (-566)) 44)) (-1924 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 43)) (-2044 (((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566)) 42)) (-3332 (((-1035) (-225) (-566)) 39)) (-3996 (((-1035) (-225) (-566)) 38)) (-3453 (((-1035) (-225) (-566)) 37)) (-2252 (((-1035) (-225) (-566)) 36)) (-2946 (((-1035) (-225) (-566)) 35)) (-4154 (((-1035) (-225) (-566)) 34)) (-2616 (((-1035) (-225) (-566)) 33)) (-4340 (((-1035) (-225) (-566)) 32)) (-2159 (((-1035) (-225) (-566)) 31)) (-1714 (((-1035) (-225) (-566)) 30)) (-3524 (((-1035) (-225) (-225) (-225) (-566)) 29)) (-3290 (((-1035) (-225) (-566)) 28)) (-1877 (((-1035) (-225) (-566)) 27)) (-2494 (((-1035) (-225) (-566)) 26)) (-1579 (((-1035) (-225) (-566)) 25)) (-4254 (((-1035) (-225) (-566)) 24)) (-2113 (((-1035) (-169 (-225)) (-566)) 21)))
-(((-758) (-10 -7 (-15 -2113 ((-1035) (-169 (-225)) (-566))) (-15 -4254 ((-1035) (-225) (-566))) (-15 -1579 ((-1035) (-225) (-566))) (-15 -2494 ((-1035) (-225) (-566))) (-15 -1877 ((-1035) (-225) (-566))) (-15 -3290 ((-1035) (-225) (-566))) (-15 -3524 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1714 ((-1035) (-225) (-566))) (-15 -2159 ((-1035) (-225) (-566))) (-15 -4340 ((-1035) (-225) (-566))) (-15 -2616 ((-1035) (-225) (-566))) (-15 -4154 ((-1035) (-225) (-566))) (-15 -2946 ((-1035) (-225) (-566))) (-15 -2252 ((-1035) (-225) (-566))) (-15 -3453 ((-1035) (-225) (-566))) (-15 -3996 ((-1035) (-225) (-566))) (-15 -3332 ((-1035) (-225) (-566))) (-15 -2044 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1924 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3968 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -1378 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -2286 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2443 ((-1035) (-225) (-566))) (-15 -2955 ((-1035) (-225) (-566))) (-15 -2344 ((-1035) (-225) (-566))) (-15 -2201 ((-1035) (-225) (-566))) (-15 -1906 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3025 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3718 ((-1035) (-225) (-566))) (-15 -2825 ((-1035) (-225) (-566))) (-15 -2874 ((-1035) (-225) (-566))) (-15 -2257 ((-1035) (-225) (-566))) (-15 -2102 ((-1035) (-225) (-566))) (-15 -2413 ((-1035) (-225) (-566))) (-15 -3970 ((-1035) (-225) (-225) (-566))) (-15 -4310 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2109 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2287 ((-1035) (-225) (-225) (-225) (-225) (-566))))) (T -758))
-((-2287 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2109 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4310 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3970 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2413 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2257 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2874 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3025 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1906 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2201 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2344 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2955 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2286 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1378 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3968 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1924 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2044 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157)) (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3332 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3996 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4154 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2616 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4340 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2159 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3524 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-3290 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2494 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-1579 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-4254 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))) (-2113 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(-10 -7 (-15 -2113 ((-1035) (-169 (-225)) (-566))) (-15 -4254 ((-1035) (-225) (-566))) (-15 -1579 ((-1035) (-225) (-566))) (-15 -2494 ((-1035) (-225) (-566))) (-15 -1877 ((-1035) (-225) (-566))) (-15 -3290 ((-1035) (-225) (-566))) (-15 -3524 ((-1035) (-225) (-225) (-225) (-566))) (-15 -1714 ((-1035) (-225) (-566))) (-15 -2159 ((-1035) (-225) (-566))) (-15 -4340 ((-1035) (-225) (-566))) (-15 -2616 ((-1035) (-225) (-566))) (-15 -4154 ((-1035) (-225) (-566))) (-15 -2946 ((-1035) (-225) (-566))) (-15 -2252 ((-1035) (-225) (-566))) (-15 -3453 ((-1035) (-225) (-566))) (-15 -3996 ((-1035) (-225) (-566))) (-15 -3332 ((-1035) (-225) (-566))) (-15 -2044 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -1924 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3968 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -1378 ((-1035) (-1157) (-169 (-225)) (-1157) (-566))) (-15 -2286 ((-1035) (-566) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -2443 ((-1035) (-225) (-566))) (-15 -2955 ((-1035) (-225) (-566))) (-15 -2344 ((-1035) (-225) (-566))) (-15 -2201 ((-1035) (-225) (-566))) (-15 -1906 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3025 ((-1035) (-225) (-169 (-225)) (-566) (-1157) (-566))) (-15 -3718 ((-1035) (-225) (-566))) (-15 -2825 ((-1035) (-225) (-566))) (-15 -2874 ((-1035) (-225) (-566))) (-15 -2257 ((-1035) (-225) (-566))) (-15 -2102 ((-1035) (-225) (-566))) (-15 -2413 ((-1035) (-225) (-566))) (-15 -3970 ((-1035) (-225) (-225) (-566))) (-15 -4310 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2109 ((-1035) (-225) (-225) (-225) (-566))) (-15 -2287 ((-1035) (-225) (-225) (-225) (-225) (-566))))
-((-1934 (((-1270)) 21)) (-1861 (((-1157)) 32)) (-3430 (((-1157)) 31)) (-1461 (((-1103) (-1175) (-689 (-566))) 46) (((-1103) (-1175) (-689 (-225))) 42)) (-3820 (((-112)) 19)) (-2243 (((-1157) (-1157)) 35)))
-(((-759) (-10 -7 (-15 -3430 ((-1157))) (-15 -1861 ((-1157))) (-15 -2243 ((-1157) (-1157))) (-15 -1461 ((-1103) (-1175) (-689 (-225)))) (-15 -1461 ((-1103) (-1175) (-689 (-566)))) (-15 -3820 ((-112))) (-15 -1934 ((-1270))))) (T -759))
-((-1934 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-759)))) (-3820 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-1461 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103)) (-5 *1 (-759)))) (-2243 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-1861 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))) (-3430 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))))
-(-10 -7 (-15 -3430 ((-1157))) (-15 -1861 ((-1157))) (-15 -2243 ((-1157) (-1157))) (-15 -1461 ((-1103) (-1175) (-689 (-225)))) (-15 -1461 ((-1103) (-1175) (-689 (-566)))) (-15 -3820 ((-112))) (-15 -1934 ((-1270))))
-((-1726 (($ $ $) 10)) (-2481 (($ $ $ $) 9)) (-2586 (($ $ $) 12)))
-(((-760 |#1|) (-10 -8 (-15 -2586 (|#1| |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1| |#1|))) (-761)) (T -760))
-NIL
-(-10 -8 (-15 -2586 (|#1| |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -2481 (|#1| |#1| |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-3801 (($ $ (-921)) 31)) (-3510 (($ $ (-921)) 32)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-1726 (($ $ $) 28)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2481 (($ $ $ $) 29)) (-2586 (($ $ $) 27)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 33)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30)))
-(((-761) (-140)) (T -761))
-((-2481 (*1 *1 *1 *1 *1) (-4 *1 (-761))) (-1726 (*1 *1 *1 *1) (-4 *1 (-761))) (-2586 (*1 *1 *1 *1) (-4 *1 (-761))))
-(-13 (-21) (-720) (-10 -8 (-15 -2481 ($ $ $ $)) (-15 -1726 ($ $ $)) (-15 -2586 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-720) . T) ((-1099) . T))
-((-2725 (((-862) $) NIL) (($ (-566)) 10)))
-(((-762 |#1|) (-10 -8 (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-763)) (T -762))
-NIL
-(-10 -8 (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2784 (((-3 $ "failed") $) 43)) (-3801 (($ $ (-921)) 31) (($ $ (-771)) 38)) (-2313 (((-3 $ "failed") $) 41)) (-3842 (((-112) $) 37)) (-4220 (((-3 $ "failed") $) 42)) (-3510 (($ $ (-921)) 32) (($ $ (-771)) 39)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-1726 (($ $ $) 28)) (-2725 (((-862) $) 12) (($ (-566)) 34)) (-2875 (((-771)) 35 T CONST)) (-1479 (((-112) $ $) 9)) (-2481 (($ $ $ $) 29)) (-2586 (($ $ $) 27)) (-3200 (($) 19 T CONST)) (-3214 (($) 36 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 33) (($ $ (-771)) 40)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 30)))
-(((-763) (-140)) (T -763))
-((-2875 (*1 *2) (-12 (-4 *1 (-763)) (-5 *2 (-771)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-763)))))
-(-13 (-761) (-722) (-10 -8 (-15 -2875 ((-771)) -3854) (-15 -2725 ($ (-566)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-720) . T) ((-722) . T) ((-761) . T) ((-1099) . T))
-((-2796 (((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|) 33)) (-3786 (((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|) 23)) (-1707 (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175)) 20) (((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566))))) 19)))
-(((-764 |#1|) (-10 -7 (-15 -1707 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -1707 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -3786 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -2796 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|))) (-13 (-365) (-848))) (T -764))
-((-2796 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 *4))))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-3786 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175)) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5)) (-4 *5 (-13 (-365) (-848))))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))))
-(-10 -7 (-15 -1707 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))))) (-15 -1707 ((-952 (-169 (-409 (-566)))) (-689 (-169 (-409 (-566)))) (-1175))) (-15 -3786 ((-644 (-169 |#1|)) (-689 (-169 (-409 (-566)))) |#1|)) (-15 -2796 ((-644 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 (-169 |#1|)))))) (-689 (-169 (-409 (-566)))) |#1|)))
-((-3485 (((-174 (-566)) |#1|) 27)))
-(((-765 |#1|) (-10 -7 (-15 -3485 ((-174 (-566)) |#1|))) (-406)) (T -765))
-((-3485 (*1 *2 *3) (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406)))))
-(-10 -7 (-15 -3485 ((-174 (-566)) |#1|)))
-((-1395 ((|#1| |#1| |#1|) 28)) (-1529 ((|#1| |#1| |#1|) 27)) (-3339 ((|#1| |#1| |#1|) 38)) (-3972 ((|#1| |#1| |#1|) 34)) (-1654 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4159 (((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|) 26)))
-(((-766 |#1| |#2|) (-10 -7 (-15 -4159 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1654 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -3339 (|#1| |#1| |#1|))) (-708 |#2|) (-365)) (T -766))
-((-3339 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-3972 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-1654 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-1395 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-1529 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3)))) (-4159 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4)))))
-(-10 -7 (-15 -4159 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1654 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -3339 (|#1| |#1| |#1|)))
-((-2005 (((-691 (-1223)) $ (-1223)) 26)) (-2525 (((-691 (-551)) $ (-551)) 25)) (-4354 (((-771) $ (-128)) 27)) (-1650 (((-691 (-129)) $ (-129)) 24)) (-2649 (((-691 (-1223)) $) 12)) (-1600 (((-691 (-1221)) $) 8)) (-2709 (((-691 (-1220)) $) 10)) (-1778 (((-691 (-551)) $) 13)) (-1676 (((-691 (-549)) $) 9)) (-3914 (((-691 (-548)) $) 11)) (-1789 (((-771) $ (-128)) 7)) (-1601 (((-691 (-129)) $) 14)) (-2203 (((-112) $) 31)) (-4096 (((-691 $) |#1| (-954)) 32)) (-4381 (($ $) 6)))
-(((-767 |#1|) (-140) (-1099)) (T -767))
-((-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1)) (-4 *1 (-767 *3)))) (-2203 (*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(-13 (-578) (-10 -8 (-15 -4096 ((-691 $) |t#1| (-954))) (-15 -2203 ((-112) $))))
-(((-173) . T) ((-529) . T) ((-578) . T) ((-860) . T))
-((-3018 (((-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)) 71)) (-2281 (((-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) 69)) (-2061 (((-566)) 85)))
-(((-768 |#1| |#2|) (-10 -7 (-15 -2061 ((-566))) (-15 -2281 ((-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -3018 ((-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566)))) (-1241 (-566)) (-411 (-566) |#1|)) (T -768))
-((-3018 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1241 *3)) (-5 *2 (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4)))) (-2281 (*1 *2) (-12 (-4 *3 (-1241 (-566))) (-5 *2 (-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566))))) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3)))) (-2061 (*1 *2) (-12 (-4 *3 (-1241 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4)) (-4 *4 (-411 *2 *3)))))
-(-10 -7 (-15 -2061 ((-566))) (-15 -2281 ((-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))))) (-15 -3018 ((-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566)) (|:| |basisInv| (-689 (-566)))) (-566))))
-((-3979 (((-112) $ $) NIL)) (-3343 (((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 20) (($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-769) (-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2725 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2725 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3343 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -769))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-769)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-769)))))
-(-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2725 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2725 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -3343 ((-3 (|:| |nia| (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
-((-2141 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 18) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 17)) (-1409 (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))) 20) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175))) 19)))
-(((-770 |#1|) (-10 -7 (-15 -2141 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2141 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|))))) (-558)) (T -770))
-((-1409 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5)))))
-(-10 -7 (-15 -2141 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -2141 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-952 |#1|)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-3288 (($ $ $) 10)) (-4113 (((-3 $ "failed") $ $) 15)) (-2724 (($ $ (-566)) 11)) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($ $) NIL)) (-3930 (($ $ $) NIL)) (-3842 (((-112) $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1885 (($ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 6 T CONST)) (-3214 (($) NIL T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ $ $) NIL)))
-(((-771) (-13 (-793) (-726) (-10 -8 (-15 -3930 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -1885 ($ $ $)) (-15 -4301 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -3967 ((-3 $ "failed") $ $)) (-15 -2724 ($ $ (-566))) (-15 -3424 ($ $)) (-6 (-4417 "*"))))) (T -771))
-((-3930 (*1 *1 *1 *1) (-5 *1 (-771))) (-3919 (*1 *1 *1 *1) (-5 *1 (-771))) (-1885 (*1 *1 *1 *1) (-5 *1 (-771))) (-4301 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2383 (-771)) (|:| -3033 (-771)))) (-5 *1 (-771)))) (-3967 (*1 *1 *1 *1) (|partial| -5 *1 (-771))) (-2724 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771)))) (-3424 (*1 *1 *1) (-5 *1 (-771))))
-(-13 (-793) (-726) (-10 -8 (-15 -3930 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -1885 ($ $ $)) (-15 -4301 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -3967 ((-3 $ "failed") $ $)) (-15 -2724 ($ $ (-566))) (-15 -3424 ($ $)) (-6 (-4417 "*"))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 15)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4067 ((|#1| $) 23)) (-2056 (($ $ $) NIL (|has| |#1| (-792)))) (-1802 (($ $ $) NIL (|has| |#1| (-792)))) (-2451 (((-1158) $) 48)) (-3339 (((-1120) $) NIL)) (-4078 ((|#3| $) 24)) (-4101 (((-863) $) 43)) (-3739 (((-112) $ $) 22)) (-1468 (($) 10 T CONST)) (-3109 (((-112) $ $) NIL (|has| |#1| (-792)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-792)))) (-3052 (((-112) $ $) 20)) (-3098 (((-112) $ $) NIL (|has| |#1| (-792)))) (-3075 (((-112) $ $) 26 (|has| |#1| (-792)))) (-3168 (($ $ |#3|) 36) (($ |#1| |#3|) 37)) (-3156 (($ $) 17) (($ $ $) NIL)) (-3146 (($ $ $) 29)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ |#2| $) 34) (($ $ |#2|) NIL)))
+(((-663 |#1| |#2| |#3|) (-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3168 ($ $ |#3|)) (-15 -3168 ($ |#1| |#3|)) (-15 -4067 (|#1| $)) (-15 -4078 (|#3| $)))) (-718 |#2|) (-172) (|SubsetCategory| (-727) |#2|)) (T -663))
+((-3168 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)) (-4 *2 (|SubsetCategory| (-727) *4)))) (-3168 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4)) (-4 *3 (|SubsetCategory| (-727) *4)))) (-4067 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-727) *3)))) (-4078 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4)))))
+(-13 (-718 |#2|) (-10 -8 (IF (|has| |#1| (-792)) (-6 (-792)) |%noBranch|) (-15 -3168 ($ $ |#3|)) (-15 -3168 ($ |#1| |#3|)) (-15 -4067 (|#1| $)) (-15 -4078 (|#3| $))))
+((-4060 (((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|)) 33)))
+(((-664 |#1|) (-10 -7 (-15 -4060 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|)))) (-910)) (T -664))
+((-4060 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1172 *4))) (-5 *3 (-1172 *4)) (-4 *4 (-910)) (-5 *1 (-664 *4)))))
+(-10 -7 (-15 -4060 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2881 (((-645 |#1|) $) 84)) (-4291 (($ $ (-772)) 94)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-2079 (((-1290 |#1| |#2|) (-1290 |#1| |#2|) $) 50)) (-3417 (((-3 (-673 |#1|) "failed") $) NIL)) (-1621 (((-673 |#1|) $) NIL)) (-2637 (($ $) 93)) (-2864 (((-772) $) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-1845 (($ (-673 |#1|) |#2|) 70)) (-4020 (($ $) 89)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-1430 (((-1290 |#1| |#2|) (-1290 |#1| |#2|) $) 49)) (-2789 (((-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2599 (((-673 |#1|) $) NIL)) (-2613 ((|#2| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3140 (($ $ |#1| $) 32) (($ $ (-645 |#1|) (-645 $)) 34)) (-3677 (((-772) $) 91)) (-4114 (($ $ $) 20) (($ (-673 |#1|) (-673 |#1|)) 79) (($ (-673 |#1|) $) 77) (($ $ (-673 |#1|)) 78)) (-4101 (((-863) $) NIL) (($ |#1|) 76) (((-1281 |#1| |#2|) $) 60) (((-1290 |#1| |#2|) $) 43) (($ (-673 |#1|)) 27)) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-673 |#1|)) NIL)) (-3087 ((|#2| (-1290 |#1| |#2|) $) 45)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 23 T CONST)) (-2250 (((-645 (-2 (|:| |k| (-673 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4062 (((-3 $ "failed") (-1281 |#1| |#2|)) 62)) (-3547 (($ (-673 |#1|)) 14)) (-3052 (((-112) $ $) 46)) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $) 68) (($ $ $) NIL)) (-3146 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-673 |#1|)) NIL)))
+(((-665 |#1| |#2|) (-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -4062 ((-3 $ "failed") (-1281 |#1| |#2|))) (-15 -4114 ($ (-673 |#1|) (-673 |#1|))) (-15 -4114 ($ (-673 |#1|) $)) (-15 -4114 ($ $ (-673 |#1|))))) (-851) (-172)) (T -665))
+((-4062 (*1 *1 *2) (|partial| -12 (-5 *2 (-1281 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-665 *3 *4)))) (-4114 (*1 *1 *2 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4114 (*1 *1 *2 *1) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))) (-4114 (*1 *1 *1 *2) (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4)) (-4 *4 (-172)))))
+(-13 (-376 |#1| |#2|) (-384 |#2| (-673 |#1|)) (-10 -8 (-15 -4062 ((-3 $ "failed") (-1281 |#1| |#2|))) (-15 -4114 ($ (-673 |#1|) (-673 |#1|))) (-15 -4114 ($ (-673 |#1|) $)) (-15 -4114 ($ $ (-673 |#1|)))))
+((-2530 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 61)) (-3655 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2581 (($ (-1 (-112) |#2|) $) 29)) (-1695 (($ $) 67)) (-1861 (($ $) 78)) (-3410 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 43)) (-3402 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 62) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 64)) (-3771 (((-567) |#2| $ (-567)) 75) (((-567) |#2| $) NIL) (((-567) (-1 (-112) |#2|) $) 56)) (-4012 (($ (-772) |#2|) 65)) (-3492 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 31)) (-3768 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-3494 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 66)) (-1924 (($ |#2|) 15)) (-1336 (($ $ $ (-567)) 42) (($ |#2| $ (-567)) 40)) (-3050 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 53)) (-2816 (($ $ (-1233 (-567))) 51) (($ $ (-567)) 44)) (-3732 (($ $ $ (-567)) 74)) (-4247 (($ $) 72)) (-3075 (((-112) $ $) 80)))
+(((-666 |#1| |#2|) (-10 -8 (-15 -1924 (|#1| |#2|)) (-15 -2816 (|#1| |#1| (-567))) (-15 -2816 (|#1| |#1| (-1233 (-567)))) (-15 -3410 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1336 (|#1| |#2| |#1| (-567))) (-15 -1336 (|#1| |#1| |#1| (-567))) (-15 -3492 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2581 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3410 (|#1| |#2| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 -3768 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2530 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3771 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-567) |#2| |#1|)) (-15 -3771 ((-567) |#2| |#1| (-567))) (-15 -3768 (|#1| |#1| |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -3732 (|#1| |#1| |#1| (-567))) (-15 -1695 (|#1| |#1|)) (-15 -3655 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -3075 ((-112) |#1| |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3050 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4012 (|#1| (-772) |#2|)) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4247 (|#1| |#1|))) (-667 |#2|) (-1216)) (T -666))
+NIL
+(-10 -8 (-15 -1924 (|#1| |#2|)) (-15 -2816 (|#1| |#1| (-567))) (-15 -2816 (|#1| |#1| (-1233 (-567)))) (-15 -3410 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1336 (|#1| |#2| |#1| (-567))) (-15 -1336 (|#1| |#1| |#1| (-567))) (-15 -3492 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2581 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3410 (|#1| |#2| |#1|)) (-15 -1861 (|#1| |#1|)) (-15 -3492 (|#1| |#1| |#1|)) (-15 -3768 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2530 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3771 ((-567) (-1 (-112) |#2|) |#1|)) (-15 -3771 ((-567) |#2| |#1|)) (-15 -3771 ((-567) |#2| |#1| (-567))) (-15 -3768 (|#1| |#1| |#1|)) (-15 -2530 ((-112) |#1|)) (-15 -3732 (|#1| |#1| |#1| (-567))) (-15 -1695 (|#1| |#1|)) (-15 -3655 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3655 (|#1| |#1|)) (-15 -3075 ((-112) |#1| |#1|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3402 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3050 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -4012 (|#1| (-772) |#2|)) (-15 -3494 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4247 (|#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-2369 ((|#1| $) 66)) (-3221 (($ $) 68)) (-2275 (((-1271) $ (-567) (-567)) 98 (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) 53 (|has| $ (-6 -4417)))) (-2530 (((-112) $) 143 (|has| |#1| (-851))) (((-112) (-1 (-112) |#1| |#1|) $) 137)) (-3655 (($ $) 147 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4417)))) (($ (-1 (-112) |#1| |#1|) $) 146 (|has| $ (-6 -4417)))) (-1594 (($ $) 142 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $) 136)) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-3371 (($ $ $) 57 (|has| $ (-6 -4417)))) (-3487 ((|#1| $ |#1|) 55 (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) 59 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4417))) (($ $ "rest" $) 56 (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 118 (|has| $ (-6 -4417))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-2581 (($ (-1 (-112) |#1|) $) 130)) (-1551 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4416)))) (-2357 ((|#1| $) 67)) (-4061 (($) 7 T CONST)) (-1695 (($ $) 145 (|has| $ (-6 -4417)))) (-3315 (($ $) 135)) (-2061 (($ $) 74) (($ $ (-772)) 72)) (-1861 (($ $) 132 (|has| |#1| (-1100)))) (-2084 (($ $) 100 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ |#1| $) 131 (|has| |#1| (-1100))) (($ (-1 (-112) |#1|) $) 126)) (-3138 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4416))) (($ |#1| $) 101 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1303 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 88)) (-1714 (((-112) $) 84)) (-3771 (((-567) |#1| $ (-567)) 140 (|has| |#1| (-1100))) (((-567) |#1| $) 139 (|has| |#1| (-1100))) (((-567) (-1 (-112) |#1|) $) 138)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-4012 (($ (-772) |#1|) 109)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 96 (|has| (-567) (-851)))) (-2056 (($ $ $) 148 (|has| |#1| (-851)))) (-3492 (($ $ $) 133 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 129)) (-3768 (($ $ $) 141 (|has| |#1| (-851))) (($ (-1 (-112) |#1| |#1|) $ $) 134)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 95 (|has| (-567) (-851)))) (-1802 (($ $ $) 149 (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1924 (($ |#1|) 123)) (-3230 (((-112) $ (-772)) 10)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3162 ((|#1| $) 71) (($ $ (-772)) 69)) (-1336 (($ $ $ (-567)) 128) (($ |#1| $ (-567)) 127)) (-2884 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-3940 (((-645 (-567)) $) 93)) (-1664 (((-112) (-567) $) 92)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 77) (($ $ (-772)) 75)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2092 (($ $ |#1|) 97 (|has| $ (-6 -4417)))) (-2216 (((-112) $) 85)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 91)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1233 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-4304 (((-567) $ $) 45)) (-2816 (($ $ (-1233 (-567))) 125) (($ $ (-567)) 124)) (-2675 (($ $ (-1233 (-567))) 115) (($ $ (-567)) 114)) (-3436 (((-112) $) 47)) (-2443 (($ $) 63)) (-3709 (($ $) 60 (|has| $ (-6 -4417)))) (-1449 (((-772) $) 64)) (-1344 (($ $) 65)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3732 (($ $ $ (-567)) 144 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 108)) (-3962 (($ $ $) 62) (($ $ |#1|) 61)) (-2285 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) 151 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 152 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-3098 (((-112) $ $) 150 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 153 (|has| |#1| (-851)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-667 |#1|) (-140) (-1216)) (T -667))
+((-1924 (*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1216)))))
+(-13 (-1149 |t#1|) (-375 |t#1|) (-283 |t#1|) (-10 -8 (-15 -1924 ($ |t#1|))))
+(((-34) . T) ((-102) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-283 |#1|) . T) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1011 |#1|) . T) ((-1100) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-1149 |#1|) . T) ((-1216) . T) ((-1254 |#1|) . T))
+((-1607 (((-645 (-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|))))) (-645 (-645 |#1|)) (-645 (-1266 |#1|))) 22) (((-645 (-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|))))) (-690 |#1|) (-645 (-1266 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-645 (-645 |#1|)) (-1266 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-690 |#1|) (-1266 |#1|)) 14)) (-2432 (((-772) (-690 |#1|) (-1266 |#1|)) 30)) (-2497 (((-3 (-1266 |#1|) "failed") (-690 |#1|) (-1266 |#1|)) 24)) (-2543 (((-112) (-690 |#1|) (-1266 |#1|)) 27)))
+(((-668 |#1|) (-10 -7 (-15 -1607 ((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-690 |#1|) (-1266 |#1|))) (-15 -1607 ((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-645 (-645 |#1|)) (-1266 |#1|))) (-15 -1607 ((-645 (-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|))))) (-690 |#1|) (-645 (-1266 |#1|)))) (-15 -1607 ((-645 (-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|))))) (-645 (-645 |#1|)) (-645 (-1266 |#1|)))) (-15 -2497 ((-3 (-1266 |#1|) "failed") (-690 |#1|) (-1266 |#1|))) (-15 -2543 ((-112) (-690 |#1|) (-1266 |#1|))) (-15 -2432 ((-772) (-690 |#1|) (-1266 |#1|)))) (-365)) (T -668))
+((-2432 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-668 *5)))) (-2543 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-365)) (-5 *2 (-112)) (-5 *1 (-668 *5)))) (-2497 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1266 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *1 (-668 *4)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1266 *5) "failed")) (|:| -2557 (-645 (-1266 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1266 *5))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| |particular| (-3 (-1266 *5) "failed")) (|:| -2557 (-645 (-1266 *5)))))) (-5 *1 (-668 *5)) (-5 *4 (-645 (-1266 *5))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1266 *5) "failed")) (|:| -2557 (-645 (-1266 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1266 *5)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |particular| (-3 (-1266 *5) "failed")) (|:| -2557 (-645 (-1266 *5))))) (-5 *1 (-668 *5)) (-5 *4 (-1266 *5)))))
+(-10 -7 (-15 -1607 ((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-690 |#1|) (-1266 |#1|))) (-15 -1607 ((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-645 (-645 |#1|)) (-1266 |#1|))) (-15 -1607 ((-645 (-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|))))) (-690 |#1|) (-645 (-1266 |#1|)))) (-15 -1607 ((-645 (-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|))))) (-645 (-645 |#1|)) (-645 (-1266 |#1|)))) (-15 -2497 ((-3 (-1266 |#1|) "failed") (-690 |#1|) (-1266 |#1|))) (-15 -2543 ((-112) (-690 |#1|) (-1266 |#1|))) (-15 -2432 ((-772) (-690 |#1|) (-1266 |#1|))))
+((-1607 (((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|)))) |#4| (-645 |#3|)) 66) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|))) |#4| |#3|) 60)) (-2432 (((-772) |#4| |#3|) 18)) (-2497 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2543 (((-112) |#4| |#3|) 14)))
+(((-669 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1607 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|))) |#4| |#3|)) (-15 -1607 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -2497 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2543 ((-112) |#4| |#3|)) (-15 -2432 ((-772) |#4| |#3|))) (-365) (-13 (-375 |#1|) (-10 -7 (-6 -4417))) (-13 (-375 |#1|) (-10 -7 (-6 -4417))) (-688 |#1| |#2| |#3|)) (T -669))
+((-2432 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-5 *2 (-772)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2543 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-5 *2 (-112)) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-2497 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-365)) (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4417)))) (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417)))) (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2)))) (-1607 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-5 *2 (-645 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2557 (-645 *7))))) (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7)) (-4 *3 (-688 *5 *6 *7)))) (-1607 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
+(-10 -7 (-15 -1607 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|))) |#4| |#3|)) (-15 -1607 ((-645 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|)))) |#4| (-645 |#3|))) (-15 -2497 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2543 ((-112) |#4| |#3|)) (-15 -2432 ((-772) |#4| |#3|)))
+((-2050 (((-2 (|:| |particular| (-3 (-1266 (-410 |#4|)) "failed")) (|:| -2557 (-645 (-1266 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)) 52)))
+(((-670 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2050 ((-2 (|:| |particular| (-3 (-1266 (-410 |#4|)) "failed")) (|:| -2557 (-645 (-1266 (-410 |#4|))))) (-645 |#4|) (-645 |#3|)))) (-559) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -670))
+((-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |particular| (-3 (-1266 (-410 *8)) "failed")) (|:| -2557 (-645 (-1266 (-410 *8)))))) (-5 *1 (-670 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2050 ((-2 (|:| |particular| (-3 (-1266 (-410 |#4|)) "failed")) (|:| -2557 (-645 (-1266 (-410 |#4|))))) (-645 |#4|) (-645 |#3|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4135 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-4093 ((|#2| $) NIL)) (-2141 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1502 (((-1266 (-690 |#2|))) NIL) (((-1266 (-690 |#2|)) (-1266 $)) NIL)) (-2358 (((-112) $) NIL)) (-3429 (((-1266 $)) 44)) (-1580 (((-112) $ (-772)) NIL)) (-3617 (($ |#2|) NIL)) (-4061 (($) NIL T CONST)) (-1876 (($ $) NIL (|has| |#2| (-308)))) (-4074 (((-240 |#1| |#2|) $ (-567)) NIL)) (-3817 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-4040 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-1743 (((-690 |#2|)) NIL) (((-690 |#2|) (-1266 $)) NIL)) (-4042 ((|#2| $) NIL)) (-4380 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1266 $)) NIL)) (-3038 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-1400 (((-1172 (-953 |#2|))) NIL (|has| |#2| (-365)))) (-3356 (($ $ (-922)) NIL)) (-3511 ((|#2| $) NIL)) (-1411 (((-1172 |#2|) $) NIL (|has| |#2| (-559)))) (-2152 ((|#2|) NIL) ((|#2| (-1266 $)) NIL)) (-4214 (((-1172 |#2|) $) NIL)) (-3920 (((-112)) NIL)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) NIL)) (-3499 (($ (-1266 |#2|)) NIL) (($ (-1266 |#2|) (-1266 $)) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2432 (((-772) $) NIL (|has| |#2| (-559))) (((-922)) 45)) (-4344 ((|#2| $ (-567) (-567)) NIL)) (-3831 (((-112)) NIL)) (-1866 (($ $ (-922)) NIL)) (-2896 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL)) (-1375 (((-772) $) NIL (|has| |#2| (-559)))) (-3137 (((-645 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-559)))) (-4300 (((-772) $) NIL)) (-3352 (((-112)) NIL)) (-4311 (((-772) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1982 ((|#2| $) NIL (|has| |#2| (-6 (-4418 "*"))))) (-3776 (((-567) $) NIL)) (-4176 (((-567) $) NIL)) (-1542 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1977 (((-567) $) NIL)) (-2467 (((-567) $) NIL)) (-4036 (($ (-645 (-645 |#2|))) NIL)) (-4392 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1343 (((-645 (-645 |#2|)) $) NIL)) (-1843 (((-112)) NIL)) (-3443 (((-112)) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2546 (((-3 (-2 (|:| |particular| $) (|:| -2557 (-645 $))) "failed")) NIL (|has| |#2| (-559)))) (-2743 (((-3 $ "failed")) NIL (|has| |#2| (-559)))) (-2719 (((-690 |#2|)) NIL) (((-690 |#2|) (-1266 $)) NIL)) (-1568 ((|#2| $) NIL)) (-3322 (((-690 |#2|) $) NIL) (((-690 |#2|) $ (-1266 $)) NIL)) (-3123 (((-3 $ "failed") $) NIL (|has| |#2| (-559)))) (-2778 (((-1172 (-953 |#2|))) NIL (|has| |#2| (-365)))) (-3747 (($ $ (-922)) NIL)) (-1380 ((|#2| $) NIL)) (-2575 (((-1172 |#2|) $) NIL (|has| |#2| (-559)))) (-3385 ((|#2|) NIL) ((|#2| (-1266 $)) NIL)) (-2632 (((-1172 |#2|) $) NIL)) (-2095 (((-112)) NIL)) (-2451 (((-1158) $) NIL)) (-3387 (((-112)) NIL)) (-4064 (((-112)) NIL)) (-1815 (((-112)) NIL)) (-3475 (((-3 $ "failed") $) NIL (|has| |#2| (-365)))) (-3339 (((-1120) $) NIL)) (-3451 (((-112)) NIL)) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-2297 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) 30) ((|#2| $ (-567)) NIL)) (-1930 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3167 ((|#2| $) NIL)) (-4008 (($ (-645 |#2|)) NIL)) (-2685 (((-112) $) NIL)) (-3927 (((-240 |#1| |#2|) $) NIL)) (-3240 ((|#2| $) NIL (|has| |#2| (-6 (-4418 "*"))))) (-3349 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-4247 (($ $) NIL)) (-3216 (((-690 |#2|) (-1266 $)) NIL) (((-1266 |#2|) $) NIL) (((-690 |#2|) (-1266 $) (-1266 $)) NIL) (((-1266 |#2|) $ (-1266 $)) 33)) (-3542 (($ (-1266 |#2|)) NIL) (((-1266 |#2|) $) NIL)) (-2539 (((-645 (-953 |#2|))) NIL) (((-645 (-953 |#2|)) (-1266 $)) NIL)) (-4272 (($ $ $) NIL)) (-1911 (((-112)) NIL)) (-3295 (((-240 |#1| |#2|) $ (-567)) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 43)) (-2411 (((-645 (-1266 |#2|))) NIL (|has| |#2| (-559)))) (-3280 (($ $ $ $) NIL)) (-3854 (((-112)) NIL)) (-1992 (($ (-690 |#2|) $) NIL)) (-2012 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-1463 (((-112) $) NIL)) (-1816 (($ $ $) NIL)) (-3239 (((-112)) NIL)) (-3244 (((-112)) NIL)) (-4307 (((-112)) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-671 |#1| |#2|) (-13 (-1123 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|)) (-922) (-172)) (T -671))
+NIL
+(-13 (-1123 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-420 |#2|))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3100 (((-645 (-1135)) $) 10)) (-4101 (((-863) $) 16) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-672) (-13 (-1083) (-10 -8 (-15 -3100 ((-645 (-1135)) $))))) (T -672))
+((-3100 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-672)))))
+(-13 (-1083) (-10 -8 (-15 -3100 ((-645 (-1135)) $))))
+((-2257 (((-112) $ $) NIL)) (-2881 (((-645 |#1|) $) NIL)) (-3005 (($ $) 67)) (-1929 (((-112) $) NIL)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2561 (((-3 $ "failed") (-820 |#1|)) 27)) (-3201 (((-112) (-820 |#1|)) 17)) (-2459 (($ (-820 |#1|)) 28)) (-1516 (((-112) $ $) 36)) (-3036 (((-922) $) 43)) (-2993 (($ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2296 (((-645 $) (-820 |#1|)) 19)) (-4101 (((-863) $) 51) (($ |#1|) 40) (((-820 |#1|) $) 47) (((-678 |#1|) $) 52)) (-3739 (((-112) $ $) NIL)) (-2342 (((-59 (-645 $)) (-645 |#1|) (-922)) 72)) (-2037 (((-645 $) (-645 |#1|) (-922)) 76)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 68)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 46)))
+(((-673 |#1|) (-13 (-851) (-1039 |#1|) (-10 -8 (-15 -1929 ((-112) $)) (-15 -2993 ($ $)) (-15 -3005 ($ $)) (-15 -3036 ((-922) $)) (-15 -1516 ((-112) $ $)) (-15 -4101 ((-820 |#1|) $)) (-15 -4101 ((-678 |#1|) $)) (-15 -2296 ((-645 $) (-820 |#1|))) (-15 -3201 ((-112) (-820 |#1|))) (-15 -2459 ($ (-820 |#1|))) (-15 -2561 ((-3 $ "failed") (-820 |#1|))) (-15 -2881 ((-645 |#1|) $)) (-15 -2342 ((-59 (-645 $)) (-645 |#1|) (-922))) (-15 -2037 ((-645 $) (-645 |#1|) (-922))))) (-851)) (T -673))
+((-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2993 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-3005 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-1516 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4))) (-5 *1 (-673 *4)))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112)) (-5 *1 (-673 *4)))) (-2459 (*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-2561 (*1 *1 *2) (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851)))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851)) (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851)) (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5)))))
+(-13 (-851) (-1039 |#1|) (-10 -8 (-15 -1929 ((-112) $)) (-15 -2993 ($ $)) (-15 -3005 ($ $)) (-15 -3036 ((-922) $)) (-15 -1516 ((-112) $ $)) (-15 -4101 ((-820 |#1|) $)) (-15 -4101 ((-678 |#1|) $)) (-15 -2296 ((-645 $) (-820 |#1|))) (-15 -3201 ((-112) (-820 |#1|))) (-15 -2459 ($ (-820 |#1|))) (-15 -2561 ((-3 $ "failed") (-820 |#1|))) (-15 -2881 ((-645 |#1|) $)) (-15 -2342 ((-59 (-645 $)) (-645 |#1|) (-922))) (-15 -2037 ((-645 $) (-645 |#1|) (-922)))))
+((-3843 ((|#2| $) 103)) (-3221 (($ $) 124)) (-1580 (((-112) $ (-772)) 35)) (-2061 (($ $) 112) (($ $ (-772)) 115)) (-1714 (((-112) $) 125)) (-1306 (((-645 $) $) 99)) (-2971 (((-112) $ $) 95)) (-2805 (((-112) $ (-772)) 33)) (-1321 (((-567) $) 69)) (-1979 (((-567) $) 68)) (-3230 (((-112) $ (-772)) 31)) (-1436 (((-112) $) 101)) (-3162 ((|#2| $) 116) (($ $ (-772)) 120)) (-2884 (($ $ $ (-567)) 86) (($ |#2| $ (-567)) 85)) (-3940 (((-645 (-567)) $) 67)) (-1664 (((-112) (-567) $) 61)) (-2048 ((|#2| $) NIL) (($ $ (-772)) 111)) (-2436 (($ $ (-567)) 128)) (-2216 (((-112) $) 127)) (-2297 (((-112) (-1 (-112) |#2|) $) 44)) (-1412 (((-645 |#2|) $) 48)) (-1552 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1233 (-567))) 82) ((|#2| $ (-567)) 59) ((|#2| $ (-567) |#2|) 60)) (-4304 (((-567) $ $) 94)) (-2675 (($ $ (-1233 (-567))) 81) (($ $ (-567)) 75)) (-3436 (((-112) $) 90)) (-2443 (($ $) 108)) (-1449 (((-772) $) 107)) (-1344 (($ $) 106)) (-4114 (($ (-645 |#2|)) 55)) (-2448 (($ $) 129)) (-2936 (((-645 $) $) 93)) (-2684 (((-112) $ $) 92)) (-2012 (((-112) (-1 (-112) |#2|) $) 43)) (-3052 (((-112) $ $) 20)) (-2268 (((-772) $) 41)))
+(((-674 |#1| |#2|) (-10 -8 (-15 -2448 (|#1| |#1|)) (-15 -2436 (|#1| |#1| (-567))) (-15 -1714 ((-112) |#1|)) (-15 -2216 ((-112) |#1|)) (-15 -1552 (|#2| |#1| (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567))) (-15 -1412 ((-645 |#2|) |#1|)) (-15 -1664 ((-112) (-567) |#1|)) (-15 -3940 ((-645 (-567)) |#1|)) (-15 -1979 ((-567) |#1|)) (-15 -1321 ((-567) |#1|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -2675 (|#1| |#1| (-567))) (-15 -2675 (|#1| |#1| (-1233 (-567)))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2443 (|#1| |#1|)) (-15 -1449 ((-772) |#1|)) (-15 -1344 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3162 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "last")) (-15 -3162 (|#2| |#1|)) (-15 -2061 (|#1| |#1| (-772))) (-15 -1552 (|#1| |#1| "rest")) (-15 -2061 (|#1| |#1|)) (-15 -2048 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "first")) (-15 -2048 (|#2| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -2684 ((-112) |#1| |#1|)) (-15 -4304 ((-567) |#1| |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -1552 (|#2| |#1| "value")) (-15 -3843 (|#2| |#1|)) (-15 -1436 ((-112) |#1|)) (-15 -1306 ((-645 |#1|) |#1|)) (-15 -2936 ((-645 |#1|) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772)))) (-675 |#2|) (-1216)) (T -674))
+NIL
+(-10 -8 (-15 -2448 (|#1| |#1|)) (-15 -2436 (|#1| |#1| (-567))) (-15 -1714 ((-112) |#1|)) (-15 -2216 ((-112) |#1|)) (-15 -1552 (|#2| |#1| (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567))) (-15 -1412 ((-645 |#2|) |#1|)) (-15 -1664 ((-112) (-567) |#1|)) (-15 -3940 ((-645 (-567)) |#1|)) (-15 -1979 ((-567) |#1|)) (-15 -1321 ((-567) |#1|)) (-15 -4114 (|#1| (-645 |#2|))) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -2675 (|#1| |#1| (-567))) (-15 -2675 (|#1| |#1| (-1233 (-567)))) (-15 -2884 (|#1| |#2| |#1| (-567))) (-15 -2884 (|#1| |#1| |#1| (-567))) (-15 -2443 (|#1| |#1|)) (-15 -1449 ((-772) |#1|)) (-15 -1344 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3162 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "last")) (-15 -3162 (|#2| |#1|)) (-15 -2061 (|#1| |#1| (-772))) (-15 -1552 (|#1| |#1| "rest")) (-15 -2061 (|#1| |#1|)) (-15 -2048 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "first")) (-15 -2048 (|#2| |#1|)) (-15 -2971 ((-112) |#1| |#1|)) (-15 -2684 ((-112) |#1| |#1|)) (-15 -4304 ((-567) |#1| |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -1552 (|#2| |#1| "value")) (-15 -3843 (|#2| |#1|)) (-15 -1436 ((-112) |#1|)) (-15 -1306 ((-645 |#1|) |#1|)) (-15 -2936 ((-645 |#1|) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2297 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772))))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-2369 ((|#1| $) 66)) (-3221 (($ $) 68)) (-2275 (((-1271) $ (-567) (-567)) 98 (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) 53 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-3371 (($ $ $) 57 (|has| $ (-6 -4417)))) (-3487 ((|#1| $ |#1|) 55 (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) 59 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4417))) (($ $ "rest" $) 56 (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 118 (|has| $ (-6 -4417))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 103)) (-2357 ((|#1| $) 67)) (-4061 (($) 7 T CONST)) (-2690 (($ $) 125)) (-2061 (($ $) 74) (($ $ (-772)) 72)) (-2084 (($ $) 100 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#1| $) 101 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 104)) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1303 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 88)) (-1714 (((-112) $) 84)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-3923 (((-772) $) 124)) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-4012 (($ (-772) |#1|) 109)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 96 (|has| (-567) (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 95 (|has| (-567) (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3230 (((-112) $ (-772)) 10)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-4241 (($ $) 127)) (-1986 (((-112) $) 128)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3162 ((|#1| $) 71) (($ $ (-772)) 69)) (-2884 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-3940 (((-645 (-567)) $) 93)) (-1664 (((-112) (-567) $) 92)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-3026 ((|#1| $) 126)) (-2048 ((|#1| $) 77) (($ $ (-772)) 75)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2092 (($ $ |#1|) 97 (|has| $ (-6 -4417)))) (-2436 (($ $ (-567)) 123)) (-2216 (((-112) $) 85)) (-3699 (((-112) $) 129)) (-2988 (((-112) $) 130)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 91)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1233 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-4304 (((-567) $ $) 45)) (-2675 (($ $ (-1233 (-567))) 115) (($ $ (-567)) 114)) (-3436 (((-112) $) 47)) (-2443 (($ $) 63)) (-3709 (($ $) 60 (|has| $ (-6 -4417)))) (-1449 (((-772) $) 64)) (-1344 (($ $) 65)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 108)) (-3962 (($ $ $) 62 (|has| $ (-6 -4417))) (($ $ |#1|) 61 (|has| $ (-6 -4417)))) (-2285 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-2448 (($ $) 122)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-675 |#1|) (-140) (-1216)) (T -675))
+((-3138 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1216)))) (-1551 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1216)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))) (-3699 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216)))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216)))) (-2690 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216)))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1216)))) (-2448 (*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216)))))
+(-13 (-1149 |t#1|) (-10 -8 (-15 -3138 ($ (-1 (-112) |t#1|) $)) (-15 -1551 ($ (-1 (-112) |t#1|) $)) (-15 -2988 ((-112) $)) (-15 -3699 ((-112) $)) (-15 -1986 ((-112) $)) (-15 -4241 ($ $)) (-15 -3026 (|t#1| $)) (-15 -2690 ($ $)) (-15 -3923 ((-772) $)) (-15 -2436 ($ $ (-567))) (-15 -2448 ($ $))))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-1011 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1149 |#1|) . T) ((-1216) . T) ((-1254 |#1|) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1349 (($ (-772) (-772) (-772)) 55 (|has| |#1| (-1050)))) (-1580 (((-112) $ (-772)) NIL)) (-3975 ((|#1| $ (-772) (-772) (-772) |#1|) 49)) (-4061 (($) NIL T CONST)) (-1746 (($ $ $) 60 (|has| |#1| (-1050)))) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-2134 (((-1266 (-772)) $) 12)) (-1329 (($ (-1176) $ $) 37)) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-1503 (($ (-772)) 57 (|has| |#1| (-1050)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-772) (-772) (-772)) 46)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4114 (($ (-645 (-645 (-645 |#1|)))) 70)) (-4101 (($ (-959 (-959 (-959 |#1|)))) 23) (((-959 (-959 (-959 |#1|))) $) 19) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-676 |#1|) (-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1050)) (PROGN (-15 -1349 ($ (-772) (-772) (-772))) (-15 -1503 ($ (-772))) (-15 -1746 ($ $ $))) |%noBranch|) (-15 -4114 ($ (-645 (-645 (-645 |#1|))))) (-15 -1552 (|#1| $ (-772) (-772) (-772))) (-15 -3975 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4101 ($ (-959 (-959 (-959 |#1|))))) (-15 -4101 ((-959 (-959 (-959 |#1|))) $)) (-15 -1329 ($ (-1176) $ $)) (-15 -2134 ((-1266 (-772)) $)))) (-1100)) (T -676))
+((-1349 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050)) (-4 *3 (-1100)))) (-1503 (*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050)) (-4 *3 (-1100)))) (-1746 (*1 *1 *1 *1) (-12 (-5 *1 (-676 *2)) (-4 *2 (-1050)) (-4 *2 (-1100)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1100)) (-5 *1 (-676 *3)))) (-1552 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1100)))) (-3975 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1100)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-4 *3 (-1100)) (-5 *1 (-676 *3)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-5 *1 (-676 *3)) (-4 *3 (-1100)))) (-1329 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-676 *3)) (-4 *3 (-1100)))) (-2134 (*1 *2 *1) (-12 (-5 *2 (-1266 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1100)))))
+(-13 (-492 |#1|) (-10 -8 (IF (|has| |#1| (-1050)) (PROGN (-15 -1349 ($ (-772) (-772) (-772))) (-15 -1503 ($ (-772))) (-15 -1746 ($ $ $))) |%noBranch|) (-15 -4114 ($ (-645 (-645 (-645 |#1|))))) (-15 -1552 (|#1| $ (-772) (-772) (-772))) (-15 -3975 (|#1| $ (-772) (-772) (-772) |#1|)) (-15 -4101 ($ (-959 (-959 (-959 |#1|))))) (-15 -4101 ((-959 (-959 (-959 |#1|))) $)) (-15 -1329 ($ (-1176) $ $)) (-15 -2134 ((-1266 (-772)) $))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3942 (((-486) $) 10)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 19) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-1135) $) 12)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-677) (-13 (-1083) (-10 -8 (-15 -3942 ((-486) $)) (-15 -1830 ((-1135) $))))) (T -677))
+((-3942 (*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-677)))))
+(-13 (-1083) (-10 -8 (-15 -3942 ((-486) $)) (-15 -1830 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-2881 (((-645 |#1|) $) 15)) (-3005 (($ $) 19)) (-1929 (((-112) $) 20)) (-3417 (((-3 |#1| "failed") $) 23)) (-1621 ((|#1| $) 21)) (-2061 (($ $) 37)) (-4020 (($ $) 25)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-1516 (((-112) $ $) 47)) (-3036 (((-922) $) 40)) (-2993 (($ $) 18)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 ((|#1| $) 36)) (-4101 (((-863) $) 32) (($ |#1|) 24) (((-820 |#1|) $) 28)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 13)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 44)) (* (($ $ $) 35)))
+(((-678 |#1|) (-13 (-851) (-1039 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4101 ((-820 |#1|) $)) (-15 -2048 (|#1| $)) (-15 -2993 ($ $)) (-15 -3036 ((-922) $)) (-15 -1516 ((-112) $ $)) (-15 -4020 ($ $)) (-15 -2061 ($ $)) (-15 -1929 ((-112) $)) (-15 -3005 ($ $)) (-15 -2881 ((-645 |#1|) $)))) (-851)) (T -678))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-2048 (*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2993 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-1516 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-4020 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2061 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851)))) (-3005 (*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851)))))
+(-13 (-851) (-1039 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4101 ((-820 |#1|) $)) (-15 -2048 (|#1| $)) (-15 -2993 ($ $)) (-15 -3036 ((-922) $)) (-15 -1516 ((-112) $ $)) (-15 -4020 ($ $)) (-15 -2061 ($ $)) (-15 -1929 ((-112) $)) (-15 -3005 ($ $)) (-15 -2881 ((-645 |#1|) $))))
+((-2791 ((|#1| (-1 |#1| (-772) |#1|) (-772) |#1|) 14)) (-2834 ((|#1| (-1 |#1| |#1|) (-772) |#1|) 12)))
+(((-679 |#1|) (-10 -7 (-15 -2834 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -2791 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|))) (-1100)) (T -679))
+((-2791 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1100)) (-5 *1 (-679 *2)))) (-2834 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1100)) (-5 *1 (-679 *2)))))
+(-10 -7 (-15 -2834 (|#1| (-1 |#1| |#1|) (-772) |#1|)) (-15 -2791 (|#1| (-1 |#1| (-772) |#1|) (-772) |#1|)))
+((-3801 ((|#2| |#1| |#2|) 9)) (-3792 ((|#1| |#1| |#2|) 8)))
+(((-680 |#1| |#2|) (-10 -7 (-15 -3792 (|#1| |#1| |#2|)) (-15 -3801 (|#2| |#1| |#2|))) (-1100) (-1100)) (T -680))
+((-3801 (*1 *2 *3 *2) (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))) (-3792 (*1 *2 *2 *3) (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
+(-10 -7 (-15 -3792 (|#1| |#1| |#2|)) (-15 -3801 (|#2| |#1| |#2|)))
+((-2489 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-681 |#1| |#2| |#3|) (-10 -7 (-15 -2489 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1100) (-1100) (-1100)) (T -681))
+((-2489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)) (-5 *1 (-681 *5 *6 *2)))))
+(-10 -7 (-15 -2489 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-3620 (((-1215) $) 21)) (-3572 (((-645 (-1215)) $) 19)) (-4321 (($ (-645 (-1215)) (-1215)) 14)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 29) (($ (-1181)) NIL) (((-1181) $) NIL) (((-1215) $) 22) (($ (-1118)) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-682) (-13 (-1083) (-614 (-1215)) (-10 -8 (-15 -4101 ($ (-1118))) (-15 -4321 ($ (-645 (-1215)) (-1215))) (-15 -3572 ((-645 (-1215)) $)) (-15 -3620 ((-1215) $))))) (T -682))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-682)))) (-4321 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1215))) (-5 *3 (-1215)) (-5 *1 (-682)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-682)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-682)))))
+(-13 (-1083) (-614 (-1215)) (-10 -8 (-15 -4101 ($ (-1118))) (-15 -4321 ($ (-645 (-1215)) (-1215))) (-15 -3572 ((-645 (-1215)) $)) (-15 -3620 ((-1215) $))))
+((-2791 (((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)) 29)) (-1939 (((-1 |#1|) |#1|) 8)) (-3978 ((|#1| |#1|) 23)) (-2279 (((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-4101 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-772)) 26)))
+(((-683 |#1|) (-10 -7 (-15 -1939 ((-1 |#1|) |#1|)) (-15 -4101 ((-1 |#1|) |#1|)) (-15 -2279 (|#1| (-1 |#1| |#1|))) (-15 -2279 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3978 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -2791 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|)))) (-1100)) (T -683))
+((-2791 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1100)) (-5 *1 (-683 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1100)) (-5 *1 (-683 *4)))) (-3978 (*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1100)))) (-2279 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567)) (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1100)))) (-2279 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1100)))) (-4101 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1100)))) (-1939 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1100)))))
+(-10 -7 (-15 -1939 ((-1 |#1|) |#1|)) (-15 -4101 ((-1 |#1|) |#1|)) (-15 -2279 (|#1| (-1 |#1| |#1|))) (-15 -2279 ((-645 |#1|) (-1 (-645 |#1|) (-645 |#1|)) (-567))) (-15 -3978 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-772))) (-15 -2791 ((-1 |#1| (-772) |#1|) (-1 |#1| (-772) |#1|))))
+((-2211 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2600 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2131 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2395 (((-1 |#2| |#1|) |#2|) 11)))
+(((-684 |#1| |#2|) (-10 -7 (-15 -2395 ((-1 |#2| |#1|) |#2|)) (-15 -2600 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2131 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2211 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1100) (-1100)) (T -684))
+((-2211 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1100)) (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)) (-4 *4 (-1100)))) (-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))) (-2395 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1100)) (-4 *3 (-1100)))))
+(-10 -7 (-15 -2395 ((-1 |#2| |#1|) |#2|)) (-15 -2600 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2131 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2211 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2833 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-1681 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4232 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3999 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3558 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -1681 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4232 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3999 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3558 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2833 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1100) (-1100) (-1100)) (T -685))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-1 *7 *5)) (-5 *1 (-685 *5 *6 *7)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1100)))) (-3999 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1100)) (-4 *6 (-1100)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1100)))) (-4232 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1100)) (-4 *4 (-1100)) (-4 *6 (-1100)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6)))))
+(-10 -7 (-15 -1681 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4232 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3999 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3558 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2833 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3402 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3494 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-686 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3494 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3494 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3402 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1050) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|) (-1050) (-375 |#5|) (-375 |#5|) (-688 |#5| |#6| |#7|)) (T -686))
+((-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1050)) (-4 *2 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2)) (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9)))) (-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1050)) (-4 *8 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1050)) (-4 *8 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8)))))
+(-10 -7 (-15 -3494 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3494 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3402 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2019 (($ (-772) (-772)) 43)) (-2592 (($ $ $) 71)) (-3008 (($ |#3|) 66) (($ $) 67)) (-2141 (((-112) $) 38)) (-1529 (($ $ (-567) (-567)) 82)) (-1381 (($ $ (-567) (-567)) 83)) (-3453 (($ $ (-567) (-567) (-567) (-567)) 88)) (-3788 (($ $) 69)) (-2358 (((-112) $) 15)) (-2098 (($ $ (-567) (-567) $) 89)) (-4230 ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) 87)) (-3617 (($ (-772) |#2|) 53)) (-4036 (($ (-645 (-645 |#2|))) 51)) (-1343 (((-645 (-645 |#2|)) $) 78)) (-3203 (($ $ $) 70)) (-2245 (((-3 $ "failed") $ |#2|) 121)) (-1552 ((|#2| $ (-567) (-567)) NIL) ((|#2| $ (-567) (-567) |#2|) NIL) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-4008 (($ (-645 |#2|)) 54) (($ (-645 $)) 56)) (-2685 (((-112) $) 28)) (-4101 (($ |#4|) 61) (((-863) $) NIL)) (-1463 (((-112) $) 40)) (-3168 (($ $ |#2|) 123)) (-3156 (($ $ $) 93) (($ $) 96)) (-3146 (($ $ $) 91)) (** (($ $ (-772)) 110) (($ $ (-567)) 128)) (* (($ $ $) 102) (($ |#2| $) 98) (($ $ |#2|) 99) (($ (-567) $) 101) ((|#4| $ |#4|) 114) ((|#3| |#3| $) 118)))
+(((-687 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4101 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3168 (|#1| |#1| |#2|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2098 (|#1| |#1| (-567) (-567) |#1|)) (-15 -3453 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -1381 (|#1| |#1| (-567) (-567))) (-15 -1529 (|#1| |#1| (-567) (-567))) (-15 -4230 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1552 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1343 ((-645 (-645 |#2|)) |#1|)) (-15 -2592 (|#1| |#1| |#1|)) (-15 -3203 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3008 (|#1| |#3|)) (-15 -4101 (|#1| |#4|)) (-15 -4008 (|#1| (-645 |#1|))) (-15 -4008 (|#1| (-645 |#2|))) (-15 -3617 (|#1| (-772) |#2|)) (-15 -4036 (|#1| (-645 (-645 |#2|)))) (-15 -2019 (|#1| (-772) (-772))) (-15 -1463 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2685 ((-112) |#1|)) (-15 -2358 ((-112) |#1|)) (-15 -4230 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) (-567)))) (-688 |#2| |#3| |#4|) (-1050) (-375 |#2|) (-375 |#2|)) (T -687))
+NIL
+(-10 -8 (-15 -4101 ((-863) |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -3168 (|#1| |#1| |#2|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-772))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2098 (|#1| |#1| (-567) (-567) |#1|)) (-15 -3453 (|#1| |#1| (-567) (-567) (-567) (-567))) (-15 -1381 (|#1| |#1| (-567) (-567))) (-15 -1529 (|#1| |#1| (-567) (-567))) (-15 -4230 (|#1| |#1| (-645 (-567)) (-645 (-567)) |#1|)) (-15 -1552 (|#1| |#1| (-645 (-567)) (-645 (-567)))) (-15 -1343 ((-645 (-645 |#2|)) |#1|)) (-15 -2592 (|#1| |#1| |#1|)) (-15 -3203 (|#1| |#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3008 (|#1| |#1|)) (-15 -3008 (|#1| |#3|)) (-15 -4101 (|#1| |#4|)) (-15 -4008 (|#1| (-645 |#1|))) (-15 -4008 (|#1| (-645 |#2|))) (-15 -3617 (|#1| (-772) |#2|)) (-15 -4036 (|#1| (-645 (-645 |#2|)))) (-15 -2019 (|#1| (-772) (-772))) (-15 -1463 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2685 ((-112) |#1|)) (-15 -2358 ((-112) |#1|)) (-15 -4230 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) (-567))))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2019 (($ (-772) (-772)) 98)) (-2592 (($ $ $) 88)) (-3008 (($ |#2|) 92) (($ $) 91)) (-2141 (((-112) $) 100)) (-1529 (($ $ (-567) (-567)) 84)) (-1381 (($ $ (-567) (-567)) 83)) (-3453 (($ $ (-567) (-567) (-567) (-567)) 82)) (-3788 (($ $) 90)) (-2358 (((-112) $) 102)) (-1580 (((-112) $ (-772)) 8)) (-2098 (($ $ (-567) (-567) $) 81)) (-4230 ((|#1| $ (-567) (-567) |#1|) 45) (($ $ (-645 (-567)) (-645 (-567)) $) 85)) (-1417 (($ $ (-567) |#2|) 43)) (-3264 (($ $ (-567) |#3|) 42)) (-3617 (($ (-772) |#1|) 96)) (-4061 (($) 7 T CONST)) (-1876 (($ $) 68 (|has| |#1| (-308)))) (-4074 ((|#2| $ (-567)) 47)) (-2432 (((-772) $) 67 (|has| |#1| (-559)))) (-1303 ((|#1| $ (-567) (-567) |#1|) 44)) (-4344 ((|#1| $ (-567) (-567)) 49)) (-2896 (((-645 |#1|) $) 31)) (-1375 (((-772) $) 66 (|has| |#1| (-559)))) (-3137 (((-645 |#3|) $) 65 (|has| |#1| (-559)))) (-4300 (((-772) $) 52)) (-4012 (($ (-772) (-772) |#1|) 58)) (-4311 (((-772) $) 51)) (-2805 (((-112) $ (-772)) 9)) (-1982 ((|#1| $) 63 (|has| |#1| (-6 (-4418 "*"))))) (-3776 (((-567) $) 56)) (-4176 (((-567) $) 54)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1977 (((-567) $) 55)) (-2467 (((-567) $) 53)) (-4036 (($ (-645 (-645 |#1|))) 97)) (-4392 (($ (-1 |#1| |#1|) $) 35)) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 41) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40)) (-1343 (((-645 (-645 |#1|)) $) 87)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3475 (((-3 $ "failed") $) 62 (|has| |#1| (-365)))) (-3203 (($ $ $) 89)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) 57)) (-2245 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-559)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) (-567)) 50) ((|#1| $ (-567) (-567) |#1|) 48) (($ $ (-645 (-567)) (-645 (-567))) 86)) (-4008 (($ (-645 |#1|)) 95) (($ (-645 $)) 94)) (-2685 (((-112) $) 101)) (-3240 ((|#1| $) 64 (|has| |#1| (-6 (-4418 "*"))))) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3295 ((|#3| $ (-567)) 46)) (-4101 (($ |#3|) 93) (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-1463 (((-112) $) 99)) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-3168 (($ $ |#1|) 69 (|has| |#1| (-365)))) (-3156 (($ $ $) 79) (($ $) 78)) (-3146 (($ $ $) 80)) (** (($ $ (-772)) 71) (($ $ (-567)) 61 (|has| |#1| (-365)))) (* (($ $ $) 77) (($ |#1| $) 76) (($ $ |#1|) 75) (($ (-567) $) 74) ((|#3| $ |#3|) 73) ((|#2| |#2| $) 72)) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-688 |#1| |#2| |#3|) (-140) (-1050) (-375 |t#1|) (-375 |t#1|)) (T -688))
+((-2358 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2685 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-112)))) (-2019 (*1 *1 *2 *2) (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3617 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4101 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (-3008 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (-3008 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3203 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-2592 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-1343 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3))))) (-1552 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-4230 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1529 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-1381 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3453 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2098 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *2 (-375 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1050)) (-4 *2 (-375 *3)) (-4 *4 (-375 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))) (-2245 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (-1876 (*1 *1 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-308)))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050)))) (-3475 (*1 *1 *1) (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4417) (-6 -4416) (-15 -2358 ((-112) $)) (-15 -2685 ((-112) $)) (-15 -2141 ((-112) $)) (-15 -1463 ((-112) $)) (-15 -2019 ($ (-772) (-772))) (-15 -4036 ($ (-645 (-645 |t#1|)))) (-15 -3617 ($ (-772) |t#1|)) (-15 -4008 ($ (-645 |t#1|))) (-15 -4008 ($ (-645 $))) (-15 -4101 ($ |t#3|)) (-15 -3008 ($ |t#2|)) (-15 -3008 ($ $)) (-15 -3788 ($ $)) (-15 -3203 ($ $ $)) (-15 -2592 ($ $ $)) (-15 -1343 ((-645 (-645 |t#1|)) $)) (-15 -1552 ($ $ (-645 (-567)) (-645 (-567)))) (-15 -4230 ($ $ (-645 (-567)) (-645 (-567)) $)) (-15 -1529 ($ $ (-567) (-567))) (-15 -1381 ($ $ (-567) (-567))) (-15 -3453 ($ $ (-567) (-567) (-567) (-567))) (-15 -2098 ($ $ (-567) (-567) $)) (-15 -3146 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3156 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-567) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-772))) (IF (|has| |t#1| (-559)) (-15 -2245 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -3168 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-308)) (-15 -1876 ($ $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2432 ((-772) $)) (-15 -1375 ((-772) $)) (-15 -3137 ((-645 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4418 "*"))) (PROGN (-15 -3240 (|t#1| $)) (-15 -1982 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -3475 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-57 |#1| |#2| |#3|) . T) ((-1216) . T))
+((-1876 ((|#4| |#4|) 97 (|has| |#1| (-308)))) (-2432 (((-772) |#4|) 125 (|has| |#1| (-559)))) (-1375 (((-772) |#4|) 101 (|has| |#1| (-559)))) (-3137 (((-645 |#3|) |#4|) 108 (|has| |#1| (-559)))) (-1893 (((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|) 140 (|has| |#1| (-308)))) (-1982 ((|#1| |#4|) 57)) (-3461 (((-3 |#4| "failed") |#4|) 89 (|has| |#1| (-559)))) (-3475 (((-3 |#4| "failed") |#4|) 105 (|has| |#1| (-365)))) (-3566 ((|#4| |#4|) 93 (|has| |#1| (-559)))) (-3412 ((|#4| |#4| |#1| (-567) (-567)) 65)) (-1433 ((|#4| |#4| (-567) (-567)) 60)) (-2682 ((|#4| |#4| |#1| (-567) (-567)) 70)) (-3240 ((|#1| |#4|) 103)) (-2630 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 94 (|has| |#1| (-559)))))
+(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3240 (|#1| |#4|)) (-15 -1982 (|#1| |#4|)) (-15 -1433 (|#4| |#4| (-567) (-567))) (-15 -3412 (|#4| |#4| |#1| (-567) (-567))) (-15 -2682 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -2432 ((-772) |#4|)) (-15 -1375 ((-772) |#4|)) (-15 -3137 ((-645 |#3|) |#4|)) (-15 -3566 (|#4| |#4|)) (-15 -3461 ((-3 |#4| "failed") |#4|)) (-15 -2630 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -1876 (|#4| |#4|)) (-15 -1893 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3475 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -689))
+((-3475 (*1 *2 *2) (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1893 (*1 *2 *3 *3) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2630 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3461 (*1 *2 *2) (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3566 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-3137 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-1375 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2432 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2682 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-3412 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3)) (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2)) (-4 *2 (-688 *3 *5 *6)))) (-1433 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2)) (-4 *2 (-688 *4 *5 *6)))) (-1982 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))) (-3240 (*1 *2 *3) (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172)) (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5)))))
+(-10 -7 (-15 -3240 (|#1| |#4|)) (-15 -1982 (|#1| |#4|)) (-15 -1433 (|#4| |#4| (-567) (-567))) (-15 -3412 (|#4| |#4| |#1| (-567) (-567))) (-15 -2682 (|#4| |#4| |#1| (-567) (-567))) (IF (|has| |#1| (-559)) (PROGN (-15 -2432 ((-772) |#4|)) (-15 -1375 ((-772) |#4|)) (-15 -3137 ((-645 |#3|) |#4|)) (-15 -3566 (|#4| |#4|)) (-15 -3461 ((-3 |#4| "failed") |#4|)) (-15 -2630 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-308)) (PROGN (-15 -1876 (|#4| |#4|)) (-15 -1893 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3475 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2019 (($ (-772) (-772)) 64)) (-2592 (($ $ $) NIL)) (-3008 (($ (-1266 |#1|)) NIL) (($ $) NIL)) (-2141 (((-112) $) NIL)) (-1529 (($ $ (-567) (-567)) 22)) (-1381 (($ $ (-567) (-567)) NIL)) (-3453 (($ $ (-567) (-567) (-567) (-567)) NIL)) (-3788 (($ $) NIL)) (-2358 (((-112) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-2098 (($ $ (-567) (-567) $) NIL)) (-4230 ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567)) $) NIL)) (-1417 (($ $ (-567) (-1266 |#1|)) NIL)) (-3264 (($ $ (-567) (-1266 |#1|)) NIL)) (-3617 (($ (-772) |#1|) 37)) (-4061 (($) NIL T CONST)) (-1876 (($ $) 46 (|has| |#1| (-308)))) (-4074 (((-1266 |#1|) $ (-567)) NIL)) (-2432 (((-772) $) 48 (|has| |#1| (-559)))) (-1303 ((|#1| $ (-567) (-567) |#1|) 69)) (-4344 ((|#1| $ (-567) (-567)) NIL)) (-2896 (((-645 |#1|) $) NIL)) (-1375 (((-772) $) 50 (|has| |#1| (-559)))) (-3137 (((-645 (-1266 |#1|)) $) 53 (|has| |#1| (-559)))) (-4300 (((-772) $) 32)) (-4012 (($ (-772) (-772) |#1|) 28)) (-4311 (((-772) $) 33)) (-2805 (((-112) $ (-772)) NIL)) (-1982 ((|#1| $) 44 (|has| |#1| (-6 (-4418 "*"))))) (-3776 (((-567) $) 10)) (-4176 (((-567) $) 11)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1977 (((-567) $) 14)) (-2467 (((-567) $) 65)) (-4036 (($ (-645 (-645 |#1|))) NIL)) (-4392 (($ (-1 |#1| |#1|) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1343 (((-645 (-645 |#1|)) $) 76)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3475 (((-3 $ "failed") $) 60 (|has| |#1| (-365)))) (-3203 (($ $ $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2092 (($ $ |#1|) NIL)) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) (-567)) NIL) ((|#1| $ (-567) (-567) |#1|) NIL) (($ $ (-645 (-567)) (-645 (-567))) NIL)) (-4008 (($ (-645 |#1|)) NIL) (($ (-645 $)) NIL) (($ (-1266 |#1|)) 70)) (-2685 (((-112) $) NIL)) (-3240 ((|#1| $) 42 (|has| |#1| (-6 (-4418 "*"))))) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-3542 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-3295 (((-1266 |#1|) $ (-567)) NIL)) (-4101 (($ (-1266 |#1|)) NIL) (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-1463 (((-112) $) NIL)) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $ $) NIL) (($ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) 38) (($ $ (-567)) 62 (|has| |#1| (-365)))) (* (($ $ $) 24) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-567) $) NIL) (((-1266 |#1|) $ (-1266 |#1|)) NIL) (((-1266 |#1|) (-1266 |#1|) $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-690 |#1|) (-13 (-688 |#1| (-1266 |#1|) (-1266 |#1|)) (-10 -8 (-15 -4008 ($ (-1266 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3475 ((-3 $ "failed") $)) |%noBranch|))) (-1050)) (T -690))
+((-3475 (*1 *1 *1) (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1050)))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1050)) (-5 *1 (-690 *3)))))
+(-13 (-688 |#1| (-1266 |#1|) (-1266 |#1|)) (-10 -8 (-15 -4008 ($ (-1266 |#1|))) (IF (|has| |#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3475 ((-3 $ "failed") $)) |%noBranch|)))
+((-3335 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 37)) (-4251 (((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|) 34)) (-3324 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772)) 43)) (-1917 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 27)) (-2853 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|)) 31) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 29)) (-1671 (((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|)) 33)) (-3093 (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 25)) (** (((-690 |#1|) (-690 |#1|) (-772)) 46)))
+(((-691 |#1|) (-10 -7 (-15 -3093 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1917 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2853 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2853 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1671 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -4251 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -3335 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3324 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772)))) (-1050)) (T -691))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-691 *4)))) (-3324 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-691 *4)))) (-3335 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-4251 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-1671 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-2853 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-2853 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-1917 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))) (-3093 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))))
+(-10 -7 (-15 -3093 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1917 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2853 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2853 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -1671 ((-690 |#1|) (-690 |#1|) |#1| (-690 |#1|))) (-15 -4251 ((-690 |#1|) (-690 |#1|) (-690 |#1|) |#1|)) (-15 -3335 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -3324 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-690 |#1|) (-772))) (-15 ** ((-690 |#1|) (-690 |#1|) (-772))))
+((-3417 (((-3 |#1| "failed") $) 18)) (-1621 ((|#1| $) NIL)) (-1970 (($) 7 T CONST)) (-1304 (($ |#1|) 8)) (-4101 (($ |#1|) 16) (((-863) $) 23)) (-1453 (((-112) $ (|[\|\|]| |#1|)) 14) (((-112) $ (|[\|\|]| -1970)) 11)) (-4276 ((|#1| $) 15)))
+(((-692 |#1|) (-13 (-1261) (-1039 |#1|) (-614 (-863)) (-10 -8 (-15 -1304 ($ |#1|)) (-15 -1453 ((-112) $ (|[\|\|]| |#1|))) (-15 -1453 ((-112) $ (|[\|\|]| -1970))) (-15 -4276 (|#1| $)) (-15 -1970 ($) -2131))) (-614 (-863))) (T -692))
+((-1304 (*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112)) (-5 *1 (-692 *4)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1970)) (-5 *2 (-112)) (-5 *1 (-692 *4)) (-4 *4 (-614 (-863))))) (-4276 (*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))) (-1970 (*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
+(-13 (-1261) (-1039 |#1|) (-614 (-863)) (-10 -8 (-15 -1304 ($ |#1|)) (-15 -1453 ((-112) $ (|[\|\|]| |#1|))) (-15 -1453 ((-112) $ (|[\|\|]| -1970))) (-15 -4276 (|#1| $)) (-15 -1970 ($) -2131)))
+((-3272 ((|#2| |#2| |#4|) 33)) (-1459 (((-690 |#2|) |#3| |#4|) 39)) (-3298 (((-690 |#2|) |#2| |#4|) 38)) (-3057 (((-1266 |#2|) |#2| |#4|) 16)) (-2828 ((|#2| |#3| |#4|) 32)) (-3189 (((-690 |#2|) |#3| |#4| (-772) (-772)) 50)) (-3120 (((-690 |#2|) |#2| |#4| (-772)) 49)))
+(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3057 ((-1266 |#2|) |#2| |#4|)) (-15 -2828 (|#2| |#3| |#4|)) (-15 -3272 (|#2| |#2| |#4|)) (-15 -3298 ((-690 |#2|) |#2| |#4|)) (-15 -3120 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1459 ((-690 |#2|) |#3| |#4|)) (-15 -3189 ((-690 |#2|) |#3| |#4| (-772) (-772)))) (-1100) (-901 |#1|) (-375 |#2|) (-13 (-375 |#1|) (-10 -7 (-6 -4416)))) (T -693))
+((-3189 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1100)) (-4 *7 (-901 *6)) (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4416)))))) (-1459 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-4 *6 (-901 *5)) (-5 *2 (-690 *6)) (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-1100)) (-4 *3 (-901 *6)) (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3)) (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4416)))))) (-3298 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-4 *3 (-901 *5)) (-5 *2 (-690 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))) (-3272 (*1 *2 *2 *3) (-12 (-4 *4 (-1100)) (-4 *2 (-901 *4)) (-5 *1 (-693 *4 *2 *5 *3)) (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4416)))))) (-2828 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-4 *2 (-901 *5)) (-5 *1 (-693 *5 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))) (-3057 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-4 *3 (-901 *5)) (-5 *2 (-1266 *3)) (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))))
+(-10 -7 (-15 -3057 ((-1266 |#2|) |#2| |#4|)) (-15 -2828 (|#2| |#3| |#4|)) (-15 -3272 (|#2| |#2| |#4|)) (-15 -3298 ((-690 |#2|) |#2| |#4|)) (-15 -3120 ((-690 |#2|) |#2| |#4| (-772))) (-15 -1459 ((-690 |#2|) |#3| |#4|)) (-15 -3189 ((-690 |#2|) |#3| |#4| (-772) (-772))))
+((-1371 (((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)) 20)) (-2532 ((|#1| (-690 |#2|)) 9)) (-3013 (((-690 |#1|) (-690 |#2|)) 18)))
+(((-694 |#1| |#2|) (-10 -7 (-15 -2532 (|#1| (-690 |#2|))) (-15 -3013 ((-690 |#1|) (-690 |#2|))) (-15 -1371 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|)))) (-559) (-993 |#1|)) (T -694))
+((-1371 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4))) (-5 *1 (-694 *4 *5)))) (-3013 (*1 *2 *3) (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559)) (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5)))) (-2532 (*1 *2 *3) (-12 (-5 *3 (-690 *4)) (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-694 *2 *4)))))
+(-10 -7 (-15 -2532 (|#1| (-690 |#2|))) (-15 -3013 ((-690 |#1|) (-690 |#2|))) (-15 -1371 ((-2 (|:| |num| (-690 |#1|)) (|:| |den| |#1|)) (-690 |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-3007 (((-690 (-700))) NIL) (((-690 (-700)) (-1266 $)) NIL)) (-4093 (((-700) $) NIL)) (-1772 (($ $) NIL (|has| (-700) (-1201)))) (-1605 (($ $) NIL (|has| (-700) (-1201)))) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| (-700) (-351)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-1396 (($ $) NIL (-2909 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-1401 (((-421 $) $) NIL (-2909 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-2307 (($ $) NIL (-12 (|has| (-700) (-1003)) (|has| (-700) (-1201))))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-3405 (((-112) $ $) NIL (|has| (-700) (-308)))) (-2013 (((-772)) NIL (|has| (-700) (-370)))) (-1747 (($ $) NIL (|has| (-700) (-1201)))) (-1577 (($ $) NIL (|has| (-700) (-1201)))) (-1798 (($ $) NIL (|has| (-700) (-1201)))) (-1632 (($ $) NIL (|has| (-700) (-1201)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-700) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-1039 (-410 (-567)))))) (-1621 (((-567) $) NIL) (((-700) $) NIL) (((-410 (-567)) $) NIL (|has| (-700) (-1039 (-410 (-567)))))) (-3499 (($ (-1266 (-700))) NIL) (($ (-1266 (-700)) (-1266 $)) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-700) (-351)))) (-2197 (($ $ $) NIL (|has| (-700) (-308)))) (-4253 (((-690 (-700)) $) NIL) (((-690 (-700)) $ (-1266 $)) NIL)) (-1920 (((-690 (-700)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-700))) (|:| |vec| (-1266 (-700)))) (-690 $) (-1266 $)) NIL) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-700) (-640 (-567)))) (((-690 (-567)) (-690 $)) NIL (|has| (-700) (-640 (-567))))) (-3402 (((-3 $ "failed") (-410 (-1172 (-700)))) NIL (|has| (-700) (-365))) (($ (-1172 (-700))) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2319 (((-700) $) 29)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-700) (-548)))) (-4379 (((-112) $) NIL (|has| (-700) (-548)))) (-3061 (((-410 (-567)) $) NIL (|has| (-700) (-548)))) (-2432 (((-922)) NIL)) (-1649 (($) NIL (|has| (-700) (-370)))) (-2210 (($ $ $) NIL (|has| (-700) (-308)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| (-700) (-308)))) (-3896 (($) NIL (|has| (-700) (-351)))) (-1596 (((-112) $) NIL (|has| (-700) (-351)))) (-2966 (($ $) NIL (|has| (-700) (-351))) (($ $ (-772)) NIL (|has| (-700) (-351)))) (-1665 (((-112) $) NIL (-2909 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-1780 (((-2 (|:| |r| (-700)) (|:| |phi| (-700))) $) NIL (-12 (|has| (-700) (-1060)) (|has| (-700) (-1201))))) (-4098 (($) NIL (|has| (-700) (-1201)))) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-700) (-887 (-381)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-700) (-887 (-567))))) (-1909 (((-834 (-922)) $) NIL (|has| (-700) (-351))) (((-922) $) NIL (|has| (-700) (-351)))) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (-12 (|has| (-700) (-1003)) (|has| (-700) (-1201))))) (-3751 (((-700) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| (-700) (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-4110 (((-1172 (-700)) $) NIL (|has| (-700) (-365)))) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-3494 (($ (-1 (-700) (-700)) $) NIL)) (-3527 (((-922) $) NIL (|has| (-700) (-370)))) (-2942 (($ $) NIL (|has| (-700) (-1201)))) (-3392 (((-1172 (-700)) $) NIL)) (-3245 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| (-700) (-365)))) (-2596 (($) NIL (|has| (-700) (-351)) CONST)) (-3811 (($ (-922)) NIL (|has| (-700) (-370)))) (-3025 (($) NIL)) (-2333 (((-700) $) 31)) (-3339 (((-1120) $) NIL)) (-4099 (($) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| (-700) (-308)))) (-3276 (($ (-645 $)) NIL (|has| (-700) (-308))) (($ $ $) NIL (|has| (-700) (-308)))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| (-700) (-351)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-700) (-308)) (|has| (-700) (-910))))) (-2296 (((-421 $) $) NIL (-2909 (-12 (|has| (-700) (-308)) (|has| (-700) (-910))) (|has| (-700) (-365))))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-700) (-308))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| (-700) (-308)))) (-2245 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-700)) NIL (|has| (-700) (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-700) (-308)))) (-2910 (($ $) NIL (|has| (-700) (-1201)))) (-3140 (($ $ (-1176) (-700)) NIL (|has| (-700) (-517 (-1176) (-700)))) (($ $ (-645 (-1176)) (-645 (-700))) NIL (|has| (-700) (-517 (-1176) (-700)))) (($ $ (-645 (-295 (-700)))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-295 (-700))) NIL (|has| (-700) (-310 (-700)))) (($ $ (-700) (-700)) NIL (|has| (-700) (-310 (-700)))) (($ $ (-645 (-700)) (-645 (-700))) NIL (|has| (-700) (-310 (-700))))) (-4369 (((-772) $) NIL (|has| (-700) (-308)))) (-1552 (($ $ (-700)) NIL (|has| (-700) (-287 (-700) (-700))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| (-700) (-308)))) (-3347 (((-700)) NIL) (((-700) (-1266 $)) NIL)) (-2097 (((-3 (-772) "failed") $ $) NIL (|has| (-700) (-351))) (((-772) $) NIL (|has| (-700) (-351)))) (-1930 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-1176)) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-3374 (((-690 (-700)) (-1266 $) (-1 (-700) (-700))) NIL (|has| (-700) (-365)))) (-2713 (((-1172 (-700))) NIL)) (-1810 (($ $) NIL (|has| (-700) (-1201)))) (-1647 (($ $) NIL (|has| (-700) (-1201)))) (-1698 (($) NIL (|has| (-700) (-351)))) (-1784 (($ $) NIL (|has| (-700) (-1201)))) (-1618 (($ $) NIL (|has| (-700) (-1201)))) (-1757 (($ $) NIL (|has| (-700) (-1201)))) (-1592 (($ $) NIL (|has| (-700) (-1201)))) (-3216 (((-690 (-700)) (-1266 $)) NIL) (((-1266 (-700)) $) NIL) (((-690 (-700)) (-1266 $) (-1266 $)) NIL) (((-1266 (-700)) $ (-1266 $)) NIL)) (-3542 (((-539) $) NIL (|has| (-700) (-615 (-539)))) (((-169 (-225)) $) NIL (|has| (-700) (-1023))) (((-169 (-381)) $) NIL (|has| (-700) (-1023))) (((-893 (-381)) $) NIL (|has| (-700) (-615 (-893 (-381))))) (((-893 (-567)) $) NIL (|has| (-700) (-615 (-893 (-567))))) (($ (-1172 (-700))) NIL) (((-1172 (-700)) $) NIL) (($ (-1266 (-700))) NIL) (((-1266 (-700)) $) NIL)) (-1443 (($ $) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-2909 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-910))) (|has| (-700) (-351))))) (-2938 (($ (-700) (-700)) 12)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-567)) NIL) (($ (-700)) NIL) (($ (-169 (-381))) 13) (($ (-169 (-567))) 19) (($ (-169 (-700))) 28) (($ (-169 (-702))) 25) (((-169 (-381)) $) 33) (($ (-410 (-567))) NIL (-2909 (|has| (-700) (-1039 (-410 (-567)))) (|has| (-700) (-365))))) (-4242 (($ $) NIL (|has| (-700) (-351))) (((-3 $ "failed") $) NIL (-2909 (-12 (|has| (-700) (-308)) (|has| $ (-145)) (|has| (-700) (-910))) (|has| (-700) (-145))))) (-4121 (((-1172 (-700)) $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) NIL)) (-1847 (($ $) NIL (|has| (-700) (-1201)))) (-1690 (($ $) NIL (|has| (-700) (-1201)))) (-2469 (((-112) $ $) NIL)) (-1823 (($ $) NIL (|has| (-700) (-1201)))) (-1660 (($ $) NIL (|has| (-700) (-1201)))) (-1869 (($ $) NIL (|has| (-700) (-1201)))) (-1719 (($ $) NIL (|has| (-700) (-1201)))) (-3600 (((-700) $) NIL (|has| (-700) (-1201)))) (-1345 (($ $) NIL (|has| (-700) (-1201)))) (-1733 (($ $) NIL (|has| (-700) (-1201)))) (-1858 (($ $) NIL (|has| (-700) (-1201)))) (-1704 (($ $) NIL (|has| (-700) (-1201)))) (-1834 (($ $) NIL (|has| (-700) (-1201)))) (-1673 (($ $) NIL (|has| (-700) (-1201)))) (-1771 (($ $) NIL (|has| (-700) (-1060)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-1 (-700) (-700))) NIL) (($ $ (-1 (-700) (-700)) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-1176)) NIL (|has| (-700) (-901 (-1176)))) (($ $ (-772)) NIL (|has| (-700) (-233))) (($ $) NIL (|has| (-700) (-233)))) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL (|has| (-700) (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| (-700) (-1201))) (($ $ (-410 (-567))) NIL (-12 (|has| (-700) (-1003)) (|has| (-700) (-1201)))) (($ $ (-567)) NIL (|has| (-700) (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ (-700) $) NIL) (($ $ (-700)) NIL) (($ (-410 (-567)) $) NIL (|has| (-700) (-365))) (($ $ (-410 (-567))) NIL (|has| (-700) (-365)))))
+(((-695) (-13 (-390) (-166 (-700)) (-10 -8 (-15 -4101 ($ (-169 (-381)))) (-15 -4101 ($ (-169 (-567)))) (-15 -4101 ($ (-169 (-700)))) (-15 -4101 ($ (-169 (-702)))) (-15 -4101 ((-169 (-381)) $))))) (T -695))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695)))))
+(-13 (-390) (-166 (-700)) (-10 -8 (-15 -4101 ($ (-169 (-381)))) (-15 -4101 ($ (-169 (-567)))) (-15 -4101 ($ (-169 (-700)))) (-15 -4101 ($ (-169 (-702)))) (-15 -4101 ((-169 (-381)) $))))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-2581 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1861 (($ $) 63)) (-2084 (($ $) 59 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ |#1| $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) 58 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-4281 (((-645 (-2 (|:| -3859 |#1|) (|:| -3349 (-772)))) $) 62)) (-2069 (($) 50) (($ (-645 |#1|)) 49)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 51)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-696 |#1|) (-140) (-1100)) (T -696))
+((-1336 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1100)))) (-1861 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1100)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1100)) (-5 *2 (-645 (-2 (|:| -3859 *3) (|:| -3349 (-772))))))))
+(-13 (-235 |t#1|) (-10 -8 (-15 -1336 ($ |t#1| $ (-772))) (-15 -1861 ($ $)) (-15 -4281 ((-645 (-2 (|:| -3859 |t#1|) (|:| -3349 (-772)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-3268 (((-645 |#1|) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))) (-567)) 66)) (-1675 ((|#1| |#1| (-567)) 62)) (-3276 ((|#1| |#1| |#1| (-567)) 46)) (-2296 (((-645 |#1|) |#1| (-567)) 49)) (-1318 ((|#1| |#1| (-567) |#1| (-567)) 40)) (-4070 (((-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))) |#1| (-567)) 61)))
+(((-697 |#1|) (-10 -7 (-15 -3276 (|#1| |#1| |#1| (-567))) (-15 -1675 (|#1| |#1| (-567))) (-15 -2296 ((-645 |#1|) |#1| (-567))) (-15 -4070 ((-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))) |#1| (-567))) (-15 -3268 ((-645 |#1|) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))) (-567))) (-15 -1318 (|#1| |#1| (-567) |#1| (-567)))) (-1242 (-567))) (T -697))
+((-1318 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1242 *3)))) (-3268 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| -2296 *5) (|:| -3677 (-567))))) (-5 *4 (-567)) (-4 *5 (-1242 *4)) (-5 *2 (-645 *5)) (-5 *1 (-697 *5)))) (-4070 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2296 *3) (|:| -3677 *4)))) (-5 *1 (-697 *3)) (-4 *3 (-1242 *4)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3)) (-4 *3 (-1242 *4)))) (-1675 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1242 *3)))) (-3276 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1242 *3)))))
+(-10 -7 (-15 -3276 (|#1| |#1| |#1| (-567))) (-15 -1675 (|#1| |#1| (-567))) (-15 -2296 ((-645 |#1|) |#1| (-567))) (-15 -4070 ((-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))) |#1| (-567))) (-15 -3268 ((-645 |#1|) (-645 (-2 (|:| -2296 |#1|) (|:| -3677 (-567)))) (-567))) (-15 -1318 (|#1| |#1| (-567) |#1| (-567))))
+((-3738 (((-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-1950 (((-1133 (-225)) (-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-645 (-264))) 56) (((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-645 (-264))) 58) (((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1094 (-225)) (-1094 (-225)) (-645 (-264))) 60)) (-4224 (((-1133 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-645 (-264))) NIL)) (-3088 (((-1133 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1094 (-225)) (-1094 (-225)) (-645 (-264))) 61)))
+(((-698) (-10 -7 (-15 -1950 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -1950 ((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -1950 ((-1133 (-225)) (-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -3088 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -4224 ((-1133 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -3738 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -698))
+((-3738 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-944 (-225)) (-225) (-225))) (-5 *1 (-698)))) (-4224 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1094 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-698)))) (-3088 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1094 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-698)))) (-1950 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1133 (-225))) (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))) (-1950 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-225))) (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-698)))) (-1950 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1094 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-698)))))
+(-10 -7 (-15 -1950 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -1950 ((-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -1950 ((-1133 (-225)) (-1133 (-225)) (-1 (-944 (-225)) (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -3088 ((-1133 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1094 (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -4224 ((-1133 (-225)) (-317 (-567)) (-317 (-567)) (-317 (-567)) (-1 (-225) (-225)) (-1094 (-225)) (-645 (-264)))) (-15 -3738 ((-1 (-944 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))
+((-2296 (((-421 (-1172 |#4|)) (-1172 |#4|)) 86) (((-421 |#4|) |#4|) 270)))
+(((-699 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-421 |#4|) |#4|)) (-15 -2296 ((-421 (-1172 |#4|)) (-1172 |#4|)))) (-851) (-794) (-351) (-950 |#3| |#2| |#1|)) (T -699))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1172 *7))) (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1172 *7)))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))))
+(-10 -7 (-15 -2296 ((-421 |#4|) |#4|)) (-15 -2296 ((-421 (-1172 |#4|)) (-1172 |#4|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 100)) (-2838 (((-567) $) 34)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2674 (($ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-2307 (($ $) NIL)) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL)) (-4061 (($) NIL T CONST)) (-2733 (($ $) NIL)) (-3417 (((-3 (-567) "failed") $) 89) (((-3 (-410 (-567)) "failed") $) 28) (((-3 (-381) "failed") $) 86)) (-1621 (((-567) $) 91) (((-410 (-567)) $) 83) (((-381) $) 84)) (-2197 (($ $ $) 112)) (-4014 (((-3 $ "failed") $) 103)) (-2210 (($ $ $) 111)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4374 (((-922)) 93) (((-922) (-922)) 92)) (-4095 (((-112) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL)) (-1909 (((-567) $) NIL)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL)) (-3751 (($ $) NIL)) (-3948 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-1882 (((-567) (-567)) 97) (((-567)) 98)) (-2056 (($ $ $) NIL) (($) NIL (-12 (-1397 (|has| $ (-6 -4399))) (-1397 (|has| $ (-6 -4407)))))) (-2742 (((-567) (-567)) 95) (((-567)) 96)) (-1802 (($ $ $) NIL) (($) NIL (-12 (-1397 (|has| $ (-6 -4399))) (-1397 (|has| $ (-6 -4407)))))) (-2869 (((-567) $) 17)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 107)) (-2920 (((-922) (-567)) NIL (|has| $ (-6 -4407)))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL)) (-3992 (($ $) NIL)) (-2822 (($ (-567) (-567)) NIL) (($ (-567) (-567) (-922)) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) 108)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4164 (((-567) $) 24)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 110)) (-4018 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4407)))) (-2926 (((-922) (-567)) NIL (|has| $ (-6 -4407)))) (-3542 (((-381) $) NIL) (((-225) $) NIL) (((-893 (-381)) $) NIL)) (-4101 (((-863) $) 68) (($ (-567)) 79) (($ $) NIL) (($ (-410 (-567))) 82) (($ (-567)) 79) (($ (-410 (-567))) 82) (($ (-381)) 76) (((-381) $) 66) (($ (-702)) 71)) (-2686 (((-772)) 122 T CONST)) (-2164 (($ (-567) (-567) (-922)) 59)) (-2721 (($ $) NIL)) (-3693 (((-922)) NIL) (((-922) (-922)) NIL (|has| $ (-6 -4407)))) (-3739 (((-112) $ $) NIL)) (-3183 (((-922)) 46) (((-922) (-922)) 94)) (-2469 (((-112) $ $) NIL)) (-1771 (($ $) NIL)) (-1468 (($) 37 T CONST)) (-1484 (($) 18 T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 99)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 121)) (-3168 (($ $ $) 81)) (-3156 (($ $) 118) (($ $ $) 119)) (-3146 (($ $ $) 117)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 106)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 113) (($ $ $) 104) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-700) (-13 (-407) (-390) (-365) (-1039 (-381)) (-1039 (-410 (-567))) (-147) (-10 -8 (-15 -4374 ((-922) (-922))) (-15 -4374 ((-922))) (-15 -3183 ((-922) (-922))) (-15 -2742 ((-567) (-567))) (-15 -2742 ((-567))) (-15 -1882 ((-567) (-567))) (-15 -1882 ((-567))) (-15 -4101 ((-381) $)) (-15 -4101 ($ (-702))) (-15 -2869 ((-567) $)) (-15 -4164 ((-567) $)) (-15 -2164 ($ (-567) (-567) (-922)))))) (T -700))
+((-4164 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4374 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) (-4374 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))) (-2742 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-2742 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-1882 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700)))) (-2164 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-5 *1 (-700)))))
+(-13 (-407) (-390) (-365) (-1039 (-381)) (-1039 (-410 (-567))) (-147) (-10 -8 (-15 -4374 ((-922) (-922))) (-15 -4374 ((-922))) (-15 -3183 ((-922) (-922))) (-15 -2742 ((-567) (-567))) (-15 -2742 ((-567))) (-15 -1882 ((-567) (-567))) (-15 -1882 ((-567))) (-15 -4101 ((-381) $)) (-15 -4101 ($ (-702))) (-15 -2869 ((-567) $)) (-15 -4164 ((-567) $)) (-15 -2164 ($ (-567) (-567) (-922)))))
+((-3875 (((-690 |#1|) (-690 |#1|) |#1| |#1|) 88)) (-1876 (((-690 |#1|) (-690 |#1|) |#1|) 67)) (-3010 (((-690 |#1|) (-690 |#1|) |#1|) 89)) (-3968 (((-690 |#1|) (-690 |#1|)) 68)) (-1893 (((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|) 87)))
+(((-701 |#1|) (-10 -7 (-15 -3968 ((-690 |#1|) (-690 |#1|))) (-15 -1876 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3010 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3875 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -1893 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|))) (-308)) (T -701))
+((-1893 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-701 *3)) (-4 *3 (-308)))) (-3875 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-3010 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-1876 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))) (-3968 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
+(-10 -7 (-15 -3968 ((-690 |#1|) (-690 |#1|))) (-15 -1876 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3010 ((-690 |#1|) (-690 |#1|) |#1|)) (-15 -3875 ((-690 |#1|) (-690 |#1|) |#1| |#1|)) (-15 -1893 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-3824 (($ $ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2765 (($ $ $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL)) (-4100 (($ $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) 31)) (-1621 (((-567) $) 29)) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL)) (-4379 (((-112) $) NIL)) (-3061 (((-410 (-567)) $) NIL)) (-1649 (($ $) NIL) (($) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-2854 (($ $ $ $) NIL)) (-1499 (($ $ $) NIL)) (-4095 (((-112) $) NIL)) (-1969 (($ $ $) NIL)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-3714 (((-112) $) NIL)) (-3937 (((-112) $) NIL)) (-2802 (((-3 $ "failed") $) NIL)) (-3948 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3302 (($ $ $ $) NIL)) (-2056 (($ $ $) NIL)) (-1305 (((-922) (-922)) 10) (((-922)) 9)) (-1802 (($ $ $) NIL)) (-3479 (($ $) NIL)) (-3036 (($ $) NIL)) (-3245 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3365 (($ $ $) NIL)) (-2596 (($) NIL T CONST)) (-2462 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ (-645 $)) NIL) (($ $ $) NIL)) (-3354 (($ $) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2143 (((-112) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL) (($ $ (-772)) NIL)) (-2932 (($ $) NIL)) (-4247 (($ $) NIL)) (-3542 (((-225) $) NIL) (((-381) $) NIL) (((-893 (-567)) $) NIL) (((-539) $) NIL) (((-567) $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) 28) (($ $) NIL) (($ (-567)) 28) (((-317 $) (-317 (-567))) 18)) (-2686 (((-772)) NIL T CONST)) (-3446 (((-112) $ $) NIL)) (-3806 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3183 (($) NIL)) (-2469 (((-112) $ $) NIL)) (-2648 (($ $ $ $) NIL)) (-1771 (($ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $) NIL) (($ $ (-772)) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+(((-702) (-13 (-390) (-548) (-10 -8 (-15 -1305 ((-922) (-922))) (-15 -1305 ((-922))) (-15 -4101 ((-317 $) (-317 (-567))))))) (T -702))
+((-1305 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702)))) (-1305 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702)))))
+(-13 (-390) (-548) (-10 -8 (-15 -1305 ((-922) (-922))) (-15 -1305 ((-922))) (-15 -4101 ((-317 $) (-317 (-567))))))
+((-3781 (((-1 |#4| |#2| |#3|) |#1| (-1176) (-1176)) 19)) (-1500 (((-1 |#4| |#2| |#3|) (-1176)) 12)))
+(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1500 ((-1 |#4| |#2| |#3|) (-1176))) (-15 -3781 ((-1 |#4| |#2| |#3|) |#1| (-1176) (-1176)))) (-615 (-539)) (-1216) (-1216) (-1216)) (T -703))
+((-3781 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1176)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7)) (-4 *3 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216)) (-4 *7 (-1216)))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7)) (-4 *4 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216)) (-4 *7 (-1216)))))
+(-10 -7 (-15 -1500 ((-1 |#4| |#2| |#3|) (-1176))) (-15 -3781 ((-1 |#4| |#2| |#3|) |#1| (-1176) (-1176))))
+((-2704 (((-1 (-225) (-225) (-225)) |#1| (-1176) (-1176)) 43) (((-1 (-225) (-225)) |#1| (-1176)) 48)))
+(((-704 |#1|) (-10 -7 (-15 -2704 ((-1 (-225) (-225)) |#1| (-1176))) (-15 -2704 ((-1 (-225) (-225) (-225)) |#1| (-1176) (-1176)))) (-615 (-539))) (T -704))
+((-2704 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1176)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))))
+(-10 -7 (-15 -2704 ((-1 (-225) (-225)) |#1| (-1176))) (-15 -2704 ((-1 (-225) (-225) (-225)) |#1| (-1176) (-1176))))
+((-3116 (((-1176) |#1| (-1176) (-645 (-1176))) 10) (((-1176) |#1| (-1176) (-1176) (-1176)) 13) (((-1176) |#1| (-1176) (-1176)) 12) (((-1176) |#1| (-1176)) 11)))
+(((-705 |#1|) (-10 -7 (-15 -3116 ((-1176) |#1| (-1176))) (-15 -3116 ((-1176) |#1| (-1176) (-1176))) (-15 -3116 ((-1176) |#1| (-1176) (-1176) (-1176))) (-15 -3116 ((-1176) |#1| (-1176) (-645 (-1176))))) (-615 (-539))) (T -705))
+((-3116 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-645 (-1176))) (-5 *2 (-1176)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-3116 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-3116 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))) (-3116 (*1 *2 *3 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539))))))
+(-10 -7 (-15 -3116 ((-1176) |#1| (-1176))) (-15 -3116 ((-1176) |#1| (-1176) (-1176))) (-15 -3116 ((-1176) |#1| (-1176) (-1176) (-1176))) (-15 -3116 ((-1176) |#1| (-1176) (-645 (-1176)))))
+((-1635 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-706 |#1| |#2|) (-10 -7 (-15 -1635 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1216) (-1216)) (T -706))
+((-1635 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-706 *3 *4)) (-4 *3 (-1216)) (-4 *4 (-1216)))))
+(-10 -7 (-15 -1635 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2204 (((-1 |#3| |#2|) (-1176)) 11)) (-3781 (((-1 |#3| |#2|) |#1| (-1176)) 21)))
+(((-707 |#1| |#2| |#3|) (-10 -7 (-15 -2204 ((-1 |#3| |#2|) (-1176))) (-15 -3781 ((-1 |#3| |#2|) |#1| (-1176)))) (-615 (-539)) (-1216) (-1216)) (T -707))
+((-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6)) (-4 *3 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6)) (-4 *4 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216)))))
+(-10 -7 (-15 -2204 ((-1 |#3| |#2|) (-1176))) (-15 -3781 ((-1 |#3| |#2|) |#1| (-1176))))
+((-2205 (((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 (-1172 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1266 (-645 (-1172 |#3|))) |#3|) 95)) (-3173 (((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 (-1172 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|) 113)) (-3741 (((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1172 |#4|)) (-1266 (-645 (-1172 |#3|))) |#3|) 47)))
+(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3741 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1172 |#4|)) (-1266 (-645 (-1172 |#3|))) |#3|)) (-15 -3173 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 (-1172 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -2205 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 (-1172 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1266 (-645 (-1172 |#3|))) |#3|))) (-794) (-851) (-308) (-950 |#3| |#1| |#2|)) (T -708))
+((-2205 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-645 (-1172 *13))) (-5 *3 (-1172 *13)) (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13)) (-5 *7 (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| *13))))) (-5 *8 (-645 (-772))) (-5 *9 (-1266 (-645 (-1172 *10)))) (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-950 *10 *11 *12)) (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))) (-3173 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1172 *9))) (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772))) (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-950 *9 *10 *11)) (-4 *10 (-794)) (-5 *2 (-645 (-1172 *12))) (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1172 *12)))) (-3741 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-645 (-1172 *11))) (-5 *3 (-1172 *11)) (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772))) (-5 *7 (-1266 (-645 (-1172 *8)))) (-4 *10 (-851)) (-4 *8 (-308)) (-4 *11 (-950 *8 *9 *10)) (-4 *9 (-794)) (-5 *1 (-708 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3741 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 |#3|) (-645 (-772)) (-645 (-1172 |#4|)) (-1266 (-645 (-1172 |#3|))) |#3|)) (-15 -3173 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 (-1172 |#3|)) (-645 |#3|) (-645 |#4|) (-645 (-772)) |#3|)) (-15 -2205 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-645 |#2|) (-645 (-1172 |#4|)) (-645 |#3|) (-645 |#4|) (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| |#4|)))) (-645 (-772)) (-1266 (-645 (-1172 |#3|))) |#3|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2637 (($ $) 48)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2422 (($ |#1| (-772)) 46)) (-4185 (((-772) $) 50)) (-2613 ((|#1| $) 49)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3677 (((-772) $) 51)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45 (|has| |#1| (-172)))) (-2339 ((|#1| $ (-772)) 47)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 53) (($ |#1| $) 52)))
+(((-709 |#1|) (-140) (-1050)) (T -709))
+((-3677 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050)))) (-2637 (*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050)))))
+(-13 (-1050) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3677 ((-772) $)) (-15 -4185 ((-772) $)) (-15 -2613 (|t#1| $)) (-15 -2637 ($ $)) (-15 -2339 (|t#1| $ (-772))) (-15 -2422 ($ |t#1| (-772)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3494 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-710 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3494 (|#6| (-1 |#4| |#1|) |#3|))) (-559) (-1242 |#1|) (-1242 (-410 |#2|)) (-559) (-1242 |#4|) (-1242 (-410 |#5|))) (T -710))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559)) (-4 *6 (-1242 *5)) (-4 *2 (-1242 (-410 *8))) (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1242 (-410 *6))) (-4 *8 (-1242 *7)))))
+(-10 -7 (-15 -3494 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2794 (((-1158) (-863)) 39)) (-3877 (((-1271) (-1158)) 32)) (-2670 (((-1158) (-863)) 28)) (-4119 (((-1158) (-863)) 29)) (-4101 (((-863) $) NIL) (((-1158) (-863)) 27)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-711) (-13 (-1100) (-10 -7 (-15 -4101 ((-1158) (-863))) (-15 -2670 ((-1158) (-863))) (-15 -4119 ((-1158) (-863))) (-15 -2794 ((-1158) (-863))) (-15 -3877 ((-1271) (-1158)))))) (T -711))
+((-4101 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711)))) (-2670 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711)))) (-4119 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-711)))))
+(-13 (-1100) (-10 -7 (-15 -4101 ((-1158) (-863))) (-15 -2670 ((-1158) (-863))) (-15 -4119 ((-1158) (-863))) (-15 -2794 ((-1158) (-863))) (-15 -3877 ((-1271) (-1158)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) NIL)) (-3402 (($ |#1| |#2|) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3416 ((|#2| $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4127 (((-3 $ "failed") $ $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) ((|#1| $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-365) (-10 -8 (-15 -3416 (|#2| $)) (-15 -4101 (|#1| $)) (-15 -3402 ($ |#1| |#2|)) (-15 -4127 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712))
+((-3416 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4101 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3402 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4127 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-365) (-10 -8 (-15 -3416 (|#2| $)) (-15 -4101 (|#1| $)) (-15 -3402 ($ |#1| |#2|)) (-15 -4127 ((-3 $ "failed") $ $))))
+((-2257 (((-112) $ $) 92)) (-2865 (((-112) $) 36)) (-3723 (((-1266 |#1|) $ (-772)) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-2876 (($ (-1172 |#1|)) NIL)) (-2260 (((-1172 $) $ (-1082)) NIL) (((-1172 |#1|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-1082))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3288 (($ $ $) NIL (|has| |#1| (-559)))) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2013 (((-772)) 56 (|has| |#1| (-370)))) (-3139 (($ $ (-772)) NIL)) (-2001 (($ $ (-772)) NIL)) (-3678 ((|#2| |#2|) 52)) (-2320 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1082) "failed") $) NIL)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1082) $) NIL)) (-2414 (($ $ $ (-1082)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) 40)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-3402 (($ |#2|) 50)) (-4014 (((-3 $ "failed") $) 102)) (-1649 (($) 61 (|has| |#1| (-370)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (($ $ $) NIL)) (-3862 (($ $ $) NIL (|has| |#1| (-559)))) (-2919 (((-2 (|:| -3087 |#1|) (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1082)) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3259 (((-959 $)) 94)) (-3564 (($ $ |#1| (-772) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1082) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1082) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-1909 (((-772) $ $) NIL (|has| |#1| (-559)))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-1151)))) (-2434 (($ (-1172 |#1|) (-1082)) NIL) (($ (-1172 $) (-1082)) NIL)) (-1406 (($ $ (-772)) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) 88) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-1082)) NIL) (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-3416 ((|#2|) 53)) (-4185 (((-772) $) NIL) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-1599 (($ (-1 (-772) (-772)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1689 (((-1172 |#1|) $) NIL)) (-3300 (((-3 (-1082) "failed") $) NIL)) (-3527 (((-922) $) NIL (|has| |#1| (-370)))) (-3392 ((|#2| $) 49)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) 34)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-2607 (((-2 (|:| -3545 $) (|:| -1386 $)) $ (-772)) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-1082)) (|:| -4164 (-772))) "failed") $) NIL)) (-2113 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2596 (($) NIL (|has| |#1| (-1151)) CONST)) (-3811 (($ (-922)) NIL (|has| |#1| (-370)))) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-4190 (($ $) 93 (|has| |#1| (-351)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 101 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1082) |#1|) NIL) (($ $ (-645 (-1082)) (-645 |#1|)) NIL) (($ $ (-1082) $) NIL) (($ $ (-645 (-1082)) (-645 $)) NIL)) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2116 (((-3 $ "failed") $ (-772)) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 103 (|has| |#1| (-365)))) (-3347 (($ $ (-1082)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1930 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3677 (((-772) $) 38) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1082) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1082)) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-3064 (((-959 $)) 42)) (-4187 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4101 (((-863) $) 71) (($ (-567)) NIL) (($ |#1|) 68) (($ (-1082)) NIL) (($ |#2|) 78) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) 73) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) 25 T CONST)) (-2657 (((-1266 |#1|) $) 86)) (-1451 (($ (-1266 |#1|)) 60)) (-1484 (($) 8 T CONST)) (-2692 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3533 (((-1266 |#1|) $) NIL)) (-3052 (((-112) $ $) 79)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) 82) (($ $ $) NIL)) (-3146 (($ $ $) 39)) (** (($ $ (-922)) NIL) (($ $ (-772)) 97)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 67) (($ $ $) 85) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 65) (($ $ |#1|) NIL)))
+(((-713 |#1| |#2|) (-13 (-1242 |#1|) (-617 |#2|) (-10 -8 (-15 -3678 (|#2| |#2|)) (-15 -3416 (|#2|)) (-15 -3402 ($ |#2|)) (-15 -3392 (|#2| $)) (-15 -2657 ((-1266 |#1|) $)) (-15 -1451 ($ (-1266 |#1|))) (-15 -3533 ((-1266 |#1|) $)) (-15 -3259 ((-959 $))) (-15 -3064 ((-959 $))) (IF (|has| |#1| (-351)) (-15 -4190 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|))) (-1050) (-1242 |#1|)) (T -713))
+((-3678 (*1 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1242 *3)))) (-3416 (*1 *2) (-12 (-4 *2 (-1242 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050)))) (-3402 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1242 *3)))) (-3392 (*1 *2 *1) (-12 (-4 *2 (-1242 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050)))) (-2657 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-1266 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1242 *3)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1050)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1242 *3)))) (-3533 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-1266 *3)) (-5 *1 (-713 *3 *4)) (-4 *4 (-1242 *3)))) (-3259 (*1 *2) (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1242 *3)))) (-3064 (*1 *2) (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4)) (-4 *4 (-1242 *3)))) (-4190 (*1 *1 *1) (-12 (-4 *2 (-351)) (-4 *2 (-1050)) (-5 *1 (-713 *2 *3)) (-4 *3 (-1242 *2)))))
+(-13 (-1242 |#1|) (-617 |#2|) (-10 -8 (-15 -3678 (|#2| |#2|)) (-15 -3416 (|#2|)) (-15 -3402 ($ |#2|)) (-15 -3392 (|#2| $)) (-15 -2657 ((-1266 |#1|) $)) (-15 -1451 ($ (-1266 |#1|))) (-15 -3533 ((-1266 |#1|) $)) (-15 -3259 ((-959 $))) (-15 -3064 ((-959 $))) (IF (|has| |#1| (-351)) (-15 -4190 ($ $)) |%noBranch|) (IF (|has| |#1| (-370)) (-6 (-370)) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 ((|#1| $) 13)) (-3339 (((-1120) $) NIL)) (-4164 ((|#2| $) 12)) (-4114 (($ |#1| |#2|) 16)) (-4101 (((-863) $) NIL) (($ (-2 (|:| -3811 |#1|) (|:| -4164 |#2|))) 15) (((-2 (|:| -3811 |#1|) (|:| -4164 |#2|)) $) 14)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 11)))
+(((-714 |#1| |#2| |#3|) (-13 (-851) (-493 (-2 (|:| -3811 |#1|) (|:| -4164 |#2|))) (-10 -8 (-15 -4164 (|#2| $)) (-15 -3811 (|#1| $)) (-15 -4114 ($ |#1| |#2|)))) (-851) (-1100) (-1 (-112) (-2 (|:| -3811 |#1|) (|:| -4164 |#2|)) (-2 (|:| -3811 |#1|) (|:| -4164 |#2|)))) (T -714))
+((-4164 (*1 *2 *1) (-12 (-4 *2 (-1100)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851)) (-14 *4 (-1 (-112) (-2 (|:| -3811 *3) (|:| -4164 *2)) (-2 (|:| -3811 *3) (|:| -4164 *2)))))) (-3811 (*1 *2 *1) (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1100)) (-14 *4 (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *3)) (-2 (|:| -3811 *2) (|:| -4164 *3)))))) (-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1100)) (-14 *4 (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *3)) (-2 (|:| -3811 *2) (|:| -4164 *3)))))))
+(-13 (-851) (-493 (-2 (|:| -3811 |#1|) (|:| -4164 |#2|))) (-10 -8 (-15 -4164 (|#2| $)) (-15 -3811 (|#1| $)) (-15 -4114 ($ |#1| |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 66)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-1621 ((|#1| $) NIL) (((-114) $) 39)) (-4014 (((-3 $ "failed") $) 106)) (-3921 ((|#2| (-114) |#2|) 93)) (-3714 (((-112) $) NIL)) (-3326 (($ |#1| (-363 (-114))) 14)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3330 (($ $ (-1 |#2| |#2|)) 65)) (-2841 (($ $ (-1 |#2| |#2|)) 44)) (-1552 ((|#2| $ |#2|) 33)) (-1873 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-4101 (((-863) $) 73) (($ (-567)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) 37 T CONST)) (-3739 (((-112) $ $) NIL)) (-2630 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-1468 (($) 21 T CONST)) (-1484 (($) 9 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) 48) (($ $ $) NIL)) (-3146 (($ $ $) 83)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) 64)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172)))))
+(((-715 |#1| |#2|) (-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -1873 (|#1| |#1|))) |%noBranch|) (-15 -2841 ($ $ (-1 |#2| |#2|))) (-15 -3330 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3921 (|#2| (-114) |#2|)) (-15 -3326 ($ |#1| (-363 (-114)))))) (-1050) (-649 |#1|)) (T -715))
+((-2630 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-2630 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-1873 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3)) (-4 *3 (-649 *2)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4)) (-4 *4 (-649 *3)))) (-3921 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1050)) (-5 *1 (-715 *4 *2)) (-4 *2 (-649 *4)))) (-3326 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1050)) (-5 *1 (-715 *2 *4)) (-4 *4 (-649 *2)))))
+(-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -1873 (|#1| |#1|))) |%noBranch|) (-15 -2841 ($ $ (-1 |#2| |#2|))) (-15 -3330 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3921 (|#2| (-114) |#2|)) (-15 -3326 ($ |#1| (-363 (-114))))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 33)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3402 (($ |#1| |#2|) 25)) (-4014 (((-3 $ "failed") $) 51)) (-3714 (((-112) $) 35)) (-3416 ((|#2| $) 12)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 52)) (-3339 (((-1120) $) NIL)) (-4127 (((-3 $ "failed") $ $) 50)) (-4101 (((-863) $) 24) (($ (-567)) 19) ((|#1| $) 13)) (-2686 (((-772)) 28 T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 16 T CONST)) (-1484 (($) 30 T CONST)) (-3052 (((-112) $ $) 41)) (-3156 (($ $) 46) (($ $ $) 40)) (-3146 (($ $ $) 43)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 21) (($ $ $) 20)))
+(((-716 |#1| |#2| |#3| |#4| |#5|) (-13 (-1050) (-10 -8 (-15 -3416 (|#2| $)) (-15 -4101 (|#1| $)) (-15 -3402 ($ |#1| |#2|)) (-15 -4127 ((-3 $ "failed") $ $)) (-15 -4014 ((-3 $ "failed") $)) (-15 -2559 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -716))
+((-4014 (*1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3416 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-4101 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3402 (*1 *1 *2 *3) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4127 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2559 (*1 *1 *1) (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1050) (-10 -8 (-15 -3416 (|#2| $)) (-15 -4101 (|#1| $)) (-15 -3402 ($ |#1| |#2|)) (-15 -4127 ((-3 $ "failed") $ $)) (-15 -4014 ((-3 $ "failed") $)) (-15 -2559 ($ $))))
+((* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-717 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-718 |#2|) (-172)) (T -717))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-718 |#1|) (-140) (-172)) (T -718))
+NIL
+(-13 (-111 |t#1| |t#1|) (-641 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-4100 (($ |#1|) 17) (($ $ |#1|) 20)) (-4371 (($ |#1|) 18) (($ $ |#1|) 21)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3714 (((-112) $) NIL)) (-3000 (($ |#1| |#1| |#1| |#1|) 8)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 16)) (-3339 (((-1120) $) NIL)) (-3140 ((|#1| $ |#1|) 24) (((-834 |#1|) $ (-834 |#1|)) 32)) (-1443 (($ $ $) NIL)) (-4272 (($ $ $) NIL)) (-4101 (((-863) $) 39)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 9 T CONST)) (-3052 (((-112) $ $) 48)) (-3168 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 14)))
+(((-719 |#1|) (-13 (-476) (-10 -8 (-15 -3000 ($ |#1| |#1| |#1| |#1|)) (-15 -4100 ($ |#1|)) (-15 -4371 ($ |#1|)) (-15 -4014 ($)) (-15 -4100 ($ $ |#1|)) (-15 -4371 ($ $ |#1|)) (-15 -4014 ($ $)) (-15 -3140 (|#1| $ |#1|)) (-15 -3140 ((-834 |#1|) $ (-834 |#1|))))) (-365)) (T -719))
+((-3000 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4100 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4371 (*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4014 (*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4100 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-4014 (*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3140 (*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))) (-3140 (*1 *2 *1 *2) (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3)))))
+(-13 (-476) (-10 -8 (-15 -3000 ($ |#1| |#1| |#1| |#1|)) (-15 -4100 ($ |#1|)) (-15 -4371 ($ |#1|)) (-15 -4014 ($)) (-15 -4100 ($ $ |#1|)) (-15 -4371 ($ $ |#1|)) (-15 -4014 ($ $)) (-15 -3140 (|#1| $ |#1|)) (-15 -3140 ((-834 |#1|) $ (-834 |#1|)))))
+((-3356 (($ $ (-922)) 21)) (-3747 (($ $ (-922)) 22)) (** (($ $ (-922)) 10)))
+(((-720 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -3747 (|#1| |#1| (-922))) (-15 -3356 (|#1| |#1| (-922)))) (-721)) (T -720))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-922))) (-15 -3747 (|#1| |#1| (-922))) (-15 -3356 (|#1| |#1| (-922))))
+((-2257 (((-112) $ $) 7)) (-3356 (($ $ (-922)) 16)) (-3747 (($ $ (-922)) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 17)))
+(((-721) (-140)) (T -721))
+((* (*1 *1 *1 *1) (-4 *1 (-721))) (-3356 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))) (-3747 (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922)))))
+(-13 (-1100) (-10 -8 (-15 * ($ $ $)) (-15 -3356 ($ $ (-922))) (-15 -3747 ($ $ (-922))) (-15 ** ($ $ (-922)))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-3356 (($ $ (-922)) NIL) (($ $ (-772)) 21)) (-3714 (((-112) $) 10)) (-3747 (($ $ (-922)) NIL) (($ $ (-772)) 22)) (** (($ $ (-922)) NIL) (($ $ (-772)) 16)))
+(((-722 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3747 (|#1| |#1| (-772))) (-15 -3356 (|#1| |#1| (-772))) (-15 -3714 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -3747 (|#1| |#1| (-922))) (-15 -3356 (|#1| |#1| (-922)))) (-723)) (T -722))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-772))) (-15 -3747 (|#1| |#1| (-772))) (-15 -3356 (|#1| |#1| (-772))) (-15 -3714 ((-112) |#1|)) (-15 ** (|#1| |#1| (-922))) (-15 -3747 (|#1| |#1| (-922))) (-15 -3356 (|#1| |#1| (-922))))
+((-2257 (((-112) $ $) 7)) (-3038 (((-3 $ "failed") $) 18)) (-3356 (($ $ (-922)) 16) (($ $ (-772)) 23)) (-4014 (((-3 $ "failed") $) 20)) (-3714 (((-112) $) 24)) (-3123 (((-3 $ "failed") $) 19)) (-3747 (($ $ (-922)) 15) (($ $ (-772)) 22)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1484 (($) 25 T CONST)) (-3052 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-772)) 21)) (* (($ $ $) 17)))
+(((-723) (-140)) (T -723))
+((-1484 (*1 *1) (-4 *1 (-723))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (-3356 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-3747 (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))) (-4014 (*1 *1 *1) (|partial| -4 *1 (-723))) (-3123 (*1 *1 *1) (|partial| -4 *1 (-723))) (-3038 (*1 *1 *1) (|partial| -4 *1 (-723))))
+(-13 (-721) (-10 -8 (-15 (-1484) ($) -2131) (-15 -3714 ((-112) $)) (-15 -3356 ($ $ (-772))) (-15 -3747 ($ $ (-772))) (-15 ** ($ $ (-772))) (-15 -4014 ((-3 $ "failed") $)) (-15 -3123 ((-3 $ "failed") $)) (-15 -3038 ((-3 $ "failed") $))))
+(((-102) . T) ((-614 (-863)) . T) ((-721) . T) ((-1100) . T))
+((-2013 (((-772)) 42)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-1621 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 23)) (-3402 (($ |#3|) NIL) (((-3 $ "failed") (-410 |#3|)) 53)) (-4014 (((-3 $ "failed") $) 73)) (-1649 (($) 47)) (-3751 ((|#2| $) 21)) (-4099 (($) 18)) (-1930 (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3374 (((-690 |#2|) (-1266 $) (-1 |#2| |#2|)) 68)) (-3542 (((-1266 |#2|) $) NIL) (($ (-1266 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-4121 ((|#3| $) 39)) (-2557 (((-1266 $)) 36)))
+(((-724 |#1| |#2| |#3|) (-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1649 (|#1|)) (-15 -2013 ((-772))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3374 ((-690 |#2|) (-1266 |#1|) (-1 |#2| |#2|))) (-15 -3402 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3542 (|#1| |#3|)) (-15 -3402 (|#1| |#3|)) (-15 -4099 (|#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3542 (|#3| |#1|)) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -2557 ((-1266 |#1|))) (-15 -4121 (|#3| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|))) (-725 |#2| |#3|) (-172) (-1242 |#2|)) (T -724))
+((-2013 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-772)) (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5)))))
+(-10 -8 (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1649 (|#1|)) (-15 -2013 ((-772))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -3374 ((-690 |#2|) (-1266 |#1|) (-1 |#2| |#2|))) (-15 -3402 ((-3 |#1| "failed") (-410 |#3|))) (-15 -3542 (|#1| |#3|)) (-15 -3402 (|#1| |#3|)) (-15 -4099 (|#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -3542 (|#3| |#1|)) (-15 -3542 (|#1| (-1266 |#2|))) (-15 -3542 ((-1266 |#2|) |#1|)) (-15 -2557 ((-1266 |#1|))) (-15 -4121 (|#3| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -4014 ((-3 |#1| "failed") |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 102 (|has| |#1| (-365)))) (-3602 (($ $) 103 (|has| |#1| (-365)))) (-2119 (((-112) $) 105 (|has| |#1| (-365)))) (-3007 (((-690 |#1|) (-1266 $)) 53) (((-690 |#1|)) 68)) (-4093 ((|#1| $) 59)) (-1783 (((-1189 (-922) (-772)) (-567)) 155 (|has| |#1| (-351)))) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 122 (|has| |#1| (-365)))) (-1401 (((-421 $) $) 123 (|has| |#1| (-365)))) (-3405 (((-112) $ $) 113 (|has| |#1| (-365)))) (-2013 (((-772)) 96 (|has| |#1| (-370)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 178 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 176 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 173)) (-1621 (((-567) $) 177 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 175 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 174)) (-3499 (($ (-1266 |#1|) (-1266 $)) 55) (($ (-1266 |#1|)) 71)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) 161 (|has| |#1| (-351)))) (-2197 (($ $ $) 117 (|has| |#1| (-365)))) (-4253 (((-690 |#1|) $ (-1266 $)) 60) (((-690 |#1|) $) 66)) (-1920 (((-690 (-567)) (-690 $)) 172 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 171 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 170) (((-690 |#1|) (-690 $)) 169)) (-3402 (($ |#2|) 166) (((-3 $ "failed") (-410 |#2|)) 163 (|has| |#1| (-365)))) (-4014 (((-3 $ "failed") $) 37)) (-2432 (((-922)) 61)) (-1649 (($) 99 (|has| |#1| (-370)))) (-2210 (($ $ $) 116 (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 111 (|has| |#1| (-365)))) (-3896 (($) 157 (|has| |#1| (-351)))) (-1596 (((-112) $) 158 (|has| |#1| (-351)))) (-2966 (($ $ (-772)) 149 (|has| |#1| (-351))) (($ $) 148 (|has| |#1| (-351)))) (-1665 (((-112) $) 124 (|has| |#1| (-365)))) (-1909 (((-922) $) 160 (|has| |#1| (-351))) (((-834 (-922)) $) 146 (|has| |#1| (-351)))) (-3714 (((-112) $) 35)) (-3751 ((|#1| $) 58)) (-2802 (((-3 $ "failed") $) 150 (|has| |#1| (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 120 (|has| |#1| (-365)))) (-4110 ((|#2| $) 51 (|has| |#1| (-365)))) (-3527 (((-922) $) 98 (|has| |#1| (-370)))) (-3392 ((|#2| $) 164)) (-3245 (($ (-645 $)) 109 (|has| |#1| (-365))) (($ $ $) 108 (|has| |#1| (-365)))) (-2451 (((-1158) $) 10)) (-2559 (($ $) 125 (|has| |#1| (-365)))) (-2596 (($) 151 (|has| |#1| (-351)) CONST)) (-3811 (($ (-922)) 97 (|has| |#1| (-370)))) (-3339 (((-1120) $) 11)) (-4099 (($) 168)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 110 (|has| |#1| (-365)))) (-3276 (($ (-645 $)) 107 (|has| |#1| (-365))) (($ $ $) 106 (|has| |#1| (-365)))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) 154 (|has| |#1| (-351)))) (-2296 (((-421 $) $) 121 (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 118 (|has| |#1| (-365)))) (-2245 (((-3 $ "failed") $ $) 101 (|has| |#1| (-365)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 112 (|has| |#1| (-365)))) (-4369 (((-772) $) 114 (|has| |#1| (-365)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 115 (|has| |#1| (-365)))) (-3347 ((|#1| (-1266 $)) 54) ((|#1|) 67)) (-2097 (((-772) $) 159 (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) 147 (|has| |#1| (-351)))) (-1930 (($ $) 145 (-2909 (-1410 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 143 (-2909 (-1410 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1176)) 141 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-645 (-1176))) 140 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-1176) (-772)) 139 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-645 (-1176)) (-645 (-772))) 138 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 131 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 130 (|has| |#1| (-365)))) (-3374 (((-690 |#1|) (-1266 $) (-1 |#1| |#1|)) 162 (|has| |#1| (-365)))) (-2713 ((|#2|) 167)) (-1698 (($) 156 (|has| |#1| (-351)))) (-3216 (((-1266 |#1|) $ (-1266 $)) 57) (((-690 |#1|) (-1266 $) (-1266 $)) 56) (((-1266 |#1|) $) 73) (((-690 |#1|) (-1266 $)) 72)) (-3542 (((-1266 |#1|) $) 70) (($ (-1266 |#1|)) 69) ((|#2| $) 179) (($ |#2|) 165)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 153 (|has| |#1| (-351)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ $) 100 (|has| |#1| (-365))) (($ (-410 (-567))) 95 (-2909 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-4242 (($ $) 152 (|has| |#1| (-351))) (((-3 $ "failed") $) 50 (|has| |#1| (-145)))) (-4121 ((|#2| $) 52)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2557 (((-1266 $)) 74)) (-2469 (((-112) $ $) 104 (|has| |#1| (-365)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $) 144 (-2909 (-1410 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) 142 (-2909 (-1410 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1176)) 137 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-645 (-1176))) 136 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-1176) (-772)) 135 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-645 (-1176)) (-645 (-772))) 134 (-1410 (|has| |#1| (-901 (-1176))) (|has| |#1| (-365)))) (($ $ (-1 |#1| |#1|) (-772)) 133 (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) 132 (|has| |#1| (-365)))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 129 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ (-410 (-567)) $) 128 (|has| |#1| (-365))) (($ $ (-410 (-567))) 127 (|has| |#1| (-365)))))
+(((-725 |#1| |#2|) (-140) (-172) (-1242 |t#1|)) (T -725))
+((-4099 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1242 *2)))) (-2713 (*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1242 *3)))) (-3402 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1242 *3)))) (-3542 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1242 *3)))) (-3392 (*1 *2 *1) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1242 *3)))) (-3402 (*1 *1 *2) (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-365)) (-4 *3 (-172)) (-4 *1 (-725 *3 *4)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *3 (-1266 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1242 *5)) (-5 *2 (-690 *5)))))
+(-13 (-412 |t#1| |t#2|) (-172) (-615 |t#2|) (-414 |t#1|) (-379 |t#1|) (-10 -8 (-15 -4099 ($)) (-15 -2713 (|t#2|)) (-15 -3402 ($ |t#2|)) (-15 -3542 ($ |t#2|)) (-15 -3392 (|t#2| $)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-365)) (-6 (-231 |t#1|)) (-15 -3402 ((-3 $ "failed") (-410 |t#2|))) (-15 -3374 ((-690 |t#1|) (-1266 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-351)) (-6 (-351)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-38 |#1|) . T) ((-38 $) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-102) . T) ((-111 #0# #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2909 (|has| |#1| (-351)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-351)) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) . T) ((-615 |#2|) . T) ((-231 |#1|) |has| |#1| (-365)) ((-233) -2909 (|has| |#1| (-351)) (-12 (|has| |#1| (-233)) (|has| |#1| (-365)))) ((-243) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-291) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-308) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-365) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-405) |has| |#1| (-351)) ((-370) -2909 (|has| |#1| (-370)) (|has| |#1| (-351))) ((-351) |has| |#1| (-351)) ((-372 |#1| |#2|) . T) ((-412 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-559) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-641 |#1|) . T) ((-641 $) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-718 |#1|) . T) ((-718 $) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1176)) -12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176)))) ((-921) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) |has| |#1| (-351)) ((-1220) -2909 (|has| |#1| (-351)) (|has| |#1| (-365))))
+((-4061 (($) 11)) (-4014 (((-3 $ "failed") $) 14)) (-3714 (((-112) $) 10)) (** (($ $ (-922)) NIL) (($ $ (-772)) 20)))
+(((-726 |#1|) (-10 -8 (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -3714 ((-112) |#1|)) (-15 -4061 (|#1|)) (-15 ** (|#1| |#1| (-922)))) (-727)) (T -726))
+NIL
+(-10 -8 (-15 -4014 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-772))) (-15 -3714 ((-112) |#1|)) (-15 -4061 (|#1|)) (-15 ** (|#1| |#1| (-922))))
+((-2257 (((-112) $ $) 7)) (-4061 (($) 19 T CONST)) (-4014 (((-3 $ "failed") $) 16)) (-3714 (((-112) $) 18)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1484 (($) 20 T CONST)) (-3052 (((-112) $ $) 6)) (** (($ $ (-922)) 14) (($ $ (-772)) 17)) (* (($ $ $) 15)))
+(((-727) (-140)) (T -727))
+((-1484 (*1 *1) (-4 *1 (-727))) (-4061 (*1 *1) (-4 *1 (-727))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772)))) (-4014 (*1 *1 *1) (|partial| -4 *1 (-727))))
+(-13 (-1112) (-10 -8 (-15 (-1484) ($) -2131) (-15 -4061 ($) -2131) (-15 -3714 ((-112) $)) (-15 ** ($ $ (-772))) (-15 -4014 ((-3 $ "failed") $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1112) . T) ((-1100) . T))
+((-3515 (((-2 (|:| -3129 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2714 (((-2 (|:| -3129 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3560 ((|#2| (-410 |#2|) (-1 |#2| |#2|)) 13)) (-2912 (((-2 (|:| |poly| |#2|) (|:| -3129 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)) 48)))
+(((-728 |#1| |#2|) (-10 -7 (-15 -2714 ((-2 (|:| -3129 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3515 ((-2 (|:| -3129 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3560 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2912 ((-2 (|:| |poly| |#2|) (|:| -3129 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|)))) (-365) (-1242 |#1|)) (T -728))
+((-2912 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3129 (-410 *6)) (|:| |special| (-410 *6)))) (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6)))) (-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1242 *5)) (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))) (-3515 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3129 (-421 *3)) (|:| |special| (-421 *3)))) (-5 *1 (-728 *5 *3)))) (-2714 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -3129 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3)))))
+(-10 -7 (-15 -2714 ((-2 (|:| -3129 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3515 ((-2 (|:| -3129 (-421 |#2|)) (|:| |special| (-421 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3560 (|#2| (-410 |#2|) (-1 |#2| |#2|))) (-15 -2912 ((-2 (|:| |poly| |#2|) (|:| -3129 (-410 |#2|)) (|:| |special| (-410 |#2|))) (-410 |#2|) (-1 |#2| |#2|))))
+((-3679 ((|#7| (-645 |#5|) |#6|) NIL)) (-3494 ((|#7| (-1 |#5| |#4|) |#6|) 27)))
+(((-729 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3494 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3679 (|#7| (-645 |#5|) |#6|))) (-851) (-794) (-794) (-1050) (-1050) (-950 |#4| |#2| |#1|) (-950 |#5| |#3| |#1|)) (T -729))
+((-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *9)) (-4 *9 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *8 (-1050)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-950 *8 *6 *5)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1050)) (-4 *9 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-950 *9 *7 *5)) (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794)) (-4 *4 (-950 *8 *6 *5)))))
+(-10 -7 (-15 -3494 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3679 (|#7| (-645 |#5|) |#6|)))
+((-3494 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-730 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3494 (|#7| (-1 |#2| |#1|) |#6|))) (-851) (-851) (-794) (-794) (-1050) (-950 |#5| |#3| |#1|) (-950 |#5| |#4| |#2|)) (T -730))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794)) (-4 *9 (-1050)) (-4 *2 (-950 *9 *8 *6)) (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794)) (-4 *4 (-950 *9 *7 *5)))))
+(-10 -7 (-15 -3494 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2296 (((-421 |#4|) |#4|) 42)))
+(((-731 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176))))) (-308) (-950 (-953 |#3|) |#1| |#2|)) (T -731))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176)))))) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3)) (-4 *3 (-950 (-953 *6) *4 *5)))))
+(-10 -7 (-15 -2296 ((-421 |#4|) |#4|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-865 |#1|)) $) NIL)) (-2260 (((-1172 $) $ (-865 |#1|)) NIL) (((-1172 |#2|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-3602 (($ $) NIL (|has| |#2| (-559)))) (-2119 (((-112) $) NIL (|has| |#2| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-865 |#1|))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1396 (($ $) NIL (|has| |#2| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#2| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-865 |#1|) "failed") $) NIL)) (-1621 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-865 |#1|) $) NIL)) (-2414 (($ $ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#2| (-910)))) (-3564 (($ $ |#2| (-534 (-865 |#1|)) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-865 |#1|) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2434 (($ (-1172 |#2|) (-865 |#1|)) NIL) (($ (-1172 $) (-865 |#1|)) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#2| (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-865 |#1|)) NIL)) (-4185 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-1599 (($ (-1 (-534 (-865 |#1|)) (-534 (-865 |#1|))) $) NIL)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-3300 (((-3 (-865 |#1|) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#2| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2451 (((-1158) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-865 |#1|)) (|:| -4164 (-772))) "failed") $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#2| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#2| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#2| (-910)))) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-865 |#1|) |#2|) NIL) (($ $ (-645 (-865 |#1|)) (-645 |#2|)) NIL) (($ $ (-865 |#1|) $) NIL) (($ $ (-645 (-865 |#1|)) (-645 $)) NIL)) (-3347 (($ $ (-865 |#1|)) NIL (|has| |#2| (-172)))) (-1930 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3677 (((-534 (-865 |#1|)) $) NIL) (((-772) $ (-865 |#1|)) NIL) (((-645 (-772)) $ (-645 (-865 |#1|))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-865 |#1|) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-865 |#1|) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1640 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-865 |#1|)) NIL (|has| |#2| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-865 |#1|)) NIL) (($ $) NIL (|has| |#2| (-559))) (($ (-410 (-567))) NIL (-2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567))))))) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-534 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-865 |#1|)) NIL) (($ $ (-645 (-865 |#1|))) NIL) (($ $ (-865 |#1|) (-772)) NIL) (($ $ (-645 (-865 |#1|)) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-732 |#1| |#2|) (-950 |#2| (-534 (-865 |#1|)) (-865 |#1|)) (-645 (-1176)) (-1050)) (T -732))
+NIL
+(-950 |#2| (-534 (-865 |#1|)) (-865 |#1|))
+((-2696 (((-2 (|:| -2140 (-953 |#3|)) (|:| -1699 (-953 |#3|))) |#4|) 14)) (-3703 ((|#4| |#4| |#2|) 33)) (-4111 ((|#4| (-410 (-953 |#3|)) |#2|) 64)) (-1629 ((|#4| (-1172 (-953 |#3|)) |#2|) 77)) (-2483 ((|#4| (-1172 |#4|) |#2|) 51)) (-1851 ((|#4| |#4| |#2|) 54)) (-2296 (((-421 |#4|) |#4|) 40)))
+(((-733 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2696 ((-2 (|:| -2140 (-953 |#3|)) (|:| -1699 (-953 |#3|))) |#4|)) (-15 -1851 (|#4| |#4| |#2|)) (-15 -2483 (|#4| (-1172 |#4|) |#2|)) (-15 -3703 (|#4| |#4| |#2|)) (-15 -1629 (|#4| (-1172 (-953 |#3|)) |#2|)) (-15 -4111 (|#4| (-410 (-953 |#3|)) |#2|)) (-15 -2296 ((-421 |#4|) |#4|))) (-794) (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)))) (-559) (-950 (-410 (-953 |#3|)) |#1| |#2|)) (T -733))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *6 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-950 (-410 (-953 *6)) *4 *5)))) (-4111 (*1 *2 *3 *4) (-12 (-4 *6 (-559)) (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-953 *6))) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))))) (-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 (-953 *6))) (-4 *6 (-559)) (-4 *2 (-950 (-410 (-953 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))))) (-3703 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3)))) (-2483 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *2)) (-4 *2 (-950 (-410 (-953 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794)) (-4 *4 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *6 (-559)))) (-1851 (*1 *2 *2 *3) (-12 (-4 *4 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *5 (-559)) (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3)))) (-2696 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *6 (-559)) (-5 *2 (-2 (|:| -2140 (-953 *6)) (|:| -1699 (-953 *6)))) (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-950 (-410 (-953 *6)) *4 *5)))))
+(-10 -7 (-15 -2696 ((-2 (|:| -2140 (-953 |#3|)) (|:| -1699 (-953 |#3|))) |#4|)) (-15 -1851 (|#4| |#4| |#2|)) (-15 -2483 (|#4| (-1172 |#4|) |#2|)) (-15 -3703 (|#4| |#4| |#2|)) (-15 -1629 (|#4| (-1172 (-953 |#3|)) |#2|)) (-15 -4111 (|#4| (-410 (-953 |#3|)) |#2|)) (-15 -2296 ((-421 |#4|) |#4|)))
+((-2296 (((-421 |#4|) |#4|) 54)))
+(((-734 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-421 |#4|) |#4|))) (-794) (-851) (-13 (-308) (-147)) (-950 (-410 |#3|) |#1| |#2|)) (T -734))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3)) (-4 *3 (-950 (-410 *6) *4 *5)))))
+(-10 -7 (-15 -2296 ((-421 |#4|) |#4|)))
+((-3494 (((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)) 18)))
+(((-735 |#1| |#2| |#3|) (-10 -7 (-15 -3494 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|)))) (-1050) (-1050) (-727)) (T -735))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7)) (-5 *1 (-735 *5 *6 *7)))))
+(-10 -7 (-15 -3494 ((-736 |#2| |#3|) (-1 |#2| |#1|) (-736 |#1| |#3|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 38)) (-3030 (((-645 (-2 (|:| -3087 |#1|) (|:| -1845 |#2|))) $) 39)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2013 (((-772)) 22 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-1621 ((|#2| $) NIL) ((|#1| $) NIL)) (-2637 (($ $) 104 (|has| |#2| (-851)))) (-4014 (((-3 $ "failed") $) 87)) (-1649 (($) 50 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) 72)) (-2133 (((-645 $) $) 54)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| |#2|) 17)) (-3494 (($ (-1 |#1| |#1|) $) 70)) (-3527 (((-922) $) 45 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-2599 ((|#2| $) 103 (|has| |#2| (-851)))) (-2613 ((|#1| $) 102 (|has| |#2| (-851)))) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) 37 (-12 (|has| |#2| (-370)) (|has| |#1| (-370))))) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 101) (($ (-567)) 61) (($ |#2|) 57) (($ |#1|) 58) (($ (-645 (-2 (|:| -3087 |#1|) (|:| -1845 |#2|)))) 11)) (-2350 (((-645 |#1|) $) 56)) (-2339 ((|#1| $ |#2|) 117)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 12 T CONST)) (-1484 (($) 46 T CONST)) (-3052 (((-112) $ $) 107)) (-3156 (($ $) 63) (($ $ $) NIL)) (-3146 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 68) (($ $ $) 120) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-736 |#1| |#2|) (-13 (-1050) (-1039 |#2|) (-1039 |#1|) (-10 -8 (-15 -2422 ($ |#1| |#2|)) (-15 -2339 (|#1| $ |#2|)) (-15 -4101 ($ (-645 (-2 (|:| -3087 |#1|) (|:| -1845 |#2|))))) (-15 -3030 ((-645 (-2 (|:| -3087 |#1|) (|:| -1845 |#2|))) $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (-15 -3523 ((-112) $)) (-15 -2350 ((-645 |#1|) $)) (-15 -2133 ((-645 $) $)) (-15 -2864 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2599 (|#2| $)) (-15 -2613 (|#1| $)) (-15 -2637 ($ $))) |%noBranch|))) (-1050) (-727)) (T -736))
+((-2422 (*1 *1 *2 *3) (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-727)))) (-2339 (*1 *2 *1 *3) (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -3087 *3) (|:| -1845 *4)))) (-4 *3 (-1050)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4)))) (-3030 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -3087 *3) (|:| -1845 *4)))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-736 *3 *4)) (-4 *4 (-727)))) (-3523 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-2133 (*1 *2 *1) (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727)))) (-2599 (*1 *2 *1) (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2)) (-4 *3 (-1050)))) (-2613 (*1 *2 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *3 (-727)))) (-2637 (*1 *1 *1) (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1050)) (-4 *3 (-727)))))
+(-13 (-1050) (-1039 |#2|) (-1039 |#1|) (-10 -8 (-15 -2422 ($ |#1| |#2|)) (-15 -2339 (|#1| $ |#2|)) (-15 -4101 ($ (-645 (-2 (|:| -3087 |#1|) (|:| -1845 |#2|))))) (-15 -3030 ((-645 (-2 (|:| -3087 |#1|) (|:| -1845 |#2|))) $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (-15 -3523 ((-112) $)) (-15 -2350 ((-645 |#1|) $)) (-15 -2133 ((-645 $) $)) (-15 -2864 ((-772) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-851)) (PROGN (-15 -2599 (|#2| $)) (-15 -2613 (|#1| $)) (-15 -2637 ($ $))) |%noBranch|)))
+((-2257 (((-112) $ $) 19)) (-4051 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3217 (($ $ $) 73)) (-2901 (((-112) $ $) 74)) (-1580 (((-112) $ (-772)) 8)) (-3966 (($ (-645 |#1|)) 69) (($) 68)) (-2581 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1861 (($ $) 63)) (-2084 (($ $) 59 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ |#1| $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) 58 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-3672 (((-112) $ $) 65)) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22)) (-3754 (($ $ $) 70)) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3339 (((-1120) $) 21)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-4281 (((-645 (-2 (|:| -3859 |#1|) (|:| -3349 (-772)))) $) 62)) (-2108 (($ $ |#1|) 72) (($ $ $) 71)) (-2069 (($) 50) (($ (-645 |#1|)) 49)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 51)) (-4101 (((-863) $) 18)) (-2368 (($ (-645 |#1|)) 67) (($) 66)) (-3739 (((-112) $ $) 23)) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20)) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-737 |#1|) (-140) (-1100)) (T -737))
+NIL
+(-13 (-696 |t#1|) (-1098 |t#1|))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-696 |#1|) . T) ((-1098 |#1|) . T) ((-1100) . T) ((-1216) . T))
+((-2257 (((-112) $ $) NIL)) (-4051 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-3217 (($ $ $) 99)) (-2901 (((-112) $ $) 107)) (-1580 (((-112) $ (-772)) NIL)) (-3966 (($ (-645 |#1|)) 26) (($) 17)) (-2581 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1861 (($ $) 85)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) 70 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 77 (|has| $ (-6 -4416))) (($ |#1| $ (-567)) 75) (($ (-1 (-112) |#1|) $ (-567)) 78)) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (($ |#1| $ (-567)) 80) (($ (-1 (-112) |#1|) $ (-567)) 81)) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 32 (|has| $ (-6 -4416)))) (-3672 (((-112) $ $) 106)) (-3275 (($) 15) (($ |#1|) 28) (($ (-645 |#1|)) 23)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) 38)) (-2176 (((-112) |#1| $) 65 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 89)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3754 (($ $ $) 97)) (-4341 ((|#1| $) 62)) (-1336 (($ |#1| $) 63) (($ |#1| $ (-772)) 86)) (-3339 (((-1120) $) NIL)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-4394 ((|#1| $) 61)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 56)) (-3164 (($) 14)) (-4281 (((-645 (-2 (|:| -3859 |#1|) (|:| -3349 (-772)))) $) 55)) (-2108 (($ $ |#1|) NIL) (($ $ $) 98)) (-2069 (($) 16) (($ (-645 |#1|)) 25)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) 68 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 79)) (-3542 (((-539) $) 36 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 22)) (-4101 (((-863) $) 49)) (-2368 (($ (-645 |#1|)) 27) (($) 18)) (-3739 (((-112) $ $) NIL)) (-2299 (($ (-645 |#1|)) 24)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 103)) (-2268 (((-772) $) 67 (|has| $ (-6 -4416)))))
+(((-738 |#1|) (-13 (-737 |#1|) (-10 -8 (-6 -4416) (-6 -4417) (-15 -3275 ($)) (-15 -3275 ($ |#1|)) (-15 -3275 ($ (-645 |#1|))) (-15 -1542 ((-645 |#1|) $)) (-15 -3138 ($ |#1| $ (-567))) (-15 -3138 ($ (-1 (-112) |#1|) $ (-567))) (-15 -3410 ($ |#1| $ (-567))) (-15 -3410 ($ (-1 (-112) |#1|) $ (-567))))) (-1100)) (T -738))
+((-3275 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1100)))) (-3275 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1100)))) (-3275 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-738 *3)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1100)))) (-3138 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1100)))) (-3138 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1100)) (-5 *1 (-738 *4)))) (-3410 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1100)))) (-3410 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1100)) (-5 *1 (-738 *4)))))
+(-13 (-737 |#1|) (-10 -8 (-6 -4416) (-6 -4417) (-15 -3275 ($)) (-15 -3275 ($ |#1|)) (-15 -3275 ($ (-645 |#1|))) (-15 -1542 ((-645 |#1|) $)) (-15 -3138 ($ |#1| $ (-567))) (-15 -3138 ($ (-1 (-112) |#1|) $ (-567))) (-15 -3410 ($ |#1| $ (-567))) (-15 -3410 ($ (-1 (-112) |#1|) $ (-567)))))
+((-3094 (((-1271) (-1158)) 8)))
+(((-739) (-10 -7 (-15 -3094 ((-1271) (-1158))))) (T -739))
+((-3094 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-739)))))
+(-10 -7 (-15 -3094 ((-1271) (-1158))))
+((-2192 (((-645 |#1|) (-645 |#1|) (-645 |#1|)) 15)))
+(((-740 |#1|) (-10 -7 (-15 -2192 ((-645 |#1|) (-645 |#1|) (-645 |#1|)))) (-851)) (T -740))
+((-2192 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3)))))
+(-10 -7 (-15 -2192 ((-645 |#1|) (-645 |#1|) (-645 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 |#2|) $) 148)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 141 (|has| |#1| (-559)))) (-3602 (($ $) 140 (|has| |#1| (-559)))) (-2119 (((-112) $) 138 (|has| |#1| (-559)))) (-1772 (($ $) 97 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 80 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) 20)) (-2307 (($ $) 79 (|has| |#1| (-38 (-410 (-567)))))) (-1747 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-1798 (($ $) 95 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) 18 T CONST)) (-2637 (($ $) 132)) (-4014 (((-3 $ "failed") $) 37)) (-3825 (((-953 |#1|) $ (-772)) 110) (((-953 |#1|) $ (-772) (-772)) 109)) (-4222 (((-112) $) 149)) (-4098 (($) 107 (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-772) $ |#2|) 112) (((-772) $ |#2| (-772)) 111)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 78 (|has| |#1| (-38 (-410 (-567)))))) (-3523 (((-112) $) 130)) (-2422 (($ $ (-645 |#2|) (-645 (-534 |#2|))) 147) (($ $ |#2| (-534 |#2|)) 146) (($ |#1| (-534 |#2|)) 131) (($ $ |#2| (-772)) 114) (($ $ (-645 |#2|) (-645 (-772))) 113)) (-3494 (($ (-1 |#1| |#1|) $) 129)) (-2942 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 127)) (-2613 ((|#1| $) 126)) (-2451 (((-1158) $) 10)) (-2113 (($ $ |#2|) 108 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) 11)) (-2436 (($ $ (-772)) 115)) (-2245 (((-3 $ "failed") $ $) 142 (|has| |#1| (-559)))) (-2910 (($ $) 105 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (($ $ |#2| $) 123) (($ $ (-645 |#2|) (-645 $)) 122) (($ $ (-645 (-295 $))) 121) (($ $ (-295 $)) 120) (($ $ $ $) 119) (($ $ (-645 $) (-645 $)) 118)) (-1930 (($ $ |#2|) 46) (($ $ (-645 |#2|)) 45) (($ $ |#2| (-772)) 44) (($ $ (-645 |#2|) (-645 (-772))) 43)) (-3677 (((-534 |#2|) $) 128)) (-1810 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 83 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 93 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 84 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 85 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 150)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 145 (|has| |#1| (-172))) (($ $) 143 (|has| |#1| (-559))) (($ (-410 (-567))) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2339 ((|#1| $ (-534 |#2|)) 133) (($ $ |#2| (-772)) 117) (($ $ (-645 |#2|) (-645 (-772))) 116)) (-4242 (((-3 $ "failed") $) 144 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1847 (($ $) 103 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 91 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) 139 (|has| |#1| (-559)))) (-1823 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 101 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 89 (|has| |#1| (-38 (-410 (-567)))))) (-1345 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 99 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 87 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 86 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ |#2|) 42) (($ $ (-645 |#2|)) 41) (($ $ |#2| (-772)) 40) (($ $ (-645 |#2|) (-645 (-772))) 39)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ $) 106 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 77 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 136 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 125) (($ $ |#1|) 124)))
+(((-741 |#1| |#2|) (-140) (-1050) (-851)) (T -741))
+((-2339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050)) (-4 *2 (-851)))) (-2339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-851)))) (-2422 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050)) (-4 *2 (-851)))) (-2422 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)))) (-1909 (*1 *2 *1 *3) (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1050)) (-4 *3 (-851)) (-5 *2 (-772)))) (-1909 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1050)) (-4 *3 (-851)))) (-3825 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)) (-5 *2 (-953 *4)))) (-3825 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050)) (-4 *5 (-851)) (-5 *2 (-953 *4)))) (-2113 (*1 *1 *1 *2) (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851)) (-4 *3 (-38 (-410 (-567)))))))
+(-13 (-901 |t#2|) (-974 |t#1| (-534 |t#2|) |t#2|) (-517 |t#2| $) (-310 $) (-10 -8 (-15 -2339 ($ $ |t#2| (-772))) (-15 -2339 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -2436 ($ $ (-772))) (-15 -2422 ($ $ |t#2| (-772))) (-15 -2422 ($ $ (-645 |t#2|) (-645 (-772)))) (-15 -1909 ((-772) $ |t#2|)) (-15 -1909 ((-772) $ |t#2| (-772))) (-15 -3825 ((-953 |t#1|) $ (-772))) (-15 -3825 ((-953 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $ |t#2|)) (-6 (-1003)) (-6 (-1201))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-534 |#2|)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-291) |has| |#1| (-559)) ((-310 $) . T) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 |#2| $) . T) ((-517 $ $) . T) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-901 |#2|) . T) ((-974 |#1| #0# |#2|) . T) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1201) |has| |#1| (-38 (-410 (-567)))) ((-1204) |has| |#1| (-38 (-410 (-567)))))
+((-2296 (((-421 (-1172 |#4|)) (-1172 |#4|)) 30) (((-421 |#4|) |#4|) 26)))
+(((-742 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-421 |#4|) |#4|)) (-15 -2296 ((-421 (-1172 |#4|)) (-1172 |#4|)))) (-851) (-794) (-13 (-308) (-147)) (-950 |#3| |#2| |#1|)) (T -742))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1172 *7))) (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1172 *7)))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))))
+(-10 -7 (-15 -2296 ((-421 |#4|) |#4|)) (-15 -2296 ((-421 (-1172 |#4|)) (-1172 |#4|))))
+((-1912 (((-421 |#4|) |#4| |#2|) 142)) (-2634 (((-421 |#4|) |#4|) NIL)) (-1401 (((-421 (-1172 |#4|)) (-1172 |#4|)) 127) (((-421 |#4|) |#4|) 52)) (-2390 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2296 (-1172 |#4|)) (|:| -4164 (-567)))))) (-1172 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 81)) (-1860 (((-1172 |#3|) (-1172 |#3|) (-567)) 168)) (-1613 (((-645 (-772)) (-1172 |#4|) (-645 |#2|) (-772)) 75)) (-3392 (((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-1172 |#3|) (-1172 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|)) 79)) (-2304 (((-2 (|:| |upol| (-1172 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567))))) (|:| |ctpol| |#3|)) (-1172 |#4|) (-645 |#2|) (-645 (-645 |#3|))) 27)) (-4039 (((-2 (|:| -3586 (-1172 |#4|)) (|:| |polval| (-1172 |#3|))) (-1172 |#4|) (-1172 |#3|) (-567)) 72)) (-3823 (((-567) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567))))) 164)) (-2142 ((|#4| (-567) (-421 |#4|)) 73)) (-2935 (((-112) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567)))) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567))))) NIL)))
+(((-743 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1401 ((-421 |#4|) |#4|)) (-15 -1401 ((-421 (-1172 |#4|)) (-1172 |#4|))) (-15 -2634 ((-421 |#4|) |#4|)) (-15 -3823 ((-567) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567)))))) (-15 -1912 ((-421 |#4|) |#4| |#2|)) (-15 -4039 ((-2 (|:| -3586 (-1172 |#4|)) (|:| |polval| (-1172 |#3|))) (-1172 |#4|) (-1172 |#3|) (-567))) (-15 -2390 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2296 (-1172 |#4|)) (|:| -4164 (-567)))))) (-1172 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2304 ((-2 (|:| |upol| (-1172 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567))))) (|:| |ctpol| |#3|)) (-1172 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2142 (|#4| (-567) (-421 |#4|))) (-15 -2935 ((-112) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567)))) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567)))))) (-15 -3392 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-1172 |#3|) (-1172 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -1613 ((-645 (-772)) (-1172 |#4|) (-645 |#2|) (-772))) (-15 -1860 ((-1172 |#3|) (-1172 |#3|) (-567)))) (-794) (-851) (-308) (-950 |#3| |#1| |#2|)) (T -743))
+((-1860 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-1613 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1172 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))) (-3392 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1172 *11)) (-5 *6 (-645 *10)) (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851)) (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-950 *11 *9 *10)) (-5 *2 (-645 (-1172 *5))) (-5 *1 (-743 *9 *10 *11 *5)) (-5 *3 (-1172 *5)))) (-2935 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-2 (|:| -2296 (-1172 *6)) (|:| -4164 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-950 *7 *5 *6)) (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-308)))) (-2304 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1172 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-5 *2 (-2 (|:| |upol| (-1172 *8)) (|:| |Lval| (-645 *8)) (|:| |Lfact| (-645 (-2 (|:| -2296 (-1172 *8)) (|:| -4164 (-567))))) (|:| |ctpol| *8))) (-5 *1 (-743 *6 *7 *8 *9)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-645 (-2 (|:| -2296 (-1172 *9)) (|:| -4164 (-567))))))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1172 *9)))) (-4039 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-950 *8 *6 *7)) (-5 *2 (-2 (|:| -3586 (-1172 *9)) (|:| |polval| (-1172 *8)))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1172 *9)) (-5 *4 (-1172 *8)))) (-1912 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2296 (-1172 *6)) (|:| -4164 (-567))))) (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-2634 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5)))) (-1401 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1172 *7))) (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1172 *7)))) (-1401 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5)))))
+(-10 -7 (-15 -1401 ((-421 |#4|) |#4|)) (-15 -1401 ((-421 (-1172 |#4|)) (-1172 |#4|))) (-15 -2634 ((-421 |#4|) |#4|)) (-15 -3823 ((-567) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567)))))) (-15 -1912 ((-421 |#4|) |#4| |#2|)) (-15 -4039 ((-2 (|:| -3586 (-1172 |#4|)) (|:| |polval| (-1172 |#3|))) (-1172 |#4|) (-1172 |#3|) (-567))) (-15 -2390 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-645 (-2 (|:| -2296 (-1172 |#4|)) (|:| -4164 (-567)))))) (-1172 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2304 ((-2 (|:| |upol| (-1172 |#3|)) (|:| |Lval| (-645 |#3|)) (|:| |Lfact| (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567))))) (|:| |ctpol| |#3|)) (-1172 |#4|) (-645 |#2|) (-645 (-645 |#3|)))) (-15 -2142 (|#4| (-567) (-421 |#4|))) (-15 -2935 ((-112) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567)))) (-645 (-2 (|:| -2296 (-1172 |#3|)) (|:| -4164 (-567)))))) (-15 -3392 ((-3 (-645 (-1172 |#4|)) "failed") (-1172 |#4|) (-1172 |#3|) (-1172 |#3|) |#4| (-645 |#2|) (-645 (-772)) (-645 |#3|))) (-15 -1613 ((-645 (-772)) (-1172 |#4|) (-645 |#2|) (-772))) (-15 -1860 ((-1172 |#3|) (-1172 |#3|) (-567))))
+((-1866 (($ $ (-922)) 17)))
+(((-744 |#1| |#2|) (-10 -8 (-15 -1866 (|#1| |#1| (-922)))) (-745 |#2|) (-172)) (T -744))
+NIL
+(-10 -8 (-15 -1866 (|#1| |#1| (-922))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3356 (($ $ (-922)) 31)) (-1866 (($ $ (-922)) 38)) (-3747 (($ $ (-922)) 32)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4272 (($ $ $) 28)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3280 (($ $ $ $) 29)) (-1816 (($ $ $) 27)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-745 |#1|) (-140) (-172)) (T -745))
+((-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-745 *3)) (-4 *3 (-172)))))
+(-13 (-762) (-718 |t#1|) (-10 -8 (-15 -1866 ($ $ (-922)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-721) . T) ((-762) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1100) . T))
+((-3554 (((-1036) (-690 (-225)) (-567) (-112) (-567)) 25)) (-2466 (((-1036) (-690 (-225)) (-567) (-112) (-567)) 24)))
+(((-746) (-10 -7 (-15 -2466 ((-1036) (-690 (-225)) (-567) (-112) (-567))) (-15 -3554 ((-1036) (-690 (-225)) (-567) (-112) (-567))))) (T -746))
+((-3554 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-746)))) (-2466 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-746)))))
+(-10 -7 (-15 -2466 ((-1036) (-690 (-225)) (-567) (-112) (-567))) (-15 -3554 ((-1036) (-690 (-225)) (-567) (-112) (-567))))
+((-3976 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) 43)) (-2438 (((-1036) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) 39)) (-2727 (((-1036) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) 32)))
+(((-747) (-10 -7 (-15 -2727 ((-1036) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -2438 ((-1036) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -3976 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))) (T -747))
+((-3976 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1036)) (-5 *1 (-747)))) (-2438 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1036)) (-5 *1 (-747)))) (-2727 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) (-5 *2 (-1036)) (-5 *1 (-747)))))
+(-10 -7 (-15 -2727 ((-1036) (-225) (-225) (-225) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -2438 ((-1036) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN))))) (-15 -3976 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN))))))
+((-2622 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 34)) (-1809 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 33)) (-3126 (((-1036) (-567) (-690 (-225)) (-567)) 32)) (-2766 (((-1036) (-567) (-690 (-225)) (-567)) 31)) (-2706 (((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 30)) (-1604 (((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-4326 (((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-4325 (((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-1382 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-3850 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-1865 (((-1036) (-567) (-690 (-225)) (-567)) 22)) (-2030 (((-1036) (-567) (-690 (-225)) (-567)) 21)))
+(((-748) (-10 -7 (-15 -2030 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -1865 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -3850 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1382 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4325 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4326 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1604 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2706 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2766 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -3126 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -1809 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -2622 ((-1036) (-567) (-567) (-690 (-225)) (-567))))) (T -748))
+((-2622 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-1809 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3126 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-2766 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-2706 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-1604 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-4326 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-4325 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-1382 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-3850 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-1865 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))) (-2030 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-748)))))
+(-10 -7 (-15 -2030 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -1865 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -3850 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1382 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4325 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4326 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1604 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2706 ((-1036) (-567) (-567) (-1158) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2766 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -3126 ((-1036) (-567) (-690 (-225)) (-567))) (-15 -1809 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -2622 ((-1036) (-567) (-567) (-690 (-225)) (-567))))
+((-3904 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2812 (((-1036) (-690 (-225)) (-690 (-225)) (-567) (-567)) 51)) (-2227 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) 50)) (-4286 (((-1036) (-225) (-225) (-567) (-567) (-567) (-567)) 46)) (-1958 (((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 45)) (-2420 (((-1036) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 44)) (-3483 (((-1036) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 43)) (-1686 (((-1036) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) 42)) (-3084 (((-1036) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) 38)) (-3473 (((-1036) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) 37)) (-3185 (((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) 33)) (-1582 (((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) 32)))
+(((-749) (-10 -7 (-15 -1582 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -3185 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -3473 ((-1036) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -3084 ((-1036) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -1686 ((-1036) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3483 ((-1036) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2420 ((-1036) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1958 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -4286 ((-1036) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -2227 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -2812 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3904 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))) (T -749))
+((-3904 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-2812 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-749)))) (-2227 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-4286 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-749)))) (-1958 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-2420 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3483 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-1686 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3084 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3473 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-749)))) (-3185 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) (-5 *2 (-1036)) (-5 *1 (-749)))) (-1582 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) (-5 *2 (-1036)) (-5 *1 (-749)))))
+(-10 -7 (-15 -1582 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -3185 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -3473 ((-1036) (-225) (-225) (-567) (-690 (-225)) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -3084 ((-1036) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))) (-15 -1686 ((-1036) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -3483 ((-1036) (-225) (-225) (-225) (-225) (-567) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -2420 ((-1036) (-225) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -1958 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G))))) (-15 -4286 ((-1036) (-225) (-225) (-567) (-567) (-567) (-567))) (-15 -2227 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))) (-15 -2812 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-567))) (-15 -3904 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-225) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))))
+((-4335 (((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3059 (((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391)) 69) (((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) 68)) (-3777 (((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) 57)) (-2533 (((-1036) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 50)) (-2117 (((-1036) (-225) (-567) (-567) (-1158) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 49)) (-4056 (((-1036) (-225) (-567) (-567) (-225) (-1158) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 45)) (-3594 (((-1036) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) 42)) (-4328 (((-1036) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) 38)))
+(((-750) (-10 -7 (-15 -4328 ((-1036) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3594 ((-1036) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -4056 ((-1036) (-225) (-567) (-567) (-225) (-1158) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2117 ((-1036) (-225) (-567) (-567) (-1158) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2533 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -3777 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -3059 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -3059 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -4335 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -750))
+((-4335 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-3059 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-391)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-3059 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1036)) (-5 *1 (-750)))) (-3777 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-2533 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1036)) (-5 *1 (-750)))) (-2117 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-567)) (-5 *5 (-1158)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-4056 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-567)) (-5 *5 (-1158)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-3594 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))) (-4328 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))))
+(-10 -7 (-15 -4328 ((-1036) (-225) (-567) (-567) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -3594 ((-1036) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -4056 ((-1036) (-225) (-567) (-567) (-225) (-1158) (-225) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2117 ((-1036) (-225) (-567) (-567) (-1158) (-567) (-225) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))) (-15 -2533 ((-1036) (-690 (-225)) (-690 (-225)) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))) (-15 -3777 ((-1036) (-225) (-225) (-567) (-225) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG))))) (-15 -3059 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))) (-15 -3059 ((-1036) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))) (-391) (-391))) (-15 -4335 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))))
+((-2676 (((-1036) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567)) 45)) (-1591 (((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1158) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) 41)) (-3836 (((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 23)))
+(((-751) (-10 -7 (-15 -3836 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1591 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1158) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -2676 ((-1036) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))) (T -751))
+((-2676 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225))) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-751)))) (-1591 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1158)) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1036)) (-5 *1 (-751)))) (-3836 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-751)))))
+(-10 -7 (-15 -3836 ((-1036) (-567) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1591 ((-1036) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-1158) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY))))) (-15 -2676 ((-1036) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-676 (-225)) (-567))))
+((-4246 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567)) 35)) (-2353 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567)) 34)) (-1709 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567)) 33)) (-3498 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-2044 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-1792 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567)) 27)) (-1827 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 24)) (-3869 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567)) 23)) (-3421 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567)) 22)) (-4029 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 21)))
+(((-752) (-10 -7 (-15 -4029 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3421 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3869 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1827 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1792 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2044 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3498 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1709 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2353 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -4246 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))) (T -752))
+((-4246 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-2353 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-1709 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-3498 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-2044 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-1792 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-752)))) (-1827 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-3869 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-3421 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))) (-4029 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-752)))))
+(-10 -7 (-15 -4029 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3421 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3869 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1827 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -1792 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2044 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3498 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1709 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-690 (-225)) (-225) (-225) (-567))) (-15 -2353 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-225) (-225) (-567))) (-15 -4246 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-690 (-225)) (-225) (-225) (-567))))
+((-3471 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 45)) (-3166 (((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567)) 44)) (-1469 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567)) 43)) (-2893 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 42)) (-3900 (((-1036) (-1158) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567)) 41)) (-3223 (((-1036) (-1158) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 40)) (-3018 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567)) 39)) (-3316 (((-1036) (-1158) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567))) 38)) (-2601 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567)) 35)) (-4333 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567)) 34)) (-3886 (((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567)) 33)) (-1334 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 32)) (-2577 (((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567)) 31)) (-2749 (((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567)) 30)) (-2655 (((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 29)) (-2029 (((-1036) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567)) 28)) (-1609 (((-1036) (-567) (-690 (-225)) (-225) (-567)) 24)) (-1754 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 21)))
+(((-753) (-10 -7 (-15 -1754 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1609 ((-1036) (-567) (-690 (-225)) (-225) (-567))) (-15 -2029 ((-1036) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -2655 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2749 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -2577 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -1334 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3886 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -4333 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -2601 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3316 ((-1036) (-1158) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3018 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -3223 ((-1036) (-1158) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -3900 ((-1036) (-1158) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2893 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1469 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3166 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3471 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))) (T -753))
+((-3471 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3166 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-1469 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2893 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3900 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3223 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1158)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3018 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225)) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3316 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1158)) (-5 *5 (-690 (-225))) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2601 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-4333 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-3886 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-1334 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2577 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2749 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2655 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-2029 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-1609 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))) (-1754 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-753)))))
+(-10 -7 (-15 -1754 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1609 ((-1036) (-567) (-690 (-225)) (-225) (-567))) (-15 -2029 ((-1036) (-567) (-567) (-567) (-225) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-567)) (-567) (-567) (-567))) (-15 -2655 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -2749 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567) (-567) (-567))) (-15 -2577 ((-1036) (-567) (-225) (-225) (-690 (-225)) (-567) (-567) (-225) (-567))) (-15 -1334 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3886 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567))) (-15 -4333 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567))) (-15 -2601 ((-1036) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3316 ((-1036) (-1158) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)))) (-15 -3018 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567) (-567) (-567) (-225) (-690 (-225)) (-567))) (-15 -3223 ((-1036) (-1158) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -3900 ((-1036) (-1158) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2893 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1469 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))) (-15 -3166 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3471 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567) (-690 (-225)) (-690 (-225)) (-567) (-567) (-567))))
+((-3454 (((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567)) 63)) (-3077 (((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3051 (((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) 58)) (-4202 (((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567)) 51)) (-2126 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3909 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2741 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3641 (((-1036) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) 38)))
+(((-754) (-10 -7 (-15 -3641 ((-1036) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -2741 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -3909 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2126 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -4202 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -3051 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -3077 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3454 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))) (T -754))
+((-3454 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3077 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3051 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-4202 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-754)))) (-2126 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3909 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1036)) (-5 *1 (-754)))) (-2741 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1036)) (-5 *1 (-754)))) (-3641 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754)))))
+(-10 -7 (-15 -3641 ((-1036) (-567) (-225) (-225) (-567) (-225) (-112) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -2741 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))) (-15 -3909 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))) (-15 -2126 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))) (-15 -4202 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-567) (-567) (-690 (-225)) (-567))) (-15 -3051 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-225) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-112) (-112) (-112) (-567) (-567) (-690 (-225)) (-690 (-567)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))) (-15 -3077 ((-1036) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-567) (-112) (-225) (-567) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-567) (-567) (-567) (-567) (-567) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-567) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))) (-15 -3454 ((-1036) (-567) (-567) (-567) (-225) (-690 (-225)) (-567) (-690 (-225)) (-567))))
+((-2771 (((-1036) (-1158) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 47)) (-2335 (((-1036) (-1158) (-1158) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567)) 46)) (-1967 (((-1036) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 45)) (-3317 (((-1036) (-1158) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 40)) (-3682 (((-1036) (-1158) (-1158) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567)) 39)) (-2281 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-567)) 36)) (-2731 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567)) 35)) (-3509 (((-1036) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567)) 34)) (-3154 (((-1036) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567)) 33)) (-3887 (((-1036) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567)) 32)))
+(((-755) (-10 -7 (-15 -3887 ((-1036) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -3154 ((-1036) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -3509 ((-1036) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2731 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -2281 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3682 ((-1036) (-1158) (-1158) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3317 ((-1036) (-1158) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1967 ((-1036) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2335 ((-1036) (-1158) (-1158) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2771 ((-1036) (-1158) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -755))
+((-2771 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-2335 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-1967 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-3317 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-3682 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-2281 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-755)))) (-2731 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-755)))) (-3509 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-755)))) (-3154 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225))) (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-755)))) (-3887 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225))) (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1036)) (-5 *1 (-755)))))
+(-10 -7 (-15 -3887 ((-1036) (-567) (-567) (-567) (-567) (-225) (-112) (-112) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-567))) (-15 -3154 ((-1036) (-567) (-567) (-567) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-690 (-567)) (-112) (-225) (-112) (-690 (-567)) (-690 (-225)) (-567))) (-15 -3509 ((-1036) (-567) (-567) (-567) (-567) (-645 (-112)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-225) (-225) (-567))) (-15 -2731 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567))) (-15 -2281 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -3682 ((-1036) (-1158) (-1158) (-567) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)) (-567))) (-15 -3317 ((-1036) (-1158) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1967 ((-1036) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2335 ((-1036) (-1158) (-1158) (-567) (-567) (-690 (-169 (-225))) (-567) (-690 (-169 (-225))) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -2771 ((-1036) (-1158) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))
+((-4318 (((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567)) 80)) (-3944 (((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 69)) (-1455 (((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391)) 56) (((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) 55)) (-4030 (((-1036) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567)) 37)) (-4294 (((-1036) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567)) 33)) (-2457 (((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567)) 30)) (-1844 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 29)) (-4265 (((-1036) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 28)) (-2952 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 27)) (-2979 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567)) 26)) (-4026 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 25)) (-2232 (((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 24)) (-1593 (((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567)) 23)) (-2262 (((-1036) (-690 (-225)) (-567) (-567) (-567) (-567)) 22)) (-3049 (((-1036) (-567) (-567) (-690 (-225)) (-567)) 21)))
+(((-756) (-10 -7 (-15 -3049 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -2262 ((-1036) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -1593 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2232 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4026 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -2979 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2952 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4265 ((-1036) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1844 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2457 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -4294 ((-1036) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -4030 ((-1036) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1455 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -1455 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3944 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4318 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))) (T -756))
+((-4318 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-3944 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1455 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1455 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-4030 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-4294 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2457 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1844 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-4265 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2952 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2979 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-4026 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2232 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-1593 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))) (-2262 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-756)))) (-3049 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-756)))))
+(-10 -7 (-15 -3049 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -2262 ((-1036) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -1593 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2232 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4026 ((-1036) (-567) (-567) (-690 (-225)) (-567))) (-15 -2979 ((-1036) (-567) (-567) (-567) (-567) (-690 (-225)) (-567))) (-15 -2952 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4265 ((-1036) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1844 ((-1036) (-567) (-567) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2457 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567) (-567))) (-15 -4294 ((-1036) (-567) (-567) (-225) (-225) (-567) (-567) (-690 (-225)) (-567))) (-15 -4030 ((-1036) (-567) (-567) (-567) (-225) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -1455 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))))) (-15 -1455 ((-1036) (-567) (-567) (-225) (-567) (-567) (-567) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE))) (-391))) (-15 -3944 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -4318 ((-1036) (-567) (-567) (-567) (-567) (-567) (-112) (-567) (-112) (-567) (-690 (-169 (-225))) (-690 (-169 (-225))) (-567))))
+((-2720 (((-1036) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) 64)) (-3180 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567)) 60)) (-1687 (((-1036) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3439 (((-1036) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567)) 37)) (-2683 (((-1036) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567)) 36)) (-3534 (((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567)) 33)) (-1723 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225))) 32)) (-2987 (((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567)) 28)) (-4233 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 27)) (-3333 (((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567)) 26)) (-1530 (((-1036) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567)) 22)))
+(((-757) (-10 -7 (-15 -1530 ((-1036) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3333 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -4233 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2987 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -1723 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -3534 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2683 ((-1036) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3439 ((-1036) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1687 ((-1036) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -3180 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2720 ((-1036) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))) (T -757))
+((-2720 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-3180 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-1687 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-3439 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-2683 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-3534 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-1723 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-2987 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-757)))) (-4233 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-3333 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-757)))) (-1530 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036)) (-5 *1 (-757)))))
+(-10 -7 (-15 -1530 ((-1036) (-567) (-690 (-169 (-225))) (-567) (-567) (-567) (-567) (-690 (-169 (-225))) (-567))) (-15 -3333 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -4233 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-567))) (-15 -2987 ((-1036) (-690 (-225)) (-567) (-690 (-225)) (-567) (-567) (-567))) (-15 -1723 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-567)) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)))) (-15 -3534 ((-1036) (-567) (-567) (-690 (-225)) (-690 (-225)) (-690 (-225)) (-567))) (-15 -2683 ((-1036) (-567) (-567) (-567) (-225) (-567) (-690 (-225)) (-690 (-225)) (-567))) (-15 -3439 ((-1036) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-567)) (-690 (-225)) (-690 (-567)) (-690 (-567)) (-690 (-225)) (-690 (-225)) (-690 (-567)) (-567))) (-15 -1687 ((-1036) (-567) (-690 (-225)) (-112) (-225) (-567) (-567) (-567) (-567) (-225) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))) (-15 -3180 ((-1036) (-567) (-690 (-225)) (-567) (-690 (-225)) (-690 (-567)) (-567) (-690 (-225)) (-567) (-567) (-567) (-567))) (-15 -2720 ((-1036) (-567) (-567) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-690 (-225)) (-567) (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD))))))
+((-2433 (((-1036) (-1158) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225))) 29)) (-2904 (((-1036) (-1158) (-567) (-567) (-690 (-225))) 28)) (-4220 (((-1036) (-1158) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225))) 27)) (-3627 (((-1036) (-567) (-567) (-567) (-690 (-225))) 21)))
+(((-758) (-10 -7 (-15 -3627 ((-1036) (-567) (-567) (-567) (-690 (-225)))) (-15 -4220 ((-1036) (-1158) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -2904 ((-1036) (-1158) (-567) (-567) (-690 (-225)))) (-15 -2433 ((-1036) (-1158) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))) (T -758))
+((-2433 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-758)))) (-2904 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-758)))) (-4220 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1158)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-758)))) (-3627 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036)) (-5 *1 (-758)))))
+(-10 -7 (-15 -3627 ((-1036) (-567) (-567) (-567) (-690 (-225)))) (-15 -4220 ((-1036) (-1158) (-567) (-567) (-690 (-225)) (-567) (-690 (-567)) (-567) (-690 (-225)))) (-15 -2904 ((-1036) (-1158) (-567) (-567) (-690 (-225)))) (-15 -2433 ((-1036) (-1158) (-567) (-567) (-690 (-225)) (-567) (-567) (-690 (-225)))))
+((-1904 (((-1036) (-225) (-225) (-225) (-225) (-567)) 62)) (-3767 (((-1036) (-225) (-225) (-225) (-567)) 61)) (-2745 (((-1036) (-225) (-225) (-225) (-567)) 60)) (-2498 (((-1036) (-225) (-225) (-567)) 59)) (-3807 (((-1036) (-225) (-567)) 58)) (-3702 (((-1036) (-225) (-567)) 57)) (-1534 (((-1036) (-225) (-567)) 56)) (-2672 (((-1036) (-225) (-567)) 55)) (-2186 (((-1036) (-225) (-567)) 54)) (-1931 (((-1036) (-225) (-567)) 53)) (-1325 (((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567)) 52)) (-2371 (((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567)) 51)) (-2247 (((-1036) (-225) (-567)) 50)) (-4290 (((-1036) (-225) (-567)) 49)) (-2008 (((-1036) (-225) (-567)) 48)) (-2922 (((-1036) (-225) (-567)) 47)) (-1891 (((-1036) (-567) (-225) (-169 (-225)) (-567) (-1158) (-567)) 46)) (-2671 (((-1036) (-1158) (-169 (-225)) (-1158) (-567)) 45)) (-2470 (((-1036) (-1158) (-169 (-225)) (-1158) (-567)) 44)) (-2576 (((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567)) 43)) (-4268 (((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567)) 42)) (-2663 (((-1036) (-225) (-567)) 39)) (-1374 (((-1036) (-225) (-567)) 38)) (-4376 (((-1036) (-225) (-567)) 37)) (-1462 (((-1036) (-225) (-567)) 36)) (-2021 (((-1036) (-225) (-567)) 35)) (-3661 (((-1036) (-225) (-567)) 34)) (-3918 (((-1036) (-225) (-567)) 33)) (-1767 (((-1036) (-225) (-567)) 32)) (-3067 (((-1036) (-225) (-567)) 31)) (-4173 (((-1036) (-225) (-567)) 30)) (-3835 (((-1036) (-225) (-225) (-225) (-567)) 29)) (-2162 (((-1036) (-225) (-567)) 28)) (-2089 (((-1036) (-225) (-567)) 27)) (-2146 (((-1036) (-225) (-567)) 26)) (-2256 (((-1036) (-225) (-567)) 25)) (-2195 (((-1036) (-225) (-567)) 24)) (-3802 (((-1036) (-169 (-225)) (-567)) 21)))
+(((-759) (-10 -7 (-15 -3802 ((-1036) (-169 (-225)) (-567))) (-15 -2195 ((-1036) (-225) (-567))) (-15 -2256 ((-1036) (-225) (-567))) (-15 -2146 ((-1036) (-225) (-567))) (-15 -2089 ((-1036) (-225) (-567))) (-15 -2162 ((-1036) (-225) (-567))) (-15 -3835 ((-1036) (-225) (-225) (-225) (-567))) (-15 -4173 ((-1036) (-225) (-567))) (-15 -3067 ((-1036) (-225) (-567))) (-15 -1767 ((-1036) (-225) (-567))) (-15 -3918 ((-1036) (-225) (-567))) (-15 -3661 ((-1036) (-225) (-567))) (-15 -2021 ((-1036) (-225) (-567))) (-15 -1462 ((-1036) (-225) (-567))) (-15 -4376 ((-1036) (-225) (-567))) (-15 -1374 ((-1036) (-225) (-567))) (-15 -2663 ((-1036) (-225) (-567))) (-15 -4268 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -2576 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -2470 ((-1036) (-1158) (-169 (-225)) (-1158) (-567))) (-15 -2671 ((-1036) (-1158) (-169 (-225)) (-1158) (-567))) (-15 -1891 ((-1036) (-567) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -2922 ((-1036) (-225) (-567))) (-15 -2008 ((-1036) (-225) (-567))) (-15 -4290 ((-1036) (-225) (-567))) (-15 -2247 ((-1036) (-225) (-567))) (-15 -2371 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -1325 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -1931 ((-1036) (-225) (-567))) (-15 -2186 ((-1036) (-225) (-567))) (-15 -2672 ((-1036) (-225) (-567))) (-15 -1534 ((-1036) (-225) (-567))) (-15 -3702 ((-1036) (-225) (-567))) (-15 -3807 ((-1036) (-225) (-567))) (-15 -2498 ((-1036) (-225) (-225) (-567))) (-15 -2745 ((-1036) (-225) (-225) (-225) (-567))) (-15 -3767 ((-1036) (-225) (-225) (-225) (-567))) (-15 -1904 ((-1036) (-225) (-225) (-225) (-225) (-567))))) (T -759))
+((-1904 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3767 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2745 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2498 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3807 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2186 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1931 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1325 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2371 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2247 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2008 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1891 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1158)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2671 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1158)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2470 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1158)) (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2576 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-4268 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158)) (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2663 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1374 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-4376 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1462 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-1767 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3067 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-4173 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3835 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2162 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2089 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2256 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(-10 -7 (-15 -3802 ((-1036) (-169 (-225)) (-567))) (-15 -2195 ((-1036) (-225) (-567))) (-15 -2256 ((-1036) (-225) (-567))) (-15 -2146 ((-1036) (-225) (-567))) (-15 -2089 ((-1036) (-225) (-567))) (-15 -2162 ((-1036) (-225) (-567))) (-15 -3835 ((-1036) (-225) (-225) (-225) (-567))) (-15 -4173 ((-1036) (-225) (-567))) (-15 -3067 ((-1036) (-225) (-567))) (-15 -1767 ((-1036) (-225) (-567))) (-15 -3918 ((-1036) (-225) (-567))) (-15 -3661 ((-1036) (-225) (-567))) (-15 -2021 ((-1036) (-225) (-567))) (-15 -1462 ((-1036) (-225) (-567))) (-15 -4376 ((-1036) (-225) (-567))) (-15 -1374 ((-1036) (-225) (-567))) (-15 -2663 ((-1036) (-225) (-567))) (-15 -4268 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -2576 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -2470 ((-1036) (-1158) (-169 (-225)) (-1158) (-567))) (-15 -2671 ((-1036) (-1158) (-169 (-225)) (-1158) (-567))) (-15 -1891 ((-1036) (-567) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -2922 ((-1036) (-225) (-567))) (-15 -2008 ((-1036) (-225) (-567))) (-15 -4290 ((-1036) (-225) (-567))) (-15 -2247 ((-1036) (-225) (-567))) (-15 -2371 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -1325 ((-1036) (-225) (-169 (-225)) (-567) (-1158) (-567))) (-15 -1931 ((-1036) (-225) (-567))) (-15 -2186 ((-1036) (-225) (-567))) (-15 -2672 ((-1036) (-225) (-567))) (-15 -1534 ((-1036) (-225) (-567))) (-15 -3702 ((-1036) (-225) (-567))) (-15 -3807 ((-1036) (-225) (-567))) (-15 -2498 ((-1036) (-225) (-225) (-567))) (-15 -2745 ((-1036) (-225) (-225) (-225) (-567))) (-15 -3767 ((-1036) (-225) (-225) (-225) (-567))) (-15 -1904 ((-1036) (-225) (-225) (-225) (-225) (-567))))
+((-1308 (((-1271)) 21)) (-3200 (((-1158)) 32)) (-4183 (((-1158)) 31)) (-3578 (((-1104) (-1176) (-690 (-567))) 46) (((-1104) (-1176) (-690 (-225))) 42)) (-2424 (((-112)) 19)) (-1356 (((-1158) (-1158)) 35)))
+(((-760) (-10 -7 (-15 -4183 ((-1158))) (-15 -3200 ((-1158))) (-15 -1356 ((-1158) (-1158))) (-15 -3578 ((-1104) (-1176) (-690 (-225)))) (-15 -3578 ((-1104) (-1176) (-690 (-567)))) (-15 -2424 ((-112))) (-15 -1308 ((-1271))))) (T -760))
+((-1308 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-760)))) (-2424 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))) (-3578 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-690 (-567))) (-5 *2 (-1104)) (-5 *1 (-760)))) (-3578 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-690 (-225))) (-5 *2 (-1104)) (-5 *1 (-760)))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-760)))) (-3200 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-760)))) (-4183 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-760)))))
+(-10 -7 (-15 -4183 ((-1158))) (-15 -3200 ((-1158))) (-15 -1356 ((-1158) (-1158))) (-15 -3578 ((-1104) (-1176) (-690 (-225)))) (-15 -3578 ((-1104) (-1176) (-690 (-567)))) (-15 -2424 ((-112))) (-15 -1308 ((-1271))))
+((-4272 (($ $ $) 10)) (-3280 (($ $ $ $) 9)) (-1816 (($ $ $) 12)))
+(((-761 |#1|) (-10 -8 (-15 -1816 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| |#1| |#1|))) (-762)) (T -761))
+NIL
+(-10 -8 (-15 -1816 (|#1| |#1| |#1|)) (-15 -4272 (|#1| |#1| |#1|)) (-15 -3280 (|#1| |#1| |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3356 (($ $ (-922)) 31)) (-3747 (($ $ (-922)) 32)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4272 (($ $ $) 28)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3280 (($ $ $ $) 29)) (-1816 (($ $ $) 27)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 33)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30)))
+(((-762) (-140)) (T -762))
+((-3280 (*1 *1 *1 *1 *1) (-4 *1 (-762))) (-4272 (*1 *1 *1 *1) (-4 *1 (-762))) (-1816 (*1 *1 *1 *1) (-4 *1 (-762))))
+(-13 (-21) (-721) (-10 -8 (-15 -3280 ($ $ $ $)) (-15 -4272 ($ $ $)) (-15 -1816 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-1100) . T))
+((-4101 (((-863) $) NIL) (($ (-567)) 10)))
+(((-763 |#1|) (-10 -8 (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-764)) (T -763))
+NIL
+(-10 -8 (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3038 (((-3 $ "failed") $) 43)) (-3356 (($ $ (-922)) 31) (($ $ (-772)) 38)) (-4014 (((-3 $ "failed") $) 41)) (-3714 (((-112) $) 37)) (-3123 (((-3 $ "failed") $) 42)) (-3747 (($ $ (-922)) 32) (($ $ (-772)) 39)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4272 (($ $ $) 28)) (-4101 (((-863) $) 12) (($ (-567)) 34)) (-2686 (((-772)) 35 T CONST)) (-3739 (((-112) $ $) 9)) (-3280 (($ $ $ $) 29)) (-1816 (($ $ $) 27)) (-1468 (($) 19 T CONST)) (-1484 (($) 36 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 33) (($ $ (-772)) 40)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 30)))
+(((-764) (-140)) (T -764))
+((-2686 (*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764)))))
+(-13 (-762) (-723) (-10 -8 (-15 -2686 ((-772)) -2131) (-15 -4101 ($ (-567)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-721) . T) ((-723) . T) ((-762) . T) ((-1100) . T))
+((-3152 (((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|) 33)) (-4336 (((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|) 23)) (-4121 (((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1176)) 20) (((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567))))) 19)))
+(((-765 |#1|) (-10 -7 (-15 -4121 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -4121 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1176))) (-15 -4336 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3152 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|))) (-13 (-365) (-849))) (T -765))
+((-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 *4))))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1176)) (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *5)) (-4 *5 (-13 (-365) (-849))))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -4121 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))))) (-15 -4121 ((-953 (-169 (-410 (-567)))) (-690 (-169 (-410 (-567)))) (-1176))) (-15 -4336 ((-645 (-169 |#1|)) (-690 (-169 (-410 (-567)))) |#1|)) (-15 -3152 ((-645 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 (-169 |#1|)))))) (-690 (-169 (-410 (-567)))) |#1|)))
+((-3546 (((-174 (-567)) |#1|) 27)))
+(((-766 |#1|) (-10 -7 (-15 -3546 ((-174 (-567)) |#1|))) (-407)) (T -766))
+((-3546 (*1 *2 *3) (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407)))))
+(-10 -7 (-15 -3546 ((-174 (-567)) |#1|)))
+((-1423 ((|#1| |#1| |#1|) 28)) (-3045 ((|#1| |#1| |#1|) 27)) (-1365 ((|#1| |#1| |#1|) 38)) (-2523 ((|#1| |#1| |#1|) 34)) (-1745 (((-3 |#1| "failed") |#1| |#1|) 31)) (-3700 (((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|) 26)))
+(((-767 |#1| |#2|) (-10 -7 (-15 -3700 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1745 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1| |#1|))) (-709 |#2|) (-365)) (T -767))
+((-1365 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-2523 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-1745 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-1423 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3045 (*1 *2 *2 *2) (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3)))) (-3700 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4)))))
+(-10 -7 (-15 -3700 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -1745 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -1365 (|#1| |#1| |#1|)))
+((-3908 (((-692 (-1224)) $ (-1224)) 26)) (-2492 (((-692 (-552)) $ (-552)) 25)) (-1925 (((-772) $ (-128)) 27)) (-1703 (((-692 (-129)) $ (-129)) 24)) (-4197 (((-692 (-1224)) $) 12)) (-2507 (((-692 (-1222)) $) 8)) (-3581 (((-692 (-1221)) $) 10)) (-3583 (((-692 (-552)) $) 13)) (-3842 (((-692 (-550)) $) 9)) (-3228 (((-692 (-549)) $) 11)) (-3669 (((-772) $ (-128)) 7)) (-2518 (((-692 (-129)) $) 14)) (-2270 (((-112) $) 31)) (-4238 (((-692 $) |#1| (-955)) 32)) (-4021 (($ $) 6)))
+(((-768 |#1|) (-140) (-1100)) (T -768))
+((-4238 (*1 *2 *3 *4) (-12 (-5 *4 (-955)) (-4 *3 (-1100)) (-5 *2 (-692 *1)) (-4 *1 (-768 *3)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(-13 (-579) (-10 -8 (-15 -4238 ((-692 $) |t#1| (-955))) (-15 -2270 ((-112) $))))
+(((-173) . T) ((-530) . T) ((-579) . T) ((-861) . T))
+((-2627 (((-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)) 71)) (-1835 (((-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) 69)) (-3347 (((-567)) 85)))
+(((-769 |#1| |#2|) (-10 -7 (-15 -3347 ((-567))) (-15 -1835 ((-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -2627 ((-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567)))) (-1242 (-567)) (-412 (-567) |#1|)) (T -769))
+((-2627 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1242 *3)) (-5 *2 (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4)))) (-1835 (*1 *2) (-12 (-4 *3 (-1242 (-567))) (-5 *2 (-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567))))) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3)))) (-3347 (*1 *2) (-12 (-4 *3 (-1242 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4)) (-4 *4 (-412 *2 *3)))))
+(-10 -7 (-15 -3347 ((-567))) (-15 -1835 ((-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))))) (-15 -2627 ((-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567)) (|:| |basisInv| (-690 (-567)))) (-567))))
+((-2257 (((-112) $ $) NIL)) (-1621 (((-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 20) (($ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-770) (-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4101 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4101 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1621 ((-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -770))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-770)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-770)))))
+(-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4101 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4101 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -1621 ((-3 (|:| |nia| (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))
+((-2916 (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|))) 18) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1176))) 17)) (-1607 (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|))) 20) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1176))) 19)))
+(((-771 |#1|) (-10 -7 (-15 -2916 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -2916 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|))))) (-559)) (T -771))
+((-1607 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1176))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1176))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5)))))
+(-10 -7 (-15 -2916 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -2916 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-953 |#1|)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2140 (($ $ $) 10)) (-4377 (((-3 $ "failed") $ $) 15)) (-4100 (($ $ (-567)) 11)) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($ $) NIL)) (-2210 (($ $ $) NIL)) (-3714 (((-112) $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3276 (($ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 6 T CONST)) (-1484 (($) NIL T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ $ $) NIL)))
+(((-772) (-13 (-794) (-727) (-10 -8 (-15 -2210 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -3276 ($ $ $)) (-15 -2679 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -2245 ((-3 $ "failed") $ $)) (-15 -4100 ($ $ (-567))) (-15 -1649 ($ $)) (-6 (-4418 "*"))))) (T -772))
+((-2210 (*1 *1 *1 *1) (-5 *1 (-772))) (-2197 (*1 *1 *1 *1) (-5 *1 (-772))) (-3276 (*1 *1 *1 *1) (-5 *1 (-772))) (-2679 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3545 (-772)) (|:| -1386 (-772)))) (-5 *1 (-772)))) (-2245 (*1 *1 *1 *1) (|partial| -5 *1 (-772))) (-4100 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))) (-1649 (*1 *1 *1) (-5 *1 (-772))))
+(-13 (-794) (-727) (-10 -8 (-15 -2210 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -3276 ($ $ $)) (-15 -2679 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -2245 ((-3 $ "failed") $ $)) (-15 -4100 ($ $ (-567))) (-15 -1649 ($ $)) (-6 (-4418 "*"))))
((|Integer|) (>= |#1| 0))
-((-1409 (((-3 |#2| "failed") |#2| |#2| (-114) (-1175)) 37)))
-(((-772 |#1| |#2|) (-10 -7 (-15 -1409 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1200) (-959))) (T -772))
-((-1409 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-772 *5 *2)) (-4 *2 (-13 (-29 *5) (-1200) (-959))))))
-(-10 -7 (-15 -1409 ((-3 |#2| "failed") |#2| |#2| (-114) (-1175))))
-((-2725 (((-774) |#1|) 8)))
-(((-773 |#1|) (-10 -7 (-15 -2725 ((-774) |#1|))) (-1215)) (T -773))
-((-2725 (*1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-773 *3)) (-4 *3 (-1215)))))
-(-10 -7 (-15 -2725 ((-774) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 7)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 9)))
-(((-774) (-1099)) (T -774))
-NIL
-(-1099)
-((-3202 ((|#2| |#4|) 35)))
-(((-775 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3202 (|#2| |#4|))) (-454) (-1241 |#1|) (-724 |#1| |#2|) (-1241 |#3|)) (T -775))
-((-3202 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1241 *4)) (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1241 *5)))))
-(-10 -7 (-15 -3202 (|#2| |#4|)))
-((-2313 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2763 (((-1270) (-1157) (-1157) |#4| |#5|) 33)) (-3700 ((|#4| |#4| |#5|) 74)) (-2174 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|) 79)) (-2705 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|) 16)))
-(((-776 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2313 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3700 (|#4| |#4| |#5|)) (-15 -2174 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -2763 ((-1270) (-1157) (-1157) |#4| |#5|)) (-15 -2705 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -776))
-((-2705 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2763 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1270)) (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4)))) (-2174 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3700 (*1 *2 *2 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3)) (-4 *3 (-1070 *4 *5 *6 *2)))) (-2313 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2313 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3700 (|#4| |#4| |#5|)) (-15 -2174 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -2763 ((-1270) (-1157) (-1157) |#4| |#5|)) (-15 -2705 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)))
-((-2023 (((-3 (-1171 (-1171 |#1|)) "failed") |#4|) 53)) (-3315 (((-644 |#4|) |#4|) 24)) (-3940 ((|#4| |#4|) 19)))
-(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3315 ((-644 |#4|) |#4|)) (-15 -2023 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -3940 (|#4| |#4|))) (-351) (-330 |#1|) (-1241 |#2|) (-1241 |#3|) (-921)) (T -777))
-((-3940 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1241 *4)) (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1241 *5)) (-14 *6 (-921)))) (-2023 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1241 *5)) (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1241 *6)) (-14 *7 (-921)))) (-3315 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1241 *5)) (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1241 *6)) (-14 *7 (-921)))))
-(-10 -7 (-15 -3315 ((-644 |#4|) |#4|)) (-15 -2023 ((-3 (-1171 (-1171 |#1|)) "failed") |#4|)) (-15 -3940 (|#4| |#4|)))
-((-3354 (((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|)) 75)) (-2572 (((-644 (-771)) |#1|) 20)))
-(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3354 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -2572 ((-644 (-771)) |#1|))) (-1241 |#4|) (-793) (-850) (-308) (-949 |#4| |#2| |#3|)) (T -778))
-((-2572 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7)) (-4 *3 (-1241 *6)) (-4 *7 (-949 *6 *4 *5)))) (-3354 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1241 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308)) (-4 *10 (-949 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-644 (-1171 *10))) (|:| |dterm| (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| *10))))) (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10)))) (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6)) (-5 *5 (-644 *10)))))
-(-10 -7 (-15 -3354 ((-2 (|:| |deter| (-644 (-1171 |#5|))) (|:| |dterm| (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-644 |#1|)) (|:| |nlead| (-644 |#5|))) (-1171 |#5|) (-644 |#1|) (-644 |#5|))) (-15 -2572 ((-644 (-771)) |#1|)))
-((-4051 (((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|) 31)) (-3976 (((-644 |#1|) (-689 (-409 (-566))) |#1|) 21)) (-1707 (((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175)) 18) (((-952 (-409 (-566))) (-689 (-409 (-566)))) 17)))
-(((-779 |#1|) (-10 -7 (-15 -1707 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -1707 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -3976 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -4051 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|))) (-13 (-365) (-848))) (T -779))
-((-4051 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 (-2 (|:| |outval| *4) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 *4)))))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))) (-1707 (*1 *2 *3 *4) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175)) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5)) (-4 *5 (-13 (-365) (-848))))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))))
-(-10 -7 (-15 -1707 ((-952 (-409 (-566))) (-689 (-409 (-566))))) (-15 -1707 ((-952 (-409 (-566))) (-689 (-409 (-566))) (-1175))) (-15 -3976 ((-644 |#1|) (-689 (-409 (-566))) |#1|)) (-15 -4051 ((-644 (-2 (|:| |outval| |#1|) (|:| |outmult| (-566)) (|:| |outvect| (-644 (-689 |#1|))))) (-689 (-409 (-566))) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 36)) (-4170 (((-644 |#2|) $) NIL)) (-3983 (((-1171 $) $ |#2|) NIL) (((-1171 |#1|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 |#2|)) NIL)) (-1829 (($ $) 30)) (-3335 (((-112) $ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3921 (($ $ $) 110 (|has| |#1| (-558)))) (-3161 (((-644 $) $ $) 123 (|has| |#1| (-558)))) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) NIL (-2676 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) NIL (-2676 (-12 (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-38 (-409 (-566))))) (-3129 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-38 (-409 (-566))))) (-3129 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-992 (-566))))))) (((-3 (-1124 |#1| |#2|) "failed") $) 21)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2676 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (-2676 (-12 (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-38 (-409 (-566))))) (-3129 (|has| |#1| (-38 (-566))))) (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-38 (-409 (-566))))) (-3129 (|has| |#1| (-547)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-992 (-566))))))) (((-1124 |#1| |#2|) $) NIL)) (-2994 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-558)))) (-4358 (($ $) NIL) (($ $ |#2|) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-4315 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1588 (((-112) $) NIL)) (-2772 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 81)) (-1883 (($ $) 136 (|has| |#1| (-454)))) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-1444 (($ $) NIL (|has| |#1| (-558)))) (-4259 (($ $) NIL (|has| |#1| (-558)))) (-1341 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-3369 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-2385 (($ $ |#1| (-533 |#2|) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3842 (((-112) $) 57)) (-2436 (((-771) $) NIL)) (-3492 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-3435 (($ $ $ $ $) 107 (|has| |#1| (-558)))) (-3779 ((|#2| $) 22)) (-4157 (($ (-1171 |#1|) |#2|) NIL) (($ (-1171 $) |#2|) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 38) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3867 (($ $ $) 63)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |#2|) NIL)) (-3518 (((-112) $) NIL)) (-4090 (((-533 |#2|) $) NIL) (((-771) $ |#2|) NIL) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-1680 (((-771) $) 23)) (-1336 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1742 (((-3 |#2| "failed") $) NIL)) (-3814 (($ $) NIL (|has| |#1| (-454)))) (-3455 (($ $) NIL (|has| |#1| (-454)))) (-3379 (((-644 $) $) NIL)) (-1612 (($ $) 39)) (-1433 (($ $) NIL (|has| |#1| (-454)))) (-3593 (((-644 $) $) 43)) (-3173 (($ $) 41)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1960 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3136 (-771))) $ $) 96)) (-1999 (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $) 78) (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $ |#2|) NIL)) (-3640 (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $) NIL) (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $ |#2|) NIL)) (-3238 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-1905 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-1390 (((-1157) $) NIL)) (-1665 (($ $ $) 125 (|has| |#1| (-558)))) (-3412 (((-644 $) $) 32)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| |#2|) (|:| -3428 (-771))) "failed") $) NIL)) (-2751 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-1642 (($ $ $) NIL)) (-1342 (($ $) 24)) (-4249 (((-112) $ $) NIL)) (-2927 (((-112) $ $) NIL) (((-112) $ (-644 $)) NIL)) (-2117 (($ $ $) NIL)) (-3096 (($ $) 26)) (-1944 (((-1119) $) NIL)) (-2595 (((-2 (|:| -1885 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-558)))) (-2303 (((-2 (|:| -1885 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-558)))) (-4290 (((-112) $) 56)) (-4307 ((|#1| $) 58)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 ((|#1| |#1| $) 133 (|has| |#1| (-454))) (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3708 (((-2 (|:| -1885 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-558)))) (-2069 (($ $ |#1|) 129 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-3575 (($ $ |#1|) 128 (|has| |#1| (-558))) (($ $ $) NIL (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-644 |#2|) (-644 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-644 |#2|) (-644 $)) NIL)) (-2061 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3009 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3838 (((-533 |#2|) $) NIL) (((-771) $ |#2|) 45) (((-644 (-771)) $ (-644 |#2|)) NIL)) (-2910 (($ $) NIL)) (-3851 (($ $) 35)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538))))) (($ (-952 (-409 (-566)))) NIL (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175))))) (($ (-952 (-566))) NIL (-2676 (-12 (|has| |#1| (-38 (-566))) (|has| |#2| (-614 (-1175))) (-3129 (|has| |#1| (-38 (-409 (-566)))))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#2| (-614 (-1175)))))) (($ (-952 |#1|)) NIL (|has| |#2| (-614 (-1175)))) (((-1157) $) NIL (-12 (|has| |#1| (-1038 (-566))) (|has| |#2| (-614 (-1175))))) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175))))) (-4330 ((|#1| $) 132 (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-952 |#1|) $) NIL (|has| |#2| (-614 (-1175)))) (((-1124 |#1| |#2|) $) 18) (($ (-1124 |#1| |#2|)) 19) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) 47) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) 13 T CONST)) (-2082 (((-3 (-112) "failed") $ $) NIL)) (-3214 (($) 37 T CONST)) (-2146 (($ $ $ $ (-771)) 105 (|has| |#1| (-558)))) (-1878 (($ $ $ (-771)) 104 (|has| |#1| (-558)))) (-1316 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) 75)) (-2897 (($ $ $) 85)) (** (($ $ (-921)) NIL) (($ $ (-771)) 70)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 62) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
-(((-780 |#1| |#2|) (-13 (-1064 |#1| (-533 |#2|) |#2|) (-613 (-1124 |#1| |#2|)) (-1038 (-1124 |#1| |#2|))) (-1049) (-850)) (T -780))
-NIL
-(-13 (-1064 |#1| (-533 |#2|) |#2|) (-613 (-1124 |#1| |#2|)) (-1038 (-1124 |#1| |#2|)))
-((-2101 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 13)))
-(((-781 |#1| |#2|) (-10 -7 (-15 -2101 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)))) (-1049) (-1049)) (T -781))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))))
-(-10 -7 (-15 -2101 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 12)) (-2729 (((-1265 |#1|) $ (-771)) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2437 (($ (-1171 |#1|)) NIL)) (-3983 (((-1171 $) $ (-1081)) NIL) (((-1171 |#1|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3182 (((-644 $) $ $) 54 (|has| |#1| (-558)))) (-3921 (($ $ $) 50 (|has| |#1| (-558)))) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2166 (($ $ (-771)) NIL)) (-1867 (($ $ (-771)) NIL)) (-3951 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL) (((-3 (-1171 |#1|) "failed") $) 10)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL) (((-1171 |#1|) $) NIL)) (-2994 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-1438 (($ $ $) NIL)) (-2297 (($ $ $) 87 (|has| |#1| (-558)))) (-2772 (((-2 (|:| -1702 |#1|) (|:| -2383 $) (|:| -3033 $)) $ $) 86 (|has| |#1| (-558)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-771) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3077 (((-771) $ $) NIL (|has| |#1| (-558)))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-4157 (($ (-1171 |#1|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2248 (($ $ (-771)) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3867 (($ $ $) 27)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-1081)) NIL) (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-4090 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1336 (($ (-1 (-771) (-771)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1649 (((-1171 |#1|) $) NIL)) (-1742 (((-3 (-1081) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1960 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3136 (-771))) $ $) 37)) (-4394 (($ $ $) 41)) (-4119 (($ $ $) 47)) (-1999 (((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $) 46)) (-1390 (((-1157) $) NIL)) (-1665 (($ $ $) 56 (|has| |#1| (-558)))) (-1481 (((-2 (|:| -2383 $) (|:| -3033 $)) $ (-771)) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-1081)) (|:| -3428 (-771))) "failed") $) NIL)) (-1879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1342 (($) NIL (|has| |#1| (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-2595 (((-2 (|:| -1885 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-558)))) (-2303 (((-2 (|:| -1885 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-558)))) (-4351 (((-2 (|:| -2994 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-558)))) (-2728 (((-2 (|:| -2994 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-558)))) (-4290 (((-112) $) 13)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-3437 (($ $ (-771) |#1| $) 26)) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3708 (((-2 (|:| -1885 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-558)))) (-1809 (((-2 (|:| -2994 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-558)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-4374 (((-3 $ "failed") $ (-771)) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-2061 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-3009 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3838 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2035 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1081)) NIL) (((-1171 |#1|) $) 7) (($ (-1171 |#1|)) 8) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) 28 T CONST)) (-3214 (($) 32 T CONST)) (-1316 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) 40) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
-(((-782 |#1|) (-13 (-1241 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -3437 ($ $ (-771) |#1| $)) (-15 -3867 ($ $ $)) (-15 -1960 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3136 (-771))) $ $)) (-15 -4394 ($ $ $)) (-15 -1999 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -4119 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -3182 ((-644 $) $ $)) (-15 -1665 ($ $ $)) (-15 -3708 ((-2 (|:| -1885 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2303 ((-2 (|:| -1885 $) (|:| |coef1| $)) $ $)) (-15 -2595 ((-2 (|:| -1885 $) (|:| |coef2| $)) $ $)) (-15 -1809 ((-2 (|:| -2994 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2728 ((-2 (|:| -2994 |#1|) (|:| |coef1| $)) $ $)) (-15 -4351 ((-2 (|:| -2994 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1049)) (T -782))
-((-3437 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-3867 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-1960 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -3136 (-771)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-4394 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-1999 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1702 *3) (|:| |gap| (-771)) (|:| -2383 (-782 *3)) (|:| -3033 (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-1049)))) (-4119 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))) (-3182 (*1 *2 *1 *1) (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-1665 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049)))) (-3708 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1885 (-782 *3)) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2303 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1885 (-782 *3)) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2595 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1885 (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-1809 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-2728 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| |coef1| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))) (-4351 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| |coef2| (-782 *3)))) (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))))
-(-13 (-1241 |#1|) (-613 (-1171 |#1|)) (-1038 (-1171 |#1|)) (-10 -8 (-15 -3437 ($ $ (-771) |#1| $)) (-15 -3867 ($ $ $)) (-15 -1960 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3136 (-771))) $ $)) (-15 -4394 ($ $ $)) (-15 -1999 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -4119 ($ $ $)) (IF (|has| |#1| (-558)) (PROGN (-15 -3182 ((-644 $) $ $)) (-15 -1665 ($ $ $)) (-15 -3708 ((-2 (|:| -1885 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2303 ((-2 (|:| -1885 $) (|:| |coef1| $)) $ $)) (-15 -2595 ((-2 (|:| -1885 $) (|:| |coef2| $)) $ $)) (-15 -1809 ((-2 (|:| -2994 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2728 ((-2 (|:| -2994 |#1|) (|:| |coef1| $)) $ $)) (-15 -4351 ((-2 (|:| -2994 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1767 ((|#1| (-771) |#1|) 33 (|has| |#1| (-38 (-409 (-566)))))) (-3093 ((|#1| (-771) |#1|) 23)) (-3952 ((|#1| (-771) |#1|) 35 (|has| |#1| (-38 (-409 (-566)))))))
-(((-783 |#1|) (-10 -7 (-15 -3093 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3952 (|#1| (-771) |#1|)) (-15 -1767 (|#1| (-771) |#1|))) |%noBranch|)) (-172)) (T -783))
-((-1767 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-3952 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-3093 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -3093 (|#1| (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -3952 (|#1| (-771) |#1|)) (-15 -1767 (|#1| (-771) |#1|))) |%noBranch|))
-((-3979 (((-112) $ $) 7)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) 86)) (-3599 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-4170 (((-644 |#3|) $) 34)) (-1323 (((-112) $) 27)) (-1494 (((-112) $) 18 (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) 102) (((-112) $) 98)) (-3351 ((|#4| |#4| $) 93)) (-2885 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| $) 127)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) 28)) (-2261 (((-112) $ (-771)) 45)) (-3281 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) 80)) (-2633 (($) 46 T CONST)) (-1740 (((-112) $) 23 (|has| |#1| (-558)))) (-3807 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1312 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1407 (((-112) $) 26 (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4185 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) 37)) (-3343 (($ (-644 |#4|)) 36)) (-3781 (((-3 $ "failed") $) 83)) (-1673 ((|#4| |#4| $) 90)) (-3806 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3427 ((|#4| |#4| $) 88)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) 106)) (-1733 (((-112) |#4| $) 137)) (-2509 (((-112) |#4| $) 134)) (-2511 (((-112) |#4| $) 138) (((-112) $) 135)) (-1523 (((-644 |#4|) $) 53 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) 105) (((-112) $) 104)) (-3779 ((|#3| $) 35)) (-2429 (((-112) $ (-771)) 44)) (-2565 (((-644 |#4|) $) 54 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 48)) (-2054 (((-644 |#3|) $) 33)) (-2314 (((-112) |#3| $) 32)) (-1864 (((-112) $ (-771)) 43)) (-1390 (((-1157) $) 10)) (-2245 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1665 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| |#4| $) 128)) (-1774 (((-3 |#4| "failed") $) 84)) (-2932 (((-644 $) |#4| $) 130)) (-3439 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3669 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1799 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-4200 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3304 (((-644 |#4|) $) 108)) (-2751 (((-112) |#4| $) 100) (((-112) $) 96)) (-1642 ((|#4| |#4| $) 91)) (-4249 (((-112) $ $) 111)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) 101) (((-112) $) 97)) (-2117 ((|#4| |#4| $) 92)) (-1944 (((-1119) $) 11)) (-3771 (((-3 |#4| "failed") $) 85)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3521 (((-3 $ "failed") $ |#4|) 79)) (-3964 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-1900 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) 39)) (-4246 (((-112) $) 42)) (-3906 (($) 41)) (-3838 (((-771) $) 107)) (-1958 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4415)))) (-2878 (($ $) 40)) (-2150 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 61)) (-3317 (($ $ |#3|) 29)) (-3756 (($ $ |#3|) 31)) (-2352 (($ $) 89)) (-1811 (($ $ |#3|) 30)) (-2725 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3526 (((-771) $) 77 (|has| |#3| (-370)))) (-1479 (((-112) $ $) 9)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3735 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2610 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) 82)) (-1950 (((-112) |#4| $) 136)) (-3314 (((-112) |#3| $) 81)) (-2817 (((-112) $ $) 6)) (-3991 (((-771) $) 47 (|has| $ (-6 -4415)))))
-(((-784 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -784))
-NIL
-(-13 (-1070 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1208 |#1| |#2| |#3| |#4|) . T) ((-1215) . T))
-((-1797 (((-3 (-381) "failed") (-317 |#1|) (-921)) 62 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-381) "failed") (-409 (-952 |#1|)) (-921)) 41 (|has| |#1| (-558))) (((-3 (-381) "failed") (-409 (-952 |#1|))) 40 (|has| |#1| (-558))) (((-3 (-381) "failed") (-952 |#1|) (-921)) 31 (|has| |#1| (-1049))) (((-3 (-381) "failed") (-952 |#1|)) 30 (|has| |#1| (-1049)))) (-2588 (((-381) (-317 |#1|) (-921)) 99 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-381) (-409 (-952 |#1|)) (-921)) 91 (|has| |#1| (-558))) (((-381) (-409 (-952 |#1|))) 90 (|has| |#1| (-558))) (((-381) (-952 |#1|) (-921)) 86 (|has| |#1| (-1049))) (((-381) (-952 |#1|)) 85 (|has| |#1| (-1049))) (((-381) |#1| (-921)) 76) (((-381) |#1|) 22)) (-2294 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)) 71 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-921)) 63 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921)) 46 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|)))) 45 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921)) 39 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-409 (-952 |#1|))) 38 (|has| |#1| (-558))) (((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)) 28 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 |#1|)) 26 (|has| |#1| (-1049))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-952 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-3923 (((-169 (-381)) (-317 (-169 |#1|)) (-921)) 102 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|) (-921)) 100 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-558)) (|has| |#1| (-850)))) (((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921)) 93 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 (-169 |#1|)))) 92 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|)) (-921)) 89 (|has| |#1| (-558))) (((-169 (-381)) (-409 (-952 |#1|))) 88 (|has| |#1| (-558))) (((-169 (-381)) (-952 |#1|) (-921)) 84 (|has| |#1| (-1049))) (((-169 (-381)) (-952 |#1|)) 83 (|has| |#1| (-1049))) (((-169 (-381)) (-952 (-169 |#1|)) (-921)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-952 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-921)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-921)) 27) (((-169 (-381)) |#1|) 25)))
-(((-785 |#1|) (-10 -7 (-15 -2588 ((-381) |#1|)) (-15 -2588 ((-381) |#1| (-921))) (-15 -3923 ((-169 (-381)) |#1|)) (-15 -3923 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -3923 ((-169 (-381)) (-169 |#1|))) (-15 -3923 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -3923 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -2588 ((-381) (-952 |#1|))) (-15 -2588 ((-381) (-952 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-952 |#1|))) (-15 -3923 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2588 ((-381) (-409 (-952 |#1|)))) (-15 -2588 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -3923 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -3923 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -3923 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -3923 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -2588 ((-381) (-317 |#1|))) (-15 -2588 ((-381) (-317 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-317 |#1|))) (-15 -3923 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -3923 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -1797 ((-3 (-381) "failed") (-952 |#1|))) (-15 -1797 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1797 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -1797 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -1797 ((-3 (-381) "failed") (-317 |#1|))) (-15 -1797 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|)) (-614 (-381))) (T -785))
-((-2294 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2294 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2294 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2294 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1797 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2294 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2294 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2294 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2294 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1797 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2294 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2294 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-1797 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-1797 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-2294 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-2294 (*1 *2 *3) (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-2588 (*1 *2 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049)) (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))) (-2588 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5)))) (-3923 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4)))) (-3923 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-3923 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381))))) (-2588 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))) (-2588 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2)))))
-(-10 -7 (-15 -2588 ((-381) |#1|)) (-15 -2588 ((-381) |#1| (-921))) (-15 -3923 ((-169 (-381)) |#1|)) (-15 -3923 ((-169 (-381)) |#1| (-921))) (IF (|has| |#1| (-172)) (PROGN (-15 -3923 ((-169 (-381)) (-169 |#1|))) (-15 -3923 ((-169 (-381)) (-169 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-952 (-169 |#1|)))) (-15 -3923 ((-169 (-381)) (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -2588 ((-381) (-952 |#1|))) (-15 -2588 ((-381) (-952 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-952 |#1|))) (-15 -3923 ((-169 (-381)) (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -2588 ((-381) (-409 (-952 |#1|)))) (-15 -2588 ((-381) (-409 (-952 |#1|)) (-921))) (-15 -3923 ((-169 (-381)) (-409 (-952 |#1|)))) (-15 -3923 ((-169 (-381)) (-409 (-952 |#1|)) (-921))) (-15 -3923 ((-169 (-381)) (-409 (-952 (-169 |#1|))))) (-15 -3923 ((-169 (-381)) (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -2588 ((-381) (-317 |#1|))) (-15 -2588 ((-381) (-317 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-317 |#1|))) (-15 -3923 ((-169 (-381)) (-317 |#1|) (-921))) (-15 -3923 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -3923 ((-169 (-381)) (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 (-169 |#1|)) (-921)))) |%noBranch|) (IF (|has| |#1| (-1049)) (PROGN (-15 -1797 ((-3 (-381) "failed") (-952 |#1|))) (-15 -1797 ((-3 (-381) "failed") (-952 |#1|) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 |#1|))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-952 |#1|) (-921)))) |%noBranch|) (IF (|has| |#1| (-558)) (PROGN (-15 -1797 ((-3 (-381) "failed") (-409 (-952 |#1|)))) (-15 -1797 ((-3 (-381) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 |#1|)) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-409 (-952 (-169 |#1|))) (-921))) (IF (|has| |#1| (-850)) (PROGN (-15 -1797 ((-3 (-381) "failed") (-317 |#1|))) (-15 -1797 ((-3 (-381) "failed") (-317 |#1|) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-921))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -2294 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-921)))) |%noBranch|)) |%noBranch|))
-((-2081 (((-921) (-1157)) 92)) (-3349 (((-3 (-381) "failed") (-1157)) 36)) (-2244 (((-381) (-1157)) 34)) (-2266 (((-921) (-1157)) 63)) (-4117 (((-1157) (-921)) 75)) (-3836 (((-1157) (-921)) 62)))
-(((-786) (-10 -7 (-15 -3836 ((-1157) (-921))) (-15 -2266 ((-921) (-1157))) (-15 -4117 ((-1157) (-921))) (-15 -2081 ((-921) (-1157))) (-15 -2244 ((-381) (-1157))) (-15 -3349 ((-3 (-381) "failed") (-1157))))) (T -786))
-((-3349 (*1 *2 *3) (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-4117 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786)))))
-(-10 -7 (-15 -3836 ((-1157) (-921))) (-15 -2266 ((-921) (-1157))) (-15 -4117 ((-1157) (-921))) (-15 -2081 ((-921) (-1157))) (-15 -2244 ((-381) (-1157))) (-15 -3349 ((-3 (-381) "failed") (-1157))))
-((-3979 (((-112) $ $) 7)) (-3209 (((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 16) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)) 14)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-787) (-140)) (T -787))
-((-1303 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-3209 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-1303 (*1 *2 *3 *4) (-12 (-4 *1 (-787)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035)))))) (-3209 (*1 *2 *3 *2) (-12 (-4 *1 (-787)) (-5 *2 (-1035)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(-13 (-1099) (-10 -7 (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3209 ((-1035) (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225))) (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)) (|:| |extra| (-1035))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3209 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1035)))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-2938 (((-1270) (-1265 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))) (-381) (-1265 (-381)) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381))) 55) (((-1270) (-1265 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))) (-381) (-1265 (-381)) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381))) 52)) (-4169 (((-1270) (-1265 (-381)) (-566) (-381) (-381) (-566) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381))) 61)) (-2215 (((-1270) (-1265 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381))) 50)) (-3114 (((-1270) (-1265 (-381)) (-566) (-381) (-381) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381))) 63) (((-1270) (-1265 (-381)) (-566) (-381) (-381) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381))) 62)))
-(((-788) (-10 -7 (-15 -3114 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))) (-15 -3114 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)))) (-15 -2215 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))) (-15 -2938 ((-1270) (-1265 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))) (-381) (-1265 (-381)) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))) (-15 -2938 ((-1270) (-1265 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))) (-381) (-1265 (-381)) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)))) (-15 -4169 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-566) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))))) (T -788))
-((-4169 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381))) (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270)) (-5 *1 (-788)))) (-2938 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381)))) (-5 *7 (-1 (-1270) (-1265 *5) (-1265 *5) (-381))) (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270)) (-5 *1 (-788)))) (-2938 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-566)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381)))) (-5 *7 (-1 (-1270) (-1265 *5) (-1265 *5) (-381))) (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270)) (-5 *1 (-788)))) (-2215 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381))) (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270)) (-5 *1 (-788)))) (-3114 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381))) (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270)) (-5 *1 (-788)))) (-3114 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381))) (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270)) (-5 *1 (-788)))))
-(-10 -7 (-15 -3114 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))) (-15 -3114 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)))) (-15 -2215 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-381) (-381) (-566) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))) (-15 -2938 ((-1270) (-1265 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))) (-381) (-1265 (-381)) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))) (-15 -2938 ((-1270) (-1265 (-381)) (-566) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))) (-381) (-1265 (-381)) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)) (-1265 (-381)))) (-15 -4169 ((-1270) (-1265 (-381)) (-566) (-381) (-381) (-566) (-1 (-1270) (-1265 (-381)) (-1265 (-381)) (-381)))))
-((-1398 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 66)) (-2493 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 42)) (-4076 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 65)) (-2993 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 40)) (-2569 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 64)) (-2683 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566)) 26)) (-3256 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 43)) (-1892 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 41)) (-2015 (((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566)) 39)))
-(((-789) (-10 -7 (-15 -2015 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -1892 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -3256 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2683 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2993 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2493 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2569 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -4076 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1398 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))))) (T -789))
-((-1398 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-4076 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2569 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2493 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2993 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2683 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-3256 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-1892 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))) (-2015 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566)) (|:| |success| (-112)))) (-5 *1 (-789)) (-5 *5 (-566)))))
-(-10 -7 (-15 -2015 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -1892 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -3256 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566) (-566))) (-15 -2683 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2993 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2493 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -2569 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -4076 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))) (-15 -1398 ((-2 (|:| -2465 (-381)) (|:| -4277 (-381)) (|:| |totalpts| (-566)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-566) (-566))))
-((-3671 (((-1210 |#1|) |#1| (-225) (-566)) 69)))
-(((-790 |#1|) (-10 -7 (-15 -3671 ((-1210 |#1|) |#1| (-225) (-566)))) (-974)) (T -790))
-((-3671 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1210 *3)) (-5 *1 (-790 *3)) (-4 *3 (-974)))))
-(-10 -7 (-15 -3671 ((-1210 |#1|) |#1| (-225) (-566))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 25)) (-4113 (((-3 $ "failed") $ $) 27)) (-2633 (($) 24 T CONST)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 23 T CONST)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (-2905 (($ $ $) 31) (($ $) 30)) (-2897 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29)))
-(((-791) (-140)) (T -791))
-NIL
-(-13 (-795) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 25)) (-2633 (($) 24 T CONST)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 23 T CONST)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (-2897 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26)))
+((-1607 (((-3 |#2| "failed") |#2| |#2| (-114) (-1176)) 37)))
+(((-773 |#1| |#2|) (-10 -7 (-15 -1607 ((-3 |#2| "failed") |#2| |#2| (-114) (-1176)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1201) (-960))) (T -773))
+((-1607 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1201) (-960))))))
+(-10 -7 (-15 -1607 ((-3 |#2| "failed") |#2| |#2| (-114) (-1176))))
+((-4101 (((-775) |#1|) 8)))
+(((-774 |#1|) (-10 -7 (-15 -4101 ((-775) |#1|))) (-1216)) (T -774))
+((-4101 (*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1216)))))
+(-10 -7 (-15 -4101 ((-775) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 7)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 9)))
+(((-775) (-1100)) (T -775))
+NIL
+(-1100)
+((-3751 ((|#2| |#4|) 35)))
+(((-776 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3751 (|#2| |#4|))) (-455) (-1242 |#1|) (-725 |#1| |#2|) (-1242 |#3|)) (T -776))
+((-3751 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1242 *4)) (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1242 *5)))))
+(-10 -7 (-15 -3751 (|#2| |#4|)))
+((-4014 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2842 (((-1271) (-1158) (-1158) |#4| |#5|) 33)) (-1753 ((|#4| |#4| |#5|) 74)) (-3226 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|) 79)) (-3541 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 16)))
+(((-777 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4014 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1753 (|#4| |#4| |#5|)) (-15 -3226 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -2842 ((-1271) (-1158) (-1158) |#4| |#5|)) (-15 -3541 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3| |#4|)) (T -777))
+((-3541 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-2842 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1158)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *4 (-1065 *6 *7 *8)) (-5 *2 (-1271)) (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1071 *6 *7 *8 *4)))) (-3226 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-1753 (*1 *2 *2 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *2 (-1065 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3)) (-4 *3 (-1071 *4 *5 *6 *2)))) (-4014 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(-10 -7 (-15 -4014 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1753 (|#4| |#4| |#5|)) (-15 -3226 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -2842 ((-1271) (-1158) (-1158) |#4| |#5|)) (-15 -3541 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)))
+((-3417 (((-3 (-1172 (-1172 |#1|)) "failed") |#4|) 53)) (-2458 (((-645 |#4|) |#4|) 24)) (-2202 ((|#4| |#4|) 19)))
+(((-778 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2458 ((-645 |#4|) |#4|)) (-15 -3417 ((-3 (-1172 (-1172 |#1|)) "failed") |#4|)) (-15 -2202 (|#4| |#4|))) (-351) (-330 |#1|) (-1242 |#2|) (-1242 |#3|) (-922)) (T -778))
+((-2202 (*1 *2 *2) (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1242 *4)) (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1242 *5)) (-14 *6 (-922)))) (-3417 (*1 *2 *3) (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1242 *5)) (-5 *2 (-1172 (-1172 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1242 *6)) (-14 *7 (-922)))) (-2458 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1242 *5)) (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1242 *6)) (-14 *7 (-922)))))
+(-10 -7 (-15 -2458 ((-645 |#4|) |#4|)) (-15 -3417 ((-3 (-1172 (-1172 |#1|)) "failed") |#4|)) (-15 -2202 (|#4| |#4|)))
+((-1546 (((-2 (|:| |deter| (-645 (-1172 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1172 |#5|) (-645 |#1|) (-645 |#5|)) 75)) (-1638 (((-645 (-772)) |#1|) 20)))
+(((-779 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1546 ((-2 (|:| |deter| (-645 (-1172 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1172 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -1638 ((-645 (-772)) |#1|))) (-1242 |#4|) (-794) (-851) (-308) (-950 |#4| |#2| |#3|)) (T -779))
+((-1638 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7)) (-4 *3 (-1242 *6)) (-4 *7 (-950 *6 *4 *5)))) (-1546 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1242 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308)) (-4 *10 (-950 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-645 (-1172 *10))) (|:| |dterm| (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| *10))))) (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10)))) (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1172 *10)) (-5 *4 (-645 *6)) (-5 *5 (-645 *10)))))
+(-10 -7 (-15 -1546 ((-2 (|:| |deter| (-645 (-1172 |#5|))) (|:| |dterm| (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-645 |#1|)) (|:| |nlead| (-645 |#5|))) (-1172 |#5|) (-645 |#1|) (-645 |#5|))) (-15 -1638 ((-645 (-772)) |#1|)))
+((-1998 (((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|) 31)) (-2569 (((-645 |#1|) (-690 (-410 (-567))) |#1|) 21)) (-4121 (((-953 (-410 (-567))) (-690 (-410 (-567))) (-1176)) 18) (((-953 (-410 (-567))) (-690 (-410 (-567)))) 17)))
+(((-780 |#1|) (-10 -7 (-15 -4121 ((-953 (-410 (-567))) (-690 (-410 (-567))))) (-15 -4121 ((-953 (-410 (-567))) (-690 (-410 (-567))) (-1176))) (-15 -2569 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -1998 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|))) (-13 (-365) (-849))) (T -780))
+((-1998 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 (-2 (|:| |outval| *4) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 *4)))))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-2569 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))) (-4121 (*1 *2 *3 *4) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1176)) (-5 *2 (-953 (-410 (-567)))) (-5 *1 (-780 *5)) (-4 *5 (-13 (-365) (-849))))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-953 (-410 (-567)))) (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))))
+(-10 -7 (-15 -4121 ((-953 (-410 (-567))) (-690 (-410 (-567))))) (-15 -4121 ((-953 (-410 (-567))) (-690 (-410 (-567))) (-1176))) (-15 -2569 ((-645 |#1|) (-690 (-410 (-567))) |#1|)) (-15 -1998 ((-645 (-2 (|:| |outval| |#1|) (|:| |outmult| (-567)) (|:| |outvect| (-645 (-690 |#1|))))) (-690 (-410 (-567))) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 36)) (-2449 (((-645 |#2|) $) NIL)) (-2260 (((-1172 $) $ |#2|) NIL) (((-1172 |#1|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 |#2|)) NIL)) (-3221 (($ $) 30)) (-1331 (((-112) $ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3288 (($ $ $) 110 (|has| |#1| (-559)))) (-3414 (((-645 $) $ $) 123 (|has| |#1| (-559)))) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-953 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176))))) (((-3 $ "failed") (-953 (-567))) NIL (-2909 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176)))))) (((-3 $ "failed") (-953 |#1|)) NIL (-2909 (-12 (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-38 (-410 (-567))))) (-1397 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-38 (-410 (-567))))) (-1397 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-993 (-567))))))) (((-3 (-1125 |#1| |#2|) "failed") $) 21)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) ((|#2| $) NIL) (($ (-953 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176))))) (($ (-953 (-567))) NIL (-2909 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176)))))) (($ (-953 |#1|)) NIL (-2909 (-12 (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-38 (-410 (-567))))) (-1397 (|has| |#1| (-38 (-567))))) (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-38 (-410 (-567))))) (-1397 (|has| |#1| (-548)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-993 (-567))))))) (((-1125 |#1| |#2|) $) NIL)) (-2414 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 121 (|has| |#1| (-559)))) (-2637 (($ $) NIL) (($ $ |#2|) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-1444 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2365 (((-112) $) NIL)) (-2919 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 81)) (-2154 (($ $) 136 (|has| |#1| (-455)))) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3450 (($ $) NIL (|has| |#1| (-559)))) (-2230 (($ $) NIL (|has| |#1| (-559)))) (-1669 (($ $ $) 76) (($ $ $ |#2|) NIL)) (-1732 (($ $ $) 79) (($ $ $ |#2|) NIL)) (-3564 (($ $ |#1| (-534 |#2|) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-3714 (((-112) $) 57)) (-2864 (((-772) $) NIL)) (-3604 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-4227 (($ $ $ $ $) 107 (|has| |#1| (-559)))) (-4280 ((|#2| $) 22)) (-2434 (($ (-1172 |#1|) |#2|) NIL) (($ (-1172 $) |#2|) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 38) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-2781 (($ $ $) 63)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |#2|) NIL)) (-3782 (((-112) $) NIL)) (-4185 (((-534 |#2|) $) NIL) (((-772) $ |#2|) NIL) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-3878 (((-772) $) 23)) (-1599 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3300 (((-3 |#2| "failed") $) NIL)) (-3474 (($ $) NIL (|has| |#1| (-455)))) (-4396 (($ $) NIL (|has| |#1| (-455)))) (-1833 (((-645 $) $) NIL)) (-4384 (($ $) 39)) (-3345 (($ $) NIL (|has| |#1| (-455)))) (-3303 (((-645 $) $) 43)) (-3521 (($ $) 41)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL) (($ $ |#2|) 48)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1554 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4297 (-772))) $ $) 96)) (-3855 (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $) 78) (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $ |#2|) NIL)) (-2514 (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $) NIL) (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $ |#2|) NIL)) (-2929 (($ $ $) 83) (($ $ $ |#2|) NIL)) (-2359 (($ $ $) 86) (($ $ $ |#2|) NIL)) (-2451 (((-1158) $) NIL)) (-1856 (($ $ $) 125 (|has| |#1| (-559)))) (-4013 (((-645 $) $) 32)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| |#2|) (|:| -4164 (-772))) "failed") $) NIL)) (-2750 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-1603 (($ $ $) NIL)) (-2596 (($ $) 24)) (-2137 (((-112) $ $) NIL)) (-1849 (((-112) $ $) NIL) (((-112) $ (-645 $)) NIL)) (-2703 (($ $ $) NIL)) (-3942 (($ $) 26)) (-3339 (((-1120) $) NIL)) (-1886 (((-2 (|:| -3276 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-559)))) (-3913 (((-2 (|:| -3276 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-559)))) (-2567 (((-112) $) 56)) (-2583 ((|#1| $) 58)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 ((|#1| |#1| $) 133 (|has| |#1| (-455))) (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-1841 (((-2 (|:| -3276 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-559)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 98 (|has| |#1| (-559)))) (-3415 (($ $ |#1|) 129 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3145 (($ $ |#1|) 128 (|has| |#1| (-559))) (($ $ $) NIL (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-645 |#2|) (-645 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-645 |#2|) (-645 $)) NIL)) (-3347 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1930 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3677 (((-534 |#2|) $) NIL) (((-772) $ |#2|) 45) (((-645 (-772)) $ (-645 |#2|)) NIL)) (-1662 (($ $) NIL)) (-3796 (($ $) 35)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539))))) (($ (-953 (-410 (-567)))) NIL (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176))))) (($ (-953 (-567))) NIL (-2909 (-12 (|has| |#1| (-38 (-567))) (|has| |#2| (-615 (-1176))) (-1397 (|has| |#1| (-38 (-410 (-567)))))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#2| (-615 (-1176)))))) (($ (-953 |#1|)) NIL (|has| |#2| (-615 (-1176)))) (((-1158) $) NIL (-12 (|has| |#1| (-1039 (-567))) (|has| |#2| (-615 (-1176))))) (((-953 |#1|) $) NIL (|has| |#2| (-615 (-1176))))) (-1640 ((|#1| $) 132 (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-953 |#1|) $) NIL (|has| |#2| (-615 (-1176)))) (((-1125 |#1| |#2|) $) 18) (($ (-1125 |#1| |#2|)) 19) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) 47) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) 13 T CONST)) (-3530 (((-3 (-112) "failed") $ $) NIL)) (-1484 (($) 37 T CONST)) (-2969 (($ $ $ $ (-772)) 105 (|has| |#1| (-559)))) (-2100 (($ $ $ (-772)) 104 (|has| |#1| (-559)))) (-2692 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) 75)) (-3146 (($ $ $) 85)) (** (($ $ (-922)) NIL) (($ $ (-772)) 70)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 62) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 61) (($ $ |#1|) NIL)))
+(((-781 |#1| |#2|) (-13 (-1065 |#1| (-534 |#2|) |#2|) (-614 (-1125 |#1| |#2|)) (-1039 (-1125 |#1| |#2|))) (-1050) (-851)) (T -781))
+NIL
+(-13 (-1065 |#1| (-534 |#2|) |#2|) (-614 (-1125 |#1| |#2|)) (-1039 (-1125 |#1| |#2|)))
+((-3494 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -3494 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)))) (-1050) (-1050)) (T -782))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))))
+(-10 -7 (-15 -3494 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 12)) (-3723 (((-1266 |#1|) $ (-772)) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-2876 (($ (-1172 |#1|)) NIL)) (-2260 (((-1172 $) $ (-1082)) NIL) (((-1172 |#1|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-1082))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3599 (((-645 $) $ $) 54 (|has| |#1| (-559)))) (-3288 (($ $ $) 50 (|has| |#1| (-559)))) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3139 (($ $ (-772)) NIL)) (-2001 (($ $ (-772)) NIL)) (-2320 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1082) "failed") $) NIL) (((-3 (-1172 |#1|) "failed") $) 10)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1082) $) NIL) (((-1172 |#1|) $) NIL)) (-2414 (($ $ $ (-1082)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (($ $ $) NIL)) (-3862 (($ $ $) 87 (|has| |#1| (-559)))) (-2919 (((-2 (|:| -3087 |#1|) (|:| -3545 $) (|:| -1386 $)) $ $) 86 (|has| |#1| (-559)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1082)) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-772) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1082) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1082) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-1909 (((-772) $ $) NIL (|has| |#1| (-559)))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-1151)))) (-2434 (($ (-1172 |#1|) (-1082)) NIL) (($ (-1172 $) (-1082)) NIL)) (-1406 (($ $ (-772)) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-2781 (($ $ $) 27)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-1082)) NIL) (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4185 (((-772) $) NIL) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-1599 (($ (-1 (-772) (-772)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1689 (((-1172 |#1|) $) NIL)) (-3300 (((-3 (-1082) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1554 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4297 (-772))) $ $) 37)) (-4162 (($ $ $) 41)) (-1332 (($ $ $) 47)) (-3855 (((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $) 46)) (-2451 (((-1158) $) NIL)) (-1856 (($ $ $) 56 (|has| |#1| (-559)))) (-2607 (((-2 (|:| -3545 $) (|:| -1386 $)) $ (-772)) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-1082)) (|:| -4164 (-772))) "failed") $) NIL)) (-2113 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2596 (($) NIL (|has| |#1| (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1886 (((-2 (|:| -3276 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-559)))) (-3913 (((-2 (|:| -3276 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-559)))) (-1888 (((-2 (|:| -2414 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-559)))) (-3715 (((-2 (|:| -2414 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-559)))) (-2567 (((-112) $) 13)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-4237 (($ $ (-772) |#1| $) 26)) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-1841 (((-2 (|:| -3276 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-559)))) (-2697 (((-2 (|:| -2414 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-559)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1082) |#1|) NIL) (($ $ (-645 (-1082)) (-645 |#1|)) NIL) (($ $ (-1082) $) NIL) (($ $ (-645 (-1082)) (-645 $)) NIL)) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2116 (((-3 $ "failed") $ (-772)) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-3347 (($ $ (-1082)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1930 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3677 (((-772) $) NIL) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1082) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1082)) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4187 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1082)) NIL) (((-1172 |#1|) $) 7) (($ (-1172 |#1|)) 8) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) 28 T CONST)) (-1484 (($) 32 T CONST)) (-2692 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) 40) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 31) (($ $ |#1|) NIL)))
+(((-783 |#1|) (-13 (-1242 |#1|) (-614 (-1172 |#1|)) (-1039 (-1172 |#1|)) (-10 -8 (-15 -4237 ($ $ (-772) |#1| $)) (-15 -2781 ($ $ $)) (-15 -1554 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4297 (-772))) $ $)) (-15 -4162 ($ $ $)) (-15 -3855 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -1332 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -3599 ((-645 $) $ $)) (-15 -1856 ($ $ $)) (-15 -1841 ((-2 (|:| -3276 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3913 ((-2 (|:| -3276 $) (|:| |coef1| $)) $ $)) (-15 -1886 ((-2 (|:| -3276 $) (|:| |coef2| $)) $ $)) (-15 -2697 ((-2 (|:| -2414 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3715 ((-2 (|:| -2414 |#1|) (|:| |coef1| $)) $ $)) (-15 -1888 ((-2 (|:| -2414 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1050)) (T -783))
+((-4237 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1050)))) (-2781 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))) (-1554 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -4297 (-772)))) (-5 *1 (-783 *3)) (-4 *3 (-1050)))) (-4162 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))) (-3855 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3087 *3) (|:| |gap| (-772)) (|:| -3545 (-783 *3)) (|:| -1386 (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-1050)))) (-1332 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))) (-3599 (*1 *2 *1 *1) (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-1856 (*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1050)))) (-1841 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3276 (-783 *3)) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-3913 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3276 (-783 *3)) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-1886 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3276 (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-2697 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2414 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-3715 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2414 *3) (|:| |coef1| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))) (-1888 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2414 *3) (|:| |coef2| (-783 *3)))) (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))))
+(-13 (-1242 |#1|) (-614 (-1172 |#1|)) (-1039 (-1172 |#1|)) (-10 -8 (-15 -4237 ($ $ (-772) |#1| $)) (-15 -2781 ($ $ $)) (-15 -1554 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4297 (-772))) $ $)) (-15 -4162 ($ $ $)) (-15 -3855 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -1332 ($ $ $)) (IF (|has| |#1| (-559)) (PROGN (-15 -3599 ((-645 $) $ $)) (-15 -1856 ($ $ $)) (-15 -1841 ((-2 (|:| -3276 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3913 ((-2 (|:| -3276 $) (|:| |coef1| $)) $ $)) (-15 -1886 ((-2 (|:| -3276 $) (|:| |coef2| $)) $ $)) (-15 -2697 ((-2 (|:| -2414 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3715 ((-2 (|:| -2414 |#1|) (|:| |coef1| $)) $ $)) (-15 -1888 ((-2 (|:| -2414 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-3504 ((|#1| (-772) |#1|) 33 (|has| |#1| (-38 (-410 (-567)))))) (-3916 ((|#1| (-772) |#1|) 23)) (-2332 ((|#1| (-772) |#1|) 35 (|has| |#1| (-38 (-410 (-567)))))))
+(((-784 |#1|) (-10 -7 (-15 -3916 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2332 (|#1| (-772) |#1|)) (-15 -3504 (|#1| (-772) |#1|))) |%noBranch|)) (-172)) (T -784))
+((-3504 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-2332 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-3916 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -3916 (|#1| (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2332 (|#1| (-772) |#1|)) (-15 -3504 (|#1| (-772) |#1|))) |%noBranch|))
+((-2257 (((-112) $ $) 7)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) 86)) (-2102 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2449 (((-645 |#3|) $) 34)) (-1416 (((-112) $) 27)) (-2739 (((-112) $) 18 (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) 102) (((-112) $) 98)) (-1508 ((|#4| |#4| $) 93)) (-1396 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) 28)) (-1580 (((-112) $ (-772)) 45)) (-1551 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) 80)) (-4061 (($) 46 T CONST)) (-3289 (((-112) $) 23 (|has| |#1| (-559)))) (-3407 (((-112) $ $) 25 (|has| |#1| (-559)))) (-2595 (((-112) $ $) 24 (|has| |#1| (-559)))) (-1579 (((-112) $) 26 (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2786 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) 37)) (-1621 (($ (-645 |#4|)) 36)) (-2061 (((-3 $ "failed") $) 83)) (-3816 ((|#4| |#4| $) 90)) (-2084 (($ $) 69 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#4| $) 68 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4155 ((|#4| |#4| $) 88)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) 106)) (-4314 (((-112) |#4| $) 137)) (-2312 (((-112) |#4| $) 134)) (-2336 (((-112) |#4| $) 138) (((-112) $) 135)) (-2896 (((-645 |#4|) $) 53 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) 105) (((-112) $) 104)) (-4280 ((|#3| $) 35)) (-2805 (((-112) $ (-772)) 44)) (-1542 (((-645 |#4|) $) 54 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 48)) (-4360 (((-645 |#3|) $) 33)) (-4023 (((-112) |#3| $) 32)) (-3230 (((-112) $ (-772)) 43)) (-2451 (((-1158) $) 10)) (-1372 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-1856 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-3162 (((-3 |#4| "failed") $) 84)) (-1894 (((-645 $) |#4| $) 130)) (-4254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-1414 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3754 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2913 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2331 (((-645 |#4|) $) 108)) (-2750 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-2137 (((-112) $ $) 111)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) 101) (((-112) $) 97)) (-2703 ((|#4| |#4| $) 92)) (-3339 (((-1120) $) 11)) (-2048 (((-3 |#4| "failed") $) 85)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3809 (((-3 $ "failed") $ |#4|) 79)) (-2436 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-2297 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) 39)) (-3353 (((-112) $) 42)) (-3164 (($) 41)) (-3677 (((-772) $) 107)) (-3349 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4416)))) (-4247 (($ $) 40)) (-3542 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 61)) (-2485 (($ $ |#3|) 29)) (-4090 (($ $ |#3|) 31)) (-4367 (($ $) 89)) (-2716 (($ $ |#3|) 30)) (-4101 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2718 (((-772) $) 77 (|has| |#3| (-370)))) (-3739 (((-112) $ $) 9)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3936 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2012 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) 82)) (-1440 (((-112) |#4| $) 136)) (-2447 (((-112) |#3| $) 81)) (-3052 (((-112) $ $) 6)) (-2268 (((-772) $) 47 (|has| $ (-6 -4416)))))
+(((-785 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1065 |t#1| |t#2| |t#3|)) (T -785))
+NIL
+(-13 (-1071 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1071 |#1| |#2| |#3| |#4|) . T) ((-1100) . T) ((-1209 |#1| |#2| |#3| |#4|) . T) ((-1216) . T))
+((-3735 (((-3 (-381) "failed") (-317 |#1|) (-922)) 62 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-317 |#1|)) 54 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-381) "failed") (-410 (-953 |#1|)) (-922)) 41 (|has| |#1| (-559))) (((-3 (-381) "failed") (-410 (-953 |#1|))) 40 (|has| |#1| (-559))) (((-3 (-381) "failed") (-953 |#1|) (-922)) 31 (|has| |#1| (-1050))) (((-3 (-381) "failed") (-953 |#1|)) 30 (|has| |#1| (-1050)))) (-3970 (((-381) (-317 |#1|) (-922)) 99 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-317 |#1|)) 94 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-381) (-410 (-953 |#1|)) (-922)) 91 (|has| |#1| (-559))) (((-381) (-410 (-953 |#1|))) 90 (|has| |#1| (-559))) (((-381) (-953 |#1|) (-922)) 86 (|has| |#1| (-1050))) (((-381) (-953 |#1|)) 85 (|has| |#1| (-1050))) (((-381) |#1| (-922)) 76) (((-381) |#1|) 22)) (-1972 (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-922)) 71 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 (-169 |#1|))) 70 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|) (-922)) 63 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-317 |#1|)) 61 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))) (-922)) 46 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|)))) 45 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)) (-922)) 39 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-410 (-953 |#1|))) 38 (|has| |#1| (-559))) (((-3 (-169 (-381)) "failed") (-953 |#1|) (-922)) 28 (|has| |#1| (-1050))) (((-3 (-169 (-381)) "failed") (-953 |#1|)) 26 (|has| |#1| (-1050))) (((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-922)) 18 (|has| |#1| (-172))) (((-3 (-169 (-381)) "failed") (-953 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-2196 (((-169 (-381)) (-317 (-169 |#1|)) (-922)) 102 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 (-169 |#1|))) 101 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|) (-922)) 100 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-317 |#1|)) 98 (-12 (|has| |#1| (-559)) (|has| |#1| (-851)))) (((-169 (-381)) (-410 (-953 (-169 |#1|))) (-922)) 93 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-953 (-169 |#1|)))) 92 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-953 |#1|)) (-922)) 89 (|has| |#1| (-559))) (((-169 (-381)) (-410 (-953 |#1|))) 88 (|has| |#1| (-559))) (((-169 (-381)) (-953 |#1|) (-922)) 84 (|has| |#1| (-1050))) (((-169 (-381)) (-953 |#1|)) 83 (|has| |#1| (-1050))) (((-169 (-381)) (-953 (-169 |#1|)) (-922)) 78 (|has| |#1| (-172))) (((-169 (-381)) (-953 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|) (-922)) 80 (|has| |#1| (-172))) (((-169 (-381)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-381)) |#1| (-922)) 27) (((-169 (-381)) |#1|) 25)))
+(((-786 |#1|) (-10 -7 (-15 -3970 ((-381) |#1|)) (-15 -3970 ((-381) |#1| (-922))) (-15 -2196 ((-169 (-381)) |#1|)) (-15 -2196 ((-169 (-381)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2196 ((-169 (-381)) (-169 |#1|))) (-15 -2196 ((-169 (-381)) (-169 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-953 (-169 |#1|)))) (-15 -2196 ((-169 (-381)) (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -3970 ((-381) (-953 |#1|))) (-15 -3970 ((-381) (-953 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-953 |#1|))) (-15 -2196 ((-169 (-381)) (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3970 ((-381) (-410 (-953 |#1|)))) (-15 -3970 ((-381) (-410 (-953 |#1|)) (-922))) (-15 -2196 ((-169 (-381)) (-410 (-953 |#1|)))) (-15 -2196 ((-169 (-381)) (-410 (-953 |#1|)) (-922))) (-15 -2196 ((-169 (-381)) (-410 (-953 (-169 |#1|))))) (-15 -2196 ((-169 (-381)) (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -3970 ((-381) (-317 |#1|))) (-15 -3970 ((-381) (-317 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-317 |#1|))) (-15 -2196 ((-169 (-381)) (-317 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2196 ((-169 (-381)) (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -3735 ((-3 (-381) "failed") (-953 |#1|))) (-15 -3735 ((-3 (-381) "failed") (-953 |#1|) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 |#1|))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3735 ((-3 (-381) "failed") (-410 (-953 |#1|)))) (-15 -3735 ((-3 (-381) "failed") (-410 (-953 |#1|)) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -3735 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3735 ((-3 (-381) "failed") (-317 |#1|) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|)) (-615 (-381))) (T -786))
+((-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1972 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1972 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3735 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3735 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1972 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1972 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3735 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3735 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1972 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3735 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3735 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-1972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-1972 (*1 *2 *3) (|partial| -12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-3970 (*1 *2 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050)) (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-922)) (-4 *5 (-172)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4)))) (-2196 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-2196 (*1 *2 *3) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381))))) (-3970 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))) (-3970 (*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2)))))
+(-10 -7 (-15 -3970 ((-381) |#1|)) (-15 -3970 ((-381) |#1| (-922))) (-15 -2196 ((-169 (-381)) |#1|)) (-15 -2196 ((-169 (-381)) |#1| (-922))) (IF (|has| |#1| (-172)) (PROGN (-15 -2196 ((-169 (-381)) (-169 |#1|))) (-15 -2196 ((-169 (-381)) (-169 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-953 (-169 |#1|)))) (-15 -2196 ((-169 (-381)) (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -3970 ((-381) (-953 |#1|))) (-15 -3970 ((-381) (-953 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-953 |#1|))) (-15 -2196 ((-169 (-381)) (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3970 ((-381) (-410 (-953 |#1|)))) (-15 -3970 ((-381) (-410 (-953 |#1|)) (-922))) (-15 -2196 ((-169 (-381)) (-410 (-953 |#1|)))) (-15 -2196 ((-169 (-381)) (-410 (-953 |#1|)) (-922))) (-15 -2196 ((-169 (-381)) (-410 (-953 (-169 |#1|))))) (-15 -2196 ((-169 (-381)) (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -3970 ((-381) (-317 |#1|))) (-15 -3970 ((-381) (-317 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-317 |#1|))) (-15 -2196 ((-169 (-381)) (-317 |#1|) (-922))) (-15 -2196 ((-169 (-381)) (-317 (-169 |#1|)))) (-15 -2196 ((-169 (-381)) (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 (-169 |#1|)) (-922)))) |%noBranch|) (IF (|has| |#1| (-1050)) (PROGN (-15 -3735 ((-3 (-381) "failed") (-953 |#1|))) (-15 -3735 ((-3 (-381) "failed") (-953 |#1|) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 |#1|))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-953 |#1|) (-922)))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3735 ((-3 (-381) "failed") (-410 (-953 |#1|)))) (-15 -3735 ((-3 (-381) "failed") (-410 (-953 |#1|)) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 |#1|)) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-410 (-953 (-169 |#1|))) (-922))) (IF (|has| |#1| (-851)) (PROGN (-15 -3735 ((-3 (-381) "failed") (-317 |#1|))) (-15 -3735 ((-3 (-381) "failed") (-317 |#1|) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 |#1|))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 |#1|) (-922))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)))) (-15 -1972 ((-3 (-169 (-381)) "failed") (-317 (-169 |#1|)) (-922)))) |%noBranch|)) |%noBranch|))
+((-3520 (((-922) (-1158)) 92)) (-1478 (((-3 (-381) "failed") (-1158)) 36)) (-1364 (((-381) (-1158)) 34)) (-1659 (((-922) (-1158)) 63)) (-1314 (((-1158) (-922)) 75)) (-3657 (((-1158) (-922)) 62)))
+(((-787) (-10 -7 (-15 -3657 ((-1158) (-922))) (-15 -1659 ((-922) (-1158))) (-15 -1314 ((-1158) (-922))) (-15 -3520 ((-922) (-1158))) (-15 -1364 ((-381) (-1158))) (-15 -1478 ((-3 (-381) "failed") (-1158))))) (T -787))
+((-1478 (*1 *2 *3) (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-787)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-787)))) (-3520 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-922)) (-5 *1 (-787)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1158)) (-5 *1 (-787)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-922)) (-5 *1 (-787)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1158)) (-5 *1 (-787)))))
+(-10 -7 (-15 -3657 ((-1158) (-922))) (-15 -1659 ((-922) (-1158))) (-15 -1314 ((-1158) (-922))) (-15 -3520 ((-922) (-1158))) (-15 -1364 ((-381) (-1158))) (-15 -1478 ((-3 (-381) "failed") (-1158))))
+((-2257 (((-112) $ $) 7)) (-3803 (((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 16) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)) 14)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 17) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-788) (-140)) (T -788))
+((-2509 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1063)) (-5 *4 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036)))))) (-3803 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1036)) (-5 *3 (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-2509 (*1 *2 *3 *4) (-12 (-4 *1 (-788)) (-5 *3 (-1063)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036)))))) (-3803 (*1 *2 *3 *2) (-12 (-4 *1 (-788)) (-5 *2 (-1036)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(-13 (-1100) (-10 -7 (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3803 ((-1036) (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225))) (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)) (|:| |extra| (-1036))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3803 ((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1036)))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-1952 (((-1271) (-1266 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))) (-381) (-1266 (-381)) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381))) 55) (((-1271) (-1266 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))) (-381) (-1266 (-381)) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381))) 52)) (-3783 (((-1271) (-1266 (-381)) (-567) (-381) (-381) (-567) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381))) 61)) (-2409 (((-1271) (-1266 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381))) 50)) (-4115 (((-1271) (-1266 (-381)) (-567) (-381) (-381) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381))) 63) (((-1271) (-1266 (-381)) (-567) (-381) (-381) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381))) 62)))
+(((-789) (-10 -7 (-15 -4115 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))) (-15 -4115 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)))) (-15 -2409 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))) (-15 -1952 ((-1271) (-1266 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))) (-381) (-1266 (-381)) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))) (-15 -1952 ((-1271) (-1266 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))) (-381) (-1266 (-381)) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)))) (-15 -3783 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-567) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))))) (T -789))
+((-3783 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381))) (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271)) (-5 *1 (-789)))) (-1952 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381)))) (-5 *7 (-1 (-1271) (-1266 *5) (-1266 *5) (-381))) (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271)) (-5 *1 (-789)))) (-1952 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-567)) (-5 *6 (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381)))) (-5 *7 (-1 (-1271) (-1266 *5) (-1266 *5) (-381))) (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271)) (-5 *1 (-789)))) (-2409 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381))) (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271)) (-5 *1 (-789)))) (-4115 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381))) (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271)) (-5 *1 (-789)))) (-4115 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381))) (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271)) (-5 *1 (-789)))))
+(-10 -7 (-15 -4115 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))) (-15 -4115 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)))) (-15 -2409 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-381) (-381) (-567) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))) (-15 -1952 ((-1271) (-1266 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))) (-381) (-1266 (-381)) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))) (-15 -1952 ((-1271) (-1266 (-381)) (-567) (-381) (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))) (-381) (-1266 (-381)) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)) (-1266 (-381)))) (-15 -3783 ((-1271) (-1266 (-381)) (-567) (-381) (-381) (-567) (-1 (-1271) (-1266 (-381)) (-1266 (-381)) (-381)))))
+((-1465 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 66)) (-2135 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 42)) (-4066 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 65)) (-2404 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 40)) (-1598 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 64)) (-3368 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567)) 26)) (-3092 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 43)) (-2239 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 41)) (-4005 (((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567)) 39)))
+(((-790) (-10 -7 (-15 -4005 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2239 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3092 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3368 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2404 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2135 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1598 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4066 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1465 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))) (T -790))
+((-1465 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4066 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-1598 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2135 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2404 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3368 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-3092 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-2239 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))) (-4005 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381)) (-5 *2 (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567)) (|:| |success| (-112)))) (-5 *1 (-790)) (-5 *5 (-567)))))
+(-10 -7 (-15 -4005 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -2239 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3092 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567) (-567))) (-15 -3368 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2404 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -2135 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1598 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -4066 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))) (-15 -1465 ((-2 (|:| -3843 (-381)) (|:| -2553 (-381)) (|:| |totalpts| (-567)) (|:| |success| (-112))) (-1 (-381) (-381)) (-381) (-381) (-381) (-381) (-567) (-567))))
+((-1428 (((-1211 |#1|) |#1| (-225) (-567)) 69)))
+(((-791 |#1|) (-10 -7 (-15 -1428 ((-1211 |#1|) |#1| (-225) (-567)))) (-975)) (T -791))
+((-1428 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1211 *3)) (-5 *1 (-791 *3)) (-4 *3 (-975)))))
+(-10 -7 (-15 -1428 ((-1211 |#1|) |#1| (-225) (-567))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 25)) (-4377 (((-3 $ "failed") $ $) 27)) (-4061 (($) 24 T CONST)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 23 T CONST)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (-3156 (($ $ $) 31) (($ $) 30)) (-3146 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26) (($ (-567) $) 29)))
(((-792) (-140)) (T -792))
NIL
-(-13 (-794) (-23))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-794) . T) ((-850) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 25)) (-3288 (($ $ $) 28)) (-4113 (((-3 $ "failed") $ $) 27)) (-2633 (($) 24 T CONST)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 23 T CONST)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (-2897 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26)))
+(-13 (-796) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 25)) (-4061 (($) 24 T CONST)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 23 T CONST)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (-3146 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26)))
(((-793) (-140)) (T -793))
-((-3288 (*1 *1 *1 *1) (-4 *1 (-793))))
-(-13 (-795) (-10 -8 (-15 -3288 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (-2897 (($ $ $) 21)) (* (($ (-921) $) 22)))
-(((-794) (-140)) (T -794))
NIL
-(-13 (-850) (-25))
-(((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-850) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 25)) (-4113 (((-3 $ "failed") $ $) 27)) (-2633 (($) 24 T CONST)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 23 T CONST)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (-2897 (($ $ $) 21)) (* (($ (-921) $) 22) (($ (-771) $) 26)))
+(-13 (-795) (-23))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-795) . T) ((-851) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 25)) (-2140 (($ $ $) 28)) (-4377 (((-3 $ "failed") $ $) 27)) (-4061 (($) 24 T CONST)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 23 T CONST)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (-3146 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26)))
+(((-794) (-140)) (T -794))
+((-2140 (*1 *1 *1 *1) (-4 *1 (-794))))
+(-13 (-796) (-10 -8 (-15 -2140 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (-3146 (($ $ $) 21)) (* (($ (-922) $) 22)))
(((-795) (-140)) (T -795))
NIL
-(-13 (-792) (-131))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-792) . T) ((-794) . T) ((-850) . T) ((-1099) . T))
-((-3545 (((-112) $) 42)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3343 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 43)) (-4388 (((-3 (-409 (-566)) "failed") $) 78)) (-1929 (((-112) $) 72)) (-1847 (((-409 (-566)) $) 76)) (-3202 ((|#2| $) 26)) (-2101 (($ (-1 |#2| |#2|) $) 23)) (-4282 (($ $) 58)) (-2150 (((-538) $) 67)) (-2558 (($ $) 21)) (-2725 (((-862) $) 53) (($ (-566)) 40) (($ |#2|) 38) (($ (-409 (-566))) NIL)) (-2875 (((-771)) 10)) (-2274 ((|#2| $) 71)) (-2817 (((-112) $ $) 30)) (-2833 (((-112) $ $) 69)) (-2905 (($ $) 32) (($ $ $) NIL)) (-2897 (($ $ $) 31)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
-(((-796 |#1| |#2|) (-10 -8 (-15 -2833 ((-112) |#1| |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -4282 (|#1| |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -2274 (|#2| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|))) (-797 |#2|) (-172)) (T -796))
-((-2875 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-796 *3 *4)) (-4 *3 (-797 *4)))))
-(-10 -8 (-15 -2833 ((-112) |#1| |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -4282 (|#1| |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -2274 (|#2| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-3733 (((-771)) 58 (|has| |#1| (-370)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 100 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 94)) (-3343 (((-566) $) 99 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 95)) (-2313 (((-3 $ "failed") $) 37)) (-4041 ((|#1| $) 84)) (-4388 (((-3 (-409 (-566)) "failed") $) 71 (|has| |#1| (-547)))) (-1929 (((-112) $) 73 (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) 72 (|has| |#1| (-547)))) (-3424 (($) 61 (|has| |#1| (-370)))) (-3842 (((-112) $) 35)) (-2464 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3202 ((|#1| $) 76)) (-3075 (($ $ $) 67 (|has| |#1| (-850)))) (-3936 (($ $ $) 66 (|has| |#1| (-850)))) (-2101 (($ (-1 |#1| |#1|) $) 86)) (-4138 (((-921) $) 60 (|has| |#1| (-370)))) (-1390 (((-1157) $) 10)) (-4282 (($ $) 70 (|has| |#1| (-365)))) (-2430 (($ (-921)) 59 (|has| |#1| (-370)))) (-1730 ((|#1| $) 81)) (-2043 ((|#1| $) 82)) (-1585 ((|#1| $) 83)) (-1979 ((|#1| $) 77)) (-4245 ((|#1| $) 78)) (-2387 ((|#1| $) 79)) (-4279 ((|#1| $) 80)) (-1944 (((-1119) $) 11)) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 88 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 87 (|has| |#1| (-516 (-1175) |#1|)))) (-3282 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-2150 (((-538) $) 68 (|has| |#1| (-614 (-538))))) (-2558 (($ $) 85)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 98 (|has| |#1| (-1038 (-409 (-566)))))) (-2655 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-2274 ((|#1| $) 74 (|has| |#1| (-1059)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2865 (((-112) $ $) 64 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 63 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 65 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 62 (|has| |#1| (-850)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-797 |#1|) (-140) (-172)) (T -797))
-((-2558 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1585 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1730 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-4279 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2464 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-4388 (*1 *2 *1) (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-4282 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
-(-13 (-38 |t#1|) (-413 |t#1|) (-340 |t#1|) (-10 -8 (-15 -2558 ($ $)) (-15 -4041 (|t#1| $)) (-15 -1585 (|t#1| $)) (-15 -2043 (|t#1| $)) (-15 -1730 (|t#1| $)) (-15 -4279 (|t#1| $)) (-15 -2387 (|t#1| $)) (-15 -4245 (|t#1| $)) (-15 -1979 (|t#1| $)) (-15 -3202 (|t#1| $)) (-15 -2464 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -2274 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -4282 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-413 |#1|) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-726) . T) ((-850) |has| |#1| (-850)) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-2101 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-798 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#3| (-1 |#4| |#2|) |#1|))) (-797 |#2|) (-172) (-797 |#4|) (-172)) (T -798))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-797 *6)) (-5 *1 (-798 *4 *5 *2 *6)) (-4 *4 (-797 *5)))))
-(-10 -7 (-15 -2101 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3733 (((-771)) NIL (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-999 |#1|) "failed") $) 35) (((-3 (-566) "failed") $) NIL (-2676 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL (-2676 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3343 ((|#1| $) NIL) (((-999 |#1|) $) 33) (((-566) $) NIL (-2676 (|has| (-999 |#1|) (-1038 (-566))) (|has| |#1| (-1038 (-566))))) (((-409 (-566)) $) NIL (-2676 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-2313 (((-3 $ "failed") $) NIL)) (-4041 ((|#1| $) 16)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-1929 (((-112) $) NIL (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-3424 (($) NIL (|has| |#1| (-370)))) (-3842 (((-112) $) NIL)) (-2464 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-999 |#1|) (-999 |#1|)) 29)) (-3202 ((|#1| $) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-4138 (((-921) $) NIL (|has| |#1| (-370)))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-2430 (($ (-921)) NIL (|has| |#1| (-370)))) (-1730 ((|#1| $) 22)) (-2043 ((|#1| $) 20)) (-1585 ((|#1| $) 18)) (-1979 ((|#1| $) 26)) (-4245 ((|#1| $) 25)) (-2387 ((|#1| $) 24)) (-4279 ((|#1| $) 23)) (-1944 (((-1119) $) NIL)) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-3282 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2558 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-999 |#1|)) 30) (($ (-409 (-566))) NIL (-2676 (|has| (-999 |#1|) (-1038 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2274 ((|#1| $) NIL (|has| |#1| (-1059)))) (-3200 (($) 8 T CONST)) (-3214 (($) 12 T CONST)) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-799 |#1|) (-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -2464 ($ (-999 |#1|) (-999 |#1|))))) (-172)) (T -799))
-((-2464 (*1 *1 *2 *2) (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3)))))
-(-13 (-797 |#1|) (-413 (-999 |#1|)) (-10 -8 (-15 -2464 ($ (-999 |#1|) (-999 |#1|)))))
-((-3979 (((-112) $ $) 7)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2830 (((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2817 (((-112) $ $) 6)))
-(((-800) (-140)) (T -800))
-((-1303 (*1 *2 *3 *4) (-12 (-4 *1 (-800)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)))))) (-2830 (*1 *2 *3) (-12 (-4 *1 (-800)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1035)))))
-(-13 (-1099) (-10 -7 (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2830 ((-1035) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-1473 (((-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#3| |#2| (-1175)) 19)))
-(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -1473 ((-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#3| |#2| (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1200) (-959)) (-656 |#2|)) (T -801))
-((-1473 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-4 *4 (-13 (-29 *6) (-1200) (-959))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2227 (-644 *4)))) (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4)))))
-(-10 -7 (-15 -1473 ((-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#3| |#2| (-1175))))
-((-1409 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175)) 18) (((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175)) 24) (((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175)) 26) (((-3 (-644 (-1265 |#2|)) "failed") (-689 |#2|) (-1175)) 37) (((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-689 |#2|) (-1265 |#2|) (-1175)) 35)))
-(((-802 |#1| |#2|) (-10 -7 (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-689 |#2|) (-1265 |#2|) (-1175))) (-15 -1409 ((-3 (-644 (-1265 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -1409 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1409 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1200) (-959))) (T -802))
-((-1409 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1200) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-802 *6 *2)))) (-1409 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-644 *2)) (-4 *2 (-13 (-29 *6) (-1200) (-959))) (-5 *1 (-802 *6 *2)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))))) (-1409 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2227 (-644 *3))) *3 "failed")) (-5 *1 (-802 *6 *3)) (-4 *3 (-13 (-29 *6) (-1200) (-959))))) (-1409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1200) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2227 (-644 *7))) *7 "failed")) (-5 *1 (-802 *6 *7)))) (-1409 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1200) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1265 *7)) (|:| -2227 (-644 (-1265 *7))))) (-5 *1 (-802 *6 *7)))) (-1409 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1200) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1265 *7)) (|:| -2227 (-644 (-1265 *7))))) (-5 *1 (-802 *6 *7)))) (-1409 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-689 *6)) (-5 *4 (-1175)) (-4 *6 (-13 (-29 *5) (-1200) (-959))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-1265 *6))) (-5 *1 (-802 *5 *6)))) (-1409 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-689 *7)) (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1200) (-959))) (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-2 (|:| |particular| (-1265 *7)) (|:| -2227 (-644 (-1265 *7))))) (-5 *1 (-802 *6 *7)) (-5 *4 (-1265 *7)))))
-(-10 -7 (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-689 |#2|) (-1265 |#2|) (-1175))) (-15 -1409 ((-3 (-644 (-1265 |#2|)) "failed") (-689 |#2|) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-644 (-295 |#2|)) (-644 (-114)) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#2|)) (|:| -2227 (-644 (-1265 |#2|)))) "failed") (-644 |#2|) (-644 (-114)) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1175))) (-15 -1409 ((-3 (-2 (|:| |particular| |#2|) (|:| -2227 (-644 |#2|))) |#2| "failed") |#2| (-114) (-1175))) (-15 -1409 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-644 |#2|))) (-15 -1409 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-644 |#2|))))
-((-3197 (($) 9)) (-3230 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-2838 (((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-1619 (($ (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-1810 (($ (-644 (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-1827 (((-1270)) 12)))
-(((-803) (-10 -8 (-15 -3197 ($)) (-15 -1827 ((-1270))) (-15 -2838 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1810 ($ (-644 (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -1619 ($ (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -3230 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -803))
-((-3230 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-803)))) (-1619 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-803)))) (-1810 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-803)))) (-2838 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-803)))) (-1827 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-803)))) (-3197 (*1 *1) (-5 *1 (-803))))
-(-10 -8 (-15 -3197 ($)) (-15 -1827 ((-1270))) (-15 -2838 ((-644 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1810 ($ (-644 (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -1619 ($ (-2 (|:| -3476 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2484 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -3230 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
-((-2758 ((|#2| |#2| (-1175)) 17)) (-4023 ((|#2| |#2| (-1175)) 56)) (-2431 (((-1 |#2| |#2|) (-1175)) 11)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -2758 (|#2| |#2| (-1175))) (-15 -4023 (|#2| |#2| (-1175))) (-15 -2431 ((-1 |#2| |#2|) (-1175)))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)) (-13 (-29 |#1|) (-1200) (-959))) (T -804))
-((-2431 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5)) (-4 *5 (-13 (-29 *4) (-1200) (-959))))) (-4023 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1200) (-959))))) (-2758 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1200) (-959))))))
-(-10 -7 (-15 -2758 (|#2| |#2| (-1175))) (-15 -4023 (|#2| |#2| (-1175))) (-15 -2431 ((-1 |#2| |#2|) (-1175))))
-((-1409 (((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381)) 131) (((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381)) 132) (((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381)) 134) (((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381)) 136) (((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381)) 137) (((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381))) 139) (((-1035) (-808) (-1062)) 123) (((-1035) (-808)) 124)) (-1303 (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062)) 83) (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808)) 85)))
-(((-805) (-10 -7 (-15 -1409 ((-1035) (-808))) (-15 -1409 ((-1035) (-808) (-1062))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062))))) (T -805))
-((-1303 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-805)))) (-1409 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1265 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1409 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1265 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1409 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1265 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1409 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1265 (-317 *4))) (-5 *5 (-644 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1409 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1265 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1409 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1265 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-805)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1035)) (-5 *1 (-805)))))
-(-10 -7 (-15 -1409 ((-1035) (-808))) (-15 -1409 ((-1035) (-808) (-1062))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-644 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381))) (-15 -1409 ((-1035) (-1265 (-317 (-381))) (-381) (-381) (-644 (-381)) (-317 (-381)) (-644 (-381)) (-381) (-381))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-808) (-1062))))
-((-2568 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2227 (-644 |#4|))) (-653 |#4|) |#4|) 35)))
-(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2568 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2227 (-644 |#4|))) (-653 |#4|) |#4|))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|)) (T -806))
-((-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-806 *5 *6 *7 *4)))))
-(-10 -7 (-15 -2568 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2227 (-644 |#4|))) (-653 |#4|) |#4|)))
-((-1624 (((-2 (|:| -1451 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))) 53)) (-1485 (((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#4| |#2|) 62) (((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#4|) 61) (((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#3| |#2|) 20) (((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#3|) 21)) (-2490 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2800 ((|#2| |#3| (-644 (-409 |#2|))) 113) (((-3 |#2| "failed") |#3| (-409 |#2|)) 109)))
-(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -2800 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#3|)) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#3| |#2|)) (-15 -2490 (|#2| |#3| |#1|)) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#4|)) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#4| |#2|)) (-15 -2490 (|#2| |#4| |#1|)) (-15 -1624 ((-2 (|:| -1451 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1241 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -807))
-((-1624 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-5 *2 (-2 (|:| -1451 *7) (|:| |rh| (-644 (-409 *6))))) (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6))) (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6))))) (-2490 (*1 *2 *3 *4) (-12 (-4 *2 (-1241 *4)) (-5 *1 (-807 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2)) (-4 *3 (-656 (-409 *2))))) (-1485 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1241 *5)) (-5 *2 (-644 (-2 (|:| -2737 *4) (|:| -3911 *4)))) (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4)) (-4 *3 (-656 (-409 *4))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4)) (-5 *2 (-644 (-2 (|:| -2737 *5) (|:| -3911 *5)))) (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 (-409 *5))))) (-2490 (*1 *2 *3 *4) (-12 (-4 *2 (-1241 *4)) (-5 *1 (-807 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2))))) (-1485 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *4 (-1241 *5)) (-5 *2 (-644 (-2 (|:| -2737 *4) (|:| -3911 *4)))) (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4)) (-4 *6 (-656 (-409 *4))))) (-1485 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4)) (-5 *2 (-644 (-2 (|:| -2737 *5) (|:| -3911 *5)))) (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-2800 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1241 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 (-409 *2))))) (-2800 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1241 *5)) (-5 *1 (-807 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *6 (-656 *4)))))
-(-10 -7 (-15 -2800 ((-3 |#2| "failed") |#3| (-409 |#2|))) (-15 -2800 (|#2| |#3| (-644 (-409 |#2|)))) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#3|)) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#3| |#2|)) (-15 -2490 (|#2| |#3| |#1|)) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#4|)) (-15 -1485 ((-644 (-2 (|:| -2737 |#2|) (|:| -3911 |#2|))) |#4| |#2|)) (-15 -2490 (|#2| |#4| |#1|)) (-15 -1624 ((-2 (|:| -1451 |#3|) (|:| |rh| (-644 (-409 |#2|)))) |#4| (-644 (-409 |#2|)))))
-((-3979 (((-112) $ $) NIL)) (-3343 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-808) (-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3343 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -808))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-808)))))
-(-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3343 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
-((-1545 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -1451 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|)) 157)) (-1777 (((-644 (-2 (|:| |poly| |#2|) (|:| -1451 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 56)) (-1636 (((-644 (-2 (|:| |deg| (-771)) (|:| -1451 |#2|))) |#3|) 127)) (-4181 ((|#2| |#3|) 45)) (-3448 (((-644 (-2 (|:| -3854 |#1|) (|:| -1451 |#3|))) |#3| (-1 (-644 |#1|) |#2|)) 105)) (-3250 ((|#3| |#3| (-409 |#2|)) 76) ((|#3| |#3| |#2|) 102)))
-(((-809 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4181 (|#2| |#3|)) (-15 -1636 ((-644 (-2 (|:| |deg| (-771)) (|:| -1451 |#2|))) |#3|)) (-15 -3448 ((-644 (-2 (|:| -3854 |#1|) (|:| -1451 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -1777 ((-644 (-2 (|:| |poly| |#2|) (|:| -1451 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -1545 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -1451 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -3250 (|#3| |#3| |#2|)) (-15 -3250 (|#3| |#3| (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-409 (-566)))) (-1241 |#1|) (-656 |#2|) (-656 (-409 |#2|))) (T -809))
-((-3250 (*1 *2 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4)) (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3)))) (-3250 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-1241 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3)) (-4 *5 (-656 (-409 *3))))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7)) (-4 *7 (-1241 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -1451 *3)))) (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7)) (-4 *8 (-656 (-409 *7))))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -1451 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-3448 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-5 *2 (-644 (-2 (|:| -3854 *5) (|:| -1451 *3)))) (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6)) (-4 *7 (-656 (-409 *6))))) (-1636 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4)) (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -1451 *5)))) (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-656 (-409 *5))))) (-4181 (*1 *2 *3) (-12 (-4 *2 (-1241 *4)) (-5 *1 (-809 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2)) (-4 *5 (-656 (-409 *2))))))
-(-10 -7 (-15 -4181 (|#2| |#3|)) (-15 -1636 ((-644 (-2 (|:| |deg| (-771)) (|:| -1451 |#2|))) |#3|)) (-15 -3448 ((-644 (-2 (|:| -3854 |#1|) (|:| -1451 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -1777 ((-644 (-2 (|:| |poly| |#2|) (|:| -1451 |#3|))) |#3| (-1 (-644 |#1|) |#2|))) (-15 -1545 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -1451 |#3|))) |#3| (-1 (-644 |#2|) |#2| (-1171 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -3250 (|#3| |#3| |#2|)) (-15 -3250 (|#3| |#3| (-409 |#2|))))
-((-3431 (((-2 (|:| -2227 (-644 (-409 |#2|))) (|:| -3444 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|))) 149) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2227 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|)) 148) (((-2 (|:| -2227 (-644 (-409 |#2|))) (|:| -3444 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|))) 143) (((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2227 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|)) 141)) (-2624 ((|#2| (-654 |#2| (-409 |#2|))) 89) ((|#2| (-653 (-409 |#2|))) 92)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -3431 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2227 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -3431 ((-2 (|:| -2227 (-644 (-409 |#2|))) (|:| -3444 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -3431 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2227 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -3431 ((-2 (|:| -2227 (-644 (-409 |#2|))) (|:| -3444 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2624 (|#2| (-653 (-409 |#2|)))) (-15 -2624 (|#2| (-654 |#2| (-409 |#2|))))) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1241 |#1|)) (T -810))
-((-2624 (*1 *2 *3) (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1241 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-2624 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1241 *4)) (-5 *1 (-810 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -2227 (-644 (-409 *6))) (|:| -3444 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-810 *5 *6)))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| -2227 (-644 (-409 *6))) (|:| -3444 (-689 *5)))) (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))) (-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-810 *5 *6)))))
-(-10 -7 (-15 -3431 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2227 (-644 (-409 |#2|)))) (-653 (-409 |#2|)) (-409 |#2|))) (-15 -3431 ((-2 (|:| -2227 (-644 (-409 |#2|))) (|:| -3444 (-689 |#1|))) (-653 (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -3431 ((-2 (|:| |particular| (-3 (-409 |#2|) "failed")) (|:| -2227 (-644 (-409 |#2|)))) (-654 |#2| (-409 |#2|)) (-409 |#2|))) (-15 -3431 ((-2 (|:| -2227 (-644 (-409 |#2|))) (|:| -3444 (-689 |#1|))) (-654 |#2| (-409 |#2|)) (-644 (-409 |#2|)))) (-15 -2624 (|#2| (-653 (-409 |#2|)))) (-15 -2624 (|#2| (-654 |#2| (-409 |#2|)))))
-((-2678 (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#1|))) |#5| |#4|) 52)))
-(((-811 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2678 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#1|))) |#5| |#4|))) (-365) (-656 |#1|) (-1241 |#1|) (-724 |#1| |#3|) (-656 |#4|)) (T -811))
-((-2678 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1241 *5)) (-4 *4 (-724 *5 *7)) (-5 *2 (-2 (|:| -3444 (-689 *6)) (|:| |vec| (-1265 *5)))) (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4)))))
-(-10 -7 (-15 -2678 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#1|))) |#5| |#4|)))
-((-1545 (((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -1451 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 47)) (-1610 (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|))) 168 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-653 (-409 |#2|))) 170 (|has| |#1| (-27))) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 38) (((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 39) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|)) 36) (((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 37)) (-1777 (((-644 (-2 (|:| |poly| |#2|) (|:| -1451 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|)) 99)))
-(((-812 |#1| |#2|) (-10 -7 (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1545 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -1451 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1777 ((-644 (-2 (|:| |poly| |#2|) (|:| -1451 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))) (-1241 |#1|)) (T -812))
-((-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1241 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1241 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5)))) (-1777 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -1451 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-5 *2 (-644 (-2 (|:| |frac| (-409 *6)) (|:| -1451 (-654 *6 (-409 *6)))))) (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1241 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))) (-1610 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7)) (-5 *5 (-1 (-420 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *7 (-1241 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))))
-(-10 -7 (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|) (-1 (-420 |#2|) |#2|))) (-15 -1545 ((-644 (-2 (|:| |frac| (-409 |#2|)) (|:| -1451 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1777 ((-644 (-2 (|:| |poly| |#2|) (|:| -1451 (-654 |#2| (-409 |#2|))))) (-654 |#2| (-409 |#2|)) (-1 (-644 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)))) (-15 -1610 ((-644 (-409 |#2|)) (-653 (-409 |#2|)) (-1 (-420 |#2|) |#2|))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)))) (-15 -1610 ((-644 (-409 |#2|)) (-654 |#2| (-409 |#2|)) (-1 (-420 |#2|) |#2|)))) |%noBranch|))
-((-2976 (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#1|))) (-689 |#2|) (-1265 |#1|)) 110) (((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1265 |#1|)) (|:| -1451 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1265 |#1|)) 15)) (-2141 (((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-689 |#2|) (-1265 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2227 (-644 |#1|))) |#2| |#1|)) 116)) (-1409 (((-3 (-2 (|:| |particular| (-1265 |#1|)) (|:| -2227 (-689 |#1|))) "failed") (-689 |#1|) (-1265 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2227 (-644 |#1|))) "failed") |#2| |#1|)) 52)))
-(((-813 |#1| |#2|) (-10 -7 (-15 -2976 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1265 |#1|)) (|:| -1451 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1265 |#1|))) (-15 -2976 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#1|))) (-689 |#2|) (-1265 |#1|))) (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#1|)) (|:| -2227 (-689 |#1|))) "failed") (-689 |#1|) (-1265 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2227 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -2141 ((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-689 |#2|) (-1265 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2227 (-644 |#1|))) |#2| |#1|)))) (-365) (-656 |#1|)) (T -813))
-((-2141 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2227 (-644 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1265 *6) "failed")) (|:| -2227 (-644 (-1265 *6))))) (-5 *1 (-813 *6 *7)) (-5 *4 (-1265 *6)))) (-1409 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2227 (-644 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-656 *6)) (-5 *2 (-2 (|:| |particular| (-1265 *6)) (|:| -2227 (-689 *6)))) (-5 *1 (-813 *6 *7)) (-5 *3 (-689 *6)) (-5 *4 (-1265 *6)))) (-2976 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-656 *5)) (-5 *2 (-2 (|:| -3444 (-689 *6)) (|:| |vec| (-1265 *5)))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1265 *5)))) (-2976 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-689 *5)) (|:| |eqs| (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1265 *5)) (|:| -1451 *6) (|:| |rh| *5)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1265 *5)) (-4 *6 (-656 *5)))))
-(-10 -7 (-15 -2976 ((-2 (|:| A (-689 |#1|)) (|:| |eqs| (-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1265 |#1|)) (|:| -1451 |#2|) (|:| |rh| |#1|))))) (-689 |#1|) (-1265 |#1|))) (-15 -2976 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#1|))) (-689 |#2|) (-1265 |#1|))) (-15 -1409 ((-3 (-2 (|:| |particular| (-1265 |#1|)) (|:| -2227 (-689 |#1|))) "failed") (-689 |#1|) (-1265 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2227 (-644 |#1|))) "failed") |#2| |#1|))) (-15 -2141 ((-2 (|:| |particular| (-3 (-1265 |#1|) "failed")) (|:| -2227 (-644 (-1265 |#1|)))) (-689 |#2|) (-1265 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2227 (-644 |#1|))) |#2| |#1|))))
-((-1738 (((-689 |#1|) (-644 |#1|) (-771)) 14) (((-689 |#1|) (-644 |#1|)) 15)) (-3829 (((-3 (-1265 |#1|) "failed") |#2| |#1| (-644 |#1|)) 39)) (-2222 (((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)) 46)))
-(((-814 |#1| |#2|) (-10 -7 (-15 -1738 ((-689 |#1|) (-644 |#1|))) (-15 -1738 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -3829 ((-3 (-1265 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -2222 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|)))) (-365) (-656 |#1|)) (T -814))
-((-2222 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2)))) (-3829 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1265 *4)) (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4)))) (-1738 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4)) (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4)))))
-(-10 -7 (-15 -1738 ((-689 |#1|) (-644 |#1|))) (-15 -1738 ((-689 |#1|) (-644 |#1|) (-771))) (-15 -3829 ((-3 (-1265 |#1|) "failed") |#2| |#1| (-644 |#1|))) (-15 -2222 ((-3 |#1| "failed") |#2| |#1| (-644 |#1|) (-1 |#1| |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-3545 (((-112) $) NIL (|has| |#2| (-131)))) (-2338 (($ (-921)) NIL (|has| |#2| (-1049)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-3288 (($ $ $) NIL (|has| |#2| (-793)))) (-4113 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2261 (((-112) $ (-771)) NIL)) (-3733 (((-771)) NIL (|has| |#2| (-370)))) (-1859 (((-566) $) NIL (|has| |#2| (-848)))) (-2858 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1099)))) (-3343 (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) ((|#2| $) NIL (|has| |#2| (-1099)))) (-3717 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#2| (-1049)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL (|has| |#2| (-1049))) (((-689 |#2|) (-689 $)) NIL (|has| |#2| (-1049)))) (-2313 (((-3 $ "failed") $) NIL (|has| |#2| (-726)))) (-3424 (($) NIL (|has| |#2| (-370)))) (-3031 ((|#2| $ (-566) |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ (-566)) NIL)) (-3421 (((-112) $) NIL (|has| |#2| (-848)))) (-1523 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL (|has| |#2| (-726)))) (-2307 (((-112) $) NIL (|has| |#2| (-848)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2565 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-3023 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-4138 (((-921) $) NIL (|has| |#2| (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#2| (-1099)))) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-2430 (($ (-921)) NIL (|has| |#2| (-370)))) (-1944 (((-1119) $) NIL (|has| |#2| (-1099)))) (-3771 ((|#2| $) NIL (|has| (-566) (-850)))) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ (-566) |#2|) NIL) ((|#2| $ (-566)) NIL)) (-1836 ((|#2| $ $) NIL (|has| |#2| (-1049)))) (-4059 (($ (-1265 |#2|)) NIL)) (-4356 (((-134)) NIL (|has| |#2| (-365)))) (-3009 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-1958 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-1265 |#2|) $) NIL) (($ (-566)) NIL (-2676 (-12 (|has| |#2| (-1038 (-566))) (|has| |#2| (-1099))) (|has| |#2| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#2| (-1038 (-409 (-566)))) (|has| |#2| (-1099)))) (($ |#2|) NIL (|has| |#2| (-1099))) (((-862) $) NIL (|has| |#2| (-613 (-862))))) (-2875 (((-771)) NIL (|has| |#2| (-1049)) CONST)) (-1479 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2610 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2274 (($ $) NIL (|has| |#2| (-848)))) (-3200 (($) NIL (|has| |#2| (-131)) CONST)) (-3214 (($) NIL (|has| |#2| (-726)) CONST)) (-1316 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#2| (-900 (-1175))) (|has| |#2| (-1049)))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#2| (-1049))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1049)))) (-2865 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2844 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2817 (((-112) $ $) NIL (|has| |#2| (-1099)))) (-2854 (((-112) $ $) NIL (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2833 (((-112) $ $) 11 (-2676 (|has| |#2| (-793)) (|has| |#2| (-848))))) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $ $) NIL (|has| |#2| (-1049))) (($ $) NIL (|has| |#2| (-1049)))) (-2897 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-771)) NIL (|has| |#2| (-726))) (($ $ (-921)) NIL (|has| |#2| (-726)))) (* (($ (-566) $) NIL (|has| |#2| (-1049))) (($ $ $) NIL (|has| |#2| (-726))) (($ $ |#2|) NIL (|has| |#2| (-726))) (($ |#2| $) NIL (|has| |#2| (-726))) (($ (-771) $) NIL (|has| |#2| (-131))) (($ (-921) $) NIL (|has| |#2| (-25)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-815 |#1| |#2| |#3|) (-238 |#1| |#2|) (-771) (-793) (-1 (-112) (-1265 |#2|) (-1265 |#2|))) (T -815))
+(-13 (-851) (-25))
+(((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 25)) (-4377 (((-3 $ "failed") $ $) 27)) (-4061 (($) 24 T CONST)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 23 T CONST)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (-3146 (($ $ $) 21)) (* (($ (-922) $) 22) (($ (-772) $) 26)))
+(((-796) (-140)) (T -796))
+NIL
+(-13 (-793) (-131))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-793) . T) ((-795) . T) ((-851) . T) ((-1100) . T))
+((-2865 (((-112) $) 42)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-1621 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 43)) (-4092 (((-3 (-410 (-567)) "failed") $) 78)) (-4379 (((-112) $) 72)) (-3061 (((-410 (-567)) $) 76)) (-3751 ((|#2| $) 26)) (-3494 (($ (-1 |#2| |#2|) $) 23)) (-2559 (($ $) 58)) (-3542 (((-539) $) 67)) (-1443 (($ $) 21)) (-4101 (((-863) $) 53) (($ (-567)) 40) (($ |#2|) 38) (($ (-410 (-567))) NIL)) (-2686 (((-772)) 10)) (-1771 ((|#2| $) 71)) (-3052 (((-112) $ $) 30)) (-3075 (((-112) $ $) 69)) (-3156 (($ $) 32) (($ $ $) NIL)) (-3146 (($ $ $) 31)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33)))
+(((-797 |#1| |#2|) (-10 -8 (-15 -3075 ((-112) |#1| |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -1771 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2865 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|))) (-798 |#2|) (-172)) (T -797))
+((-2686 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4)) (-4 *3 (-798 *4)))))
+(-10 -8 (-15 -3075 ((-112) |#1| |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -1771 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2865 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-2013 (((-772)) 58 (|has| |#1| (-370)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 100 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 94)) (-1621 (((-567) $) 99 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 96 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 95)) (-4014 (((-3 $ "failed") $) 37)) (-2319 ((|#1| $) 84)) (-4092 (((-3 (-410 (-567)) "failed") $) 71 (|has| |#1| (-548)))) (-4379 (((-112) $) 73 (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) 72 (|has| |#1| (-548)))) (-1649 (($) 61 (|has| |#1| (-370)))) (-3714 (((-112) $) 35)) (-3121 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 75)) (-3751 ((|#1| $) 76)) (-2056 (($ $ $) 67 (|has| |#1| (-851)))) (-1802 (($ $ $) 66 (|has| |#1| (-851)))) (-3494 (($ (-1 |#1| |#1|) $) 86)) (-3527 (((-922) $) 60 (|has| |#1| (-370)))) (-2451 (((-1158) $) 10)) (-2559 (($ $) 70 (|has| |#1| (-365)))) (-3811 (($ (-922)) 59 (|has| |#1| (-370)))) (-4301 ((|#1| $) 81)) (-4259 ((|#1| $) 82)) (-2329 ((|#1| $) 83)) (-1790 ((|#1| $) 77)) (-3343 ((|#1| $) 78)) (-3585 ((|#1| $) 79)) (-2455 ((|#1| $) 80)) (-3339 (((-1120) $) 11)) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) 92 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 91 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 90 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 89 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) 88 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) 87 (|has| |#1| (-517 (-1176) |#1|)))) (-1552 (($ $ |#1|) 93 (|has| |#1| (-287 |#1| |#1|)))) (-3542 (((-539) $) 68 (|has| |#1| (-615 (-539))))) (-1443 (($ $) 85)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 98 (|has| |#1| (-1039 (-410 (-567)))))) (-4242 (((-3 $ "failed") $) 69 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1771 ((|#1| $) 74 (|has| |#1| (-1060)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3109 (((-112) $ $) 64 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 63 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 65 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 62 (|has| |#1| (-851)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-798 |#1|) (-140) (-172)) (T -798))
+((-1443 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4259 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-2455 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-3121 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1060)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-4092 (*1 *2 *1) (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-2559 (*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
+(-13 (-38 |t#1|) (-414 |t#1|) (-340 |t#1|) (-10 -8 (-15 -1443 ($ $)) (-15 -2319 (|t#1| $)) (-15 -2329 (|t#1| $)) (-15 -4259 (|t#1| $)) (-15 -4301 (|t#1| $)) (-15 -2455 (|t#1| $)) (-15 -3585 (|t#1| $)) (-15 -3343 (|t#1| $)) (-15 -1790 (|t#1| $)) (-15 -3751 (|t#1| $)) (-15 -3121 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-370)) (-6 (-370)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1060)) (-15 -1771 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-365)) (-15 -2559 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-370) |has| |#1| (-370)) ((-340 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3494 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-799 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#3| (-1 |#4| |#2|) |#1|))) (-798 |#2|) (-172) (-798 |#4|) (-172)) (T -799))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5)))))
+(-10 -7 (-15 -3494 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2013 (((-772)) NIL (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-1000 |#1|) "failed") $) 35) (((-3 (-567) "failed") $) NIL (-2909 (|has| (-1000 |#1|) (-1039 (-567))) (|has| |#1| (-1039 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL (-2909 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-1621 ((|#1| $) NIL) (((-1000 |#1|) $) 33) (((-567) $) NIL (-2909 (|has| (-1000 |#1|) (-1039 (-567))) (|has| |#1| (-1039 (-567))))) (((-410 (-567)) $) NIL (-2909 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-4014 (((-3 $ "failed") $) NIL)) (-2319 ((|#1| $) 16)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-4379 (((-112) $) NIL (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1649 (($) NIL (|has| |#1| (-370)))) (-3714 (((-112) $) NIL)) (-3121 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-1000 |#1|) (-1000 |#1|)) 29)) (-3751 ((|#1| $) NIL)) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3527 (((-922) $) NIL (|has| |#1| (-370)))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-3811 (($ (-922)) NIL (|has| |#1| (-370)))) (-4301 ((|#1| $) 22)) (-4259 ((|#1| $) 20)) (-2329 ((|#1| $) 18)) (-1790 ((|#1| $) 26)) (-3343 ((|#1| $) 25)) (-3585 ((|#1| $) 24)) (-2455 ((|#1| $) 23)) (-3339 (((-1120) $) NIL)) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-517 (-1176) |#1|)))) (-1552 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1443 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1000 |#1|)) 30) (($ (-410 (-567))) NIL (-2909 (|has| (-1000 |#1|) (-1039 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1771 ((|#1| $) NIL (|has| |#1| (-1060)))) (-1468 (($) 8 T CONST)) (-1484 (($) 12 T CONST)) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-800 |#1|) (-13 (-798 |#1|) (-414 (-1000 |#1|)) (-10 -8 (-15 -3121 ($ (-1000 |#1|) (-1000 |#1|))))) (-172)) (T -800))
+((-3121 (*1 *1 *2 *2) (-12 (-5 *2 (-1000 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3)))))
+(-13 (-798 |#1|) (-414 (-1000 |#1|)) (-10 -8 (-15 -3121 ($ (-1000 |#1|) (-1000 |#1|)))))
+((-2257 (((-112) $ $) 7)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-2248 (((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-3052 (((-112) $ $) 6)))
+(((-801) (-140)) (T -801))
+((-2509 (*1 *2 *3 *4) (-12 (-4 *1 (-801)) (-5 *3 (-1063)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)))))) (-2248 (*1 *2 *3) (-12 (-4 *1 (-801)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1036)))))
+(-13 (-1100) (-10 -7 (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2248 ((-1036) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-3692 (((-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#3| |#2| (-1176)) 19)))
+(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -3692 ((-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#3| |#2| (-1176)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1201) (-960)) (-657 |#2|)) (T -802))
+((-3692 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1176)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-4 *4 (-13 (-29 *6) (-1201) (-960))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2557 (-645 *4)))) (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -3692 ((-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#3| |#2| (-1176))))
+((-1607 (((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)) 28) (((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1176)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1176)) 18) (((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1176)) 24) (((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1176)) 26) (((-3 (-645 (-1266 |#2|)) "failed") (-690 |#2|) (-1176)) 37) (((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-690 |#2|) (-1266 |#2|) (-1176)) 35)))
+(((-803 |#1| |#2|) (-10 -7 (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-690 |#2|) (-1266 |#2|) (-1176))) (-15 -1607 ((-3 (-645 (-1266 |#2|)) "failed") (-690 |#2|) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1176))) (-15 -1607 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -1607 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1201) (-960))) (T -803))
+((-1607 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1201) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-803 *6 *2)))) (-1607 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2)) (-4 *2 (-13 (-29 *6) (-1201) (-960))) (-5 *1 (-803 *6 *2)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1176)) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2557 (-645 *3))) *3 "failed")) (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1201) (-960))))) (-1607 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1176)) (-4 *7 (-13 (-29 *6) (-1201) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2557 (-645 *7))) *7 "failed")) (-5 *1 (-803 *6 *7)))) (-1607 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-1176)) (-4 *7 (-13 (-29 *6) (-1201) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1266 *7)) (|:| -2557 (-645 (-1266 *7))))) (-5 *1 (-803 *6 *7)))) (-1607 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-1176)) (-4 *7 (-13 (-29 *6) (-1201) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1266 *7)) (|:| -2557 (-645 (-1266 *7))))) (-5 *1 (-803 *6 *7)))) (-1607 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1176)) (-4 *6 (-13 (-29 *5) (-1201) (-960))) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-1266 *6))) (-5 *1 (-803 *5 *6)))) (-1607 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1176)) (-4 *7 (-13 (-29 *6) (-1201) (-960))) (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-2 (|:| |particular| (-1266 *7)) (|:| -2557 (-645 (-1266 *7))))) (-5 *1 (-803 *6 *7)) (-5 *4 (-1266 *7)))))
+(-10 -7 (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-690 |#2|) (-1266 |#2|) (-1176))) (-15 -1607 ((-3 (-645 (-1266 |#2|)) "failed") (-690 |#2|) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-645 (-295 |#2|)) (-645 (-114)) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#2|)) (|:| -2557 (-645 (-1266 |#2|)))) "failed") (-645 |#2|) (-645 (-114)) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#2| "failed") (-295 |#2|) (-114) (-1176))) (-15 -1607 ((-3 (-2 (|:| |particular| |#2|) (|:| -2557 (-645 |#2|))) |#2| "failed") |#2| (-114) (-1176))) (-15 -1607 ((-3 |#2| "failed") (-295 |#2|) (-114) (-295 |#2|) (-645 |#2|))) (-15 -1607 ((-3 |#2| "failed") |#2| (-114) (-295 |#2|) (-645 |#2|))))
+((-3721 (($) 9)) (-2840 (((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-3004 (((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-1336 (($ (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) 25)) (-2707 (($ (-645 (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) 23)) (-2863 (((-1271)) 12)))
+(((-804) (-10 -8 (-15 -3721 ($)) (-15 -2863 ((-1271))) (-15 -3004 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2707 ($ (-645 (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -1336 ($ (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2840 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -804))
+((-2840 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))) (-5 *1 (-804)))) (-1336 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))) (-5 *1 (-804)))) (-2707 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-5 *1 (-804)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-804)))) (-2863 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-804)))) (-3721 (*1 *1) (-5 *1 (-804))))
+(-10 -8 (-15 -3721 ($)) (-15 -2863 ((-1271))) (-15 -3004 ((-645 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2707 ($ (-645 (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381)))))))) (-15 -1336 ($ (-2 (|:| -1762 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3859 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))))))) (-15 -2840 ((-3 (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381)) (|:| |expense| (-381)) (|:| |accuracy| (-381)) (|:| |intermediateResults| (-381))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+((-3587 ((|#2| |#2| (-1176)) 17)) (-1707 ((|#2| |#2| (-1176)) 56)) (-2813 (((-1 |#2| |#2|) (-1176)) 11)))
+(((-805 |#1| |#2|) (-10 -7 (-15 -3587 (|#2| |#2| (-1176))) (-15 -1707 (|#2| |#2| (-1176))) (-15 -2813 ((-1 |#2| |#2|) (-1176)))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)) (-13 (-29 |#1|) (-1201) (-960))) (T -805))
+((-2813 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5)) (-4 *5 (-13 (-29 *4) (-1201) (-960))))) (-1707 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1201) (-960))))) (-3587 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1201) (-960))))))
+(-10 -7 (-15 -3587 (|#2| |#2| (-1176))) (-15 -1707 (|#2| |#2| (-1176))) (-15 -2813 ((-1 |#2| |#2|) (-1176))))
+((-1607 (((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381)) 131) (((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381)) 132) (((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381)) 134) (((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381)) 136) (((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381)) 137) (((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381))) 139) (((-1036) (-809) (-1063)) 123) (((-1036) (-809)) 124)) (-2509 (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-809) (-1063)) 83) (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-809)) 85)))
+(((-806) (-10 -7 (-15 -1607 ((-1036) (-809))) (-15 -1607 ((-1036) (-809) (-1063))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-809))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-809) (-1063))))) (T -806))
+((-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1063)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) (-5 *1 (-806)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) (-5 *1 (-806)))) (-1607 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1266 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1607 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1266 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1607 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1266 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1607 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1266 (-317 *4))) (-5 *5 (-645 (-381))) (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1607 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1266 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1607 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1266 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-809)) (-5 *4 (-1063)) (-5 *2 (-1036)) (-5 *1 (-806)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1036)) (-5 *1 (-806)))))
+(-10 -7 (-15 -1607 ((-1036) (-809))) (-15 -1607 ((-1036) (-809) (-1063))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-645 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381))) (-15 -1607 ((-1036) (-1266 (-317 (-381))) (-381) (-381) (-645 (-381)) (-317 (-381)) (-645 (-381)) (-381) (-381))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-809))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-809) (-1063))))
+((-1584 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2557 (-645 |#4|))) (-654 |#4|) |#4|) 35)))
+(((-807 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1584 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2557 (-645 |#4|))) (-654 |#4|) |#4|))) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|)) (T -807))
+((-1584 (*1 *2 *3 *4) (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-807 *5 *6 *7 *4)))))
+(-10 -7 (-15 -1584 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2557 (-645 |#4|))) (-654 |#4|) |#4|)))
+((-1371 (((-2 (|:| -2823 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))) 53)) (-2652 (((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#4| |#2|) 62) (((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#4|) 61) (((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#3| |#2|) 20) (((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#3|) 21)) (-2101 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-3198 ((|#2| |#3| (-645 (-410 |#2|))) 113) (((-3 |#2| "failed") |#3| (-410 |#2|)) 109)))
+(((-808 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3198 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3198 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#3|)) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#3| |#2|)) (-15 -2101 (|#2| |#3| |#1|)) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#4|)) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#4| |#2|)) (-15 -2101 (|#2| |#4| |#1|)) (-15 -1371 ((-2 (|:| -2823 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|))))) (-13 (-365) (-147) (-1039 (-410 (-567)))) (-1242 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -808))
+((-1371 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-5 *2 (-2 (|:| -2823 *7) (|:| |rh| (-645 (-410 *6))))) (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6))) (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6))))) (-2101 (*1 *2 *3 *4) (-12 (-4 *2 (-1242 *4)) (-5 *1 (-808 *4 *2 *5 *3)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-657 *2)) (-4 *3 (-657 (-410 *2))))) (-2652 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *4 (-1242 *5)) (-5 *2 (-645 (-2 (|:| -4113 *4) (|:| -2190 *4)))) (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4)) (-4 *3 (-657 (-410 *4))))) (-2652 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4)) (-5 *2 (-645 (-2 (|:| -4113 *5) (|:| -2190 *5)))) (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 (-410 *5))))) (-2101 (*1 *2 *3 *4) (-12 (-4 *2 (-1242 *4)) (-5 *1 (-808 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))) (-2652 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *4 (-1242 *5)) (-5 *2 (-645 (-2 (|:| -4113 *4) (|:| -2190 *4)))) (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4)) (-4 *6 (-657 (-410 *4))))) (-2652 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4)) (-5 *2 (-645 (-2 (|:| -4113 *5) (|:| -2190 *5)))) (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-3198 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1242 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 (-410 *2))))) (-3198 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1242 *5)) (-5 *1 (-808 *5 *2 *3 *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *6 (-657 *4)))))
+(-10 -7 (-15 -3198 ((-3 |#2| "failed") |#3| (-410 |#2|))) (-15 -3198 (|#2| |#3| (-645 (-410 |#2|)))) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#3|)) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#3| |#2|)) (-15 -2101 (|#2| |#3| |#1|)) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#4|)) (-15 -2652 ((-645 (-2 (|:| -4113 |#2|) (|:| -2190 |#2|))) |#4| |#2|)) (-15 -2101 (|#2| |#4| |#1|)) (-15 -1371 ((-2 (|:| -2823 |#3|) (|:| |rh| (-645 (-410 |#2|)))) |#4| (-645 (-410 |#2|)))))
+((-2257 (((-112) $ $) NIL)) (-1621 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-809) (-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1621 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -809))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-809)))))
+(-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1621 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))
+((-3195 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -2823 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1172 |#2|)) (-1 (-421 |#2|) |#2|)) 157)) (-3573 (((-645 (-2 (|:| |poly| |#2|) (|:| -2823 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 56)) (-1520 (((-645 (-2 (|:| |deg| (-772)) (|:| -2823 |#2|))) |#3|) 127)) (-3881 ((|#2| |#3|) 45)) (-4339 (((-645 (-2 (|:| -2131 |#1|) (|:| -2823 |#3|))) |#3| (-1 (-645 |#1|) |#2|)) 105)) (-3034 ((|#3| |#3| (-410 |#2|)) 76) ((|#3| |#3| |#2|) 102)))
+(((-810 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3881 (|#2| |#3|)) (-15 -1520 ((-645 (-2 (|:| |deg| (-772)) (|:| -2823 |#2|))) |#3|)) (-15 -4339 ((-645 (-2 (|:| -2131 |#1|) (|:| -2823 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3573 ((-645 (-2 (|:| |poly| |#2|) (|:| -2823 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3195 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -2823 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1172 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3034 (|#3| |#3| |#2|)) (-15 -3034 (|#3| |#3| (-410 |#2|)))) (-13 (-365) (-147) (-1039 (-410 (-567)))) (-1242 |#1|) (-657 |#2|) (-657 (-410 |#2|))) (T -810))
+((-3034 (*1 *2 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4)) (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))) (-3034 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-1242 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3)) (-4 *5 (-657 (-410 *3))))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-645 *7) *7 (-1172 *7))) (-5 *5 (-1 (-421 *7) *7)) (-4 *7 (-1242 *6)) (-4 *6 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -2823 *3)))) (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7)) (-4 *8 (-657 (-410 *7))))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -2823 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-4339 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-5 *2 (-645 (-2 (|:| -2131 *5) (|:| -2823 *3)))) (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6)) (-4 *7 (-657 (-410 *6))))) (-1520 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4)) (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2823 *5)))) (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-657 (-410 *5))))) (-3881 (*1 *2 *3) (-12 (-4 *2 (-1242 *4)) (-5 *1 (-810 *4 *2 *3 *5)) (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2)) (-4 *5 (-657 (-410 *2))))))
+(-10 -7 (-15 -3881 (|#2| |#3|)) (-15 -1520 ((-645 (-2 (|:| |deg| (-772)) (|:| -2823 |#2|))) |#3|)) (-15 -4339 ((-645 (-2 (|:| -2131 |#1|) (|:| -2823 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3573 ((-645 (-2 (|:| |poly| |#2|) (|:| -2823 |#3|))) |#3| (-1 (-645 |#1|) |#2|))) (-15 -3195 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -2823 |#3|))) |#3| (-1 (-645 |#2|) |#2| (-1172 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3034 (|#3| |#3| |#2|)) (-15 -3034 (|#3| |#3| (-410 |#2|))))
+((-4192 (((-2 (|:| -2557 (-645 (-410 |#2|))) (|:| -4302 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|))) 149) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2557 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|)) 148) (((-2 (|:| -2557 (-645 (-410 |#2|))) (|:| -4302 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|))) 143) (((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2557 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|)) 141)) (-3985 ((|#2| (-655 |#2| (-410 |#2|))) 89) ((|#2| (-654 (-410 |#2|))) 92)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -4192 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2557 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -4192 ((-2 (|:| -2557 (-645 (-410 |#2|))) (|:| -4302 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -4192 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2557 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -4192 ((-2 (|:| -2557 (-645 (-410 |#2|))) (|:| -4302 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3985 (|#2| (-654 (-410 |#2|)))) (-15 -3985 (|#2| (-655 |#2| (-410 |#2|))))) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1242 |#1|)) (T -811))
+((-3985 (*1 *2 *3) (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1242 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1242 *4)) (-5 *1 (-811 *4 *2)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))))) (-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| -2557 (-645 (-410 *6))) (|:| -4302 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-811 *5 *6)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| -2557 (-645 (-410 *6))) (|:| -4302 (-690 *5)))) (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))) (-4192 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-811 *5 *6)))))
+(-10 -7 (-15 -4192 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2557 (-645 (-410 |#2|)))) (-654 (-410 |#2|)) (-410 |#2|))) (-15 -4192 ((-2 (|:| -2557 (-645 (-410 |#2|))) (|:| -4302 (-690 |#1|))) (-654 (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -4192 ((-2 (|:| |particular| (-3 (-410 |#2|) "failed")) (|:| -2557 (-645 (-410 |#2|)))) (-655 |#2| (-410 |#2|)) (-410 |#2|))) (-15 -4192 ((-2 (|:| -2557 (-645 (-410 |#2|))) (|:| -4302 (-690 |#1|))) (-655 |#2| (-410 |#2|)) (-645 (-410 |#2|)))) (-15 -3985 (|#2| (-654 (-410 |#2|)))) (-15 -3985 (|#2| (-655 |#2| (-410 |#2|)))))
+((-1310 (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#1|))) |#5| |#4|) 52)))
+(((-812 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1310 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#1|))) |#5| |#4|))) (-365) (-657 |#1|) (-1242 |#1|) (-725 |#1| |#3|) (-657 |#4|)) (T -812))
+((-1310 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *7 (-1242 *5)) (-4 *4 (-725 *5 *7)) (-5 *2 (-2 (|:| -4302 (-690 *6)) (|:| |vec| (-1266 *5)))) (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4)))))
+(-10 -7 (-15 -1310 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#1|))) |#5| |#4|)))
+((-3195 (((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -2823 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 47)) (-4365 (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|))) 168 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|)) 172 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-654 (-410 |#2|))) 170 (|has| |#1| (-27))) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 38) (((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 39) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|)) 36) (((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 37)) (-3573 (((-645 (-2 (|:| |poly| |#2|) (|:| -2823 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|)) 99)))
+(((-813 |#1| |#2|) (-10 -7 (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3195 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -2823 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3573 ((-645 (-2 (|:| |poly| |#2|) (|:| -2823 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|)) (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))) (-1242 |#1|)) (T -813))
+((-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-4365 (*1 *2 *3) (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1242 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-4365 (*1 *2 *3) (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1242 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5)))) (-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -2823 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-3195 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-5 *2 (-645 (-2 (|:| |frac| (-410 *6)) (|:| -2823 (-655 *6 (-410 *6)))))) (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))) (-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *7 (-1242 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))) (-4365 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7)) (-5 *5 (-1 (-421 *7) *7)) (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *7 (-1242 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7)))) (-4365 (*1 *2 *3 *4) (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))))
+(-10 -7 (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|) (-1 (-421 |#2|) |#2|))) (-15 -3195 ((-645 (-2 (|:| |frac| (-410 |#2|)) (|:| -2823 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -3573 ((-645 (-2 (|:| |poly| |#2|) (|:| -2823 (-655 |#2| (-410 |#2|))))) (-655 |#2| (-410 |#2|)) (-1 (-645 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)))) (-15 -4365 ((-645 (-410 |#2|)) (-654 (-410 |#2|)) (-1 (-421 |#2|) |#2|))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)))) (-15 -4365 ((-645 (-410 |#2|)) (-655 |#2| (-410 |#2|)) (-1 (-421 |#2|) |#2|)))) |%noBranch|))
+((-2240 (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#1|))) (-690 |#2|) (-1266 |#1|)) 110) (((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1266 |#1|)) (|:| -2823 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1266 |#1|)) 15)) (-2916 (((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-690 |#2|) (-1266 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2557 (-645 |#1|))) |#2| |#1|)) 116)) (-1607 (((-3 (-2 (|:| |particular| (-1266 |#1|)) (|:| -2557 (-690 |#1|))) "failed") (-690 |#1|) (-1266 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2557 (-645 |#1|))) "failed") |#2| |#1|)) 52)))
+(((-814 |#1| |#2|) (-10 -7 (-15 -2240 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1266 |#1|)) (|:| -2823 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1266 |#1|))) (-15 -2240 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#1|))) (-690 |#2|) (-1266 |#1|))) (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#1|)) (|:| -2557 (-690 |#1|))) "failed") (-690 |#1|) (-1266 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2557 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -2916 ((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-690 |#2|) (-1266 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2557 (-645 |#1|))) |#2| |#1|)))) (-365) (-657 |#1|)) (T -814))
+((-2916 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2557 (-645 *6))) *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1266 *6) "failed")) (|:| -2557 (-645 (-1266 *6))))) (-5 *1 (-814 *6 *7)) (-5 *4 (-1266 *6)))) (-1607 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2557 (-645 *6))) "failed") *7 *6)) (-4 *6 (-365)) (-4 *7 (-657 *6)) (-5 *2 (-2 (|:| |particular| (-1266 *6)) (|:| -2557 (-690 *6)))) (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1266 *6)))) (-2240 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-4 *6 (-657 *5)) (-5 *2 (-2 (|:| -4302 (-690 *6)) (|:| |vec| (-1266 *5)))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1266 *5)))) (-2240 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| A (-690 *5)) (|:| |eqs| (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1266 *5)) (|:| -2823 *6) (|:| |rh| *5)))))) (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1266 *5)) (-4 *6 (-657 *5)))))
+(-10 -7 (-15 -2240 ((-2 (|:| A (-690 |#1|)) (|:| |eqs| (-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1266 |#1|)) (|:| -2823 |#2|) (|:| |rh| |#1|))))) (-690 |#1|) (-1266 |#1|))) (-15 -2240 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#1|))) (-690 |#2|) (-1266 |#1|))) (-15 -1607 ((-3 (-2 (|:| |particular| (-1266 |#1|)) (|:| -2557 (-690 |#1|))) "failed") (-690 |#1|) (-1266 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2557 (-645 |#1|))) "failed") |#2| |#1|))) (-15 -2916 ((-2 (|:| |particular| (-3 (-1266 |#1|) "failed")) (|:| -2557 (-645 (-1266 |#1|)))) (-690 |#2|) (-1266 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2557 (-645 |#1|))) |#2| |#1|))))
+((-3269 (((-690 |#1|) (-645 |#1|) (-772)) 14) (((-690 |#1|) (-645 |#1|)) 15)) (-3601 (((-3 (-1266 |#1|) "failed") |#2| |#1| (-645 |#1|)) 39)) (-2497 (((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)) 46)))
+(((-815 |#1| |#2|) (-10 -7 (-15 -3269 ((-690 |#1|) (-645 |#1|))) (-15 -3269 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -3601 ((-3 (-1266 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -2497 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|)))) (-365) (-657 |#1|)) (T -815))
+((-2497 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365)) (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2)))) (-3601 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1266 *4)) (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))) (-3269 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4)) (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4)))))
+(-10 -7 (-15 -3269 ((-690 |#1|) (-645 |#1|))) (-15 -3269 ((-690 |#1|) (-645 |#1|) (-772))) (-15 -3601 ((-3 (-1266 |#1|) "failed") |#2| |#1| (-645 |#1|))) (-15 -2497 ((-3 |#1| "failed") |#2| |#1| (-645 |#1|) (-1 |#1| |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-2865 (((-112) $) NIL (|has| |#2| (-131)))) (-4245 (($ (-922)) NIL (|has| |#2| (-1050)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2140 (($ $ $) NIL (|has| |#2| (-794)))) (-4377 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-1580 (((-112) $ (-772)) NIL)) (-2013 (((-772)) NIL (|has| |#2| (-370)))) (-3179 (((-567) $) NIL (|has| |#2| (-849)))) (-4230 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1100)))) (-1621 (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) ((|#2| $) NIL (|has| |#2| (-1100)))) (-1920 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#2| (-1050)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL (|has| |#2| (-1050))) (((-690 |#2|) (-690 $)) NIL (|has| |#2| (-1050)))) (-4014 (((-3 $ "failed") $) NIL (|has| |#2| (-727)))) (-1649 (($) NIL (|has| |#2| (-370)))) (-1303 ((|#2| $ (-567) |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ (-567)) NIL)) (-4095 (((-112) $) NIL (|has| |#2| (-849)))) (-2896 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL (|has| |#2| (-727)))) (-3948 (((-112) $) NIL (|has| |#2| (-849)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-1542 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-4392 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-3527 (((-922) $) NIL (|has| |#2| (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#2| (-1100)))) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3811 (($ (-922)) NIL (|has| |#2| (-370)))) (-3339 (((-1120) $) NIL (|has| |#2| (-1100)))) (-2048 ((|#2| $) NIL (|has| (-567) (-851)))) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ (-567) |#2|) NIL) ((|#2| $ (-567)) NIL)) (-2945 ((|#2| $ $) NIL (|has| |#2| (-1050)))) (-2345 (($ (-1266 |#2|)) NIL)) (-1948 (((-134)) NIL (|has| |#2| (-365)))) (-1930 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3349 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-1266 |#2|) $) NIL) (($ (-567)) NIL (-2909 (-12 (|has| |#2| (-1039 (-567))) (|has| |#2| (-1100))) (|has| |#2| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#2| (-1039 (-410 (-567)))) (|has| |#2| (-1100)))) (($ |#2|) NIL (|has| |#2| (-1100))) (((-863) $) NIL (|has| |#2| (-614 (-863))))) (-2686 (((-772)) NIL (|has| |#2| (-1050)) CONST)) (-3739 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-2012 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-1771 (($ $) NIL (|has| |#2| (-849)))) (-1468 (($) NIL (|has| |#2| (-131)) CONST)) (-1484 (($) NIL (|has| |#2| (-727)) CONST)) (-2692 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#2| (-901 (-1176))) (|has| |#2| (-1050)))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#2| (-1050))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1050)))) (-3109 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3085 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3052 (((-112) $ $) NIL (|has| |#2| (-1100)))) (-3098 (((-112) $ $) NIL (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3075 (((-112) $ $) 11 (-2909 (|has| |#2| (-794)) (|has| |#2| (-849))))) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $ $) NIL (|has| |#2| (-1050))) (($ $) NIL (|has| |#2| (-1050)))) (-3146 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-772)) NIL (|has| |#2| (-727))) (($ $ (-922)) NIL (|has| |#2| (-727)))) (* (($ (-567) $) NIL (|has| |#2| (-1050))) (($ $ $) NIL (|has| |#2| (-727))) (($ $ |#2|) NIL (|has| |#2| (-727))) (($ |#2| $) NIL (|has| |#2| (-727))) (($ (-772) $) NIL (|has| |#2| (-131))) (($ (-922) $) NIL (|has| |#2| (-25)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-816 |#1| |#2| |#3|) (-238 |#1| |#2|) (-772) (-794) (-1 (-112) (-1266 |#2|) (-1266 |#2|))) (T -816))
NIL
(-238 |#1| |#2|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2058 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-3095 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-4170 (((-644 (-818 (-1175))) $) NIL)) (-3983 (((-1171 $) $ (-818 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-818 (-1175)))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1684 (($ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-818 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-818 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-2994 (($ $ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-533 (-818 (-1175))) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-818 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3077 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-4157 (($ (-1171 |#1|) (-818 (-1175))) NIL) (($ (-1171 $) (-818 (-1175))) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-818 (-1175))) NIL)) (-4090 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL)) (-1336 (($ (-1 (-533 (-818 (-1175))) (-533 (-818 (-1175)))) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1661 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-1742 (((-3 (-818 (-1175)) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-3766 (((-818 (-1175)) $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-2366 (((-112) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-818 (-1175))) (|:| -3428 (-771))) "failed") $) NIL)) (-2889 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-818 (-1175)) |#1|) NIL) (($ $ (-644 (-818 (-1175))) (-644 |#1|)) NIL) (($ $ (-818 (-1175)) $) NIL) (($ $ (-644 (-818 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-2061 (($ $ (-818 (-1175))) NIL (|has| |#1| (-172)))) (-3009 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1416 (((-644 (-1175)) $) NIL)) (-3838 (((-533 (-818 (-1175))) $) NIL) (((-771) $ (-818 (-1175))) NIL) (((-644 (-771)) $ (-644 (-818 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-818 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-818 (-1175))) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-818 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-533 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-818 (-1175))) NIL) (($ $ (-644 (-818 (-1175)))) NIL) (($ $ (-818 (-1175)) (-771)) NIL) (($ $ (-644 (-818 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-816 |#1|) (-13 (-254 |#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) (-1038 (-1124 |#1| (-1175)))) (-1049)) (T -816))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-3312 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1176)) NIL)) (-3933 (((-772) $) NIL) (((-772) $ (-1176)) NIL)) (-2449 (((-645 (-819 (-1176))) $) NIL)) (-2260 (((-1172 $) $ (-819 (-1176))) NIL) (((-1172 |#1|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-819 (-1176)))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-3911 (($ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-819 (-1176)) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL) (((-3 (-1125 |#1| (-1176)) "failed") $) NIL)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-819 (-1176)) $) NIL) (((-1176) $) NIL) (((-1125 |#1| (-1176)) $) NIL)) (-2414 (($ $ $ (-819 (-1176))) NIL (|has| |#1| (-172)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1176))) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-534 (-819 (-1176))) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-819 (-1176)) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-819 (-1176)) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-1909 (((-772) $ (-1176)) NIL) (((-772) $) NIL)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2434 (($ (-1172 |#1|) (-819 (-1176))) NIL) (($ (-1172 $) (-819 (-1176))) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-534 (-819 (-1176)))) NIL) (($ $ (-819 (-1176)) (-772)) NIL) (($ $ (-645 (-819 (-1176))) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-819 (-1176))) NIL)) (-4185 (((-534 (-819 (-1176))) $) NIL) (((-772) $ (-819 (-1176))) NIL) (((-645 (-772)) $ (-645 (-819 (-1176)))) NIL)) (-1599 (($ (-1 (-534 (-819 (-1176))) (-534 (-819 (-1176)))) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (((-1 $ (-772)) (-1176)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3300 (((-3 (-819 (-1176)) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2046 (((-819 (-1176)) $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-3399 (((-112) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-819 (-1176))) (|:| -4164 (-772))) "failed") $) NIL)) (-4258 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-819 (-1176)) |#1|) NIL) (($ $ (-645 (-819 (-1176))) (-645 |#1|)) NIL) (($ $ (-819 (-1176)) $) NIL) (($ $ (-645 (-819 (-1176))) (-645 $)) NIL) (($ $ (-1176) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1176)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1176)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3347 (($ $ (-819 (-1176))) NIL (|has| |#1| (-172)))) (-1930 (($ $ (-819 (-1176))) NIL) (($ $ (-645 (-819 (-1176)))) NIL) (($ $ (-819 (-1176)) (-772)) NIL) (($ $ (-645 (-819 (-1176))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1678 (((-645 (-1176)) $) NIL)) (-3677 (((-534 (-819 (-1176))) $) NIL) (((-772) $ (-819 (-1176))) NIL) (((-645 (-772)) $ (-645 (-819 (-1176)))) NIL) (((-772) $ (-1176)) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-819 (-1176)) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-819 (-1176)) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-819 (-1176)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-819 (-1176))) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-819 (-1176))) NIL) (($ (-1176)) NIL) (($ (-1125 |#1| (-1176))) NIL) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-534 (-819 (-1176)))) NIL) (($ $ (-819 (-1176)) (-772)) NIL) (($ $ (-645 (-819 (-1176))) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-819 (-1176))) NIL) (($ $ (-645 (-819 (-1176)))) NIL) (($ $ (-819 (-1176)) (-772)) NIL) (($ $ (-645 (-819 (-1176))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-817 |#1|) (-13 (-254 |#1| (-1176) (-819 (-1176)) (-534 (-819 (-1176)))) (-1039 (-1125 |#1| (-1176)))) (-1050)) (T -817))
NIL
-(-13 (-254 |#1| (-1175) (-818 (-1175)) (-533 (-818 (-1175)))) (-1038 (-1124 |#1| (-1175))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-1780 (($ $) NIL (|has| |#2| (-365)))) (-3286 (((-112) $) NIL (|has| |#2| (-365)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#2| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#2| (-365)))) (-2068 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) NIL (|has| |#2| (-365)))) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL (|has| |#2| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-1968 (((-112) $) NIL (|has| |#2| (-365)))) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-1853 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 20 (|has| |#2| (-365)))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-4018 (((-420 $) $) NIL (|has| |#2| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#2| (-365)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-3792 (((-771) $) NIL (|has| |#2| (-365)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#2| (-365)))) (-3009 (($ $ (-771)) NIL) (($ $) 13)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-409 (-566))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) 15 (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL) (($ $ (-566)) 18 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-409 (-566)) $) NIL (|has| |#2| (-365))) (($ $ (-409 (-566))) NIL (|has| |#2| (-365)))))
-(((-817 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-492 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1099) (-900 |#1|) |#1|) (T -817))
+(-13 (-254 |#1| (-1176) (-819 (-1176)) (-534 (-819 (-1176)))) (-1039 (-1125 |#1| (-1176))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#2| (-365)))) (-3602 (($ $) NIL (|has| |#2| (-365)))) (-2119 (((-112) $) NIL (|has| |#2| (-365)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#2| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#2| (-365)))) (-3405 (((-112) $ $) NIL (|has| |#2| (-365)))) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) NIL (|has| |#2| (-365)))) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL (|has| |#2| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-1665 (((-112) $) NIL (|has| |#2| (-365)))) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-3245 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 20 (|has| |#2| (-365)))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#2| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#2| (-365))) (($ $ $) NIL (|has| |#2| (-365)))) (-2296 (((-421 $) $) NIL (|has| |#2| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#2| (-365)))) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-4369 (((-772) $) NIL (|has| |#2| (-365)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#2| (-365)))) (-1930 (($ $ (-772)) NIL) (($ $) 13)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-410 (-567))) NIL (|has| |#2| (-365))) (($ $) NIL (|has| |#2| (-365)))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#2| (-365)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) 15 (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL) (($ $ (-567)) 18 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-410 (-567)) $) NIL (|has| |#2| (-365))) (($ $ (-410 (-567))) NIL (|has| |#2| (-365)))))
+(((-818 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|))) (-1100) (-901 |#1|) |#1|) (T -818))
NIL
-(-13 (-111 $ $) (-233) (-492 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3095 (((-771) $) NIL)) (-2928 ((|#1| $) 10)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-3077 (((-771) $) 11)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1661 (($ |#1| (-771)) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3009 (($ $) NIL) (($ $ (-771)) NIL)) (-2725 (((-862) $) NIL) (($ |#1|) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-818 |#1|) (-267 |#1|) (-850)) (T -818))
+(-13 (-111 $ $) (-233) (-493 |#2|) (-10 -7 (IF (|has| |#2| (-365)) (-6 (-365)) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-3933 (((-772) $) NIL)) (-4295 ((|#1| $) 10)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-1909 (((-772) $) 11)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-1820 (($ |#1| (-772)) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1930 (($ $) NIL) (($ $ (-772)) NIL)) (-4101 (((-863) $) NIL) (($ |#1|) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-819 |#1|) (-267 |#1|) (-851)) (T -819))
NIL
(-267 |#1|)
-((-3979 (((-112) $ $) NIL)) (-1509 (((-644 |#1|) $) 38)) (-3733 (((-771) $) NIL)) (-2633 (($) NIL T CONST)) (-4060 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-3781 (($ $) 42)) (-2313 (((-3 $ "failed") $) NIL)) (-2890 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3842 (((-112) $) NIL)) (-2654 ((|#1| $ (-566)) NIL)) (-1681 (((-771) $ (-566)) NIL)) (-3746 (($ $) 54)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1324 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4320 (((-112) $ $) 51)) (-1653 (((-771) $) 34)) (-1390 (((-1157) $) NIL)) (-4345 (($ $ $) NIL)) (-2450 (($ $ $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 ((|#1| $) 41)) (-1502 (((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-771)))) $) NIL)) (-3954 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2725 (((-862) $) NIL) (($ |#1|) NIL)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 20 T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 53)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ |#1| (-771)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-819 |#1|) (-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -3771 (|#1| $)) (-15 -3781 ($ $)) (-15 -3746 ($ $)) (-15 -4320 ((-112) $ $)) (-15 -2450 ($ $ $)) (-15 -4345 ($ $ $)) (-15 -1324 ((-3 $ "failed") $ $)) (-15 -4060 ((-3 $ "failed") $ $)) (-15 -1324 ((-3 $ "failed") $ |#1|)) (-15 -4060 ((-3 $ "failed") $ |#1|)) (-15 -3954 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2890 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3733 ((-771) $)) (-15 -1681 ((-771) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -1502 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-771)))) $)) (-15 -1653 ((-771) $)) (-15 -1509 ((-644 |#1|) $)))) (-850)) (T -819))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3771 (*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3746 (*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4320 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-2450 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4345 (*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-1324 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4060 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-1324 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-4060 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-3954 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-2890 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3)))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-1681 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850)))) (-2654 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 (-771))))) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850)))))
-(-13 (-846) (-1038 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-771))) (-15 -3771 (|#1| $)) (-15 -3781 ($ $)) (-15 -3746 ($ $)) (-15 -4320 ((-112) $ $)) (-15 -2450 ($ $ $)) (-15 -4345 ($ $ $)) (-15 -1324 ((-3 $ "failed") $ $)) (-15 -4060 ((-3 $ "failed") $ $)) (-15 -1324 ((-3 $ "failed") $ |#1|)) (-15 -4060 ((-3 $ "failed") $ |#1|)) (-15 -3954 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2890 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3733 ((-771) $)) (-15 -1681 ((-771) $ (-566))) (-15 -2654 (|#1| $ (-566))) (-15 -1502 ((-644 (-2 (|:| |gen| |#1|) (|:| -1535 (-771)))) $)) (-15 -1653 ((-771) $)) (-15 -1509 ((-644 |#1|) $))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-1859 (((-566) $) 59)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3421 (((-112) $) 57)) (-3842 (((-112) $) 35)) (-2307 (((-112) $) 58)) (-3075 (($ $ $) 56)) (-3936 (($ $ $) 55)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ $) 48)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-2274 (($ $) 60)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2865 (((-112) $ $) 53)) (-2844 (((-112) $ $) 52)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 54)) (-2833 (((-112) $ $) 51)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-820) (-140)) (T -820))
-NIL
-(-13 (-558) (-848))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-1631 (($ (-1119)) 7)) (-3180 (((-112) $ (-1157) (-1119)) 15)) (-2765 (((-822) $) 12)) (-1414 (((-822) $) 11)) (-3875 (((-1270) $) 9)) (-1329 (((-112) $ (-1119)) 16)))
-(((-821) (-10 -8 (-15 -1631 ($ (-1119))) (-15 -3875 ((-1270) $)) (-15 -1414 ((-822) $)) (-15 -2765 ((-822) $)) (-15 -3180 ((-112) $ (-1157) (-1119))) (-15 -1329 ((-112) $ (-1119))))) (T -821))
-((-1329 (*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-3180 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))) (-2765 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-821)))) (-1631 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821)))))
-(-10 -8 (-15 -1631 ($ (-1119))) (-15 -3875 ((-1270) $)) (-15 -1414 ((-822) $)) (-15 -2765 ((-822) $)) (-15 -3180 ((-112) $ (-1157) (-1119))) (-15 -1329 ((-112) $ (-1119))))
-((-3469 (((-1270) $ (-823)) 12)) (-3912 (((-1270) $ (-1175)) 32)) (-3980 (((-1270) $ (-1157) (-1157)) 34)) (-2348 (((-1270) $ (-1157)) 33)) (-3052 (((-1270) $) 19)) (-3680 (((-1270) $ (-566)) 28)) (-1677 (((-1270) $ (-225)) 30)) (-3676 (((-1270) $) 18)) (-2486 (((-1270) $) 26)) (-4125 (((-1270) $) 25)) (-4375 (((-1270) $) 23)) (-4064 (((-1270) $) 24)) (-1532 (((-1270) $) 22)) (-3782 (((-1270) $) 21)) (-1710 (((-1270) $) 20)) (-3149 (((-1270) $) 16)) (-3058 (((-1270) $) 17)) (-2164 (((-1270) $) 15)) (-3498 (((-1270) $) 14)) (-2075 (((-1270) $) 13)) (-1573 (($ (-1157) (-823)) 9)) (-2514 (($ (-1157) (-1157) (-823)) 8)) (-3844 (((-1175) $) 51)) (-2278 (((-1175) $) 55)) (-2775 (((-2 (|:| |cd| (-1157)) (|:| -3534 (-1157))) $) 54)) (-3876 (((-1157) $) 52)) (-1615 (((-1270) $) 41)) (-3946 (((-566) $) 49)) (-3501 (((-225) $) 50)) (-1309 (((-1270) $) 40)) (-2137 (((-1270) $) 48)) (-3295 (((-1270) $) 47)) (-2448 (((-1270) $) 45)) (-3130 (((-1270) $) 46)) (-2401 (((-1270) $) 44)) (-4101 (((-1270) $) 43)) (-2961 (((-1270) $) 42)) (-4311 (((-1270) $) 38)) (-1897 (((-1270) $) 39)) (-3415 (((-1270) $) 37)) (-4085 (((-1270) $) 36)) (-4365 (((-1270) $) 35)) (-3535 (((-1270) $) 11)))
-(((-822) (-10 -8 (-15 -2514 ($ (-1157) (-1157) (-823))) (-15 -1573 ($ (-1157) (-823))) (-15 -3535 ((-1270) $)) (-15 -3469 ((-1270) $ (-823))) (-15 -2075 ((-1270) $)) (-15 -3498 ((-1270) $)) (-15 -2164 ((-1270) $)) (-15 -3149 ((-1270) $)) (-15 -3058 ((-1270) $)) (-15 -3676 ((-1270) $)) (-15 -3052 ((-1270) $)) (-15 -1710 ((-1270) $)) (-15 -3782 ((-1270) $)) (-15 -1532 ((-1270) $)) (-15 -4375 ((-1270) $)) (-15 -4064 ((-1270) $)) (-15 -4125 ((-1270) $)) (-15 -2486 ((-1270) $)) (-15 -3680 ((-1270) $ (-566))) (-15 -1677 ((-1270) $ (-225))) (-15 -3912 ((-1270) $ (-1175))) (-15 -2348 ((-1270) $ (-1157))) (-15 -3980 ((-1270) $ (-1157) (-1157))) (-15 -4365 ((-1270) $)) (-15 -4085 ((-1270) $)) (-15 -3415 ((-1270) $)) (-15 -4311 ((-1270) $)) (-15 -1897 ((-1270) $)) (-15 -1309 ((-1270) $)) (-15 -1615 ((-1270) $)) (-15 -2961 ((-1270) $)) (-15 -4101 ((-1270) $)) (-15 -2401 ((-1270) $)) (-15 -2448 ((-1270) $)) (-15 -3130 ((-1270) $)) (-15 -3295 ((-1270) $)) (-15 -2137 ((-1270) $)) (-15 -3946 ((-566) $)) (-15 -3501 ((-225) $)) (-15 -3844 ((-1175) $)) (-15 -3876 ((-1157) $)) (-15 -2775 ((-2 (|:| |cd| (-1157)) (|:| -3534 (-1157))) $)) (-15 -2278 ((-1175) $)))) (T -822))
-((-2278 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -3534 (-1157)))) (-5 *1 (-822)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822)))) (-2137 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3295 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3130 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-2961 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-1615 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-4365 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3980 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-822)))) (-2348 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-822)))) (-3912 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-822)))) (-1677 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1270)) (-5 *1 (-822)))) (-3680 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-822)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-1532 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3782 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-2164 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-3469 (*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1270)) (-5 *1 (-822)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))) (-1573 (*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822)))) (-2514 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822)))))
-(-10 -8 (-15 -2514 ($ (-1157) (-1157) (-823))) (-15 -1573 ($ (-1157) (-823))) (-15 -3535 ((-1270) $)) (-15 -3469 ((-1270) $ (-823))) (-15 -2075 ((-1270) $)) (-15 -3498 ((-1270) $)) (-15 -2164 ((-1270) $)) (-15 -3149 ((-1270) $)) (-15 -3058 ((-1270) $)) (-15 -3676 ((-1270) $)) (-15 -3052 ((-1270) $)) (-15 -1710 ((-1270) $)) (-15 -3782 ((-1270) $)) (-15 -1532 ((-1270) $)) (-15 -4375 ((-1270) $)) (-15 -4064 ((-1270) $)) (-15 -4125 ((-1270) $)) (-15 -2486 ((-1270) $)) (-15 -3680 ((-1270) $ (-566))) (-15 -1677 ((-1270) $ (-225))) (-15 -3912 ((-1270) $ (-1175))) (-15 -2348 ((-1270) $ (-1157))) (-15 -3980 ((-1270) $ (-1157) (-1157))) (-15 -4365 ((-1270) $)) (-15 -4085 ((-1270) $)) (-15 -3415 ((-1270) $)) (-15 -4311 ((-1270) $)) (-15 -1897 ((-1270) $)) (-15 -1309 ((-1270) $)) (-15 -1615 ((-1270) $)) (-15 -2961 ((-1270) $)) (-15 -4101 ((-1270) $)) (-15 -2401 ((-1270) $)) (-15 -2448 ((-1270) $)) (-15 -3130 ((-1270) $)) (-15 -3295 ((-1270) $)) (-15 -2137 ((-1270) $)) (-15 -3946 ((-566) $)) (-15 -3501 ((-225) $)) (-15 -3844 ((-1175) $)) (-15 -3876 ((-1157) $)) (-15 -2775 ((-2 (|:| |cd| (-1157)) (|:| -3534 (-1157))) $)) (-15 -2278 ((-1175) $)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 13)) (-1479 (((-112) $ $) NIL)) (-4368 (($) 16)) (-4355 (($) 14)) (-3665 (($) 17)) (-1724 (($) 15)) (-2817 (((-112) $ $) 9)))
-(((-823) (-13 (-1099) (-10 -8 (-15 -4355 ($)) (-15 -4368 ($)) (-15 -3665 ($)) (-15 -1724 ($))))) (T -823))
-((-4355 (*1 *1) (-5 *1 (-823))) (-4368 (*1 *1) (-5 *1 (-823))) (-3665 (*1 *1) (-5 *1 (-823))) (-1724 (*1 *1) (-5 *1 (-823))))
-(-13 (-1099) (-10 -8 (-15 -4355 ($)) (-15 -4368 ($)) (-15 -3665 ($)) (-15 -1724 ($))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 23) (($ (-1175)) 19)) (-1479 (((-112) $ $) NIL)) (-1399 (((-112) $) 10)) (-2100 (((-112) $) 9)) (-2886 (((-112) $) 11)) (-4172 (((-112) $) 8)) (-2817 (((-112) $ $) 21)))
-(((-824) (-13 (-1099) (-10 -8 (-15 -2725 ($ (-1175))) (-15 -4172 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -1399 ((-112) $)) (-15 -2886 ((-112) $))))) (T -824))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-824)))) (-4172 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))))
-(-13 (-1099) (-10 -8 (-15 -2725 ($ (-1175))) (-15 -4172 ((-112) $)) (-15 -2100 ((-112) $)) (-15 -1399 ((-112) $)) (-15 -2886 ((-112) $))))
-((-3979 (((-112) $ $) NIL)) (-4232 (($ (-824) (-644 (-1175))) 32)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2118 (((-824) $) 33)) (-2078 (((-644 (-1175)) $) 34)) (-2725 (((-862) $) 31)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-825) (-13 (-1099) (-10 -8 (-15 -2118 ((-824) $)) (-15 -2078 ((-644 (-1175)) $)) (-15 -4232 ($ (-824) (-644 (-1175))))))) (T -825))
-((-2118 (*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825)))) (-4232 (*1 *1 *2 *3) (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825)))))
-(-13 (-1099) (-10 -8 (-15 -2118 ((-824) $)) (-15 -2078 ((-644 (-1175)) $)) (-15 -4232 ($ (-824) (-644 (-1175))))))
-((-2331 (((-1270) (-822) (-317 |#1|) (-112)) 24) (((-1270) (-822) (-317 |#1|)) 90) (((-1157) (-317 |#1|) (-112)) 89) (((-1157) (-317 |#1|)) 88)))
-(((-826 |#1|) (-10 -7 (-15 -2331 ((-1157) (-317 |#1|))) (-15 -2331 ((-1157) (-317 |#1|) (-112))) (-15 -2331 ((-1270) (-822) (-317 |#1|))) (-15 -2331 ((-1270) (-822) (-317 |#1|) (-112)))) (-13 (-828) (-1049))) (T -826))
-((-2331 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1270)) (-5 *1 (-826 *6)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1270)) (-5 *1 (-826 *5)))) (-2331 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *5)))) (-2331 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157)) (-5 *1 (-826 *4)))))
-(-10 -7 (-15 -2331 ((-1157) (-317 |#1|))) (-15 -2331 ((-1157) (-317 |#1|) (-112))) (-15 -2331 ((-1270) (-822) (-317 |#1|))) (-15 -2331 ((-1270) (-822) (-317 |#1|) (-112))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1500 ((|#1| $) 10)) (-2606 (($ |#1|) 9)) (-3842 (((-112) $) NIL)) (-4145 (($ |#2| (-771)) NIL)) (-4090 (((-771) $) NIL)) (-4334 ((|#2| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3009 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3838 (((-771) $) NIL)) (-2725 (((-862) $) 17) (($ (-566)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-3623 ((|#2| $ (-771)) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-827 |#1| |#2|) (-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2606 ($ |#1|)) (-15 -1500 (|#1| $)))) (-708 |#2|) (-1049)) (T -827))
-((-2606 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3)))) (-1500 (*1 *2 *1) (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049)))))
-(-13 (-708 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -2606 ($ |#1|)) (-15 -1500 (|#1| $))))
-((-2331 (((-1270) (-822) $ (-112)) 9) (((-1270) (-822) $) 8) (((-1157) $ (-112)) 7) (((-1157) $) 6)))
-(((-828) (-140)) (T -828))
-((-2331 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1270)))) (-2331 (*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1270)))) (-2331 (*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157)))))
-(-13 (-10 -8 (-15 -2331 ((-1157) $)) (-15 -2331 ((-1157) $ (-112))) (-15 -2331 ((-1270) (-822) $)) (-15 -2331 ((-1270) (-822) $ (-112)))))
-((-3950 (((-313) (-1157) (-1157)) 12)) (-3252 (((-112) (-1157) (-1157)) 34)) (-4321 (((-112) (-1157)) 33)) (-2806 (((-52) (-1157)) 25)) (-3828 (((-52) (-1157)) 23)) (-2919 (((-52) (-822)) 17)) (-4000 (((-644 (-1157)) (-1157)) 28)) (-2730 (((-644 (-1157))) 27)))
-(((-829) (-10 -7 (-15 -2919 ((-52) (-822))) (-15 -3828 ((-52) (-1157))) (-15 -2806 ((-52) (-1157))) (-15 -2730 ((-644 (-1157)))) (-15 -4000 ((-644 (-1157)) (-1157))) (-15 -4321 ((-112) (-1157))) (-15 -3252 ((-112) (-1157) (-1157))) (-15 -3950 ((-313) (-1157) (-1157))))) (T -829))
-((-3950 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829)))) (-3252 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-4321 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))) (-4000 (*1 *2 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157)))) (-2730 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-3828 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829)))))
-(-10 -7 (-15 -2919 ((-52) (-822))) (-15 -3828 ((-52) (-1157))) (-15 -2806 ((-52) (-1157))) (-15 -2730 ((-644 (-1157)))) (-15 -4000 ((-644 (-1157)) (-1157))) (-15 -4321 ((-112) (-1157))) (-15 -3252 ((-112) (-1157) (-1157))) (-15 -3950 ((-313) (-1157) (-1157))))
-((-3979 (((-112) $ $) 19)) (-2672 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3913 (($ $ $) 73)) (-4199 (((-112) $ $) 74)) (-2261 (((-112) $ (-771)) 8)) (-2583 (($ (-644 |#1|)) 69) (($) 68)) (-1607 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1985 (($ $) 63)) (-3806 (($ $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ |#1| $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4155 (((-112) $ $) 65)) (-2429 (((-112) $ (-771)) 9)) (-3075 ((|#1| $) 79)) (-3169 (($ $ $) 82)) (-3848 (($ $ $) 81)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3936 ((|#1| $) 80)) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22)) (-1799 (($ $ $) 70)) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41) (($ |#1| $ (-771)) 64)) (-1944 (((-1119) $) 21)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1727 (((-644 (-2 (|:| -2484 |#1|) (|:| -1958 (-771)))) $) 62)) (-2818 (($ $ |#1|) 72) (($ $ $) 71)) (-1873 (($) 50) (($ (-644 |#1|)) 49)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 51)) (-2725 (((-862) $) 18)) (-4087 (($ (-644 |#1|)) 67) (($) 66)) (-1479 (((-112) $ $) 23)) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20)) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-830 |#1|) (-140) (-850)) (T -830))
-((-3075 (*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850)))))
-(-13 (-736 |t#1|) (-968 |t#1|) (-10 -8 (-15 -3075 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-695 |#1|) . T) ((-736 |#1|) . T) ((-968 |#1|) . T) ((-1097 |#1|) . T) ((-1099) . T) ((-1215) . T))
-((-2404 (((-1270) (-1119) (-1119)) 48)) (-2135 (((-1270) (-821) (-52)) 45)) (-3464 (((-52) (-821)) 16)))
-(((-831) (-10 -7 (-15 -3464 ((-52) (-821))) (-15 -2135 ((-1270) (-821) (-52))) (-15 -2404 ((-1270) (-1119) (-1119))))) (T -831))
-((-2404 (*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1270)) (-5 *1 (-831)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1270)) (-5 *1 (-831)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831)))))
-(-10 -7 (-15 -3464 ((-52) (-821))) (-15 -2135 ((-1270) (-821) (-52))) (-15 -2404 ((-1270) (-1119) (-1119))))
-((-2101 (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)) 12) (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)) 13)))
-(((-832 |#1| |#2|) (-10 -7 (-15 -2101 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -2101 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|)))) (-1099) (-1099)) (T -832))
-((-2101 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-833 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-832 *5 *6)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6)))))
-(-10 -7 (-15 -2101 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))) (-15 -2101 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|) (-833 |#2|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL (|has| |#1| (-21)))) (-4113 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1859 (((-566) $) NIL (|has| |#1| (-848)))) (-2633 (($) NIL (|has| |#1| (-21)) CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 15)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-2313 (((-3 $ "failed") $) 42 (|has| |#1| (-848)))) (-4388 (((-3 (-409 (-566)) "failed") $) 52 (|has| |#1| (-547)))) (-1929 (((-112) $) 46 (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) 49 (|has| |#1| (-547)))) (-3421 (((-112) $) NIL (|has| |#1| (-848)))) (-3842 (((-112) $) NIL (|has| |#1| (-848)))) (-2307 (((-112) $) NIL (|has| |#1| (-848)))) (-3075 (($ $ $) NIL (|has| |#1| (-848)))) (-3936 (($ $ $) NIL (|has| |#1| (-848)))) (-1390 (((-1157) $) NIL)) (-2736 (($) 13)) (-2382 (((-112) $) 12)) (-1944 (((-1119) $) NIL)) (-3092 (((-112) $) 11)) (-2725 (((-862) $) 18) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2676 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-2875 (((-771)) 36 (|has| |#1| (-848)) CONST)) (-1479 (((-112) $ $) 54)) (-2274 (($ $) NIL (|has| |#1| (-848)))) (-3200 (($) 23 (|has| |#1| (-21)) CONST)) (-3214 (($) 33 (|has| |#1| (-848)) CONST)) (-2865 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2817 (((-112) $ $) 21)) (-2854 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2833 (((-112) $ $) 45 (|has| |#1| (-848)))) (-2905 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-2897 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 39 (|has| |#1| (-848))) (($ (-566) $) 27 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21)))))
-(((-833 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2736 ($)) (-15 -3092 ((-112) $)) (-15 -2382 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -833))
-((-2736 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-4388 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))))
-(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -2736 ($)) (-15 -3092 ((-112) $)) (-15 -2382 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|)))
-((-3044 (((-112) $ |#2|) 14)) (-2725 (((-862) $) 11)))
-(((-834 |#1| |#2|) (-10 -8 (-15 -3044 ((-112) |#1| |#2|)) (-15 -2725 ((-862) |#1|))) (-835 |#2|) (-1099)) (T -834))
-NIL
-(-10 -8 (-15 -3044 ((-112) |#1| |#2|)) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3534 ((|#1| $) 16)) (-1390 (((-1157) $) 10)) (-3044 (((-112) $ |#1|) 14)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-1381 (((-55) $) 15)) (-2817 (((-112) $ $) 6)))
-(((-835 |#1|) (-140) (-1099)) (T -835))
-((-3534 (*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099)))) (-1381 (*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55)))) (-3044 (*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(-13 (-1099) (-10 -8 (-15 -3534 (|t#1| $)) (-15 -1381 ((-55) $)) (-15 -3044 ((-112) $ |t#1|))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-3343 ((|#1| $) NIL) (((-114) $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-2304 ((|#1| (-114) |#1|) NIL)) (-3842 (((-112) $) NIL)) (-2814 (($ |#1| (-363 (-114))) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2358 (($ $ (-1 |#1| |#1|)) NIL)) (-2133 (($ $ (-1 |#1| |#1|)) NIL)) (-3282 ((|#1| $ |#1|) NIL)) (-1987 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-4295 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ (-114) (-566)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-836 |#1|) (-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4295 ($ $)) (-15 -4295 ($ $ $)) (-15 -1987 (|#1| |#1|))) |%noBranch|) (-15 -2133 ($ $ (-1 |#1| |#1|))) (-15 -2358 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2304 (|#1| (-114) |#1|)) (-15 -2814 ($ |#1| (-363 (-114)))))) (-1049)) (T -836))
-((-4295 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-4295 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-1987 (*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))) (-2133 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (-2358 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049)))) (-2304 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049)))) (-2814 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049)))))
-(-13 (-1049) (-1038 |#1|) (-1038 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4295 ($ $)) (-15 -4295 ($ $ $)) (-15 -1987 (|#1| |#1|))) |%noBranch|) (-15 -2133 ($ $ (-1 |#1| |#1|))) (-15 -2358 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-566))) (-15 ** ($ $ (-566))) (-15 -2304 (|#1| (-114) |#1|)) (-15 -2814 ($ |#1| (-363 (-114))))))
-((-2346 (((-214 (-504)) (-1157)) 9)))
-(((-837) (-10 -7 (-15 -2346 ((-214 (-504)) (-1157))))) (T -837))
-((-2346 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837)))))
-(-10 -7 (-15 -2346 ((-214 (-504)) (-1157))))
-((-3979 (((-112) $ $) NIL)) (-2653 (((-1117) $) 10)) (-3534 (((-508) $) 9)) (-1390 (((-1157) $) NIL)) (-3044 (((-112) $ (-508)) NIL)) (-1944 (((-1119) $) NIL)) (-2738 (($ (-508) (-1117)) 8)) (-2725 (((-862) $) 25)) (-1479 (((-112) $ $) NIL)) (-1381 (((-55) $) 20)) (-2817 (((-112) $ $) 12)))
-(((-838) (-13 (-835 (-508)) (-10 -8 (-15 -2653 ((-1117) $)) (-15 -2738 ($ (-508) (-1117)))))) (T -838))
-((-2653 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838)))) (-2738 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838)))))
-(-13 (-835 (-508)) (-10 -8 (-15 -2653 ((-1117) $)) (-15 -2738 ($ (-508) (-1117)))))
-((-3979 (((-112) $ $) 7)) (-3758 (((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 15) (((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 17) (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 16)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-839) (-140)) (T -839))
-((-1303 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)))))) (-1303 (*1 *2 *3 *4) (-12 (-4 *1 (-839)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)))))) (-3758 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) (-5 *2 (-1035)))) (-3758 (*1 *2 *3) (-12 (-4 *1 (-839)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *2 (-1035)))))
-(-13 (-1099) (-10 -7 (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -3758 ((-1035) (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -3758 ((-1035) (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3827 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 169) (((-1035) (-317 (-381)) (-644 (-381))) 167) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381)))) 165) (((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381)))) 163) (((-1035) (-841)) 128) (((-1035) (-841) (-1062)) 127)) (-1303 (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062)) 88) (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841)) 90)) (-3446 (((-1035) (-644 (-317 (-381))) (-644 (-381))) 170) (((-1035) (-841)) 153)))
-(((-840) (-10 -7 (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -3827 ((-1035) (-841) (-1062))) (-15 -3827 ((-1035) (-841))) (-15 -3446 ((-1035) (-841))) (-15 -3827 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -3827 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -3827 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -3827 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -3446 ((-1035) (-644 (-317 (-381))) (-644 (-381)))))) (T -840))
-((-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3827 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3827 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381)))) (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3827 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-3827 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840)))) (-1303 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-840)))))
-(-10 -7 (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-841) (-1062))) (-15 -3827 ((-1035) (-841) (-1062))) (-15 -3827 ((-1035) (-841))) (-15 -3446 ((-1035) (-841))) (-15 -3827 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-317 (-381))) (-644 (-843 (-381))))) (-15 -3827 ((-1035) (-317 (-381)) (-644 (-381)) (-644 (-843 (-381))) (-644 (-843 (-381))))) (-15 -3827 ((-1035) (-317 (-381)) (-644 (-381)))) (-15 -3827 ((-1035) (-644 (-317 (-381))) (-644 (-381)))) (-15 -3446 ((-1035) (-644 (-317 (-381))) (-644 (-381)))))
-((-3979 (((-112) $ $) NIL)) (-3343 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) $) 21)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) 14) (($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))))) 18)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-841) (-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -2725 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -2725 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))))) (-15 -3343 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) $))))) (T -841))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (-5 *1 (-841)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))) (-5 *1 (-841)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))))) (-5 *1 (-841)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225))))))) (-5 *1 (-841)))))
-(-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225))))))) (-15 -2725 ($ (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) (-15 -2725 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))))) (-15 -3343 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225))) (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225)))) (|:| |ub| (-644 (-843 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))) $))))
-((-2101 (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)) 13) (((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|)) 14)))
-(((-842 |#1| |#2|) (-10 -7 (-15 -2101 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -2101 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|)))) (-1099) (-1099)) (T -842))
-((-2101 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-842 *5 *6)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6)))))
-(-10 -7 (-15 -2101 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|))) (-15 -2101 ((-843 |#2|) (-1 |#2| |#1|) (-843 |#1|) (-843 |#2|) (-843 |#2|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL (|has| |#1| (-21)))) (-3477 (((-1119) $) 31)) (-4113 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1859 (((-566) $) NIL (|has| |#1| (-848)))) (-2633 (($) NIL (|has| |#1| (-21)) CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 18)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 9)) (-2313 (((-3 $ "failed") $) 58 (|has| |#1| (-848)))) (-4388 (((-3 (-409 (-566)) "failed") $) 65 (|has| |#1| (-547)))) (-1929 (((-112) $) 60 (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) 63 (|has| |#1| (-547)))) (-3421 (((-112) $) NIL (|has| |#1| (-848)))) (-3891 (($) 14)) (-3842 (((-112) $) NIL (|has| |#1| (-848)))) (-2307 (((-112) $) NIL (|has| |#1| (-848)))) (-3901 (($) 16)) (-3075 (($ $ $) NIL (|has| |#1| (-848)))) (-3936 (($ $ $) NIL (|has| |#1| (-848)))) (-1390 (((-1157) $) NIL)) (-2382 (((-112) $) 12)) (-1944 (((-1119) $) NIL)) (-3092 (((-112) $) 11)) (-2725 (((-862) $) 24) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 8) (($ (-566)) NIL (-2676 (|has| |#1| (-848)) (|has| |#1| (-1038 (-566)))))) (-2875 (((-771)) 51 (|has| |#1| (-848)) CONST)) (-1479 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| |#1| (-848)))) (-3200 (($) 37 (|has| |#1| (-21)) CONST)) (-3214 (($) 48 (|has| |#1| (-848)) CONST)) (-2865 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2817 (((-112) $ $) 35)) (-2854 (((-112) $ $) NIL (|has| |#1| (-848)))) (-2833 (((-112) $ $) 59 (|has| |#1| (-848)))) (-2905 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-2897 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-921)) NIL (|has| |#1| (-848))) (($ $ (-771)) NIL (|has| |#1| (-848)))) (* (($ $ $) 55 (|has| |#1| (-848))) (($ (-566) $) 42 (|has| |#1| (-21))) (($ (-771) $) NIL (|has| |#1| (-21))) (($ (-921) $) NIL (|has| |#1| (-21)))))
-(((-843 |#1|) (-13 (-1099) (-413 |#1|) (-10 -8 (-15 -3891 ($)) (-15 -3901 ($)) (-15 -3092 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -3477 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|))) (-1099)) (T -843))
-((-3891 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-3901 (*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-2382 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))) (-4388 (*1 *2 *1) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099)))))
-(-13 (-1099) (-413 |#1|) (-10 -8 (-15 -3891 ($)) (-15 -3901 ($)) (-15 -3092 ((-112) $)) (-15 -2382 ((-112) $)) (-15 -3477 ((-1119) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-848)) |%noBranch|) (IF (|has| |#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|)))
-((-3979 (((-112) $ $) 7)) (-3733 (((-771)) 23)) (-3424 (($) 26)) (-3075 (($ $ $) 14) (($) 22 T CONST)) (-3936 (($ $ $) 15) (($) 21 T CONST)) (-4138 (((-921) $) 25)) (-1390 (((-1157) $) 10)) (-2430 (($ (-921)) 24)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)))
-(((-844) (-140)) (T -844))
-((-3075 (*1 *1) (-4 *1 (-844))) (-3936 (*1 *1) (-4 *1 (-844))))
-(-13 (-850) (-370) (-10 -8 (-15 -3075 ($) -3854) (-15 -3936 ($) -3854)))
-(((-102) . T) ((-613 (-862)) . T) ((-370) . T) ((-850) . T) ((-1099) . T))
-((-2951 (((-112) (-1265 |#2|) (-1265 |#2|)) 23)) (-3212 (((-112) (-1265 |#2|) (-1265 |#2|)) 24)) (-3429 (((-112) (-1265 |#2|) (-1265 |#2|)) 20)))
-(((-845 |#1| |#2|) (-10 -7 (-15 -3429 ((-112) (-1265 |#2|) (-1265 |#2|))) (-15 -2951 ((-112) (-1265 |#2|) (-1265 |#2|))) (-15 -3212 ((-112) (-1265 |#2|) (-1265 |#2|)))) (-771) (-792)) (T -845))
-((-3212 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-2951 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))) (-3429 (*1 *2 *3 *3) (-12 (-5 *3 (-1265 *5)) (-4 *5 (-792)) (-5 *2 (-112)) (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))))
-(-10 -7 (-15 -3429 ((-112) (-1265 |#2|) (-1265 |#2|))) (-15 -2951 ((-112) (-1265 |#2|) (-1265 |#2|))) (-15 -3212 ((-112) (-1265 |#2|) (-1265 |#2|))))
-((-3979 (((-112) $ $) 7)) (-2633 (($) 24 T CONST)) (-2313 (((-3 $ "failed") $) 27)) (-3842 (((-112) $) 25)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3214 (($) 23 T CONST)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (** (($ $ (-921)) 22) (($ $ (-771)) 26)) (* (($ $ $) 21)))
-(((-846) (-140)) (T -846))
-NIL
-(-13 (-857) (-726))
-(((-102) . T) ((-613 (-862)) . T) ((-726) . T) ((-857) . T) ((-850) . T) ((-1111) . T) ((-1099) . T))
-((-1859 (((-566) $) 21)) (-3421 (((-112) $) 10)) (-2307 (((-112) $) 12)) (-2274 (($ $) 23)))
-(((-847 |#1|) (-10 -8 (-15 -2274 (|#1| |#1|)) (-15 -1859 ((-566) |#1|)) (-15 -2307 ((-112) |#1|)) (-15 -3421 ((-112) |#1|))) (-848)) (T -847))
-NIL
-(-10 -8 (-15 -2274 (|#1| |#1|)) (-15 -1859 ((-566) |#1|)) (-15 -2307 ((-112) |#1|)) (-15 -3421 ((-112) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 25)) (-4113 (((-3 $ "failed") $ $) 27)) (-1859 (((-566) $) 37)) (-2633 (($) 24 T CONST)) (-2313 (((-3 $ "failed") $) 42)) (-3421 (((-112) $) 39)) (-3842 (((-112) $) 44)) (-2307 (((-112) $) 38)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 46)) (-2875 (((-771)) 47 T CONST)) (-1479 (((-112) $ $) 9)) (-2274 (($ $) 36)) (-3200 (($) 23 T CONST)) (-3214 (($) 45 T CONST)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (-2905 (($ $ $) 31) (($ $) 30)) (-2897 (($ $ $) 21)) (** (($ $ (-771)) 43) (($ $ (-921)) 40)) (* (($ (-921) $) 22) (($ (-771) $) 26) (($ (-566) $) 29) (($ $ $) 41)))
-(((-848) (-140)) (T -848))
-((-3421 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566)))) (-2274 (*1 *1 *1) (-4 *1 (-848))))
-(-13 (-791) (-1049) (-726) (-10 -8 (-15 -3421 ((-112) $)) (-15 -2307 ((-112) $)) (-15 -1859 ((-566) $)) (-15 -2274 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-850) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3075 (($ $ $) 12)) (-3936 (($ $ $) 11)) (-1479 (((-112) $ $) 9)) (-2865 (((-112) $ $) 15)) (-2844 (((-112) $ $) 13)) (-2854 (((-112) $ $) 16)))
-(((-849 |#1|) (-10 -8 (-15 -3075 (|#1| |#1| |#1|)) (-15 -3936 (|#1| |#1| |#1|)) (-15 -2854 ((-112) |#1| |#1|)) (-15 -2865 ((-112) |#1| |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -1479 ((-112) |#1| |#1|))) (-850)) (T -849))
-NIL
-(-10 -8 (-15 -3075 (|#1| |#1| |#1|)) (-15 -3936 (|#1| |#1| |#1|)) (-15 -2854 ((-112) |#1| |#1|)) (-15 -2865 ((-112) |#1| |#1|)) (-15 -2844 ((-112) |#1| |#1|)) (-15 -1479 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)))
-(((-850) (-140)) (T -850))
-((-2833 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2844 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2865 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-2854 (*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112)))) (-3936 (*1 *1 *1 *1) (-4 *1 (-850))) (-3075 (*1 *1 *1 *1) (-4 *1 (-850))))
-(-13 (-1099) (-10 -8 (-15 -2833 ((-112) $ $)) (-15 -2844 ((-112) $ $)) (-15 -2865 ((-112) $ $)) (-15 -2854 ((-112) $ $)) (-15 -3936 ($ $ $)) (-15 -3075 ($ $ $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-2029 (($ $ $) 49)) (-3616 (($ $ $) 48)) (-2987 (($ $ $) 46)) (-1430 (($ $ $) 55)) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 50)) (-4136 (((-3 $ "failed") $ $) 53)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1520 (($ $) 39)) (-1395 (($ $ $) 43)) (-1529 (($ $ $) 42)) (-3339 (($ $ $) 51)) (-3972 (($ $ $) 57)) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 45)) (-1654 (((-3 $ "failed") $ $) 52)) (-3967 (((-3 $ "failed") $ |#2|) 32)) (-4330 ((|#2| $) 36)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#2|) 13)) (-3624 (((-644 |#2|) $) 21)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
-(((-851 |#1| |#2|) (-10 -8 (-15 -3339 (|#1| |#1| |#1|)) (-15 -4357 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2723 |#1|)) |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2029 (|#1| |#1| |#1|)) (-15 -3616 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2030 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2723 |#1|)) |#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -1654 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3624 ((-644 |#2|) |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2725 ((-862) |#1|))) (-852 |#2|) (-1049)) (T -851))
-NIL
-(-10 -8 (-15 -3339 (|#1| |#1| |#1|)) (-15 -4357 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2723 |#1|)) |#1| |#1|)) (-15 -1430 (|#1| |#1| |#1|)) (-15 -4136 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2029 (|#1| |#1| |#1|)) (-15 -3616 (|#1| |#1| |#1|)) (-15 -2987 (|#1| |#1| |#1|)) (-15 -2030 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2723 |#1|)) |#1| |#1|)) (-15 -3972 (|#1| |#1| |#1|)) (-15 -1654 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1529 (|#1| |#1| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -3967 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3624 ((-644 |#2|) |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2029 (($ $ $) 50 (|has| |#1| (-365)))) (-3616 (($ $ $) 51 (|has| |#1| (-365)))) (-2987 (($ $ $) 53 (|has| |#1| (-365)))) (-1430 (($ $ $) 48 (|has| |#1| (-365)))) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 47 (|has| |#1| (-365)))) (-4136 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-3633 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 52 (|has| |#1| (-365)))) (-2023 (((-3 (-566) "failed") $) 80 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 77 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 74)) (-3343 (((-566) $) 79 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 76 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 75)) (-4358 (($ $) 69)) (-2313 (((-3 $ "failed") $) 37)) (-1520 (($ $) 60 (|has| |#1| (-454)))) (-3842 (((-112) $) 35)) (-4145 (($ |#1| (-771)) 67)) (-1592 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 62 (|has| |#1| (-558)))) (-1411 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63 (|has| |#1| (-558)))) (-4090 (((-771) $) 71)) (-1395 (($ $ $) 57 (|has| |#1| (-365)))) (-1529 (($ $ $) 58 (|has| |#1| (-365)))) (-3339 (($ $ $) 46 (|has| |#1| (-365)))) (-3972 (($ $ $) 55 (|has| |#1| (-365)))) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 54 (|has| |#1| (-365)))) (-1654 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-4159 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 59 (|has| |#1| (-365)))) (-4334 ((|#1| $) 70)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-558)))) (-3838 (((-771) $) 72)) (-4330 ((|#1| $) 61 (|has| |#1| (-454)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 78 (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) 73)) (-3624 (((-644 |#1|) $) 66)) (-3623 ((|#1| $ (-771)) 68)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3709 ((|#1| $ |#1| |#1|) 65)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
-(((-852 |#1|) (-140) (-1049)) (T -852))
-((-3838 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-4090 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-3623 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-4145 (*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3)))) (-3709 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)))) (-3967 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-1411 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3)))) (-1592 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3)))) (-4330 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-1520 (*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454)))) (-4159 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3)))) (-1529 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1395 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1654 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3972 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2030 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2723 *1))) (-4 *1 (-852 *3)))) (-2987 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-3633 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3)))) (-3616 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-2029 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-4136 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1430 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-4357 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2723 *1))) (-4 *1 (-852 *3)))) (-3339 (*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(-13 (-1049) (-111 |t#1| |t#1|) (-413 |t#1|) (-10 -8 (-15 -3838 ((-771) $)) (-15 -4090 ((-771) $)) (-15 -4334 (|t#1| $)) (-15 -4358 ($ $)) (-15 -3623 (|t#1| $ (-771))) (-15 -4145 ($ |t#1| (-771))) (-15 -3624 ((-644 |t#1|) $)) (-15 -3709 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -3967 ((-3 $ "failed") $ |t#1|)) (-15 -1411 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -1592 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -4330 (|t#1| $)) (-15 -1520 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -4159 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -1529 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -1654 ((-3 $ "failed") $ $)) (-15 -3972 ($ $ $)) (-15 -2030 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $)) (-15 -2987 ($ $ $)) (-15 -3633 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -3616 ($ $ $)) (-15 -2029 ($ $ $)) (-15 -4136 ((-3 $ "failed") $ $)) (-15 -1430 ($ $ $)) (-15 -4357 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $)) (-15 -3339 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-413 |#1|) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1038 #0#) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3512 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3633 (((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-1592 (((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-558)))) (-1411 (((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-558)))) (-4159 (((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-3709 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
-(((-853 |#1| |#2|) (-10 -7 (-15 -3512 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3709 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -1411 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1592 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -4159 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3633 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1049) (-852 |#1|)) (T -853))
-((-3633 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-4159 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-1592 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-1411 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3)) (-4 *3 (-852 *5)))) (-3709 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049)) (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2)))) (-3512 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049)) (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5)))))
-(-10 -7 (-15 -3512 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3709 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-558)) (PROGN (-15 -1411 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1592 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -4159 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3633 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-365)))) (-3616 (($ $ $) NIL (|has| |#1| (-365)))) (-2987 (($ $ $) NIL (|has| |#1| (-365)))) (-1430 (($ $ $) NIL (|has| |#1| (-365)))) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3633 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 34 (|has| |#1| (-365)))) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454)))) (-2799 (((-862) $ (-862)) NIL)) (-3842 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) NIL)) (-1592 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 30 (|has| |#1| (-558)))) (-1411 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 28 (|has| |#1| (-558)))) (-4090 (((-771) $) NIL)) (-1395 (($ $ $) NIL (|has| |#1| (-365)))) (-1529 (($ $ $) NIL (|has| |#1| (-365)))) (-3339 (($ $ $) NIL (|has| |#1| (-365)))) (-3972 (($ $ $) NIL (|has| |#1| (-365)))) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-1654 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-4159 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 32 (|has| |#1| (-365)))) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3838 (((-771) $) NIL)) (-4330 ((|#1| $) NIL (|has| |#1| (-454)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-1038 (-409 (-566))))) (($ |#1|) NIL)) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3709 ((|#1| $ |#1| |#1|) 15)) (-3200 (($) NIL T CONST)) (-3214 (($) 23 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) 19) (($ $ (-771)) 24)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-854 |#1| |#2| |#3|) (-13 (-852 |#1|) (-10 -8 (-15 -2799 ((-862) $ (-862))))) (-1049) (-99 |#1|) (-1 |#1| |#1|)) (T -854))
-((-2799 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-852 |#1|) (-10 -8 (-15 -2799 ((-862) $ (-862)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#2| (-365)))) (-3616 (($ $ $) NIL (|has| |#2| (-365)))) (-2987 (($ $ $) NIL (|has| |#2| (-365)))) (-1430 (($ $ $) NIL (|has| |#2| (-365)))) (-4357 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#2| (-365)))) (-4136 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3633 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#2| (-365)))) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#2| (-454)))) (-3842 (((-112) $) NIL)) (-4145 (($ |#2| (-771)) 17)) (-1592 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#2| (-558)))) (-1411 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#2| (-558)))) (-4090 (((-771) $) NIL)) (-1395 (($ $ $) NIL (|has| |#2| (-365)))) (-1529 (($ $ $) NIL (|has| |#2| (-365)))) (-3339 (($ $ $) NIL (|has| |#2| (-365)))) (-3972 (($ $ $) NIL (|has| |#2| (-365)))) (-2030 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#2| (-365)))) (-1654 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-4159 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#2| (-365)))) (-4334 ((|#2| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-3838 (((-771) $) NIL)) (-4330 ((|#2| $) NIL (|has| |#2| (-454)))) (-2725 (((-862) $) 24) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (($ (-1261 |#1|)) 19)) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-771)) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3709 ((|#2| $ |#2| |#2|) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) 13 T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-855 |#1| |#2| |#3| |#4|) (-13 (-852 |#2|) (-616 (-1261 |#1|))) (-1175) (-1049) (-99 |#2|) (-1 |#2| |#2|)) (T -855))
-NIL
-(-13 (-852 |#2|) (-616 (-1261 |#1|)))
-((-1872 ((|#1| (-771) |#1|) 48 (|has| |#1| (-38 (-409 (-566)))))) (-3699 ((|#1| (-771) (-771) |#1|) 39) ((|#1| (-771) |#1|) 27)) (-3458 ((|#1| (-771) |#1|) 43)) (-2329 ((|#1| (-771) |#1|) 41)) (-2667 ((|#1| (-771) |#1|) 40)))
-(((-856 |#1|) (-10 -7 (-15 -2667 (|#1| (-771) |#1|)) (-15 -2329 (|#1| (-771) |#1|)) (-15 -3458 (|#1| (-771) |#1|)) (-15 -3699 (|#1| (-771) |#1|)) (-15 -3699 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1872 (|#1| (-771) |#1|)) |%noBranch|)) (-172)) (T -856))
-((-1872 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-172)))) (-3699 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-3699 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-3458 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-2329 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))) (-2667 (*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))))
-(-10 -7 (-15 -2667 (|#1| (-771) |#1|)) (-15 -2329 (|#1| (-771) |#1|)) (-15 -3458 (|#1| (-771) |#1|)) (-15 -3699 (|#1| (-771) |#1|)) (-15 -3699 (|#1| (-771) (-771) |#1|)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1872 (|#1| (-771) |#1|)) |%noBranch|))
-((-3979 (((-112) $ $) 7)) (-3075 (($ $ $) 14)) (-3936 (($ $ $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2865 (((-112) $ $) 17)) (-2844 (((-112) $ $) 18)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 16)) (-2833 (((-112) $ $) 19)) (** (($ $ (-921)) 22)) (* (($ $ $) 21)))
-(((-857) (-140)) (T -857))
-NIL
-(-13 (-850) (-1111))
-(((-102) . T) ((-613 (-862)) . T) ((-850) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-2465 (((-566) $) 14)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 20) (($ (-566)) 13)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 9)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 11)))
-(((-858) (-13 (-850) (-10 -8 (-15 -2725 ($ (-566))) (-15 -2465 ((-566) $))))) (T -858))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-858)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858)))))
-(-13 (-850) (-10 -8 (-15 -2725 ($ (-566))) (-15 -2465 ((-566) $))))
-((-2005 (((-691 (-1223)) $ (-1223)) 15)) (-2525 (((-691 (-551)) $ (-551)) 12)) (-4354 (((-771) $ (-128)) 30)))
-(((-859 |#1|) (-10 -8 (-15 -4354 ((-771) |#1| (-128))) (-15 -2005 ((-691 (-1223)) |#1| (-1223))) (-15 -2525 ((-691 (-551)) |#1| (-551)))) (-860)) (T -859))
-NIL
-(-10 -8 (-15 -4354 ((-771) |#1| (-128))) (-15 -2005 ((-691 (-1223)) |#1| (-1223))) (-15 -2525 ((-691 (-551)) |#1| (-551))))
-((-2005 (((-691 (-1223)) $ (-1223)) 8)) (-2525 (((-691 (-551)) $ (-551)) 9)) (-4354 (((-771) $ (-128)) 7)) (-1650 (((-691 (-129)) $ (-129)) 10)) (-4381 (($ $) 6)))
-(((-860) (-140)) (T -860))
-((-1650 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129)))) (-2525 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551)))) (-2005 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1223))) (-5 *3 (-1223)))) (-4354 (*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771)))))
-(-13 (-173) (-10 -8 (-15 -1650 ((-691 (-129)) $ (-129))) (-15 -2525 ((-691 (-551)) $ (-551))) (-15 -2005 ((-691 (-1223)) $ (-1223))) (-15 -4354 ((-771) $ (-128)))))
+((-2257 (((-112) $ $) NIL)) (-2881 (((-645 |#1|) $) 38)) (-2013 (((-772) $) NIL)) (-4061 (($) NIL T CONST)) (-2079 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-2061 (($ $) 42)) (-4014 (((-3 $ "failed") $) NIL)) (-1421 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3714 (((-112) $) NIL)) (-4234 ((|#1| $ (-567)) NIL)) (-3885 (((-772) $ (-567)) NIL)) (-4020 (($ $) 54)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-1430 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-1516 (((-112) $ $) 51)) (-3036 (((-772) $) 34)) (-2451 (((-1158) $) NIL)) (-1831 (($ $ $) NIL)) (-2985 (($ $ $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 ((|#1| $) 41)) (-2807 (((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $) NIL)) (-2233 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-4101 (((-863) $) NIL) (($ |#1|) NIL)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 20 T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 53)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ |#1| (-772)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-820 |#1|) (-13 (-847) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-772))) (-15 -2048 (|#1| $)) (-15 -2061 ($ $)) (-15 -4020 ($ $)) (-15 -1516 ((-112) $ $)) (-15 -2985 ($ $ $)) (-15 -1831 ($ $ $)) (-15 -1430 ((-3 $ "failed") $ $)) (-15 -2079 ((-3 $ "failed") $ $)) (-15 -1430 ((-3 $ "failed") $ |#1|)) (-15 -2079 ((-3 $ "failed") $ |#1|)) (-15 -2233 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1421 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2013 ((-772) $)) (-15 -3885 ((-772) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -2807 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $)) (-15 -3036 ((-772) $)) (-15 -2881 ((-645 |#1|) $)))) (-851)) (T -820))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2048 (*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2061 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-4020 (*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-1516 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-2985 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-1831 (*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-1430 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2079 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-1430 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2079 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2233 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-1421 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |mm| (-820 *3)) (|:| |rm| (-820 *3)))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3885 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-772)) (-5 *1 (-820 *4)) (-4 *4 (-851)))) (-4234 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-820 *2)) (-4 *2 (-851)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-772))))) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851)))))
+(-13 (-847) (-1039 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-772))) (-15 -2048 (|#1| $)) (-15 -2061 ($ $)) (-15 -4020 ($ $)) (-15 -1516 ((-112) $ $)) (-15 -2985 ($ $ $)) (-15 -1831 ($ $ $)) (-15 -1430 ((-3 $ "failed") $ $)) (-15 -2079 ((-3 $ "failed") $ $)) (-15 -1430 ((-3 $ "failed") $ |#1|)) (-15 -2079 ((-3 $ "failed") $ |#1|)) (-15 -2233 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1421 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2013 ((-772) $)) (-15 -3885 ((-772) $ (-567))) (-15 -4234 (|#1| $ (-567))) (-15 -2807 ((-645 (-2 (|:| |gen| |#1|) (|:| -2910 (-772)))) $)) (-15 -3036 ((-772) $)) (-15 -2881 ((-645 |#1|) $))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-3179 (((-567) $) 59)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-4095 (((-112) $) 57)) (-3714 (((-112) $) 35)) (-3948 (((-112) $) 58)) (-2056 (($ $ $) 56)) (-1802 (($ $ $) 55)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ $) 48)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1771 (($ $) 60)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3109 (((-112) $ $) 53)) (-3085 (((-112) $ $) 52)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 54)) (-3075 (((-112) $ $) 51)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-821) (-140)) (T -821))
+NIL
+(-13 (-559) (-849))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-1447 (($ (-1120)) 7)) (-3579 (((-112) $ (-1158) (-1120)) 15)) (-2862 (((-823) $) 12)) (-1663 (((-823) $) 11)) (-2861 (((-1271) $) 9)) (-1504 (((-112) $ (-1120)) 16)))
+(((-822) (-10 -8 (-15 -1447 ($ (-1120))) (-15 -2861 ((-1271) $)) (-15 -1663 ((-823) $)) (-15 -2862 ((-823) $)) (-15 -3579 ((-112) $ (-1158) (-1120))) (-15 -1504 ((-112) $ (-1120))))) (T -822))
+((-1504 (*1 *2 *1 *3) (-12 (-5 *3 (-1120)) (-5 *2 (-112)) (-5 *1 (-822)))) (-3579 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-1120)) (-5 *2 (-112)) (-5 *1 (-822)))) (-2862 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))) (-2861 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-822)))) (-1447 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-822)))))
+(-10 -8 (-15 -1447 ($ (-1120))) (-15 -2861 ((-1271) $)) (-15 -1663 ((-823) $)) (-15 -2862 ((-823) $)) (-15 -3579 ((-112) $ (-1158) (-1120))) (-15 -1504 ((-112) $ (-1120))))
+((-3420 (((-1271) $ (-824)) 12)) (-3207 (((-1271) $ (-1176)) 32)) (-2612 (((-1271) $ (-1158) (-1158)) 34)) (-4331 (((-1271) $ (-1158)) 33)) (-1637 (((-1271) $) 19)) (-1541 (((-1271) $ (-567)) 28)) (-3852 (((-1271) $ (-225)) 30)) (-1485 (((-1271) $) 18)) (-2060 (((-1271) $) 26)) (-3411 (((-1271) $) 25)) (-3955 (((-1271) $) 23)) (-3949 (((-1271) $) 24)) (-3078 (((-1271) $) 22)) (-4298 (((-1271) $) 21)) (-4142 (((-1271) $) 20)) (-3307 (((-1271) $) 16)) (-1724 (((-1271) $) 17)) (-3114 (((-1271) $) 15)) (-3659 (((-1271) $) 14)) (-3472 (((-1271) $) 13)) (-2184 (($ (-1158) (-824)) 9)) (-2373 (($ (-1158) (-1158) (-824)) 8)) (-3733 (((-1176) $) 51)) (-1822 (((-1176) $) 55)) (-2953 (((-2 (|:| |cd| (-1158)) (|:| -1817 (-1158))) $) 54)) (-2871 (((-1158) $) 52)) (-1311 (((-1271) $) 41)) (-2258 (((-567) $) 49)) (-3680 (((-225) $) 50)) (-2558 (((-1271) $) 40)) (-2880 (((-1271) $) 48)) (-2223 (((-1271) $) 47)) (-2965 (((-1271) $) 45)) (-4240 (((-1271) $) 46)) (-3708 (((-1271) $) 44)) (-4275 (((-1271) $) 43)) (-2081 (((-1271) $) 42)) (-2755 (((-1271) $) 38)) (-2274 (((-1271) $) 39)) (-4045 (((-1271) $) 37)) (-4166 (((-1271) $) 36)) (-2014 (((-1271) $) 35)) (-2775 (((-1271) $) 11)))
+(((-823) (-10 -8 (-15 -2373 ($ (-1158) (-1158) (-824))) (-15 -2184 ($ (-1158) (-824))) (-15 -2775 ((-1271) $)) (-15 -3420 ((-1271) $ (-824))) (-15 -3472 ((-1271) $)) (-15 -3659 ((-1271) $)) (-15 -3114 ((-1271) $)) (-15 -3307 ((-1271) $)) (-15 -1724 ((-1271) $)) (-15 -1485 ((-1271) $)) (-15 -1637 ((-1271) $)) (-15 -4142 ((-1271) $)) (-15 -4298 ((-1271) $)) (-15 -3078 ((-1271) $)) (-15 -3955 ((-1271) $)) (-15 -3949 ((-1271) $)) (-15 -3411 ((-1271) $)) (-15 -2060 ((-1271) $)) (-15 -1541 ((-1271) $ (-567))) (-15 -3852 ((-1271) $ (-225))) (-15 -3207 ((-1271) $ (-1176))) (-15 -4331 ((-1271) $ (-1158))) (-15 -2612 ((-1271) $ (-1158) (-1158))) (-15 -2014 ((-1271) $)) (-15 -4166 ((-1271) $)) (-15 -4045 ((-1271) $)) (-15 -2755 ((-1271) $)) (-15 -2274 ((-1271) $)) (-15 -2558 ((-1271) $)) (-15 -1311 ((-1271) $)) (-15 -2081 ((-1271) $)) (-15 -4275 ((-1271) $)) (-15 -3708 ((-1271) $)) (-15 -2965 ((-1271) $)) (-15 -4240 ((-1271) $)) (-15 -2223 ((-1271) $)) (-15 -2880 ((-1271) $)) (-15 -2258 ((-567) $)) (-15 -3680 ((-225) $)) (-15 -3733 ((-1176) $)) (-15 -2871 ((-1158) $)) (-15 -2953 ((-2 (|:| |cd| (-1158)) (|:| -1817 (-1158))) $)) (-15 -1822 ((-1176) $)))) (T -823))
+((-1822 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-823)))) (-2953 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1158)) (|:| -1817 (-1158)))) (-5 *1 (-823)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-823)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-823)))) (-3680 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))) (-2880 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-4240 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2965 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3708 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-4275 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2081 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2612 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-823)))) (-4331 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-823)))) (-3207 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-823)))) (-3852 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1271)) (-5 *1 (-823)))) (-1541 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-823)))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-4298 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-1485 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-1724 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3307 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3659 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3472 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-3420 (*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1271)) (-5 *1 (-823)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))) (-2184 (*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-824)) (-5 *1 (-823)))) (-2373 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-824)) (-5 *1 (-823)))))
+(-10 -8 (-15 -2373 ($ (-1158) (-1158) (-824))) (-15 -2184 ($ (-1158) (-824))) (-15 -2775 ((-1271) $)) (-15 -3420 ((-1271) $ (-824))) (-15 -3472 ((-1271) $)) (-15 -3659 ((-1271) $)) (-15 -3114 ((-1271) $)) (-15 -3307 ((-1271) $)) (-15 -1724 ((-1271) $)) (-15 -1485 ((-1271) $)) (-15 -1637 ((-1271) $)) (-15 -4142 ((-1271) $)) (-15 -4298 ((-1271) $)) (-15 -3078 ((-1271) $)) (-15 -3955 ((-1271) $)) (-15 -3949 ((-1271) $)) (-15 -3411 ((-1271) $)) (-15 -2060 ((-1271) $)) (-15 -1541 ((-1271) $ (-567))) (-15 -3852 ((-1271) $ (-225))) (-15 -3207 ((-1271) $ (-1176))) (-15 -4331 ((-1271) $ (-1158))) (-15 -2612 ((-1271) $ (-1158) (-1158))) (-15 -2014 ((-1271) $)) (-15 -4166 ((-1271) $)) (-15 -4045 ((-1271) $)) (-15 -2755 ((-1271) $)) (-15 -2274 ((-1271) $)) (-15 -2558 ((-1271) $)) (-15 -1311 ((-1271) $)) (-15 -2081 ((-1271) $)) (-15 -4275 ((-1271) $)) (-15 -3708 ((-1271) $)) (-15 -2965 ((-1271) $)) (-15 -4240 ((-1271) $)) (-15 -2223 ((-1271) $)) (-15 -2880 ((-1271) $)) (-15 -2258 ((-567) $)) (-15 -3680 ((-225) $)) (-15 -3733 ((-1176) $)) (-15 -2871 ((-1158) $)) (-15 -2953 ((-2 (|:| |cd| (-1158)) (|:| -1817 (-1158))) $)) (-15 -1822 ((-1176) $)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 13)) (-3739 (((-112) $ $) NIL)) (-2049 (($) 16)) (-1936 (($) 14)) (-1369 (($) 17)) (-4252 (($) 15)) (-3052 (((-112) $ $) 9)))
+(((-824) (-13 (-1100) (-10 -8 (-15 -1936 ($)) (-15 -2049 ($)) (-15 -1369 ($)) (-15 -4252 ($))))) (T -824))
+((-1936 (*1 *1) (-5 *1 (-824))) (-2049 (*1 *1) (-5 *1 (-824))) (-1369 (*1 *1) (-5 *1 (-824))) (-4252 (*1 *1) (-5 *1 (-824))))
+(-13 (-1100) (-10 -8 (-15 -1936 ($)) (-15 -2049 ($)) (-15 -1369 ($)) (-15 -4252 ($))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 23) (($ (-1176)) 19)) (-3739 (((-112) $ $) NIL)) (-1480 (((-112) $) 10)) (-3694 (((-112) $) 9)) (-1407 (((-112) $) 11)) (-3800 (((-112) $) 8)) (-3052 (((-112) $ $) 21)))
+(((-825) (-13 (-1100) (-10 -8 (-15 -4101 ($ (-1176))) (-15 -3800 ((-112) $)) (-15 -3694 ((-112) $)) (-15 -1480 ((-112) $)) (-15 -1407 ((-112) $))))) (T -825))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-825)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-1480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(-13 (-1100) (-10 -8 (-15 -4101 ($ (-1176))) (-15 -3800 ((-112) $)) (-15 -3694 ((-112) $)) (-15 -1480 ((-112) $)) (-15 -1407 ((-112) $))))
+((-2257 (((-112) $ $) NIL)) (-3233 (($ (-825) (-645 (-1176))) 32)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2711 (((-825) $) 33)) (-3491 (((-645 (-1176)) $) 34)) (-4101 (((-863) $) 31)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-826) (-13 (-1100) (-10 -8 (-15 -2711 ((-825) $)) (-15 -3491 ((-645 (-1176)) $)) (-15 -3233 ($ (-825) (-645 (-1176))))))) (T -826))
+((-2711 (*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-826)))) (-3233 (*1 *1 *2 *3) (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1176))) (-5 *1 (-826)))))
+(-13 (-1100) (-10 -8 (-15 -2711 ((-825) $)) (-15 -3491 ((-645 (-1176)) $)) (-15 -3233 ($ (-825) (-645 (-1176))))))
+((-4184 (((-1271) (-823) (-317 |#1|) (-112)) 24) (((-1271) (-823) (-317 |#1|)) 90) (((-1158) (-317 |#1|) (-112)) 89) (((-1158) (-317 |#1|)) 88)))
+(((-827 |#1|) (-10 -7 (-15 -4184 ((-1158) (-317 |#1|))) (-15 -4184 ((-1158) (-317 |#1|) (-112))) (-15 -4184 ((-1271) (-823) (-317 |#1|))) (-15 -4184 ((-1271) (-823) (-317 |#1|) (-112)))) (-13 (-829) (-1050))) (T -827))
+((-4184 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-829) (-1050))) (-5 *2 (-1271)) (-5 *1 (-827 *6)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1050))) (-5 *2 (-1271)) (-5 *1 (-827 *5)))) (-4184 (*1 *2 *3 *4) (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1050))) (-5 *2 (-1158)) (-5 *1 (-827 *5)))) (-4184 (*1 *2 *3) (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1050))) (-5 *2 (-1158)) (-5 *1 (-827 *4)))))
+(-10 -7 (-15 -4184 ((-1158) (-317 |#1|))) (-15 -4184 ((-1158) (-317 |#1|) (-112))) (-15 -4184 ((-1271) (-823) (-317 |#1|))) (-15 -4184 ((-1271) (-823) (-317 |#1|) (-112))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2788 ((|#1| $) 10)) (-3986 (($ |#1|) 9)) (-3714 (((-112) $) NIL)) (-2422 (($ |#2| (-772)) NIL)) (-4185 (((-772) $) NIL)) (-2613 ((|#2| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1930 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3677 (((-772) $) NIL)) (-4101 (((-863) $) 17) (($ (-567)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2339 ((|#2| $ (-772)) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-828 |#1| |#2|) (-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3986 ($ |#1|)) (-15 -2788 (|#1| $)))) (-709 |#2|) (-1050)) (T -828))
+((-3986 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))) (-2788 (*1 *2 *1) (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1050)))))
+(-13 (-709 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3986 ($ |#1|)) (-15 -2788 (|#1| $))))
+((-4184 (((-1271) (-823) $ (-112)) 9) (((-1271) (-823) $) 8) (((-1158) $ (-112)) 7) (((-1158) $) 6)))
+(((-829) (-140)) (T -829))
+((-4184 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1271)))) (-4184 (*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1271)))) (-4184 (*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1158)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1158)))))
+(-13 (-10 -8 (-15 -4184 ((-1158) $)) (-15 -4184 ((-1158) $ (-112))) (-15 -4184 ((-1271) (-823) $)) (-15 -4184 ((-1271) (-823) $ (-112)))))
+((-2306 (((-313) (-1158) (-1158)) 12)) (-3058 (((-112) (-1158) (-1158)) 34)) (-1531 (((-112) (-1158)) 33)) (-3248 (((-52) (-1158)) 25)) (-3592 (((-52) (-1158)) 23)) (-1773 (((-52) (-823)) 17)) (-1422 (((-645 (-1158)) (-1158)) 28)) (-3734 (((-645 (-1158))) 27)))
+(((-830) (-10 -7 (-15 -1773 ((-52) (-823))) (-15 -3592 ((-52) (-1158))) (-15 -3248 ((-52) (-1158))) (-15 -3734 ((-645 (-1158)))) (-15 -1422 ((-645 (-1158)) (-1158))) (-15 -1531 ((-112) (-1158))) (-15 -3058 ((-112) (-1158) (-1158))) (-15 -2306 ((-313) (-1158) (-1158))))) (T -830))
+((-2306 (*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-313)) (-5 *1 (-830)))) (-3058 (*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-830)))) (-1422 (*1 *2 *3) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-830)) (-5 *3 (-1158)))) (-3734 (*1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-830)))) (-3248 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-830)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-830)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830)))))
+(-10 -7 (-15 -1773 ((-52) (-823))) (-15 -3592 ((-52) (-1158))) (-15 -3248 ((-52) (-1158))) (-15 -3734 ((-645 (-1158)))) (-15 -1422 ((-645 (-1158)) (-1158))) (-15 -1531 ((-112) (-1158))) (-15 -3058 ((-112) (-1158) (-1158))) (-15 -2306 ((-313) (-1158) (-1158))))
+((-2257 (((-112) $ $) 19)) (-4051 (($ |#1| $) 77) (($ $ |#1|) 76) (($ $ $) 75)) (-3217 (($ $ $) 73)) (-2901 (((-112) $ $) 74)) (-1580 (((-112) $ (-772)) 8)) (-3966 (($ (-645 |#1|)) 69) (($) 68)) (-2581 (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1861 (($ $) 63)) (-2084 (($ $) 59 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ |#1| $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) 47 (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) 58 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-3672 (((-112) $ $) 65)) (-2805 (((-112) $ (-772)) 9)) (-2056 ((|#1| $) 79)) (-3492 (($ $ $) 82)) (-3768 (($ $ $) 81)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1802 ((|#1| $) 80)) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22)) (-3754 (($ $ $) 70)) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41) (($ |#1| $ (-772)) 64)) (-3339 (((-1120) $) 21)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-4281 (((-645 (-2 (|:| -3859 |#1|) (|:| -3349 (-772)))) $) 62)) (-2108 (($ $ |#1|) 72) (($ $ $) 71)) (-2069 (($) 50) (($ (-645 |#1|)) 49)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 51)) (-4101 (((-863) $) 18)) (-2368 (($ (-645 |#1|)) 67) (($) 66)) (-3739 (((-112) $ $) 23)) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20)) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-831 |#1|) (-140) (-851)) (T -831))
+((-2056 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851)))))
+(-13 (-737 |t#1|) (-969 |t#1|) (-10 -8 (-15 -2056 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-235 |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-696 |#1|) . T) ((-737 |#1|) . T) ((-969 |#1|) . T) ((-1098 |#1|) . T) ((-1100) . T) ((-1216) . T))
+((-3737 (((-1271) (-1120) (-1120)) 48)) (-2860 (((-1271) (-822) (-52)) 45)) (-3370 (((-52) (-822)) 16)))
+(((-832) (-10 -7 (-15 -3370 ((-52) (-822))) (-15 -2860 ((-1271) (-822) (-52))) (-15 -3737 ((-1271) (-1120) (-1120))))) (T -832))
+((-3737 (*1 *2 *3 *3) (-12 (-5 *3 (-1120)) (-5 *2 (-1271)) (-5 *1 (-832)))) (-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1271)) (-5 *1 (-832)))) (-3370 (*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832)))))
+(-10 -7 (-15 -3370 ((-52) (-822))) (-15 -2860 ((-1271) (-822) (-52))) (-15 -3737 ((-1271) (-1120) (-1120))))
+((-3494 (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)) 12) (((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|)) 13)))
+(((-833 |#1| |#2|) (-10 -7 (-15 -3494 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3494 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|)))) (-1100) (-1100)) (T -833))
+((-3494 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *1 (-833 *5 *6)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6)))))
+(-10 -7 (-15 -3494 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|))) (-15 -3494 ((-834 |#2|) (-1 |#2| |#1|) (-834 |#1|) (-834 |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL (|has| |#1| (-21)))) (-4377 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3179 (((-567) $) NIL (|has| |#1| (-849)))) (-4061 (($) NIL (|has| |#1| (-21)) CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 15)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 9)) (-4014 (((-3 $ "failed") $) 42 (|has| |#1| (-849)))) (-4092 (((-3 (-410 (-567)) "failed") $) 52 (|has| |#1| (-548)))) (-4379 (((-112) $) 46 (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) 49 (|has| |#1| (-548)))) (-4095 (((-112) $) NIL (|has| |#1| (-849)))) (-3714 (((-112) $) NIL (|has| |#1| (-849)))) (-3948 (((-112) $) NIL (|has| |#1| (-849)))) (-2056 (($ $ $) NIL (|has| |#1| (-849)))) (-1802 (($ $ $) NIL (|has| |#1| (-849)))) (-2451 (((-1158) $) NIL)) (-4112 (($) 13)) (-3535 (((-112) $) 12)) (-3339 (((-1120) $) NIL)) (-3907 (((-112) $) 11)) (-4101 (((-863) $) 18) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2909 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))))) (-2686 (((-772)) 36 (|has| |#1| (-849)) CONST)) (-3739 (((-112) $ $) 54)) (-1771 (($ $) NIL (|has| |#1| (-849)))) (-1468 (($) 23 (|has| |#1| (-21)) CONST)) (-1484 (($) 33 (|has| |#1| (-849)) CONST)) (-3109 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3052 (((-112) $ $) 21)) (-3098 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3075 (((-112) $ $) 45 (|has| |#1| (-849)))) (-3156 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3146 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 39 (|has| |#1| (-849))) (($ (-567) $) 27 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21)))))
+(((-834 |#1|) (-13 (-1100) (-414 |#1|) (-10 -8 (-15 -4112 ($)) (-15 -3907 ((-112) $)) (-15 -3535 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1100)) (T -834))
+((-4112 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1100)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1100)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1100)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1100)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1100)))) (-4092 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1100)))))
+(-13 (-1100) (-414 |#1|) (-10 -8 (-15 -4112 ($)) (-15 -3907 ((-112) $)) (-15 -3535 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
+((-1527 (((-112) $ |#2|) 14)) (-4101 (((-863) $) 11)))
+(((-835 |#1| |#2|) (-10 -8 (-15 -1527 ((-112) |#1| |#2|)) (-15 -4101 ((-863) |#1|))) (-836 |#2|) (-1100)) (T -835))
+NIL
+(-10 -8 (-15 -1527 ((-112) |#1| |#2|)) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-1817 ((|#1| $) 16)) (-2451 (((-1158) $) 10)) (-1527 (((-112) $ |#1|) 14)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1688 (((-55) $) 15)) (-3052 (((-112) $ $) 6)))
+(((-836 |#1|) (-140) (-1100)) (T -836))
+((-1817 (*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1100)))) (-1688 (*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1100)) (-5 *2 (-55)))) (-1527 (*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(-13 (-1100) (-10 -8 (-15 -1817 (|t#1| $)) (-15 -1688 ((-55) $)) (-15 -1527 ((-112) $ |t#1|))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-1621 ((|#1| $) NIL) (((-114) $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-3921 ((|#1| (-114) |#1|) NIL)) (-3714 (((-112) $) NIL)) (-3326 (($ |#1| (-363 (-114))) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3330 (($ $ (-1 |#1| |#1|)) NIL)) (-2841 (($ $ (-1 |#1| |#1|)) NIL)) (-1552 ((|#1| $ |#1|) NIL)) (-1873 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2630 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ (-114) (-567)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-837 |#1|) (-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -1873 (|#1| |#1|))) |%noBranch|) (-15 -2841 ($ $ (-1 |#1| |#1|))) (-15 -3330 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3921 (|#1| (-114) |#1|)) (-15 -3326 ($ |#1| (-363 (-114)))))) (-1050)) (T -837))
+((-2630 (*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))) (-2630 (*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))) (-1873 (*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))) (-2841 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3)))) (-3330 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1050)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1050)))) (-3921 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1050)))) (-3326 (*1 *1 *2 *3) (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1050)))))
+(-13 (-1050) (-1039 |#1|) (-1039 (-114)) (-287 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -2630 ($ $)) (-15 -2630 ($ $ $)) (-15 -1873 (|#1| |#1|))) |%noBranch|) (-15 -2841 ($ $ (-1 |#1| |#1|))) (-15 -3330 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-567))) (-15 ** ($ $ (-567))) (-15 -3921 (|#1| (-114) |#1|)) (-15 -3326 ($ |#1| (-363 (-114))))))
+((-4316 (((-214 (-505)) (-1158)) 9)))
+(((-838) (-10 -7 (-15 -4316 ((-214 (-505)) (-1158))))) (T -838))
+((-4316 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-214 (-505))) (-5 *1 (-838)))))
+(-10 -7 (-15 -4316 ((-214 (-505)) (-1158))))
+((-2257 (((-112) $ $) NIL)) (-4034 (((-1118) $) 10)) (-1817 (((-509) $) 9)) (-2451 (((-1158) $) NIL)) (-1527 (((-112) $ (-509)) NIL)) (-3339 (((-1120) $) NIL)) (-4114 (($ (-509) (-1118)) 8)) (-4101 (((-863) $) 25)) (-3739 (((-112) $ $) NIL)) (-1688 (((-55) $) 20)) (-3052 (((-112) $ $) 12)))
+(((-839) (-13 (-836 (-509)) (-10 -8 (-15 -4034 ((-1118) $)) (-15 -4114 ($ (-509) (-1118)))))) (T -839))
+((-4034 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-839)))) (-4114 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-839)))))
+(-13 (-836 (-509)) (-10 -8 (-15 -4034 ((-1118) $)) (-15 -4114 ($ (-509) (-1118)))))
+((-2257 (((-112) $ $) 7)) (-4117 (((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 15) (((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 17) (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 16)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-840) (-140)) (T -840))
+((-2509 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1063)) (-5 *4 (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)))))) (-2509 (*1 *2 *3 *4) (-12 (-4 *1 (-840)) (-5 *3 (-1063)) (-5 *4 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)))))) (-4117 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) (-5 *2 (-1036)))) (-4117 (*1 *2 *3) (-12 (-4 *1 (-840)) (-5 *3 (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *2 (-1036)))))
+(-13 (-1100) (-10 -7 (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -4117 ((-1036) (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -4117 ((-1036) (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2103 (((-1036) (-645 (-317 (-381))) (-645 (-381))) 169) (((-1036) (-317 (-381)) (-645 (-381))) 167) (((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381)))) 165) (((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381)))) 163) (((-1036) (-842)) 128) (((-1036) (-842) (-1063)) 127)) (-2509 (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-842) (-1063)) 88) (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-842)) 90)) (-4323 (((-1036) (-645 (-317 (-381))) (-645 (-381))) 170) (((-1036) (-842)) 153)))
+(((-841) (-10 -7 (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-842))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-842) (-1063))) (-15 -2103 ((-1036) (-842) (-1063))) (-15 -2103 ((-1036) (-842))) (-15 -4323 ((-1036) (-842))) (-15 -2103 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2103 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2103 ((-1036) (-317 (-381)) (-645 (-381)))) (-15 -2103 ((-1036) (-645 (-317 (-381))) (-645 (-381)))) (-15 -4323 ((-1036) (-645 (-317 (-381))) (-645 (-381)))))) (T -841))
+((-4323 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2103 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2103 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381)))) (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1036)) (-5 *1 (-841)))) (-4323 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1063)) (-5 *2 (-1036)) (-5 *1 (-841)))) (-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-842)) (-5 *4 (-1063)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) (-5 *1 (-841)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) (-5 *1 (-841)))))
+(-10 -7 (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-842))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-842) (-1063))) (-15 -2103 ((-1036) (-842) (-1063))) (-15 -2103 ((-1036) (-842))) (-15 -4323 ((-1036) (-842))) (-15 -2103 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-317 (-381))) (-645 (-844 (-381))))) (-15 -2103 ((-1036) (-317 (-381)) (-645 (-381)) (-645 (-844 (-381))) (-645 (-844 (-381))))) (-15 -2103 ((-1036) (-317 (-381)) (-645 (-381)))) (-15 -2103 ((-1036) (-645 (-317 (-381))) (-645 (-381)))) (-15 -4323 ((-1036) (-645 (-317 (-381))) (-645 (-381)))))
+((-2257 (((-112) $ $) NIL)) (-1621 (((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) $) 21)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 20) (($ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) 14) (($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))))) 18)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-842) (-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4101 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -4101 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))))) (-15 -1621 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) $))))) (T -842))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (-5 *1 (-842)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))) (-5 *1 (-842)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))))) (-5 *1 (-842)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225))))))) (-5 *1 (-842)))))
+(-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225))))))) (-15 -4101 ($ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) (-15 -4101 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))))) (-15 -1621 ((-3 (|:| |noa| (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225))) (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225)))) (|:| |ub| (-645 (-844 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))) $))))
+((-3494 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)) 13) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 14)))
+(((-843 |#1| |#2|) (-10 -7 (-15 -3494 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3494 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|)))) (-1100) (-1100)) (T -843))
+((-3494 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *1 (-843 *5 *6)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6)))))
+(-10 -7 (-15 -3494 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -3494 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|) (-844 |#2|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL (|has| |#1| (-21)))) (-3476 (((-1120) $) 31)) (-4377 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3179 (((-567) $) NIL (|has| |#1| (-849)))) (-4061 (($) NIL (|has| |#1| (-21)) CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 18)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 9)) (-4014 (((-3 $ "failed") $) 58 (|has| |#1| (-849)))) (-4092 (((-3 (-410 (-567)) "failed") $) 65 (|has| |#1| (-548)))) (-4379 (((-112) $) 60 (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) 63 (|has| |#1| (-548)))) (-4095 (((-112) $) NIL (|has| |#1| (-849)))) (-2169 (($) 14)) (-3714 (((-112) $) NIL (|has| |#1| (-849)))) (-3948 (((-112) $) NIL (|has| |#1| (-849)))) (-2180 (($) 16)) (-2056 (($ $ $) NIL (|has| |#1| (-849)))) (-1802 (($ $ $) NIL (|has| |#1| (-849)))) (-2451 (((-1158) $) NIL)) (-3535 (((-112) $) 12)) (-3339 (((-1120) $) NIL)) (-3907 (((-112) $) 11)) (-4101 (((-863) $) 24) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 8) (($ (-567)) NIL (-2909 (|has| |#1| (-849)) (|has| |#1| (-1039 (-567)))))) (-2686 (((-772)) 51 (|has| |#1| (-849)) CONST)) (-3739 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| |#1| (-849)))) (-1468 (($) 37 (|has| |#1| (-21)) CONST)) (-1484 (($) 48 (|has| |#1| (-849)) CONST)) (-3109 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3052 (((-112) $ $) 35)) (-3098 (((-112) $ $) NIL (|has| |#1| (-849)))) (-3075 (((-112) $ $) 59 (|has| |#1| (-849)))) (-3156 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 44 (|has| |#1| (-21)))) (-3146 (($ $ $) 46 (|has| |#1| (-21)))) (** (($ $ (-922)) NIL (|has| |#1| (-849))) (($ $ (-772)) NIL (|has| |#1| (-849)))) (* (($ $ $) 55 (|has| |#1| (-849))) (($ (-567) $) 42 (|has| |#1| (-21))) (($ (-772) $) NIL (|has| |#1| (-21))) (($ (-922) $) NIL (|has| |#1| (-21)))))
+(((-844 |#1|) (-13 (-1100) (-414 |#1|) (-10 -8 (-15 -2169 ($)) (-15 -2180 ($)) (-15 -3907 ((-112) $)) (-15 -3535 ((-112) $)) (-15 -3476 ((-1120) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|))) (-1100)) (T -844))
+((-2169 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1100)))) (-2180 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1100)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1100)))) (-3535 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1100)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-844 *3)) (-4 *3 (-1100)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1100)))) (-3061 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1100)))) (-4092 (*1 *2 *1) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1100)))))
+(-13 (-1100) (-414 |#1|) (-10 -8 (-15 -2169 ($)) (-15 -2180 ($)) (-15 -3907 ((-112) $)) (-15 -3535 ((-112) $)) (-15 -3476 ((-1120) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-849)) |%noBranch|) (IF (|has| |#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
+((-2257 (((-112) $ $) 7)) (-2013 (((-772)) 23)) (-1649 (($) 26)) (-2056 (($ $ $) 14) (($) 22 T CONST)) (-1802 (($ $ $) 15) (($) 21 T CONST)) (-3527 (((-922) $) 25)) (-2451 (((-1158) $) 10)) (-3811 (($ (-922)) 24)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)))
+(((-845) (-140)) (T -845))
+((-2056 (*1 *1) (-4 *1 (-845))) (-1802 (*1 *1) (-4 *1 (-845))))
+(-13 (-851) (-370) (-10 -8 (-15 -2056 ($) -2131) (-15 -1802 ($) -2131)))
+(((-102) . T) ((-614 (-863)) . T) ((-370) . T) ((-851) . T) ((-1100) . T))
+((-2078 (((-112) (-1266 |#2|) (-1266 |#2|)) 23)) (-2694 (((-112) (-1266 |#2|) (-1266 |#2|)) 24)) (-4175 (((-112) (-1266 |#2|) (-1266 |#2|)) 20)))
+(((-846 |#1| |#2|) (-10 -7 (-15 -4175 ((-112) (-1266 |#2|) (-1266 |#2|))) (-15 -2078 ((-112) (-1266 |#2|) (-1266 |#2|))) (-15 -2694 ((-112) (-1266 |#2|) (-1266 |#2|)))) (-772) (-793)) (T -846))
+((-2694 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-2078 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))) (-4175 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+(-10 -7 (-15 -4175 ((-112) (-1266 |#2|) (-1266 |#2|))) (-15 -2078 ((-112) (-1266 |#2|) (-1266 |#2|))) (-15 -2694 ((-112) (-1266 |#2|) (-1266 |#2|))))
+((-2257 (((-112) $ $) 7)) (-4061 (($) 24 T CONST)) (-4014 (((-3 $ "failed") $) 27)) (-3714 (((-112) $) 25)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1484 (($) 23 T CONST)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (** (($ $ (-922)) 22) (($ $ (-772)) 26)) (* (($ $ $) 21)))
+(((-847) (-140)) (T -847))
+NIL
+(-13 (-858) (-727))
+(((-102) . T) ((-614 (-863)) . T) ((-727) . T) ((-858) . T) ((-851) . T) ((-1112) . T) ((-1100) . T))
+((-3179 (((-567) $) 21)) (-4095 (((-112) $) 10)) (-3948 (((-112) $) 12)) (-1771 (($ $) 23)))
+(((-848 |#1|) (-10 -8 (-15 -1771 (|#1| |#1|)) (-15 -3179 ((-567) |#1|)) (-15 -3948 ((-112) |#1|)) (-15 -4095 ((-112) |#1|))) (-849)) (T -848))
+NIL
+(-10 -8 (-15 -1771 (|#1| |#1|)) (-15 -3179 ((-567) |#1|)) (-15 -3948 ((-112) |#1|)) (-15 -4095 ((-112) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 25)) (-4377 (((-3 $ "failed") $ $) 27)) (-3179 (((-567) $) 37)) (-4061 (($) 24 T CONST)) (-4014 (((-3 $ "failed") $) 42)) (-4095 (((-112) $) 39)) (-3714 (((-112) $) 44)) (-3948 (((-112) $) 38)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 46)) (-2686 (((-772)) 47 T CONST)) (-3739 (((-112) $ $) 9)) (-1771 (($ $) 36)) (-1468 (($) 23 T CONST)) (-1484 (($) 45 T CONST)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (-3156 (($ $ $) 31) (($ $) 30)) (-3146 (($ $ $) 21)) (** (($ $ (-772)) 43) (($ $ (-922)) 40)) (* (($ (-922) $) 22) (($ (-772) $) 26) (($ (-567) $) 29) (($ $ $) 41)))
+(((-849) (-140)) (T -849))
+((-4095 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112)))) (-3179 (*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567)))) (-1771 (*1 *1 *1) (-4 *1 (-849))))
+(-13 (-792) (-1050) (-727) (-10 -8 (-15 -4095 ((-112) $)) (-15 -3948 ((-112) $)) (-15 -3179 ((-567) $)) (-15 -1771 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-851) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2056 (($ $ $) 12)) (-1802 (($ $ $) 11)) (-3739 (((-112) $ $) 9)) (-3109 (((-112) $ $) 15)) (-3085 (((-112) $ $) 13)) (-3098 (((-112) $ $) 16)))
+(((-850 |#1|) (-10 -8 (-15 -2056 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -3098 ((-112) |#1| |#1|)) (-15 -3109 ((-112) |#1| |#1|)) (-15 -3085 ((-112) |#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|))) (-851)) (T -850))
+NIL
+(-10 -8 (-15 -2056 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -3098 ((-112) |#1| |#1|)) (-15 -3109 ((-112) |#1| |#1|)) (-15 -3085 ((-112) |#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)))
+(((-851) (-140)) (T -851))
+((-3075 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3085 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3109 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-3098 (*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112)))) (-1802 (*1 *1 *1 *1) (-4 *1 (-851))) (-2056 (*1 *1 *1 *1) (-4 *1 (-851))))
+(-13 (-1100) (-10 -8 (-15 -3075 ((-112) $ $)) (-15 -3085 ((-112) $ $)) (-15 -3109 ((-112) $ $)) (-15 -3098 ((-112) $ $)) (-15 -1802 ($ $ $)) (-15 -2056 ($ $ $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-4137 (($ $ $) 49)) (-2276 (($ $ $) 48)) (-2348 (($ $ $) 46)) (-3313 (($ $ $) 55)) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 50)) (-3507 (((-3 $ "failed") $ $) 53)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2958 (($ $) 39)) (-1423 (($ $ $) 43)) (-3045 (($ $ $) 42)) (-1365 (($ $ $) 51)) (-2523 (($ $ $) 57)) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 45)) (-1745 (((-3 $ "failed") $ $) 52)) (-2245 (((-3 $ "failed") $ |#2|) 32)) (-1640 ((|#2| $) 36)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#2|) 13)) (-2350 (((-645 |#2|) $) 21)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25)))
+(((-852 |#1| |#2|) (-10 -8 (-15 -1365 (|#1| |#1| |#1|)) (-15 -1959 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4099 |#1|)) |#1| |#1|)) (-15 -3313 (|#1| |#1| |#1|)) (-15 -3507 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -4149 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4099 |#1|)) |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -1745 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2350 ((-645 |#2|) |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4101 ((-863) |#1|))) (-853 |#2|) (-1050)) (T -852))
+NIL
+(-10 -8 (-15 -1365 (|#1| |#1| |#1|)) (-15 -1959 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4099 |#1|)) |#1| |#1|)) (-15 -3313 (|#1| |#1| |#1|)) (-15 -3507 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4137 (|#1| |#1| |#1|)) (-15 -2276 (|#1| |#1| |#1|)) (-15 -2348 (|#1| |#1| |#1|)) (-15 -4149 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -4099 |#1|)) |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -1745 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1423 (|#1| |#1| |#1|)) (-15 -3045 (|#1| |#1| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -2245 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2350 ((-645 |#2|) |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4137 (($ $ $) 50 (|has| |#1| (-365)))) (-2276 (($ $ $) 51 (|has| |#1| (-365)))) (-2348 (($ $ $) 53 (|has| |#1| (-365)))) (-3313 (($ $ $) 48 (|has| |#1| (-365)))) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 47 (|has| |#1| (-365)))) (-3507 (((-3 $ "failed") $ $) 49 (|has| |#1| (-365)))) (-2454 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 52 (|has| |#1| (-365)))) (-3417 (((-3 (-567) "failed") $) 80 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 77 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 74)) (-1621 (((-567) $) 79 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 76 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 75)) (-2637 (($ $) 69)) (-4014 (((-3 $ "failed") $) 37)) (-2958 (($ $) 60 (|has| |#1| (-455)))) (-3714 (((-112) $) 35)) (-2422 (($ |#1| (-772)) 67)) (-2408 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 62 (|has| |#1| (-559)))) (-1634 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63 (|has| |#1| (-559)))) (-4185 (((-772) $) 71)) (-1423 (($ $ $) 57 (|has| |#1| (-365)))) (-3045 (($ $ $) 58 (|has| |#1| (-365)))) (-1365 (($ $ $) 46 (|has| |#1| (-365)))) (-2523 (($ $ $) 55 (|has| |#1| (-365)))) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 54 (|has| |#1| (-365)))) (-1745 (((-3 $ "failed") $ $) 56 (|has| |#1| (-365)))) (-3700 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 59 (|has| |#1| (-365)))) (-2613 ((|#1| $) 70)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-559)))) (-3677 (((-772) $) 72)) (-1640 ((|#1| $) 61 (|has| |#1| (-455)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 78 (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) 73)) (-2350 (((-645 |#1|) $) 66)) (-2339 ((|#1| $ (-772)) 68)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1992 ((|#1| $ |#1| |#1|) 65)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 82) (($ |#1| $) 81)))
+(((-853 |#1|) (-140) (-1050)) (T -853))
+((-3677 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-4185 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2637 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2422 (*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-645 *3)))) (-1992 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)))) (-2245 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-1634 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3)))) (-2408 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3)))) (-1640 (*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455)))) (-2958 (*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455)))) (-3700 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3)))) (-3045 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1423 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1745 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-4149 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4099 *1))) (-4 *1 (-853 *3)))) (-2348 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2454 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3)))) (-2276 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-4137 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-3507 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-3313 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-1959 (*1 *2 *1 *1) (-12 (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4099 *1))) (-4 *1 (-853 *3)))) (-1365 (*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(-13 (-1050) (-111 |t#1| |t#1|) (-414 |t#1|) (-10 -8 (-15 -3677 ((-772) $)) (-15 -4185 ((-772) $)) (-15 -2613 (|t#1| $)) (-15 -2637 ($ $)) (-15 -2339 (|t#1| $ (-772))) (-15 -2422 ($ |t#1| (-772))) (-15 -2350 ((-645 |t#1|) $)) (-15 -1992 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2245 ((-3 $ "failed") $ |t#1|)) (-15 -1634 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -2408 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -1640 (|t#1| $)) (-15 -2958 ($ $))) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-15 -3700 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -3045 ($ $ $)) (-15 -1423 ($ $ $)) (-15 -1745 ((-3 $ "failed") $ $)) (-15 -2523 ($ $ $)) (-15 -4149 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $)) (-15 -2348 ($ $ $)) (-15 -2454 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -2276 ($ $ $)) (-15 -4137 ($ $ $)) (-15 -3507 ((-3 $ "failed") $ $)) (-15 -3313 ($ $ $)) (-15 -1959 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $)) (-15 -1365 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-414 |#1|) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1039 #0#) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-1797 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-2454 (((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-365)))) (-2408 (((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-559)))) (-1634 (((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-559)))) (-3700 (((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-365)))) (-1992 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36)))
+(((-854 |#1| |#2|) (-10 -7 (-15 -1797 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1992 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -1634 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2408 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3700 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2454 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1050) (-853 |#1|)) (T -854))
+((-2454 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-3700 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-2408 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-1634 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3)) (-4 *3 (-853 *5)))) (-1992 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1050)) (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))) (-1797 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1050)) (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5)))))
+(-10 -7 (-15 -1797 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1992 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-559)) (PROGN (-15 -1634 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2408 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3700 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2454 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4137 (($ $ $) NIL (|has| |#1| (-365)))) (-2276 (($ $ $) NIL (|has| |#1| (-365)))) (-2348 (($ $ $) NIL (|has| |#1| (-365)))) (-3313 (($ $ $) NIL (|has| |#1| (-365)))) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-3507 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2454 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 34 (|has| |#1| (-365)))) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455)))) (-3188 (((-863) $ (-863)) NIL)) (-3714 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) NIL)) (-2408 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 30 (|has| |#1| (-559)))) (-1634 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 28 (|has| |#1| (-559)))) (-4185 (((-772) $) NIL)) (-1423 (($ $ $) NIL (|has| |#1| (-365)))) (-3045 (($ $ $) NIL (|has| |#1| (-365)))) (-1365 (($ $ $) NIL (|has| |#1| (-365)))) (-2523 (($ $ $) NIL (|has| |#1| (-365)))) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-1745 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3700 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 32 (|has| |#1| (-365)))) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3677 (((-772) $) NIL)) (-1640 ((|#1| $) NIL (|has| |#1| (-455)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-1039 (-410 (-567))))) (($ |#1|) NIL)) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1992 ((|#1| $ |#1| |#1|) 15)) (-1468 (($) NIL T CONST)) (-1484 (($) 23 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) 19) (($ $ (-772)) 24)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-855 |#1| |#2| |#3|) (-13 (-853 |#1|) (-10 -8 (-15 -3188 ((-863) $ (-863))))) (-1050) (-99 |#1|) (-1 |#1| |#1|)) (T -855))
+((-3188 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-853 |#1|) (-10 -8 (-15 -3188 ((-863) $ (-863)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4137 (($ $ $) NIL (|has| |#2| (-365)))) (-2276 (($ $ $) NIL (|has| |#2| (-365)))) (-2348 (($ $ $) NIL (|has| |#2| (-365)))) (-3313 (($ $ $) NIL (|has| |#2| (-365)))) (-1959 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#2| (-365)))) (-3507 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-2454 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#2| (-365)))) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) NIL)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#2| (-455)))) (-3714 (((-112) $) NIL)) (-2422 (($ |#2| (-772)) 17)) (-2408 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#2| (-559)))) (-1634 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#2| (-559)))) (-4185 (((-772) $) NIL)) (-1423 (($ $ $) NIL (|has| |#2| (-365)))) (-3045 (($ $ $) NIL (|has| |#2| (-365)))) (-1365 (($ $ $) NIL (|has| |#2| (-365)))) (-2523 (($ $ $) NIL (|has| |#2| (-365)))) (-4149 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#2| (-365)))) (-1745 (((-3 $ "failed") $ $) NIL (|has| |#2| (-365)))) (-3700 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#2| (-365)))) (-2613 ((|#2| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-3677 (((-772) $) NIL)) (-1640 ((|#2| $) NIL (|has| |#2| (-455)))) (-4101 (((-863) $) 24) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) NIL) (($ (-1262 |#1|)) 19)) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-772)) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1992 ((|#2| $ |#2| |#2|) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) 13 T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-856 |#1| |#2| |#3| |#4|) (-13 (-853 |#2|) (-617 (-1262 |#1|))) (-1176) (-1050) (-99 |#2|) (-1 |#2| |#2|)) (T -856))
+NIL
+(-13 (-853 |#2|) (-617 (-1262 |#1|)))
+((-2057 ((|#1| (-772) |#1|) 48 (|has| |#1| (-38 (-410 (-567)))))) (-1738 ((|#1| (-772) (-772) |#1|) 39) ((|#1| (-772) |#1|) 27)) (-3331 ((|#1| (-772) |#1|) 43)) (-4165 ((|#1| (-772) |#1|) 41)) (-4337 ((|#1| (-772) |#1|) 40)))
+(((-857 |#1|) (-10 -7 (-15 -4337 (|#1| (-772) |#1|)) (-15 -4165 (|#1| (-772) |#1|)) (-15 -3331 (|#1| (-772) |#1|)) (-15 -1738 (|#1| (-772) |#1|)) (-15 -1738 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2057 (|#1| (-772) |#1|)) |%noBranch|)) (-172)) (T -857))
+((-2057 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-172)))) (-1738 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-1738 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-3331 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-4165 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))) (-4337 (*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
+(-10 -7 (-15 -4337 (|#1| (-772) |#1|)) (-15 -4165 (|#1| (-772) |#1|)) (-15 -3331 (|#1| (-772) |#1|)) (-15 -1738 (|#1| (-772) |#1|)) (-15 -1738 (|#1| (-772) (-772) |#1|)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2057 (|#1| (-772) |#1|)) |%noBranch|))
+((-2257 (((-112) $ $) 7)) (-2056 (($ $ $) 14)) (-1802 (($ $ $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3109 (((-112) $ $) 17)) (-3085 (((-112) $ $) 18)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 16)) (-3075 (((-112) $ $) 19)) (** (($ $ (-922)) 22)) (* (($ $ $) 21)))
+(((-858) (-140)) (T -858))
+NIL
+(-13 (-851) (-1112))
+(((-102) . T) ((-614 (-863)) . T) ((-851) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-3843 (((-567) $) 14)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 20) (($ (-567)) 13)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 9)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 11)))
+(((-859) (-13 (-851) (-10 -8 (-15 -4101 ($ (-567))) (-15 -3843 ((-567) $))))) (T -859))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859)))))
+(-13 (-851) (-10 -8 (-15 -4101 ($ (-567))) (-15 -3843 ((-567) $))))
+((-3908 (((-692 (-1224)) $ (-1224)) 15)) (-2492 (((-692 (-552)) $ (-552)) 12)) (-1925 (((-772) $ (-128)) 30)))
+(((-860 |#1|) (-10 -8 (-15 -1925 ((-772) |#1| (-128))) (-15 -3908 ((-692 (-1224)) |#1| (-1224))) (-15 -2492 ((-692 (-552)) |#1| (-552)))) (-861)) (T -860))
+NIL
+(-10 -8 (-15 -1925 ((-772) |#1| (-128))) (-15 -3908 ((-692 (-1224)) |#1| (-1224))) (-15 -2492 ((-692 (-552)) |#1| (-552))))
+((-3908 (((-692 (-1224)) $ (-1224)) 8)) (-2492 (((-692 (-552)) $ (-552)) 9)) (-1925 (((-772) $ (-128)) 7)) (-1703 (((-692 (-129)) $ (-129)) 10)) (-4021 (($ $) 6)))
+(((-861) (-140)) (T -861))
+((-1703 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))) (-2492 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))) (-3908 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1224))) (-5 *3 (-1224)))) (-1925 (*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(-13 (-173) (-10 -8 (-15 -1703 ((-692 (-129)) $ (-129))) (-15 -2492 ((-692 (-552)) $ (-552))) (-15 -3908 ((-692 (-1224)) $ (-1224))) (-15 -1925 ((-772) $ (-128)))))
(((-173) . T))
-((-2005 (((-691 (-1223)) $ (-1223)) NIL)) (-2525 (((-691 (-551)) $ (-551)) NIL)) (-4354 (((-771) $ (-128)) NIL)) (-1650 (((-691 (-129)) $ (-129)) 22)) (-1949 (($ (-390)) 12) (($ (-1157)) 14)) (-3103 (((-112) $) 19)) (-2725 (((-862) $) 26)) (-4381 (($ $) 23)))
-(((-861) (-13 (-860) (-613 (-862)) (-10 -8 (-15 -1949 ($ (-390))) (-15 -1949 ($ (-1157))) (-15 -3103 ((-112) $))))) (T -861))
-((-1949 (*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861)))) (-1949 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861)))))
-(-13 (-860) (-613 (-862)) (-10 -8 (-15 -1949 ($ (-390))) (-15 -1949 ($ (-1157))) (-15 -3103 ((-112) $))))
-((-3979 (((-112) $ $) NIL) (($ $ $) 85)) (-2870 (($ $ $) 125)) (-3755 (((-566) $) 31) (((-566)) 36)) (-2310 (($ (-566)) 53)) (-2169 (($ $ $) 54) (($ (-644 $)) 84)) (-2139 (($ $ (-644 $)) 82)) (-3153 (((-566) $) 34)) (-3267 (($ $ $) 73)) (-4134 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2422 (((-566) $) 33)) (-4187 (($ $ $) 72)) (-4198 (($ $) 114)) (-1983 (($ $ $) 129)) (-1595 (($ (-644 $)) 61)) (-1664 (($ $ (-644 $)) 79)) (-3399 (($ (-566) (-566)) 55)) (-1884 (($ $) 126) (($ $ $) 127)) (-1627 (($ $ (-566)) 43) (($ $) 46)) (-3919 (($ $ $) 97)) (-2828 (($ $ $) 132)) (-1453 (($ $) 115)) (-3930 (($ $ $) 98)) (-1609 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-1403 (((-1270) $) 10)) (-1920 (($ $) 118) (($ $ (-771)) 122)) (-3998 (($ $ $) 75)) (-2969 (($ $ $) 74)) (-1474 (($ $ (-644 $)) 110)) (-4255 (($ $ $) 113)) (-4027 (($ (-644 $)) 59)) (-3206 (($ $) 70) (($ (-644 $)) 71)) (-1753 (($ $ $) 123)) (-2007 (($ $) 116)) (-2906 (($ $ $) 128)) (-2799 (($ (-566)) 21) (($ (-1175)) 23) (($ (-1157)) 30) (($ (-225)) 25)) (-3157 (($ $ $) 101)) (-3129 (($ $) 102)) (-1994 (((-1270) (-1157)) 15)) (-2066 (($ (-1157)) 14)) (-2656 (($ (-644 (-644 $))) 58)) (-1616 (($ $ (-566)) 42) (($ $) 45)) (-1390 (((-1157) $) NIL)) (-1821 (($ $ $) 131)) (-2758 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-2076 (((-112) $) 108)) (-3678 (($ $ (-644 $)) 111) (($ $ $ $) 112)) (-2650 (($ (-566)) 39)) (-1695 (((-566) $) 32) (((-566)) 35)) (-1806 (($ $ $) 40) (($ (-644 $)) 83)) (-1944 (((-1119) $) NIL)) (-3967 (($ $ $) 99)) (-3906 (($) 13)) (-3282 (($ $ (-644 $)) 109)) (-2866 (((-1157) (-1157)) 8)) (-1836 (($ $) 117) (($ $ (-771)) 121)) (-3954 (($ $ $) 96)) (-3009 (($ $ (-771)) 139)) (-2491 (($ (-644 $)) 60)) (-2725 (((-862) $) 19)) (-2737 (($ $ (-566)) 41) (($ $) 44)) (-3036 (($ $) 68) (($ (-644 $)) 69)) (-4087 (($ $) 66) (($ (-644 $)) 67)) (-3016 (($ $) 124)) (-4261 (($ (-644 $)) 65)) (-1672 (($ $ $) 105)) (-1479 (((-112) $ $) NIL)) (-4077 (($ $ $) 130)) (-3144 (($ $ $) 100)) (-3905 (($ $ $) 103) (($ $) 104)) (-2865 (($ $ $) 89)) (-2844 (($ $ $) 87)) (-2817 (((-112) $ $) 16) (($ $ $) 17)) (-2854 (($ $ $) 88)) (-2833 (($ $ $) 86)) (-2916 (($ $ $) 94)) (-2905 (($ $ $) 91) (($ $) 92)) (-2897 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
-(((-862) (-13 (-1099) (-10 -8 (-15 -1403 ((-1270) $)) (-15 -2066 ($ (-1157))) (-15 -1994 ((-1270) (-1157))) (-15 -2799 ($ (-566))) (-15 -2799 ($ (-1175))) (-15 -2799 ($ (-1157))) (-15 -2799 ($ (-225))) (-15 -3906 ($)) (-15 -2866 ((-1157) (-1157))) (-15 -3755 ((-566) $)) (-15 -1695 ((-566) $)) (-15 -3755 ((-566))) (-15 -1695 ((-566))) (-15 -2422 ((-566) $)) (-15 -3153 ((-566) $)) (-15 -2650 ($ (-566))) (-15 -2310 ($ (-566))) (-15 -3399 ($ (-566) (-566))) (-15 -1616 ($ $ (-566))) (-15 -1627 ($ $ (-566))) (-15 -2737 ($ $ (-566))) (-15 -1616 ($ $)) (-15 -1627 ($ $)) (-15 -2737 ($ $)) (-15 -1806 ($ $ $)) (-15 -2169 ($ $ $)) (-15 -1806 ($ (-644 $))) (-15 -2169 ($ (-644 $))) (-15 -1474 ($ $ (-644 $))) (-15 -3678 ($ $ (-644 $))) (-15 -3678 ($ $ $ $)) (-15 -4255 ($ $ $)) (-15 -2076 ((-112) $)) (-15 -3282 ($ $ (-644 $))) (-15 -4198 ($ $)) (-15 -1821 ($ $ $)) (-15 -3016 ($ $)) (-15 -2656 ($ (-644 (-644 $)))) (-15 -2870 ($ $ $)) (-15 -1884 ($ $)) (-15 -1884 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -1983 ($ $ $)) (-15 -4077 ($ $ $)) (-15 -2828 ($ $ $)) (-15 -3009 ($ $ (-771))) (-15 -1672 ($ $ $)) (-15 -4187 ($ $ $)) (-15 -3267 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -3998 ($ $ $)) (-15 -1664 ($ $ (-644 $))) (-15 -2139 ($ $ (-644 $))) (-15 -1453 ($ $)) (-15 -1836 ($ $)) (-15 -1836 ($ $ (-771))) (-15 -1920 ($ $)) (-15 -1920 ($ $ (-771))) (-15 -2007 ($ $)) (-15 -1753 ($ $ $)) (-15 -4134 ($ $)) (-15 -4134 ($ $ $)) (-15 -4134 ($ $ $ $)) (-15 -1609 ($ $)) (-15 -1609 ($ $ $)) (-15 -1609 ($ $ $ $)) (-15 -2758 ($ $)) (-15 -2758 ($ $ $)) (-15 -2758 ($ $ $ $)) (-15 -4087 ($ $)) (-15 -4087 ($ (-644 $))) (-15 -3036 ($ $)) (-15 -3036 ($ (-644 $))) (-15 -3206 ($ $)) (-15 -3206 ($ (-644 $))) (-15 -4027 ($ (-644 $))) (-15 -2491 ($ (-644 $))) (-15 -1595 ($ (-644 $))) (-15 -4261 ($ (-644 $))) (-15 -2817 ($ $ $)) (-15 -3979 ($ $ $)) (-15 -2833 ($ $ $)) (-15 -2844 ($ $ $)) (-15 -2854 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2905 ($ $)) (-15 * ($ $ $)) (-15 -2916 ($ $ $)) (-15 ** ($ $ $)) (-15 -3954 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -3930 ($ $ $)) (-15 -3967 ($ $ $)) (-15 -3144 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -3129 ($ $)) (-15 -3905 ($ $ $)) (-15 -3905 ($ $))))) (T -862))
-((-1403 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-862)))) (-2066 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-1994 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-862)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862)))) (-3906 (*1 *1) (-5 *1 (-862))) (-2866 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))) (-3755 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1695 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3755 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1695 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2310 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-3399 (*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1616 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1627 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-2737 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))) (-1616 (*1 *1 *1) (-5 *1 (-862))) (-1627 (*1 *1 *1) (-5 *1 (-862))) (-2737 (*1 *1 *1) (-5 *1 (-862))) (-1806 (*1 *1 *1 *1) (-5 *1 (-862))) (-2169 (*1 *1 *1 *1) (-5 *1 (-862))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2169 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3678 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3678 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-4255 (*1 *1 *1 *1) (-5 *1 (-862))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4198 (*1 *1 *1) (-5 *1 (-862))) (-1821 (*1 *1 *1 *1) (-5 *1 (-862))) (-3016 (*1 *1 *1) (-5 *1 (-862))) (-2656 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862)))) (-2870 (*1 *1 *1 *1) (-5 *1 (-862))) (-1884 (*1 *1 *1) (-5 *1 (-862))) (-1884 (*1 *1 *1 *1) (-5 *1 (-862))) (-2906 (*1 *1 *1 *1) (-5 *1 (-862))) (-1983 (*1 *1 *1 *1) (-5 *1 (-862))) (-4077 (*1 *1 *1 *1) (-5 *1 (-862))) (-2828 (*1 *1 *1 *1) (-5 *1 (-862))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-1672 (*1 *1 *1 *1) (-5 *1 (-862))) (-4187 (*1 *1 *1 *1) (-5 *1 (-862))) (-3267 (*1 *1 *1 *1) (-5 *1 (-862))) (-2969 (*1 *1 *1 *1) (-5 *1 (-862))) (-3998 (*1 *1 *1 *1) (-5 *1 (-862))) (-1664 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1453 (*1 *1 *1) (-5 *1 (-862))) (-1836 (*1 *1 *1) (-5 *1 (-862))) (-1836 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-1920 (*1 *1 *1) (-5 *1 (-862))) (-1920 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862)))) (-2007 (*1 *1 *1) (-5 *1 (-862))) (-1753 (*1 *1 *1 *1) (-5 *1 (-862))) (-4134 (*1 *1 *1) (-5 *1 (-862))) (-4134 (*1 *1 *1 *1) (-5 *1 (-862))) (-4134 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-1609 (*1 *1 *1) (-5 *1 (-862))) (-1609 (*1 *1 *1 *1) (-5 *1 (-862))) (-1609 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-2758 (*1 *1 *1) (-5 *1 (-862))) (-2758 (*1 *1 *1 *1) (-5 *1 (-862))) (-2758 (*1 *1 *1 *1 *1) (-5 *1 (-862))) (-4087 (*1 *1 *1) (-5 *1 (-862))) (-4087 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3036 (*1 *1 *1) (-5 *1 (-862))) (-3036 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-3206 (*1 *1 *1) (-5 *1 (-862))) (-3206 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2491 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-1595 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-4261 (*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))) (-2817 (*1 *1 *1 *1) (-5 *1 (-862))) (-3979 (*1 *1 *1 *1) (-5 *1 (-862))) (-2833 (*1 *1 *1 *1) (-5 *1 (-862))) (-2844 (*1 *1 *1 *1) (-5 *1 (-862))) (-2854 (*1 *1 *1 *1) (-5 *1 (-862))) (-2865 (*1 *1 *1 *1) (-5 *1 (-862))) (-2897 (*1 *1 *1 *1) (-5 *1 (-862))) (-2905 (*1 *1 *1 *1) (-5 *1 (-862))) (-2905 (*1 *1 *1) (-5 *1 (-862))) (* (*1 *1 *1 *1) (-5 *1 (-862))) (-2916 (*1 *1 *1 *1) (-5 *1 (-862))) (** (*1 *1 *1 *1) (-5 *1 (-862))) (-3954 (*1 *1 *1 *1) (-5 *1 (-862))) (-3919 (*1 *1 *1 *1) (-5 *1 (-862))) (-3930 (*1 *1 *1 *1) (-5 *1 (-862))) (-3967 (*1 *1 *1 *1) (-5 *1 (-862))) (-3144 (*1 *1 *1 *1) (-5 *1 (-862))) (-3157 (*1 *1 *1 *1) (-5 *1 (-862))) (-3129 (*1 *1 *1) (-5 *1 (-862))) (-3905 (*1 *1 *1 *1) (-5 *1 (-862))) (-3905 (*1 *1 *1) (-5 *1 (-862))))
-(-13 (-1099) (-10 -8 (-15 -1403 ((-1270) $)) (-15 -2066 ($ (-1157))) (-15 -1994 ((-1270) (-1157))) (-15 -2799 ($ (-566))) (-15 -2799 ($ (-1175))) (-15 -2799 ($ (-1157))) (-15 -2799 ($ (-225))) (-15 -3906 ($)) (-15 -2866 ((-1157) (-1157))) (-15 -3755 ((-566) $)) (-15 -1695 ((-566) $)) (-15 -3755 ((-566))) (-15 -1695 ((-566))) (-15 -2422 ((-566) $)) (-15 -3153 ((-566) $)) (-15 -2650 ($ (-566))) (-15 -2310 ($ (-566))) (-15 -3399 ($ (-566) (-566))) (-15 -1616 ($ $ (-566))) (-15 -1627 ($ $ (-566))) (-15 -2737 ($ $ (-566))) (-15 -1616 ($ $)) (-15 -1627 ($ $)) (-15 -2737 ($ $)) (-15 -1806 ($ $ $)) (-15 -2169 ($ $ $)) (-15 -1806 ($ (-644 $))) (-15 -2169 ($ (-644 $))) (-15 -1474 ($ $ (-644 $))) (-15 -3678 ($ $ (-644 $))) (-15 -3678 ($ $ $ $)) (-15 -4255 ($ $ $)) (-15 -2076 ((-112) $)) (-15 -3282 ($ $ (-644 $))) (-15 -4198 ($ $)) (-15 -1821 ($ $ $)) (-15 -3016 ($ $)) (-15 -2656 ($ (-644 (-644 $)))) (-15 -2870 ($ $ $)) (-15 -1884 ($ $)) (-15 -1884 ($ $ $)) (-15 -2906 ($ $ $)) (-15 -1983 ($ $ $)) (-15 -4077 ($ $ $)) (-15 -2828 ($ $ $)) (-15 -3009 ($ $ (-771))) (-15 -1672 ($ $ $)) (-15 -4187 ($ $ $)) (-15 -3267 ($ $ $)) (-15 -2969 ($ $ $)) (-15 -3998 ($ $ $)) (-15 -1664 ($ $ (-644 $))) (-15 -2139 ($ $ (-644 $))) (-15 -1453 ($ $)) (-15 -1836 ($ $)) (-15 -1836 ($ $ (-771))) (-15 -1920 ($ $)) (-15 -1920 ($ $ (-771))) (-15 -2007 ($ $)) (-15 -1753 ($ $ $)) (-15 -4134 ($ $)) (-15 -4134 ($ $ $)) (-15 -4134 ($ $ $ $)) (-15 -1609 ($ $)) (-15 -1609 ($ $ $)) (-15 -1609 ($ $ $ $)) (-15 -2758 ($ $)) (-15 -2758 ($ $ $)) (-15 -2758 ($ $ $ $)) (-15 -4087 ($ $)) (-15 -4087 ($ (-644 $))) (-15 -3036 ($ $)) (-15 -3036 ($ (-644 $))) (-15 -3206 ($ $)) (-15 -3206 ($ (-644 $))) (-15 -4027 ($ (-644 $))) (-15 -2491 ($ (-644 $))) (-15 -1595 ($ (-644 $))) (-15 -4261 ($ (-644 $))) (-15 -2817 ($ $ $)) (-15 -3979 ($ $ $)) (-15 -2833 ($ $ $)) (-15 -2844 ($ $ $)) (-15 -2854 ($ $ $)) (-15 -2865 ($ $ $)) (-15 -2897 ($ $ $)) (-15 -2905 ($ $ $)) (-15 -2905 ($ $)) (-15 * ($ $ $)) (-15 -2916 ($ $ $)) (-15 ** ($ $ $)) (-15 -3954 ($ $ $)) (-15 -3919 ($ $ $)) (-15 -3930 ($ $ $)) (-15 -3967 ($ $ $)) (-15 -3144 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -3129 ($ $)) (-15 -3905 ($ $ $)) (-15 -3905 ($ $))))
-((-3737 (((-1270) (-644 (-52))) 24)) (-2926 (((-1270) (-1157) (-862)) 14) (((-1270) (-862)) 9) (((-1270) (-1157)) 11)))
-(((-863) (-10 -7 (-15 -2926 ((-1270) (-1157))) (-15 -2926 ((-1270) (-862))) (-15 -2926 ((-1270) (-1157) (-862))) (-15 -3737 ((-1270) (-644 (-52)))))) (T -863))
-((-3737 (*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1270)) (-5 *1 (-863)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1270)) (-5 *1 (-863)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-863)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-863)))))
-(-10 -7 (-15 -2926 ((-1270) (-1157))) (-15 -2926 ((-1270) (-862))) (-15 -2926 ((-1270) (-1157) (-862))) (-15 -3737 ((-1270) (-644 (-52)))))
-((-3979 (((-112) $ $) NIL)) (-2928 (((-3 $ "failed") (-1175)) 39)) (-3733 (((-771)) 32)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) 29)) (-1390 (((-1157) $) 46)) (-2430 (($ (-921)) 28)) (-1944 (((-1119) $) NIL)) (-2150 (((-1175) $) 13) (((-538) $) 19) (((-892 (-381)) $) 26) (((-892 (-566)) $) 22)) (-2725 (((-862) $) 16)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 43)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 41)))
-(((-864 |#1|) (-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -2928 ((-3 $ "failed") (-1175))))) (-644 (-1175))) (T -864))
-((-2928 (*1 *1 *2) (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2)))))
-(-13 (-844) (-614 (-1175)) (-614 (-538)) (-614 (-892 (-381))) (-614 (-892 (-566))) (-10 -8 (-15 -2928 ((-3 $ "failed") (-1175)))))
-((-3979 (((-112) $ $) NIL)) (-3534 (((-508) $) 9)) (-2565 (((-644 (-441)) $) 13)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 21)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 16)))
-(((-865) (-13 (-1099) (-10 -8 (-15 -3534 ((-508) $)) (-15 -2565 ((-644 (-441)) $))))) (T -865))
-((-3534 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865)))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865)))))
-(-13 (-1099) (-10 -8 (-15 -3534 ((-508) $)) (-15 -2565 ((-644 (-441)) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-952 |#1|)) NIL) (((-952 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2875 (((-771)) NIL T CONST)) (-1678 (((-1270) (-771)) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2916 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-866 |#1| |#2| |#3| |#4|) (-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2916 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1678 ((-1270) (-771))))) (-1049) (-644 (-1175)) (-644 (-771)) (-771)) (T -866))
-((-2916 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-866 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-771))) (-14 *5 (-771)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-866 *4 *5 *6 *7)) (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3)) (-14 *7 *3))))
-(-13 (-1049) (-492 (-952 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2916 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1678 ((-1270) (-771)))))
-((-1384 (((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|) 43)) (-3443 (((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|) 34)))
-(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -3443 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -1384 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|))) (-365) (-1256 |#1|) (-1241 |#1|)) (T -867))
-((-1384 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1256 *5)) (-4 *6 (-1241 *5)))) (-3443 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6)) (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1256 *5)) (-4 *6 (-1241 *5)))))
-(-10 -7 (-15 -3443 ((-3 (-409 |#3|) "failed") (-771) (-771) |#2| |#2|)) (-15 -1384 ((-3 (-174 |#3|) "failed") (-771) (-771) |#2| |#2|)))
-((-3443 (((-3 (-409 (-1238 |#2| |#1|)) "failed") (-771) (-771) (-1257 |#1| |#2| |#3|)) 30) (((-3 (-409 (-1238 |#2| |#1|)) "failed") (-771) (-771) (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|)) 28)))
-(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -3443 ((-3 (-409 (-1238 |#2| |#1|)) "failed") (-771) (-771) (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|))) (-15 -3443 ((-3 (-409 (-1238 |#2| |#1|)) "failed") (-771) (-771) (-1257 |#1| |#2| |#3|)))) (-365) (-1175) |#1|) (T -868))
-((-3443 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1257 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1238 *6 *5))) (-5 *1 (-868 *5 *6 *7)))) (-3443 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1257 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1238 *6 *5))) (-5 *1 (-868 *5 *6 *7)))))
-(-10 -7 (-15 -3443 ((-3 (-409 (-1238 |#2| |#1|)) "failed") (-771) (-771) (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|))) (-15 -3443 ((-3 (-409 (-1238 |#2| |#1|)) "failed") (-771) (-771) (-1257 |#1| |#2| |#3|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-4028 (($ $ (-566)) 68)) (-2068 (((-112) $ $) 65)) (-2633 (($) 18 T CONST)) (-1884 (($ (-1171 (-566)) (-566)) 67)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3525 (($ $) 70)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-3077 (((-771) $) 75)) (-3842 (((-112) $) 35)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-2689 (((-566)) 72)) (-3210 (((-566) $) 71)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3964 (($ $ (-566)) 74)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2016 (((-1155 (-566)) $) 76)) (-3965 (($ $) 73)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-1551 (((-566) $ (-566)) 69)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-869 |#1|) (-140) (-566)) (T -869))
-((-2016 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566))))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771)))) (-3964 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-3965 (*1 *1 *1) (-4 *1 (-869 *2))) (-2689 (*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-3210 (*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-3525 (*1 *1 *1) (-4 *1 (-869 *2))) (-1551 (*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))) (-1884 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4)))))
-(-13 (-308) (-147) (-10 -8 (-15 -2016 ((-1155 (-566)) $)) (-15 -3077 ((-771) $)) (-15 -3964 ($ $ (-566))) (-15 -3965 ($ $)) (-15 -2689 ((-566))) (-15 -3210 ((-566) $)) (-15 -3525 ($ $)) (-15 -1551 ((-566) $ (-566))) (-15 -4028 ($ $ (-566))) (-15 -1884 ($ (-1171 (-566)) (-566)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $ (-566)) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-1884 (($ (-1171 (-566)) (-566)) NIL)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3525 (($ $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-3077 (((-771) $) NIL)) (-3842 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2689 (((-566)) NIL)) (-3210 (((-566) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3964 (($ $ (-566)) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2016 (((-1155 (-566)) $) NIL)) (-3965 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-1551 (((-566) $ (-566)) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL)))
-(((-870 |#1|) (-869 |#1|) (-566)) (T -870))
-NIL
-(-869 |#1|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| (-870 |#1|) (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-870 |#1|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-3343 (((-870 |#1|) $) NIL) (((-1175) $) NIL (|has| (-870 |#1|) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-870 |#1|) (-1038 (-566)))) (((-566) $) NIL (|has| (-870 |#1|) (-1038 (-566))))) (-4031 (($ $) NIL) (($ (-566) $) NIL)) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-870 |#1|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-870 |#1|))) (|:| |vec| (-1265 (-870 |#1|)))) (-689 $) (-1265 $)) NIL) (((-689 (-870 |#1|)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-870 |#1|) (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-870 |#1|) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-870 |#1|) (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 (((-870 |#1|) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| (-870 |#1|) (-1150)))) (-2307 (((-112) $) NIL (|has| (-870 |#1|) (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-3936 (($ $ $) NIL (|has| (-870 |#1|) (-850)))) (-2101 (($ (-1 (-870 |#1|) (-870 |#1|)) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-870 |#1|) (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| (-870 |#1|) (-308)))) (-2311 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-870 |#1|) (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 (-870 |#1|)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-870 |#1|) (-870 |#1|)) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-295 (-870 |#1|))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-295 (-870 |#1|)))) NIL (|has| (-870 |#1|) (-310 (-870 |#1|)))) (($ $ (-644 (-1175)) (-644 (-870 |#1|))) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|)))) (($ $ (-1175) (-870 |#1|)) NIL (|has| (-870 |#1|) (-516 (-1175) (-870 |#1|))))) (-3792 (((-771) $) NIL)) (-3282 (($ $ (-870 |#1|)) NIL (|has| (-870 |#1|) (-287 (-870 |#1|) (-870 |#1|))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-3233 (($ $) NIL)) (-2702 (((-870 |#1|) $) NIL)) (-2150 (((-892 (-566)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-870 |#1|) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-870 |#1|) (-614 (-538)))) (((-381) $) NIL (|has| (-870 |#1|) (-1022))) (((-225) $) NIL (|has| (-870 |#1|) (-1022)))) (-3485 (((-174 (-409 (-566))) $) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL) (($ (-870 |#1|)) NIL) (($ (-1175)) NIL (|has| (-870 |#1|) (-1038 (-1175))))) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-870 |#1|) (-909))) (|has| (-870 |#1|) (-145))))) (-2875 (((-771)) NIL T CONST)) (-2119 (((-870 |#1|) $) NIL (|has| (-870 |#1|) (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-1551 (((-409 (-566)) $ (-566)) NIL)) (-2274 (($ $) NIL (|has| (-870 |#1|) (-820)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $) NIL (|has| (-870 |#1|) (-233))) (($ $ (-771)) NIL (|has| (-870 |#1|) (-233))) (($ $ (-1175)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-870 |#1|) (-900 (-1175)))) (($ $ (-1 (-870 |#1|) (-870 |#1|)) (-771)) NIL) (($ $ (-1 (-870 |#1|) (-870 |#1|))) NIL)) (-2865 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-870 |#1|) (-850)))) (-2916 (($ $ $) NIL) (($ (-870 |#1|) (-870 |#1|)) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-870 |#1|) $) NIL) (($ $ (-870 |#1|)) NIL)))
-(((-871 |#1|) (-13 (-992 (-870 |#1|)) (-10 -8 (-15 -1551 ((-409 (-566)) $ (-566))) (-15 -3485 ((-174 (-409 (-566))) $)) (-15 -4031 ($ $)) (-15 -4031 ($ (-566) $)))) (-566)) (T -871))
-((-1551 (*1 *2 *1 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3) (-5 *3 (-566)))) (-3485 (*1 *2 *1) (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566)))) (-4031 (*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566)))) (-4031 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2))))
-(-13 (-992 (-870 |#1|)) (-10 -8 (-15 -1551 ((-409 (-566)) $ (-566))) (-15 -3485 ((-174 (-409 (-566))) $)) (-15 -4031 ($ $)) (-15 -4031 ($ (-566) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 ((|#2| $) NIL (|has| |#2| (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| |#2| (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (|has| |#2| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566))))) (-3343 ((|#2| $) NIL) (((-1175) $) NIL (|has| |#2| (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-566)))) (((-566) $) NIL (|has| |#2| (-1038 (-566))))) (-4031 (($ $) 35) (($ (-566) $) 38)) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) 64)) (-3424 (($) NIL (|has| |#2| (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) NIL (|has| |#2| (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| |#2| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| |#2| (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 ((|#2| $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-2307 (((-112) $) NIL (|has| |#2| (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| |#2| (-850)))) (-3936 (($ $ $) NIL (|has| |#2| (-850)))) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 60)) (-1342 (($) NIL (|has| |#2| (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| |#2| (-308)))) (-2311 ((|#2| $) NIL (|has| |#2| (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 |#2|) (-644 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (|has| |#2| (-516 (-1175) |#2|))) (($ $ (-1175) |#2|) NIL (|has| |#2| (-516 (-1175) |#2|)))) (-3792 (((-771) $) NIL)) (-3282 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3233 (($ $) NIL)) (-2702 ((|#2| $) NIL)) (-2150 (((-892 (-566)) $) NIL (|has| |#2| (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| |#2| (-614 (-892 (-381))))) (((-538) $) NIL (|has| |#2| (-614 (-538)))) (((-381) $) NIL (|has| |#2| (-1022))) (((-225) $) NIL (|has| |#2| (-1022)))) (-3485 (((-174 (-409 (-566))) $) 78)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2725 (((-862) $) 108) (($ (-566)) 20) (($ $) NIL) (($ (-409 (-566))) 25) (($ |#2|) 19) (($ (-1175)) NIL (|has| |#2| (-1038 (-1175))))) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2875 (((-771)) NIL T CONST)) (-2119 ((|#2| $) NIL (|has| |#2| (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-1551 (((-409 (-566)) $ (-566)) 71)) (-2274 (($ $) NIL (|has| |#2| (-820)))) (-3200 (($) 15 T CONST)) (-3214 (($) 17 T CONST)) (-1316 (($ $) NIL (|has| |#2| (-233))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2865 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2817 (((-112) $ $) 46)) (-2854 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#2| (-850)))) (-2916 (($ $ $) 24) (($ |#2| |#2|) 65)) (-2905 (($ $) 50) (($ $ $) 52)) (-2897 (($ $ $) 48)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 53) (($ $ $) 55) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
-(((-872 |#1| |#2|) (-13 (-992 |#2|) (-10 -8 (-15 -1551 ((-409 (-566)) $ (-566))) (-15 -3485 ((-174 (-409 (-566))) $)) (-15 -4031 ($ $)) (-15 -4031 ($ (-566) $)))) (-566) (-869 |#1|)) (T -872))
-((-1551 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5)) (-5 *3 (-566)) (-4 *5 (-869 *4)))) (-3485 (*1 *2 *1) (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3)))) (-4031 (*1 *1 *1) (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2)))) (-4031 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3)))))
-(-13 (-992 |#2|) (-10 -8 (-15 -1551 ((-409 (-566)) $ (-566))) (-15 -3485 ((-174 (-409 (-566))) $)) (-15 -4031 ($ $)) (-15 -4031 ($ (-566) $))))
-((-3979 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-4075 ((|#2| $) 12)) (-2459 (($ |#1| |#2|) 9)) (-1390 (((-1157) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-1944 (((-1119) $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#1| $) 11)) (-2738 (($ |#1| |#2|) 10)) (-2725 (((-862) $) 18 (-2676 (-12 (|has| |#1| (-613 (-862))) (|has| |#2| (-613 (-862)))) (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099)))))) (-1479 (((-112) $ $) NIL (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))) (-2817 (((-112) $ $) 23 (-12 (|has| |#1| (-1099)) (|has| |#2| (-1099))))))
-(((-873 |#1| |#2|) (-13 (-1215) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2459 ($ |#1| |#2|)) (-15 -2738 ($ |#1| |#2|)) (-15 -3771 (|#1| $)) (-15 -4075 (|#2| $)))) (-1215) (-1215)) (T -873))
-((-2459 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1215)) (-4 *3 (-1215)))) (-2738 (*1 *1 *2 *3) (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1215)) (-4 *3 (-1215)))) (-3771 (*1 *2 *1) (-12 (-4 *2 (-1215)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1215)))) (-4075 (*1 *2 *1) (-12 (-4 *2 (-1215)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1215)))))
-(-13 (-1215) (-10 -8 (IF (|has| |#1| (-613 (-862))) (IF (|has| |#2| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1099)) (IF (|has| |#2| (-1099)) (-6 (-1099)) |%noBranch|) |%noBranch|) (-15 -2459 ($ |#1| |#2|)) (-15 -2738 ($ |#1| |#2|)) (-15 -3771 (|#1| $)) (-15 -4075 (|#2| $))))
-((-3979 (((-112) $ $) NIL)) (-1840 (((-566) $) 16)) (-3611 (($ (-157)) 13)) (-4267 (($ (-157)) 14)) (-1390 (((-1157) $) NIL)) (-4369 (((-157) $) 15)) (-1944 (((-1119) $) NIL)) (-3910 (($ (-157)) 11)) (-3355 (($ (-157)) 10)) (-2725 (((-862) $) 24) (($ (-157)) 17)) (-4197 (($ (-157)) 12)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-874) (-13 (-1099) (-10 -8 (-15 -3355 ($ (-157))) (-15 -3910 ($ (-157))) (-15 -4197 ($ (-157))) (-15 -3611 ($ (-157))) (-15 -4267 ($ (-157))) (-15 -4369 ((-157) $)) (-15 -1840 ((-566) $)) (-15 -2725 ($ (-157)))))) (T -874))
-((-3355 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-4197 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-3611 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-4369 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))))
-(-13 (-1099) (-10 -8 (-15 -3355 ($ (-157))) (-15 -3910 ($ (-157))) (-15 -4197 ($ (-157))) (-15 -3611 ($ (-157))) (-15 -4267 ($ (-157))) (-15 -4369 ((-157) $)) (-15 -1840 ((-566) $)) (-15 -2725 ($ (-157)))))
-((-2725 (((-317 (-566)) (-409 (-952 (-48)))) 23) (((-317 (-566)) (-952 (-48))) 18)))
-(((-875) (-10 -7 (-15 -2725 ((-317 (-566)) (-952 (-48)))) (-15 -2725 ((-317 (-566)) (-409 (-952 (-48))))))) (T -875))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 (-48)))) (-5 *2 (-317 (-566))) (-5 *1 (-875)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-566))) (-5 *1 (-875)))))
-(-10 -7 (-15 -2725 ((-317 (-566)) (-952 (-48)))) (-15 -2725 ((-317 (-566)) (-409 (-952 (-48))))))
-((-2101 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 15)))
-(((-876 |#1| |#2|) (-10 -7 (-15 -2101 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-1215) (-1215)) (T -876))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6)))))
-(-10 -7 (-15 -2101 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))
-((-2647 (($ |#1| |#1|) 8)) (-4242 ((|#1| $ (-771)) 15)))
-(((-877 |#1|) (-10 -8 (-15 -2647 ($ |#1| |#1|)) (-15 -4242 (|#1| $ (-771)))) (-1215)) (T -877))
-((-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1215)))) (-2647 (*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1215)))))
-(-10 -8 (-15 -2647 ($ |#1| |#1|)) (-15 -4242 (|#1| $ (-771))))
-((-2101 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -2101 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1215) (-1215)) (T -878))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))))
-(-10 -7 (-15 -2101 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|))))
-((-2647 (($ |#1| |#1| |#1|) 8)) (-4242 ((|#1| $ (-771)) 15)))
-(((-879 |#1|) (-10 -8 (-15 -2647 ($ |#1| |#1| |#1|)) (-15 -4242 (|#1| $ (-771)))) (-1215)) (T -879))
-((-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1215)))) (-2647 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1215)))))
-(-10 -8 (-15 -2647 ($ |#1| |#1| |#1|)) (-15 -4242 (|#1| $ (-771))))
-((-2879 (((-644 (-1180)) (-1157)) 9)))
-(((-880) (-10 -7 (-15 -2879 ((-644 (-1180)) (-1157))))) (T -880))
-((-2879 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880)))))
-(-10 -7 (-15 -2879 ((-644 (-1180)) (-1157))))
-((-2101 (((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)) 15)))
-(((-881 |#1| |#2|) (-10 -7 (-15 -2101 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|)))) (-1215) (-1215)) (T -881))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6)))))
-(-10 -7 (-15 -2101 ((-882 |#2|) (-1 |#2| |#1|) (-882 |#1|))))
-((-1696 (($ |#1| |#1| |#1|) 8)) (-4242 ((|#1| $ (-771)) 15)))
-(((-882 |#1|) (-10 -8 (-15 -1696 ($ |#1| |#1| |#1|)) (-15 -4242 (|#1| $ (-771)))) (-1215)) (T -882))
-((-4242 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1215)))) (-1696 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1215)))))
-(-10 -8 (-15 -1696 ($ |#1| |#1| |#1|)) (-15 -4242 (|#1| $ (-771))))
-((-4174 (((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566)))) 48)) (-1943 (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 44)) (-3631 (((-1155 (-644 (-566))) (-644 (-566))) 58) (((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566))) 56)) (-1736 (((-1155 (-644 (-566))) (-566)) 59)) (-4378 (((-1155 (-644 (-566))) (-566) (-566)) 34) (((-1155 (-644 (-566))) (-566)) 23) (((-1155 (-644 (-566))) (-566) (-566) (-566)) 19)) (-2774 (((-1155 (-644 (-566))) (-1155 (-644 (-566)))) 42)) (-2558 (((-644 (-566)) (-644 (-566))) 41)))
-(((-883) (-10 -7 (-15 -4378 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -4378 ((-1155 (-644 (-566))) (-566))) (-15 -4378 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -2558 ((-644 (-566)) (-644 (-566)))) (-15 -2774 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -1943 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -4174 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -3631 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -3631 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -1736 ((-1155 (-644 (-566))) (-566))))) (T -883))
-((-1736 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-3631 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-3631 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-4174 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566))) (-5 *1 (-883)))) (-1943 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-644 (-566))))) (-2774 (*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)))) (-2558 (*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883)))) (-4378 (*1 *2 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-4378 (*1 *2 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))) (-4378 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))))
-(-10 -7 (-15 -4378 ((-1155 (-644 (-566))) (-566) (-566) (-566))) (-15 -4378 ((-1155 (-644 (-566))) (-566))) (-15 -4378 ((-1155 (-644 (-566))) (-566) (-566))) (-15 -2558 ((-644 (-566)) (-644 (-566)))) (-15 -2774 ((-1155 (-644 (-566))) (-1155 (-644 (-566))))) (-15 -1943 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -4174 ((-1155 (-644 (-566))) (-644 (-566)) (-1155 (-644 (-566))))) (-15 -3631 ((-1155 (-644 (-566))) (-644 (-566)) (-644 (-566)))) (-15 -3631 ((-1155 (-644 (-566))) (-644 (-566)))) (-15 -1736 ((-1155 (-644 (-566))) (-566))))
-((-2150 (((-892 (-381)) $) 9 (|has| |#1| (-614 (-892 (-381))))) (((-892 (-566)) $) 8 (|has| |#1| (-614 (-892 (-566)))))))
-(((-884 |#1|) (-140) (-1215)) (T -884))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-614 (-892 (-566)))) (-6 (-614 (-892 (-566)))) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-381)))) (-6 (-614 (-892 (-381)))) |%noBranch|)))
-(((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))))
-((-3979 (((-112) $ $) NIL)) (-2631 (($) 14)) (-4122 (($ (-889 |#1| |#2|) (-889 |#1| |#3|)) 28)) (-4240 (((-889 |#1| |#3|) $) 16)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3597 (((-112) $) 22)) (-2188 (($) 19)) (-2725 (((-862) $) 31)) (-1479 (((-112) $ $) NIL)) (-2432 (((-889 |#1| |#2|) $) 15)) (-2817 (((-112) $ $) 26)))
-(((-885 |#1| |#2| |#3|) (-13 (-1099) (-10 -8 (-15 -3597 ((-112) $)) (-15 -2188 ($)) (-15 -2631 ($)) (-15 -4122 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -2432 ((-889 |#1| |#2|) $)) (-15 -4240 ((-889 |#1| |#3|) $)))) (-1099) (-1099) (-666 |#2|)) (T -885))
-((-3597 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-2188 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-2631 (*1 *1) (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099)) (-4 *4 (-666 *3)))) (-4122 (*1 *1 *2 *3) (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6)))) (-2432 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))) (-4240 (*1 *2 *1) (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5)) (-4 *3 (-1099)) (-4 *5 (-666 *4)))))
-(-13 (-1099) (-10 -8 (-15 -3597 ((-112) $)) (-15 -2188 ($)) (-15 -2631 ($)) (-15 -4122 ($ (-889 |#1| |#2|) (-889 |#1| |#3|))) (-15 -2432 ((-889 |#1| |#2|) $)) (-15 -4240 ((-889 |#1| |#3|) $))))
-((-3979 (((-112) $ $) 7)) (-2114 (((-889 |#1| $) $ (-892 |#1|) (-889 |#1| $)) 14)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-886 |#1|) (-140) (-1099)) (T -886))
-((-2114 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4)) (-4 *4 (-1099)))))
-(-13 (-1099) (-10 -8 (-15 -2114 ((-889 |t#1| $) $ (-892 |t#1|) (-889 |t#1| $)))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3044 (((-112) (-644 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-3380 (((-889 |#1| |#2|) |#2| |#3|) 45 (-12 (-3129 (|has| |#2| (-1038 (-1175)))) (-3129 (|has| |#2| (-1049))))) (((-644 (-295 (-952 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1049)) (-3129 (|has| |#2| (-1038 (-1175)))))) (((-644 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1038 (-1175)))) (((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|) 21)))
-(((-887 |#1| |#2| |#3|) (-10 -7 (-15 -3044 ((-112) |#2| |#3|)) (-15 -3044 ((-112) (-644 |#2|) |#3|)) (-15 -3380 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3380 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -3380 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -3380 ((-889 |#1| |#2|) |#2| |#3|))))) (-1099) (-886 |#1|) (-614 (-892 |#1|))) (T -887))
-((-3380 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4)) (-3129 (-4 *3 (-1038 (-1175)))) (-3129 (-4 *3 (-1049))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-3380 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3)))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049)) (-3129 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-3380 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))) (-3380 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6))) (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5))))) (-3044 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5))))) (-3044 (*1 *2 *3 *4) (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))))
-(-10 -7 (-15 -3044 ((-112) |#2| |#3|)) (-15 -3044 ((-112) (-644 |#2|) |#3|)) (-15 -3380 ((-885 |#1| |#2| (-644 |#2|)) (-644 |#2|) |#3|)) (IF (|has| |#2| (-1038 (-1175))) (-15 -3380 ((-644 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1049)) (-15 -3380 ((-644 (-295 (-952 |#2|))) |#2| |#3|)) (-15 -3380 ((-889 |#1| |#2|) |#2| |#3|)))))
-((-2101 (((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)) 22)))
-(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -2101 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|)))) (-1099) (-1099) (-1099)) (T -888))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-889 *5 *6)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-889 *5 *7)) (-5 *1 (-888 *5 *6 *7)))))
-(-10 -7 (-15 -2101 ((-889 |#1| |#3|) (-1 |#3| |#2|) (-889 |#1| |#2|))))
-((-3979 (((-112) $ $) NIL)) (-2672 (($ $ $) 40)) (-4046 (((-3 (-112) "failed") $ (-892 |#1|)) 37)) (-2631 (($) 12)) (-1390 (((-1157) $) NIL)) (-1747 (($ (-892 |#1|) |#2| $) 20)) (-1944 (((-1119) $) NIL)) (-2008 (((-3 |#2| "failed") (-892 |#1|) $) 51)) (-3597 (((-112) $) 15)) (-2188 (($) 13)) (-4099 (((-644 (-2 (|:| -3476 (-1175)) (|:| -2484 |#2|))) $) 25)) (-2738 (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 |#2|)))) 23)) (-2725 (((-862) $) 45)) (-1479 (((-112) $ $) NIL)) (-1882 (($ (-892 |#1|) |#2| $ |#2|) 49)) (-3896 (($ (-892 |#1|) |#2| $) 48)) (-2817 (((-112) $ $) 42)))
-(((-889 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3597 ((-112) $)) (-15 -2188 ($)) (-15 -2631 ($)) (-15 -2672 ($ $ $)) (-15 -2008 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -3896 ($ (-892 |#1|) |#2| $)) (-15 -1747 ($ (-892 |#1|) |#2| $)) (-15 -1882 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -4099 ((-644 (-2 (|:| -3476 (-1175)) (|:| -2484 |#2|))) $)) (-15 -2738 ($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 |#2|))))) (-15 -4046 ((-3 (-112) "failed") $ (-892 |#1|))))) (-1099) (-1099)) (T -889))
-((-3597 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2188 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2631 (*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2672 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2008 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099)) (-5 *1 (-889 *4 *2)))) (-3896 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-1747 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-1882 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3)) (-4 *3 (-1099)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 *4)))) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 *4)))) (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)))) (-4046 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-889 *4 *5)) (-4 *5 (-1099)))))
-(-13 (-1099) (-10 -8 (-15 -3597 ((-112) $)) (-15 -2188 ($)) (-15 -2631 ($)) (-15 -2672 ($ $ $)) (-15 -2008 ((-3 |#2| "failed") (-892 |#1|) $)) (-15 -3896 ($ (-892 |#1|) |#2| $)) (-15 -1747 ($ (-892 |#1|) |#2| $)) (-15 -1882 ($ (-892 |#1|) |#2| $ |#2|)) (-15 -4099 ((-644 (-2 (|:| -3476 (-1175)) (|:| -2484 |#2|))) $)) (-15 -2738 ($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 |#2|))))) (-15 -4046 ((-3 (-112) "failed") $ (-892 |#1|)))))
-((-2552 (((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|))) 32) (((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|))) 46) (((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|)) 35)) (-4046 (((-112) (-644 |#2|) (-892 |#1|)) 42) (((-112) |#2| (-892 |#1|)) 36)) (-3463 (((-1 (-112) |#2|) (-892 |#1|)) 16)) (-2354 (((-644 |#2|) (-892 |#1|)) 24)) (-2084 (((-892 |#1|) (-892 |#1|) |#2|) 20)))
-(((-890 |#1| |#2|) (-10 -7 (-15 -2552 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -2552 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -2552 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -3463 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -4046 ((-112) |#2| (-892 |#1|))) (-15 -4046 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -2084 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -2354 ((-644 |#2|) (-892 |#1|)))) (-1099) (-1215)) (T -890))
-((-2354 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1215)))) (-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1215)))) (-4046 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1215)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6)))) (-4046 (*1 *2 *3 *4) (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-890 *5 *3)) (-4 *3 (-1215)))) (-3463 (*1 *2 *3) (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1215)))) (-2552 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-892 *5)) (-5 *3 (-644 (-1175))) (-5 *4 (-1 (-112) (-644 *6))) (-4 *5 (-1099)) (-4 *6 (-1215)) (-5 *1 (-890 *5 *6)))) (-2552 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1099)) (-4 *5 (-1215)) (-5 *1 (-890 *4 *5)))) (-2552 (*1 *2 *2 *3) (-12 (-5 *2 (-892 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1099)) (-4 *5 (-1215)) (-5 *1 (-890 *4 *5)))))
-(-10 -7 (-15 -2552 ((-892 |#1|) (-892 |#1|) (-1 (-112) |#2|))) (-15 -2552 ((-892 |#1|) (-892 |#1|) (-644 (-1 (-112) |#2|)))) (-15 -2552 ((-892 |#1|) (-892 |#1|) (-644 (-1175)) (-1 (-112) (-644 |#2|)))) (-15 -3463 ((-1 (-112) |#2|) (-892 |#1|))) (-15 -4046 ((-112) |#2| (-892 |#1|))) (-15 -4046 ((-112) (-644 |#2|) (-892 |#1|))) (-15 -2084 ((-892 |#1|) (-892 |#1|) |#2|)) (-15 -2354 ((-644 |#2|) (-892 |#1|))))
-((-2101 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 19)))
-(((-891 |#1| |#2|) (-10 -7 (-15 -2101 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1099) (-1099)) (T -891))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))))
-(-10 -7 (-15 -2101 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|))))
-((-3979 (((-112) $ $) NIL)) (-1803 (($ $ (-644 (-52))) 74)) (-4170 (((-644 $) $) 138)) (-1540 (((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $) 30)) (-2289 (((-112) $) 35)) (-1786 (($ $ (-644 (-1175)) (-52)) 31)) (-2417 (($ $ (-644 (-52))) 73)) (-2023 (((-3 |#1| "failed") $) 71) (((-3 (-1175) "failed") $) 162)) (-3343 ((|#1| $) 68) (((-1175) $) NIL)) (-3278 (($ $) 126)) (-2570 (((-112) $) 55)) (-2232 (((-644 (-52)) $) 50)) (-2933 (($ (-1175) (-112) (-112) (-112)) 75)) (-2826 (((-3 (-644 $) "failed") (-644 $)) 82)) (-2686 (((-112) $) 58)) (-4322 (((-112) $) 57)) (-1390 (((-1157) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) 41)) (-1643 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-1559 (((-3 (-2 (|:| |val| $) (|:| -3428 $)) "failed") $) 97)) (-1660 (((-3 (-644 $) "failed") $) 40)) (-3591 (((-3 (-644 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -2606 (-114)) (|:| |arg| (-644 $))) "failed") $) 107)) (-2074 (((-3 (-644 $) "failed") $) 42)) (-2544 (((-3 (-2 (|:| |val| $) (|:| -3428 (-771))) "failed") $) 45)) (-4062 (((-112) $) 34)) (-1944 (((-1119) $) NIL)) (-1701 (((-112) $) 28)) (-2531 (((-112) $) 52)) (-2914 (((-644 (-52)) $) 130)) (-2536 (((-112) $) 56)) (-3282 (($ (-114) (-644 $)) 104)) (-2279 (((-771) $) 33)) (-2878 (($ $) 72)) (-2150 (($ (-644 $)) 69)) (-3258 (((-112) $) 32)) (-2725 (((-862) $) 63) (($ |#1|) 23) (($ (-1175)) 76)) (-1479 (((-112) $ $) NIL)) (-2084 (($ $ (-52)) 129)) (-3200 (($) 103 T CONST)) (-3214 (($) 83 T CONST)) (-2817 (((-112) $ $) 93)) (-2916 (($ $ $) 117)) (-2897 (($ $ $) 121)) (** (($ $ (-771)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
-(((-892 |#1|) (-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 0 ($) -3854) (-15 1 ($) -3854) (-15 -1660 ((-3 (-644 $) "failed") $)) (-15 -2684 ((-3 (-644 $) "failed") $)) (-15 -3591 ((-3 (-644 $) "failed") $ (-114))) (-15 -3591 ((-3 (-2 (|:| -2606 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -2544 ((-3 (-2 (|:| |val| $) (|:| -3428 (-771))) "failed") $)) (-15 -1643 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2074 ((-3 (-644 $) "failed") $)) (-15 -1559 ((-3 (-2 (|:| |val| $) (|:| -3428 $)) "failed") $)) (-15 -3282 ($ (-114) (-644 $))) (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2279 ((-771) $)) (-15 -2150 ($ (-644 $))) (-15 -2878 ($ $)) (-15 -4062 ((-112) $)) (-15 -2570 ((-112) $)) (-15 -2289 ((-112) $)) (-15 -3258 ((-112) $)) (-15 -2536 ((-112) $)) (-15 -4322 ((-112) $)) (-15 -2686 ((-112) $)) (-15 -2531 ((-112) $)) (-15 -2232 ((-644 (-52)) $)) (-15 -2417 ($ $ (-644 (-52)))) (-15 -1803 ($ $ (-644 (-52)))) (-15 -2933 ($ (-1175) (-112) (-112) (-112))) (-15 -1786 ($ $ (-644 (-1175)) (-52))) (-15 -1540 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -1701 ((-112) $)) (-15 -3278 ($ $)) (-15 -2084 ($ $ (-52))) (-15 -2914 ((-644 (-52)) $)) (-15 -4170 ((-644 $) $)) (-15 -2826 ((-3 (-644 $) "failed") (-644 $))))) (-1099)) (T -892))
-((-3200 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-3214 (*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-1660 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2684 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3591 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-3591 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2606 (-114)) (|:| |arg| (-644 (-892 *3))))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2544 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3428 (-771)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1643 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2074 (*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1559 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3428 (-892 *3)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3282 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-2897 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2916 (*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2279 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2878 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4322 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2686 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2531 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1803 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2933 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-1786 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4)) (-4 *4 (-1099)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52)))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-3278 (*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))) (-2826 (*1 *2 *2) (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(-13 (-1099) (-1038 |#1|) (-1038 (-1175)) (-10 -8 (-15 (-3200) ($) -3854) (-15 (-3214) ($) -3854) (-15 -1660 ((-3 (-644 $) "failed") $)) (-15 -2684 ((-3 (-644 $) "failed") $)) (-15 -3591 ((-3 (-644 $) "failed") $ (-114))) (-15 -3591 ((-3 (-2 (|:| -2606 (-114)) (|:| |arg| (-644 $))) "failed") $)) (-15 -2544 ((-3 (-2 (|:| |val| $) (|:| -3428 (-771))) "failed") $)) (-15 -1643 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2074 ((-3 (-644 $) "failed") $)) (-15 -1559 ((-3 (-2 (|:| |val| $) (|:| -3428 $)) "failed") $)) (-15 -3282 ($ (-114) (-644 $))) (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))) (-15 ** ($ $ $)) (-15 -2916 ($ $ $)) (-15 -2279 ((-771) $)) (-15 -2150 ($ (-644 $))) (-15 -2878 ($ $)) (-15 -4062 ((-112) $)) (-15 -2570 ((-112) $)) (-15 -2289 ((-112) $)) (-15 -3258 ((-112) $)) (-15 -2536 ((-112) $)) (-15 -4322 ((-112) $)) (-15 -2686 ((-112) $)) (-15 -2531 ((-112) $)) (-15 -2232 ((-644 (-52)) $)) (-15 -2417 ($ $ (-644 (-52)))) (-15 -1803 ($ $ (-644 (-52)))) (-15 -2933 ($ (-1175) (-112) (-112) (-112))) (-15 -1786 ($ $ (-644 (-1175)) (-52))) (-15 -1540 ((-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))) $)) (-15 -1701 ((-112) $)) (-15 -3278 ($ $)) (-15 -2084 ($ $ (-52))) (-15 -2914 ((-644 (-52)) $)) (-15 -4170 ((-644 $) $)) (-15 -2826 ((-3 (-644 $) "failed") (-644 $)))))
-((-3979 (((-112) $ $) NIL)) (-1509 (((-644 |#1|) $) 19)) (-2935 (((-112) $) 49)) (-2023 (((-3 (-672 |#1|) "failed") $) 56)) (-3343 (((-672 |#1|) $) 54)) (-3781 (($ $) 23)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1653 (((-771) $) 61)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-672 |#1|) $) 21)) (-2725 (((-862) $) 47) (($ (-672 |#1|)) 26) (((-819 |#1|) $) 36) (($ |#1|) 25)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 9 T CONST)) (-1893 (((-644 (-672 |#1|)) $) 28)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 12)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 67)))
-(((-893 |#1|) (-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 1 ($) -3854) (-15 -2725 ((-819 |#1|) $)) (-15 -2725 ($ |#1|)) (-15 -3771 ((-672 |#1|) $)) (-15 -1653 ((-771) $)) (-15 -1893 ((-644 (-672 |#1|)) $)) (-15 -3781 ($ $)) (-15 -2935 ((-112) $)) (-15 -1509 ((-644 |#1|) $)))) (-850)) (T -893))
-((-3214 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-2725 (*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-1893 (*1 *2 *1) (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-3781 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850)))) (-1509 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850)))))
-(-13 (-850) (-1038 (-672 |#1|)) (-10 -8 (-15 (-3214) ($) -3854) (-15 -2725 ((-819 |#1|) $)) (-15 -2725 ($ |#1|)) (-15 -3771 ((-672 |#1|) $)) (-15 -1653 ((-771) $)) (-15 -1893 ((-644 (-672 |#1|)) $)) (-15 -3781 ($ $)) (-15 -2935 ((-112) $)) (-15 -1509 ((-644 |#1|) $))))
-((-2849 ((|#1| |#1| |#1|) 19)))
-(((-894 |#1| |#2|) (-10 -7 (-15 -2849 (|#1| |#1| |#1|))) (-1241 |#2|) (-1049)) (T -894))
-((-2849 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1241 *3)))))
-(-10 -7 (-15 -2849 (|#1| |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-1303 (((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3381 (((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 14)) (-2817 (((-112) $ $) 6)))
-(((-895) (-140)) (T -895))
-((-1303 (*1 *2 *3 *4) (-12 (-4 *1 (-895)) (-5 *3 (-1062)) (-5 *4 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157)))))) (-3381 (*1 *2 *3) (-12 (-4 *1 (-895)) (-5 *3 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *2 (-1035)))))
-(-13 (-1099) (-10 -7 (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))) (-1062) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -3381 ((-1035) (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-1759 ((|#1| |#1| (-771)) 29)) (-3251 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2442 (((-3 (-2 (|:| -1616 |#1|) (|:| -1627 |#1|)) "failed") |#1| (-771) (-771)) 32) (((-644 |#1|) |#1|) 39)))
-(((-896 |#1| |#2|) (-10 -7 (-15 -2442 ((-644 |#1|) |#1|)) (-15 -2442 ((-3 (-2 (|:| -1616 |#1|) (|:| -1627 |#1|)) "failed") |#1| (-771) (-771))) (-15 -3251 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1759 (|#1| |#1| (-771)))) (-1241 |#2|) (-365)) (T -896))
-((-1759 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4)) (-4 *2 (-1241 *4)))) (-3251 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3)) (-4 *2 (-1241 *3)))) (-2442 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -1616 *3) (|:| -1627 *3))) (-5 *1 (-896 *3 *5)) (-4 *3 (-1241 *5)))) (-2442 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -2442 ((-644 |#1|) |#1|)) (-15 -2442 ((-3 (-2 (|:| -1616 |#1|) (|:| -1627 |#1|)) "failed") |#1| (-771) (-771))) (-15 -3251 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1759 (|#1| |#1| (-771))))
-((-1409 (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157)) 106) (((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225)) 102) (((-1035) (-898) (-1062)) 94) (((-1035) (-898)) 95)) (-1303 (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062)) 65) (((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898)) 67)))
-(((-897) (-10 -7 (-15 -1409 ((-1035) (-898))) (-15 -1409 ((-1035) (-898) (-1062))) (-15 -1409 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -1409 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062))))) (T -897))
-((-1303 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157))))) (-5 *1 (-897)))) (-1409 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1409 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157)) (-5 *8 (-225)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-897)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-1035)) (-5 *1 (-897)))))
-(-10 -7 (-15 -1409 ((-1035) (-898))) (-15 -1409 ((-1035) (-898) (-1062))) (-15 -1409 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157) (-225))) (-15 -1409 ((-1035) (-381) (-381) (-381) (-381) (-771) (-771) (-644 (-317 (-381))) (-644 (-644 (-317 (-381)))) (-1157))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898))) (-15 -1303 ((-2 (|:| -1303 (-381)) (|:| -3534 (-1157)) (|:| |explanations| (-644 (-1157)))) (-898) (-1062))))
-((-3979 (((-112) $ $) NIL)) (-3343 (((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $) 19)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 21) (($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) 18)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-898) (-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -3343 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $))))) (T -898))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898)))) (-3343 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225)))) (-5 *1 (-898)))))
-(-13 (-1099) (-10 -8 (-15 -2725 ($ (-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))))) (-15 -3343 ((-2 (|:| |pde| (-644 (-317 (-225)))) (|:| |constraints| (-644 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-771)) (|:| |boundaryType| (-566)) (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225)))))) (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157)) (|:| |tol| (-225))) $))))
-((-3009 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) 10) (($ $ |#2| (-771)) 15) (($ $ (-644 |#2|) (-644 (-771))) 18)) (-1316 (($ $ |#2|) 19) (($ $ (-644 |#2|)) 21) (($ $ |#2| (-771)) 22) (($ $ (-644 |#2|) (-644 (-771))) 24)))
-(((-899 |#1| |#2|) (-10 -8 (-15 -1316 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -1316 (|#1| |#1| |#2| (-771))) (-15 -1316 (|#1| |#1| (-644 |#2|))) (-15 -1316 (|#1| |#1| |#2|)) (-15 -3009 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3009 (|#1| |#1| |#2| (-771))) (-15 -3009 (|#1| |#1| (-644 |#2|))) (-15 -3009 (|#1| |#1| |#2|))) (-900 |#2|) (-1099)) (T -899))
-NIL
-(-10 -8 (-15 -1316 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -1316 (|#1| |#1| |#2| (-771))) (-15 -1316 (|#1| |#1| (-644 |#2|))) (-15 -1316 (|#1| |#1| |#2|)) (-15 -3009 (|#1| |#1| (-644 |#2|) (-644 (-771)))) (-15 -3009 (|#1| |#1| |#2| (-771))) (-15 -3009 (|#1| |#1| (-644 |#2|))) (-15 -3009 (|#1| |#1| |#2|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3009 (($ $ |#1|) 46) (($ $ (-644 |#1|)) 45) (($ $ |#1| (-771)) 44) (($ $ (-644 |#1|) (-644 (-771))) 43)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ |#1|) 42) (($ $ (-644 |#1|)) 41) (($ $ |#1| (-771)) 40) (($ $ (-644 |#1|) (-644 (-771))) 39)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-900 |#1|) (-140) (-1099)) (T -900))
-((-3009 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-3009 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-3009 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099)))) (-1316 (*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-1316 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099)))) (-1316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4)) (-4 *4 (-1099)))))
-(-13 (-1049) (-10 -8 (-15 -3009 ($ $ |t#1|)) (-15 -3009 ($ $ (-644 |t#1|))) (-15 -3009 ($ $ |t#1| (-771))) (-15 -3009 ($ $ (-644 |t#1|) (-644 (-771)))) (-15 -1316 ($ $ |t#1|)) (-15 -1316 ($ $ (-644 |t#1|))) (-15 -1316 ($ $ |t#1| (-771))) (-15 -1316 ($ $ (-644 |t#1|) (-644 (-771))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) 26)) (-2261 (((-112) $ (-771)) NIL)) (-2989 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-1662 (($ $ $) NIL (|has| $ (-6 -4416)))) (-1465 (($ $ $) NIL (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) (($ $ "left" $) NIL (|has| $ (-6 -4416))) (($ $ "right" $) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-1627 (($ $) 25)) (-4089 (($ |#1|) 12) (($ $ $) 17)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1616 (($ $) 23)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) 20)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4104 (((-566) $ $) NIL)) (-3810 (((-112) $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-1201 |#1|) $) 9) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 21 (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-901 |#1|) (-13 (-119 |#1|) (-613 (-1201 |#1|)) (-10 -8 (-15 -4089 ($ |#1|)) (-15 -4089 ($ $ $)))) (-1099)) (T -901))
-((-4089 (*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))) (-4089 (*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))))
-(-13 (-119 |#1|) (-613 (-1201 |#1|)) (-10 -8 (-15 -4089 ($ |#1|)) (-15 -4089 ($ $ $))))
-((-3999 ((|#2| (-1141 |#1| |#2|)) 53)))
-(((-902 |#1| |#2|) (-10 -7 (-15 -3999 (|#2| (-1141 |#1| |#2|)))) (-921) (-13 (-1049) (-10 -7 (-6 (-4417 "*"))))) (T -902))
-((-3999 (*1 *2 *3) (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921)) (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4417 "*"))))) (-5 *1 (-902 *4 *2)))))
-(-10 -7 (-15 -3999 (|#2| (-1141 |#1| |#2|))))
-((-3979 (((-112) $ $) 7)) (-2633 (($) 19 T CONST)) (-2313 (((-3 $ "failed") $) 16)) (-1824 (((-1101 |#1|) $ |#1|) 33)) (-3842 (((-112) $) 18)) (-3075 (($ $ $) 31 (-2676 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-3936 (($ $ $) 30 (-2676 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-1390 (((-1157) $) 10)) (-4282 (($ $) 25)) (-1944 (((-1119) $) 11)) (-1754 ((|#1| $ |#1|) 35)) (-3282 ((|#1| $ |#1|) 34)) (-3172 (($ (-644 (-644 |#1|))) 36)) (-2545 (($ (-644 |#1|)) 37)) (-2558 (($ $ $) 22)) (-1726 (($ $ $) 21)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3214 (($) 20 T CONST)) (-2865 (((-112) $ $) 28 (-2676 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2844 (((-112) $ $) 27 (-2676 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 29 (-2676 (|has| |#1| (-850)) (|has| |#1| (-370))))) (-2833 (((-112) $ $) 32)) (-2916 (($ $ $) 24)) (** (($ $ (-921)) 14) (($ $ (-771)) 17) (($ $ (-566)) 23)) (* (($ $ $) 15)))
-(((-903 |#1|) (-140) (-1099)) (T -903))
-((-2545 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-3172 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3)))) (-1754 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-3282 (*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099)))) (-1824 (*1 *2 *1 *3) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3)))) (-2833 (*1 *2 *1 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(-13 (-475) (-10 -8 (-15 -2545 ($ (-644 |t#1|))) (-15 -3172 ($ (-644 (-644 |t#1|)))) (-15 -1754 (|t#1| $ |t#1|)) (-15 -3282 (|t#1| $ |t#1|)) (-15 -1824 ((-1101 |t#1|) $ |t#1|)) (-15 -2833 ((-112) $ $)) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-850)) |%noBranch|)))
-(((-102) . T) ((-613 (-862)) . T) ((-475) . T) ((-726) . T) ((-850) -2676 (|has| |#1| (-850)) (|has| |#1| (-370))) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-2991 (((-644 (-644 (-771))) $) 165)) (-3473 (((-644 (-771)) (-905 |#1|) $) 193)) (-3724 (((-644 (-771)) (-905 |#1|) $) 194)) (-2630 (((-644 (-905 |#1|)) $) 154)) (-3424 (((-905 |#1|) $ (-566)) 159) (((-905 |#1|) $) 160)) (-3466 (($ (-644 (-905 |#1|))) 167)) (-3077 (((-771) $) 161)) (-3193 (((-1101 (-1101 |#1|)) $) 191)) (-1824 (((-1101 |#1|) $ |#1|) 182) (((-1101 (-1101 |#1|)) $ (-1101 |#1|)) 202) (((-1101 (-644 |#1|)) $ (-644 |#1|)) 205)) (-4387 (((-1101 |#1|) $) 157)) (-3938 (((-112) (-905 |#1|) $) 143)) (-1390 (((-1157) $) NIL)) (-1392 (((-1270) $) 147) (((-1270) $ (-566) (-566)) 206)) (-1944 (((-1119) $) NIL)) (-2142 (((-644 (-905 |#1|)) $) 148)) (-3282 (((-905 |#1|) $ (-771)) 155)) (-3838 (((-771) $) 162)) (-2725 (((-862) $) 179) (((-644 (-905 |#1|)) $) 28) (($ (-644 (-905 |#1|))) 166)) (-1479 (((-112) $ $) NIL)) (-1792 (((-644 |#1|) $) 164)) (-2817 (((-112) $ $) 199)) (-2854 (((-112) $ $) 197)) (-2833 (((-112) $ $) 196)))
-(((-904 |#1|) (-13 (-1099) (-10 -8 (-15 -2725 ((-644 (-905 |#1|)) $)) (-15 -2142 ((-644 (-905 |#1|)) $)) (-15 -3282 ((-905 |#1|) $ (-771))) (-15 -3424 ((-905 |#1|) $ (-566))) (-15 -3424 ((-905 |#1|) $)) (-15 -3077 ((-771) $)) (-15 -3838 ((-771) $)) (-15 -1792 ((-644 |#1|) $)) (-15 -2630 ((-644 (-905 |#1|)) $)) (-15 -2991 ((-644 (-644 (-771))) $)) (-15 -2725 ($ (-644 (-905 |#1|)))) (-15 -3466 ($ (-644 (-905 |#1|)))) (-15 -1824 ((-1101 |#1|) $ |#1|)) (-15 -3193 ((-1101 (-1101 |#1|)) $)) (-15 -1824 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -1824 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -3938 ((-112) (-905 |#1|) $)) (-15 -3473 ((-644 (-771)) (-905 |#1|) $)) (-15 -3724 ((-644 (-771)) (-905 |#1|) $)) (-15 -4387 ((-1101 |#1|) $)) (-15 -2833 ((-112) $ $)) (-15 -2854 ((-112) $ $)) (-15 -1392 ((-1270) $)) (-15 -1392 ((-1270) $ (-566) (-566))))) (-1099)) (T -904))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-3424 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1792 (*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2630 (*1 *2 *1) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-3466 (*1 *1 *2) (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))) (-1824 (*1 *2 *1 *3) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-3193 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1824 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4)) (-5 *3 (-1101 *4)))) (-1824 (*1 *2 *1 *3) (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4)) (-5 *3 (-644 *4)))) (-3938 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-904 *4)))) (-3473 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-3724 (*1 *2 *3 *1) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771))) (-5 *1 (-904 *4)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2833 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-2854 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1392 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))) (-1392 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-904 *4)) (-4 *4 (-1099)))))
-(-13 (-1099) (-10 -8 (-15 -2725 ((-644 (-905 |#1|)) $)) (-15 -2142 ((-644 (-905 |#1|)) $)) (-15 -3282 ((-905 |#1|) $ (-771))) (-15 -3424 ((-905 |#1|) $ (-566))) (-15 -3424 ((-905 |#1|) $)) (-15 -3077 ((-771) $)) (-15 -3838 ((-771) $)) (-15 -1792 ((-644 |#1|) $)) (-15 -2630 ((-644 (-905 |#1|)) $)) (-15 -2991 ((-644 (-644 (-771))) $)) (-15 -2725 ($ (-644 (-905 |#1|)))) (-15 -3466 ($ (-644 (-905 |#1|)))) (-15 -1824 ((-1101 |#1|) $ |#1|)) (-15 -3193 ((-1101 (-1101 |#1|)) $)) (-15 -1824 ((-1101 (-1101 |#1|)) $ (-1101 |#1|))) (-15 -1824 ((-1101 (-644 |#1|)) $ (-644 |#1|))) (-15 -3938 ((-112) (-905 |#1|) $)) (-15 -3473 ((-644 (-771)) (-905 |#1|) $)) (-15 -3724 ((-644 (-771)) (-905 |#1|) $)) (-15 -4387 ((-1101 |#1|) $)) (-15 -2833 ((-112) $ $)) (-15 -2854 ((-112) $ $)) (-15 -1392 ((-1270) $)) (-15 -1392 ((-1270) $ (-566) (-566)))))
-((-3979 (((-112) $ $) NIL)) (-3370 (((-644 $) (-644 $)) 105)) (-1859 (((-566) $) 86)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3077 (((-771) $) 83)) (-1824 (((-1101 |#1|) $ |#1|) 74)) (-3842 (((-112) $) NIL)) (-1687 (((-112) $) 90)) (-2670 (((-771) $) 87)) (-4387 (((-1101 |#1|) $) 63)) (-3075 (($ $ $) NIL (-2676 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-3936 (($ $ $) NIL (-2676 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-1368 (((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $) 58)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 133)) (-1944 (((-1119) $) NIL)) (-1721 (((-1101 |#1|) $) 141 (|has| |#1| (-370)))) (-3934 (((-112) $) 84)) (-1754 ((|#1| $ |#1|) 72)) (-3282 ((|#1| $ |#1|) 135)) (-3838 (((-771) $) 65)) (-3172 (($ (-644 (-644 |#1|))) 120)) (-4386 (((-971) $) 78)) (-2545 (($ (-644 |#1|)) 35)) (-2558 (($ $ $) NIL)) (-1726 (($ $ $) NIL)) (-1495 (($ (-644 (-644 |#1|))) 60)) (-3406 (($ (-644 (-644 |#1|))) 125)) (-3606 (($ (-644 |#1|)) 137)) (-2725 (((-862) $) 119) (($ (-644 (-644 |#1|))) 93) (($ (-644 |#1|)) 94)) (-1479 (((-112) $ $) NIL)) (-3214 (($) 27 T CONST)) (-2865 (((-112) $ $) NIL (-2676 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2844 (((-112) $ $) NIL (-2676 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2817 (((-112) $ $) 70)) (-2854 (((-112) $ $) NIL (-2676 (|has| |#1| (-370)) (|has| |#1| (-850))))) (-2833 (((-112) $ $) 92)) (-2916 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ $ $) 36)))
-(((-905 |#1|) (-13 (-903 |#1|) (-10 -8 (-15 -1368 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -1495 ($ (-644 (-644 |#1|)))) (-15 -2725 ($ (-644 (-644 |#1|)))) (-15 -2725 ($ (-644 |#1|))) (-15 -3406 ($ (-644 (-644 |#1|)))) (-15 -3838 ((-771) $)) (-15 -4387 ((-1101 |#1|) $)) (-15 -4386 ((-971) $)) (-15 -3077 ((-771) $)) (-15 -2670 ((-771) $)) (-15 -1859 ((-566) $)) (-15 -3934 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -3370 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -1721 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -3606 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -3606 ($ (-644 |#1|))) |%noBranch|)))) (-1099)) (T -905))
-((-1368 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3406 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-4386 (*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-2670 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1859 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3934 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1687 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370)) (-4 *3 (-1099)))) (-3606 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3)))))
-(-13 (-903 |#1|) (-10 -8 (-15 -1368 ((-2 (|:| |preimage| (-644 |#1|)) (|:| |image| (-644 |#1|))) $)) (-15 -1495 ($ (-644 (-644 |#1|)))) (-15 -2725 ($ (-644 (-644 |#1|)))) (-15 -2725 ($ (-644 |#1|))) (-15 -3406 ($ (-644 (-644 |#1|)))) (-15 -3838 ((-771) $)) (-15 -4387 ((-1101 |#1|) $)) (-15 -4386 ((-971) $)) (-15 -3077 ((-771) $)) (-15 -2670 ((-771) $)) (-15 -1859 ((-566) $)) (-15 -3934 ((-112) $)) (-15 -1687 ((-112) $)) (-15 -3370 ((-644 $) (-644 $))) (IF (|has| |#1| (-370)) (-15 -1721 ((-1101 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-547)) (-15 -3606 ($ (-644 |#1|))) (IF (|has| |#1| (-370)) (-15 -3606 ($ (-644 |#1|))) |%noBranch|))))
-((-2333 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|)) 159)) (-3499 ((|#1|) 97)) (-4233 (((-420 (-1171 |#4|)) (-1171 |#4|)) 168)) (-2599 (((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)) 84)) (-2692 (((-420 (-1171 |#4|)) (-1171 |#4|)) 178)) (-3072 (((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|) 113)))
-(((-906 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2333 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -2692 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -4233 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3499 (|#1|)) (-15 -3072 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2599 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|)))) (-909) (-793) (-850) (-949 |#1| |#2| |#3|)) (T -906))
-((-2599 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8))) (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8)))) (-3072 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793)) (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7)))) (-3499 (*1 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909)) (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7))) (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7)))) (-2333 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2333 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|))) (-15 -2692 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -4233 ((-420 (-1171 |#4|)) (-1171 |#4|))) (-15 -3499 (|#1|)) (-15 -3072 ((-3 (-644 (-1171 |#4|)) "failed") (-644 (-1171 |#4|)) (-1171 |#4|) |#3|)) (-15 -2599 ((-420 (-1171 |#4|)) (-644 |#3|) (-1171 |#4|))))
-((-2333 (((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|)) 41)) (-3499 ((|#1|) 75)) (-4233 (((-420 (-1171 |#2|)) (-1171 |#2|)) 124)) (-2599 (((-420 (-1171 |#2|)) (-1171 |#2|)) 108)) (-2692 (((-420 (-1171 |#2|)) (-1171 |#2|)) 135)))
-(((-907 |#1| |#2|) (-10 -7 (-15 -2333 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -2692 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -4233 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -3499 (|#1|)) (-15 -2599 ((-420 (-1171 |#2|)) (-1171 |#2|)))) (-909) (-1241 |#1|)) (T -907))
-((-2599 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1241 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-3499 (*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1241 *2)))) (-4233 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1241 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-2692 (*1 *2 *3) (-12 (-4 *4 (-909)) (-4 *5 (-1241 *4)) (-5 *2 (-420 (-1171 *5))) (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))) (-2333 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5)))))
-(-10 -7 (-15 -2333 ((-3 (-644 (-1171 |#2|)) "failed") (-644 (-1171 |#2|)) (-1171 |#2|))) (-15 -2692 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -4233 ((-420 (-1171 |#2|)) (-1171 |#2|))) (-15 -3499 (|#1|)) (-15 -2599 ((-420 (-1171 |#2|)) (-1171 |#2|))))
-((-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 42)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 18)) (-2655 (((-3 $ "failed") $) 36)))
-(((-908 |#1|) (-10 -8 (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|)))) (-909)) (T -908))
-NIL
-(-10 -8 (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-4350 (((-420 (-1171 $)) (-1171 $)) 66)) (-2885 (($ $) 57)) (-2555 (((-420 $) $) 58)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 63)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-1968 (((-112) $) 59)) (-3842 (((-112) $) 35)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-2254 (((-420 (-1171 $)) (-1171 $)) 64)) (-4314 (((-420 (-1171 $)) (-1171 $)) 65)) (-4018 (((-420 $) $) 56)) (-3967 (((-3 $ "failed") $ $) 48)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 62 (|has| $ (-145)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2655 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-909) (-140)) (T -909))
-((-4344 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909)))) (-4350 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-4314 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-2254 (*1 *2 *3) (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))) (-4078 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1)) (-4 *1 (-909)))) (-3039 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909)) (-5 *2 (-1265 *1)))) (-2655 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909)))))
-(-13 (-1219) (-10 -8 (-15 -4350 ((-420 (-1171 $)) (-1171 $))) (-15 -4314 ((-420 (-1171 $)) (-1171 $))) (-15 -2254 ((-420 (-1171 $)) (-1171 $))) (-15 -4344 ((-1171 $) (-1171 $) (-1171 $))) (-15 -4078 ((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $))) (IF (|has| $ (-145)) (PROGN (-15 -3039 ((-3 (-1265 $) "failed") (-689 $))) (-15 -2655 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3004 (((-112) $) NIL)) (-2967 (((-771)) NIL)) (-2717 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-3374 (((-1188 (-921) (-771)) (-566)) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 $ "failed") $) NIL)) (-3343 (($ $) NIL)) (-1452 (($ (-1265 $)) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-4183 (($) NIL)) (-1963 (((-112) $) NIL)) (-4205 (($ $) NIL) (($ $ (-771)) NIL)) (-1968 (((-112) $) NIL)) (-3077 (((-833 (-921)) $) NIL) (((-921) $) NIL)) (-3842 (((-112) $) NIL)) (-3029 (($) NIL (|has| $ (-370)))) (-3778 (((-112) $) NIL (|has| $ (-370)))) (-3202 (($ $ (-921)) NIL (|has| $ (-370))) (($ $) NIL)) (-3869 (((-3 $ "failed") $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2323 (((-1171 $) $ (-921)) NIL (|has| $ (-370))) (((-1171 $) $) NIL)) (-4138 (((-921) $) NIL)) (-2535 (((-1171 $) $) NIL (|has| $ (-370)))) (-3777 (((-3 (-1171 $) "failed") $ $) NIL (|has| $ (-370))) (((-1171 $) $) NIL (|has| $ (-370)))) (-2195 (($ $ (-1171 $)) NIL (|has| $ (-370)))) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL T CONST)) (-2430 (($ (-921)) NIL)) (-4274 (((-112) $) NIL)) (-1944 (((-1119) $) NIL)) (-2723 (($) NIL (|has| $ (-370)))) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL)) (-4018 (((-420 $) $) NIL)) (-2438 (((-921)) NIL) (((-833 (-921))) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2816 (((-3 (-771) "failed") $ $) NIL) (((-771) $) NIL)) (-4356 (((-134)) NIL)) (-3009 (($ $ (-771)) NIL) (($ $) NIL)) (-3838 (((-921) $) NIL) (((-833 (-921)) $) NIL)) (-2880 (((-1171 $)) NIL)) (-1344 (($) NIL)) (-2014 (($) NIL (|has| $ (-370)))) (-2803 (((-689 $) (-1265 $)) NIL) (((-1265 $) $) NIL)) (-2150 (((-566) $) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL)) (-2655 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $) (-921)) NIL) (((-1265 $)) NIL)) (-1597 (((-112) $ $) NIL)) (-3314 (((-112) $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-3940 (($ $ (-771)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-910 |#1|) (-13 (-351) (-330 $) (-614 (-566))) (-921)) (T -910))
-NIL
-(-13 (-351) (-330 $) (-614 (-566)))
-((-3620 (((-3 (-2 (|:| -3077 (-771)) (|:| -1729 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-3312 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-3077 (((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|)) 15)))
-(((-911 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3077 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3312 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -3620 ((-3 (-2 (|:| -3077 (-771)) (|:| -1729 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-558) (-1038 (-566))) (-432 |#1|) (-1241 |#2|) (-1241 (-409 |#3|)) (-344 |#2| |#3| |#4|)) (T -911))
-((-3620 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-2 (|:| -3077 (-771)) (|:| -1729 *8))) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112)) (-5 *1 (-911 *4 *5 *6 *7 *8)))) (-3077 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3077 ((-3 (-771) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -3312 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -3620 ((-3 (-2 (|:| -3077 (-771)) (|:| -1729 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|))))
-((-3620 (((-3 (-2 (|:| -3077 (-771)) (|:| -1729 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 64)) (-3312 (((-112) (-338 (-409 (-566)) |#1| |#2| |#3|)) 16)) (-3077 (((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)) 14)))
-(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -3077 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -3312 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -3620 ((-3 (-2 (|:| -3077 (-771)) (|:| -1729 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|)))) (-1241 (-409 (-566))) (-1241 (-409 |#1|)) (-344 (-409 (-566)) |#1| |#2|)) (T -912))
-((-3620 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1241 (-409 (-566)))) (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-2 (|:| -3077 (-771)) (|:| -1729 *6))) (-5 *1 (-912 *4 *5 *6)))) (-3312 (*1 *2 *3) (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1241 (-409 (-566)))) (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-912 *4 *5 *6)))) (-3077 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6)) (-4 *4 (-1241 (-409 (-566)))) (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771)) (-5 *1 (-912 *4 *5 *6)))))
-(-10 -7 (-15 -3077 ((-3 (-771) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -3312 ((-112) (-338 (-409 (-566)) |#1| |#2| |#3|))) (-15 -3620 ((-3 (-2 (|:| -3077 (-771)) (|:| -1729 |#3|)) "failed") (-338 (-409 (-566)) |#1| |#2| |#3|))))
-((-3656 ((|#2| |#2|) 26)) (-3673 (((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) 15)) (-2176 (((-921) (-566)) 38)) (-3557 (((-566) |#2|) 45)) (-3997 (((-566) |#2|) 21) (((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|) 20)))
-(((-913 |#1| |#2|) (-10 -7 (-15 -2176 ((-921) (-566))) (-15 -3997 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -3997 ((-566) |#2|)) (-15 -3673 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3557 ((-566) |#2|)) (-15 -3656 (|#2| |#2|))) (-1241 (-409 (-566))) (-1241 (-409 |#1|))) (T -913))
-((-3656 (*1 *2 *2) (-12 (-4 *3 (-1241 (-409 (-566)))) (-5 *1 (-913 *3 *2)) (-4 *2 (-1241 (-409 *3))))) (-3557 (*1 *2 *3) (-12 (-4 *4 (-1241 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1241 (-409 *4))))) (-3673 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))) (-4 *4 (-1241 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1241 (-409 *4))))) (-3997 (*1 *2 *3) (-12 (-4 *4 (-1241 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1241 (-409 *4))))) (-3997 (*1 *2 *3) (-12 (-4 *3 (-1241 (-409 (-566)))) (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))) (-5 *1 (-913 *3 *4)) (-4 *4 (-1241 (-409 *3))))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-566)) (-4 *4 (-1241 (-409 *3))) (-5 *2 (-921)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1241 (-409 *4))))))
-(-10 -7 (-15 -2176 ((-921) (-566))) (-15 -3997 ((-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))) |#1|)) (-15 -3997 ((-566) |#2|)) (-15 -3673 ((-566) (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))) (-15 -3557 ((-566) |#2|)) (-15 -3656 (|#2| |#2|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 ((|#1| $) 100)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-3919 (($ $ $) NIL)) (-2313 (((-3 $ "failed") $) 94)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-1415 (($ |#1| (-420 |#1|)) 92)) (-4143 (((-1171 |#1|) |#1| |#1|) 53)) (-3395 (($ $) 61)) (-3842 (((-112) $) NIL)) (-3119 (((-566) $) 97)) (-3320 (($ $ (-566)) 99)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1369 ((|#1| $) 96)) (-2131 (((-420 |#1|) $) 95)) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) 93)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3175 (($ $) 50)) (-2725 (((-862) $) 124) (($ (-566)) 73) (($ $) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 41) (((-409 |#1|) $) 78) (($ (-409 (-420 |#1|))) 86)) (-2875 (((-771)) 71 T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) 26 T CONST)) (-3214 (($) 15 T CONST)) (-2817 (((-112) $ $) 87)) (-2916 (($ $ $) NIL)) (-2905 (($ $) 108) (($ $ $) NIL)) (-2897 (($ $ $) 49)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 110) (($ $ $) 48) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
-(((-914 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -2725 ((-409 |#1|) $)) (-15 -2725 ($ (-409 (-420 |#1|)))) (-15 -3175 ($ $)) (-15 -2131 ((-420 |#1|) $)) (-15 -1369 (|#1| $)) (-15 -3320 ($ $ (-566))) (-15 -3119 ((-566) $)) (-15 -4143 ((-1171 |#1|) |#1| |#1|)) (-15 -3395 ($ $)) (-15 -1415 ($ |#1| (-420 |#1|))) (-15 -4191 (|#1| $)))) (-308)) (T -914))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-308)) (-5 *1 (-914 *3)))) (-3175 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-1369 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-3320 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-4143 (*1 *2 *3 *3) (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))) (-3395 (*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))) (-1415 (*1 *1 *2 *3) (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2)))) (-4191 (*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))))
-(-13 (-365) (-38 |#1|) (-10 -8 (-15 -2725 ((-409 |#1|) $)) (-15 -2725 ($ (-409 (-420 |#1|)))) (-15 -3175 ($ $)) (-15 -2131 ((-420 |#1|) $)) (-15 -1369 (|#1| $)) (-15 -3320 ($ $ (-566))) (-15 -3119 ((-566) $)) (-15 -4143 ((-1171 |#1|) |#1| |#1|)) (-15 -3395 ($ $)) (-15 -1415 ($ |#1| (-420 |#1|))) (-15 -4191 (|#1| $))))
-((-1415 (((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)) 17) (((-52) (-409 (-952 |#1|)) (-1175)) 18)))
-(((-915 |#1|) (-10 -7 (-15 -1415 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -1415 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -915))
-((-1415 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5)))))
-(-10 -7 (-15 -1415 ((-52) (-409 (-952 |#1|)) (-1175))) (-15 -1415 ((-52) (-952 |#1|) (-420 (-952 |#1|)) (-1175))))
-((-2541 ((|#4| (-644 |#4|)) 149) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-1885 (((-1171 |#4|) (-644 (-1171 |#4|))) 142) (((-1171 |#4|) (-1171 |#4|) (-1171 |#4|)) 63) ((|#4| (-644 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
-(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1885 (|#4| |#4| |#4|)) (-15 -1885 (|#4| (-644 |#4|))) (-15 -1885 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -1885 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -2541 (|#4| |#4| |#4|)) (-15 -2541 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2541 (|#4| (-644 |#4|)))) (-793) (-850) (-308) (-949 |#3| |#1| |#2|)) (T -916))
-((-2541 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-2541 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-2541 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))) (-1885 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6)))) (-1885 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)))) (-1885 (*1 *2 *2 *2) (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4)))))
-(-10 -7 (-15 -1885 (|#4| |#4| |#4|)) (-15 -1885 (|#4| (-644 |#4|))) (-15 -1885 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -1885 ((-1171 |#4|) (-644 (-1171 |#4|)))) (-15 -2541 (|#4| |#4| |#4|)) (-15 -2541 ((-1171 |#4|) (-1171 |#4|) (-1171 |#4|))) (-15 -2541 (|#4| (-644 |#4|))))
-((-2134 (((-904 (-566)) (-971)) 38) (((-904 (-566)) (-644 (-566))) 35)) (-2592 (((-904 (-566)) (-644 (-566))) 70) (((-904 (-566)) (-921)) 71)) (-1990 (((-904 (-566))) 39)) (-3933 (((-904 (-566))) 55) (((-904 (-566)) (-644 (-566))) 54)) (-3063 (((-904 (-566))) 53) (((-904 (-566)) (-644 (-566))) 52)) (-3729 (((-904 (-566))) 51) (((-904 (-566)) (-644 (-566))) 50)) (-4098 (((-904 (-566))) 49) (((-904 (-566)) (-644 (-566))) 48)) (-3017 (((-904 (-566))) 47) (((-904 (-566)) (-644 (-566))) 46)) (-1959 (((-904 (-566))) 57) (((-904 (-566)) (-644 (-566))) 56)) (-1977 (((-904 (-566)) (-644 (-566))) 75) (((-904 (-566)) (-921)) 77)) (-4149 (((-904 (-566)) (-644 (-566))) 72) (((-904 (-566)) (-921)) 73)) (-2099 (((-904 (-566)) (-644 (-566))) 68) (((-904 (-566)) (-921)) 69)) (-2355 (((-904 (-566)) (-644 (-921))) 60)))
-(((-917) (-10 -7 (-15 -2592 ((-904 (-566)) (-921))) (-15 -2592 ((-904 (-566)) (-644 (-566)))) (-15 -2099 ((-904 (-566)) (-921))) (-15 -2099 ((-904 (-566)) (-644 (-566)))) (-15 -2355 ((-904 (-566)) (-644 (-921)))) (-15 -4149 ((-904 (-566)) (-921))) (-15 -4149 ((-904 (-566)) (-644 (-566)))) (-15 -1977 ((-904 (-566)) (-921))) (-15 -1977 ((-904 (-566)) (-644 (-566)))) (-15 -3017 ((-904 (-566)) (-644 (-566)))) (-15 -3017 ((-904 (-566)))) (-15 -4098 ((-904 (-566)) (-644 (-566)))) (-15 -4098 ((-904 (-566)))) (-15 -3729 ((-904 (-566)) (-644 (-566)))) (-15 -3729 ((-904 (-566)))) (-15 -3063 ((-904 (-566)) (-644 (-566)))) (-15 -3063 ((-904 (-566)))) (-15 -3933 ((-904 (-566)) (-644 (-566)))) (-15 -3933 ((-904 (-566)))) (-15 -1959 ((-904 (-566)) (-644 (-566)))) (-15 -1959 ((-904 (-566)))) (-15 -1990 ((-904 (-566)))) (-15 -2134 ((-904 (-566)) (-644 (-566)))) (-15 -2134 ((-904 (-566)) (-971))))) (T -917))
-((-2134 (*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1990 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1959 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3933 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3063 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3729 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4098 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3017 (*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2355 (*1 *2 *3) (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2099 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(-10 -7 (-15 -2592 ((-904 (-566)) (-921))) (-15 -2592 ((-904 (-566)) (-644 (-566)))) (-15 -2099 ((-904 (-566)) (-921))) (-15 -2099 ((-904 (-566)) (-644 (-566)))) (-15 -2355 ((-904 (-566)) (-644 (-921)))) (-15 -4149 ((-904 (-566)) (-921))) (-15 -4149 ((-904 (-566)) (-644 (-566)))) (-15 -1977 ((-904 (-566)) (-921))) (-15 -1977 ((-904 (-566)) (-644 (-566)))) (-15 -3017 ((-904 (-566)) (-644 (-566)))) (-15 -3017 ((-904 (-566)))) (-15 -4098 ((-904 (-566)) (-644 (-566)))) (-15 -4098 ((-904 (-566)))) (-15 -3729 ((-904 (-566)) (-644 (-566)))) (-15 -3729 ((-904 (-566)))) (-15 -3063 ((-904 (-566)) (-644 (-566)))) (-15 -3063 ((-904 (-566)))) (-15 -3933 ((-904 (-566)) (-644 (-566)))) (-15 -3933 ((-904 (-566)))) (-15 -1959 ((-904 (-566)) (-644 (-566)))) (-15 -1959 ((-904 (-566)))) (-15 -1990 ((-904 (-566)))) (-15 -2134 ((-904 (-566)) (-644 (-566)))) (-15 -2134 ((-904 (-566)) (-971))))
-((-3817 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 14)) (-2659 (((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))) 13)))
-(((-918 |#1|) (-10 -7 (-15 -2659 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3817 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175))))) (-454)) (T -918))
-((-3817 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4)))) (-2659 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454)) (-5 *1 (-918 *4)))))
-(-10 -7 (-15 -2659 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -3817 ((-644 (-952 |#1|)) (-644 (-952 |#1|)) (-644 (-1175)))))
-((-2725 (((-317 |#1|) (-479)) 16)))
-(((-919 |#1|) (-10 -7 (-15 -2725 ((-317 |#1|) (-479)))) (-558)) (T -919))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-479)) (-5 *2 (-317 *4)) (-5 *1 (-919 *4)) (-4 *4 (-558)))))
-(-10 -7 (-15 -2725 ((-317 |#1|) (-479))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-3842 (((-112) $) 35)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-920) (-140)) (T -920))
-((-3481 (*1 *2 *3) (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -1702 (-644 *1)) (|:| -2723 *1))) (-5 *3 (-644 *1)))) (-3654 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920)))))
-(-13 (-454) (-10 -8 (-15 -3481 ((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $))) (-15 -3654 ((-3 (-644 $) "failed") (-644 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1885 (($ $ $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3214 (($) NIL T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ $ $) NIL)))
-(((-921) (-13 (-794) (-726) (-10 -8 (-15 -1885 ($ $ $)) (-6 (-4417 "*"))))) (T -921))
-((-1885 (*1 *1 *1 *1) (-5 *1 (-921))))
-(-13 (-794) (-726) (-10 -8 (-15 -1885 ($ $ $)) (-6 (-4417 "*"))))
+((-3908 (((-692 (-1224)) $ (-1224)) NIL)) (-2492 (((-692 (-552)) $ (-552)) NIL)) (-1925 (((-772) $ (-128)) NIL)) (-1703 (((-692 (-129)) $ (-129)) 22)) (-1425 (($ (-391)) 12) (($ (-1158)) 14)) (-3996 (((-112) $) 19)) (-4101 (((-863) $) 26)) (-4021 (($ $) 23)))
+(((-862) (-13 (-861) (-614 (-863)) (-10 -8 (-15 -1425 ($ (-391))) (-15 -1425 ($ (-1158))) (-15 -3996 ((-112) $))))) (T -862))
+((-1425 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-862)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))))
+(-13 (-861) (-614 (-863)) (-10 -8 (-15 -1425 ($ (-391))) (-15 -1425 ($ (-1158))) (-15 -3996 ((-112) $))))
+((-2257 (((-112) $ $) NIL) (($ $ $) 85)) (-2636 (($ $ $) 125)) (-2034 (((-567) $) 31) (((-567)) 36)) (-3980 (($ (-567)) 53)) (-3175 (($ $ $) 54) (($ (-645 $)) 84)) (-2905 (($ $ (-645 $)) 82)) (-3346 (((-567) $) 34)) (-4047 (($ $ $) 73)) (-2282 (($ $) 140) (($ $ $) 141) (($ $ $ $) 142)) (-2744 (((-567) $) 33)) (-2806 (($ $ $) 72)) (-2478 (($ $) 114)) (-1839 (($ $ $) 129)) (-2445 (($ (-645 $)) 61)) (-3047 (($ $ (-645 $)) 79)) (-3895 (($ (-567) (-567)) 55)) (-2167 (($ $) 126) (($ $ $) 127)) (-3005 (($ $ (-567)) 43) (($ $) 46)) (-2197 (($ $ $) 97)) (-2225 (($ $ $) 132)) (-3508 (($ $) 115)) (-2210 (($ $ $) 98)) (-4356 (($ $) 143) (($ $ $) 144) (($ $ $ $) 145)) (-2777 (((-1271) $) 10)) (-2537 (($ $) 118) (($ $ (-772)) 122)) (-1395 (($ $ $) 75)) (-2166 (($ $ $) 74)) (-2847 (($ $ (-645 $)) 110)) (-2208 (($ $ $) 113)) (-1761 (($ (-645 $)) 59)) (-3775 (($ $) 70) (($ (-645 $)) 71)) (-3388 (($ $ $) 123)) (-3924 (($ $) 116)) (-1619 (($ $ $) 128)) (-3188 (($ (-567)) 21) (($ (-1176)) 23) (($ (-1158)) 30) (($ (-225)) 25)) (-1424 (($ $ $) 101)) (-1397 (($ $) 102)) (-1945 (((-1271) (-1158)) 15)) (-3459 (($ (-1158)) 14)) (-4036 (($ (-645 (-645 $))) 58)) (-2993 (($ $ (-567)) 42) (($ $) 45)) (-2451 (((-1158) $) NIL)) (-3211 (($ $ $) 131)) (-3587 (($ $) 146) (($ $ $) 147) (($ $ $ $) 148)) (-3469 (((-112) $) 108)) (-1514 (($ $ (-645 $)) 111) (($ $ $ $) 112)) (-4207 (($ (-567)) 39)) (-3080 (((-567) $) 32) (((-567)) 35)) (-2666 (($ $ $) 40) (($ (-645 $)) 83)) (-3339 (((-1120) $) NIL)) (-2245 (($ $ $) 99)) (-3164 (($) 13)) (-1552 (($ $ (-645 $)) 109)) (-2598 (((-1158) (-1158)) 8)) (-2945 (($ $) 117) (($ $ (-772)) 121)) (-2233 (($ $ $) 96)) (-1930 (($ $ (-772)) 139)) (-2114 (($ (-645 $)) 60)) (-4101 (((-863) $) 19)) (-4113 (($ $ (-567)) 41) (($ $) 44)) (-1426 (($ $) 68) (($ (-645 $)) 69)) (-2368 (($ $) 66) (($ (-645 $)) 67)) (-4385 (($ $) 124)) (-2254 (($ (-645 $)) 65)) (-3806 (($ $ $) 105)) (-3739 (((-112) $ $) NIL)) (-4077 (($ $ $) 130)) (-1410 (($ $ $) 100)) (-2185 (($ $ $) 103) (($ $) 104)) (-3109 (($ $ $) 89)) (-3085 (($ $ $) 87)) (-3052 (((-112) $ $) 16) (($ $ $) 17)) (-3098 (($ $ $) 88)) (-3075 (($ $ $) 86)) (-3168 (($ $ $) 94)) (-3156 (($ $ $) 91) (($ $) 92)) (-3146 (($ $ $) 90)) (** (($ $ $) 95)) (* (($ $ $) 93)))
+(((-863) (-13 (-1100) (-10 -8 (-15 -2777 ((-1271) $)) (-15 -3459 ($ (-1158))) (-15 -1945 ((-1271) (-1158))) (-15 -3188 ($ (-567))) (-15 -3188 ($ (-1176))) (-15 -3188 ($ (-1158))) (-15 -3188 ($ (-225))) (-15 -3164 ($)) (-15 -2598 ((-1158) (-1158))) (-15 -2034 ((-567) $)) (-15 -3080 ((-567) $)) (-15 -2034 ((-567))) (-15 -3080 ((-567))) (-15 -2744 ((-567) $)) (-15 -3346 ((-567) $)) (-15 -4207 ($ (-567))) (-15 -3980 ($ (-567))) (-15 -3895 ($ (-567) (-567))) (-15 -2993 ($ $ (-567))) (-15 -3005 ($ $ (-567))) (-15 -4113 ($ $ (-567))) (-15 -2993 ($ $)) (-15 -3005 ($ $)) (-15 -4113 ($ $)) (-15 -2666 ($ $ $)) (-15 -3175 ($ $ $)) (-15 -2666 ($ (-645 $))) (-15 -3175 ($ (-645 $))) (-15 -2847 ($ $ (-645 $))) (-15 -1514 ($ $ (-645 $))) (-15 -1514 ($ $ $ $)) (-15 -2208 ($ $ $)) (-15 -3469 ((-112) $)) (-15 -1552 ($ $ (-645 $))) (-15 -2478 ($ $)) (-15 -3211 ($ $ $)) (-15 -4385 ($ $)) (-15 -4036 ($ (-645 (-645 $)))) (-15 -2636 ($ $ $)) (-15 -2167 ($ $)) (-15 -2167 ($ $ $)) (-15 -1619 ($ $ $)) (-15 -1839 ($ $ $)) (-15 -4077 ($ $ $)) (-15 -2225 ($ $ $)) (-15 -1930 ($ $ (-772))) (-15 -3806 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -2166 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -3047 ($ $ (-645 $))) (-15 -2905 ($ $ (-645 $))) (-15 -3508 ($ $)) (-15 -2945 ($ $)) (-15 -2945 ($ $ (-772))) (-15 -2537 ($ $)) (-15 -2537 ($ $ (-772))) (-15 -3924 ($ $)) (-15 -3388 ($ $ $)) (-15 -2282 ($ $)) (-15 -2282 ($ $ $)) (-15 -2282 ($ $ $ $)) (-15 -4356 ($ $)) (-15 -4356 ($ $ $)) (-15 -4356 ($ $ $ $)) (-15 -3587 ($ $)) (-15 -3587 ($ $ $)) (-15 -3587 ($ $ $ $)) (-15 -2368 ($ $)) (-15 -2368 ($ (-645 $))) (-15 -1426 ($ $)) (-15 -1426 ($ (-645 $))) (-15 -3775 ($ $)) (-15 -3775 ($ (-645 $))) (-15 -1761 ($ (-645 $))) (-15 -2114 ($ (-645 $))) (-15 -2445 ($ (-645 $))) (-15 -2254 ($ (-645 $))) (-15 -3052 ($ $ $)) (-15 -2257 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -3098 ($ $ $)) (-15 -3109 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3156 ($ $)) (-15 * ($ $ $)) (-15 -3168 ($ $ $)) (-15 ** ($ $ $)) (-15 -2233 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -2210 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -1397 ($ $)) (-15 -2185 ($ $ $)) (-15 -2185 ($ $))))) (T -863))
+((-2777 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-863)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-863)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-863)))) (-3188 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3188 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-863)))) (-3188 (*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-863)))) (-3188 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863)))) (-3164 (*1 *1) (-5 *1 (-863))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-863)))) (-2034 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3080 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2034 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3080 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4207 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3980 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3895 (*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-3005 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))) (-2993 (*1 *1 *1) (-5 *1 (-863))) (-3005 (*1 *1 *1) (-5 *1 (-863))) (-4113 (*1 *1 *1) (-5 *1 (-863))) (-2666 (*1 *1 *1 *1) (-5 *1 (-863))) (-3175 (*1 *1 *1 *1) (-5 *1 (-863))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3175 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2847 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1514 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1514 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2208 (*1 *1 *1 *1) (-5 *1 (-863))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2478 (*1 *1 *1) (-5 *1 (-863))) (-3211 (*1 *1 *1 *1) (-5 *1 (-863))) (-4385 (*1 *1 *1) (-5 *1 (-863))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863)))) (-2636 (*1 *1 *1 *1) (-5 *1 (-863))) (-2167 (*1 *1 *1) (-5 *1 (-863))) (-2167 (*1 *1 *1 *1) (-5 *1 (-863))) (-1619 (*1 *1 *1 *1) (-5 *1 (-863))) (-1839 (*1 *1 *1 *1) (-5 *1 (-863))) (-4077 (*1 *1 *1 *1) (-5 *1 (-863))) (-2225 (*1 *1 *1 *1) (-5 *1 (-863))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3806 (*1 *1 *1 *1) (-5 *1 (-863))) (-2806 (*1 *1 *1 *1) (-5 *1 (-863))) (-4047 (*1 *1 *1 *1) (-5 *1 (-863))) (-2166 (*1 *1 *1 *1) (-5 *1 (-863))) (-1395 (*1 *1 *1 *1) (-5 *1 (-863))) (-3047 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2905 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3508 (*1 *1 *1) (-5 *1 (-863))) (-2945 (*1 *1 *1) (-5 *1 (-863))) (-2945 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-2537 (*1 *1 *1) (-5 *1 (-863))) (-2537 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863)))) (-3924 (*1 *1 *1) (-5 *1 (-863))) (-3388 (*1 *1 *1 *1) (-5 *1 (-863))) (-2282 (*1 *1 *1) (-5 *1 (-863))) (-2282 (*1 *1 *1 *1) (-5 *1 (-863))) (-2282 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-4356 (*1 *1 *1) (-5 *1 (-863))) (-4356 (*1 *1 *1 *1) (-5 *1 (-863))) (-4356 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-3587 (*1 *1 *1) (-5 *1 (-863))) (-3587 (*1 *1 *1 *1) (-5 *1 (-863))) (-3587 (*1 *1 *1 *1 *1) (-5 *1 (-863))) (-2368 (*1 *1 *1) (-5 *1 (-863))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1426 (*1 *1 *1) (-5 *1 (-863))) (-1426 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3775 (*1 *1 *1) (-5 *1 (-863))) (-3775 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-1761 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2445 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-2254 (*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))) (-3052 (*1 *1 *1 *1) (-5 *1 (-863))) (-2257 (*1 *1 *1 *1) (-5 *1 (-863))) (-3075 (*1 *1 *1 *1) (-5 *1 (-863))) (-3085 (*1 *1 *1 *1) (-5 *1 (-863))) (-3098 (*1 *1 *1 *1) (-5 *1 (-863))) (-3109 (*1 *1 *1 *1) (-5 *1 (-863))) (-3146 (*1 *1 *1 *1) (-5 *1 (-863))) (-3156 (*1 *1 *1 *1) (-5 *1 (-863))) (-3156 (*1 *1 *1) (-5 *1 (-863))) (* (*1 *1 *1 *1) (-5 *1 (-863))) (-3168 (*1 *1 *1 *1) (-5 *1 (-863))) (** (*1 *1 *1 *1) (-5 *1 (-863))) (-2233 (*1 *1 *1 *1) (-5 *1 (-863))) (-2197 (*1 *1 *1 *1) (-5 *1 (-863))) (-2210 (*1 *1 *1 *1) (-5 *1 (-863))) (-2245 (*1 *1 *1 *1) (-5 *1 (-863))) (-1410 (*1 *1 *1 *1) (-5 *1 (-863))) (-1424 (*1 *1 *1 *1) (-5 *1 (-863))) (-1397 (*1 *1 *1) (-5 *1 (-863))) (-2185 (*1 *1 *1 *1) (-5 *1 (-863))) (-2185 (*1 *1 *1) (-5 *1 (-863))))
+(-13 (-1100) (-10 -8 (-15 -2777 ((-1271) $)) (-15 -3459 ($ (-1158))) (-15 -1945 ((-1271) (-1158))) (-15 -3188 ($ (-567))) (-15 -3188 ($ (-1176))) (-15 -3188 ($ (-1158))) (-15 -3188 ($ (-225))) (-15 -3164 ($)) (-15 -2598 ((-1158) (-1158))) (-15 -2034 ((-567) $)) (-15 -3080 ((-567) $)) (-15 -2034 ((-567))) (-15 -3080 ((-567))) (-15 -2744 ((-567) $)) (-15 -3346 ((-567) $)) (-15 -4207 ($ (-567))) (-15 -3980 ($ (-567))) (-15 -3895 ($ (-567) (-567))) (-15 -2993 ($ $ (-567))) (-15 -3005 ($ $ (-567))) (-15 -4113 ($ $ (-567))) (-15 -2993 ($ $)) (-15 -3005 ($ $)) (-15 -4113 ($ $)) (-15 -2666 ($ $ $)) (-15 -3175 ($ $ $)) (-15 -2666 ($ (-645 $))) (-15 -3175 ($ (-645 $))) (-15 -2847 ($ $ (-645 $))) (-15 -1514 ($ $ (-645 $))) (-15 -1514 ($ $ $ $)) (-15 -2208 ($ $ $)) (-15 -3469 ((-112) $)) (-15 -1552 ($ $ (-645 $))) (-15 -2478 ($ $)) (-15 -3211 ($ $ $)) (-15 -4385 ($ $)) (-15 -4036 ($ (-645 (-645 $)))) (-15 -2636 ($ $ $)) (-15 -2167 ($ $)) (-15 -2167 ($ $ $)) (-15 -1619 ($ $ $)) (-15 -1839 ($ $ $)) (-15 -4077 ($ $ $)) (-15 -2225 ($ $ $)) (-15 -1930 ($ $ (-772))) (-15 -3806 ($ $ $)) (-15 -2806 ($ $ $)) (-15 -4047 ($ $ $)) (-15 -2166 ($ $ $)) (-15 -1395 ($ $ $)) (-15 -3047 ($ $ (-645 $))) (-15 -2905 ($ $ (-645 $))) (-15 -3508 ($ $)) (-15 -2945 ($ $)) (-15 -2945 ($ $ (-772))) (-15 -2537 ($ $)) (-15 -2537 ($ $ (-772))) (-15 -3924 ($ $)) (-15 -3388 ($ $ $)) (-15 -2282 ($ $)) (-15 -2282 ($ $ $)) (-15 -2282 ($ $ $ $)) (-15 -4356 ($ $)) (-15 -4356 ($ $ $)) (-15 -4356 ($ $ $ $)) (-15 -3587 ($ $)) (-15 -3587 ($ $ $)) (-15 -3587 ($ $ $ $)) (-15 -2368 ($ $)) (-15 -2368 ($ (-645 $))) (-15 -1426 ($ $)) (-15 -1426 ($ (-645 $))) (-15 -3775 ($ $)) (-15 -3775 ($ (-645 $))) (-15 -1761 ($ (-645 $))) (-15 -2114 ($ (-645 $))) (-15 -2445 ($ (-645 $))) (-15 -2254 ($ (-645 $))) (-15 -3052 ($ $ $)) (-15 -2257 ($ $ $)) (-15 -3075 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -3098 ($ $ $)) (-15 -3109 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -3156 ($ $ $)) (-15 -3156 ($ $)) (-15 * ($ $ $)) (-15 -3168 ($ $ $)) (-15 ** ($ $ $)) (-15 -2233 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -2210 ($ $ $)) (-15 -2245 ($ $ $)) (-15 -1410 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -1397 ($ $)) (-15 -2185 ($ $ $)) (-15 -2185 ($ $))))
+((-2018 (((-1271) (-645 (-52))) 24)) (-4293 (((-1271) (-1158) (-863)) 14) (((-1271) (-863)) 9) (((-1271) (-1158)) 11)))
+(((-864) (-10 -7 (-15 -4293 ((-1271) (-1158))) (-15 -4293 ((-1271) (-863))) (-15 -4293 ((-1271) (-1158) (-863))) (-15 -2018 ((-1271) (-645 (-52)))))) (T -864))
+((-2018 (*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1271)) (-5 *1 (-864)))) (-4293 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-863)) (-5 *2 (-1271)) (-5 *1 (-864)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-864)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-864)))))
+(-10 -7 (-15 -4293 ((-1271) (-1158))) (-15 -4293 ((-1271) (-863))) (-15 -4293 ((-1271) (-1158) (-863))) (-15 -2018 ((-1271) (-645 (-52)))))
+((-2257 (((-112) $ $) NIL)) (-4295 (((-3 $ "failed") (-1176)) 39)) (-2013 (((-772)) 32)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) 29)) (-2451 (((-1158) $) 46)) (-3811 (($ (-922)) 28)) (-3339 (((-1120) $) NIL)) (-3542 (((-1176) $) 13) (((-539) $) 19) (((-893 (-381)) $) 26) (((-893 (-567)) $) 22)) (-4101 (((-863) $) 16)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 43)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 41)))
+(((-865 |#1|) (-13 (-845) (-615 (-1176)) (-615 (-539)) (-615 (-893 (-381))) (-615 (-893 (-567))) (-10 -8 (-15 -4295 ((-3 $ "failed") (-1176))))) (-645 (-1176))) (T -865))
+((-4295 (*1 *1 *2) (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2)))))
+(-13 (-845) (-615 (-1176)) (-615 (-539)) (-615 (-893 (-381))) (-615 (-893 (-567))) (-10 -8 (-15 -4295 ((-3 $ "failed") (-1176)))))
+((-2257 (((-112) $ $) NIL)) (-1817 (((-509) $) 9)) (-1542 (((-645 (-442)) $) 13)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 21)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 16)))
+(((-866) (-13 (-1100) (-10 -8 (-15 -1817 ((-509) $)) (-15 -1542 ((-645 (-442)) $))))) (T -866))
+((-1817 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866)))) (-1542 (*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866)))))
+(-13 (-1100) (-10 -8 (-15 -1817 ((-509) $)) (-15 -1542 ((-645 (-442)) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-953 |#1|)) NIL) (((-953 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-2686 (((-772)) NIL T CONST)) (-3860 (((-1271) (-772)) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3168 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-867 |#1| |#2| |#3| |#4|) (-13 (-1050) (-493 (-953 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3168 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3860 ((-1271) (-772))))) (-1050) (-645 (-1176)) (-645 (-772)) (-772)) (T -867))
+((-3168 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *2 (-1050)) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-772))) (-14 *5 (-772)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *4 (-1050)) (-14 *5 (-645 (-1176))) (-14 *6 (-645 *3)) (-14 *7 *3))))
+(-13 (-1050) (-493 (-953 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3168 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3860 ((-1271) (-772)))))
+((-1731 (((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|) 43)) (-4292 (((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|) 34)))
+(((-868 |#1| |#2| |#3|) (-10 -7 (-15 -4292 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -1731 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|))) (-365) (-1257 |#1|) (-1242 |#1|)) (T -868))
+((-1731 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1257 *5)) (-4 *6 (-1242 *5)))) (-4292 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6)) (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1257 *5)) (-4 *6 (-1242 *5)))))
+(-10 -7 (-15 -4292 ((-3 (-410 |#3|) "failed") (-772) (-772) |#2| |#2|)) (-15 -1731 ((-3 (-174 |#3|) "failed") (-772) (-772) |#2| |#2|)))
+((-4292 (((-3 (-410 (-1239 |#2| |#1|)) "failed") (-772) (-772) (-1258 |#1| |#2| |#3|)) 30) (((-3 (-410 (-1239 |#2| |#1|)) "failed") (-772) (-772) (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|)) 28)))
+(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -4292 ((-3 (-410 (-1239 |#2| |#1|)) "failed") (-772) (-772) (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|))) (-15 -4292 ((-3 (-410 (-1239 |#2| |#1|)) "failed") (-772) (-772) (-1258 |#1| |#2| |#3|)))) (-365) (-1176) |#1|) (T -869))
+((-4292 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1258 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1176)) (-14 *7 *5) (-5 *2 (-410 (-1239 *6 *5))) (-5 *1 (-869 *5 *6 *7)))) (-4292 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1258 *5 *6 *7)) (-4 *5 (-365)) (-14 *6 (-1176)) (-14 *7 *5) (-5 *2 (-410 (-1239 *6 *5))) (-5 *1 (-869 *5 *6 *7)))))
+(-10 -7 (-15 -4292 ((-3 (-410 (-1239 |#2| |#1|)) "failed") (-772) (-772) (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|))) (-15 -4292 ((-3 (-410 (-1239 |#2| |#1|)) "failed") (-772) (-772) (-1258 |#1| |#2| |#3|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-2307 (($ $ (-567)) 68)) (-3405 (((-112) $ $) 65)) (-4061 (($) 18 T CONST)) (-2167 (($ (-1172 (-567)) (-567)) 67)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-3844 (($ $) 70)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-1909 (((-772) $) 75)) (-3714 (((-112) $) 35)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3416 (((-567)) 72)) (-3812 (((-567) $) 71)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2436 (($ $ (-567)) 74)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-4018 (((-1156 (-567)) $) 76)) (-2448 (($ $) 73)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-2927 (((-567) $ (-567)) 69)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-870 |#1|) (-140) (-567)) (T -870))
+((-4018 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1156 (-567))))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772)))) (-2436 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2448 (*1 *1 *1) (-4 *1 (-870 *2))) (-3416 (*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3812 (*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-3844 (*1 *1 *1) (-4 *1 (-870 *2))) (-2927 (*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2307 (*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))) (-2167 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4)))))
+(-13 (-308) (-147) (-10 -8 (-15 -4018 ((-1156 (-567)) $)) (-15 -1909 ((-772) $)) (-15 -2436 ($ $ (-567))) (-15 -2448 ($ $)) (-15 -3416 ((-567))) (-15 -3812 ((-567) $)) (-15 -3844 ($ $)) (-15 -2927 ((-567) $ (-567))) (-15 -2307 ($ $ (-567))) (-15 -2167 ($ (-1172 (-567)) (-567)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-308) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $ (-567)) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-2167 (($ (-1172 (-567)) (-567)) NIL)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-3844 (($ $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1909 (((-772) $) NIL)) (-3714 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3416 (((-567)) NIL)) (-3812 (((-567) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2436 (($ $ (-567)) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4018 (((-1156 (-567)) $) NIL)) (-2448 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-2927 (((-567) $ (-567)) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+(((-871 |#1|) (-870 |#1|) (-567)) (T -871))
+NIL
+(-870 |#1|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-871 |#1|) (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| (-871 |#1|) (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| (-871 |#1|) (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-871 |#1|) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (|has| (-871 |#1|) (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-871 |#1|) (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| (-871 |#1|) (-1039 (-567))))) (-1621 (((-871 |#1|) $) NIL) (((-1176) $) NIL (|has| (-871 |#1|) (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| (-871 |#1|) (-1039 (-567)))) (((-567) $) NIL (|has| (-871 |#1|) (-1039 (-567))))) (-1800 (($ $) NIL) (($ (-567) $) NIL)) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-871 |#1|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-871 |#1|))) (|:| |vec| (-1266 (-871 |#1|)))) (-690 $) (-1266 $)) NIL) (((-690 (-871 |#1|)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-871 |#1|) (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-871 |#1|) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-871 |#1|) (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 (((-871 |#1|) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| (-871 |#1|) (-1151)))) (-3948 (((-112) $) NIL (|has| (-871 |#1|) (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-1802 (($ $ $) NIL (|has| (-871 |#1|) (-851)))) (-3494 (($ (-1 (-871 |#1|) (-871 |#1|)) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-871 |#1|) (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| (-871 |#1|) (-308)))) (-3992 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-871 |#1|) (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-871 |#1|) (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 (-871 |#1|)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-871 |#1|) (-871 |#1|)) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-295 (-871 |#1|))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-295 (-871 |#1|)))) NIL (|has| (-871 |#1|) (-310 (-871 |#1|)))) (($ $ (-645 (-1176)) (-645 (-871 |#1|))) NIL (|has| (-871 |#1|) (-517 (-1176) (-871 |#1|)))) (($ $ (-1176) (-871 |#1|)) NIL (|has| (-871 |#1|) (-517 (-1176) (-871 |#1|))))) (-4369 (((-772) $) NIL)) (-1552 (($ $ (-871 |#1|)) NIL (|has| (-871 |#1|) (-287 (-871 |#1|) (-871 |#1|))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1176)) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-2870 (($ $) NIL)) (-4078 (((-871 |#1|) $) NIL)) (-3542 (((-893 (-567)) $) NIL (|has| (-871 |#1|) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-871 |#1|) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-871 |#1|) (-615 (-539)))) (((-381) $) NIL (|has| (-871 |#1|) (-1023))) (((-225) $) NIL (|has| (-871 |#1|) (-1023)))) (-3546 (((-174 (-410 (-567))) $) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL) (($ (-871 |#1|)) NIL) (($ (-1176)) NIL (|has| (-871 |#1|) (-1039 (-1176))))) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-871 |#1|) (-910))) (|has| (-871 |#1|) (-145))))) (-2686 (((-772)) NIL T CONST)) (-2721 (((-871 |#1|) $) NIL (|has| (-871 |#1|) (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-2927 (((-410 (-567)) $ (-567)) NIL)) (-1771 (($ $) NIL (|has| (-871 |#1|) (-821)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $) NIL (|has| (-871 |#1|) (-233))) (($ $ (-772)) NIL (|has| (-871 |#1|) (-233))) (($ $ (-1176)) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-871 |#1|) (-901 (-1176)))) (($ $ (-1 (-871 |#1|) (-871 |#1|)) (-772)) NIL) (($ $ (-1 (-871 |#1|) (-871 |#1|))) NIL)) (-3109 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-871 |#1|) (-851)))) (-3168 (($ $ $) NIL) (($ (-871 |#1|) (-871 |#1|)) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-871 |#1|) $) NIL) (($ $ (-871 |#1|)) NIL)))
+(((-872 |#1|) (-13 (-993 (-871 |#1|)) (-10 -8 (-15 -2927 ((-410 (-567)) $ (-567))) (-15 -3546 ((-174 (-410 (-567))) $)) (-15 -1800 ($ $)) (-15 -1800 ($ (-567) $)))) (-567)) (T -872))
+((-2927 (*1 *2 *1 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3) (-5 *3 (-567)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567)))) (-1800 (*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2))))
+(-13 (-993 (-871 |#1|)) (-10 -8 (-15 -2927 ((-410 (-567)) $ (-567))) (-15 -3546 ((-174 (-410 (-567))) $)) (-15 -1800 ($ $)) (-15 -1800 ($ (-567) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 ((|#2| $) NIL (|has| |#2| (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| |#2| (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (|has| |#2| (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567))))) (-1621 ((|#2| $) NIL) (((-1176) $) NIL (|has| |#2| (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-567)))) (((-567) $) NIL (|has| |#2| (-1039 (-567))))) (-1800 (($ $) 35) (($ (-567) $) 38)) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) 64)) (-1649 (($) NIL (|has| |#2| (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) NIL (|has| |#2| (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| |#2| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| |#2| (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 ((|#2| $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| |#2| (-1151)))) (-3948 (((-112) $) NIL (|has| |#2| (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| |#2| (-851)))) (-1802 (($ $ $) NIL (|has| |#2| (-851)))) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 60)) (-2596 (($) NIL (|has| |#2| (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| |#2| (-308)))) (-3992 ((|#2| $) NIL (|has| |#2| (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 |#2|) (-645 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-310 |#2|))) (($ $ (-295 |#2|)) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-295 |#2|))) NIL (|has| |#2| (-310 |#2|))) (($ $ (-645 (-1176)) (-645 |#2|)) NIL (|has| |#2| (-517 (-1176) |#2|))) (($ $ (-1176) |#2|) NIL (|has| |#2| (-517 (-1176) |#2|)))) (-4369 (((-772) $) NIL)) (-1552 (($ $ |#2|) NIL (|has| |#2| (-287 |#2| |#2|)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2870 (($ $) NIL)) (-4078 ((|#2| $) NIL)) (-3542 (((-893 (-567)) $) NIL (|has| |#2| (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| |#2| (-615 (-893 (-381))))) (((-539) $) NIL (|has| |#2| (-615 (-539)))) (((-381) $) NIL (|has| |#2| (-1023))) (((-225) $) NIL (|has| |#2| (-1023)))) (-3546 (((-174 (-410 (-567))) $) 78)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4101 (((-863) $) 108) (($ (-567)) 20) (($ $) NIL) (($ (-410 (-567))) 25) (($ |#2|) 19) (($ (-1176)) NIL (|has| |#2| (-1039 (-1176))))) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2721 ((|#2| $) NIL (|has| |#2| (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-2927 (((-410 (-567)) $ (-567)) 71)) (-1771 (($ $) NIL (|has| |#2| (-821)))) (-1468 (($) 15 T CONST)) (-1484 (($) 17 T CONST)) (-2692 (($ $) NIL (|has| |#2| (-233))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3109 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3052 (((-112) $ $) 46)) (-3098 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#2| (-851)))) (-3168 (($ $ $) 24) (($ |#2| |#2|) 65)) (-3156 (($ $) 50) (($ $ $) 52)) (-3146 (($ $ $) 48)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) 61)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 53) (($ $ $) 55) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#2| $) 66) (($ $ |#2|) NIL)))
+(((-873 |#1| |#2|) (-13 (-993 |#2|) (-10 -8 (-15 -2927 ((-410 (-567)) $ (-567))) (-15 -3546 ((-174 (-410 (-567))) $)) (-15 -1800 ($ $)) (-15 -1800 ($ (-567) $)))) (-567) (-870 |#1|)) (T -873))
+((-2927 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5)) (-5 *3 (-567)) (-4 *5 (-870 *4)))) (-3546 (*1 *2 *1) (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))) (-1800 (*1 *1 *1) (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))))
+(-13 (-993 |#2|) (-10 -8 (-15 -2927 ((-410 (-567)) $ (-567))) (-15 -3546 ((-174 (-410 (-567))) $)) (-15 -1800 ($ $)) (-15 -1800 ($ (-567) $))))
+((-2257 (((-112) $ $) NIL (-12 (|has| |#1| (-1100)) (|has| |#2| (-1100))))) (-2357 ((|#2| $) 12)) (-3837 (($ |#1| |#2|) 9)) (-2451 (((-1158) $) NIL (-12 (|has| |#1| (-1100)) (|has| |#2| (-1100))))) (-3339 (((-1120) $) NIL (-12 (|has| |#1| (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#1| $) 11)) (-4114 (($ |#1| |#2|) 10)) (-4101 (((-863) $) 18 (-2909 (-12 (|has| |#1| (-614 (-863))) (|has| |#2| (-614 (-863)))) (-12 (|has| |#1| (-1100)) (|has| |#2| (-1100)))))) (-3739 (((-112) $ $) NIL (-12 (|has| |#1| (-1100)) (|has| |#2| (-1100))))) (-3052 (((-112) $ $) 23 (-12 (|has| |#1| (-1100)) (|has| |#2| (-1100))))))
+(((-874 |#1| |#2|) (-13 (-1216) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1100)) (IF (|has| |#2| (-1100)) (-6 (-1100)) |%noBranch|) |%noBranch|) (-15 -3837 ($ |#1| |#2|)) (-15 -4114 ($ |#1| |#2|)) (-15 -2048 (|#1| $)) (-15 -2357 (|#2| $)))) (-1216) (-1216)) (T -874))
+((-3837 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1216)) (-4 *3 (-1216)))) (-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1216)) (-4 *3 (-1216)))) (-2048 (*1 *2 *1) (-12 (-4 *2 (-1216)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1216)))) (-2357 (*1 *2 *1) (-12 (-4 *2 (-1216)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1216)))))
+(-13 (-1216) (-10 -8 (IF (|has| |#1| (-614 (-863))) (IF (|has| |#2| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1100)) (IF (|has| |#2| (-1100)) (-6 (-1100)) |%noBranch|) |%noBranch|) (-15 -3837 ($ |#1| |#2|)) (-15 -4114 ($ |#1| |#2|)) (-15 -2048 (|#1| $)) (-15 -2357 (|#2| $))))
+((-2257 (((-112) $ $) NIL)) (-2983 (((-567) $) 16)) (-2228 (($ (-157)) 13)) (-2326 (($ (-157)) 14)) (-2451 (((-1158) $) NIL)) (-2062 (((-157) $) 15)) (-3339 (((-1120) $) NIL)) (-2189 (($ (-157)) 11)) (-1563 (($ (-157)) 10)) (-4101 (((-863) $) 24) (($ (-157)) 17)) (-2480 (($ (-157)) 12)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-875) (-13 (-1100) (-10 -8 (-15 -1563 ($ (-157))) (-15 -2189 ($ (-157))) (-15 -2480 ($ (-157))) (-15 -2228 ($ (-157))) (-15 -2326 ($ (-157))) (-15 -2062 ((-157) $)) (-15 -2983 ((-567) $)) (-15 -4101 ($ (-157)))))) (T -875))
+((-1563 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2189 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2480 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2228 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875)))) (-2983 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(-13 (-1100) (-10 -8 (-15 -1563 ($ (-157))) (-15 -2189 ($ (-157))) (-15 -2480 ($ (-157))) (-15 -2228 ($ (-157))) (-15 -2326 ($ (-157))) (-15 -2062 ((-157) $)) (-15 -2983 ((-567) $)) (-15 -4101 ($ (-157)))))
+((-4101 (((-317 (-567)) (-410 (-953 (-48)))) 23) (((-317 (-567)) (-953 (-48))) 18)))
+(((-876) (-10 -7 (-15 -4101 ((-317 (-567)) (-953 (-48)))) (-15 -4101 ((-317 (-567)) (-410 (-953 (-48))))))) (T -876))
+((-4101 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 (-48)))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-953 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876)))))
+(-10 -7 (-15 -4101 ((-317 (-567)) (-953 (-48)))) (-15 -4101 ((-317 (-567)) (-410 (-953 (-48))))))
+((-3494 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 15)))
+(((-877 |#1| |#2|) (-10 -7 (-15 -3494 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1216) (-1216)) (T -877))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))))
+(-10 -7 (-15 -3494 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))
+((-4189 (($ |#1| |#1|) 8)) (-3321 ((|#1| $ (-772)) 15)))
+(((-878 |#1|) (-10 -8 (-15 -4189 ($ |#1| |#1|)) (-15 -3321 (|#1| $ (-772)))) (-1216)) (T -878))
+((-3321 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-878 *2)) (-4 *2 (-1216)))) (-4189 (*1 *1 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1216)))))
+(-10 -8 (-15 -4189 ($ |#1| |#1|)) (-15 -3321 (|#1| $ (-772))))
+((-3494 (((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)) 15)))
+(((-879 |#1| |#2|) (-10 -7 (-15 -3494 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|)))) (-1216) (-1216)) (T -879))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6)))))
+(-10 -7 (-15 -3494 ((-880 |#2|) (-1 |#2| |#1|) (-880 |#1|))))
+((-4189 (($ |#1| |#1| |#1|) 8)) (-3321 ((|#1| $ (-772)) 15)))
+(((-880 |#1|) (-10 -8 (-15 -4189 ($ |#1| |#1| |#1|)) (-15 -3321 (|#1| $ (-772)))) (-1216)) (T -880))
+((-3321 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-880 *2)) (-4 *2 (-1216)))) (-4189 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1216)))))
+(-10 -8 (-15 -4189 ($ |#1| |#1| |#1|)) (-15 -3321 (|#1| $ (-772))))
+((-2705 (((-645 (-1181)) (-1158)) 9)))
+(((-881) (-10 -7 (-15 -2705 ((-645 (-1181)) (-1158))))) (T -881))
+((-2705 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-645 (-1181))) (-5 *1 (-881)))))
+(-10 -7 (-15 -2705 ((-645 (-1181)) (-1158))))
+((-3494 (((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)) 15)))
+(((-882 |#1| |#2|) (-10 -7 (-15 -3494 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|)))) (-1216) (-1216)) (T -882))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6)))))
+(-10 -7 (-15 -3494 ((-883 |#2|) (-1 |#2| |#1|) (-883 |#1|))))
+((-4011 (($ |#1| |#1| |#1|) 8)) (-3321 ((|#1| $ (-772)) 15)))
+(((-883 |#1|) (-10 -8 (-15 -4011 ($ |#1| |#1| |#1|)) (-15 -3321 (|#1| $ (-772)))) (-1216)) (T -883))
+((-3321 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-883 *2)) (-4 *2 (-1216)))) (-4011 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1216)))))
+(-10 -8 (-15 -4011 ($ |#1| |#1| |#1|)) (-15 -3321 (|#1| $ (-772))))
+((-3819 (((-1156 (-645 (-567))) (-645 (-567)) (-1156 (-645 (-567)))) 48)) (-1377 (((-1156 (-645 (-567))) (-645 (-567)) (-645 (-567))) 44)) (-2428 (((-1156 (-645 (-567))) (-645 (-567))) 58) (((-1156 (-645 (-567))) (-645 (-567)) (-645 (-567))) 56)) (-3249 (((-1156 (-645 (-567))) (-567)) 59)) (-3990 (((-1156 (-645 (-567))) (-567) (-567)) 34) (((-1156 (-645 (-567))) (-567)) 23) (((-1156 (-645 (-567))) (-567) (-567) (-567)) 19)) (-2943 (((-1156 (-645 (-567))) (-1156 (-645 (-567)))) 42)) (-1443 (((-645 (-567)) (-645 (-567))) 41)))
+(((-884) (-10 -7 (-15 -3990 ((-1156 (-645 (-567))) (-567) (-567) (-567))) (-15 -3990 ((-1156 (-645 (-567))) (-567))) (-15 -3990 ((-1156 (-645 (-567))) (-567) (-567))) (-15 -1443 ((-645 (-567)) (-645 (-567)))) (-15 -2943 ((-1156 (-645 (-567))) (-1156 (-645 (-567))))) (-15 -1377 ((-1156 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3819 ((-1156 (-645 (-567))) (-645 (-567)) (-1156 (-645 (-567))))) (-15 -2428 ((-1156 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -2428 ((-1156 (-645 (-567))) (-645 (-567)))) (-15 -3249 ((-1156 (-645 (-567))) (-567))))) (T -884))
+((-3249 (*1 *2 *3) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) (-2428 (*1 *2 *3) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-645 (-567))))) (-2428 (*1 *2 *3 *3) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-645 (-567))))) (-3819 (*1 *2 *3 *2) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *3 (-645 (-567))) (-5 *1 (-884)))) (-1377 (*1 *2 *3 *3) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-645 (-567))))) (-2943 (*1 *2 *2) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)))) (-1443 (*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-884)))) (-3990 (*1 *2 *3 *3) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) (-3990 (*1 *2 *3) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))) (-3990 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))))
+(-10 -7 (-15 -3990 ((-1156 (-645 (-567))) (-567) (-567) (-567))) (-15 -3990 ((-1156 (-645 (-567))) (-567))) (-15 -3990 ((-1156 (-645 (-567))) (-567) (-567))) (-15 -1443 ((-645 (-567)) (-645 (-567)))) (-15 -2943 ((-1156 (-645 (-567))) (-1156 (-645 (-567))))) (-15 -1377 ((-1156 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -3819 ((-1156 (-645 (-567))) (-645 (-567)) (-1156 (-645 (-567))))) (-15 -2428 ((-1156 (-645 (-567))) (-645 (-567)) (-645 (-567)))) (-15 -2428 ((-1156 (-645 (-567))) (-645 (-567)))) (-15 -3249 ((-1156 (-645 (-567))) (-567))))
+((-3542 (((-893 (-381)) $) 9 (|has| |#1| (-615 (-893 (-381))))) (((-893 (-567)) $) 8 (|has| |#1| (-615 (-893 (-567)))))))
+(((-885 |#1|) (-140) (-1216)) (T -885))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-615 (-893 (-567)))) (-6 (-615 (-893 (-567)))) |%noBranch|) (IF (|has| |t#1| (-615 (-893 (-381)))) (-6 (-615 (-893 (-381)))) |%noBranch|)))
+(((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))))
+((-2257 (((-112) $ $) NIL)) (-4012 (($) 14)) (-1358 (($ (-890 |#1| |#2|) (-890 |#1| |#3|)) 28)) (-2520 (((-890 |#1| |#3|) $) 16)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2083 (((-112) $) 22)) (-3577 (($) 19)) (-4101 (((-863) $) 31)) (-3739 (((-112) $ $) NIL)) (-2826 (((-890 |#1| |#2|) $) 15)) (-3052 (((-112) $ $) 26)))
+(((-886 |#1| |#2| |#3|) (-13 (-1100) (-10 -8 (-15 -2083 ((-112) $)) (-15 -3577 ($)) (-15 -4012 ($)) (-15 -1358 ($ (-890 |#1| |#2|) (-890 |#1| |#3|))) (-15 -2826 ((-890 |#1| |#2|) $)) (-15 -2520 ((-890 |#1| |#3|) $)))) (-1100) (-1100) (-667 |#2|)) (T -886))
+((-2083 (*1 *2 *1) (-12 (-4 *4 (-1100)) (-5 *2 (-112)) (-5 *1 (-886 *3 *4 *5)) (-4 *3 (-1100)) (-4 *5 (-667 *4)))) (-3577 (*1 *1) (-12 (-4 *3 (-1100)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1100)) (-4 *4 (-667 *3)))) (-4012 (*1 *1) (-12 (-4 *3 (-1100)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1100)) (-4 *4 (-667 *3)))) (-1358 (*1 *1 *2 *3) (-12 (-5 *2 (-890 *4 *5)) (-5 *3 (-890 *4 *6)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-667 *5)) (-5 *1 (-886 *4 *5 *6)))) (-2826 (*1 *2 *1) (-12 (-4 *4 (-1100)) (-5 *2 (-890 *3 *4)) (-5 *1 (-886 *3 *4 *5)) (-4 *3 (-1100)) (-4 *5 (-667 *4)))) (-2520 (*1 *2 *1) (-12 (-4 *4 (-1100)) (-5 *2 (-890 *3 *5)) (-5 *1 (-886 *3 *4 *5)) (-4 *3 (-1100)) (-4 *5 (-667 *4)))))
+(-13 (-1100) (-10 -8 (-15 -2083 ((-112) $)) (-15 -3577 ($)) (-15 -4012 ($)) (-15 -1358 ($ (-890 |#1| |#2|) (-890 |#1| |#3|))) (-15 -2826 ((-890 |#1| |#2|) $)) (-15 -2520 ((-890 |#1| |#3|) $))))
+((-2257 (((-112) $ $) 7)) (-3813 (((-890 |#1| $) $ (-893 |#1|) (-890 |#1| $)) 14)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-887 |#1|) (-140) (-1100)) (T -887))
+((-3813 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-890 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-887 *4)) (-4 *4 (-1100)))))
+(-13 (-1100) (-10 -8 (-15 -3813 ((-890 |t#1| $) $ (-893 |t#1|) (-890 |t#1| $)))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-1527 (((-112) (-645 |#2|) |#3|) 23) (((-112) |#2| |#3|) 18)) (-1846 (((-890 |#1| |#2|) |#2| |#3|) 45 (-12 (-1397 (|has| |#2| (-1039 (-1176)))) (-1397 (|has| |#2| (-1050))))) (((-645 (-295 (-953 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1050)) (-1397 (|has| |#2| (-1039 (-1176)))))) (((-645 (-295 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1039 (-1176)))) (((-886 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|) 21)))
+(((-888 |#1| |#2| |#3|) (-10 -7 (-15 -1527 ((-112) |#2| |#3|)) (-15 -1527 ((-112) (-645 |#2|) |#3|)) (-15 -1846 ((-886 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1039 (-1176))) (-15 -1846 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1050)) (-15 -1846 ((-645 (-295 (-953 |#2|))) |#2| |#3|)) (-15 -1846 ((-890 |#1| |#2|) |#2| |#3|))))) (-1100) (-887 |#1|) (-615 (-893 |#1|))) (T -888))
+((-1846 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-5 *2 (-890 *5 *3)) (-5 *1 (-888 *5 *3 *4)) (-1397 (-4 *3 (-1039 (-1176)))) (-1397 (-4 *3 (-1050))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) (-1846 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-5 *2 (-645 (-295 (-953 *3)))) (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-1050)) (-1397 (-4 *3 (-1039 (-1176)))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) (-1846 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-1039 (-1176))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))) (-1846 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-4 *6 (-887 *5)) (-5 *2 (-886 *5 *6 (-645 *6))) (-5 *1 (-888 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-893 *5))))) (-1527 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-4 *6 (-887 *5)) (-4 *5 (-1100)) (-5 *2 (-112)) (-5 *1 (-888 *5 *6 *4)) (-4 *4 (-615 (-893 *5))))) (-1527 (*1 *2 *3 *4) (-12 (-4 *5 (-1100)) (-5 *2 (-112)) (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))))
+(-10 -7 (-15 -1527 ((-112) |#2| |#3|)) (-15 -1527 ((-112) (-645 |#2|) |#3|)) (-15 -1846 ((-886 |#1| |#2| (-645 |#2|)) (-645 |#2|) |#3|)) (IF (|has| |#2| (-1039 (-1176))) (-15 -1846 ((-645 (-295 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1050)) (-15 -1846 ((-645 (-295 (-953 |#2|))) |#2| |#3|)) (-15 -1846 ((-890 |#1| |#2|) |#2| |#3|)))))
+((-3494 (((-890 |#1| |#3|) (-1 |#3| |#2|) (-890 |#1| |#2|)) 22)))
+(((-889 |#1| |#2| |#3|) (-10 -7 (-15 -3494 ((-890 |#1| |#3|) (-1 |#3| |#2|) (-890 |#1| |#2|)))) (-1100) (-1100) (-1100)) (T -889))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-890 *5 *6)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-890 *5 *7)) (-5 *1 (-889 *5 *6 *7)))))
+(-10 -7 (-15 -3494 ((-890 |#1| |#3|) (-1 |#3| |#2|) (-890 |#1| |#2|))))
+((-2257 (((-112) $ $) NIL)) (-4051 (($ $ $) 40)) (-1953 (((-3 (-112) "failed") $ (-893 |#1|)) 37)) (-4012 (($) 12)) (-2451 (((-1158) $) NIL)) (-3338 (($ (-893 |#1|) |#2| $) 20)) (-3339 (((-1120) $) NIL)) (-3934 (((-3 |#2| "failed") (-893 |#1|) $) 51)) (-2083 (((-112) $) 15)) (-3577 (($) 13)) (-2381 (((-645 (-2 (|:| -1762 (-1176)) (|:| -3859 |#2|))) $) 25)) (-4114 (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 |#2|)))) 23)) (-4101 (((-863) $) 45)) (-3739 (((-112) $ $) NIL)) (-2144 (($ (-893 |#1|) |#2| $ |#2|) 49)) (-3070 (($ (-893 |#1|) |#2| $) 48)) (-3052 (((-112) $ $) 42)))
+(((-890 |#1| |#2|) (-13 (-1100) (-10 -8 (-15 -2083 ((-112) $)) (-15 -3577 ($)) (-15 -4012 ($)) (-15 -4051 ($ $ $)) (-15 -3934 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -3070 ($ (-893 |#1|) |#2| $)) (-15 -3338 ($ (-893 |#1|) |#2| $)) (-15 -2144 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -2381 ((-645 (-2 (|:| -1762 (-1176)) (|:| -3859 |#2|))) $)) (-15 -4114 ($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 |#2|))))) (-15 -1953 ((-3 (-112) "failed") $ (-893 |#1|))))) (-1100) (-1100)) (T -890))
+((-2083 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-3577 (*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-4012 (*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-4051 (*1 *1 *1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-3934 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-4 *2 (-1100)) (-5 *1 (-890 *4 *2)))) (-3070 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1100)))) (-3338 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1100)))) (-2144 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-890 *4 *3)) (-4 *3 (-1100)))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 *4)))) (-5 *1 (-890 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 *4)))) (-4 *4 (-1100)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1100)))) (-1953 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-5 *2 (-112)) (-5 *1 (-890 *4 *5)) (-4 *5 (-1100)))))
+(-13 (-1100) (-10 -8 (-15 -2083 ((-112) $)) (-15 -3577 ($)) (-15 -4012 ($)) (-15 -4051 ($ $ $)) (-15 -3934 ((-3 |#2| "failed") (-893 |#1|) $)) (-15 -3070 ($ (-893 |#1|) |#2| $)) (-15 -3338 ($ (-893 |#1|) |#2| $)) (-15 -2144 ($ (-893 |#1|) |#2| $ |#2|)) (-15 -2381 ((-645 (-2 (|:| -1762 (-1176)) (|:| -3859 |#2|))) $)) (-15 -4114 ($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 |#2|))))) (-15 -1953 ((-3 (-112) "failed") $ (-893 |#1|)))))
+((-1973 (((-893 |#1|) (-893 |#1|) (-645 (-1176)) (-1 (-112) (-645 |#2|))) 32) (((-893 |#1|) (-893 |#1|) (-645 (-1 (-112) |#2|))) 46) (((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|)) 35)) (-1953 (((-112) (-645 |#2|) (-893 |#1|)) 42) (((-112) |#2| (-893 |#1|)) 36)) (-4203 (((-1 (-112) |#2|) (-893 |#1|)) 16)) (-4387 (((-645 |#2|) (-893 |#1|)) 24)) (-3551 (((-893 |#1|) (-893 |#1|) |#2|) 20)))
+(((-891 |#1| |#2|) (-10 -7 (-15 -1973 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -1973 ((-893 |#1|) (-893 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -1973 ((-893 |#1|) (-893 |#1|) (-645 (-1176)) (-1 (-112) (-645 |#2|)))) (-15 -4203 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -1953 ((-112) |#2| (-893 |#1|))) (-15 -1953 ((-112) (-645 |#2|) (-893 |#1|))) (-15 -3551 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -4387 ((-645 |#2|) (-893 |#1|)))) (-1100) (-1216)) (T -891))
+((-4387 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-5 *2 (-645 *5)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1216)))) (-3551 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-891 *4 *3)) (-4 *3 (-1216)))) (-1953 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-4 *6 (-1216)) (-5 *2 (-112)) (-5 *1 (-891 *5 *6)))) (-1953 (*1 *2 *3 *4) (-12 (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-5 *2 (-112)) (-5 *1 (-891 *5 *3)) (-4 *3 (-1216)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-891 *4 *5)) (-4 *5 (-1216)))) (-1973 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-893 *5)) (-5 *3 (-645 (-1176))) (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1100)) (-4 *6 (-1216)) (-5 *1 (-891 *5 *6)))) (-1973 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1100)) (-4 *5 (-1216)) (-5 *1 (-891 *4 *5)))) (-1973 (*1 *2 *2 *3) (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1100)) (-4 *5 (-1216)) (-5 *1 (-891 *4 *5)))))
+(-10 -7 (-15 -1973 ((-893 |#1|) (-893 |#1|) (-1 (-112) |#2|))) (-15 -1973 ((-893 |#1|) (-893 |#1|) (-645 (-1 (-112) |#2|)))) (-15 -1973 ((-893 |#1|) (-893 |#1|) (-645 (-1176)) (-1 (-112) (-645 |#2|)))) (-15 -4203 ((-1 (-112) |#2|) (-893 |#1|))) (-15 -1953 ((-112) |#2| (-893 |#1|))) (-15 -1953 ((-112) (-645 |#2|) (-893 |#1|))) (-15 -3551 ((-893 |#1|) (-893 |#1|) |#2|)) (-15 -4387 ((-645 |#2|) (-893 |#1|))))
+((-3494 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 19)))
+(((-892 |#1| |#2|) (-10 -7 (-15 -3494 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1100) (-1100)) (T -892))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))))
+(-10 -7 (-15 -3494 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|))))
+((-2257 (((-112) $ $) NIL)) (-3780 (($ $ (-645 (-52))) 74)) (-2449 (((-645 $) $) 138)) (-3148 (((-2 (|:| |var| (-645 (-1176))) (|:| |pred| (-52))) $) 30)) (-1928 (((-112) $) 35)) (-3640 (($ $ (-645 (-1176)) (-52)) 31)) (-3845 (($ $ (-645 (-52))) 73)) (-3417 (((-3 |#1| "failed") $) 71) (((-3 (-1176) "failed") $) 162)) (-1621 ((|#1| $) 68) (((-1176) $) NIL)) (-2052 (($ $) 126)) (-1611 (((-112) $) 55)) (-2611 (((-645 (-52)) $) 50)) (-1906 (($ (-1176) (-112) (-112) (-112)) 75)) (-2201 (((-3 (-645 $) "failed") (-645 $)) 82)) (-3396 (((-112) $) 58)) (-1544 (((-112) $) 57)) (-2451 (((-1158) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) 41)) (-3024 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48)) (-2063 (((-3 (-2 (|:| |val| $) (|:| -4164 $)) "failed") $) 97)) (-1808 (((-3 (-645 $) "failed") $) 40)) (-3281 (((-3 (-645 $) "failed") $ (-114)) 124) (((-3 (-2 (|:| -3986 (-114)) (|:| |arg| (-645 $))) "failed") $) 107)) (-3462 (((-3 (-645 $) "failed") $) 42)) (-2688 (((-3 (-2 (|:| |val| $) (|:| -4164 (-772))) "failed") $) 45)) (-3932 (((-112) $) 34)) (-3339 (((-1120) $) NIL)) (-4063 (((-112) $) 28)) (-2564 (((-112) $) 52)) (-1721 (((-645 (-52)) $) 130)) (-2629 (((-112) $) 56)) (-1552 (($ (-114) (-645 $)) 104)) (-1716 (((-772) $) 33)) (-4247 (($ $) 72)) (-3542 (($ (-645 $)) 69)) (-3115 (((-112) $) 32)) (-4101 (((-863) $) 63) (($ |#1|) 23) (($ (-1176)) 76)) (-3739 (((-112) $ $) NIL)) (-3551 (($ $ (-52)) 129)) (-1468 (($) 103 T CONST)) (-1484 (($) 83 T CONST)) (-3052 (((-112) $ $) 93)) (-3168 (($ $ $) 117)) (-3146 (($ $ $) 121)) (** (($ $ (-772)) 115) (($ $ $) 64)) (* (($ $ $) 122)))
+(((-893 |#1|) (-13 (-1100) (-1039 |#1|) (-1039 (-1176)) (-10 -8 (-15 0 ($) -2131) (-15 1 ($) -2131) (-15 -1808 ((-3 (-645 $) "failed") $)) (-15 -3376 ((-3 (-645 $) "failed") $)) (-15 -3281 ((-3 (-645 $) "failed") $ (-114))) (-15 -3281 ((-3 (-2 (|:| -3986 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -2688 ((-3 (-2 (|:| |val| $) (|:| -4164 (-772))) "failed") $)) (-15 -3024 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3462 ((-3 (-645 $) "failed") $)) (-15 -2063 ((-3 (-2 (|:| |val| $) (|:| -4164 $)) "failed") $)) (-15 -1552 ($ (-114) (-645 $))) (-15 -3146 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3168 ($ $ $)) (-15 -1716 ((-772) $)) (-15 -3542 ($ (-645 $))) (-15 -4247 ($ $)) (-15 -3932 ((-112) $)) (-15 -1611 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -3115 ((-112) $)) (-15 -2629 ((-112) $)) (-15 -1544 ((-112) $)) (-15 -3396 ((-112) $)) (-15 -2564 ((-112) $)) (-15 -2611 ((-645 (-52)) $)) (-15 -3845 ($ $ (-645 (-52)))) (-15 -3780 ($ $ (-645 (-52)))) (-15 -1906 ($ (-1176) (-112) (-112) (-112))) (-15 -3640 ($ $ (-645 (-1176)) (-52))) (-15 -3148 ((-2 (|:| |var| (-645 (-1176))) (|:| |pred| (-52))) $)) (-15 -4063 ((-112) $)) (-15 -2052 ($ $)) (-15 -3551 ($ $ (-52))) (-15 -1721 ((-645 (-52)) $)) (-15 -2449 ((-645 $) $)) (-15 -2201 ((-3 (-645 $) "failed") (-645 $))))) (-1100)) (T -893))
+((-1468 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (-1484 (*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (-1808 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3376 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3281 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1100)))) (-3281 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3986 (-114)) (|:| |arg| (-645 (-893 *3))))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2688 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4164 (-772)))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3024 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3462 (*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2063 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4164 (-893 *3)))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-1552 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 (-893 *4))) (-5 *1 (-893 *4)) (-4 *4 (-1100)))) (-3146 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (-3168 (*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-4247 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (-3932 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3845 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-3780 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-1906 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-112)) (-5 *1 (-893 *4)) (-4 *4 (-1100)))) (-3640 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-52)) (-5 *1 (-893 *4)) (-4 *4 (-1100)))) (-3148 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-645 (-1176))) (|:| |pred| (-52)))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2052 (*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))) (-3551 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-1721 (*1 *2 *1) (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))) (-2201 (*1 *2 *2) (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(-13 (-1100) (-1039 |#1|) (-1039 (-1176)) (-10 -8 (-15 (-1468) ($) -2131) (-15 (-1484) ($) -2131) (-15 -1808 ((-3 (-645 $) "failed") $)) (-15 -3376 ((-3 (-645 $) "failed") $)) (-15 -3281 ((-3 (-645 $) "failed") $ (-114))) (-15 -3281 ((-3 (-2 (|:| -3986 (-114)) (|:| |arg| (-645 $))) "failed") $)) (-15 -2688 ((-3 (-2 (|:| |val| $) (|:| -4164 (-772))) "failed") $)) (-15 -3024 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3462 ((-3 (-645 $) "failed") $)) (-15 -2063 ((-3 (-2 (|:| |val| $) (|:| -4164 $)) "failed") $)) (-15 -1552 ($ (-114) (-645 $))) (-15 -3146 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))) (-15 ** ($ $ $)) (-15 -3168 ($ $ $)) (-15 -1716 ((-772) $)) (-15 -3542 ($ (-645 $))) (-15 -4247 ($ $)) (-15 -3932 ((-112) $)) (-15 -1611 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -3115 ((-112) $)) (-15 -2629 ((-112) $)) (-15 -1544 ((-112) $)) (-15 -3396 ((-112) $)) (-15 -2564 ((-112) $)) (-15 -2611 ((-645 (-52)) $)) (-15 -3845 ($ $ (-645 (-52)))) (-15 -3780 ($ $ (-645 (-52)))) (-15 -1906 ($ (-1176) (-112) (-112) (-112))) (-15 -3640 ($ $ (-645 (-1176)) (-52))) (-15 -3148 ((-2 (|:| |var| (-645 (-1176))) (|:| |pred| (-52))) $)) (-15 -4063 ((-112) $)) (-15 -2052 ($ $)) (-15 -3551 ($ $ (-52))) (-15 -1721 ((-645 (-52)) $)) (-15 -2449 ((-645 $) $)) (-15 -2201 ((-3 (-645 $) "failed") (-645 $)))))
+((-2257 (((-112) $ $) NIL)) (-2881 (((-645 |#1|) $) 19)) (-1929 (((-112) $) 49)) (-3417 (((-3 (-673 |#1|) "failed") $) 56)) (-1621 (((-673 |#1|) $) 54)) (-2061 (($ $) 23)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-3036 (((-772) $) 61)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-673 |#1|) $) 21)) (-4101 (((-863) $) 47) (($ (-673 |#1|)) 26) (((-820 |#1|) $) 36) (($ |#1|) 25)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 9 T CONST)) (-2250 (((-645 (-673 |#1|)) $) 28)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 12)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 67)))
+(((-894 |#1|) (-13 (-851) (-1039 (-673 |#1|)) (-10 -8 (-15 1 ($) -2131) (-15 -4101 ((-820 |#1|) $)) (-15 -4101 ($ |#1|)) (-15 -2048 ((-673 |#1|) $)) (-15 -3036 ((-772) $)) (-15 -2250 ((-645 (-673 |#1|)) $)) (-15 -2061 ($ $)) (-15 -1929 ((-112) $)) (-15 -2881 ((-645 |#1|) $)))) (-851)) (T -894))
+((-1484 (*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-4101 (*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-2061 (*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))) (-1929 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-851)))) (-2881 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851)))))
+(-13 (-851) (-1039 (-673 |#1|)) (-10 -8 (-15 (-1484) ($) -2131) (-15 -4101 ((-820 |#1|) $)) (-15 -4101 ($ |#1|)) (-15 -2048 ((-673 |#1|) $)) (-15 -3036 ((-772) $)) (-15 -2250 ((-645 (-673 |#1|)) $)) (-15 -2061 ($ $)) (-15 -1929 ((-112) $)) (-15 -2881 ((-645 |#1|) $))))
+((-2423 ((|#1| |#1| |#1|) 19)))
+(((-895 |#1| |#2|) (-10 -7 (-15 -2423 (|#1| |#1| |#1|))) (-1242 |#2|) (-1050)) (T -895))
+((-2423 (*1 *2 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-895 *2 *3)) (-4 *2 (-1242 *3)))))
+(-10 -7 (-15 -2423 (|#1| |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2509 (((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1855 (((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) 14)) (-3052 (((-112) $ $) 6)))
+(((-896) (-140)) (T -896))
+((-2509 (*1 *2 *3 *4) (-12 (-4 *1 (-896)) (-5 *3 (-1063)) (-5 *4 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158)))))) (-1855 (*1 *2 *3) (-12 (-4 *1 (-896)) (-5 *3 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) (-5 *2 (-1036)))))
+(-13 (-1100) (-10 -7 (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))) (-1063) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))))) (-15 -1855 ((-1036) (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-3428 ((|#1| |#1| (-772)) 29)) (-3046 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2912 (((-3 (-2 (|:| -2993 |#1|) (|:| -3005 |#1|)) "failed") |#1| (-772) (-772)) 32) (((-645 |#1|) |#1|) 39)))
+(((-897 |#1| |#2|) (-10 -7 (-15 -2912 ((-645 |#1|) |#1|)) (-15 -2912 ((-3 (-2 (|:| -2993 |#1|) (|:| -3005 |#1|)) "failed") |#1| (-772) (-772))) (-15 -3046 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3428 (|#1| |#1| (-772)))) (-1242 |#2|) (-365)) (T -897))
+((-3428 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-897 *2 *4)) (-4 *2 (-1242 *4)))) (-3046 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-365)) (-5 *1 (-897 *2 *3)) (-4 *2 (-1242 *3)))) (-2912 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365)) (-5 *2 (-2 (|:| -2993 *3) (|:| -3005 *3))) (-5 *1 (-897 *3 *5)) (-4 *3 (-1242 *5)))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-897 *3 *4)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -2912 ((-645 |#1|) |#1|)) (-15 -2912 ((-3 (-2 (|:| -2993 |#1|) (|:| -3005 |#1|)) "failed") |#1| (-772) (-772))) (-15 -3046 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3428 (|#1| |#1| (-772))))
+((-1607 (((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1158)) 106) (((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1158) (-225)) 102) (((-1036) (-899) (-1063)) 94) (((-1036) (-899)) 95)) (-2509 (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-899) (-1063)) 65) (((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-899)) 67)))
+(((-898) (-10 -7 (-15 -1607 ((-1036) (-899))) (-15 -1607 ((-1036) (-899) (-1063))) (-15 -1607 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1158) (-225))) (-15 -1607 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1158))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-899))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-899) (-1063))))) (T -898))
+((-2509 (*1 *2 *3 *4) (-12 (-5 *3 (-899)) (-5 *4 (-1063)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) (-5 *1 (-898)))) (-2509 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158))))) (-5 *1 (-898)))) (-1607 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1158)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1036)) (-5 *1 (-898)))) (-1607 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1158)) (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1036)) (-5 *1 (-898)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-899)) (-5 *4 (-1063)) (-5 *2 (-1036)) (-5 *1 (-898)))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-1036)) (-5 *1 (-898)))))
+(-10 -7 (-15 -1607 ((-1036) (-899))) (-15 -1607 ((-1036) (-899) (-1063))) (-15 -1607 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1158) (-225))) (-15 -1607 ((-1036) (-381) (-381) (-381) (-381) (-772) (-772) (-645 (-317 (-381))) (-645 (-645 (-317 (-381)))) (-1158))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-899))) (-15 -2509 ((-2 (|:| -2509 (-381)) (|:| -1817 (-1158)) (|:| |explanations| (-645 (-1158)))) (-899) (-1063))))
+((-2257 (((-112) $ $) NIL)) (-1621 (((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))) $) 19)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 21) (($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) 18)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-899) (-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))))) (-15 -1621 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))) $))))) (T -899))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) (-5 *1 (-899)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225)))) (-5 *1 (-899)))))
+(-13 (-1100) (-10 -8 (-15 -4101 ($ (-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))))) (-15 -1621 ((-2 (|:| |pde| (-645 (-317 (-225)))) (|:| |constraints| (-645 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-772)) (|:| |boundaryType| (-567)) (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225)))))) (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158)) (|:| |tol| (-225))) $))))
+((-1930 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) 10) (($ $ |#2| (-772)) 15) (($ $ (-645 |#2|) (-645 (-772))) 18)) (-2692 (($ $ |#2|) 19) (($ $ (-645 |#2|)) 21) (($ $ |#2| (-772)) 22) (($ $ (-645 |#2|) (-645 (-772))) 24)))
+(((-900 |#1| |#2|) (-10 -8 (-15 -2692 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2692 (|#1| |#1| |#2| (-772))) (-15 -2692 (|#1| |#1| (-645 |#2|))) (-15 -2692 (|#1| |#1| |#2|)) (-15 -1930 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1930 (|#1| |#1| |#2| (-772))) (-15 -1930 (|#1| |#1| (-645 |#2|))) (-15 -1930 (|#1| |#1| |#2|))) (-901 |#2|) (-1100)) (T -900))
+NIL
+(-10 -8 (-15 -2692 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -2692 (|#1| |#1| |#2| (-772))) (-15 -2692 (|#1| |#1| (-645 |#2|))) (-15 -2692 (|#1| |#1| |#2|)) (-15 -1930 (|#1| |#1| (-645 |#2|) (-645 (-772)))) (-15 -1930 (|#1| |#1| |#2| (-772))) (-15 -1930 (|#1| |#1| (-645 |#2|))) (-15 -1930 (|#1| |#1| |#2|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1930 (($ $ |#1|) 46) (($ $ (-645 |#1|)) 45) (($ $ |#1| (-772)) 44) (($ $ (-645 |#1|) (-645 (-772))) 43)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ |#1|) 42) (($ $ (-645 |#1|)) 41) (($ $ |#1| (-772)) 40) (($ $ (-645 |#1|) (-645 (-772))) 39)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-901 |#1|) (-140) (-1100)) (T -901))
+((-1930 (*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1100)))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1100)))) (-1930 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1100)))) (-1930 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4)) (-4 *4 (-1100)))) (-2692 (*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1100)))) (-2692 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1100)))) (-2692 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1100)))) (-2692 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4)) (-4 *4 (-1100)))))
+(-13 (-1050) (-10 -8 (-15 -1930 ($ $ |t#1|)) (-15 -1930 ($ $ (-645 |t#1|))) (-15 -1930 ($ $ |t#1| (-772))) (-15 -1930 ($ $ (-645 |t#1|) (-645 (-772)))) (-15 -2692 ($ $ |t#1|)) (-15 -2692 ($ $ (-645 |t#1|))) (-15 -2692 ($ $ |t#1| (-772))) (-15 -2692 ($ $ (-645 |t#1|) (-645 (-772))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) 26)) (-1580 (((-112) $ (-772)) NIL)) (-2372 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-1832 (($ $ $) NIL (|has| $ (-6 -4417)))) (-3615 (($ $ $) NIL (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) (($ $ "left" $) NIL (|has| $ (-6 -4417))) (($ $ "right" $) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3005 (($ $) 25)) (-2370 (($ |#1|) 12) (($ $ $) 17)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2993 (($ $) 23)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) 20)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4304 (((-567) $ $) NIL)) (-3436 (((-112) $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-1202 |#1|) $) 9) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 21 (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-902 |#1|) (-13 (-119 |#1|) (-614 (-1202 |#1|)) (-10 -8 (-15 -2370 ($ |#1|)) (-15 -2370 ($ $ $)))) (-1100)) (T -902))
+((-2370 (*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1100)))) (-2370 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1100)))))
+(-13 (-119 |#1|) (-614 (-1202 |#1|)) (-10 -8 (-15 -2370 ($ |#1|)) (-15 -2370 ($ $ $))))
+((-1408 ((|#2| (-1142 |#1| |#2|)) 53)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -1408 (|#2| (-1142 |#1| |#2|)))) (-922) (-13 (-1050) (-10 -7 (-6 (-4418 "*"))))) (T -903))
+((-1408 (*1 *2 *3) (-12 (-5 *3 (-1142 *4 *2)) (-14 *4 (-922)) (-4 *2 (-13 (-1050) (-10 -7 (-6 (-4418 "*"))))) (-5 *1 (-903 *4 *2)))))
+(-10 -7 (-15 -1408 (|#2| (-1142 |#1| |#2|))))
+((-2257 (((-112) $ $) 7)) (-4061 (($) 19 T CONST)) (-4014 (((-3 $ "failed") $) 16)) (-2835 (((-1102 |#1|) $ |#1|) 33)) (-3714 (((-112) $) 18)) (-2056 (($ $ $) 31 (-2909 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-1802 (($ $ $) 30 (-2909 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-2451 (((-1158) $) 10)) (-2559 (($ $) 25)) (-3339 (((-1120) $) 11)) (-3140 ((|#1| $ |#1|) 35)) (-1552 ((|#1| $ |#1|) 34)) (-3510 (($ (-645 (-645 |#1|))) 36)) (-2699 (($ (-645 |#1|)) 37)) (-1443 (($ $ $) 22)) (-4272 (($ $ $) 21)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1484 (($) 20 T CONST)) (-3109 (((-112) $ $) 28 (-2909 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-3085 (((-112) $ $) 27 (-2909 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 29 (-2909 (|has| |#1| (-851)) (|has| |#1| (-370))))) (-3075 (((-112) $ $) 32)) (-3168 (($ $ $) 24)) (** (($ $ (-922)) 14) (($ $ (-772)) 17) (($ $ (-567)) 23)) (* (($ $ $) 15)))
+(((-904 |#1|) (-140) (-1100)) (T -904))
+((-2699 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-904 *3)))) (-3510 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-4 *1 (-904 *3)))) (-3140 (*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1100)))) (-1552 (*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1100)))) (-2835 (*1 *2 *1 *3) (-12 (-4 *1 (-904 *3)) (-4 *3 (-1100)) (-5 *2 (-1102 *3)))) (-3075 (*1 *2 *1 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(-13 (-476) (-10 -8 (-15 -2699 ($ (-645 |t#1|))) (-15 -3510 ($ (-645 (-645 |t#1|)))) (-15 -3140 (|t#1| $ |t#1|)) (-15 -1552 (|t#1| $ |t#1|)) (-15 -2835 ((-1102 |t#1|) $ |t#1|)) (-15 -3075 ((-112) $ $)) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-370)) (-6 (-851)) |%noBranch|)))
+(((-102) . T) ((-614 (-863)) . T) ((-476) . T) ((-727) . T) ((-851) -2909 (|has| |#1| (-851)) (|has| |#1| (-370))) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2393 (((-645 (-645 (-772))) $) 165)) (-3457 (((-645 (-772)) (-906 |#1|) $) 193)) (-1991 (((-645 (-772)) (-906 |#1|) $) 194)) (-4041 (((-645 (-906 |#1|)) $) 154)) (-1649 (((-906 |#1|) $ (-567)) 159) (((-906 |#1|) $) 160)) (-3389 (($ (-645 (-906 |#1|))) 167)) (-1909 (((-772) $) 161)) (-3684 (((-1102 (-1102 |#1|)) $) 191)) (-2835 (((-1102 |#1|) $ |#1|) 182) (((-1102 (-1102 |#1|)) $ (-1102 |#1|)) 202) (((-1102 (-645 |#1|)) $ (-645 |#1|)) 205)) (-4083 (((-1102 |#1|) $) 157)) (-2176 (((-112) (-906 |#1|) $) 143)) (-2451 (((-1158) $) NIL)) (-2476 (((-1271) $) 147) (((-1271) $ (-567) (-567)) 206)) (-3339 (((-1120) $) NIL)) (-2928 (((-645 (-906 |#1|)) $) 148)) (-1552 (((-906 |#1|) $ (-772)) 155)) (-3677 (((-772) $) 162)) (-4101 (((-863) $) 179) (((-645 (-906 |#1|)) $) 28) (($ (-645 (-906 |#1|))) 166)) (-3739 (((-112) $ $) NIL)) (-3183 (((-645 |#1|) $) 164)) (-3052 (((-112) $ $) 199)) (-3098 (((-112) $ $) 197)) (-3075 (((-112) $ $) 196)))
+(((-905 |#1|) (-13 (-1100) (-10 -8 (-15 -4101 ((-645 (-906 |#1|)) $)) (-15 -2928 ((-645 (-906 |#1|)) $)) (-15 -1552 ((-906 |#1|) $ (-772))) (-15 -1649 ((-906 |#1|) $ (-567))) (-15 -1649 ((-906 |#1|) $)) (-15 -1909 ((-772) $)) (-15 -3677 ((-772) $)) (-15 -3183 ((-645 |#1|) $)) (-15 -4041 ((-645 (-906 |#1|)) $)) (-15 -2393 ((-645 (-645 (-772))) $)) (-15 -4101 ($ (-645 (-906 |#1|)))) (-15 -3389 ($ (-645 (-906 |#1|)))) (-15 -2835 ((-1102 |#1|) $ |#1|)) (-15 -3684 ((-1102 (-1102 |#1|)) $)) (-15 -2835 ((-1102 (-1102 |#1|)) $ (-1102 |#1|))) (-15 -2835 ((-1102 (-645 |#1|)) $ (-645 |#1|))) (-15 -2176 ((-112) (-906 |#1|) $)) (-15 -3457 ((-645 (-772)) (-906 |#1|) $)) (-15 -1991 ((-645 (-772)) (-906 |#1|) $)) (-15 -4083 ((-1102 |#1|) $)) (-15 -3075 ((-112) $ $)) (-15 -3098 ((-112) $ $)) (-15 -2476 ((-1271) $)) (-15 -2476 ((-1271) $ (-567) (-567))))) (-1100)) (T -905))
+((-4101 (*1 *2 *1) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4)) (-4 *4 (-1100)))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4)) (-4 *4 (-1100)))) (-1649 (*1 *2 *1) (-12 (-5 *2 (-906 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-2393 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1100)) (-5 *1 (-905 *3)))) (-3389 (*1 *1 *2) (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1100)) (-5 *1 (-905 *3)))) (-2835 (*1 *2 *1 *3) (-12 (-5 *2 (-1102 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-1102 (-1102 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-2835 (*1 *2 *1 *3) (-12 (-4 *4 (-1100)) (-5 *2 (-1102 (-1102 *4))) (-5 *1 (-905 *4)) (-5 *3 (-1102 *4)))) (-2835 (*1 *2 *1 *3) (-12 (-4 *4 (-1100)) (-5 *2 (-1102 (-645 *4))) (-5 *1 (-905 *4)) (-5 *3 (-645 *4)))) (-2176 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1100)) (-5 *2 (-112)) (-5 *1 (-905 *4)))) (-3457 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1100)) (-5 *2 (-645 (-772))) (-5 *1 (-905 *4)))) (-1991 (*1 *2 *3 *1) (-12 (-5 *3 (-906 *4)) (-4 *4 (-1100)) (-5 *2 (-645 (-772))) (-5 *1 (-905 *4)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-1102 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-3075 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-3098 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-2476 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))) (-2476 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-905 *4)) (-4 *4 (-1100)))))
+(-13 (-1100) (-10 -8 (-15 -4101 ((-645 (-906 |#1|)) $)) (-15 -2928 ((-645 (-906 |#1|)) $)) (-15 -1552 ((-906 |#1|) $ (-772))) (-15 -1649 ((-906 |#1|) $ (-567))) (-15 -1649 ((-906 |#1|) $)) (-15 -1909 ((-772) $)) (-15 -3677 ((-772) $)) (-15 -3183 ((-645 |#1|) $)) (-15 -4041 ((-645 (-906 |#1|)) $)) (-15 -2393 ((-645 (-645 (-772))) $)) (-15 -4101 ($ (-645 (-906 |#1|)))) (-15 -3389 ($ (-645 (-906 |#1|)))) (-15 -2835 ((-1102 |#1|) $ |#1|)) (-15 -3684 ((-1102 (-1102 |#1|)) $)) (-15 -2835 ((-1102 (-1102 |#1|)) $ (-1102 |#1|))) (-15 -2835 ((-1102 (-645 |#1|)) $ (-645 |#1|))) (-15 -2176 ((-112) (-906 |#1|) $)) (-15 -3457 ((-645 (-772)) (-906 |#1|) $)) (-15 -1991 ((-645 (-772)) (-906 |#1|) $)) (-15 -4083 ((-1102 |#1|) $)) (-15 -3075 ((-112) $ $)) (-15 -3098 ((-112) $ $)) (-15 -2476 ((-1271) $)) (-15 -2476 ((-1271) $ (-567) (-567)))))
+((-2257 (((-112) $ $) NIL)) (-1594 (((-645 $) (-645 $)) 105)) (-3179 (((-567) $) 86)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-1909 (((-772) $) 83)) (-2835 (((-1102 |#1|) $ |#1|) 74)) (-3714 (((-112) $) NIL)) (-3937 (((-112) $) 90)) (-4363 (((-772) $) 87)) (-4083 (((-1102 |#1|) $) 63)) (-2056 (($ $ $) NIL (-2909 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-1802 (($ $ $) NIL (-2909 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-4120 (((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $) 58)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 133)) (-3339 (((-1120) $) NIL)) (-4225 (((-1102 |#1|) $) 141 (|has| |#1| (-370)))) (-2143 (((-112) $) 84)) (-3140 ((|#1| $ |#1|) 72)) (-1552 ((|#1| $ |#1|) 135)) (-3677 (((-772) $) 65)) (-3510 (($ (-645 (-645 |#1|))) 120)) (-4072 (((-972) $) 78)) (-2699 (($ (-645 |#1|)) 35)) (-1443 (($ $ $) NIL)) (-4272 (($ $ $) NIL)) (-2746 (($ (-645 (-645 |#1|))) 60)) (-3957 (($ (-645 (-645 |#1|))) 125)) (-2170 (($ (-645 |#1|)) 137)) (-4101 (((-863) $) 119) (($ (-645 (-645 |#1|))) 93) (($ (-645 |#1|)) 94)) (-3739 (((-112) $ $) NIL)) (-1484 (($) 27 T CONST)) (-3109 (((-112) $ $) NIL (-2909 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-3085 (((-112) $ $) NIL (-2909 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-3052 (((-112) $ $) 70)) (-3098 (((-112) $ $) NIL (-2909 (|has| |#1| (-370)) (|has| |#1| (-851))))) (-3075 (((-112) $ $) 92)) (-3168 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ $ $) 36)))
+(((-906 |#1|) (-13 (-904 |#1|) (-10 -8 (-15 -4120 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -2746 ($ (-645 (-645 |#1|)))) (-15 -4101 ($ (-645 (-645 |#1|)))) (-15 -4101 ($ (-645 |#1|))) (-15 -3957 ($ (-645 (-645 |#1|)))) (-15 -3677 ((-772) $)) (-15 -4083 ((-1102 |#1|) $)) (-15 -4072 ((-972) $)) (-15 -1909 ((-772) $)) (-15 -4363 ((-772) $)) (-15 -3179 ((-567) $)) (-15 -2143 ((-112) $)) (-15 -3937 ((-112) $)) (-15 -1594 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4225 ((-1102 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -2170 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -2170 ($ (-645 |#1|))) |%noBranch|)))) (-1100)) (T -906))
+((-4120 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3)))) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-906 *3)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-906 *3)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-906 *3)))) (-3957 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-906 *3)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-1102 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-972)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-1909 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-2143 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-1594 (*1 *2 *2) (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1100)))) (-4225 (*1 *2 *1) (-12 (-5 *2 (-1102 *3)) (-5 *1 (-906 *3)) (-4 *3 (-370)) (-4 *3 (-1100)))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-906 *3)))))
+(-13 (-904 |#1|) (-10 -8 (-15 -4120 ((-2 (|:| |preimage| (-645 |#1|)) (|:| |image| (-645 |#1|))) $)) (-15 -2746 ($ (-645 (-645 |#1|)))) (-15 -4101 ($ (-645 (-645 |#1|)))) (-15 -4101 ($ (-645 |#1|))) (-15 -3957 ($ (-645 (-645 |#1|)))) (-15 -3677 ((-772) $)) (-15 -4083 ((-1102 |#1|) $)) (-15 -4072 ((-972) $)) (-15 -1909 ((-772) $)) (-15 -4363 ((-772) $)) (-15 -3179 ((-567) $)) (-15 -2143 ((-112) $)) (-15 -3937 ((-112) $)) (-15 -1594 ((-645 $) (-645 $))) (IF (|has| |#1| (-370)) (-15 -4225 ((-1102 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-548)) (-15 -2170 ($ (-645 |#1|))) (IF (|has| |#1| (-370)) (-15 -2170 ($ (-645 |#1|))) |%noBranch|))))
+((-4201 (((-3 (-645 (-1172 |#4|)) "failed") (-645 (-1172 |#4|)) (-1172 |#4|)) 159)) (-3670 ((|#1|) 97)) (-3242 (((-421 (-1172 |#4|)) (-1172 |#4|)) 168)) (-1921 (((-421 (-1172 |#4|)) (-645 |#3|) (-1172 |#4|)) 84)) (-3435 (((-421 (-1172 |#4|)) (-1172 |#4|)) 178)) (-1885 (((-3 (-645 (-1172 |#4|)) "failed") (-645 (-1172 |#4|)) (-1172 |#4|) |#3|) 113)))
+(((-907 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-3 (-645 (-1172 |#4|)) "failed") (-645 (-1172 |#4|)) (-1172 |#4|))) (-15 -3435 ((-421 (-1172 |#4|)) (-1172 |#4|))) (-15 -3242 ((-421 (-1172 |#4|)) (-1172 |#4|))) (-15 -3670 (|#1|)) (-15 -1885 ((-3 (-645 (-1172 |#4|)) "failed") (-645 (-1172 |#4|)) (-1172 |#4|) |#3|)) (-15 -1921 ((-421 (-1172 |#4|)) (-645 |#3|) (-1172 |#4|)))) (-910) (-794) (-851) (-950 |#1| |#2| |#3|)) (T -907))
+((-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-910)) (-4 *6 (-794)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-421 (-1172 *8))) (-5 *1 (-907 *5 *6 *7 *8)) (-5 *4 (-1172 *8)))) (-1885 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-645 (-1172 *7))) (-5 *3 (-1172 *7)) (-4 *7 (-950 *5 *6 *4)) (-4 *5 (-910)) (-4 *6 (-794)) (-4 *4 (-851)) (-5 *1 (-907 *5 *6 *4 *7)))) (-3670 (*1 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910)) (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1172 *7))) (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1172 *7)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1172 *7))) (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1172 *7)))) (-4201 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1172 *7))) (-5 *3 (-1172 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-907 *4 *5 *6 *7)))))
+(-10 -7 (-15 -4201 ((-3 (-645 (-1172 |#4|)) "failed") (-645 (-1172 |#4|)) (-1172 |#4|))) (-15 -3435 ((-421 (-1172 |#4|)) (-1172 |#4|))) (-15 -3242 ((-421 (-1172 |#4|)) (-1172 |#4|))) (-15 -3670 (|#1|)) (-15 -1885 ((-3 (-645 (-1172 |#4|)) "failed") (-645 (-1172 |#4|)) (-1172 |#4|) |#3|)) (-15 -1921 ((-421 (-1172 |#4|)) (-645 |#3|) (-1172 |#4|))))
+((-4201 (((-3 (-645 (-1172 |#2|)) "failed") (-645 (-1172 |#2|)) (-1172 |#2|)) 41)) (-3670 ((|#1|) 75)) (-3242 (((-421 (-1172 |#2|)) (-1172 |#2|)) 124)) (-1921 (((-421 (-1172 |#2|)) (-1172 |#2|)) 108)) (-3435 (((-421 (-1172 |#2|)) (-1172 |#2|)) 135)))
+(((-908 |#1| |#2|) (-10 -7 (-15 -4201 ((-3 (-645 (-1172 |#2|)) "failed") (-645 (-1172 |#2|)) (-1172 |#2|))) (-15 -3435 ((-421 (-1172 |#2|)) (-1172 |#2|))) (-15 -3242 ((-421 (-1172 |#2|)) (-1172 |#2|))) (-15 -3670 (|#1|)) (-15 -1921 ((-421 (-1172 |#2|)) (-1172 |#2|)))) (-910) (-1242 |#1|)) (T -908))
+((-1921 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-1242 *4)) (-5 *2 (-421 (-1172 *5))) (-5 *1 (-908 *4 *5)) (-5 *3 (-1172 *5)))) (-3670 (*1 *2) (-12 (-4 *2 (-910)) (-5 *1 (-908 *2 *3)) (-4 *3 (-1242 *2)))) (-3242 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-1242 *4)) (-5 *2 (-421 (-1172 *5))) (-5 *1 (-908 *4 *5)) (-5 *3 (-1172 *5)))) (-3435 (*1 *2 *3) (-12 (-4 *4 (-910)) (-4 *5 (-1242 *4)) (-5 *2 (-421 (-1172 *5))) (-5 *1 (-908 *4 *5)) (-5 *3 (-1172 *5)))) (-4201 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1172 *5))) (-5 *3 (-1172 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-910)) (-5 *1 (-908 *4 *5)))))
+(-10 -7 (-15 -4201 ((-3 (-645 (-1172 |#2|)) "failed") (-645 (-1172 |#2|)) (-1172 |#2|))) (-15 -3435 ((-421 (-1172 |#2|)) (-1172 |#2|))) (-15 -3242 ((-421 (-1172 |#2|)) (-1172 |#2|))) (-15 -3670 (|#1|)) (-15 -1921 ((-421 (-1172 |#2|)) (-1172 |#2|))))
+((-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 42)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 18)) (-4242 (((-3 $ "failed") $) 36)))
+(((-909 |#1|) (-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)))) (-910)) (T -909))
+NIL
+(-10 -8 (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-1877 (((-421 (-1172 $)) (-1172 $)) 66)) (-1396 (($ $) 57)) (-1401 (((-421 $) $) 58)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 63)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-1665 (((-112) $) 59)) (-3714 (((-112) $) 35)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-1495 (((-421 (-1172 $)) (-1172 $)) 64)) (-1429 (((-421 (-1172 $)) (-1172 $)) 65)) (-2296 (((-421 $) $) 56)) (-2245 (((-3 $ "failed") $ $) 48)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 62 (|has| $ (-145)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-4242 (((-3 $ "failed") $) 61 (|has| $ (-145)))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-910) (-140)) (T -910))
+((-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-910)))) (-1877 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1172 *1))) (-5 *3 (-1172 *1)))) (-1429 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1172 *1))) (-5 *3 (-1172 *1)))) (-1495 (*1 *2 *3) (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1172 *1))) (-5 *3 (-1172 *1)))) (-4087 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-645 (-1172 *1))) (-5 *3 (-1172 *1)) (-4 *1 (-910)))) (-1470 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-910)) (-5 *2 (-1266 *1)))) (-4242 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-910)))))
+(-13 (-1220) (-10 -8 (-15 -1877 ((-421 (-1172 $)) (-1172 $))) (-15 -1429 ((-421 (-1172 $)) (-1172 $))) (-15 -1495 ((-421 (-1172 $)) (-1172 $))) (-15 -1819 ((-1172 $) (-1172 $) (-1172 $))) (-15 -4087 ((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $))) (IF (|has| $ (-145)) (PROGN (-15 -1470 ((-3 (-1266 $) "failed") (-690 $))) (-15 -4242 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-2513 (((-112) $) NIL)) (-2145 (((-772)) NIL)) (-4093 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-1783 (((-1189 (-922) (-772)) (-567)) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 $ "failed") $) NIL)) (-1621 (($ $) NIL)) (-3499 (($ (-1266 $)) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-3896 (($) NIL)) (-1596 (((-112) $) NIL)) (-2966 (($ $) NIL) (($ $ (-772)) NIL)) (-1665 (((-112) $) NIL)) (-1909 (((-834 (-922)) $) NIL) (((-922) $) NIL)) (-3714 (((-112) $) NIL)) (-1359 (($) NIL (|has| $ (-370)))) (-4270 (((-112) $) NIL (|has| $ (-370)))) (-3751 (($ $ (-922)) NIL (|has| $ (-370))) (($ $) NIL)) (-2802 (((-3 $ "failed") $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4110 (((-1172 $) $ (-922)) NIL (|has| $ (-370))) (((-1172 $) $) NIL)) (-3527 (((-922) $) NIL)) (-2617 (((-1172 $) $) NIL (|has| $ (-370)))) (-4260 (((-3 (-1172 $) "failed") $ $) NIL (|has| $ (-370))) (((-1172 $) $) NIL (|has| $ (-370)))) (-2173 (($ $ (-1172 $)) NIL (|has| $ (-370)))) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL T CONST)) (-3811 (($ (-922)) NIL)) (-2407 (((-112) $) NIL)) (-3339 (((-1120) $) NIL)) (-4099 (($) NIL (|has| $ (-370)))) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL)) (-2296 (((-421 $) $) NIL)) (-2888 (((-922)) NIL) (((-834 (-922))) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-2097 (((-3 (-772) "failed") $ $) NIL) (((-772) $) NIL)) (-1948 (((-134)) NIL)) (-1930 (($ $ (-772)) NIL) (($ $) NIL)) (-3677 (((-922) $) NIL) (((-834 (-922)) $) NIL)) (-2713 (((-1172 $)) NIL)) (-1698 (($) NIL)) (-3995 (($) NIL (|has| $ (-370)))) (-3216 (((-690 $) (-1266 $)) NIL) (((-1266 $) $) NIL)) (-3542 (((-567) $) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL)) (-4242 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $) (-922)) NIL) (((-1266 $)) NIL)) (-2469 (((-112) $ $) NIL)) (-2447 (((-112) $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2202 (($ $ (-772)) NIL (|has| $ (-370))) (($ $) NIL (|has| $ (-370)))) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-911 |#1|) (-13 (-351) (-330 $) (-615 (-567))) (-922)) (T -911))
+NIL
+(-13 (-351) (-330 $) (-615 (-567)))
+((-2311 (((-3 (-2 (|:| -1909 (-772)) (|:| -3116 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)) 77)) (-2421 (((-112) (-338 |#2| |#3| |#4| |#5|)) 17)) (-1909 (((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|)) 15)))
+(((-912 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1909 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2421 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2311 ((-3 (-2 (|:| -1909 (-772)) (|:| -3116 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|)))) (-13 (-559) (-1039 (-567))) (-433 |#1|) (-1242 |#2|) (-1242 (-410 |#3|)) (-344 |#2| |#3| |#4|)) (T -912))
+((-2311 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-2 (|:| -1909 (-772)) (|:| -3116 *8))) (-5 *1 (-912 *4 *5 *6 *7 *8)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112)) (-5 *1 (-912 *4 *5 *6 *7 *8)))) (-1909 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-772)) (-5 *1 (-912 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1909 ((-3 (-772) "failed") (-338 |#2| |#3| |#4| |#5|))) (-15 -2421 ((-112) (-338 |#2| |#3| |#4| |#5|))) (-15 -2311 ((-3 (-2 (|:| -1909 (-772)) (|:| -3116 |#5|)) "failed") (-338 |#2| |#3| |#4| |#5|))))
+((-2311 (((-3 (-2 (|:| -1909 (-772)) (|:| -3116 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 64)) (-2421 (((-112) (-338 (-410 (-567)) |#1| |#2| |#3|)) 16)) (-1909 (((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)) 14)))
+(((-913 |#1| |#2| |#3|) (-10 -7 (-15 -1909 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2421 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2311 ((-3 (-2 (|:| -1909 (-772)) (|:| -3116 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|)))) (-1242 (-410 (-567))) (-1242 (-410 |#1|)) (-344 (-410 (-567)) |#1| |#2|)) (T -913))
+((-2311 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1242 (-410 (-567)))) (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-2 (|:| -1909 (-772)) (|:| -3116 *6))) (-5 *1 (-913 *4 *5 *6)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1242 (-410 (-567)))) (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-913 *4 *5 *6)))) (-1909 (*1 *2 *3) (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6)) (-4 *4 (-1242 (-410 (-567)))) (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772)) (-5 *1 (-913 *4 *5 *6)))))
+(-10 -7 (-15 -1909 ((-3 (-772) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2421 ((-112) (-338 (-410 (-567)) |#1| |#2| |#3|))) (-15 -2311 ((-3 (-2 (|:| -1909 (-772)) (|:| -3116 |#3|)) "failed") (-338 (-410 (-567)) |#1| |#2| |#3|))))
+((-2667 ((|#2| |#2|) 26)) (-1457 (((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) 15)) (-3246 (((-922) (-567)) 38)) (-2973 (((-567) |#2|) 45)) (-1384 (((-567) |#2|) 21) (((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|) 20)))
+(((-914 |#1| |#2|) (-10 -7 (-15 -3246 ((-922) (-567))) (-15 -1384 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -1384 ((-567) |#2|)) (-15 -1457 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -2973 ((-567) |#2|)) (-15 -2667 (|#2| |#2|))) (-1242 (-410 (-567))) (-1242 (-410 |#1|))) (T -914))
+((-2667 (*1 *2 *2) (-12 (-4 *3 (-1242 (-410 (-567)))) (-5 *1 (-914 *3 *2)) (-4 *2 (-1242 (-410 *3))))) (-2973 (*1 *2 *3) (-12 (-4 *4 (-1242 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1242 (-410 *4))))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))) (-4 *4 (-1242 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1242 (-410 *4))))) (-1384 (*1 *2 *3) (-12 (-4 *4 (-1242 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3)) (-4 *3 (-1242 (-410 *4))))) (-1384 (*1 *2 *3) (-12 (-4 *3 (-1242 (-410 (-567)))) (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))) (-5 *1 (-914 *3 *4)) (-4 *4 (-1242 (-410 *3))))) (-3246 (*1 *2 *3) (-12 (-5 *3 (-567)) (-4 *4 (-1242 (-410 *3))) (-5 *2 (-922)) (-5 *1 (-914 *4 *5)) (-4 *5 (-1242 (-410 *4))))))
+(-10 -7 (-15 -3246 ((-922) (-567))) (-15 -1384 ((-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))) |#1|)) (-15 -1384 ((-567) |#2|)) (-15 -1457 ((-567) (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))) (-15 -2973 ((-567) |#2|)) (-15 -2667 (|#2| |#2|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 ((|#1| $) 100)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-2197 (($ $ $) NIL)) (-4014 (((-3 $ "failed") $) 94)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-1676 (($ |#1| (-421 |#1|)) 92)) (-3576 (((-1172 |#1|) |#1| |#1|) 53)) (-3861 (($ $) 61)) (-3714 (((-112) $) NIL)) (-4158 (((-567) $) 97)) (-2521 (($ $ (-567)) 99)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-4129 ((|#1| $) 96)) (-2820 (((-421 |#1|) $) 95)) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) 93)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-3540 (($ $) 50)) (-4101 (((-863) $) 124) (($ (-567)) 73) (($ $) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 41) (((-410 |#1|) $) 78) (($ (-410 (-421 |#1|))) 86)) (-2686 (((-772)) 71 T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) 26 T CONST)) (-1484 (($) 15 T CONST)) (-3052 (((-112) $ $) 87)) (-3168 (($ $ $) NIL)) (-3156 (($ $) 108) (($ $ $) NIL)) (-3146 (($ $ $) 49)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 110) (($ $ $) 48) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ |#1| $) 109) (($ $ |#1|) NIL)))
+(((-915 |#1|) (-13 (-365) (-38 |#1|) (-10 -8 (-15 -4101 ((-410 |#1|) $)) (-15 -4101 ($ (-410 (-421 |#1|)))) (-15 -3540 ($ $)) (-15 -2820 ((-421 |#1|) $)) (-15 -4129 (|#1| $)) (-15 -2521 ($ $ (-567))) (-15 -4158 ((-567) $)) (-15 -3576 ((-1172 |#1|) |#1| |#1|)) (-15 -3861 ($ $)) (-15 -1676 ($ |#1| (-421 |#1|))) (-15 -2838 (|#1| $)))) (-308)) (T -915))
+((-4101 (*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-915 *3)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-4129 (*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-3576 (*1 *2 *3 *3) (-12 (-5 *2 (-1172 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))) (-3861 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))) (-1676 (*1 *1 *2 *3) (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-915 *2)))) (-2838 (*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))))
+(-13 (-365) (-38 |#1|) (-10 -8 (-15 -4101 ((-410 |#1|) $)) (-15 -4101 ($ (-410 (-421 |#1|)))) (-15 -3540 ($ $)) (-15 -2820 ((-421 |#1|) $)) (-15 -4129 (|#1| $)) (-15 -2521 ($ $ (-567))) (-15 -4158 ((-567) $)) (-15 -3576 ((-1172 |#1|) |#1| |#1|)) (-15 -3861 ($ $)) (-15 -1676 ($ |#1| (-421 |#1|))) (-15 -2838 (|#1| $))))
+((-1676 (((-52) (-953 |#1|) (-421 (-953 |#1|)) (-1176)) 17) (((-52) (-410 (-953 |#1|)) (-1176)) 18)))
+(((-916 |#1|) (-10 -7 (-15 -1676 ((-52) (-410 (-953 |#1|)) (-1176))) (-15 -1676 ((-52) (-953 |#1|) (-421 (-953 |#1|)) (-1176)))) (-13 (-308) (-147))) (T -916))
+((-1676 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-421 (-953 *6))) (-5 *5 (-1176)) (-5 *3 (-953 *6)) (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *6)))) (-1676 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *5)))))
+(-10 -7 (-15 -1676 ((-52) (-410 (-953 |#1|)) (-1176))) (-15 -1676 ((-52) (-953 |#1|) (-421 (-953 |#1|)) (-1176))))
+((-2668 ((|#4| (-645 |#4|)) 149) (((-1172 |#4|) (-1172 |#4|) (-1172 |#4|)) 86) ((|#4| |#4| |#4|) 148)) (-3276 (((-1172 |#4|) (-645 (-1172 |#4|))) 142) (((-1172 |#4|) (-1172 |#4|) (-1172 |#4|)) 63) ((|#4| (-645 |#4|)) 71) ((|#4| |#4| |#4|) 109)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3276 (|#4| |#4| |#4|)) (-15 -3276 (|#4| (-645 |#4|))) (-15 -3276 ((-1172 |#4|) (-1172 |#4|) (-1172 |#4|))) (-15 -3276 ((-1172 |#4|) (-645 (-1172 |#4|)))) (-15 -2668 (|#4| |#4| |#4|)) (-15 -2668 ((-1172 |#4|) (-1172 |#4|) (-1172 |#4|))) (-15 -2668 (|#4| (-645 |#4|)))) (-794) (-851) (-308) (-950 |#3| |#1| |#2|)) (T -917))
+((-2668 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-2668 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2668 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-645 (-1172 *7))) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-1172 *7)) (-5 *1 (-917 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))) (-3276 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)))) (-3276 (*1 *2 *2 *2) (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4)))))
+(-10 -7 (-15 -3276 (|#4| |#4| |#4|)) (-15 -3276 (|#4| (-645 |#4|))) (-15 -3276 ((-1172 |#4|) (-1172 |#4|) (-1172 |#4|))) (-15 -3276 ((-1172 |#4|) (-645 (-1172 |#4|)))) (-15 -2668 (|#4| |#4| |#4|)) (-15 -2668 ((-1172 |#4|) (-1172 |#4|) (-1172 |#4|))) (-15 -2668 (|#4| (-645 |#4|))))
+((-2850 (((-905 (-567)) (-972)) 38) (((-905 (-567)) (-645 (-567))) 35)) (-1852 (((-905 (-567)) (-645 (-567))) 70) (((-905 (-567)) (-922)) 71)) (-1908 (((-905 (-567))) 39)) (-2130 (((-905 (-567))) 55) (((-905 (-567)) (-645 (-567))) 54)) (-1789 (((-905 (-567))) 53) (((-905 (-567)) (-645 (-567))) 52)) (-3892 (((-905 (-567))) 51) (((-905 (-567)) (-645 (-567))) 50)) (-4255 (((-905 (-567))) 49) (((-905 (-567)) (-645 (-567))) 48)) (-2615 (((-905 (-567))) 47) (((-905 (-567)) (-645 (-567))) 46)) (-1540 (((-905 (-567))) 57) (((-905 (-567)) (-645 (-567))) 56)) (-1764 (((-905 (-567)) (-645 (-567))) 75) (((-905 (-567)) (-922)) 77)) (-3624 (((-905 (-567)) (-645 (-567))) 72) (((-905 (-567)) (-922)) 73)) (-3685 (((-905 (-567)) (-645 (-567))) 68) (((-905 (-567)) (-922)) 69)) (-4395 (((-905 (-567)) (-645 (-922))) 60)))
+(((-918) (-10 -7 (-15 -1852 ((-905 (-567)) (-922))) (-15 -1852 ((-905 (-567)) (-645 (-567)))) (-15 -3685 ((-905 (-567)) (-922))) (-15 -3685 ((-905 (-567)) (-645 (-567)))) (-15 -4395 ((-905 (-567)) (-645 (-922)))) (-15 -3624 ((-905 (-567)) (-922))) (-15 -3624 ((-905 (-567)) (-645 (-567)))) (-15 -1764 ((-905 (-567)) (-922))) (-15 -1764 ((-905 (-567)) (-645 (-567)))) (-15 -2615 ((-905 (-567)) (-645 (-567)))) (-15 -2615 ((-905 (-567)))) (-15 -4255 ((-905 (-567)) (-645 (-567)))) (-15 -4255 ((-905 (-567)))) (-15 -3892 ((-905 (-567)) (-645 (-567)))) (-15 -3892 ((-905 (-567)))) (-15 -1789 ((-905 (-567)) (-645 (-567)))) (-15 -1789 ((-905 (-567)))) (-15 -2130 ((-905 (-567)) (-645 (-567)))) (-15 -2130 ((-905 (-567)))) (-15 -1540 ((-905 (-567)) (-645 (-567)))) (-15 -1540 ((-905 (-567)))) (-15 -1908 ((-905 (-567)))) (-15 -2850 ((-905 (-567)) (-645 (-567)))) (-15 -2850 ((-905 (-567)) (-972))))) (T -918))
+((-2850 (*1 *2 *3) (-12 (-5 *3 (-972)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1908 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1540 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2130 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1789 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3892 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-4255 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-4255 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2615 (*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-645 (-922))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(-10 -7 (-15 -1852 ((-905 (-567)) (-922))) (-15 -1852 ((-905 (-567)) (-645 (-567)))) (-15 -3685 ((-905 (-567)) (-922))) (-15 -3685 ((-905 (-567)) (-645 (-567)))) (-15 -4395 ((-905 (-567)) (-645 (-922)))) (-15 -3624 ((-905 (-567)) (-922))) (-15 -3624 ((-905 (-567)) (-645 (-567)))) (-15 -1764 ((-905 (-567)) (-922))) (-15 -1764 ((-905 (-567)) (-645 (-567)))) (-15 -2615 ((-905 (-567)) (-645 (-567)))) (-15 -2615 ((-905 (-567)))) (-15 -4255 ((-905 (-567)) (-645 (-567)))) (-15 -4255 ((-905 (-567)))) (-15 -3892 ((-905 (-567)) (-645 (-567)))) (-15 -3892 ((-905 (-567)))) (-15 -1789 ((-905 (-567)) (-645 (-567)))) (-15 -1789 ((-905 (-567)))) (-15 -2130 ((-905 (-567)) (-645 (-567)))) (-15 -2130 ((-905 (-567)))) (-15 -1540 ((-905 (-567)) (-645 (-567)))) (-15 -1540 ((-905 (-567)))) (-15 -1908 ((-905 (-567)))) (-15 -2850 ((-905 (-567)) (-645 (-567)))) (-15 -2850 ((-905 (-567)) (-972))))
+((-3502 (((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176))) 14)) (-4271 (((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176))) 13)))
+(((-919 |#1|) (-10 -7 (-15 -4271 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -3502 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176))))) (-455)) (T -919))
+((-3502 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1176))) (-4 *4 (-455)) (-5 *1 (-919 *4)))) (-4271 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1176))) (-4 *4 (-455)) (-5 *1 (-919 *4)))))
+(-10 -7 (-15 -4271 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -3502 ((-645 (-953 |#1|)) (-645 (-953 |#1|)) (-645 (-1176)))))
+((-4101 (((-317 |#1|) (-480)) 16)))
+(((-920 |#1|) (-10 -7 (-15 -4101 ((-317 |#1|) (-480)))) (-559)) (T -920))
+((-4101 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-920 *4)) (-4 *4 (-559)))))
+(-10 -7 (-15 -4101 ((-317 |#1|) (-480))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-3714 (((-112) $) 35)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-921) (-140)) (T -921))
+((-3516 (*1 *2 *3) (-12 (-4 *1 (-921)) (-5 *2 (-2 (|:| -3087 (-645 *1)) (|:| -4099 *1))) (-5 *3 (-645 *1)))) (-2649 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-921)))))
+(-13 (-455) (-10 -8 (-15 -3516 ((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $))) (-15 -2649 ((-3 (-645 $) "failed") (-645 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3276 (($ $ $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1484 (($) NIL T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ $ $) NIL)))
+(((-922) (-13 (-795) (-727) (-10 -8 (-15 -3276 ($ $ $)) (-6 (-4418 "*"))))) (T -922))
+((-3276 (*1 *1 *1 *1) (-5 *1 (-922))))
+(-13 (-795) (-727) (-10 -8 (-15 -3276 ($ $ $)) (-6 (-4418 "*"))))
((|NonNegativeInteger|) (> |#1| 0))
-((-2495 ((|#2| (-644 |#1|) (-644 |#1|)) 29)))
-(((-922 |#1| |#2|) (-10 -7 (-15 -2495 (|#2| (-644 |#1|) (-644 |#1|)))) (-365) (-1241 |#1|)) (T -922))
-((-2495 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1241 *4)) (-5 *1 (-922 *4 *2)))))
-(-10 -7 (-15 -2495 (|#2| (-644 |#1|) (-644 |#1|))))
-((-1334 (((-1171 |#2|) (-644 |#2|) (-644 |#2|)) 17) (((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-644 |#2|) (-644 |#2|)) 13)))
-(((-923 |#1| |#2|) (-10 -7 (-15 -1334 ((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -1334 ((-1171 |#2|) (-644 |#2|) (-644 |#2|)))) (-1175) (-365)) (T -923))
-((-1334 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5)) (-5 *1 (-923 *4 *5)) (-14 *4 (-1175)))) (-1334 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1238 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175)) (-4 *5 (-365)) (-5 *1 (-923 *4 *5)))))
-(-10 -7 (-15 -1334 ((-1238 |#1| |#2|) (-1238 |#1| |#2|) (-644 |#2|) (-644 |#2|))) (-15 -1334 ((-1171 |#2|) (-644 |#2|) (-644 |#2|))))
-((-1475 (((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-1157)) 177)) (-2792 ((|#4| |#4|) 196)) (-1773 (((-644 (-409 (-952 |#1|))) (-644 (-1175))) 149)) (-4128 (((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566)) 88)) (-2793 (((-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-644 |#4|)) 69)) (-2674 (((-689 |#4|) (-689 |#4|) (-644 |#4|)) 65)) (-1343 (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-1157)) 189)) (-2004 (((-566) (-689 |#4|) (-921) (-1157)) 169) (((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157)) 168) (((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157)) 167) (((-566) (-689 |#4|) (-1157)) 157) (((-566) (-689 |#4|) (-644 (-1175)) (-1157)) 156) (((-566) (-689 |#4|) (-644 |#4|) (-1157)) 155) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921)) 154) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921)) 153) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921)) 152) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|)) 151) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175))) 150) (((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|)) 146)) (-3383 ((|#4| (-952 |#1|)) 80)) (-3618 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 193)) (-1571 (((-644 (-644 (-566))) (-566) (-566)) 162)) (-2642 (((-644 (-644 |#4|)) (-644 (-644 |#4|))) 107)) (-2959 (((-771) (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 102)) (-2639 (((-771) (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|))))) 101)) (-2362 (((-112) (-644 (-952 |#1|))) 19) (((-112) (-644 |#4|)) 15)) (-3549 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|)) 84)) (-1459 (((-644 |#4|) |#4|) 57)) (-3579 (((-644 (-409 (-952 |#1|))) (-644 |#4|)) 145) (((-689 (-409 (-952 |#1|))) (-689 |#4|)) 66) (((-409 (-952 |#1|)) |#4|) 142)) (-2446 (((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566)) 113)) (-2529 (((-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771)) 100)) (-3764 (((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771)) 124)) (-2706 (((-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-2 (|:| -3444 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -4153 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) 56)))
-(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -2004 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -1475 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-1157))) (-15 -1343 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-1157))) (-15 -2446 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -3579 ((-409 (-952 |#1|)) |#4|)) (-15 -3579 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -3579 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -1773 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3383 (|#4| (-952 |#1|))) (-15 -3549 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -2529 ((-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -2793 ((-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -2706 ((-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-2 (|:| -3444 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -4153 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -1459 ((-644 |#4|) |#4|)) (-15 -2639 ((-771) (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -2959 ((-771) (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -2642 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -1571 ((-644 (-644 (-566))) (-566) (-566))) (-15 -3618 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3764 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -2674 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -4128 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -2792 (|#4| |#4|)) (-15 -2362 ((-112) (-644 |#4|))) (-15 -2362 ((-112) (-644 (-952 |#1|))))) (-13 (-308) (-147)) (-13 (-850) (-614 (-1175))) (-793) (-949 |#1| |#3| |#2|)) (T -924))
-((-2362 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4)))) (-4128 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9)))) (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10)) (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793)) (-5 *2 (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12)) (|:| |wcond| (-644 (-952 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *9)))) (|:| -2227 (-644 (-1265 (-409 (-952 *9))))))))) (-5 *1 (-924 *9 *10 *11 *12)))) (-2674 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-3764 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *5 *6 *7 *8)))) (-1571 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175)))) (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2639 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *7) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *7))))) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771)) (-5 *1 (-924 *4 *5 *6 *7)))) (-1459 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3444 (-689 (-409 (-952 *4)))) (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -4153 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-2 (|:| |partsol| (-1265 (-409 (-952 *4)))) (|:| -2227 (-644 (-1265 (-409 (-952 *4))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-2793 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1265 (-409 (-952 *4)))) (|:| -2227 (-644 (-1265 (-409 (-952 *4))))))) (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| *8) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 *8))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-771)))) (-3549 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7)))) (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7)))) (-3579 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3)) (-4 *3 (-949 *4 *6 *5)))) (-2446 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8)))) (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175)))) (-4 *10 (-793)) (-5 *2 (-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11)) (|:| |wcond| (-644 (-952 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *8)))) (|:| -2227 (-644 (-1265 (-409 (-952 *8)))))))))) (|:| |rgsz| (-566)))) (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566)))) (-1343 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *4)))) (|:| -2227 (-644 (-1265 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))) (-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *5)))) (|:| -2227 (-644 (-1265 (-409 (-952 *5)))))))))) (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6)) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2004 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-2004 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921)) (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *7 *8 *9 *10)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *6 *7 *8 *9)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *5)))) (|:| -2227 (-644 (-1265 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *6)))) (|:| -2227 (-644 (-1265 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)))) (-2004 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9)) (|:| |wcond| (-644 (-952 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *6)))) (|:| -2227 (-644 (-1265 (-409 (-952 *6)))))))))) (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9)))) (-2004 (*1 *2 *3) (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7)) (|:| |wcond| (-644 (-952 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *4)))) (|:| -2227 (-644 (-1265 (-409 (-952 *4)))))))))) (-5 *1 (-924 *4 *5 *6 *7)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *5)))) (|:| -2227 (-644 (-1265 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)))) (-2004 (*1 *2 *3 *4) (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-644 (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8)) (|:| |wcond| (-644 (-952 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 *5)))) (|:| -2227 (-644 (-1265 (-409 (-952 *5)))))))))) (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8)))))
-(-10 -7 (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 |#4|) (-921))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-644 (-1175)) (-921))) (-15 -2004 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-689 |#4|) (-921))) (-15 -2004 ((-566) (-689 |#4|) (-644 |#4|) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-644 (-1175)) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-644 |#4|) (-921) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-644 (-1175)) (-921) (-1157))) (-15 -2004 ((-566) (-689 |#4|) (-921) (-1157))) (-15 -1475 ((-566) (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-1157))) (-15 -1343 ((-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|))))))))) (-1157))) (-15 -2446 ((-2 (|:| |rgl| (-644 (-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))))))) (|:| |rgsz| (-566))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-771) (-1157) (-566))) (-15 -3579 ((-409 (-952 |#1|)) |#4|)) (-15 -3579 ((-689 (-409 (-952 |#1|))) (-689 |#4|))) (-15 -3579 ((-644 (-409 (-952 |#1|))) (-644 |#4|))) (-15 -1773 ((-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3383 (|#4| (-952 |#1|))) (-15 -3549 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-644 |#4|)) (|:| |n0| (-644 |#4|))) (-644 |#4|) (-644 |#4|))) (-15 -2529 ((-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))) (-689 |#4|) (-771))) (-15 -2793 ((-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-644 |#4|))) (-15 -2706 ((-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))) (-2 (|:| -3444 (-689 (-409 (-952 |#1|)))) (|:| |vec| (-644 (-409 (-952 |#1|)))) (|:| -4153 (-771)) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (-15 -1459 ((-644 |#4|) |#4|)) (-15 -2639 ((-771) (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -2959 ((-771) (-644 (-2 (|:| -4153 (-771)) (|:| |eqns| (-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))) (|:| |fgb| (-644 |#4|)))))) (-15 -2642 ((-644 (-644 |#4|)) (-644 (-644 |#4|)))) (-15 -1571 ((-644 (-644 (-566))) (-566) (-566))) (-15 -3618 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3764 ((-644 (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566))))) (-689 |#4|) (-771))) (-15 -2674 ((-689 |#4|) (-689 |#4|) (-644 |#4|))) (-15 -4128 ((-2 (|:| |eqzro| (-644 |#4|)) (|:| |neqzro| (-644 |#4|)) (|:| |wcond| (-644 (-952 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1265 (-409 (-952 |#1|)))) (|:| -2227 (-644 (-1265 (-409 (-952 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))) (-689 |#4|) (-644 (-409 (-952 |#1|))) (-644 (-644 |#4|)) (-771) (-771) (-566))) (-15 -2792 (|#4| |#4|)) (-15 -2362 ((-112) (-644 |#4|))) (-15 -2362 ((-112) (-644 (-952 |#1|)))))
-((-3947 (((-927) |#1| (-1175)) 17) (((-927) |#1| (-1175) (-1093 (-225))) 21)) (-1447 (((-927) |#1| |#1| (-1175) (-1093 (-225))) 19) (((-927) |#1| (-1175) (-1093 (-225))) 15)))
-(((-925 |#1|) (-10 -7 (-15 -1447 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -1447 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -3947 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3947 ((-927) |#1| (-1175)))) (-614 (-538))) (T -925))
-((-3947 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-3947 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-1447 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))) (-1447 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927)) (-5 *1 (-925 *3)) (-4 *3 (-614 (-538))))))
-(-10 -7 (-15 -1447 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -1447 ((-927) |#1| |#1| (-1175) (-1093 (-225)))) (-15 -3947 ((-927) |#1| (-1175) (-1093 (-225)))) (-15 -3947 ((-927) |#1| (-1175))))
-((-3843 (($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 123)) (-3014 (((-1093 (-225)) $) 64)) (-3002 (((-1093 (-225)) $) 63)) (-2992 (((-1093 (-225)) $) 62)) (-3231 (((-644 (-644 (-225))) $) 69)) (-3853 (((-1093 (-225)) $) 65)) (-3544 (((-566) (-566)) 57)) (-2853 (((-566) (-566)) 52)) (-2898 (((-566) (-566)) 55)) (-3404 (((-112) (-112)) 59)) (-1383 (((-566)) 56)) (-2521 (($ $ (-1093 (-225))) 126) (($ $) 127)) (-2207 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 133) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 134)) (-1447 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 137) (($ $ (-1093 (-225))) 129)) (-3296 (((-566)) 60)) (-4010 (((-566)) 50)) (-1315 (((-566)) 53)) (-2002 (((-644 (-644 (-943 (-225)))) $) 153)) (-3046 (((-112) (-112)) 61)) (-2725 (((-862) $) 151)) (-2581 (((-112)) 58)))
-(((-926) (-13 (-974) (-10 -8 (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ $ (-1093 (-225)))) (-15 -3843 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2521 ($ $ (-1093 (-225)))) (-15 -2521 ($ $)) (-15 -3853 ((-1093 (-225)) $)) (-15 -3231 ((-644 (-644 (-225))) $)) (-15 -4010 ((-566))) (-15 -2853 ((-566) (-566))) (-15 -1315 ((-566))) (-15 -2898 ((-566) (-566))) (-15 -1383 ((-566))) (-15 -3544 ((-566) (-566))) (-15 -2581 ((-112))) (-15 -3404 ((-112) (-112))) (-15 -3296 ((-566))) (-15 -3046 ((-112) (-112)))))) (T -926))
-((-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-2207 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-1447 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-1447 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-926)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-3843 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-2521 (*1 *1 *1) (-5 *1 (-926))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926)))) (-3231 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926)))) (-4010 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-1315 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-1383 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-2581 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-3404 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))) (-3296 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))) (-3046 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))))
-(-13 (-974) (-10 -8 (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ $ (-1093 (-225)))) (-15 -3843 ($ $ (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2521 ($ $ (-1093 (-225)))) (-15 -2521 ($ $)) (-15 -3853 ((-1093 (-225)) $)) (-15 -3231 ((-644 (-644 (-225))) $)) (-15 -4010 ((-566))) (-15 -2853 ((-566) (-566))) (-15 -1315 ((-566))) (-15 -2898 ((-566) (-566))) (-15 -1383 ((-566))) (-15 -3544 ((-566) (-566))) (-15 -2581 ((-112))) (-15 -3404 ((-112) (-112))) (-15 -3296 ((-566))) (-15 -3046 ((-112) (-112)))))
-((-3843 (($ $ (-1093 (-225))) 124) (($ $ (-1093 (-225)) (-1093 (-225))) 125)) (-3002 (((-1093 (-225)) $) 73)) (-2992 (((-1093 (-225)) $) 72)) (-3853 (((-1093 (-225)) $) 74)) (-3066 (((-566) (-566)) 66)) (-2107 (((-566) (-566)) 61)) (-2693 (((-566) (-566)) 64)) (-1769 (((-112) (-112)) 68)) (-1622 (((-566)) 65)) (-2521 (($ $ (-1093 (-225))) 128) (($ $) 129)) (-2207 (($ (-1 (-943 (-225)) (-225)) (-1093 (-225))) 143) (($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 144)) (-3947 (($ (-1 (-225) (-225)) (-1093 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-1447 (($ (-1 (-225) (-225)) (-1093 (-225))) 139) (($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225))) 140) (($ (-644 (-1 (-225) (-225))) (-1093 (-225))) 148) (($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225))) 142) (($ $ (-1093 (-225))) 130)) (-1868 (((-112) $) 69)) (-2703 (((-566)) 70)) (-2526 (((-566)) 59)) (-2458 (((-566)) 62)) (-2002 (((-644 (-644 (-943 (-225)))) $) 35)) (-1307 (((-112) (-112)) 71)) (-2725 (((-862) $) 169)) (-3889 (((-112)) 67)))
-(((-927) (-13 (-955) (-10 -8 (-15 -1447 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -1447 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3947 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3947 ($ (-1 (-225) (-225)))) (-15 -1447 ($ $ (-1093 (-225)))) (-15 -1868 ((-112) $)) (-15 -3843 ($ $ (-1093 (-225)))) (-15 -3843 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -2521 ($ $ (-1093 (-225)))) (-15 -2521 ($ $)) (-15 -3853 ((-1093 (-225)) $)) (-15 -2526 ((-566))) (-15 -2107 ((-566) (-566))) (-15 -2458 ((-566))) (-15 -2693 ((-566) (-566))) (-15 -1622 ((-566))) (-15 -3066 ((-566) (-566))) (-15 -3889 ((-112))) (-15 -1769 ((-112) (-112))) (-15 -2703 ((-566))) (-15 -1307 ((-112) (-112)))))) (T -927))
-((-1447 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-1447 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-1447 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-1447 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-1447 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-1447 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2207 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-2207 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3947 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225))) (-5 *1 (-927)))) (-3947 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927)))) (-1447 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-1868 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-3843 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-3843 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2521 (*1 *1 *1) (-5 *1 (-927))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))) (-2526 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2107 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2458 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-2693 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-1622 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-3889 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-2703 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
-(-13 (-955) (-10 -8 (-15 -1447 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)))) (-15 -1447 ($ (-644 (-1 (-225) (-225))) (-1093 (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)))) (-15 -1447 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)))) (-15 -2207 ($ (-1 (-943 (-225)) (-225)) (-1093 (-225)) (-1093 (-225)) (-1093 (-225)))) (-15 -3947 ($ (-1 (-225) (-225)) (-1093 (-225)))) (-15 -3947 ($ (-1 (-225) (-225)))) (-15 -1447 ($ $ (-1093 (-225)))) (-15 -1868 ((-112) $)) (-15 -3843 ($ $ (-1093 (-225)))) (-15 -3843 ($ $ (-1093 (-225)) (-1093 (-225)))) (-15 -2521 ($ $ (-1093 (-225)))) (-15 -2521 ($ $)) (-15 -3853 ((-1093 (-225)) $)) (-15 -2526 ((-566))) (-15 -2107 ((-566) (-566))) (-15 -2458 ((-566))) (-15 -2693 ((-566) (-566))) (-15 -1622 ((-566))) (-15 -3066 ((-566) (-566))) (-15 -3889 ((-112))) (-15 -1769 ((-112) (-112))) (-15 -2703 ((-566))) (-15 -1307 ((-112) (-112)))))
-((-3154 (((-644 (-1093 (-225))) (-644 (-644 (-943 (-225))))) 34)))
-(((-928) (-10 -7 (-15 -3154 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225)))))))) (T -928))
-((-3154 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928)))))
-(-10 -7 (-15 -3154 ((-644 (-1093 (-225))) (-644 (-644 (-943 (-225)))))))
-((-3833 ((|#2| |#2|) 28)) (-3738 ((|#2| |#2|) 29)) (-3854 ((|#2| |#2|) 27)) (-4296 ((|#2| |#2| (-508)) 26)))
-(((-929 |#1| |#2|) (-10 -7 (-15 -4296 (|#2| |#2| (-508))) (-15 -3854 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3738 (|#2| |#2|))) (-1099) (-432 |#1|)) (T -929))
-((-3738 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-3854 (*1 *2 *2) (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3)))) (-4296 (*1 *2 *2 *3) (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2)) (-4 *2 (-432 *4)))))
-(-10 -7 (-15 -4296 (|#2| |#2| (-508))) (-15 -3854 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)))
-((-3833 (((-317 (-566)) (-1175)) 16)) (-3738 (((-317 (-566)) (-1175)) 14)) (-3854 (((-317 (-566)) (-1175)) 12)) (-4296 (((-317 (-566)) (-1175) (-508)) 19)))
-(((-930) (-10 -7 (-15 -4296 ((-317 (-566)) (-1175) (-508))) (-15 -3854 ((-317 (-566)) (-1175))) (-15 -3833 ((-317 (-566)) (-1175))) (-15 -3738 ((-317 (-566)) (-1175))))) (T -930))
-((-3738 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-3833 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-3854 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))) (-4296 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))))
-(-10 -7 (-15 -4296 ((-317 (-566)) (-1175) (-508))) (-15 -3854 ((-317 (-566)) (-1175))) (-15 -3833 ((-317 (-566)) (-1175))) (-15 -3738 ((-317 (-566)) (-1175))))
-((-2114 (((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)) 25)) (-2056 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
-(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -2056 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2114 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-886 |#1|) (-13 (-1099) (-1038 |#2|))) (T -931))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5)) (-5 *1 (-931 *5 *3 *6)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5))) (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-931 *4 *5 *6)))))
-(-10 -7 (-15 -2056 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2114 ((-889 |#1| |#3|) |#2| (-892 |#1|) (-889 |#1| |#3|))))
-((-2114 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 30)))
-(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -2114 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|)) (-13 (-432 |#2|) (-614 (-892 |#1|)) (-886 |#1|) (-1038 (-612 $)))) (T -932))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $)))) (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5))) (-5 *1 (-932 *5 *6 *3)))))
-(-10 -7 (-15 -2114 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))
-((-2114 (((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)) 13)))
-(((-933 |#1|) (-10 -7 (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|)))) (-547)) (T -933))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547)) (-5 *1 (-933 *3)))))
-(-10 -7 (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))))
-((-2114 (((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)) 57)))
-(((-934 |#1| |#2|) (-10 -7 (-15 -2114 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|)))) (-1099) (-13 (-1099) (-1038 (-612 $)) (-614 (-892 |#1|)) (-886 |#1|))) (T -934))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099)) (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5))) (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6)))))
-(-10 -7 (-15 -2114 ((-889 |#1| |#2|) (-612 |#2|) (-892 |#1|) (-889 |#1| |#2|))))
-((-2114 (((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)) 17)))
-(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -2114 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|)))) (-1099) (-886 |#1|) (-666 |#2|)) (T -935))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3)))))
-(-10 -7 (-15 -2114 ((-885 |#1| |#2| |#3|) |#3| (-892 |#1|) (-885 |#1| |#2| |#3|))))
-((-2114 (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|)) 17 (|has| |#3| (-886 |#1|))) (((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|))) 16)))
-(((-936 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2114 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -2114 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|)) (-1099) (-793) (-850) (-13 (-1049) (-886 |#1|)) (-13 (-949 |#4| |#2| |#3|) (-614 (-892 |#1|)))) (T -936))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5)) (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3)))) (-2114 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3))) (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6)) (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4))) (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6))) (-5 *1 (-936 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2114 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|) (-1 (-889 |#1| |#5|) |#3| (-892 |#1|) (-889 |#1| |#5|)))) (IF (|has| |#3| (-886 |#1|)) (-15 -2114 ((-889 |#1| |#5|) |#5| (-892 |#1|) (-889 |#1| |#5|))) |%noBranch|))
-((-2552 ((|#2| |#2| (-644 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
-(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -2552 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2552 (|#2| |#2| (-644 (-1 (-112) |#3|))))) (-1099) (-432 |#1|) (-1215)) (T -937))
-((-2552 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1215)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4)))) (-2552 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1215)) (-4 *4 (-1099)) (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4)))))
-(-10 -7 (-15 -2552 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2552 (|#2| |#2| (-644 (-1 (-112) |#3|)))))
-((-2552 (((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))) 18) (((-317 (-566)) (-1175) (-1 (-112) |#1|)) 15)))
-(((-938 |#1|) (-10 -7 (-15 -2552 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -2552 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|))))) (-1215)) (T -938))
-((-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1215)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1215)) (-5 *2 (-317 (-566))) (-5 *1 (-938 *5)))))
-(-10 -7 (-15 -2552 ((-317 (-566)) (-1175) (-1 (-112) |#1|))) (-15 -2552 ((-317 (-566)) (-1175) (-644 (-1 (-112) |#1|)))))
-((-2114 (((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)) 25)))
-(((-939 |#1| |#2| |#3|) (-10 -7 (-15 -2114 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-1099) (-13 (-558) (-886 |#1|) (-614 (-892 |#1|))) (-992 |#2|)) (T -939))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6)) (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5)) (-5 *1 (-939 *5 *6 *3)))))
-(-10 -7 (-15 -2114 ((-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))
-((-2114 (((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))) 18)))
-(((-940 |#1|) (-10 -7 (-15 -2114 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175))))) (-1099)) (T -940))
-((-2114 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *1 (-940 *5)))))
-(-10 -7 (-15 -2114 ((-889 |#1| (-1175)) (-1175) (-892 |#1|) (-889 |#1| (-1175)))))
-((-2720 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 34)) (-2114 (((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))) 33)))
-(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -2114 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -2720 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|))))) (-1099) (-1049) (-13 (-1049) (-614 (-892 |#1|)) (-1038 |#2|))) (T -941))
-((-2720 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6))) (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099)) (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7))) (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8)))) (-2114 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9))) (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099)) (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8))) (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049)) (-5 *1 (-941 *7 *8 *9)))))
-(-10 -7 (-15 -2114 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-1 |#3| (-644 |#3|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))) (-15 -2720 ((-889 |#1| |#3|) (-644 |#3|) (-644 (-892 |#1|)) (-889 |#1| |#3|) (-1 (-889 |#1| |#3|) |#3| (-892 |#1|) (-889 |#1| |#3|)))))
-((-2962 (((-1171 (-409 (-566))) (-566)) 81)) (-3163 (((-1171 (-566)) (-566)) 84)) (-2968 (((-1171 (-566)) (-566)) 78)) (-3994 (((-566) (-1171 (-566))) 74)) (-2365 (((-1171 (-409 (-566))) (-566)) 65)) (-3093 (((-1171 (-566)) (-566)) 49)) (-2329 (((-1171 (-566)) (-566)) 86)) (-2667 (((-1171 (-566)) (-566)) 85)) (-1626 (((-1171 (-409 (-566))) (-566)) 67)))
-(((-942) (-10 -7 (-15 -1626 ((-1171 (-409 (-566))) (-566))) (-15 -2667 ((-1171 (-566)) (-566))) (-15 -2329 ((-1171 (-566)) (-566))) (-15 -3093 ((-1171 (-566)) (-566))) (-15 -2365 ((-1171 (-409 (-566))) (-566))) (-15 -3994 ((-566) (-1171 (-566)))) (-15 -2968 ((-1171 (-566)) (-566))) (-15 -3163 ((-1171 (-566)) (-566))) (-15 -2962 ((-1171 (-409 (-566))) (-566))))) (T -942))
-((-2962 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3163 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2968 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3994 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942)))) (-2365 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))) (-3093 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2329 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-2667 (*1 *2 *3) (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))) (-1626 (*1 *2 *3) (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))))
-(-10 -7 (-15 -1626 ((-1171 (-409 (-566))) (-566))) (-15 -2667 ((-1171 (-566)) (-566))) (-15 -2329 ((-1171 (-566)) (-566))) (-15 -3093 ((-1171 (-566)) (-566))) (-15 -2365 ((-1171 (-409 (-566))) (-566))) (-15 -3994 ((-566) (-1171 (-566)))) (-15 -2968 ((-1171 (-566)) (-566))) (-15 -3163 ((-1171 (-566)) (-566))) (-15 -2962 ((-1171 (-409 (-566))) (-566))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3739 (($ (-771)) NIL (|has| |#1| (-23)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-3011 (($ (-644 |#1|)) 9)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2152 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2267 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-1864 (((-112) $ (-771)) NIL)) (-1653 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-3964 (($ $ (-644 |#1|)) 25)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 18) (($ $ (-1232 (-566))) NIL)) (-1836 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-4356 (((-921) $) 13)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-3987 (($ $ $) 23)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 14)) (-2738 (($ (-644 |#1|)) NIL)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2905 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2897 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3991 (((-771) $) 11 (|has| $ (-6 -4415)))))
-(((-943 |#1|) (-980 |#1|) (-1049)) (T -943))
-NIL
-(-980 |#1|)
-((-4214 (((-483 |#1| |#2|) (-952 |#2|)) 22)) (-3347 (((-247 |#1| |#2|) (-952 |#2|)) 35)) (-2651 (((-952 |#2|) (-483 |#1| |#2|)) 27)) (-3269 (((-247 |#1| |#2|) (-483 |#1| |#2|)) 57)) (-4074 (((-952 |#2|) (-247 |#1| |#2|)) 32)) (-1486 (((-483 |#1| |#2|) (-247 |#1| |#2|)) 48)))
-(((-944 |#1| |#2|) (-10 -7 (-15 -1486 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3269 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -4214 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -2651 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -4074 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -3347 ((-247 |#1| |#2|) (-952 |#2|)))) (-644 (-1175)) (-1049)) (T -944))
-((-3347 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-4074 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))) (-4214 (*1 *2 *3) (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)))) (-1486 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5)))))
-(-10 -7 (-15 -1486 ((-483 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3269 ((-247 |#1| |#2|) (-483 |#1| |#2|))) (-15 -4214 ((-483 |#1| |#2|) (-952 |#2|))) (-15 -2651 ((-952 |#2|) (-483 |#1| |#2|))) (-15 -4074 ((-952 |#2|) (-247 |#1| |#2|))) (-15 -3347 ((-247 |#1| |#2|) (-952 |#2|))))
-((-1469 (((-644 |#2|) |#2| |#2|) 10)) (-3832 (((-771) (-644 |#1|)) 48 (|has| |#1| (-848)))) (-1377 (((-644 |#2|) |#2|) 11)) (-3740 (((-771) (-644 |#1|) (-566) (-566)) 52 (|has| |#1| (-848)))) (-1338 ((|#1| |#2|) 38 (|has| |#1| (-848)))))
-(((-945 |#1| |#2|) (-10 -7 (-15 -1469 ((-644 |#2|) |#2| |#2|)) (-15 -1377 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -1338 (|#1| |#2|)) (-15 -3832 ((-771) (-644 |#1|))) (-15 -3740 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|)) (-365) (-1241 |#1|)) (T -945))
-((-3740 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1241 *5)))) (-3832 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-945 *4 *5)) (-4 *5 (-1241 *4)))) (-1338 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3)) (-4 *3 (-1241 *2)))) (-1377 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1241 *4)))) (-1469 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -1469 ((-644 |#2|) |#2| |#2|)) (-15 -1377 ((-644 |#2|) |#2|)) (IF (|has| |#1| (-848)) (PROGN (-15 -1338 (|#1| |#2|)) (-15 -3832 ((-771) (-644 |#1|))) (-15 -3740 ((-771) (-644 |#1|) (-566) (-566)))) |%noBranch|))
-((-2101 (((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)) 19)))
-(((-946 |#1| |#2|) (-10 -7 (-15 -2101 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|)))) (-1049) (-1049)) (T -946))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-952 *6)) (-5 *1 (-946 *5 *6)))))
-(-10 -7 (-15 -2101 ((-952 |#2|) (-1 |#2| |#1|) (-952 |#1|))))
-((-3983 (((-1238 |#1| (-952 |#2|)) (-952 |#2|) (-1261 |#1|)) 18)))
-(((-947 |#1| |#2|) (-10 -7 (-15 -3983 ((-1238 |#1| (-952 |#2|)) (-952 |#2|) (-1261 |#1|)))) (-1175) (-1049)) (T -947))
-((-3983 (*1 *2 *3 *4) (-12 (-5 *4 (-1261 *5)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-5 *2 (-1238 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6)))))
-(-10 -7 (-15 -3983 ((-1238 |#1| (-952 |#2|)) (-952 |#2|) (-1261 |#1|))))
-((-3915 (((-771) $) 88) (((-771) $ (-644 |#4|)) 93)) (-2885 (($ $) 203)) (-2555 (((-420 $) $) 195)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-3343 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) 73)) (-2994 (($ $ $ |#4|) 95)) (-3717 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) 131) (((-689 |#2|) (-689 $)) 121)) (-1520 (($ $) 210) (($ $ |#4|) 213)) (-4346 (((-644 $) $) 77)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 229) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 222)) (-2966 (((-644 $) $) 34)) (-4145 (($ |#2| |#3|) NIL) (($ $ |#4| (-771)) NIL) (($ $ (-644 |#4|) (-644 (-771))) 71)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |#4|) 192)) (-2684 (((-3 (-644 $) "failed") $) 52)) (-1660 (((-3 (-644 $) "failed") $) 39)) (-2544 (((-3 (-2 (|:| |var| |#4|) (|:| -3428 (-771))) "failed") $) 57)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 134)) (-2254 (((-420 (-1171 $)) (-1171 $)) 147)) (-4314 (((-420 (-1171 $)) (-1171 $)) 145)) (-4018 (((-420 $) $) 165)) (-1754 (($ $ (-644 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-644 |#4|) (-644 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-644 |#4|) (-644 $)) NIL)) (-2061 (($ $ |#4|) 97)) (-2150 (((-892 (-381)) $) 243) (((-892 (-566)) $) 236) (((-538) $) 251)) (-4330 ((|#2| $) NIL) (($ $ |#4|) 205)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 184)) (-3623 ((|#2| $ |#3|) NIL) (($ $ |#4| (-771)) 62) (($ $ (-644 |#4|) (-644 (-771))) 69)) (-2655 (((-3 $ "failed") $) 186)) (-1479 (((-112) $ $) 216)))
-(((-948 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -2885 (|#1| |#1|)) (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4314 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2254 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3039 ((-3 (-1265 |#1|) "failed") (-689 |#1|))) (-15 -1520 (|#1| |#1| |#4|)) (-15 -4330 (|#1| |#1| |#4|)) (-15 -2061 (|#1| |#1| |#4|)) (-15 -2994 (|#1| |#1| |#1| |#4|)) (-15 -4346 ((-644 |#1|) |#1|)) (-15 -3915 ((-771) |#1| (-644 |#4|))) (-15 -3915 ((-771) |#1|)) (-15 -2544 ((-3 (-2 (|:| |var| |#4|) (|:| -3428 (-771))) "failed") |#1|)) (-15 -2684 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1660 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4145 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -4145 (|#1| |#1| |#4| (-771))) (-15 -3112 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1| |#4|)) (-15 -2966 ((-644 |#1|) |#1|)) (-15 -3623 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3623 (|#1| |#1| |#4| (-771))) (-15 -3717 ((-689 |#2|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -2023 ((-3 |#4| "failed") |#1|)) (-15 -3343 (|#4| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#4| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#4| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4145 (|#1| |#2| |#3|)) (-15 -3623 (|#2| |#1| |#3|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -1479 ((-112) |#1| |#1|))) (-949 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -948))
-NIL
-(-10 -8 (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -2885 (|#1| |#1|)) (-15 -2655 ((-3 |#1| "failed") |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4314 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2254 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -3039 ((-3 (-1265 |#1|) "failed") (-689 |#1|))) (-15 -1520 (|#1| |#1| |#4|)) (-15 -4330 (|#1| |#1| |#4|)) (-15 -2061 (|#1| |#1| |#4|)) (-15 -2994 (|#1| |#1| |#1| |#4|)) (-15 -4346 ((-644 |#1|) |#1|)) (-15 -3915 ((-771) |#1| (-644 |#4|))) (-15 -3915 ((-771) |#1|)) (-15 -2544 ((-3 (-2 (|:| |var| |#4|) (|:| -3428 (-771))) "failed") |#1|)) (-15 -2684 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -1660 ((-3 (-644 |#1|) "failed") |#1|)) (-15 -4145 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -4145 (|#1| |#1| |#4| (-771))) (-15 -3112 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1| |#4|)) (-15 -2966 ((-644 |#1|) |#1|)) (-15 -3623 (|#1| |#1| (-644 |#4|) (-644 (-771)))) (-15 -3623 (|#1| |#1| |#4| (-771))) (-15 -3717 ((-689 |#2|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -2023 ((-3 |#4| "failed") |#1|)) (-15 -3343 (|#4| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#4| |#1|)) (-15 -1754 (|#1| |#1| (-644 |#4|) (-644 |#2|))) (-15 -1754 (|#1| |#1| |#4| |#2|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -4145 (|#1| |#2| |#3|)) (-15 -3623 (|#2| |#1| |#3|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -1520 (|#1| |#1|)) (-15 -1479 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 |#3|) $) 112)) (-3983 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-1780 (($ $) 90 (|has| |#1| (-558)))) (-3286 (((-112) $) 92 (|has| |#1| (-558)))) (-3915 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-4113 (((-3 $ "failed") $ $) 20)) (-4350 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-2885 (($ $) 100 (|has| |#1| (-454)))) (-2555 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138)) (-3343 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139)) (-2994 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-4358 (($ $) 156)) (-3717 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-2313 (((-3 $ "failed") $) 37)) (-1520 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-4346 (((-644 $) $) 111)) (-1968 (((-112) $) 98 (|has| |#1| (-909)))) (-2385 (($ $ |#1| |#2| $) 174)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3842 (((-112) $) 35)) (-2436 (((-771) $) 171)) (-4157 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-2966 (((-644 $) $) 128)) (-3819 (((-112) $) 154)) (-4145 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |#3|) 122)) (-4090 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-1336 (($ (-1 |#2| |#2|) $) 173)) (-2101 (($ (-1 |#1| |#1|) $) 153)) (-1742 (((-3 |#3| "failed") $) 125)) (-4323 (($ $) 151)) (-4334 ((|#1| $) 150)) (-1853 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-1390 (((-1157) $) 10)) (-2684 (((-3 (-644 $) "failed") $) 116)) (-1660 (((-3 (-644 $) "failed") $) 117)) (-2544 (((-3 (-2 (|:| |var| |#3|) (|:| -3428 (-771))) "failed") $) 115)) (-1944 (((-1119) $) 11)) (-4290 (((-112) $) 168)) (-4307 ((|#1| $) 169)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-1885 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-4018 (((-420 $) $) 101 (|has| |#1| (-909)))) (-3967 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-2061 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3009 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-3838 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-2150 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 106 (-3144 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-558))) (($ (-409 (-566))) 80 (-2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))))) (-3624 (((-644 |#1|) $) 170)) (-3623 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2655 (((-3 $ "failed") $) 81 (-2676 (-3144 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) 32 T CONST)) (-3977 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 91 (|has| |#1| (-558)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-949 |#1| |#2| |#3|) (-140) (-1049) (-793) (-850)) (T -949))
-((-1520 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3838 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-3838 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-3623 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-3623 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-2966 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-3983 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-1171 *3)))) (-1742 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-4090 (*1 *2 *1 *3) (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-771)))) (-4090 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771))))) (-3112 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-949 *4 *5 *3)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *2 (-850)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3)) (-4 *5 (-793)) (-4 *3 (-850)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)))) (-1660 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-2684 (*1 *2 *1) (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-2544 (*1 *2 *1) (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -3428 (-771)))))) (-3915 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-3915 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-4346 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5)))) (-2994 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-2061 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-172)))) (-4330 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-1520 (*1 *1 *1 *2) (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *3 (-454)))) (-2885 (*1 *1 *1) (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-2555 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5)))))
-(-13 (-900 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-516 |t#3| |t#1|) (-516 |t#3| $) (-1038 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3838 ((-771) $ |t#3|)) (-15 -3838 ((-644 (-771)) $ (-644 |t#3|))) (-15 -3623 ($ $ |t#3| (-771))) (-15 -3623 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -2966 ((-644 $) $)) (-15 -3983 ((-1171 $) $ |t#3|)) (-15 -3983 ((-1171 |t#1|) $)) (-15 -1742 ((-3 |t#3| "failed") $)) (-15 -4090 ((-771) $ |t#3|)) (-15 -4090 ((-644 (-771)) $ (-644 |t#3|))) (-15 -3112 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |t#3|)) (-15 -4145 ($ $ |t#3| (-771))) (-15 -4145 ($ $ (-644 |t#3|) (-644 (-771)))) (-15 -4157 ($ (-1171 |t#1|) |t#3|)) (-15 -4157 ($ (-1171 $) |t#3|)) (-15 -1660 ((-3 (-644 $) "failed") $)) (-15 -2684 ((-3 (-644 $) "failed") $)) (-15 -2544 ((-3 (-2 (|:| |var| |t#3|) (|:| -3428 (-771))) "failed") $)) (-15 -3915 ((-771) $)) (-15 -3915 ((-771) $ (-644 |t#3|))) (-15 -4170 ((-644 |t#3|) $)) (-15 -4346 ((-644 $) $)) (IF (|has| |t#1| (-614 (-538))) (IF (|has| |t#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-566)))) (IF (|has| |t#3| (-614 (-892 (-566)))) (-6 (-614 (-892 (-566)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-614 (-892 (-381)))) (IF (|has| |t#3| (-614 (-892 (-381)))) (-6 (-614 (-892 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-566))) (IF (|has| |t#3| (-886 (-566))) (-6 (-886 (-566))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-886 (-381))) (IF (|has| |t#3| (-886 (-381))) (-6 (-886 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2994 ($ $ $ |t#3|)) (-15 -2061 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-6 (-454)) (-15 -4330 ($ $ |t#3|)) (-15 -1520 ($ $)) (-15 -1520 ($ $ |t#3|)) (-15 -2555 ((-420 $) $)) (-15 -2885 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-291) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2676 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) |has| |#1| (-909)))
-((-4170 (((-644 |#2|) |#5|) 40)) (-3983 (((-1171 |#5|) |#5| |#2| (-1171 |#5|)) 23) (((-409 (-1171 |#5|)) |#5| |#2|) 16)) (-4157 ((|#5| (-409 (-1171 |#5|)) |#2|) 30)) (-1742 (((-3 |#2| "failed") |#5|) 71)) (-2684 (((-3 (-644 |#5|) "failed") |#5|) 65)) (-1559 (((-3 (-2 (|:| |val| |#5|) (|:| -3428 (-566))) "failed") |#5|) 53)) (-1660 (((-3 (-644 |#5|) "failed") |#5|) 67)) (-2544 (((-3 (-2 (|:| |var| |#2|) (|:| -3428 (-566))) "failed") |#5|) 57)))
-(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4170 ((-644 |#2|) |#5|)) (-15 -1742 ((-3 |#2| "failed") |#5|)) (-15 -3983 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -4157 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -3983 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -1660 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -2684 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -2544 ((-3 (-2 (|:| |var| |#2|) (|:| -3428 (-566))) "failed") |#5|)) (-15 -1559 ((-3 (-2 (|:| |val| |#5|) (|:| -3428 (-566))) "failed") |#5|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2725 ($ |#4|)) (-15 -2691 (|#4| $)) (-15 -2702 (|#4| $))))) (T -950))
-((-1559 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3428 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))) (-2544 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3428 (-566)))) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))) (-2684 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))) (-1660 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))) (-3983 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))) (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *2 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))) (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4)))) (-3983 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3))) (-5 *1 (-950 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))) (-1742 (*1 *2 *3) (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2)) (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *6)) (-15 -2691 (*6 $)) (-15 -2702 (*6 $))))))) (-4170 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5)) (-5 *1 (-950 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))))
-(-10 -7 (-15 -4170 ((-644 |#2|) |#5|)) (-15 -1742 ((-3 |#2| "failed") |#5|)) (-15 -3983 ((-409 (-1171 |#5|)) |#5| |#2|)) (-15 -4157 (|#5| (-409 (-1171 |#5|)) |#2|)) (-15 -3983 ((-1171 |#5|) |#5| |#2| (-1171 |#5|))) (-15 -1660 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -2684 ((-3 (-644 |#5|) "failed") |#5|)) (-15 -2544 ((-3 (-2 (|:| |var| |#2|) (|:| -3428 (-566))) "failed") |#5|)) (-15 -1559 ((-3 (-2 (|:| |val| |#5|) (|:| -3428 (-566))) "failed") |#5|)))
-((-2101 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2101 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-793) (-850) (-1049) (-949 |#3| |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (T -951))
-((-2101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *6 (-793)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771)))))) (-5 *1 (-951 *6 *7 *8 *5 *2)) (-4 *5 (-949 *8 *6 *7)))))
-(-10 -7 (-15 -2101 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1175)) $) 16)) (-3983 (((-1171 $) $ (-1175)) 21) (((-1171 |#1|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-1175))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 8) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1175) "failed") $) NIL)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1175) $) NIL)) (-2994 (($ $ $ (-1175)) NIL (|has| |#1| (-172)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-533 (-1175)) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1175) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1175) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-4157 (($ (-1171 |#1|) (-1175)) NIL) (($ (-1171 $) (-1175)) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-1175)) NIL)) (-4090 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-1336 (($ (-1 (-533 (-1175)) (-533 (-1175))) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1742 (((-3 (-1175) "failed") $) 19)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-1175)) (|:| -3428 (-771))) "failed") $) NIL)) (-1879 (($ $ (-1175)) 29 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1175) |#1|) NIL) (($ $ (-644 (-1175)) (-644 |#1|)) NIL) (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL)) (-2061 (($ $ (-1175)) NIL (|has| |#1| (-172)))) (-3009 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3838 (((-533 (-1175)) $) NIL) (((-771) $ (-1175)) NIL) (((-644 (-771)) $ (-644 (-1175))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1175) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1175) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1175)) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) 25) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1175)) 27) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-952 |#1|) (-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1175))) |%noBranch|))) (-1049)) (T -952))
-((-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))))
-(-13 (-949 |#1| (-533 (-1175)) (-1175)) (-10 -8 (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1175))) |%noBranch|)))
-((-3179 (((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) |#3| (-771)) 49)) (-3070 (((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771)) 44)) (-3280 (((-2 (|:| -3428 (-771)) (|:| -1702 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)) 65)) (-2807 (((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) |#5| (-771)) 74 (|has| |#3| (-454)))))
-(((-953 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3179 ((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -3070 ((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -2807 ((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -3280 ((-2 (|:| -3428 (-771)) (|:| -1702 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771)))) (-793) (-850) (-558) (-949 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -2725 ($ |#4|)) (-15 -2691 (|#4| $)) (-15 -2702 (|#4| $))))) (T -953))
-((-3280 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *3 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *3) (|:| |radicand| (-644 *3)))) (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2725 ($ *3)) (-15 -2691 (*3 $)) (-15 -2702 (*3 $))))))) (-2807 (*1 *2 *3 *4) (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *3) (|:| |radicand| *3))) (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771)) (-4 *3 (-13 (-365) (-10 -8 (-15 -2725 ($ *8)) (-15 -2691 (*8 $)) (-15 -2702 (*8 $))))))) (-3070 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6)) (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *9) (|:| |radicand| *9))) (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771)) (-4 *9 (-13 (-365) (-10 -8 (-15 -2725 ($ *8)) (-15 -2691 (*8 $)) (-15 -2702 (*8 $))))))) (-3179 (*1 *2 *3 *4) (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558)) (-4 *7 (-949 *3 *5 *6)) (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *8) (|:| |radicand| *8))) (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771)) (-4 *8 (-13 (-365) (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))))
-(-10 -7 (-15 -3179 ((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) |#3| (-771))) (-15 -3070 ((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) (-409 (-566)) (-771))) (IF (|has| |#3| (-454)) (-15 -2807 ((-2 (|:| -3428 (-771)) (|:| -1702 |#5|) (|:| |radicand| |#5|)) |#5| (-771))) |%noBranch|) (-15 -3280 ((-2 (|:| -3428 (-771)) (|:| -1702 |#4|) (|:| |radicand| (-644 |#4|))) |#4| (-771))))
-((-3979 (((-112) $ $) NIL)) (-3617 (($ (-1119)) 8)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 15) (((-1119) $) 12)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 11)))
-(((-954) (-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -3617 ($ (-1119)))))) (T -954))
-((-3617 (*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954)))))
-(-13 (-1099) (-613 (-1119)) (-10 -8 (-15 -3617 ($ (-1119)))))
-((-3002 (((-1093 (-225)) $) 8)) (-2992 (((-1093 (-225)) $) 9)) (-2002 (((-644 (-644 (-943 (-225)))) $) 10)) (-2725 (((-862) $) 6)))
-(((-955) (-140)) (T -955))
-((-2002 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225))))))
-(-13 (-613 (-862)) (-10 -8 (-15 -2002 ((-644 (-644 (-943 (-225)))) $)) (-15 -2992 ((-1093 (-225)) $)) (-15 -3002 ((-1093 (-225)) $))))
-(((-613 (-862)) . T))
-((-2740 (((-3 (-689 |#1|) "failed") |#2| (-921)) 18)))
-(((-956 |#1| |#2|) (-10 -7 (-15 -2740 ((-3 (-689 |#1|) "failed") |#2| (-921)))) (-558) (-656 |#1|)) (T -956))
-((-2740 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5)) (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5)))))
-(-10 -7 (-15 -2740 ((-3 (-689 |#1|) "failed") |#2| (-921))))
-((-4123 (((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 16)) (-2553 ((|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|) 18)) (-2101 (((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)) 13)))
-(((-957 |#1| |#2|) (-10 -7 (-15 -4123 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2101 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|)))) (-1215) (-1215)) (T -957))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6)))) (-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1215)) (-4 *2 (-1215)) (-5 *1 (-957 *5 *2)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1215)) (-4 *5 (-1215)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5)))))
-(-10 -7 (-15 -4123 ((-958 |#2|) (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-958 |#1|) |#2|)) (-15 -2101 ((-958 |#2|) (-1 |#2| |#1|) (-958 |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) |#1|) 19 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 18 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 16)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2631 (($ (-771) |#1|) 15)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) 11 (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) 20 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) 17) (($ $ (-1232 (-566))) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) 21)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 14)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-3991 (((-771) $) 8 (|has| $ (-6 -4415)))))
-(((-958 |#1|) (-19 |#1|) (-1215)) (T -958))
+((-2156 ((|#2| (-645 |#1|) (-645 |#1|)) 29)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -2156 (|#2| (-645 |#1|) (-645 |#1|)))) (-365) (-1242 |#1|)) (T -923))
+((-2156 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1242 *4)) (-5 *1 (-923 *4 *2)))))
+(-10 -7 (-15 -2156 (|#2| (-645 |#1|) (-645 |#1|))))
+((-1571 (((-1172 |#2|) (-645 |#2|) (-645 |#2|)) 17) (((-1239 |#1| |#2|) (-1239 |#1| |#2|) (-645 |#2|) (-645 |#2|)) 13)))
+(((-924 |#1| |#2|) (-10 -7 (-15 -1571 ((-1239 |#1| |#2|) (-1239 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -1571 ((-1172 |#2|) (-645 |#2|) (-645 |#2|)))) (-1176) (-365)) (T -924))
+((-1571 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1172 *5)) (-5 *1 (-924 *4 *5)) (-14 *4 (-1176)))) (-1571 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1239 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1176)) (-4 *5 (-365)) (-5 *1 (-924 *4 *5)))))
+(-10 -7 (-15 -1571 ((-1239 |#1| |#2|) (-1239 |#1| |#2|) (-645 |#2|) (-645 |#2|))) (-15 -1571 ((-1172 |#2|) (-645 |#2|) (-645 |#2|))))
+((-3701 (((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-1158)) 177)) (-3117 ((|#4| |#4|) 196)) (-3544 (((-645 (-410 (-953 |#1|))) (-645 (-1176))) 149)) (-3440 (((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567)) 88)) (-3127 (((-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-645 |#4|)) 69)) (-4382 (((-690 |#4|) (-690 |#4|) (-645 |#4|)) 65)) (-1685 (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-1158)) 189)) (-3898 (((-567) (-690 |#4|) (-922) (-1158)) 169) (((-567) (-690 |#4|) (-645 (-1176)) (-922) (-1158)) 168) (((-567) (-690 |#4|) (-645 |#4|) (-922) (-1158)) 167) (((-567) (-690 |#4|) (-1158)) 157) (((-567) (-690 |#4|) (-645 (-1176)) (-1158)) 156) (((-567) (-690 |#4|) (-645 |#4|) (-1158)) 155) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-922)) 154) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1176)) (-922)) 153) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-922)) 152) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|)) 151) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1176))) 150) (((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|)) 146)) (-1880 ((|#4| (-953 |#1|)) 80)) (-2288 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 193)) (-2160 (((-645 (-645 (-567))) (-567) (-567)) 162)) (-4140 (((-645 (-645 |#4|)) (-645 (-645 |#4|))) 107)) (-2058 (((-772) (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 102)) (-4105 (((-772) (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|))))) 101)) (-3361 (((-112) (-645 (-953 |#1|))) 19) (((-112) (-645 |#4|)) 15)) (-2899 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|)) 84)) (-3567 (((-645 |#4|) |#4|) 57)) (-3181 (((-645 (-410 (-953 |#1|))) (-645 |#4|)) 145) (((-690 (-410 (-953 |#1|))) (-690 |#4|)) 66) (((-410 (-953 |#1|)) |#4|) 142)) (-2955 (((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-772) (-1158) (-567)) 113)) (-2540 (((-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772)) 100)) (-4170 (((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772)) 124)) (-3552 (((-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-2 (|:| -4302 (-690 (-410 (-953 |#1|)))) (|:| |vec| (-645 (-410 (-953 |#1|)))) (|:| -2432 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) 56)))
+(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1176)))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-922))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1176)) (-922))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-922))) (-15 -3898 ((-567) (-690 |#4|) (-645 |#4|) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-645 (-1176)) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-645 |#4|) (-922) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-645 (-1176)) (-922) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-922) (-1158))) (-15 -3701 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-1158))) (-15 -1685 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-1158))) (-15 -2955 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-772) (-1158) (-567))) (-15 -3181 ((-410 (-953 |#1|)) |#4|)) (-15 -3181 ((-690 (-410 (-953 |#1|))) (-690 |#4|))) (-15 -3181 ((-645 (-410 (-953 |#1|))) (-645 |#4|))) (-15 -3544 ((-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -1880 (|#4| (-953 |#1|))) (-15 -2899 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -2540 ((-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -3127 ((-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-645 |#4|))) (-15 -3552 ((-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-2 (|:| -4302 (-690 (-410 (-953 |#1|)))) (|:| |vec| (-645 (-410 (-953 |#1|)))) (|:| -2432 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -3567 ((-645 |#4|) |#4|)) (-15 -4105 ((-772) (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2058 ((-772) (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -4140 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -2160 ((-645 (-645 (-567))) (-567) (-567))) (-15 -2288 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4170 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -4382 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -3440 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -3117 (|#4| |#4|)) (-15 -3361 ((-112) (-645 |#4|))) (-15 -3361 ((-112) (-645 (-953 |#1|))))) (-13 (-308) (-147)) (-13 (-851) (-615 (-1176))) (-794) (-950 |#1| |#3| |#2|)) (T -925))
+((-3361 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-3361 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7)))) (-3117 (*1 *2 *2) (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1176)))) (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-950 *3 *5 *4)))) (-3440 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-953 *9)))) (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567)) (-4 *9 (-13 (-308) (-147))) (-4 *12 (-950 *9 *11 *10)) (-4 *10 (-13 (-851) (-615 (-1176)))) (-4 *11 (-794)) (-5 *2 (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12)) (|:| |wcond| (-645 (-953 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *9)))) (|:| -2557 (-645 (-1266 (-410 (-953 *9))))))))) (-5 *1 (-925 *9 *10 *11 *12)))) (-4382 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7)))) (-4170 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-5 *1 (-925 *5 *6 *7 *8)))) (-2288 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *5 *6 *7 *8)))) (-2160 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *6 *5)))) (-4140 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-950 *3 *5 *4)) (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1176)))) (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *6)))) (-2058 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-925 *4 *5 *6 *7)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *7) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *7))))) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-772)) (-5 *1 (-925 *4 *5 *6 *7)))) (-3567 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-925 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4302 (-690 (-410 (-953 *4)))) (|:| |vec| (-645 (-410 (-953 *4)))) (|:| -2432 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-2 (|:| |partsol| (-1266 (-410 (-953 *4)))) (|:| -2557 (-645 (-1266 (-410 (-953 *4))))))) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-3127 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1266 (-410 (-953 *4)))) (|:| -2557 (-645 (-1266 (-410 (-953 *4))))))) (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147))) (-4 *7 (-950 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7)))) (-2540 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| *8) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 *8))))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-772)))) (-2899 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-4 *7 (-950 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7)))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-308) (-147))) (-4 *2 (-950 *4 *6 *5)) (-5 *1 (-925 *4 *5 *6 *2)) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)))) (-3544 (*1 *2 *3) (-12 (-5 *3 (-645 (-1176))) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-645 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7)))) (-3181 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-690 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7)))) (-3181 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-410 (-953 *4))) (-5 *1 (-925 *4 *5 *6 *3)) (-4 *3 (-950 *4 *6 *5)))) (-2955 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-953 *8)))) (-5 *5 (-772)) (-5 *6 (-1158)) (-4 *8 (-13 (-308) (-147))) (-4 *11 (-950 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1176)))) (-4 *10 (-794)) (-5 *2 (-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11)) (|:| |wcond| (-645 (-953 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *8)))) (|:| -2557 (-645 (-1266 (-410 (-953 *8)))))))))) (|:| |rgsz| (-567)))) (-5 *1 (-925 *8 *9 *10 *11)) (-5 *7 (-567)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *4)))) (|:| -2557 (-645 (-1266 (-410 (-953 *4)))))))))) (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))) (-3701 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *5)))) (|:| -2557 (-645 (-1266 (-410 (-953 *5)))))))))) (-5 *4 (-1158)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-950 *5 *7 *6)) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *5 *6 *7 *8)))) (-3898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-922)) (-5 *5 (-1158)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *6 *7 *8 *9)))) (-3898 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1176))) (-5 *5 (-922)) (-5 *6 (-1158)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1176)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *7 *8 *9 *10)))) (-3898 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-922)) (-5 *6 (-1158)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147))) (-4 *8 (-13 (-851) (-615 (-1176)))) (-4 *9 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *7 *8 *9 *10)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-1158)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *5 *6 *7 *8)))) (-3898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1176))) (-5 *5 (-1158)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *6 *7 *8 *9)))) (-3898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1158)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *6 *7 *8 *9)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-922)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *5)))) (|:| -2557 (-645 (-1266 (-410 (-953 *5)))))))))) (-5 *1 (-925 *5 *6 *7 *8)))) (-3898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1176))) (-5 *5 (-922)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *6)))) (|:| -2557 (-645 (-1266 (-410 (-953 *6)))))))))) (-5 *1 (-925 *6 *7 *8 *9)))) (-3898 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-690 *9)) (-5 *5 (-922)) (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9)) (|:| |wcond| (-645 (-953 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *6)))) (|:| -2557 (-645 (-1266 (-410 (-953 *6)))))))))) (-5 *1 (-925 *6 *7 *8 *9)) (-5 *4 (-645 *9)))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7)) (|:| |wcond| (-645 (-953 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *4)))) (|:| -2557 (-645 (-1266 (-410 (-953 *4)))))))))) (-5 *1 (-925 *4 *5 *6 *7)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1176))) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *5)))) (|:| -2557 (-645 (-1266 (-410 (-953 *5)))))))))) (-5 *1 (-925 *5 *6 *7 *8)))) (-3898 (*1 *2 *3 *4) (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-645 (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8)) (|:| |wcond| (-645 (-953 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 *5)))) (|:| -2557 (-645 (-1266 (-410 (-953 *5)))))))))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(-10 -7 (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1176)))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 |#4|) (-922))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-645 (-1176)) (-922))) (-15 -3898 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-690 |#4|) (-922))) (-15 -3898 ((-567) (-690 |#4|) (-645 |#4|) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-645 (-1176)) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-645 |#4|) (-922) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-645 (-1176)) (-922) (-1158))) (-15 -3898 ((-567) (-690 |#4|) (-922) (-1158))) (-15 -3701 ((-567) (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-1158))) (-15 -1685 ((-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|))))))))) (-1158))) (-15 -2955 ((-2 (|:| |rgl| (-645 (-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))))))) (|:| |rgsz| (-567))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-772) (-1158) (-567))) (-15 -3181 ((-410 (-953 |#1|)) |#4|)) (-15 -3181 ((-690 (-410 (-953 |#1|))) (-690 |#4|))) (-15 -3181 ((-645 (-410 (-953 |#1|))) (-645 |#4|))) (-15 -3544 ((-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -1880 (|#4| (-953 |#1|))) (-15 -2899 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-645 |#4|)) (|:| |n0| (-645 |#4|))) (-645 |#4|) (-645 |#4|))) (-15 -2540 ((-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))) (-690 |#4|) (-772))) (-15 -3127 ((-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-645 |#4|))) (-15 -3552 ((-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))) (-2 (|:| -4302 (-690 (-410 (-953 |#1|)))) (|:| |vec| (-645 (-410 (-953 |#1|)))) (|:| -2432 (-772)) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (-15 -3567 ((-645 |#4|) |#4|)) (-15 -4105 ((-772) (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -2058 ((-772) (-645 (-2 (|:| -2432 (-772)) (|:| |eqns| (-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))) (|:| |fgb| (-645 |#4|)))))) (-15 -4140 ((-645 (-645 |#4|)) (-645 (-645 |#4|)))) (-15 -2160 ((-645 (-645 (-567))) (-567) (-567))) (-15 -2288 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -4170 ((-645 (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567))))) (-690 |#4|) (-772))) (-15 -4382 ((-690 |#4|) (-690 |#4|) (-645 |#4|))) (-15 -3440 ((-2 (|:| |eqzro| (-645 |#4|)) (|:| |neqzro| (-645 |#4|)) (|:| |wcond| (-645 (-953 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1266 (-410 (-953 |#1|)))) (|:| -2557 (-645 (-1266 (-410 (-953 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))) (-690 |#4|) (-645 (-410 (-953 |#1|))) (-645 (-645 |#4|)) (-772) (-772) (-567))) (-15 -3117 (|#4| |#4|)) (-15 -3361 ((-112) (-645 |#4|))) (-15 -3361 ((-112) (-645 (-953 |#1|)))))
+((-2272 (((-928) |#1| (-1176)) 17) (((-928) |#1| (-1176) (-1094 (-225))) 21)) (-3470 (((-928) |#1| |#1| (-1176) (-1094 (-225))) 19) (((-928) |#1| (-1176) (-1094 (-225))) 15)))
+(((-926 |#1|) (-10 -7 (-15 -3470 ((-928) |#1| (-1176) (-1094 (-225)))) (-15 -3470 ((-928) |#1| |#1| (-1176) (-1094 (-225)))) (-15 -2272 ((-928) |#1| (-1176) (-1094 (-225)))) (-15 -2272 ((-928) |#1| (-1176)))) (-615 (-539))) (T -926))
+((-2272 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) (-2272 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1176)) (-5 *5 (-1094 (-225))) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) (-3470 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1176)) (-5 *5 (-1094 (-225))) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))) (-3470 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1176)) (-5 *5 (-1094 (-225))) (-5 *2 (-928)) (-5 *1 (-926 *3)) (-4 *3 (-615 (-539))))))
+(-10 -7 (-15 -3470 ((-928) |#1| (-1176) (-1094 (-225)))) (-15 -3470 ((-928) |#1| |#1| (-1176) (-1094 (-225)))) (-15 -2272 ((-928) |#1| (-1176) (-1094 (-225)))) (-15 -2272 ((-928) |#1| (-1176))))
+((-3724 (($ $ (-1094 (-225)) (-1094 (-225)) (-1094 (-225))) 123)) (-4381 (((-1094 (-225)) $) 64)) (-4370 (((-1094 (-225)) $) 63)) (-4362 (((-1094 (-225)) $) 62)) (-2851 (((-645 (-645 (-225))) $) 69)) (-3815 (((-1094 (-225)) $) 65)) (-2856 (((-567) (-567)) 57)) (-2473 (((-567) (-567)) 52)) (-1523 (((-567) (-567)) 55)) (-3938 (((-112) (-112)) 59)) (-1718 (((-567)) 56)) (-2442 (($ $ (-1094 (-225))) 126) (($ $) 127)) (-2318 (($ (-1 (-944 (-225)) (-225)) (-1094 (-225))) 133) (($ (-1 (-944 (-225)) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225))) 134)) (-3470 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225))) 136) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225))) 137) (($ $ (-1094 (-225))) 129)) (-2235 (((-567)) 60)) (-1536 (((-567)) 50)) (-2635 (((-567)) 53)) (-3883 (((-645 (-645 (-944 (-225)))) $) 153)) (-1553 (((-112) (-112)) 61)) (-4101 (((-863) $) 151)) (-1766 (((-112)) 58)))
+(((-927) (-13 (-975) (-10 -8 (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)))) (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ $ (-1094 (-225)))) (-15 -3724 ($ $ (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -2442 ($ $ (-1094 (-225)))) (-15 -2442 ($ $)) (-15 -3815 ((-1094 (-225)) $)) (-15 -2851 ((-645 (-645 (-225))) $)) (-15 -1536 ((-567))) (-15 -2473 ((-567) (-567))) (-15 -2635 ((-567))) (-15 -1523 ((-567) (-567))) (-15 -1718 ((-567))) (-15 -2856 ((-567) (-567))) (-15 -1766 ((-112))) (-15 -3938 ((-112) (-112))) (-15 -2235 ((-567))) (-15 -1553 ((-112) (-112)))))) (T -927))
+((-2318 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-927)))) (-2318 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-927)))) (-3470 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-927)))) (-3470 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-927)))) (-3470 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927)))) (-3724 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927)))) (-2442 (*1 *1 *1) (-5 *1 (-927))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-927)))) (-1536 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-2635 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-1718 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-2856 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-1766 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-3938 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))) (-2235 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))) (-1553 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
+(-13 (-975) (-10 -8 (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)))) (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ $ (-1094 (-225)))) (-15 -3724 ($ $ (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -2442 ($ $ (-1094 (-225)))) (-15 -2442 ($ $)) (-15 -3815 ((-1094 (-225)) $)) (-15 -2851 ((-645 (-645 (-225))) $)) (-15 -1536 ((-567))) (-15 -2473 ((-567) (-567))) (-15 -2635 ((-567))) (-15 -1523 ((-567) (-567))) (-15 -1718 ((-567))) (-15 -2856 ((-567) (-567))) (-15 -1766 ((-112))) (-15 -3938 ((-112) (-112))) (-15 -2235 ((-567))) (-15 -1553 ((-112) (-112)))))
+((-3724 (($ $ (-1094 (-225))) 124) (($ $ (-1094 (-225)) (-1094 (-225))) 125)) (-4370 (((-1094 (-225)) $) 73)) (-4362 (((-1094 (-225)) $) 72)) (-3815 (((-1094 (-225)) $) 74)) (-1828 (((-567) (-567)) 66)) (-3750 (((-567) (-567)) 61)) (-3445 (((-567) (-567)) 64)) (-3514 (((-112) (-112)) 68)) (-1355 (((-567)) 65)) (-2442 (($ $ (-1094 (-225))) 128) (($ $) 129)) (-2318 (($ (-1 (-944 (-225)) (-225)) (-1094 (-225))) 143) (($ (-1 (-944 (-225)) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225))) 144)) (-2272 (($ (-1 (-225) (-225)) (-1094 (-225))) 151) (($ (-1 (-225) (-225))) 155)) (-3470 (($ (-1 (-225) (-225)) (-1094 (-225))) 139) (($ (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225))) 140) (($ (-645 (-1 (-225) (-225))) (-1094 (-225))) 148) (($ (-645 (-1 (-225) (-225))) (-1094 (-225)) (-1094 (-225))) 149) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225))) 141) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225))) 142) (($ $ (-1094 (-225))) 130)) (-2010 (((-112) $) 69)) (-3522 (((-567)) 70)) (-2502 (((-567)) 59)) (-3062 (((-567)) 62)) (-3883 (((-645 (-645 (-944 (-225)))) $) 35)) (-2681 (((-112) (-112)) 71)) (-4101 (((-863) $) 169)) (-3003 (((-112)) 67)))
+(((-928) (-13 (-956) (-10 -8 (-15 -3470 ($ (-1 (-225) (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ (-645 (-1 (-225) (-225))) (-1094 (-225)))) (-15 -3470 ($ (-645 (-1 (-225) (-225))) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)))) (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -2272 ($ (-1 (-225) (-225)) (-1094 (-225)))) (-15 -2272 ($ (-1 (-225) (-225)))) (-15 -3470 ($ $ (-1094 (-225)))) (-15 -2010 ((-112) $)) (-15 -3724 ($ $ (-1094 (-225)))) (-15 -3724 ($ $ (-1094 (-225)) (-1094 (-225)))) (-15 -2442 ($ $ (-1094 (-225)))) (-15 -2442 ($ $)) (-15 -3815 ((-1094 (-225)) $)) (-15 -2502 ((-567))) (-15 -3750 ((-567) (-567))) (-15 -3062 ((-567))) (-15 -3445 ((-567) (-567))) (-15 -1355 ((-567))) (-15 -1828 ((-567) (-567))) (-15 -3003 ((-112))) (-15 -3514 ((-112) (-112))) (-15 -3522 ((-567))) (-15 -2681 ((-112) (-112)))))) (T -928))
+((-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-3470 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-3470 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-3470 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-3470 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-3470 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-2318 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-2318 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-2272 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225))) (-5 *1 (-928)))) (-2272 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928)))) (-3470 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3724 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928)))) (-3724 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928)))) (-2442 (*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928)))) (-2442 (*1 *1 *1) (-5 *1 (-928))) (-3815 (*1 *2 *1) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928)))) (-2502 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3750 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3062 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3445 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1355 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-1828 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-3003 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3514 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))) (-3522 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))) (-2681 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(-13 (-956) (-10 -8 (-15 -3470 ($ (-1 (-225) (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ (-645 (-1 (-225) (-225))) (-1094 (-225)))) (-15 -3470 ($ (-645 (-1 (-225) (-225))) (-1094 (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)))) (-15 -3470 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)))) (-15 -2318 ($ (-1 (-944 (-225)) (-225)) (-1094 (-225)) (-1094 (-225)) (-1094 (-225)))) (-15 -2272 ($ (-1 (-225) (-225)) (-1094 (-225)))) (-15 -2272 ($ (-1 (-225) (-225)))) (-15 -3470 ($ $ (-1094 (-225)))) (-15 -2010 ((-112) $)) (-15 -3724 ($ $ (-1094 (-225)))) (-15 -3724 ($ $ (-1094 (-225)) (-1094 (-225)))) (-15 -2442 ($ $ (-1094 (-225)))) (-15 -2442 ($ $)) (-15 -3815 ((-1094 (-225)) $)) (-15 -2502 ((-567))) (-15 -3750 ((-567) (-567))) (-15 -3062 ((-567))) (-15 -3445 ((-567) (-567))) (-15 -1355 ((-567))) (-15 -1828 ((-567) (-567))) (-15 -3003 ((-112))) (-15 -3514 ((-112) (-112))) (-15 -3522 ((-567))) (-15 -2681 ((-112) (-112)))))
+((-3357 (((-645 (-1094 (-225))) (-645 (-645 (-944 (-225))))) 34)))
+(((-929) (-10 -7 (-15 -3357 ((-645 (-1094 (-225))) (-645 (-645 (-944 (-225)))))))) (T -929))
+((-3357 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-645 (-1094 (-225)))) (-5 *1 (-929)))))
+(-10 -7 (-15 -3357 ((-645 (-1094 (-225))) (-645 (-645 (-944 (-225)))))))
+((-2112 ((|#2| |#2|) 28)) (-1892 ((|#2| |#2|) 29)) (-2131 ((|#2| |#2|) 27)) (-2573 ((|#2| |#2| (-509)) 26)))
+(((-930 |#1| |#2|) (-10 -7 (-15 -2573 (|#2| |#2| (-509))) (-15 -2131 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -1892 (|#2| |#2|))) (-1100) (-433 |#1|)) (T -930))
+((-1892 (*1 *2 *2) (-12 (-4 *3 (-1100)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) (-2112 (*1 *2 *2) (-12 (-4 *3 (-1100)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) (-2131 (*1 *2 *2) (-12 (-4 *3 (-1100)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3)))) (-2573 (*1 *2 *2 *3) (-12 (-5 *3 (-509)) (-4 *4 (-1100)) (-5 *1 (-930 *4 *2)) (-4 *2 (-433 *4)))))
+(-10 -7 (-15 -2573 (|#2| |#2| (-509))) (-15 -2131 (|#2| |#2|)) (-15 -2112 (|#2| |#2|)) (-15 -1892 (|#2| |#2|)))
+((-2112 (((-317 (-567)) (-1176)) 16)) (-1892 (((-317 (-567)) (-1176)) 14)) (-2131 (((-317 (-567)) (-1176)) 12)) (-2573 (((-317 (-567)) (-1176) (-509)) 19)))
+(((-931) (-10 -7 (-15 -2573 ((-317 (-567)) (-1176) (-509))) (-15 -2131 ((-317 (-567)) (-1176))) (-15 -2112 ((-317 (-567)) (-1176))) (-15 -1892 ((-317 (-567)) (-1176))))) (T -931))
+((-1892 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))) (-2573 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-509)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))))
+(-10 -7 (-15 -2573 ((-317 (-567)) (-1176) (-509))) (-15 -2131 ((-317 (-567)) (-1176))) (-15 -2112 ((-317 (-567)) (-1176))) (-15 -1892 ((-317 (-567)) (-1176))))
+((-3813 (((-890 |#1| |#3|) |#2| (-893 |#1|) (-890 |#1| |#3|)) 25)) (-3296 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13)))
+(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3296 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3813 ((-890 |#1| |#3|) |#2| (-893 |#1|) (-890 |#1| |#3|)))) (-1100) (-887 |#1|) (-13 (-1100) (-1039 |#2|))) (T -932))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-4 *6 (-13 (-1100) (-1039 *3))) (-4 *3 (-887 *5)) (-5 *1 (-932 *5 *3 *6)))) (-3296 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1100) (-1039 *5))) (-4 *5 (-887 *4)) (-4 *4 (-1100)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-932 *4 *5 *6)))))
+(-10 -7 (-15 -3296 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3813 ((-890 |#1| |#3|) |#2| (-893 |#1|) (-890 |#1| |#3|))))
+((-3813 (((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)) 30)))
+(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -3813 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-1100) (-13 (-559) (-887 |#1|)) (-13 (-433 |#2|) (-615 (-893 |#1|)) (-887 |#1|) (-1039 (-613 $)))) (T -933))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1100)) (-4 *3 (-13 (-433 *6) (-615 *4) (-887 *5) (-1039 (-613 $)))) (-5 *4 (-893 *5)) (-4 *6 (-13 (-559) (-887 *5))) (-5 *1 (-933 *5 *6 *3)))))
+(-10 -7 (-15 -3813 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))))
+((-3813 (((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|)) 13)))
+(((-934 |#1|) (-10 -7 (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|)))) (-548)) (T -934))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 (-567) *3)) (-5 *4 (-893 (-567))) (-4 *3 (-548)) (-5 *1 (-934 *3)))))
+(-10 -7 (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))))
+((-3813 (((-890 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-890 |#1| |#2|)) 57)))
+(((-935 |#1| |#2|) (-10 -7 (-15 -3813 ((-890 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-890 |#1| |#2|)))) (-1100) (-13 (-1100) (-1039 (-613 $)) (-615 (-893 |#1|)) (-887 |#1|))) (T -935))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1100)) (-4 *6 (-13 (-1100) (-1039 (-613 $)) (-615 *4) (-887 *5))) (-5 *4 (-893 *5)) (-5 *1 (-935 *5 *6)))))
+(-10 -7 (-15 -3813 ((-890 |#1| |#2|) (-613 |#2|) (-893 |#1|) (-890 |#1| |#2|))))
+((-3813 (((-886 |#1| |#2| |#3|) |#3| (-893 |#1|) (-886 |#1| |#2| |#3|)) 17)))
+(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -3813 ((-886 |#1| |#2| |#3|) |#3| (-893 |#1|) (-886 |#1| |#2| |#3|)))) (-1100) (-887 |#1|) (-667 |#2|)) (T -936))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-4 *6 (-887 *5)) (-4 *3 (-667 *6)) (-5 *1 (-936 *5 *6 *3)))))
+(-10 -7 (-15 -3813 ((-886 |#1| |#2| |#3|) |#3| (-893 |#1|) (-886 |#1| |#2| |#3|))))
+((-3813 (((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|)) 17 (|has| |#3| (-887 |#1|))) (((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|) (-1 (-890 |#1| |#5|) |#3| (-893 |#1|) (-890 |#1| |#5|))) 16)))
+(((-937 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3813 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|) (-1 (-890 |#1| |#5|) |#3| (-893 |#1|) (-890 |#1| |#5|)))) (IF (|has| |#3| (-887 |#1|)) (-15 -3813 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|))) |%noBranch|)) (-1100) (-794) (-851) (-13 (-1050) (-887 |#1|)) (-13 (-950 |#4| |#2| |#3|) (-615 (-893 |#1|)))) (T -937))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1100)) (-4 *3 (-13 (-950 *8 *6 *7) (-615 *4))) (-5 *4 (-893 *5)) (-4 *7 (-887 *5)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-13 (-1050) (-887 *5))) (-5 *1 (-937 *5 *6 *7 *8 *3)))) (-3813 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-890 *6 *3) *8 (-893 *6) (-890 *6 *3))) (-4 *8 (-851)) (-5 *2 (-890 *6 *3)) (-5 *4 (-893 *6)) (-4 *6 (-1100)) (-4 *3 (-13 (-950 *9 *7 *8) (-615 *4))) (-4 *7 (-794)) (-4 *9 (-13 (-1050) (-887 *6))) (-5 *1 (-937 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -3813 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|) (-1 (-890 |#1| |#5|) |#3| (-893 |#1|) (-890 |#1| |#5|)))) (IF (|has| |#3| (-887 |#1|)) (-15 -3813 ((-890 |#1| |#5|) |#5| (-893 |#1|) (-890 |#1| |#5|))) |%noBranch|))
+((-1973 ((|#2| |#2| (-645 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13)))
+(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -1973 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1973 (|#2| |#2| (-645 (-1 (-112) |#3|))))) (-1100) (-433 |#1|) (-1216)) (T -938))
+((-1973 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1216)) (-4 *4 (-1100)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4)))) (-1973 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1216)) (-4 *4 (-1100)) (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4)))))
+(-10 -7 (-15 -1973 (|#2| |#2| (-1 (-112) |#3|))) (-15 -1973 (|#2| |#2| (-645 (-1 (-112) |#3|)))))
+((-1973 (((-317 (-567)) (-1176) (-645 (-1 (-112) |#1|))) 18) (((-317 (-567)) (-1176) (-1 (-112) |#1|)) 15)))
+(((-939 |#1|) (-10 -7 (-15 -1973 ((-317 (-567)) (-1176) (-1 (-112) |#1|))) (-15 -1973 ((-317 (-567)) (-1176) (-645 (-1 (-112) |#1|))))) (-1216)) (T -939))
+((-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1216)) (-5 *2 (-317 (-567))) (-5 *1 (-939 *5)))) (-1973 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1216)) (-5 *2 (-317 (-567))) (-5 *1 (-939 *5)))))
+(-10 -7 (-15 -1973 ((-317 (-567)) (-1176) (-1 (-112) |#1|))) (-15 -1973 ((-317 (-567)) (-1176) (-645 (-1 (-112) |#1|)))))
+((-3813 (((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)) 25)))
+(((-940 |#1| |#2| |#3|) (-10 -7 (-15 -3813 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-1100) (-13 (-559) (-887 |#1|) (-615 (-893 |#1|))) (-993 |#2|)) (T -940))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1100)) (-4 *3 (-993 *6)) (-4 *6 (-13 (-559) (-887 *5) (-615 *4))) (-5 *4 (-893 *5)) (-5 *1 (-940 *5 *6 *3)))))
+(-10 -7 (-15 -3813 ((-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))))
+((-3813 (((-890 |#1| (-1176)) (-1176) (-893 |#1|) (-890 |#1| (-1176))) 18)))
+(((-941 |#1|) (-10 -7 (-15 -3813 ((-890 |#1| (-1176)) (-1176) (-893 |#1|) (-890 |#1| (-1176))))) (-1100)) (T -941))
+((-3813 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-890 *5 (-1176))) (-5 *3 (-1176)) (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-5 *1 (-941 *5)))))
+(-10 -7 (-15 -3813 ((-890 |#1| (-1176)) (-1176) (-893 |#1|) (-890 |#1| (-1176)))))
+((-3676 (((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) 34)) (-3813 (((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-1 |#3| (-645 |#3|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))) 33)))
+(((-942 |#1| |#2| |#3|) (-10 -7 (-15 -3813 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-1 |#3| (-645 |#3|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-15 -3676 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|))))) (-1100) (-1050) (-13 (-1050) (-615 (-893 |#1|)) (-1039 |#2|))) (T -942))
+((-3676 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-893 *6))) (-5 *5 (-1 (-890 *6 *8) *8 (-893 *6) (-890 *6 *8))) (-4 *6 (-1100)) (-4 *8 (-13 (-1050) (-615 (-893 *6)) (-1039 *7))) (-5 *2 (-890 *6 *8)) (-4 *7 (-1050)) (-5 *1 (-942 *6 *7 *8)))) (-3813 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-645 (-893 *7))) (-5 *5 (-1 *9 (-645 *9))) (-5 *6 (-1 (-890 *7 *9) *9 (-893 *7) (-890 *7 *9))) (-4 *7 (-1100)) (-4 *9 (-13 (-1050) (-615 (-893 *7)) (-1039 *8))) (-5 *2 (-890 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1050)) (-5 *1 (-942 *7 *8 *9)))))
+(-10 -7 (-15 -3813 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-1 |#3| (-645 |#3|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))) (-15 -3676 ((-890 |#1| |#3|) (-645 |#3|) (-645 (-893 |#1|)) (-890 |#1| |#3|) (-1 (-890 |#1| |#3|) |#3| (-893 |#1|) (-890 |#1| |#3|)))))
+((-2090 (((-1172 (-410 (-567))) (-567)) 81)) (-3433 (((-1172 (-567)) (-567)) 84)) (-2155 (((-1172 (-567)) (-567)) 78)) (-2725 (((-567) (-1172 (-567))) 74)) (-3390 (((-1172 (-410 (-567))) (-567)) 65)) (-3916 (((-1172 (-567)) (-567)) 49)) (-4165 (((-1172 (-567)) (-567)) 86)) (-4337 (((-1172 (-567)) (-567)) 85)) (-1392 (((-1172 (-410 (-567))) (-567)) 67)))
+(((-943) (-10 -7 (-15 -1392 ((-1172 (-410 (-567))) (-567))) (-15 -4337 ((-1172 (-567)) (-567))) (-15 -4165 ((-1172 (-567)) (-567))) (-15 -3916 ((-1172 (-567)) (-567))) (-15 -3390 ((-1172 (-410 (-567))) (-567))) (-15 -2725 ((-567) (-1172 (-567)))) (-15 -2155 ((-1172 (-567)) (-567))) (-15 -3433 ((-1172 (-567)) (-567))) (-15 -2090 ((-1172 (-410 (-567))) (-567))))) (T -943))
+((-2090 (*1 *2 *3) (-12 (-5 *2 (-1172 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))) (-3433 (*1 *2 *3) (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-2155 (*1 *2 *3) (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-1172 (-567))) (-5 *2 (-567)) (-5 *1 (-943)))) (-3390 (*1 *2 *3) (-12 (-5 *2 (-1172 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))) (-3916 (*1 *2 *3) (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-4165 (*1 *2 *3) (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-4337 (*1 *2 *3) (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))) (-1392 (*1 *2 *3) (-12 (-5 *2 (-1172 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))))
+(-10 -7 (-15 -1392 ((-1172 (-410 (-567))) (-567))) (-15 -4337 ((-1172 (-567)) (-567))) (-15 -4165 ((-1172 (-567)) (-567))) (-15 -3916 ((-1172 (-567)) (-567))) (-15 -3390 ((-1172 (-410 (-567))) (-567))) (-15 -2725 ((-567) (-1172 (-567)))) (-15 -2155 ((-1172 (-567)) (-567))) (-15 -3433 ((-1172 (-567)) (-567))) (-15 -2090 ((-1172 (-410 (-567))) (-567))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2019 (($ (-772)) NIL (|has| |#1| (-23)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-1976 (($ (-645 |#1|)) 9)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-3543 (((-690 |#1|) $ $) NIL (|has| |#1| (-1050)))) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1674 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-3230 (((-112) $ (-772)) NIL)) (-3036 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2436 (($ $ (-645 |#1|)) 25)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 18) (($ $ (-1233 (-567))) NIL)) (-2945 ((|#1| $ $) NIL (|has| |#1| (-1050)))) (-1948 (((-922) $) 13)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2673 (($ $ $) 23)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 14)) (-4114 (($ (-645 |#1|)) NIL)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 24) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3146 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2268 (((-772) $) 11 (|has| $ (-6 -4416)))))
+(((-944 |#1|) (-981 |#1|) (-1050)) (T -944))
+NIL
+(-981 |#1|)
+((-3054 (((-484 |#1| |#2|) (-953 |#2|)) 22)) (-1448 (((-247 |#1| |#2|) (-953 |#2|)) 35)) (-4215 (((-953 |#2|) (-484 |#1| |#2|)) 27)) (-3215 (((-247 |#1| |#2|) (-484 |#1| |#2|)) 57)) (-4057 (((-953 |#2|) (-247 |#1| |#2|)) 32)) (-2661 (((-484 |#1| |#2|) (-247 |#1| |#2|)) 48)))
+(((-945 |#1| |#2|) (-10 -7 (-15 -2661 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3215 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3054 ((-484 |#1| |#2|) (-953 |#2|))) (-15 -4215 ((-953 |#2|) (-484 |#1| |#2|))) (-15 -4057 ((-953 |#2|) (-247 |#1| |#2|))) (-15 -1448 ((-247 |#1| |#2|) (-953 |#2|)))) (-645 (-1176)) (-1050)) (T -945))
+((-1448 (*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-247 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1176))))) (-4057 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050)) (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-484 *4 *5)) (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1176))))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050)) (-5 *2 (-247 *4 *5)) (-5 *1 (-945 *4 *5)))) (-2661 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050)) (-5 *2 (-484 *4 *5)) (-5 *1 (-945 *4 *5)))))
+(-10 -7 (-15 -2661 ((-484 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3215 ((-247 |#1| |#2|) (-484 |#1| |#2|))) (-15 -3054 ((-484 |#1| |#2|) (-953 |#2|))) (-15 -4215 ((-953 |#2|) (-484 |#1| |#2|))) (-15 -4057 ((-953 |#2|) (-247 |#1| |#2|))) (-15 -1448 ((-247 |#1| |#2|) (-953 |#2|))))
+((-3653 (((-645 |#2|) |#2| |#2|) 10)) (-3630 (((-772) (-645 |#1|)) 48 (|has| |#1| (-849)))) (-2587 (((-645 |#2|) |#2|) 11)) (-3953 (((-772) (-645 |#1|) (-567) (-567)) 52 (|has| |#1| (-849)))) (-1627 ((|#1| |#2|) 38 (|has| |#1| (-849)))))
+(((-946 |#1| |#2|) (-10 -7 (-15 -3653 ((-645 |#2|) |#2| |#2|)) (-15 -2587 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -1627 (|#1| |#2|)) (-15 -3630 ((-772) (-645 |#1|))) (-15 -3953 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|)) (-365) (-1242 |#1|)) (T -946))
+((-3953 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365)) (-5 *2 (-772)) (-5 *1 (-946 *5 *6)) (-4 *6 (-1242 *5)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-946 *4 *5)) (-4 *5 (-1242 *4)))) (-1627 (*1 *2 *3) (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-946 *2 *3)) (-4 *3 (-1242 *2)))) (-2587 (*1 *2 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1242 *4)))) (-3653 (*1 *2 *3 *3) (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -3653 ((-645 |#2|) |#2| |#2|)) (-15 -2587 ((-645 |#2|) |#2|)) (IF (|has| |#1| (-849)) (PROGN (-15 -1627 (|#1| |#2|)) (-15 -3630 ((-772) (-645 |#1|))) (-15 -3953 ((-772) (-645 |#1|) (-567) (-567)))) |%noBranch|))
+((-3494 (((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)) 19)))
+(((-947 |#1| |#2|) (-10 -7 (-15 -3494 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|)))) (-1050) (-1050)) (T -947))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-953 *6)) (-5 *1 (-947 *5 *6)))))
+(-10 -7 (-15 -3494 ((-953 |#2|) (-1 |#2| |#1|) (-953 |#1|))))
+((-2260 (((-1239 |#1| (-953 |#2|)) (-953 |#2|) (-1262 |#1|)) 18)))
+(((-948 |#1| |#2|) (-10 -7 (-15 -2260 ((-1239 |#1| (-953 |#2|)) (-953 |#2|) (-1262 |#1|)))) (-1176) (-1050)) (T -948))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-1262 *5)) (-14 *5 (-1176)) (-4 *6 (-1050)) (-5 *2 (-1239 *5 (-953 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-953 *6)))))
+(-10 -7 (-15 -2260 ((-1239 |#1| (-953 |#2|)) (-953 |#2|) (-1262 |#1|))))
+((-3238 (((-772) $) 88) (((-772) $ (-645 |#4|)) 93)) (-1396 (($ $) 203)) (-1401 (((-421 $) $) 195)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 141)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-1621 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) 73)) (-2414 (($ $ $ |#4|) 95)) (-1920 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) 131) (((-690 |#2|) (-690 $)) 121)) (-2958 (($ $) 210) (($ $ |#4|) 213)) (-2624 (((-645 $) $) 77)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 229) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 222)) (-2133 (((-645 $) $) 34)) (-2422 (($ |#2| |#3|) NIL) (($ $ |#4| (-772)) NIL) (($ $ (-645 |#4|) (-645 (-772))) 71)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |#4|) 192)) (-3376 (((-3 (-645 $) "failed") $) 52)) (-1808 (((-3 (-645 $) "failed") $) 39)) (-2688 (((-3 (-2 (|:| |var| |#4|) (|:| -4164 (-772))) "failed") $) 57)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 134)) (-1495 (((-421 (-1172 $)) (-1172 $)) 147)) (-1429 (((-421 (-1172 $)) (-1172 $)) 145)) (-2296 (((-421 $) $) 165)) (-3140 (($ $ (-645 (-295 $))) 24) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-645 |#4|) (-645 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-645 |#4|) (-645 $)) NIL)) (-3347 (($ $ |#4|) 97)) (-3542 (((-893 (-381)) $) 243) (((-893 (-567)) $) 236) (((-539) $) 251)) (-1640 ((|#2| $) NIL) (($ $ |#4|) 205)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 184)) (-2339 ((|#2| $ |#3|) NIL) (($ $ |#4| (-772)) 62) (($ $ (-645 |#4|) (-645 (-772))) 69)) (-4242 (((-3 $ "failed") $) 186)) (-3739 (((-112) $ $) 216)))
+(((-949 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1429 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1495 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -1470 ((-3 (-1266 |#1|) "failed") (-690 |#1|))) (-15 -2958 (|#1| |#1| |#4|)) (-15 -1640 (|#1| |#1| |#4|)) (-15 -3347 (|#1| |#1| |#4|)) (-15 -2414 (|#1| |#1| |#1| |#4|)) (-15 -2624 ((-645 |#1|) |#1|)) (-15 -3238 ((-772) |#1| (-645 |#4|))) (-15 -3238 ((-772) |#1|)) (-15 -2688 ((-3 (-2 (|:| |var| |#4|) (|:| -4164 (-772))) "failed") |#1|)) (-15 -3376 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -1808 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2422 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2422 (|#1| |#1| |#4| (-772))) (-15 -4089 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1| |#4|)) (-15 -2133 ((-645 |#1|) |#1|)) (-15 -2339 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2339 (|#1| |#1| |#4| (-772))) (-15 -1920 ((-690 |#2|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -3417 ((-3 |#4| "failed") |#1|)) (-15 -1621 (|#4| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#4| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#4| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2422 (|#1| |#2| |#3|)) (-15 -2339 (|#2| |#1| |#3|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|))) (-950 |#2| |#3| |#4|) (-1050) (-794) (-851)) (T -949))
+NIL
+(-10 -8 (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -4242 ((-3 |#1| "failed") |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1429 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1495 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -1470 ((-3 (-1266 |#1|) "failed") (-690 |#1|))) (-15 -2958 (|#1| |#1| |#4|)) (-15 -1640 (|#1| |#1| |#4|)) (-15 -3347 (|#1| |#1| |#4|)) (-15 -2414 (|#1| |#1| |#1| |#4|)) (-15 -2624 ((-645 |#1|) |#1|)) (-15 -3238 ((-772) |#1| (-645 |#4|))) (-15 -3238 ((-772) |#1|)) (-15 -2688 ((-3 (-2 (|:| |var| |#4|) (|:| -4164 (-772))) "failed") |#1|)) (-15 -3376 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -1808 ((-3 (-645 |#1|) "failed") |#1|)) (-15 -2422 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2422 (|#1| |#1| |#4| (-772))) (-15 -4089 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1| |#4|)) (-15 -2133 ((-645 |#1|) |#1|)) (-15 -2339 (|#1| |#1| (-645 |#4|) (-645 (-772)))) (-15 -2339 (|#1| |#1| |#4| (-772))) (-15 -1920 ((-690 |#2|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -3417 ((-3 |#4| "failed") |#1|)) (-15 -1621 (|#4| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#4| |#1|)) (-15 -3140 (|#1| |#1| (-645 |#4|) (-645 |#2|))) (-15 -3140 (|#1| |#1| |#4| |#2|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -2422 (|#1| |#2| |#3|)) (-15 -2339 (|#2| |#1| |#3|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -2958 (|#1| |#1|)) (-15 -3739 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 |#3|) $) 112)) (-2260 (((-1172 $) $ |#3|) 127) (((-1172 |#1|) $) 126)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-3602 (($ $) 90 (|has| |#1| (-559)))) (-2119 (((-112) $) 92 (|has| |#1| (-559)))) (-3238 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-4377 (((-3 $ "failed") $ $) 20)) (-1877 (((-421 (-1172 $)) (-1172 $)) 102 (|has| |#1| (-910)))) (-1396 (($ $) 100 (|has| |#1| (-455)))) (-1401 (((-421 $) $) 99 (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 105 (|has| |#1| (-910)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) 138)) (-1621 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) ((|#3| $) 139)) (-2414 (($ $ $ |#3|) 110 (|has| |#1| (-172)))) (-2637 (($ $) 156)) (-1920 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-4014 (((-3 $ "failed") $) 37)) (-2958 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-2624 (((-645 $) $) 111)) (-1665 (((-112) $) 98 (|has| |#1| (-910)))) (-3564 (($ $ |#1| |#2| $) 174)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| |#3| (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| |#3| (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-3714 (((-112) $) 35)) (-2864 (((-772) $) 171)) (-2434 (($ (-1172 |#1|) |#3|) 119) (($ (-1172 $) |#3|) 118)) (-2133 (((-645 $) $) 128)) (-3523 (((-112) $) 154)) (-2422 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |#3|) 122)) (-4185 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-1599 (($ (-1 |#2| |#2|) $) 173)) (-3494 (($ (-1 |#1| |#1|) $) 153)) (-3300 (((-3 |#3| "failed") $) 125)) (-2599 (($ $) 151)) (-2613 ((|#1| $) 150)) (-3245 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-2451 (((-1158) $) 10)) (-3376 (((-3 (-645 $) "failed") $) 116)) (-1808 (((-3 (-645 $) "failed") $) 117)) (-2688 (((-3 (-2 (|:| |var| |#3|) (|:| -4164 (-772))) "failed") $) 115)) (-3339 (((-1120) $) 11)) (-2567 (((-112) $) 168)) (-2583 ((|#1| $) 169)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 97 (|has| |#1| (-455)))) (-3276 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) 104 (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 103 (|has| |#1| (-910)))) (-2296 (((-421 $) $) 101 (|has| |#1| (-910)))) (-2245 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-3347 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1930 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3677 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-3542 (((-893 (-381)) $) 84 (-12 (|has| |#3| (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| |#3| (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 106 (-1410 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (($ $) 87 (|has| |#1| (-559))) (($ (-410 (-567))) 80 (-2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))))) (-2350 (((-645 |#1|) $) 170)) (-2339 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-4242 (((-3 $ "failed") $) 81 (-2909 (-1410 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) 32 T CONST)) (-2582 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-950 |#1| |#2| |#3|) (-140) (-1050) (-794) (-851)) (T -950))
+((-2958 (*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3677 (*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-3677 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-2339 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2339 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2133 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-2260 (*1 *2 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1172 *1)) (-4 *1 (-950 *4 *5 *3)))) (-2260 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-1172 *3)))) (-3300 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-4185 (*1 *2 *1 *3) (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-772)))) (-4185 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772))))) (-4089 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-950 *4 *5 *3)))) (-2422 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *2 (-851)))) (-2422 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)))) (-2434 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1050)) (-4 *1 (-950 *4 *5 *3)) (-4 *5 (-794)) (-4 *3 (-851)))) (-2434 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)))) (-1808 (*1 *2 *1) (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-3376 (*1 *2 *1) (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-2688 (*1 *2 *1) (|partial| -12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -4164 (-772)))))) (-3238 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-3238 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-2624 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5)))) (-2414 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-3347 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-172)))) (-1640 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-2958 (*1 *1 *1 *2) (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *3 (-455)))) (-1396 (*1 *1 *1) (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-1401 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-421 *1)) (-4 *1 (-950 *3 *4 *5)))))
+(-13 (-901 |t#3|) (-327 |t#1| |t#2|) (-310 $) (-517 |t#3| |t#1|) (-517 |t#3| $) (-1039 |t#3|) (-379 |t#1|) (-10 -8 (-15 -3677 ((-772) $ |t#3|)) (-15 -3677 ((-645 (-772)) $ (-645 |t#3|))) (-15 -2339 ($ $ |t#3| (-772))) (-15 -2339 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2133 ((-645 $) $)) (-15 -2260 ((-1172 $) $ |t#3|)) (-15 -2260 ((-1172 |t#1|) $)) (-15 -3300 ((-3 |t#3| "failed") $)) (-15 -4185 ((-772) $ |t#3|)) (-15 -4185 ((-645 (-772)) $ (-645 |t#3|))) (-15 -4089 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |t#3|)) (-15 -2422 ($ $ |t#3| (-772))) (-15 -2422 ($ $ (-645 |t#3|) (-645 (-772)))) (-15 -2434 ($ (-1172 |t#1|) |t#3|)) (-15 -2434 ($ (-1172 $) |t#3|)) (-15 -1808 ((-3 (-645 $) "failed") $)) (-15 -3376 ((-3 (-645 $) "failed") $)) (-15 -2688 ((-3 (-2 (|:| |var| |t#3|) (|:| -4164 (-772))) "failed") $)) (-15 -3238 ((-772) $)) (-15 -3238 ((-772) $ (-645 |t#3|))) (-15 -2449 ((-645 |t#3|) $)) (-15 -2624 ((-645 $) $)) (IF (|has| |t#1| (-615 (-539))) (IF (|has| |t#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-893 (-567)))) (IF (|has| |t#3| (-615 (-893 (-567)))) (-6 (-615 (-893 (-567)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-615 (-893 (-381)))) (IF (|has| |t#3| (-615 (-893 (-381)))) (-6 (-615 (-893 (-381)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-887 (-567))) (IF (|has| |t#3| (-887 (-567))) (-6 (-887 (-567))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-887 (-381))) (IF (|has| |t#3| (-887 (-381))) (-6 (-887 (-381))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2414 ($ $ $ |t#3|)) (-15 -3347 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-6 (-455)) (-15 -1640 ($ $ |t#3|)) (-15 -2958 ($ $)) (-15 -2958 ($ $ |t#3|)) (-15 -1401 ((-421 $) $)) (-15 -1396 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4414)) (-6 -4414) |%noBranch|) (IF (|has| |t#1| (-910)) (-6 (-910)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) ((-291) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2909 (|has| |#1| (-910)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-901 |#3|) . T) ((-887 (-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) ((-910) |has| |#1| (-910)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1039 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) |has| |#1| (-910)))
+((-2449 (((-645 |#2|) |#5|) 40)) (-2260 (((-1172 |#5|) |#5| |#2| (-1172 |#5|)) 23) (((-410 (-1172 |#5|)) |#5| |#2|) 16)) (-2434 ((|#5| (-410 (-1172 |#5|)) |#2|) 30)) (-3300 (((-3 |#2| "failed") |#5|) 71)) (-3376 (((-3 (-645 |#5|) "failed") |#5|) 65)) (-2063 (((-3 (-2 (|:| |val| |#5|) (|:| -4164 (-567))) "failed") |#5|) 53)) (-1808 (((-3 (-645 |#5|) "failed") |#5|) 67)) (-2688 (((-3 (-2 (|:| |var| |#2|) (|:| -4164 (-567))) "failed") |#5|) 57)))
+(((-951 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2449 ((-645 |#2|) |#5|)) (-15 -3300 ((-3 |#2| "failed") |#5|)) (-15 -2260 ((-410 (-1172 |#5|)) |#5| |#2|)) (-15 -2434 (|#5| (-410 (-1172 |#5|)) |#2|)) (-15 -2260 ((-1172 |#5|) |#5| |#2| (-1172 |#5|))) (-15 -1808 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3376 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2688 ((-3 (-2 (|:| |var| |#2|) (|:| -4164 (-567))) "failed") |#5|)) (-15 -2063 ((-3 (-2 (|:| |val| |#5|) (|:| -4164 (-567))) "failed") |#5|))) (-794) (-851) (-1050) (-950 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4101 ($ |#4|)) (-15 -4067 (|#4| $)) (-15 -4078 (|#4| $))))) (T -951))
+((-2063 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -4164 (-567)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))) (-2688 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -4164 (-567)))) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))) (-3376 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))) (-1808 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))) (-2260 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))) (-4 *7 (-950 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050)) (-5 *1 (-951 *5 *4 *6 *7 *3)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1172 *2))) (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050)) (-4 *2 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))) (-5 *1 (-951 *5 *4 *6 *7 *2)) (-4 *7 (-950 *6 *5 *4)))) (-2260 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-410 (-1172 *3))) (-5 *1 (-951 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))) (-3300 (*1 *2 *3) (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1050)) (-4 *6 (-950 *5 *4 *2)) (-4 *2 (-851)) (-5 *1 (-951 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *6)) (-15 -4067 (*6 $)) (-15 -4078 (*6 $))))))) (-2449 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *5)) (-5 *1 (-951 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))))
+(-10 -7 (-15 -2449 ((-645 |#2|) |#5|)) (-15 -3300 ((-3 |#2| "failed") |#5|)) (-15 -2260 ((-410 (-1172 |#5|)) |#5| |#2|)) (-15 -2434 (|#5| (-410 (-1172 |#5|)) |#2|)) (-15 -2260 ((-1172 |#5|) |#5| |#2| (-1172 |#5|))) (-15 -1808 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -3376 ((-3 (-645 |#5|) "failed") |#5|)) (-15 -2688 ((-3 (-2 (|:| |var| |#2|) (|:| -4164 (-567))) "failed") |#5|)) (-15 -2063 ((-3 (-2 (|:| |val| |#5|) (|:| -4164 (-567))) "failed") |#5|)))
+((-3494 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-952 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3494 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-794) (-851) (-1050) (-950 |#3| |#1| |#2|) (-13 (-1100) (-10 -8 (-15 -3146 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (T -952))
+((-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851)) (-4 *8 (-1050)) (-4 *6 (-794)) (-4 *2 (-13 (-1100) (-10 -8 (-15 -3146 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772)))))) (-5 *1 (-952 *6 *7 *8 *5 *2)) (-4 *5 (-950 *8 *6 *7)))))
+(-10 -7 (-15 -3494 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1176)) $) 16)) (-2260 (((-1172 $) $ (-1176)) 21) (((-1172 |#1|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-1176))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 8) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1176) "failed") $) NIL)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1176) $) NIL)) (-2414 (($ $ $ (-1176)) NIL (|has| |#1| (-172)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1176)) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-534 (-1176)) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1176) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1176) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2434 (($ (-1172 |#1|) (-1176)) NIL) (($ (-1172 $) (-1176)) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-534 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-1176)) NIL)) (-4185 (((-534 (-1176)) $) NIL) (((-772) $ (-1176)) NIL) (((-645 (-772)) $ (-645 (-1176))) NIL)) (-1599 (($ (-1 (-534 (-1176)) (-534 (-1176))) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3300 (((-3 (-1176) "failed") $) 19)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-1176)) (|:| -4164 (-772))) "failed") $) NIL)) (-2113 (($ $ (-1176)) 29 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1176) |#1|) NIL) (($ $ (-645 (-1176)) (-645 |#1|)) NIL) (($ $ (-1176) $) NIL) (($ $ (-645 (-1176)) (-645 $)) NIL)) (-3347 (($ $ (-1176)) NIL (|has| |#1| (-172)))) (-1930 (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL)) (-3677 (((-534 (-1176)) $) NIL) (((-772) $ (-1176)) NIL) (((-645 (-772)) $ (-645 (-1176))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-1176) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1176) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1176) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1176)) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) 25) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1176)) 27) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-534 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-953 |#1|) (-13 (-950 |#1| (-534 (-1176)) (-1176)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1176))) |%noBranch|))) (-1050)) (T -953))
+((-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-953 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)))))
+(-13 (-950 |#1| (-534 (-1176)) (-1176)) (-10 -8 (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1176))) |%noBranch|)))
+((-3569 (((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) |#3| (-772)) 49)) (-1862 (((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772)) 44)) (-2077 (((-2 (|:| -4164 (-772)) (|:| -3087 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)) 65)) (-3258 (((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) |#5| (-772)) 74 (|has| |#3| (-455)))))
+(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3569 ((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -1862 ((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -3258 ((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -2077 ((-2 (|:| -4164 (-772)) (|:| -3087 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772)))) (-794) (-851) (-559) (-950 |#3| |#1| |#2|) (-13 (-365) (-10 -8 (-15 -4101 ($ |#4|)) (-15 -4067 (|#4| $)) (-15 -4078 (|#4| $))))) (T -954))
+((-2077 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *3 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *3) (|:| |radicand| (-645 *3)))) (-5 *1 (-954 *5 *6 *7 *3 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4101 ($ *3)) (-15 -4067 (*3 $)) (-15 -4078 (*3 $))))))) (-3258 (*1 *2 *3 *4) (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *3) (|:| |radicand| *3))) (-5 *1 (-954 *5 *6 *7 *8 *3)) (-5 *4 (-772)) (-4 *3 (-13 (-365) (-10 -8 (-15 -4101 ($ *8)) (-15 -4067 (*8 $)) (-15 -4078 (*8 $))))))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559)) (-4 *8 (-950 *7 *5 *6)) (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *9) (|:| |radicand| *9))) (-5 *1 (-954 *5 *6 *7 *8 *9)) (-5 *4 (-772)) (-4 *9 (-13 (-365) (-10 -8 (-15 -4101 ($ *8)) (-15 -4067 (*8 $)) (-15 -4078 (*8 $))))))) (-3569 (*1 *2 *3 *4) (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559)) (-4 *7 (-950 *3 *5 *6)) (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *8) (|:| |radicand| *8))) (-5 *1 (-954 *5 *6 *3 *7 *8)) (-5 *4 (-772)) (-4 *8 (-13 (-365) (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))))
+(-10 -7 (-15 -3569 ((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) |#3| (-772))) (-15 -1862 ((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) (-410 (-567)) (-772))) (IF (|has| |#3| (-455)) (-15 -3258 ((-2 (|:| -4164 (-772)) (|:| -3087 |#5|) (|:| |radicand| |#5|)) |#5| (-772))) |%noBranch|) (-15 -2077 ((-2 (|:| -4164 (-772)) (|:| -3087 |#4|) (|:| |radicand| (-645 |#4|))) |#4| (-772))))
+((-2257 (((-112) $ $) NIL)) (-1898 (($ (-1120)) 8)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 15) (((-1120) $) 12)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 11)))
+(((-955) (-13 (-1100) (-614 (-1120)) (-10 -8 (-15 -1898 ($ (-1120)))))) (T -955))
+((-1898 (*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-955)))))
+(-13 (-1100) (-614 (-1120)) (-10 -8 (-15 -1898 ($ (-1120)))))
+((-4370 (((-1094 (-225)) $) 8)) (-4362 (((-1094 (-225)) $) 9)) (-3883 (((-645 (-645 (-944 (-225)))) $) 10)) (-4101 (((-863) $) 6)))
+(((-956) (-140)) (T -956))
+((-3883 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-645 (-645 (-944 (-225))))))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1094 (-225))))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1094 (-225))))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3883 ((-645 (-645 (-944 (-225)))) $)) (-15 -4362 ((-1094 (-225)) $)) (-15 -4370 ((-1094 (-225)) $))))
+(((-614 (-863)) . T))
+((-3786 (((-3 (-690 |#1|) "failed") |#2| (-922)) 18)))
+(((-957 |#1| |#2|) (-10 -7 (-15 -3786 ((-3 (-690 |#1|) "failed") |#2| (-922)))) (-559) (-657 |#1|)) (T -957))
+((-3786 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-922)) (-4 *5 (-559)) (-5 *2 (-690 *5)) (-5 *1 (-957 *5 *3)) (-4 *3 (-657 *5)))))
+(-10 -7 (-15 -3786 ((-3 (-690 |#1|) "failed") |#2| (-922))))
+((-3391 (((-959 |#2|) (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|) 16)) (-3402 ((|#2| (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|) 18)) (-3494 (((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)) 13)))
+(((-958 |#1| |#2|) (-10 -7 (-15 -3391 ((-959 |#2|) (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -3494 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|)))) (-1216) (-1216)) (T -958))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-959 *6)) (-5 *1 (-958 *5 *6)))) (-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-959 *5)) (-4 *5 (-1216)) (-4 *2 (-1216)) (-5 *1 (-958 *5 *2)))) (-3391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-959 *6)) (-4 *6 (-1216)) (-4 *5 (-1216)) (-5 *2 (-959 *5)) (-5 *1 (-958 *6 *5)))))
+(-10 -7 (-15 -3391 ((-959 |#2|) (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-959 |#1|) |#2|)) (-15 -3494 ((-959 |#2|) (-1 |#2| |#1|) (-959 |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) |#1|) 19 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 18 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 16)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-4012 (($ (-772) |#1|) 15)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) 11 (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) 20 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) 17) (($ $ (-1233 (-567))) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) 21)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 14)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-2268 (((-772) $) 8 (|has| $ (-6 -4416)))))
+(((-959 |#1|) (-19 |#1|) (-1216)) (T -959))
NIL
(-19 |#1|)
-((-2283 (($ $ (-1091 $)) 7) (($ $ (-1175)) 6)))
-(((-959) (-140)) (T -959))
-((-2283 (*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959)))) (-2283 (*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175)))))
-(-13 (-10 -8 (-15 -2283 ($ $ (-1175))) (-15 -2283 ($ $ (-1091 $)))))
-((-4183 (((-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)) 30) (((-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175))) 31) (((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175)) 49)))
-(((-960 |#1|) (-10 -7 (-15 -4183 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -4183 ((-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -4183 ((-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175)))) (-13 (-365) (-147))) (T -960))
-((-4183 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 *6))) (|:| |prim| (-1171 *6)))) (-5 *1 (-960 *6)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 *5))) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5)))) (-4183 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 *5)))) (-5 *1 (-960 *5)))))
-(-10 -7 (-15 -4183 ((-2 (|:| |coef1| (-566)) (|:| |coef2| (-566)) (|:| |prim| (-1171 |#1|))) (-952 |#1|) (-1175) (-952 |#1|) (-1175))) (-15 -4183 ((-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)))) (-15 -4183 ((-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 |#1|))) (|:| |prim| (-1171 |#1|))) (-644 (-952 |#1|)) (-644 (-1175)) (-1175))))
-((-2037 (((-644 |#1|) |#1| |#1|) 47)) (-1968 (((-112) |#1|) 44)) (-3441 ((|#1| |#1|) 82)) (-1739 ((|#1| |#1|) 81)))
-(((-961 |#1|) (-10 -7 (-15 -1968 ((-112) |#1|)) (-15 -1739 (|#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -2037 ((-644 |#1|) |#1| |#1|))) (-547)) (T -961))
-((-2037 (*1 *2 *3 *3) (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547)))) (-3441 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-1739 (*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547)))))
-(-10 -7 (-15 -1968 ((-112) |#1|)) (-15 -1739 (|#1| |#1|)) (-15 -3441 (|#1| |#1|)) (-15 -2037 ((-644 |#1|) |#1| |#1|)))
-((-1403 (((-1270) (-862)) 9)))
-(((-962) (-10 -7 (-15 -1403 ((-1270) (-862))))) (T -962))
-((-1403 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-962)))))
-(-10 -7 (-15 -1403 ((-1270) (-862))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 78 (|has| |#1| (-558)))) (-1780 (($ $) 79 (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 34)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-4358 (($ $) 31)) (-2313 (((-3 $ "failed") $) 42)) (-1520 (($ $) NIL (|has| |#1| (-454)))) (-2385 (($ $ |#1| |#2| $) 62)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) 17)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| |#2|) NIL)) (-4090 ((|#2| $) 24)) (-1336 (($ (-1 |#2| |#2|) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-4323 (($ $) 28)) (-4334 ((|#1| $) 26)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) 51)) (-4307 ((|#1| $) NIL)) (-3437 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-558))))) (-3967 (((-3 $ "failed") $ $) 91 (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-558)))) (-3838 ((|#2| $) 22)) (-4330 ((|#1| $) NIL (|has| |#1| (-454)))) (-2725 (((-862) $) NIL) (($ (-566)) 46) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 41) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ |#2|) 37)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) 15 T CONST)) (-3977 (($ $ $ (-771)) 74 (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) 84 (|has| |#1| (-558)))) (-3200 (($) 27 T CONST)) (-3214 (($) 12 T CONST)) (-2817 (((-112) $ $) 83)) (-2916 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) 69) (($ $ (-771)) 67)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-963 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -3437 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|))) (-1049) (-792)) (T -963))
-((-3437 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *2 (-792)))))
-(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| |#2| (-131)) (-15 -3437 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL (-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-3288 (($ $ $) 65 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (-4113 (((-3 $ "failed") $ $) 52 (-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (-3733 (((-771)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3689 ((|#2| $) 22)) (-4361 ((|#1| $) 21)) (-2633 (($) NIL (-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-2313 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-3424 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3842 (((-112) $) NIL (-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (-3075 (($ $ $) NIL (-2676 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-3936 (($ $ $) NIL (-2676 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-1812 (($ |#1| |#2|) 20)) (-4138 (((-921) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 39 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2430 (($ (-921)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1944 (((-1119) $) NIL)) (-2558 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-1726 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2725 (((-862) $) 14)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 42 (-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))) CONST)) (-3214 (($) 25 (-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))) CONST)) (-2865 (((-112) $ $) NIL (-2676 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2844 (((-112) $ $) NIL (-2676 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2817 (((-112) $ $) 19)) (-2854 (((-112) $ $) NIL (-2676 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2833 (((-112) $ $) 69 (-2676 (-12 (|has| |#1| (-793)) (|has| |#2| (-793))) (-12 (|has| |#1| (-850)) (|has| |#2| (-850)))))) (-2916 (($ $ $) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475))))) (-2905 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2897 (($ $ $) 45 (-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793)))))) (** (($ $ (-566)) NIL (-12 (|has| |#1| (-475)) (|has| |#2| (-475)))) (($ $ (-771)) 32 (-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726))))) (($ $ (-921)) NIL (-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))) (* (($ (-566) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-771) $) 48 (-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ (-921) $) NIL (-2676 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-793)) (|has| |#2| (-793))))) (($ $ $) 28 (-2676 (-12 (|has| |#1| (-475)) (|has| |#2| (-475))) (-12 (|has| |#1| (-726)) (|has| |#2| (-726)))))))
-(((-964 |#1| |#2|) (-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -1812 ($ |#1| |#2|)) (-15 -4361 (|#1| $)) (-15 -3689 (|#2| $)))) (-1099) (-1099)) (T -964))
-((-1812 (*1 *1 *2 *3) (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-4361 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099)))) (-3689 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099)))))
-(-13 (-1099) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-726)) (IF (|has| |#2| (-726)) (-6 (-726)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-475)) (IF (|has| |#2| (-475)) (-6 (-475)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-793)) (IF (|has| |#2| (-793)) (-6 (-793)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-850)) (IF (|has| |#2| (-850)) (-6 (-850)) |%noBranch|) |%noBranch|) (-15 -1812 ($ |#1| |#2|)) (-15 -4361 (|#1| $)) (-15 -3689 (|#2| $))))
-((-2465 (((-1103) $) 12)) (-3377 (($ (-508) (-1103)) 14)) (-3534 (((-508) $) 9)) (-2725 (((-862) $) 26)))
-(((-965) (-13 (-613 (-862)) (-10 -8 (-15 -3534 ((-508) $)) (-15 -2465 ((-1103) $)) (-15 -3377 ($ (-508) (-1103)))))) (T -965))
-((-3534 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965)))) (-3377 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3534 ((-508) $)) (-15 -2465 ((-1103) $)) (-15 -3377 ($ (-508) (-1103)))))
-((-3979 (((-112) $ $) NIL)) (-2977 (($) NIL T CONST)) (-3157 (($ $ $) 11)) (-3129 (($ $) 9)) (-1390 (((-1157) $) NIL)) (-2917 (((-691 |#1|) $) 24)) (-3226 (((-691 (-873 $ $)) $) 36)) (-3352 (((-691 $) $) 29)) (-1808 (((-691 (-873 $ $)) $) 37)) (-4268 (((-691 (-873 $ $)) $) 38)) (-2834 (((-691 (-873 $ $)) $) 35)) (-1825 (($ $ $) 12)) (-1944 (((-1119) $) NIL)) (-1894 (($) 17 T CONST)) (-2845 (($ $ $) 13)) (-2725 (((-862) $) 40) (($ |#1|) 8)) (-1479 (((-112) $ $) NIL)) (-3144 (($ $ $) 10)) (-2817 (((-112) $ $) NIL)))
-(((-966 |#1|) (-13 (-967) (-616 |#1|) (-10 -8 (-15 -2917 ((-691 |#1|) $)) (-15 -3352 ((-691 $) $)) (-15 -2834 ((-691 (-873 $ $)) $)) (-15 -3226 ((-691 (-873 $ $)) $)) (-15 -1808 ((-691 (-873 $ $)) $)) (-15 -4268 ((-691 (-873 $ $)) $)))) (-1099)) (T -966))
-((-2917 (*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-3226 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-1808 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))) (-4268 (*1 *2 *1) (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))))
-(-13 (-967) (-616 |#1|) (-10 -8 (-15 -2917 ((-691 |#1|) $)) (-15 -3352 ((-691 $) $)) (-15 -2834 ((-691 (-873 $ $)) $)) (-15 -3226 ((-691 (-873 $ $)) $)) (-15 -1808 ((-691 (-873 $ $)) $)) (-15 -4268 ((-691 (-873 $ $)) $))))
-((-3979 (((-112) $ $) 7)) (-2977 (($) 20 T CONST)) (-3157 (($ $ $) 16)) (-3129 (($ $) 18)) (-1390 (((-1157) $) 10)) (-1825 (($ $ $) 15)) (-1944 (((-1119) $) 11)) (-1894 (($) 19 T CONST)) (-2845 (($ $ $) 14)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3144 (($ $ $) 17)) (-2817 (((-112) $ $) 6)))
-(((-967) (-140)) (T -967))
-((-2977 (*1 *1) (-4 *1 (-967))) (-1894 (*1 *1) (-4 *1 (-967))) (-3129 (*1 *1 *1) (-4 *1 (-967))) (-3144 (*1 *1 *1 *1) (-4 *1 (-967))) (-3157 (*1 *1 *1 *1) (-4 *1 (-967))) (-1825 (*1 *1 *1 *1) (-4 *1 (-967))) (-2845 (*1 *1 *1 *1) (-4 *1 (-967))))
-(-13 (-1099) (-10 -8 (-15 -2977 ($) -3854) (-15 -1894 ($) -3854) (-15 -3129 ($ $)) (-15 -3144 ($ $ $)) (-15 -3157 ($ $ $)) (-15 -1825 ($ $ $)) (-15 -2845 ($ $ $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-2633 (($) 7 T CONST)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-3169 (($ $ $) 44)) (-3848 (($ $ $) 45)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3936 ((|#1| $) 46)) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-968 |#1|) (-140) (-850)) (T -968))
-((-3936 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-3848 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))) (-3169 (*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4415) (-15 -3936 (|t#1| $)) (-15 -3848 ($ $ $)) (-15 -3169 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-2032 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1885 |#2|)) |#2| |#2|) 106)) (-3921 ((|#2| |#2| |#2|) 104)) (-2449 (((-2 (|:| |coef2| |#2|) (|:| -1885 |#2|)) |#2| |#2|) 108)) (-4168 (((-2 (|:| |coef1| |#2|) (|:| -1885 |#2|)) |#2| |#2|) 110)) (-2104 (((-2 (|:| |coef2| |#2|) (|:| -3568 |#1|)) |#2| |#2|) 132 (|has| |#1| (-454)))) (-3581 (((-2 (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|) 56)) (-2397 (((-2 (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|) 81)) (-2398 (((-2 (|:| |coef1| |#2|) (|:| -2994 |#1|)) |#2| |#2|) 83)) (-1932 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-2679 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 90)) (-2414 (((-2 (|:| |coef2| |#2|) (|:| -2061 |#1|)) |#2|) 122)) (-3293 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 93)) (-3759 (((-644 (-771)) |#2| |#2|) 103)) (-2846 ((|#1| |#2| |#2|) 50)) (-2986 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3568 |#1|)) |#2| |#2|) 130 (|has| |#1| (-454)))) (-3568 ((|#1| |#2| |#2|) 128 (|has| |#1| (-454)))) (-1514 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|) 54)) (-1553 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|) 80)) (-2994 ((|#1| |#2| |#2|) 77)) (-2772 (((-2 (|:| -1702 |#1|) (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2|) 41)) (-3078 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-2896 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-1665 ((|#2| |#2| |#2|) 94)) (-2915 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 88)) (-4309 ((|#2| |#2| |#2| (-771)) 86)) (-1885 ((|#2| |#2| |#2|) 136 (|has| |#1| (-454)))) (-3967 (((-1265 |#2|) (-1265 |#2|) |#1|) 22)) (-4301 (((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2|) 46)) (-1505 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2061 |#1|)) |#2|) 120)) (-2061 ((|#1| |#2|) 117)) (-1467 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771)) 92)) (-4266 ((|#2| |#2| |#2| (-771)) 91)) (-1372 (((-644 |#2|) |#2| |#2|) 100)) (-1508 ((|#2| |#2| |#1| |#1| (-771)) 62)) (-3480 ((|#1| |#1| |#1| (-771)) 61)) (* (((-1265 |#2|) |#1| (-1265 |#2|)) 17)))
-(((-969 |#1| |#2|) (-10 -7 (-15 -2994 (|#1| |#2| |#2|)) (-15 -1553 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -2397 ((-2 (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -2398 ((-2 (|:| |coef1| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -4309 (|#2| |#2| |#2| (-771))) (-15 -2915 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2679 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -4266 (|#2| |#2| |#2| (-771))) (-15 -1467 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3293 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -1665 (|#2| |#2| |#2|)) (-15 -2896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1932 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3921 (|#2| |#2| |#2|)) (-15 -2032 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1885 |#2|)) |#2| |#2|)) (-15 -2449 ((-2 (|:| |coef2| |#2|) (|:| -1885 |#2|)) |#2| |#2|)) (-15 -4168 ((-2 (|:| |coef1| |#2|) (|:| -1885 |#2|)) |#2| |#2|)) (-15 -2061 (|#1| |#2|)) (-15 -1505 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2061 |#1|)) |#2|)) (-15 -2414 ((-2 (|:| |coef2| |#2|) (|:| -2061 |#1|)) |#2|)) (-15 -1372 ((-644 |#2|) |#2| |#2|)) (-15 -3759 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -2986 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3568 |#1|)) |#2| |#2|)) (-15 -2104 ((-2 (|:| |coef2| |#2|) (|:| -3568 |#1|)) |#2| |#2|)) (-15 -1885 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1265 |#2|) |#1| (-1265 |#2|))) (-15 -3967 ((-1265 |#2|) (-1265 |#2|) |#1|)) (-15 -2772 ((-2 (|:| -1702 |#1|) (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2|)) (-15 -4301 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2|)) (-15 -3480 (|#1| |#1| |#1| (-771))) (-15 -1508 (|#2| |#2| |#1| |#1| (-771))) (-15 -3078 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2846 (|#1| |#2| |#2|)) (-15 -1514 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -3581 ((-2 (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|))) (-558) (-1241 |#1|)) (T -969))
-((-3581 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2994 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-1514 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2994 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2846 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1241 *2)))) (-3078 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3)))) (-1508 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3)))) (-3480 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4)) (-4 *4 (-1241 *2)))) (-4301 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2772 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -1702 *4) (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-3967 (*1 *2 *2 *3) (-12 (-5 *2 (-1265 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1265 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-558)) (-5 *1 (-969 *3 *4)))) (-1885 (*1 *2 *2 *2) (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3)))) (-2104 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3568 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2986 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3568 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-3568 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1241 *2)))) (-3759 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-1372 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2414 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2061 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-1505 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2061 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2061 (*1 *2 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1241 *2)))) (-4168 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1885 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2449 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1885 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2032 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1885 *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-3921 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3)))) (-1932 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2896 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-1665 (*1 *2 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3)))) (-3293 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))) (-1467 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))) (-4266 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1241 *4)))) (-2679 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))) (-2915 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))) (-4309 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2)) (-4 *2 (-1241 *4)))) (-2398 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2994 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2397 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2994 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-1553 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2994 *4))) (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))) (-2994 (*1 *2 *3 *3) (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1241 *2)))))
-(-10 -7 (-15 -2994 (|#1| |#2| |#2|)) (-15 -1553 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -2397 ((-2 (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -2398 ((-2 (|:| |coef1| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -4309 (|#2| |#2| |#2| (-771))) (-15 -2915 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -2679 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -4266 (|#2| |#2| |#2| (-771))) (-15 -1467 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -3293 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-771))) (-15 -1665 (|#2| |#2| |#2|)) (-15 -2896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1932 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3921 (|#2| |#2| |#2|)) (-15 -2032 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1885 |#2|)) |#2| |#2|)) (-15 -2449 ((-2 (|:| |coef2| |#2|) (|:| -1885 |#2|)) |#2| |#2|)) (-15 -4168 ((-2 (|:| |coef1| |#2|) (|:| -1885 |#2|)) |#2| |#2|)) (-15 -2061 (|#1| |#2|)) (-15 -1505 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2061 |#1|)) |#2|)) (-15 -2414 ((-2 (|:| |coef2| |#2|) (|:| -2061 |#1|)) |#2|)) (-15 -1372 ((-644 |#2|) |#2| |#2|)) (-15 -3759 ((-644 (-771)) |#2| |#2|)) (IF (|has| |#1| (-454)) (PROGN (-15 -3568 (|#1| |#2| |#2|)) (-15 -2986 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3568 |#1|)) |#2| |#2|)) (-15 -2104 ((-2 (|:| |coef2| |#2|) (|:| -3568 |#1|)) |#2| |#2|)) (-15 -1885 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1265 |#2|) |#1| (-1265 |#2|))) (-15 -3967 ((-1265 |#2|) (-1265 |#2|) |#1|)) (-15 -2772 ((-2 (|:| -1702 |#1|) (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2|)) (-15 -4301 ((-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) |#2| |#2|)) (-15 -3480 (|#1| |#1| |#1| (-771))) (-15 -1508 (|#2| |#2| |#1| |#1| (-771))) (-15 -3078 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2846 (|#1| |#2| |#2|)) (-15 -1514 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|)) (-15 -3581 ((-2 (|:| |coef2| |#2|) (|:| -2994 |#1|)) |#2| |#2|)))
-((-3979 (((-112) $ $) NIL)) (-2231 (((-1214) $) 13)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1743 (((-1134) $) 10)) (-2725 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-970) (-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -2231 ((-1214) $))))) (T -970))
-((-1743 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-970)))))
-(-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -2231 ((-1214) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) 39)) (-2633 (($) NIL T CONST)) (-3316 (((-644 (-644 (-566))) (-644 (-566))) 48)) (-2841 (((-566) $) 72)) (-2582 (($ (-644 (-566))) 18)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2150 (((-644 (-566)) $) 13)) (-2558 (($ $) 52)) (-2725 (((-862) $) 68) (((-644 (-566)) $) 11)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 8 T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 26)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 25)) (-2897 (($ $ $) 28)) (* (($ (-921) $) NIL) (($ (-771) $) 37)))
-(((-971) (-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -2582 ($ (-644 (-566)))) (-15 -3316 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -2841 ((-566) $)) (-15 -2558 ($ $))))) (T -971))
-((-2582 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971)))) (-3316 (*1 *2 *3) (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971)) (-5 *3 (-644 (-566))))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971)))) (-2558 (*1 *1 *1) (-5 *1 (-971))))
-(-13 (-795) (-614 (-644 (-566))) (-613 (-644 (-566))) (-10 -8 (-15 -2582 ($ (-644 (-566)))) (-15 -3316 ((-644 (-644 (-566))) (-644 (-566)))) (-15 -2841 ((-566) $)) (-15 -2558 ($ $))))
-((-2916 (($ $ |#2|) 31)) (-2905 (($ $) 23) (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-409 (-566)) $) 27) (($ $ (-409 (-566))) 29)))
-(((-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2916 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|))) (-973 |#2| |#3| |#4|) (-1049) (-792) (-850)) (T -972))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-409 (-566)))) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 -2916 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 * (|#1| (-921) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 |#3|) $) 86)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-2039 (((-112) $) 85)) (-3842 (((-112) $) 35)) (-3819 (((-112) $) 74)) (-4145 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-644 |#3|) (-644 |#2|)) 87)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3838 ((|#2| $) 76)) (-3965 (($ $) 84)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3623 ((|#1| $ |#2|) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-973 |#1| |#2| |#3|) (-140) (-1049) (-792) (-850)) (T -973))
-((-4334 (*1 *2 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-4323 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *2 (-792)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792)) (-4 *2 (-850)))) (-4145 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-644 *5)))) (-2039 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3965 (*1 *1 *1) (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792)) (-4 *4 (-850)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4145 ($ $ |t#3| |t#2|)) (-15 -4145 ($ $ (-644 |t#3|) (-644 |t#2|))) (-15 -4323 ($ $)) (-15 -4334 (|t#1| $)) (-15 -3838 (|t#2| $)) (-15 -4170 ((-644 |t#3|) $)) (-15 -2039 ((-112) $)) (-15 -3965 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3014 (((-1093 (-225)) $) 8)) (-3002 (((-1093 (-225)) $) 9)) (-2992 (((-1093 (-225)) $) 10)) (-2002 (((-644 (-644 (-943 (-225)))) $) 11)) (-2725 (((-862) $) 6)))
-(((-974) (-140)) (T -974))
-((-2002 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225))))))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))))
-(-13 (-613 (-862)) (-10 -8 (-15 -2002 ((-644 (-644 (-943 (-225)))) $)) (-15 -2992 ((-1093 (-225)) $)) (-15 -3002 ((-1093 (-225)) $)) (-15 -3014 ((-1093 (-225)) $))))
-(((-613 (-862)) . T))
-((-4170 (((-644 |#4|) $) 23)) (-1323 (((-112) $) 55)) (-1494 (((-112) $) 54)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#4|) 42)) (-1740 (((-112) $) 56)) (-3807 (((-112) $ $) 62)) (-1312 (((-112) $ $) 65)) (-1407 (((-112) $) 60)) (-4185 (((-644 |#5|) (-644 |#5|) $) 98)) (-2557 (((-644 |#5|) (-644 |#5|) $) 95)) (-3033 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-2054 (((-644 |#4|) $) 27)) (-2314 (((-112) |#4| $) 34)) (-1670 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3317 (($ $ |#4|) 39)) (-3756 (($ $ |#4|) 38)) (-1811 (($ $ |#4|) 40)) (-2817 (((-112) $ $) 46)))
-(((-975 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1494 ((-112) |#1|)) (-15 -4185 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -2557 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3033 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1670 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1740 ((-112) |#1|)) (-15 -1312 ((-112) |#1| |#1|)) (-15 -3807 ((-112) |#1| |#1|)) (-15 -1407 ((-112) |#1|)) (-15 -1323 ((-112) |#1|)) (-15 -3370 ((-2 (|:| |under| |#1|) (|:| -2311 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3317 (|#1| |#1| |#4|)) (-15 -1811 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#4|)) (-15 -2314 ((-112) |#4| |#1|)) (-15 -2054 ((-644 |#4|) |#1|)) (-15 -4170 ((-644 |#4|) |#1|)) (-15 -2817 ((-112) |#1| |#1|))) (-976 |#2| |#3| |#4| |#5|) (-1049) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -975))
-NIL
-(-10 -8 (-15 -1494 ((-112) |#1|)) (-15 -4185 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -2557 ((-644 |#5|) (-644 |#5|) |#1|)) (-15 -3033 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1670 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1740 ((-112) |#1|)) (-15 -1312 ((-112) |#1| |#1|)) (-15 -3807 ((-112) |#1| |#1|)) (-15 -1407 ((-112) |#1|)) (-15 -1323 ((-112) |#1|)) (-15 -3370 ((-2 (|:| |under| |#1|) (|:| -2311 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3317 (|#1| |#1| |#4|)) (-15 -1811 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#4|)) (-15 -2314 ((-112) |#4| |#1|)) (-15 -2054 ((-644 |#4|) |#1|)) (-15 -4170 ((-644 |#4|) |#1|)) (-15 -2817 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-4170 (((-644 |#3|) $) 34)) (-1323 (((-112) $) 27)) (-1494 (((-112) $) 18 (|has| |#1| (-558)))) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) 28)) (-2261 (((-112) $ (-771)) 45)) (-3281 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4415)))) (-2633 (($) 46 T CONST)) (-1740 (((-112) $) 23 (|has| |#1| (-558)))) (-3807 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1312 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1407 (((-112) $) 26 (|has| |#1| (-558)))) (-4185 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) 37)) (-3343 (($ (-644 |#4|)) 36)) (-3806 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4415)))) (-1523 (((-644 |#4|) $) 53 (|has| $ (-6 -4415)))) (-3779 ((|#3| $) 35)) (-2429 (((-112) $ (-771)) 44)) (-2565 (((-644 |#4|) $) 54 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 48)) (-2054 (((-644 |#3|) $) 33)) (-2314 (((-112) |#3| $) 32)) (-1864 (((-112) $ (-771)) 43)) (-1390 (((-1157) $) 10)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-1944 (((-1119) $) 11)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-1900 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) 39)) (-4246 (((-112) $) 42)) (-3906 (($) 41)) (-1958 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4415)))) (-2878 (($ $) 40)) (-2150 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 61)) (-3317 (($ $ |#3|) 29)) (-3756 (($ $ |#3|) 31)) (-1811 (($ $ |#3|) 30)) (-2725 (((-862) $) 12) (((-644 |#4|) $) 38)) (-1479 (((-112) $ $) 9)) (-2610 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 6)) (-3991 (((-771) $) 47 (|has| $ (-6 -4415)))))
-(((-976 |#1| |#2| |#3| |#4|) (-140) (-1049) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -976))
-((-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-2314 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-3756 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-1811 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-3317 (*1 *1 *1 *2) (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))) (-3370 (*1 *2 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2311 *1) (|:| |upper| *1))) (-4 *1 (-976 *4 *5 *3 *6)))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-3807 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-1312 (*1 *2 *1 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-1740 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))) (-1670 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3033 (*1 *2 *3 *1) (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2557 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-4185 (*1 *2 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-5 *2 (-112)))))
-(-13 (-1099) (-151 |t#4|) (-613 (-644 |t#4|)) (-10 -8 (-6 -4415) (-15 -2023 ((-3 $ "failed") (-644 |t#4|))) (-15 -3343 ($ (-644 |t#4|))) (-15 -3779 (|t#3| $)) (-15 -4170 ((-644 |t#3|) $)) (-15 -2054 ((-644 |t#3|) $)) (-15 -2314 ((-112) |t#3| $)) (-15 -3756 ($ $ |t#3|)) (-15 -1811 ($ $ |t#3|)) (-15 -3317 ($ $ |t#3|)) (-15 -3370 ((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |t#3|)) (-15 -1323 ((-112) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -1407 ((-112) $)) (-15 -3807 ((-112) $ $)) (-15 -1312 ((-112) $ $)) (-15 -1740 ((-112) $)) (-15 -1670 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3033 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2557 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -4185 ((-644 |t#4|) (-644 |t#4|) $)) (-15 -1494 ((-112) $))) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-1099) . T) ((-1215) . T))
-((-2904 (((-644 |#4|) |#4| |#4|) 136)) (-3064 (((-644 |#4|) (-644 |#4|) (-112)) 125 (|has| |#1| (-454))) (((-644 |#4|) (-644 |#4|)) 126 (|has| |#1| (-454)))) (-3311 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 44)) (-1908 (((-112) |#4|) 43)) (-2597 (((-644 |#4|) |#4|) 121 (|has| |#1| (-454)))) (-3907 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|)) 24)) (-1862 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 30)) (-2899 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|)) 31)) (-1608 (((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|)) 90)) (-1835 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2503 (((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3816 (((-644 |#4|) (-644 |#4|)) 128)) (-2767 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112)) 59) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 61)) (-3573 ((|#4| |#4| (-644 |#4|)) 60)) (-2415 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 132 (|has| |#1| (-454)))) (-4011 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 135 (|has| |#1| (-454)))) (-3291 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 134 (|has| |#1| (-454)))) (-3229 (((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|))) 105) (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 107) (((-644 |#4|) (-644 |#4|) |#4|) 141) (((-644 |#4|) |#4| |#4|) 137) (((-644 |#4|) (-644 |#4|)) 106)) (-1319 (((-644 |#4|) (-644 |#4|) (-644 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3279 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 52)) (-3538 (((-112) (-644 |#4|)) 79)) (-2191 (((-112) (-644 |#4|) (-644 (-644 |#4|))) 67)) (-2690 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 37)) (-1698 (((-112) |#4|) 36)) (-1992 (((-644 |#4|) (-644 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4141 (((-644 |#4|) (-644 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2160 (((-644 |#4|) (-644 |#4|)) 83)) (-3402 (((-644 |#4|) (-644 |#4|)) 97)) (-3713 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-4235 (((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|)) 50)) (-3582 (((-112) |#4|) 45)))
-(((-977 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3229 ((-644 |#4|) (-644 |#4|))) (-15 -3229 ((-644 |#4|) |#4| |#4|)) (-15 -3816 ((-644 |#4|) (-644 |#4|))) (-15 -2904 ((-644 |#4|) |#4| |#4|)) (-15 -3229 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -3229 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3229 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -3713 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2191 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3538 ((-112) (-644 |#4|))) (-15 -3907 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -1862 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2899 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3279 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1908 ((-112) |#4|)) (-15 -3311 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1698 ((-112) |#4|)) (-15 -2690 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3582 ((-112) |#4|)) (-15 -4235 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -2767 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2767 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3573 (|#4| |#4| (-644 |#4|))) (-15 -2160 ((-644 |#4|) (-644 |#4|))) (-15 -1608 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -3402 ((-644 |#4|) (-644 |#4|))) (-15 -1835 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2503 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -2597 ((-644 |#4|) |#4|)) (-15 -3064 ((-644 |#4|) (-644 |#4|))) (-15 -3064 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -2415 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3291 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4011 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4141 ((-644 |#4|) (-644 |#4|))) (-15 -1992 ((-644 |#4|) (-644 |#4|))) (-15 -1319 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|)) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -977))
-((-1319 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4141 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4011 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3291 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2415 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3064 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-3064 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-2597 (*1 *2 *3) (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2503 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8)))) (-1835 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9)))) (-3402 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-1608 (*1 *2 *3) (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -3929 (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2160 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3573 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2)))) (-2767 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-2767 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-4235 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-3582 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-2690 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1698 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3311 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3279 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7)))) (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3907 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8)))) (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-2191 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8)))) (-3713 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *4 *5 *6 *7)))) (-3229 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))) (-3229 (*1 *2 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3229 (*1 *2 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3)))) (-2904 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3816 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))) (-3229 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))))
-(-10 -7 (-15 -3229 ((-644 |#4|) (-644 |#4|))) (-15 -3229 ((-644 |#4|) |#4| |#4|)) (-15 -3816 ((-644 |#4|) (-644 |#4|))) (-15 -2904 ((-644 |#4|) |#4| |#4|)) (-15 -3229 ((-644 |#4|) (-644 |#4|) |#4|)) (-15 -3229 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3229 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-1 (-644 |#4|) (-644 |#4|)))) (-15 -3713 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2191 ((-112) (-644 |#4|) (-644 (-644 |#4|)))) (-15 -3538 ((-112) (-644 |#4|))) (-15 -3907 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-1 (-112) |#4|) (-644 |#4|))) (-15 -1862 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -2899 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 (-1 (-112) |#4|)) (-644 |#4|))) (-15 -3279 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1908 ((-112) |#4|)) (-15 -3311 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -1698 ((-112) |#4|)) (-15 -2690 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -3582 ((-112) |#4|)) (-15 -4235 ((-2 (|:| |goodPols| (-644 |#4|)) (|:| |badPols| (-644 |#4|))) (-644 |#4|))) (-15 -2767 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -2767 ((-644 |#4|) (-644 |#4|) (-644 |#4|) (-112))) (-15 -3573 (|#4| |#4| (-644 |#4|))) (-15 -2160 ((-644 |#4|) (-644 |#4|))) (-15 -1608 ((-3 (-2 (|:| |bas| (-478 |#1| |#2| |#3| |#4|)) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|))) (-15 -3402 ((-644 |#4|) (-644 |#4|))) (-15 -1835 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2503 ((-644 |#4|) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-454)) (PROGN (-15 -2597 ((-644 |#4|) |#4|)) (-15 -3064 ((-644 |#4|) (-644 |#4|))) (-15 -3064 ((-644 |#4|) (-644 |#4|) (-112))) (-15 -2415 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -3291 ((-644 |#4|) (-644 |#4|) (-644 |#4|))) (-15 -4011 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -4141 ((-644 |#4|) (-644 |#4|))) (-15 -1992 ((-644 |#4|) (-644 |#4|))) (-15 -1319 ((-644 |#4|) (-644 |#4|) (-644 |#4|)))) |%noBranch|) |%noBranch|))
-((-3551 (((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2727 (((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1265 |#1|)))) (-689 |#1|) (-1265 |#1|)) 44)) (-2823 (((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
-(((-978 |#1|) (-10 -7 (-15 -3551 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2823 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2727 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1265 |#1|)))) (-689 |#1|) (-1265 |#1|)))) (-365)) (T -978))
-((-2727 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1265 *5))))) (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1265 *5)))) (-2823 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-978 *5)))) (-3551 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6)))) (-5 *1 (-978 *6)) (-5 *3 (-689 *6)))))
-(-10 -7 (-15 -3551 ((-2 (|:| R (-689 |#1|)) (|:| A (-689 |#1|)) (|:| |Ainv| (-689 |#1|))) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2823 ((-689 |#1|) (-689 |#1|) (-689 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2727 ((-644 (-2 (|:| C (-689 |#1|)) (|:| |g| (-1265 |#1|)))) (-689 |#1|) (-1265 |#1|))))
-((-2555 (((-420 |#4|) |#4|) 56)))
-(((-979 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2555 ((-420 |#4|) |#4|))) (-850) (-793) (-454) (-949 |#3| |#2| |#1|)) (T -979))
-((-2555 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3)) (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4)))))
-(-10 -7 (-15 -2555 ((-420 |#4|) |#4|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3739 (($ (-771)) 113 (|has| |#1| (-23)))) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4416))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4416))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 59 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1970 (($ $) 91 (|has| $ (-6 -4416)))) (-1921 (($ $) 101)) (-3806 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 52)) (-2388 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-3011 (($ (-644 |#1|)) 119)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2152 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-2631 (($ (-771) |#1|) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3075 (($ $ $) 88 (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3936 (($ $ $) 87 (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2267 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-1864 (((-112) $ (-771)) 10)) (-1653 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 43 (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3598 (($ $ |#1|) 42 (|has| $ (-6 -4416)))) (-3964 (($ $ (-644 |#1|)) 117)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1232 (-566))) 64)) (-1836 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-4356 (((-921) $) 118)) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-3987 (($ $ $) 105)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3199 (($ $ $ (-566)) 92 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| |#1| (-614 (-538)))) (($ (-644 |#1|)) 120)) (-2738 (($ (-644 |#1|)) 71)) (-4007 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2854 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 83 (|has| |#1| (-850)))) (-2905 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2897 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-980 |#1|) (-140) (-1049)) (T -980))
-((-3011 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3)))) (-4356 (*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-980 *3)) (-4 *3 (-1049)))))
-(-13 (-1263 |t#1|) (-618 (-644 |t#1|)) (-10 -8 (-15 -3011 ($ (-644 |t#1|))) (-15 -4356 ((-921) $)) (-15 -3987 ($ $ $)) (-15 -3964 ($ $ (-644 |t#1|)))))
-(((-34) . T) ((-102) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-618 (-644 |#1|)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1215) . T) ((-1263 |#1|) . T))
-((-2101 (((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)) 17)))
-(((-981 |#1| |#2|) (-10 -7 (-15 -2101 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|)))) (-1049) (-1049)) (T -981))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-943 *6)) (-5 *1 (-981 *5 *6)))))
-(-10 -7 (-15 -2101 ((-943 |#2|) (-1 |#2| |#1|) (-943 |#1|))))
-((-4179 ((|#1| (-943 |#1|)) 14)) (-2441 ((|#1| (-943 |#1|)) 13)) (-3005 ((|#1| (-943 |#1|)) 12)) (-1299 ((|#1| (-943 |#1|)) 16)) (-1840 ((|#1| (-943 |#1|)) 24)) (-1400 ((|#1| (-943 |#1|)) 15)) (-1570 ((|#1| (-943 |#1|)) 17)) (-4369 ((|#1| (-943 |#1|)) 23)) (-3342 ((|#1| (-943 |#1|)) 22)))
-(((-982 |#1|) (-10 -7 (-15 -3005 (|#1| (-943 |#1|))) (-15 -2441 (|#1| (-943 |#1|))) (-15 -4179 (|#1| (-943 |#1|))) (-15 -1400 (|#1| (-943 |#1|))) (-15 -1299 (|#1| (-943 |#1|))) (-15 -1570 (|#1| (-943 |#1|))) (-15 -3342 (|#1| (-943 |#1|))) (-15 -4369 (|#1| (-943 |#1|))) (-15 -1840 (|#1| (-943 |#1|)))) (-1049)) (T -982))
-((-1840 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-4369 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3342 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1299 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-2441 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(-10 -7 (-15 -3005 (|#1| (-943 |#1|))) (-15 -2441 (|#1| (-943 |#1|))) (-15 -4179 (|#1| (-943 |#1|))) (-15 -1400 (|#1| (-943 |#1|))) (-15 -1299 (|#1| (-943 |#1|))) (-15 -1570 (|#1| (-943 |#1|))) (-15 -3342 (|#1| (-943 |#1|))) (-15 -4369 (|#1| (-943 |#1|))) (-15 -1840 (|#1| (-943 |#1|))))
-((-4068 (((-3 |#1| "failed") |#1|) 18)) (-3494 (((-3 |#1| "failed") |#1|) 6)) (-4284 (((-3 |#1| "failed") |#1|) 16)) (-3961 (((-3 |#1| "failed") |#1|) 4)) (-1547 (((-3 |#1| "failed") |#1|) 20)) (-3079 (((-3 |#1| "failed") |#1|) 8)) (-4163 (((-3 |#1| "failed") |#1| (-771)) 1)) (-4030 (((-3 |#1| "failed") |#1|) 3)) (-2662 (((-3 |#1| "failed") |#1|) 2)) (-3292 (((-3 |#1| "failed") |#1|) 21)) (-1434 (((-3 |#1| "failed") |#1|) 9)) (-2501 (((-3 |#1| "failed") |#1|) 19)) (-2144 (((-3 |#1| "failed") |#1|) 7)) (-3657 (((-3 |#1| "failed") |#1|) 17)) (-2675 (((-3 |#1| "failed") |#1|) 5)) (-3695 (((-3 |#1| "failed") |#1|) 24)) (-3533 (((-3 |#1| "failed") |#1|) 12)) (-4146 (((-3 |#1| "failed") |#1|) 22)) (-1611 (((-3 |#1| "failed") |#1|) 10)) (-2111 (((-3 |#1| "failed") |#1|) 26)) (-2240 (((-3 |#1| "failed") |#1|) 14)) (-4184 (((-3 |#1| "failed") |#1|) 27)) (-3318 (((-3 |#1| "failed") |#1|) 15)) (-4196 (((-3 |#1| "failed") |#1|) 25)) (-2939 (((-3 |#1| "failed") |#1|) 13)) (-2255 (((-3 |#1| "failed") |#1|) 23)) (-3727 (((-3 |#1| "failed") |#1|) 11)))
-(((-983 |#1|) (-140) (-1200)) (T -983))
-((-4184 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2111 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-4196 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3695 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2255 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-4146 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3292 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-1547 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2501 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-4068 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3657 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-4284 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3318 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2240 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2939 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3533 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3727 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-1611 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-1434 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3079 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2144 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3494 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2675 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-3961 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-4030 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-2662 (*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))) (-4163 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(-13 (-10 -7 (-15 -4163 ((-3 |t#1| "failed") |t#1| (-771))) (-15 -2662 ((-3 |t#1| "failed") |t#1|)) (-15 -4030 ((-3 |t#1| "failed") |t#1|)) (-15 -3961 ((-3 |t#1| "failed") |t#1|)) (-15 -2675 ((-3 |t#1| "failed") |t#1|)) (-15 -3494 ((-3 |t#1| "failed") |t#1|)) (-15 -2144 ((-3 |t#1| "failed") |t#1|)) (-15 -3079 ((-3 |t#1| "failed") |t#1|)) (-15 -1434 ((-3 |t#1| "failed") |t#1|)) (-15 -1611 ((-3 |t#1| "failed") |t#1|)) (-15 -3727 ((-3 |t#1| "failed") |t#1|)) (-15 -3533 ((-3 |t#1| "failed") |t#1|)) (-15 -2939 ((-3 |t#1| "failed") |t#1|)) (-15 -2240 ((-3 |t#1| "failed") |t#1|)) (-15 -3318 ((-3 |t#1| "failed") |t#1|)) (-15 -4284 ((-3 |t#1| "failed") |t#1|)) (-15 -3657 ((-3 |t#1| "failed") |t#1|)) (-15 -4068 ((-3 |t#1| "failed") |t#1|)) (-15 -2501 ((-3 |t#1| "failed") |t#1|)) (-15 -1547 ((-3 |t#1| "failed") |t#1|)) (-15 -3292 ((-3 |t#1| "failed") |t#1|)) (-15 -4146 ((-3 |t#1| "failed") |t#1|)) (-15 -2255 ((-3 |t#1| "failed") |t#1|)) (-15 -3695 ((-3 |t#1| "failed") |t#1|)) (-15 -4196 ((-3 |t#1| "failed") |t#1|)) (-15 -2111 ((-3 |t#1| "failed") |t#1|)) (-15 -4184 ((-3 |t#1| "failed") |t#1|))))
-((-3195 ((|#4| |#4| (-644 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1984 ((|#4| |#4| (-644 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2101 ((|#4| (-1 |#4| (-952 |#1|)) |#4|) 31)))
-(((-984 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1984 (|#4| |#4| |#3|)) (-15 -1984 (|#4| |#4| (-644 |#3|))) (-15 -3195 (|#4| |#4| |#3|)) (-15 -3195 (|#4| |#4| (-644 |#3|))) (-15 -2101 (|#4| (-1 |#4| (-952 |#1|)) |#4|))) (-1049) (-793) (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175))))) (-949 (-952 |#1|) |#2| |#3|)) (T -984))
-((-2101 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1049)) (-4 *2 (-949 (-952 *4) *5 *6)) (-4 *5 (-793)) (-4 *6 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *6 *2)))) (-3195 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-3195 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))) (-1984 (*1 *2 *2 *3) (-12 (-5 *3 (-644 *6)) (-4 *6 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175)))))) (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2)) (-4 *2 (-949 (-952 *4) *5 *6)))) (-1984 (*1 *2 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)) (-15 -2928 ((-3 $ "failed") (-1175)))))) (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3)))))
-(-10 -7 (-15 -1984 (|#4| |#4| |#3|)) (-15 -1984 (|#4| |#4| (-644 |#3|))) (-15 -3195 (|#4| |#4| |#3|)) (-15 -3195 (|#4| |#4| (-644 |#3|))) (-15 -2101 (|#4| (-1 |#4| (-952 |#1|)) |#4|)))
-((-4333 ((|#2| |#3|) 35)) (-3018 (((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 83)) (-2281 (((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 103)))
-(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2281 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3018 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -4333 (|#2| |#3|))) (-351) (-1241 |#1|) (-1241 |#2|) (-724 |#2| |#3|)) (T -985))
-((-4333 (*1 *2 *3) (-12 (-4 *3 (-1241 *2)) (-4 *2 (-1241 *4)) (-5 *1 (-985 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-724 *2 *3)))) (-3018 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 *3)) (-5 *2 (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5)))) (-2281 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| -2227 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5)))))
-(-10 -7 (-15 -2281 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3018 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)) (-15 -4333 (|#2| |#3|)))
-((-3644 (((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))) 84)))
-(((-986 |#1| |#2|) (-10 -7 (-15 -3644 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566))))))) (-644 (-1175)) (-771)) (T -986))
-((-3644 (*1 *2 *2) (-12 (-5 *2 (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771)) (-247 *3 (-409 (-566))))) (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4)))))
-(-10 -7 (-15 -3644 ((-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))) (-987 (-409 (-566)) (-864 |#1|) (-240 |#2| (-771)) (-247 |#1| (-409 (-566)))))))
-((-3979 (((-112) $ $) NIL)) (-3363 (((-3 (-112) "failed") $) 71)) (-1830 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2315 (($ $ (-3 (-112) "failed")) 72)) (-3334 (($ (-644 |#4|) |#4|) 25)) (-1390 (((-1157) $) NIL)) (-2433 (($ $) 69)) (-1944 (((-1119) $) NIL)) (-4246 (((-112) $) 70)) (-3906 (($) 30)) (-1373 ((|#4| $) 74)) (-2091 (((-644 |#4|) $) 73)) (-2725 (((-862) $) 68)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-987 |#1| |#2| |#3| |#4|) (-13 (-1099) (-613 (-862)) (-10 -8 (-15 -3906 ($)) (-15 -3334 ($ (-644 |#4|) |#4|)) (-15 -3363 ((-3 (-112) "failed") $)) (-15 -2315 ($ $ (-3 (-112) "failed"))) (-15 -4246 ((-112) $)) (-15 -2091 ((-644 |#4|) $)) (-15 -1373 (|#4| $)) (-15 -2433 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -1830 ($ $)) |%noBranch|) |%noBranch|))) (-454) (-850) (-793) (-949 |#1| |#3| |#2|)) (T -987))
-((-3906 (*1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-3334 (*1 *1 *2 *3) (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454)) (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3)))) (-3363 (*1 *2 *1) (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-2315 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-4246 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-2091 (*1 *2 *1) (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))) (-1373 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)))) (-2433 (*1 *1 *1) (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))) (-1830 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))))
-(-13 (-1099) (-613 (-862)) (-10 -8 (-15 -3906 ($)) (-15 -3334 ($ (-644 |#4|) |#4|)) (-15 -3363 ((-3 (-112) "failed") $)) (-15 -2315 ($ $ (-3 (-112) "failed"))) (-15 -4246 ((-112) $)) (-15 -2091 ((-644 |#4|) $)) (-15 -1373 (|#4| $)) (-15 -2433 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -1830 ($ $)) |%noBranch|) |%noBranch|)))
-((-2250 (((-112) |#5| |#5|) 45)) (-2260 (((-112) |#5| |#5|) 60)) (-2285 (((-112) |#5| (-644 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-2210 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-1391 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) 71)) (-3539 (((-1270)) 33)) (-3834 (((-1270) (-1157) (-1157) (-1157)) 29)) (-1605 (((-644 |#5|) (-644 |#5|)) 101)) (-3367 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) 93)) (-2399 (((-644 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 123)) (-1644 (((-112) |#5| |#5|) 54)) (-4173 (((-3 (-112) "failed") |#5| |#5|) 79)) (-2699 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-1311 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-4249 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-1887 (((-3 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-4091 (((-644 |#5|) (-644 |#5|)) 50)))
-(((-988 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3834 ((-1270) (-1157) (-1157) (-1157))) (-15 -3539 ((-1270))) (-15 -2250 ((-112) |#5| |#5|)) (-15 -4091 ((-644 |#5|) (-644 |#5|))) (-15 -1644 ((-112) |#5| |#5|)) (-15 -2260 ((-112) |#5| |#5|)) (-15 -2210 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1311 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4249 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4173 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2285 ((-112) |#5| |#5|)) (-15 -2285 ((-112) |#5| (-644 |#5|))) (-15 -1605 ((-644 |#5|) (-644 |#5|))) (-15 -1391 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3367 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-15 -2399 ((-644 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -1887 ((-3 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -988))
-((-1887 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -1451 (-644 *9)) (|:| -3860 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-2399 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -1451 (-644 *9)) (|:| -3860 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3860 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-1391 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3)))) (-2285 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-4173 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1311 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2699 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2260 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1644 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-4091 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-988 *3 *4 *5 *6 *7)))) (-2250 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3539 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270)) (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3834 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270)) (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3834 ((-1270) (-1157) (-1157) (-1157))) (-15 -3539 ((-1270))) (-15 -2250 ((-112) |#5| |#5|)) (-15 -4091 ((-644 |#5|) (-644 |#5|))) (-15 -1644 ((-112) |#5| |#5|)) (-15 -2260 ((-112) |#5| |#5|)) (-15 -2210 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1311 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4249 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4173 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2285 ((-112) |#5| |#5|)) (-15 -2285 ((-112) |#5| (-644 |#5|))) (-15 -1605 ((-644 |#5|) (-644 |#5|))) (-15 -1391 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3367 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-15 -2399 ((-644 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -1887 ((-3 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-2928 (((-1175) $) 15)) (-2465 (((-1157) $) 16)) (-3911 (($ (-1175) (-1157)) 14)) (-2725 (((-862) $) 13)))
-(((-989) (-13 (-613 (-862)) (-10 -8 (-15 -3911 ($ (-1175) (-1157))) (-15 -2928 ((-1175) $)) (-15 -2465 ((-1157) $))))) (T -989))
-((-3911 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3911 ($ (-1175) (-1157))) (-15 -2928 ((-1175) $)) (-15 -2465 ((-1157) $))))
-((-2101 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-990 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#4| (-1 |#2| |#1|) |#3|))) (-558) (-558) (-992 |#1|) (-992 |#2|)) (T -990))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558)) (-4 *2 (-992 *6)) (-5 *1 (-990 *5 *6 *4 *2)) (-4 *4 (-992 *5)))))
-(-10 -7 (-15 -2101 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-1175) "failed") $) 66) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) 96)) (-3343 ((|#2| $) NIL) (((-1175) $) 61) (((-409 (-566)) $) NIL) (((-566) $) 93)) (-3717 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) 115) (((-689 |#2|) (-689 $)) 28)) (-3424 (($) 99)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 76) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 85)) (-3450 (($ $) 10)) (-3869 (((-3 $ "failed") $) 20)) (-2101 (($ (-1 |#2| |#2|) $) 22)) (-1342 (($) 16)) (-2941 (($ $) 55)) (-3009 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-3233 (($ $) 12)) (-2150 (((-892 (-566)) $) 71) (((-892 (-381)) $) 80) (((-538) $) 40) (((-381) $) 44) (((-225) $) 48)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 91) (($ |#2|) NIL) (($ (-1175)) 58)) (-2875 (((-771)) 31)) (-2833 (((-112) $ $) 51)))
-(((-991 |#1| |#2|) (-10 -8 (-15 -2833 ((-112) |#1| |#1|)) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2150 ((-225) |#1|)) (-15 -2150 ((-381) |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2725 (|#1| (-1175))) (-15 -2023 ((-3 (-1175) "failed") |#1|)) (-15 -3343 ((-1175) |#1|)) (-15 -3424 (|#1|)) (-15 -2941 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -3717 ((-689 |#2|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| |#1|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-992 |#2|) (-558)) (T -991))
-((-2875 (*1 *2) (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-991 *3 *4)) (-4 *3 (-992 *4)))))
-(-10 -8 (-15 -2833 ((-112) |#1| |#1|)) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2150 ((-225) |#1|)) (-15 -2150 ((-381) |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2725 (|#1| (-1175))) (-15 -2023 ((-3 (-1175) "failed") |#1|)) (-15 -3343 ((-1175) |#1|)) (-15 -3424 (|#1|)) (-15 -2941 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3450 (|#1| |#1|)) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2114 ((-889 (-566) |#1|) |#1| (-892 (-566)) (-889 (-566) |#1|))) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -3717 ((-689 |#2|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| |#1|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4191 ((|#1| $) 147 (|has| |#1| (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-4350 (((-420 (-1171 $)) (-1171 $)) 138 (|has| |#1| (-909)))) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 141 (|has| |#1| (-909)))) (-2068 (((-112) $ $) 65)) (-1859 (((-566) $) 128 (|has| |#1| (-820)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 185) (((-3 (-1175) "failed") $) 136 (|has| |#1| (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 119 (|has| |#1| (-1038 (-566)))) (((-3 (-566) "failed") $) 117 (|has| |#1| (-1038 (-566))))) (-3343 ((|#1| $) 186) (((-1175) $) 137 (|has| |#1| (-1038 (-1175)))) (((-409 (-566)) $) 120 (|has| |#1| (-1038 (-566)))) (((-566) $) 118 (|has| |#1| (-1038 (-566))))) (-3919 (($ $ $) 61)) (-3717 (((-689 (-566)) (-689 $)) 160 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 159 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 158) (((-689 |#1|) (-689 $)) 157)) (-2313 (((-3 $ "failed") $) 37)) (-3424 (($) 145 (|has| |#1| (-547)))) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-1968 (((-112) $) 79)) (-3421 (((-112) $) 130 (|has| |#1| (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 154 (|has| |#1| (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 153 (|has| |#1| (-886 (-381))))) (-3842 (((-112) $) 35)) (-3450 (($ $) 149)) (-2691 ((|#1| $) 151)) (-3869 (((-3 $ "failed") $) 116 (|has| |#1| (-1150)))) (-2307 (((-112) $) 129 (|has| |#1| (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3075 (($ $ $) 126 (|has| |#1| (-850)))) (-3936 (($ $ $) 125 (|has| |#1| (-850)))) (-2101 (($ (-1 |#1| |#1|) $) 177)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1342 (($) 115 (|has| |#1| (-1150)) CONST)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-2941 (($ $) 146 (|has| |#1| (-308)))) (-2311 ((|#1| $) 143 (|has| |#1| (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) 140 (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 139 (|has| |#1| (-909)))) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 179 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 178 (|has| |#1| (-516 (-1175) |#1|)))) (-3792 (((-771) $) 64)) (-3282 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-3009 (($ $) 176 (|has| |#1| (-233))) (($ $ (-771)) 174 (|has| |#1| (-233))) (($ $ (-1175)) 172 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 171 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 170 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 169 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-3233 (($ $) 148)) (-2702 ((|#1| $) 150)) (-2150 (((-892 (-566)) $) 156 (|has| |#1| (-614 (-892 (-566))))) (((-892 (-381)) $) 155 (|has| |#1| (-614 (-892 (-381))))) (((-538) $) 133 (|has| |#1| (-614 (-538)))) (((-381) $) 132 (|has| |#1| (-1022))) (((-225) $) 131 (|has| |#1| (-1022)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 142 (-3144 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 189) (($ (-1175)) 135 (|has| |#1| (-1038 (-1175))))) (-2655 (((-3 $ "failed") $) 134 (-2676 (|has| |#1| (-145)) (-3144 (|has| $ (-145)) (|has| |#1| (-909)))))) (-2875 (((-771)) 32 T CONST)) (-2119 ((|#1| $) 144 (|has| |#1| (-547)))) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-2274 (($ $) 127 (|has| |#1| (-820)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $) 175 (|has| |#1| (-233))) (($ $ (-771)) 173 (|has| |#1| (-233))) (($ $ (-1175)) 168 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 167 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 166 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 165 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-2865 (((-112) $ $) 123 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 122 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 124 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 121 (|has| |#1| (-850)))) (-2916 (($ $ $) 73) (($ |#1| |#1|) 152)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
-(((-992 |#1|) (-140) (-558)) (T -992))
-((-2916 (*1 *1 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-2702 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-3233 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-2941 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308)))) (-3424 (*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558)))) (-2119 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))) (-2311 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547)))))
-(-13 (-365) (-38 |t#1|) (-1038 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-884 |t#1|) (-402 |t#1|) (-10 -8 (-15 -2916 ($ |t#1| |t#1|)) (-15 -2691 (|t#1| $)) (-15 -2702 (|t#1| $)) (-15 -3450 ($ $)) (-15 -3233 ($ $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-1038 (-566))) (PROGN (-6 (-1038 (-566))) (-6 (-1038 (-409 (-566))))) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-820)) (-6 (-820)) |%noBranch|) (IF (|has| |t#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1038 (-1175))) (-6 (-1038 (-1175))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -4191 (|t#1| $)) (-15 -2941 ($ $))) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -3424 ($)) (-15 -2119 (|t#1| $)) (-15 -2311 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-909)) (-6 (-909)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 #1=(-1175)) |has| |#1| (-1038 (-1175))) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) |has| |#1| (-1022)) ((-614 (-381)) |has| |#1| (-1022)) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-614 (-892 (-381))) |has| |#1| (-614 (-892 (-381)))) ((-614 (-892 (-566))) |has| |#1| (-614 (-892 (-566)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-402 |#1|) . T) ((-454) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-791) |has| |#1| (-820)) ((-792) |has| |#1| (-820)) ((-794) |has| |#1| (-820)) ((-795) |has| |#1| (-820)) ((-820) |has| |#1| (-820)) ((-848) |has| |#1| (-820)) ((-850) -2676 (|has| |#1| (-850)) (|has| |#1| (-820))) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) |has| |#1| (-886 (-381))) ((-886 (-566)) |has| |#1| (-886 (-566))) ((-884 |#1|) . T) ((-909) |has| |#1| (-909)) ((-920) . T) ((-1022) |has| |#1| (-1022)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-566))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #1#) |has| |#1| (-1038 (-1175))) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1215) . T) ((-1219) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-1989 (($ (-1141 |#1| |#2|)) 11)) (-2656 (((-1141 |#1| |#2|) $) 12)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3282 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL)))
-(((-993 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1989 ($ (-1141 |#1| |#2|))) (-15 -2656 ((-1141 |#1| |#2|) $)) (-15 -3282 (|#2| $ (-240 |#1| |#2|))))) (-921) (-365)) (T -993))
-((-1989 (*1 *1 *2) (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)) (-5 *1 (-993 *3 *4)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365)) (-5 *1 (-993 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -1989 ($ (-1141 |#1| |#2|))) (-15 -2656 ((-1141 |#1| |#2|) $)) (-15 -3282 (|#2| $ (-240 |#1| |#2|)))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1743 (((-1134) $) 9)) (-2725 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-994) (-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $))))) (T -994))
-((-1743 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994)))))
-(-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $))))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) 8)) (-2633 (($) 7 T CONST)) (-2184 (($ $) 47)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1653 (((-771) $) 46)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3858 ((|#1| $) 45)) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-3021 ((|#1| |#1| $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-2698 ((|#1| $) 48)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-3736 ((|#1| $) 44)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-995 |#1|) (-140) (-1215)) (T -995))
-((-3021 (*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-2184 (*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))) (-3858 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))) (-3736 (*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4415) (-15 -3021 (|t#1| |t#1| $)) (-15 -2698 (|t#1| $)) (-15 -2184 ($ $)) (-15 -1653 ((-771) $)) (-15 -3858 (|t#1| $)) (-15 -3736 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-3545 (((-112) $) 43)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-3343 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#2| $) 44)) (-4388 (((-3 (-409 (-566)) "failed") $) 78)) (-1929 (((-112) $) 72)) (-1847 (((-409 (-566)) $) 76)) (-3842 (((-112) $) 42)) (-3202 ((|#2| $) 22)) (-2101 (($ (-1 |#2| |#2|) $) 19)) (-4282 (($ $) 58)) (-3009 (($ $) NIL) (($ $ (-771)) NIL) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2150 (((-538) $) 67)) (-2558 (($ $) 17)) (-2725 (((-862) $) 53) (($ (-566)) 39) (($ |#2|) 37) (($ (-409 (-566))) NIL)) (-2875 (((-771)) 10)) (-2274 ((|#2| $) 71)) (-2817 (((-112) $ $) 26)) (-2833 (((-112) $ $) 69)) (-2905 (($ $) 30) (($ $ $) 29)) (-2897 (($ $ $) 27)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL)))
-(((-996 |#1| |#2|) (-10 -8 (-15 -2725 (|#1| (-409 (-566)))) (-15 -2833 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -4282 (|#1| |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -2274 (|#2| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 -3842 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|))) (-997 |#2|) (-172)) (T -996))
-((-2875 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-996 *3 *4)) (-4 *3 (-997 *4)))))
-(-10 -8 (-15 -2725 (|#1| (-409 (-566)))) (-15 -2833 ((-112) |#1| |#1|)) (-15 * (|#1| (-409 (-566)) |#1|)) (-15 * (|#1| |#1| (-409 (-566)))) (-15 -4282 (|#1| |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -2274 (|#2| |#1|)) (-15 -3202 (|#2| |#1|)) (-15 -2558 (|#1| |#1|)) (-15 -2101 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 -3842 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 * (|#1| (-771) |#1|)) (-15 -3545 ((-112) |#1|)) (-15 * (|#1| (-921) |#1|)) (-15 -2897 (|#1| |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2023 (((-3 (-566) "failed") $) 127 (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 125 (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) 122)) (-3343 (((-566) $) 126 (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) 124 (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) 123)) (-3717 (((-689 (-566)) (-689 $)) 97 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 96 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 95) (((-689 |#1|) (-689 $)) 94)) (-2313 (((-3 $ "failed") $) 37)) (-4041 ((|#1| $) 87)) (-4388 (((-3 (-409 (-566)) "failed") $) 83 (|has| |#1| (-547)))) (-1929 (((-112) $) 85 (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) 84 (|has| |#1| (-547)))) (-1339 (($ |#1| |#1| |#1| |#1|) 88)) (-3842 (((-112) $) 35)) (-3202 ((|#1| $) 89)) (-3075 (($ $ $) 76 (|has| |#1| (-850)))) (-3936 (($ $ $) 75 (|has| |#1| (-850)))) (-2101 (($ (-1 |#1| |#1|) $) 98)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 80 (|has| |#1| (-365)))) (-1979 ((|#1| $) 90)) (-4245 ((|#1| $) 91)) (-2387 ((|#1| $) 92)) (-1944 (((-1119) $) 11)) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) 100 (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) 99 (|has| |#1| (-516 (-1175) |#1|)))) (-3282 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-3009 (($ $) 121 (|has| |#1| (-233))) (($ $ (-771)) 119 (|has| |#1| (-233))) (($ $ (-1175)) 117 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 116 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 115 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 114 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-2150 (((-538) $) 81 (|has| |#1| (-614 (-538))))) (-2558 (($ $) 93)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 44) (($ (-409 (-566))) 70 (-2676 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2655 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-2274 ((|#1| $) 86 (|has| |#1| (-1059)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $) 120 (|has| |#1| (-233))) (($ $ (-771)) 118 (|has| |#1| (-233))) (($ $ (-1175)) 113 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 112 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 111 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 110 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-2865 (((-112) $ $) 73 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 72 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 74 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 71 (|has| |#1| (-850)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 79 (|has| |#1| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-409 (-566))) 78 (|has| |#1| (-365))) (($ (-409 (-566)) $) 77 (|has| |#1| (-365)))))
-(((-997 |#1|) (-140) (-172)) (T -997))
-((-2558 (*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2387 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-4245 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-1339 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-4041 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))) (-2274 (*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112)))) (-1847 (*1 *2 *1) (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))) (-4388 (*1 *2 *1) (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-409 (-566))))))
-(-13 (-38 |t#1|) (-413 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -2558 ($ $)) (-15 -2387 (|t#1| $)) (-15 -4245 (|t#1| $)) (-15 -1979 (|t#1| $)) (-15 -3202 (|t#1| $)) (-15 -1339 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4041 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1059)) (-15 -2274 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-547)) (PROGN (-15 -1929 ((-112) $)) (-15 -1847 ((-409 (-566)) $)) (-15 -4388 ((-3 (-409 (-566)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-365))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2676 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-516 (-1175) |#1|) |has| |#1| (-516 (-1175) |#1|)) ((-516 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-646 #0#) |has| |#1| (-365)) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-365)) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-365)) ((-640 |#1|) . T) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-365)) ((-717 |#1|) . T) ((-726) . T) ((-850) |has| |#1| (-850)) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1051 #0#) |has| |#1| (-365)) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1056 #0#) |has| |#1| (-365)) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-2101 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#3| (-1 |#4| |#2|) |#1|))) (-997 |#2|) (-172) (-997 |#4|) (-172)) (T -998))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5)))))
-(-10 -7 (-15 -2101 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-4041 ((|#1| $) 12)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-547)))) (-1929 (((-112) $) NIL (|has| |#1| (-547)))) (-1847 (((-409 (-566)) $) NIL (|has| |#1| (-547)))) (-1339 (($ |#1| |#1| |#1| |#1|) 16)) (-3842 (((-112) $) NIL)) (-3202 ((|#1| $) NIL)) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1979 ((|#1| $) 15)) (-4245 ((|#1| $) 14)) (-2387 ((|#1| $) 13)) (-1944 (((-1119) $) NIL)) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-516 (-1175) |#1|))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-516 (-1175) |#1|)))) (-3282 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-3009 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2558 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-2274 ((|#1| $) NIL (|has| |#1| (-1059)))) (-3200 (($) 8 T CONST)) (-3214 (($) 10 T CONST)) (-1316 (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-365)))))
-(((-999 |#1|) (-997 |#1|) (-172)) (T -999))
-NIL
-(-997 |#1|)
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2261 (((-112) $ (-771)) NIL)) (-2633 (($) NIL T CONST)) (-2184 (($ $) 23)) (-2925 (($ (-644 |#1|)) 33)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1653 (((-771) $) 26)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2668 ((|#1| $) 28)) (-1619 (($ |#1| $) 17)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3858 ((|#1| $) 27)) (-1613 ((|#1| $) 22)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-3021 ((|#1| |#1| $) 16)) (-4246 (((-112) $) 18)) (-3906 (($) NIL)) (-2698 ((|#1| $) 21)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) NIL)) (-3736 ((|#1| $) 30)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1000 |#1|) (-13 (-995 |#1|) (-10 -8 (-15 -2925 ($ (-644 |#1|))))) (-1099)) (T -1000))
-((-2925 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3)))))
-(-13 (-995 |#1|) (-10 -8 (-15 -2925 ($ (-644 |#1|)))))
-((-4028 (($ $) 12)) (-2810 (($ $ (-566)) 13)))
-(((-1001 |#1|) (-10 -8 (-15 -4028 (|#1| |#1|)) (-15 -2810 (|#1| |#1| (-566)))) (-1002)) (T -1001))
-NIL
-(-10 -8 (-15 -4028 (|#1| |#1|)) (-15 -2810 (|#1| |#1| (-566))))
-((-4028 (($ $) 6)) (-2810 (($ $ (-566)) 7)) (** (($ $ (-409 (-566))) 8)))
-(((-1002) (-140)) (T -1002))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566))))) (-2810 (*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566)))) (-4028 (*1 *1 *1) (-4 *1 (-1002))))
-(-13 (-10 -8 (-15 -4028 ($ $)) (-15 -2810 ($ $ (-566))) (-15 ** ($ $ (-409 (-566))))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2021 (((-2 (|:| |num| (-1265 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| (-409 |#2|) (-365)))) (-1780 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3286 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3561 (((-689 (-409 |#2|)) (-1265 $)) NIL) (((-689 (-409 |#2|))) NIL)) (-2717 (((-409 |#2|) $) NIL)) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| (-409 |#2|) (-351)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2555 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2068 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3733 (((-771)) NIL (|has| (-409 |#2|) (-370)))) (-3730 (((-112)) NIL)) (-1530 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-3 (-409 |#2|) "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| (-409 |#2|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-409 |#2|) (-1038 (-409 (-566))))) (((-409 |#2|) $) NIL)) (-1452 (($ (-1265 (-409 |#2|)) (-1265 $)) NIL) (($ (-1265 (-409 |#2|))) 81) (($ (-1265 |#2|) |#2|) NIL)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-409 |#2|) (-351)))) (-3919 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2340 (((-689 (-409 |#2|)) $ (-1265 $)) NIL) (((-689 (-409 |#2|)) $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-409 |#2|) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-409 |#2|))) (|:| |vec| (-1265 (-409 |#2|)))) (-689 $) (-1265 $)) NIL) (((-689 (-409 |#2|)) (-689 $)) NIL)) (-4070 (((-1265 $) (-1265 $)) NIL)) (-2553 (($ |#3|) 75) (((-3 $ "failed") (-409 |#3|)) NIL (|has| (-409 |#2|) (-365)))) (-2313 (((-3 $ "failed") $) NIL)) (-4120 (((-644 (-644 |#1|))) NIL (|has| |#1| (-370)))) (-3105 (((-112) |#1| |#1|) NIL)) (-4153 (((-921)) NIL)) (-3424 (($) NIL (|has| (-409 |#2|) (-370)))) (-2351 (((-112)) NIL)) (-2462 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-3930 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| (-409 |#2|) (-365)))) (-1520 (($ $) NIL)) (-4183 (($) NIL (|has| (-409 |#2|) (-351)))) (-1963 (((-112) $) NIL (|has| (-409 |#2|) (-351)))) (-4205 (($ $ (-771)) NIL (|has| (-409 |#2|) (-351))) (($ $) NIL (|has| (-409 |#2|) (-351)))) (-1968 (((-112) $) NIL (|has| (-409 |#2|) (-365)))) (-3077 (((-921) $) NIL (|has| (-409 |#2|) (-351))) (((-833 (-921)) $) NIL (|has| (-409 |#2|) (-351)))) (-3842 (((-112) $) NIL)) (-2797 (((-771)) NIL)) (-2556 (((-1265 $) (-1265 $)) NIL)) (-3202 (((-409 |#2|) $) NIL)) (-2373 (((-644 (-952 |#1|)) (-1175)) NIL (|has| |#1| (-365)))) (-3869 (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-2323 ((|#3| $) NIL (|has| (-409 |#2|) (-365)))) (-4138 (((-921) $) NIL (|has| (-409 |#2|) (-370)))) (-2542 ((|#3| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-1390 (((-1157) $) NIL)) (-2241 (((-689 (-409 |#2|))) 57)) (-4131 (((-689 (-409 |#2|))) 56)) (-4282 (($ $) NIL (|has| (-409 |#2|) (-365)))) (-3438 (($ (-1265 |#2|) |#2|) 82)) (-4026 (((-689 (-409 |#2|))) 55)) (-4094 (((-689 (-409 |#2|))) 54)) (-2290 (((-2 (|:| |num| (-689 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1630 (((-2 (|:| |num| (-1265 |#2|)) (|:| |den| |#2|)) $) 88)) (-4158 (((-1265 $)) 51)) (-2281 (((-1265 $)) 50)) (-2342 (((-112) $) NIL)) (-1304 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-1342 (($) NIL (|has| (-409 |#2|) (-351)) CONST)) (-2430 (($ (-921)) NIL (|has| (-409 |#2|) (-370)))) (-2200 (((-3 |#2| "failed")) 70)) (-1944 (((-1119) $) NIL)) (-3174 (((-771)) NIL)) (-2723 (($) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| (-409 |#2|) (-365)))) (-1885 (($ (-644 $)) NIL (|has| (-409 |#2|) (-365))) (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| (-409 |#2|) (-351)))) (-4018 (((-420 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-409 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| (-409 |#2|) (-365)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| (-409 |#2|) (-365)))) (-3792 (((-771) $) NIL (|has| (-409 |#2|) (-365)))) (-3282 ((|#1| $ |#1| |#1|) NIL)) (-3080 (((-3 |#2| "failed")) 68)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| (-409 |#2|) (-365)))) (-2061 (((-409 |#2|) (-1265 $)) NIL) (((-409 |#2|)) 47)) (-2816 (((-771) $) NIL (|has| (-409 |#2|) (-351))) (((-3 (-771) "failed") $ $) NIL (|has| (-409 |#2|) (-351)))) (-3009 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-1436 (((-689 (-409 |#2|)) (-1265 $) (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365)))) (-2880 ((|#3|) 58)) (-1344 (($) NIL (|has| (-409 |#2|) (-351)))) (-2803 (((-1265 (-409 |#2|)) $ (-1265 $)) NIL) (((-689 (-409 |#2|)) (-1265 $) (-1265 $)) NIL) (((-1265 (-409 |#2|)) $) 83) (((-689 (-409 |#2|)) (-1265 $)) NIL)) (-2150 (((-1265 (-409 |#2|)) $) NIL) (($ (-1265 (-409 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| (-409 |#2|) (-351)))) (-3405 (((-1265 $) (-1265 $)) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 |#2|)) NIL) (($ (-409 (-566))) NIL (-2676 (|has| (-409 |#2|) (-1038 (-409 (-566)))) (|has| (-409 |#2|) (-365)))) (($ $) NIL (|has| (-409 |#2|) (-365)))) (-2655 (($ $) NIL (|has| (-409 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-409 |#2|) (-145)))) (-1707 ((|#3| $) NIL)) (-2875 (((-771)) NIL T CONST)) (-2467 (((-112)) 65)) (-3245 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 143)) (-1597 (((-112) $ $) NIL (|has| (-409 |#2|) (-365)))) (-1817 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3386 (((-112)) NIL)) (-3200 (($) 109 T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-1 (-409 |#2|) (-409 |#2|)) (-771)) NIL (|has| (-409 |#2|) (-365))) (($ $ (-1 (-409 |#2|) (-409 |#2|))) NIL (|has| (-409 |#2|) (-365))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| (-409 |#2|) (-365)) (|has| (-409 |#2|) (-900 (-1175))))) (($ $ (-771)) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351)))) (($ $) NIL (-2676 (-12 (|has| (-409 |#2|) (-233)) (|has| (-409 |#2|) (-365))) (|has| (-409 |#2|) (-351))))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ $) NIL (|has| (-409 |#2|) (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| (-409 |#2|) (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 |#2|)) NIL) (($ (-409 |#2|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-409 |#2|) (-365))) (($ $ (-409 (-566))) NIL (|has| (-409 |#2|) (-365)))))
-(((-1003 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1219) (-1241 |#1|) (-1241 (-409 |#2|)) (-409 |#2|) (-771)) (T -1003))
+((-1857 (($ $ (-1092 $)) 7) (($ $ (-1176)) 6)))
+(((-960) (-140)) (T -960))
+((-1857 (*1 *1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-960)))) (-1857 (*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-1176)))))
+(-13 (-10 -8 (-15 -1857 ($ $ (-1176))) (-15 -1857 ($ $ (-1092 $)))))
+((-3896 (((-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 |#1|))) (|:| |prim| (-1172 |#1|))) (-645 (-953 |#1|)) (-645 (-1176)) (-1176)) 30) (((-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 |#1|))) (|:| |prim| (-1172 |#1|))) (-645 (-953 |#1|)) (-645 (-1176))) 31) (((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1172 |#1|))) (-953 |#1|) (-1176) (-953 |#1|) (-1176)) 49)))
+(((-961 |#1|) (-10 -7 (-15 -3896 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1172 |#1|))) (-953 |#1|) (-1176) (-953 |#1|) (-1176))) (-15 -3896 ((-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 |#1|))) (|:| |prim| (-1172 |#1|))) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -3896 ((-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 |#1|))) (|:| |prim| (-1172 |#1|))) (-645 (-953 |#1|)) (-645 (-1176)) (-1176)))) (-13 (-365) (-147))) (T -961))
+((-3896 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1176))) (-5 *5 (-1176)) (-4 *6 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 *6))) (|:| |prim| (-1172 *6)))) (-5 *1 (-961 *6)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1176))) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 *5))) (|:| |prim| (-1172 *5)))) (-5 *1 (-961 *5)))) (-3896 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-953 *5)) (-5 *4 (-1176)) (-4 *5 (-13 (-365) (-147))) (-5 *2 (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1172 *5)))) (-5 *1 (-961 *5)))))
+(-10 -7 (-15 -3896 ((-2 (|:| |coef1| (-567)) (|:| |coef2| (-567)) (|:| |prim| (-1172 |#1|))) (-953 |#1|) (-1176) (-953 |#1|) (-1176))) (-15 -3896 ((-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 |#1|))) (|:| |prim| (-1172 |#1|))) (-645 (-953 |#1|)) (-645 (-1176)))) (-15 -3896 ((-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 |#1|))) (|:| |prim| (-1172 |#1|))) (-645 (-953 |#1|)) (-645 (-1176)) (-1176))))
+((-4204 (((-645 |#1|) |#1| |#1|) 47)) (-1665 (((-112) |#1|) 44)) (-4274 ((|#1| |#1|) 82)) (-3279 ((|#1| |#1|) 81)))
+(((-962 |#1|) (-10 -7 (-15 -1665 ((-112) |#1|)) (-15 -3279 (|#1| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 -4204 ((-645 |#1|) |#1| |#1|))) (-548)) (T -962))
+((-4204 (*1 *2 *3 *3) (-12 (-5 *2 (-645 *3)) (-5 *1 (-962 *3)) (-4 *3 (-548)))) (-4274 (*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548)))) (-3279 (*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548)))) (-1665 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-548)))))
+(-10 -7 (-15 -1665 ((-112) |#1|)) (-15 -3279 (|#1| |#1|)) (-15 -4274 (|#1| |#1|)) (-15 -4204 ((-645 |#1|) |#1| |#1|)))
+((-2777 (((-1271) (-863)) 9)))
+(((-963) (-10 -7 (-15 -2777 ((-1271) (-863))))) (T -963))
+((-2777 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-963)))))
+(-10 -7 (-15 -2777 ((-1271) (-863))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 78 (|has| |#1| (-559)))) (-3602 (($ $) 79 (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 34)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-2637 (($ $) 31)) (-4014 (((-3 $ "failed") $) 42)) (-2958 (($ $) NIL (|has| |#1| (-455)))) (-3564 (($ $ |#1| |#2| $) 62)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) 17)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| |#2|) NIL)) (-4185 ((|#2| $) 24)) (-1599 (($ (-1 |#2| |#2|) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2599 (($ $) 28)) (-2613 ((|#1| $) 26)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) 51)) (-2583 ((|#1| $) NIL)) (-4237 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-131)) (|has| |#1| (-559))))) (-2245 (((-3 $ "failed") $ $) 91 (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-559)))) (-3677 ((|#2| $) 22)) (-1640 ((|#1| $) NIL (|has| |#1| (-455)))) (-4101 (((-863) $) NIL) (($ (-567)) 46) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 41) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ |#2|) 37)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) 15 T CONST)) (-2582 (($ $ $ (-772)) 74 (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) 84 (|has| |#1| (-559)))) (-1468 (($) 27 T CONST)) (-1484 (($) 12 T CONST)) (-3052 (((-112) $ $) 83)) (-3168 (($ $ |#1|) 92 (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) 69) (($ $ (-772)) 67)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 66) (($ $ |#1|) 64) (($ |#1| $) 63) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-964 |#1| |#2|) (-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -4237 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|))) (-1050) (-793)) (T -964))
+((-4237 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-964 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *2 (-793)))))
+(-13 (-327 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| |#2| (-131)) (-15 -4237 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL (-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-2140 (($ $ $) 65 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (-4377 (((-3 $ "failed") $ $) 52 (-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (-2013 (((-772)) 36 (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-1639 ((|#2| $) 22)) (-1968 ((|#1| $) 21)) (-4061 (($) NIL (-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-4014 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-1649 (($) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3714 (((-112) $) NIL (-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (-2056 (($ $ $) NIL (-2909 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-1802 (($ $ $) NIL (-2909 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-2726 (($ |#1| |#2|) 20)) (-3527 (((-922) $) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 39 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3811 (($ (-922)) NIL (-12 (|has| |#1| (-370)) (|has| |#2| (-370))))) (-3339 (((-1120) $) NIL)) (-1443 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4272 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-4101 (((-863) $) 14)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 42 (-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))) CONST)) (-1484 (($) 25 (-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))) CONST)) (-3109 (((-112) $ $) NIL (-2909 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3085 (((-112) $ $) NIL (-2909 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3052 (((-112) $ $) 19)) (-3098 (((-112) $ $) NIL (-2909 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3075 (((-112) $ $) 69 (-2909 (-12 (|has| |#1| (-794)) (|has| |#2| (-794))) (-12 (|has| |#1| (-851)) (|has| |#2| (-851)))))) (-3168 (($ $ $) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476))))) (-3156 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3146 (($ $ $) 45 (-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794)))))) (** (($ $ (-567)) NIL (-12 (|has| |#1| (-476)) (|has| |#2| (-476)))) (($ $ (-772)) 32 (-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727))))) (($ $ (-922)) NIL (-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))) (* (($ (-567) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-772) $) 48 (-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ (-922) $) NIL (-2909 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-794)) (|has| |#2| (-794))))) (($ $ $) 28 (-2909 (-12 (|has| |#1| (-476)) (|has| |#2| (-476))) (-12 (|has| |#1| (-727)) (|has| |#2| (-727)))))))
+(((-965 |#1| |#2|) (-13 (-1100) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -2726 ($ |#1| |#2|)) (-15 -1968 (|#1| $)) (-15 -1639 (|#2| $)))) (-1100) (-1100)) (T -965))
+((-2726 (*1 *1 *2 *3) (-12 (-5 *1 (-965 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-1968 (*1 *2 *1) (-12 (-4 *2 (-1100)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1100)))) (-1639 (*1 *2 *1) (-12 (-4 *2 (-1100)) (-5 *1 (-965 *3 *2)) (-4 *3 (-1100)))))
+(-13 (-1100) (-10 -8 (IF (|has| |#1| (-370)) (IF (|has| |#2| (-370)) (-6 (-370)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-727)) (IF (|has| |#2| (-727)) (-6 (-727)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-476)) (IF (|has| |#2| (-476)) (-6 (-476)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-794)) (IF (|has| |#2| (-794)) (-6 (-794)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-851)) (IF (|has| |#2| (-851)) (-6 (-851)) |%noBranch|) |%noBranch|) (-15 -2726 ($ |#1| |#2|)) (-15 -1968 (|#1| $)) (-15 -1639 (|#2| $))))
+((-3843 (((-1104) $) 12)) (-1657 (($ (-509) (-1104)) 14)) (-1817 (((-509) $) 9)) (-4101 (((-863) $) 26)))
+(((-966) (-13 (-614 (-863)) (-10 -8 (-15 -1817 ((-509) $)) (-15 -3843 ((-1104) $)) (-15 -1657 ($ (-509) (-1104)))))) (T -966))
+((-1817 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-966)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-966)))) (-1657 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1104)) (-5 *1 (-966)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -1817 ((-509) $)) (-15 -3843 ((-1104) $)) (-15 -1657 ($ (-509) (-1104)))))
+((-2257 (((-112) $ $) NIL)) (-4345 (($) NIL T CONST)) (-1424 (($ $ $) 11)) (-1397 (($ $) 9)) (-2451 (((-1158) $) NIL)) (-1749 (((-692 |#1|) $) 24)) (-2809 (((-692 (-874 $ $)) $) 36)) (-1521 (((-692 $) $) 29)) (-2687 (((-692 (-874 $ $)) $) 37)) (-2340 (((-692 (-874 $ $)) $) 38)) (-2284 (((-692 (-874 $ $)) $) 35)) (-2844 (($ $ $) 12)) (-3339 (((-1120) $) NIL)) (-3286 (($) 17 T CONST)) (-2392 (($ $ $) 13)) (-4101 (((-863) $) 40) (($ |#1|) 8)) (-3739 (((-112) $ $) NIL)) (-1410 (($ $ $) 10)) (-3052 (((-112) $ $) NIL)))
+(((-967 |#1|) (-13 (-968) (-617 |#1|) (-10 -8 (-15 -1749 ((-692 |#1|) $)) (-15 -1521 ((-692 $) $)) (-15 -2284 ((-692 (-874 $ $)) $)) (-15 -2809 ((-692 (-874 $ $)) $)) (-15 -2687 ((-692 (-874 $ $)) $)) (-15 -2340 ((-692 (-874 $ $)) $)))) (-1100)) (T -967))
+((-1749 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-967 *3)) (-4 *3 (-1100)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-692 (-967 *3))) (-5 *1 (-967 *3)) (-4 *3 (-1100)))) (-2284 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1100)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1100)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1100)))) (-2340 (*1 *2 *1) (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3)) (-4 *3 (-1100)))))
+(-13 (-968) (-617 |#1|) (-10 -8 (-15 -1749 ((-692 |#1|) $)) (-15 -1521 ((-692 $) $)) (-15 -2284 ((-692 (-874 $ $)) $)) (-15 -2809 ((-692 (-874 $ $)) $)) (-15 -2687 ((-692 (-874 $ $)) $)) (-15 -2340 ((-692 (-874 $ $)) $))))
+((-2257 (((-112) $ $) 7)) (-4345 (($) 20 T CONST)) (-1424 (($ $ $) 16)) (-1397 (($ $) 18)) (-2451 (((-1158) $) 10)) (-2844 (($ $ $) 15)) (-3339 (((-1120) $) 11)) (-3286 (($) 19 T CONST)) (-2392 (($ $ $) 14)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1410 (($ $ $) 17)) (-3052 (((-112) $ $) 6)))
+(((-968) (-140)) (T -968))
+((-4345 (*1 *1) (-4 *1 (-968))) (-3286 (*1 *1) (-4 *1 (-968))) (-1397 (*1 *1 *1) (-4 *1 (-968))) (-1410 (*1 *1 *1 *1) (-4 *1 (-968))) (-1424 (*1 *1 *1 *1) (-4 *1 (-968))) (-2844 (*1 *1 *1 *1) (-4 *1 (-968))) (-2392 (*1 *1 *1 *1) (-4 *1 (-968))))
+(-13 (-1100) (-10 -8 (-15 -4345 ($) -2131) (-15 -3286 ($) -2131) (-15 -1397 ($ $)) (-15 -1410 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -2844 ($ $ $)) (-15 -2392 ($ $ $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-4061 (($) 7 T CONST)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-3492 (($ $ $) 44)) (-3768 (($ $ $) 45)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1802 ((|#1| $) 46)) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-969 |#1|) (-140) (-851)) (T -969))
+((-1802 (*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))) (-3492 (*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4416) (-15 -1802 (|t#1| $)) (-15 -3768 ($ $ $)) (-15 -3492 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-4168 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3276 |#2|)) |#2| |#2|) 106)) (-3288 ((|#2| |#2| |#2|) 104)) (-2974 (((-2 (|:| |coef2| |#2|) (|:| -3276 |#2|)) |#2| |#2|) 108)) (-3774 (((-2 (|:| |coef1| |#2|) (|:| -3276 |#2|)) |#2| |#2|) 110)) (-3722 (((-2 (|:| |coef2| |#2|) (|:| -3063 |#1|)) |#2| |#2|) 132 (|has| |#1| (-455)))) (-3202 (((-2 (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|) 56)) (-3671 (((-2 (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|) 81)) (-3681 (((-2 (|:| |coef1| |#2|) (|:| -2414 |#1|)) |#2| |#2|) 83)) (-1300 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 97)) (-1319 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 90)) (-3818 (((-2 (|:| |coef2| |#2|) (|:| -3347 |#1|)) |#2|) 122)) (-2199 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 93)) (-4128 (((-645 (-772)) |#2| |#2|) 103)) (-2401 ((|#1| |#2| |#2|) 50)) (-2337 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3063 |#1|)) |#2| |#2|) 130 (|has| |#1| (-455)))) (-3063 ((|#1| |#2| |#2|) 128 (|has| |#1| (-455)))) (-2915 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|) 54)) (-2005 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|) 80)) (-2414 ((|#1| |#2| |#2|) 77)) (-2919 (((-2 (|:| -3087 |#1|) (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2|) 41)) (-1922 ((|#2| |#2| |#2| |#2| |#1|) 67)) (-1510 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-1856 ((|#2| |#2| |#2|) 94)) (-1735 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 88)) (-2738 ((|#2| |#2| |#2| (-772)) 86)) (-3276 ((|#2| |#2| |#2|) 136 (|has| |#1| (-455)))) (-2245 (((-1266 |#2|) (-1266 |#2|) |#1|) 22)) (-2679 (((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2|) 46)) (-2839 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3347 |#1|)) |#2|) 120)) (-3347 ((|#1| |#2|) 117)) (-3635 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772)) 92)) (-2313 ((|#2| |#2| |#2| (-772)) 91)) (-4372 (((-645 |#2|) |#2| |#2|) 100)) (-2868 ((|#2| |#2| |#1| |#1| (-772)) 62)) (-3506 ((|#1| |#1| |#1| (-772)) 61)) (* (((-1266 |#2|) |#1| (-1266 |#2|)) 17)))
+(((-970 |#1| |#2|) (-10 -7 (-15 -2414 (|#1| |#2| |#2|)) (-15 -2005 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -3671 ((-2 (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -3681 ((-2 (|:| |coef1| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -2738 (|#2| |#2| |#2| (-772))) (-15 -1735 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1319 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2313 (|#2| |#2| |#2| (-772))) (-15 -3635 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2199 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1856 (|#2| |#2| |#2|)) (-15 -1510 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1300 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3288 (|#2| |#2| |#2|)) (-15 -4168 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -2974 ((-2 (|:| |coef2| |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -3774 ((-2 (|:| |coef1| |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -3347 (|#1| |#2|)) (-15 -2839 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3347 |#1|)) |#2|)) (-15 -3818 ((-2 (|:| |coef2| |#2|) (|:| -3347 |#1|)) |#2|)) (-15 -4372 ((-645 |#2|) |#2| |#2|)) (-15 -4128 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -3063 (|#1| |#2| |#2|)) (-15 -2337 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3063 |#1|)) |#2| |#2|)) (-15 -3722 ((-2 (|:| |coef2| |#2|) (|:| -3063 |#1|)) |#2| |#2|)) (-15 -3276 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1266 |#2|) |#1| (-1266 |#2|))) (-15 -2245 ((-1266 |#2|) (-1266 |#2|) |#1|)) (-15 -2919 ((-2 (|:| -3087 |#1|) (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2|)) (-15 -2679 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2|)) (-15 -3506 (|#1| |#1| |#1| (-772))) (-15 -2868 (|#2| |#2| |#1| |#1| (-772))) (-15 -1922 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2401 (|#1| |#2| |#2|)) (-15 -2915 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -3202 ((-2 (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|))) (-559) (-1242 |#1|)) (T -970))
+((-3202 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2414 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2915 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2414 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2401 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1242 *2)))) (-1922 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3)))) (-2868 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3)))) (-3506 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-970 *2 *4)) (-4 *4 (-1242 *2)))) (-2679 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2919 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3087 *4) (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2245 (*1 *2 *2 *3) (-12 (-5 *2 (-1266 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-559)) (-5 *1 (-970 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1266 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-559)) (-5 *1 (-970 *3 *4)))) (-3276 (*1 *2 *2 *2) (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3)))) (-3722 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3063 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2337 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3063 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-3063 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1242 *2)))) (-4128 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-4372 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-3818 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3347 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2839 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3347 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-3347 (*1 *2 *3) (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1242 *2)))) (-3774 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3276 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2974 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3276 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-4168 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3276 *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-3288 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3)))) (-1300 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-1510 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-1856 (*1 *2 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3)))) (-2199 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))) (-3635 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))) (-2313 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1242 *4)))) (-1319 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))) (-1735 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))) (-2738 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2)) (-4 *2 (-1242 *4)))) (-3681 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2414 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-3671 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2414 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2005 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2414 *4))) (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))) (-2414 (*1 *2 *3 *3) (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1242 *2)))))
+(-10 -7 (-15 -2414 (|#1| |#2| |#2|)) (-15 -2005 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -3671 ((-2 (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -3681 ((-2 (|:| |coef1| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -2738 (|#2| |#2| |#2| (-772))) (-15 -1735 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1319 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2313 (|#2| |#2| |#2| (-772))) (-15 -3635 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -2199 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-772))) (-15 -1856 (|#2| |#2| |#2|)) (-15 -1510 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1300 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3288 (|#2| |#2| |#2|)) (-15 -4168 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -2974 ((-2 (|:| |coef2| |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -3774 ((-2 (|:| |coef1| |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -3347 (|#1| |#2|)) (-15 -2839 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3347 |#1|)) |#2|)) (-15 -3818 ((-2 (|:| |coef2| |#2|) (|:| -3347 |#1|)) |#2|)) (-15 -4372 ((-645 |#2|) |#2| |#2|)) (-15 -4128 ((-645 (-772)) |#2| |#2|)) (IF (|has| |#1| (-455)) (PROGN (-15 -3063 (|#1| |#2| |#2|)) (-15 -2337 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3063 |#1|)) |#2| |#2|)) (-15 -3722 ((-2 (|:| |coef2| |#2|) (|:| -3063 |#1|)) |#2| |#2|)) (-15 -3276 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1266 |#2|) |#1| (-1266 |#2|))) (-15 -2245 ((-1266 |#2|) (-1266 |#2|) |#1|)) (-15 -2919 ((-2 (|:| -3087 |#1|) (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2|)) (-15 -2679 ((-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) |#2| |#2|)) (-15 -3506 (|#1| |#1| |#1| (-772))) (-15 -2868 (|#2| |#2| |#1| |#1| (-772))) (-15 -1922 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2401 (|#1| |#2| |#2|)) (-15 -2915 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|)) (-15 -3202 ((-2 (|:| |coef2| |#2|) (|:| -2414 |#1|)) |#2| |#2|)))
+((-2257 (((-112) $ $) NIL)) (-3620 (((-1215) $) 13)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3130 (((-1135) $) 10)) (-4101 (((-863) $) 20) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-971) (-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -3620 ((-1215) $))))) (T -971))
+((-3130 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-971)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-971)))))
+(-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -3620 ((-1215) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) 39)) (-4061 (($) NIL T CONST)) (-2471 (((-645 (-645 (-567))) (-645 (-567))) 48)) (-2354 (((-567) $) 72)) (-1779 (($ (-645 (-567))) 18)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3542 (((-645 (-567)) $) 13)) (-1443 (($ $) 52)) (-4101 (((-863) $) 68) (((-645 (-567)) $) 11)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 8 T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 26)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 25)) (-3146 (($ $ $) 28)) (* (($ (-922) $) NIL) (($ (-772) $) 37)))
+(((-972) (-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -1779 ($ (-645 (-567)))) (-15 -2471 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -2354 ((-567) $)) (-15 -1443 ($ $))))) (T -972))
+((-1779 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-972)))) (-2471 (*1 *2 *3) (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-972)) (-5 *3 (-645 (-567))))) (-2354 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-972)))) (-1443 (*1 *1 *1) (-5 *1 (-972))))
+(-13 (-796) (-615 (-645 (-567))) (-614 (-645 (-567))) (-10 -8 (-15 -1779 ($ (-645 (-567)))) (-15 -2471 ((-645 (-645 (-567))) (-645 (-567)))) (-15 -2354 ((-567) $)) (-15 -1443 ($ $))))
+((-3168 (($ $ |#2|) 31)) (-3156 (($ $) 23) (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-410 (-567)) $) 27) (($ $ (-410 (-567))) 29)))
+(((-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3168 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|))) (-974 |#2| |#3| |#4|) (-1050) (-793) (-851)) (T -973))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-410 (-567)))) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 -3168 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 * (|#1| (-922) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 |#3|) $) 86)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-4222 (((-112) $) 85)) (-3714 (((-112) $) 35)) (-3523 (((-112) $) 74)) (-2422 (($ |#1| |#2|) 73) (($ $ |#3| |#2|) 88) (($ $ (-645 |#3|) (-645 |#2|)) 87)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3677 ((|#2| $) 76)) (-2448 (($ $) 84)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2339 ((|#1| $ |#2|) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-974 |#1| |#2| |#3|) (-140) (-1050) (-793) (-851)) (T -974))
+((-2613 (*1 *2 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851)) (-4 *2 (-1050)))) (-2599 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *4 (-851)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *2 *4)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *2 (-793)))) (-2422 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-974 *4 *3 *2)) (-4 *4 (-1050)) (-4 *3 (-793)) (-4 *2 (-851)))) (-2422 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-974 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-793)) (-4 *6 (-851)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-645 *5)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2448 (*1 *1 *1) (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793)) (-4 *4 (-851)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2422 ($ $ |t#3| |t#2|)) (-15 -2422 ($ $ (-645 |t#3|) (-645 |t#2|))) (-15 -2599 ($ $)) (-15 -2613 (|t#1| $)) (-15 -3677 (|t#2| $)) (-15 -2449 ((-645 |t#3|) $)) (-15 -4222 ((-112) $)) (-15 -2448 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-4381 (((-1094 (-225)) $) 8)) (-4370 (((-1094 (-225)) $) 9)) (-4362 (((-1094 (-225)) $) 10)) (-3883 (((-645 (-645 (-944 (-225)))) $) 11)) (-4101 (((-863) $) 6)))
+(((-975) (-140)) (T -975))
+((-3883 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-645 (-645 (-944 (-225))))))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1094 (-225))))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1094 (-225))))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1094 (-225))))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3883 ((-645 (-645 (-944 (-225)))) $)) (-15 -4362 ((-1094 (-225)) $)) (-15 -4370 ((-1094 (-225)) $)) (-15 -4381 ((-1094 (-225)) $))))
+(((-614 (-863)) . T))
+((-2449 (((-645 |#4|) $) 23)) (-1416 (((-112) $) 55)) (-2739 (((-112) $) 54)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#4|) 42)) (-3289 (((-112) $) 56)) (-3407 (((-112) $ $) 62)) (-2595 (((-112) $ $) 65)) (-1579 (((-112) $) 60)) (-2786 (((-645 |#5|) (-645 |#5|) $) 98)) (-1427 (((-645 |#5|) (-645 |#5|) $) 95)) (-1386 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88)) (-4360 (((-645 |#4|) $) 27)) (-4023 (((-112) |#4| $) 34)) (-1914 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2485 (($ $ |#4|) 39)) (-4090 (($ $ |#4|) 38)) (-2716 (($ $ |#4|) 40)) (-3052 (((-112) $ $) 46)))
+(((-976 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2739 ((-112) |#1|)) (-15 -2786 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -1427 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -1386 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1914 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -2595 ((-112) |#1| |#1|)) (-15 -3407 ((-112) |#1| |#1|)) (-15 -1579 ((-112) |#1|)) (-15 -1416 ((-112) |#1|)) (-15 -1594 ((-2 (|:| |under| |#1|) (|:| -3992 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2485 (|#1| |#1| |#4|)) (-15 -2716 (|#1| |#1| |#4|)) (-15 -4090 (|#1| |#1| |#4|)) (-15 -4023 ((-112) |#4| |#1|)) (-15 -4360 ((-645 |#4|) |#1|)) (-15 -2449 ((-645 |#4|) |#1|)) (-15 -3052 ((-112) |#1| |#1|))) (-977 |#2| |#3| |#4| |#5|) (-1050) (-794) (-851) (-1065 |#2| |#3| |#4|)) (T -976))
+NIL
+(-10 -8 (-15 -2739 ((-112) |#1|)) (-15 -2786 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -1427 ((-645 |#5|) (-645 |#5|) |#1|)) (-15 -1386 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1914 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3289 ((-112) |#1|)) (-15 -2595 ((-112) |#1| |#1|)) (-15 -3407 ((-112) |#1| |#1|)) (-15 -1579 ((-112) |#1|)) (-15 -1416 ((-112) |#1|)) (-15 -1594 ((-2 (|:| |under| |#1|) (|:| -3992 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2485 (|#1| |#1| |#4|)) (-15 -2716 (|#1| |#1| |#4|)) (-15 -4090 (|#1| |#1| |#4|)) (-15 -4023 ((-112) |#4| |#1|)) (-15 -4360 ((-645 |#4|) |#1|)) (-15 -2449 ((-645 |#4|) |#1|)) (-15 -3052 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2449 (((-645 |#3|) $) 34)) (-1416 (((-112) $) 27)) (-2739 (((-112) $) 18 (|has| |#1| (-559)))) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) 28)) (-1580 (((-112) $ (-772)) 45)) (-1551 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4416)))) (-4061 (($) 46 T CONST)) (-3289 (((-112) $) 23 (|has| |#1| (-559)))) (-3407 (((-112) $ $) 25 (|has| |#1| (-559)))) (-2595 (((-112) $ $) 24 (|has| |#1| (-559)))) (-1579 (((-112) $) 26 (|has| |#1| (-559)))) (-2786 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) 37)) (-1621 (($ (-645 |#4|)) 36)) (-2084 (($ $) 69 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#4| $) 68 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4416)))) (-2896 (((-645 |#4|) $) 53 (|has| $ (-6 -4416)))) (-4280 ((|#3| $) 35)) (-2805 (((-112) $ (-772)) 44)) (-1542 (((-645 |#4|) $) 54 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 48)) (-4360 (((-645 |#3|) $) 33)) (-4023 (((-112) |#3| $) 32)) (-3230 (((-112) $ (-772)) 43)) (-2451 (((-1158) $) 10)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-3339 (((-1120) $) 11)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-2297 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) 39)) (-3353 (((-112) $) 42)) (-3164 (($) 41)) (-3349 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4416)))) (-4247 (($ $) 40)) (-3542 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 61)) (-2485 (($ $ |#3|) 29)) (-4090 (($ $ |#3|) 31)) (-2716 (($ $ |#3|) 30)) (-4101 (((-863) $) 12) (((-645 |#4|) $) 38)) (-3739 (((-112) $ $) 9)) (-2012 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 6)) (-2268 (((-772) $) 47 (|has| $ (-6 -4416)))))
+(((-977 |#1| |#2| |#3| |#4|) (-140) (-1050) (-794) (-851) (-1065 |t#1| |t#2| |t#3|)) (T -977))
+((-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-977 *3 *4 *5 *6)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-977 *3 *4 *5 *6)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-1065 *3 *4 *2)) (-4 *2 (-851)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *5)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *5)))) (-4023 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *3 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1065 *4 *5 *3)) (-5 *2 (-112)))) (-4090 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1065 *3 *4 *2)))) (-2716 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1065 *3 *4 *2)))) (-2485 (*1 *1 *1 *2) (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)) (-4 *5 (-1065 *3 *4 *2)))) (-1594 (*1 *2 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1065 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3992 *1) (|:| |upper| *1))) (-4 *1 (-977 *4 *5 *3 *6)))) (-1416 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))) (-1579 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3407 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-2595 (*1 *2 *1 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))) (-1914 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1386 (*1 *2 *3 *1) (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1427 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)))) (-2786 (*1 *2 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-5 *2 (-112)))))
+(-13 (-1100) (-151 |t#4|) (-614 (-645 |t#4|)) (-10 -8 (-6 -4416) (-15 -3417 ((-3 $ "failed") (-645 |t#4|))) (-15 -1621 ($ (-645 |t#4|))) (-15 -4280 (|t#3| $)) (-15 -2449 ((-645 |t#3|) $)) (-15 -4360 ((-645 |t#3|) $)) (-15 -4023 ((-112) |t#3| $)) (-15 -4090 ($ $ |t#3|)) (-15 -2716 ($ $ |t#3|)) (-15 -2485 ($ $ |t#3|)) (-15 -1594 ((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |t#3|)) (-15 -1416 ((-112) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -1579 ((-112) $)) (-15 -3407 ((-112) $ $)) (-15 -2595 ((-112) $ $)) (-15 -3289 ((-112) $)) (-15 -1914 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1386 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1427 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -2786 ((-645 |t#4|) (-645 |t#4|) $)) (-15 -2739 ((-112) $))) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-1100) . T) ((-1216) . T))
+((-1606 (((-645 |#4|) |#4| |#4|) 136)) (-1803 (((-645 |#4|) (-645 |#4|) (-112)) 125 (|has| |#1| (-455))) (((-645 |#4|) (-645 |#4|)) 126 (|has| |#1| (-455)))) (-2410 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 44)) (-2394 (((-112) |#4|) 43)) (-1899 (((-645 |#4|) |#4|) 121 (|has| |#1| (-455)))) (-3177 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|)) 24)) (-3208 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 30)) (-1537 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|)) 31)) (-4347 (((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|)) 90)) (-2933 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103)) (-2242 (((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129)) (-3490 (((-645 |#4|) (-645 |#4|)) 128)) (-2872 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112)) 59) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 61)) (-3122 ((|#4| |#4| (-645 |#4|)) 60)) (-3826 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 132 (|has| |#1| (-455)))) (-1548 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 135 (|has| |#1| (-455)))) (-2174 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 134 (|has| |#1| (-455)))) (-2831 (((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|))) 105) (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 107) (((-645 |#4|) (-645 |#4|) |#4|) 141) (((-645 |#4|) |#4| |#4|) 137) (((-645 |#4|) (-645 |#4|)) 106)) (-2982 (((-645 |#4|) (-645 |#4|) (-645 |#4|)) 118 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-2064 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 52)) (-2804 (((-112) (-645 |#4|)) 79)) (-2128 (((-112) (-645 |#4|) (-645 (-645 |#4|))) 67)) (-3427 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 37)) (-4033 (((-112) |#4|) 36)) (-1932 (((-645 |#4|) (-645 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3557 (((-645 |#4|) (-645 |#4|)) 117 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-3079 (((-645 |#4|) (-645 |#4|)) 83)) (-3922 (((-645 |#4|) (-645 |#4|)) 97)) (-1875 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-3262 (((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|)) 50)) (-3210 (((-112) |#4|) 45)))
+(((-978 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2831 ((-645 |#4|) (-645 |#4|))) (-15 -2831 ((-645 |#4|) |#4| |#4|)) (-15 -3490 ((-645 |#4|) (-645 |#4|))) (-15 -1606 ((-645 |#4|) |#4| |#4|)) (-15 -2831 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2831 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2831 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -1875 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2128 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2804 ((-112) (-645 |#4|))) (-15 -3177 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -3208 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1537 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -2064 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2394 ((-112) |#4|)) (-15 -2410 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4033 ((-112) |#4|)) (-15 -3427 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3210 ((-112) |#4|)) (-15 -3262 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2872 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2872 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3122 (|#4| |#4| (-645 |#4|))) (-15 -3079 ((-645 |#4|) (-645 |#4|))) (-15 -4347 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -3922 ((-645 |#4|) (-645 |#4|))) (-15 -2933 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2242 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -1899 ((-645 |#4|) |#4|)) (-15 -1803 ((-645 |#4|) (-645 |#4|))) (-15 -1803 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -3826 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2174 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1548 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -3557 ((-645 |#4|) (-645 |#4|))) (-15 -1932 ((-645 |#4|) (-645 |#4|))) (-15 -2982 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|)) (-559) (-794) (-851) (-1065 |#1| |#2| |#3|)) (T -978))
+((-2982 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3557 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1548 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2174 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3826 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1803 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7)))) (-1803 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-1899 (*1 *2 *3) (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))) (-2242 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-978 *5 *6 *7 *8)))) (-2933 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1065 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *1 (-978 *6 *7 *8 *9)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-4347 (*1 *2 *3) (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2207 (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3079 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3122 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *2)))) (-2872 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2872 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-3262 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-3210 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-4033 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-2394 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))) (-2064 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7)))) (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))) (-1537 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-3208 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-3177 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8)))) (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))) (-2804 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2128 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8)))) (-1875 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2831 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7)))) (-2831 (*1 *2 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2831 (*1 *2 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *3)))) (-1606 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))) (-2831 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2831 ((-645 |#4|) (-645 |#4|))) (-15 -2831 ((-645 |#4|) |#4| |#4|)) (-15 -3490 ((-645 |#4|) (-645 |#4|))) (-15 -1606 ((-645 |#4|) |#4| |#4|)) (-15 -2831 ((-645 |#4|) (-645 |#4|) |#4|)) (-15 -2831 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2831 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-1 (-645 |#4|) (-645 |#4|)))) (-15 -1875 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2128 ((-112) (-645 |#4|) (-645 (-645 |#4|)))) (-15 -2804 ((-112) (-645 |#4|))) (-15 -3177 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-1 (-112) |#4|) (-645 |#4|))) (-15 -3208 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -1537 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 (-1 (-112) |#4|)) (-645 |#4|))) (-15 -2064 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2394 ((-112) |#4|)) (-15 -2410 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -4033 ((-112) |#4|)) (-15 -3427 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -3210 ((-112) |#4|)) (-15 -3262 ((-2 (|:| |goodPols| (-645 |#4|)) (|:| |badPols| (-645 |#4|))) (-645 |#4|))) (-15 -2872 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2872 ((-645 |#4|) (-645 |#4|) (-645 |#4|) (-112))) (-15 -3122 (|#4| |#4| (-645 |#4|))) (-15 -3079 ((-645 |#4|) (-645 |#4|))) (-15 -4347 ((-3 (-2 (|:| |bas| (-479 |#1| |#2| |#3| |#4|)) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|))) (-15 -3922 ((-645 |#4|) (-645 |#4|))) (-15 -2933 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2242 ((-645 |#4|) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-455)) (PROGN (-15 -1899 ((-645 |#4|) |#4|)) (-15 -1803 ((-645 |#4|) (-645 |#4|))) (-15 -1803 ((-645 |#4|) (-645 |#4|) (-112))) (-15 -3826 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -2174 ((-645 |#4|) (-645 |#4|) (-645 |#4|))) (-15 -1548 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (PROGN (-15 -3557 ((-645 |#4|) (-645 |#4|))) (-15 -1932 ((-645 |#4|) (-645 |#4|))) (-15 -2982 ((-645 |#4|) (-645 |#4|) (-645 |#4|)))) |%noBranch|) |%noBranch|))
+((-2923 (((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-3705 (((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1266 |#1|)))) (-690 |#1|) (-1266 |#1|)) 44)) (-2164 (((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16)))
+(((-979 |#1|) (-10 -7 (-15 -2923 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2164 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3705 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1266 |#1|)))) (-690 |#1|) (-1266 |#1|)))) (-365)) (T -979))
+((-3705 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1266 *5))))) (-5 *1 (-979 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1266 *5)))) (-2164 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365)) (-5 *1 (-979 *5)))) (-2923 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365)) (-5 *2 (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6)))) (-5 *1 (-979 *6)) (-5 *3 (-690 *6)))))
+(-10 -7 (-15 -2923 ((-2 (|:| R (-690 |#1|)) (|:| A (-690 |#1|)) (|:| |Ainv| (-690 |#1|))) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2164 ((-690 |#1|) (-690 |#1|) (-690 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3705 ((-645 (-2 (|:| C (-690 |#1|)) (|:| |g| (-1266 |#1|)))) (-690 |#1|) (-1266 |#1|))))
+((-1401 (((-421 |#4|) |#4|) 56)))
+(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1401 ((-421 |#4|) |#4|))) (-851) (-794) (-455) (-950 |#3| |#2| |#1|)) (T -980))
+((-1401 (*1 *2 *3) (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3)) (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4)))))
+(-10 -7 (-15 -1401 ((-421 |#4|) |#4|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2019 (($ (-772)) 113 (|has| |#1| (-23)))) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4417))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4417))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 59 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1695 (($ $) 91 (|has| $ (-6 -4417)))) (-3315 (($ $) 101)) (-2084 (($ $) 79 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#1| $) 78 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 52)) (-3771 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1100)))) (-1976 (($ (-645 |#1|)) 119)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-3543 (((-690 |#1|) $ $) 106 (|has| |#1| (-1050)))) (-4012 (($ (-772) |#1|) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-2056 (($ $ $) 88 (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-1802 (($ $ $) 87 (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1674 ((|#1| $) 103 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-3230 (((-112) $ (-772)) 10)) (-3036 ((|#1| $) 104 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 43 (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2092 (($ $ |#1|) 42 (|has| $ (-6 -4417)))) (-2436 (($ $ (-645 |#1|)) 117)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1233 (-567))) 64)) (-2945 ((|#1| $ $) 107 (|has| |#1| (-1050)))) (-1948 (((-922) $) 118)) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-2673 (($ $ $) 105)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3732 (($ $ $ (-567)) 92 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| |#1| (-615 (-539)))) (($ (-645 |#1|)) 120)) (-4114 (($ (-645 |#1|)) 71)) (-2285 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) 85 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 84 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-3098 (((-112) $ $) 86 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3156 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3146 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-981 |#1|) (-140) (-1050)) (T -981))
+((-1976 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-981 *3)))) (-1948 (*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1050)) (-5 *2 (-922)))) (-2673 (*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1050)))) (-2436 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-981 *3)) (-4 *3 (-1050)))))
+(-13 (-1264 |t#1|) (-619 (-645 |t#1|)) (-10 -8 (-15 -1976 ($ (-645 |t#1|))) (-15 -1948 ((-922) $)) (-15 -2673 ($ $ $)) (-15 -2436 ($ $ (-645 |t#1|)))))
+(((-34) . T) ((-102) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-619 (-645 |#1|)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1100) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-1216) . T) ((-1264 |#1|) . T))
+((-3494 (((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)) 17)))
+(((-982 |#1| |#2|) (-10 -7 (-15 -3494 ((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|)))) (-1050) (-1050)) (T -982))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-944 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-944 *6)) (-5 *1 (-982 *5 *6)))))
+(-10 -7 (-15 -3494 ((-944 |#2|) (-1 |#2| |#1|) (-944 |#1|))))
+((-3863 ((|#1| (-944 |#1|)) 14)) (-2900 ((|#1| (-944 |#1|)) 13)) (-2526 ((|#1| (-944 |#1|)) 12)) (-2472 ((|#1| (-944 |#1|)) 16)) (-2983 ((|#1| (-944 |#1|)) 24)) (-1497 ((|#1| (-944 |#1|)) 15)) (-2149 ((|#1| (-944 |#1|)) 17)) (-2062 ((|#1| (-944 |#1|)) 23)) (-1394 ((|#1| (-944 |#1|)) 22)))
+(((-983 |#1|) (-10 -7 (-15 -2526 (|#1| (-944 |#1|))) (-15 -2900 (|#1| (-944 |#1|))) (-15 -3863 (|#1| (-944 |#1|))) (-15 -1497 (|#1| (-944 |#1|))) (-15 -2472 (|#1| (-944 |#1|))) (-15 -2149 (|#1| (-944 |#1|))) (-15 -1394 (|#1| (-944 |#1|))) (-15 -2062 (|#1| (-944 |#1|))) (-15 -2983 (|#1| (-944 |#1|)))) (-1050)) (T -983))
+((-2983 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-2472 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-3863 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-2900 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(-10 -7 (-15 -2526 (|#1| (-944 |#1|))) (-15 -2900 (|#1| (-944 |#1|))) (-15 -3863 (|#1| (-944 |#1|))) (-15 -1497 (|#1| (-944 |#1|))) (-15 -2472 (|#1| (-944 |#1|))) (-15 -2149 (|#1| (-944 |#1|))) (-15 -1394 (|#1| (-944 |#1|))) (-15 -2062 (|#1| (-944 |#1|))) (-15 -2983 (|#1| (-944 |#1|))))
+((-3994 (((-3 |#1| "failed") |#1|) 18)) (-3623 (((-3 |#1| "failed") |#1|) 6)) (-2504 (((-3 |#1| "failed") |#1|) 16)) (-2402 (((-3 |#1| "failed") |#1|) 4)) (-1949 (((-3 |#1| "failed") |#1|) 20)) (-1933 (((-3 |#1| "failed") |#1|) 8)) (-3729 (((-3 |#1| "failed") |#1| (-772)) 1)) (-1786 (((-3 |#1| "failed") |#1|) 3)) (-4299 (((-3 |#1| "failed") |#1|) 2)) (-2187 (((-3 |#1| "failed") |#1|) 21)) (-3355 (((-3 |#1| "failed") |#1|) 9)) (-2217 (((-3 |#1| "failed") |#1|) 19)) (-2951 (((-3 |#1| "failed") |#1|) 7)) (-2677 (((-3 |#1| "failed") |#1|) 17)) (-4393 (((-3 |#1| "failed") |#1|) 5)) (-1711 (((-3 |#1| "failed") |#1|) 24)) (-2763 (((-3 |#1| "failed") |#1|) 12)) (-3596 (((-3 |#1| "failed") |#1|) 22)) (-4373 (((-3 |#1| "failed") |#1|) 10)) (-3785 (((-3 |#1| "failed") |#1|) 26)) (-1330 (((-3 |#1| "failed") |#1|) 14)) (-3906 (((-3 |#1| "failed") |#1|) 27)) (-2496 (((-3 |#1| "failed") |#1|) 15)) (-2889 (((-3 |#1| "failed") |#1|) 25)) (-1964 (((-3 |#1| "failed") |#1|) 13)) (-1507 (((-3 |#1| "failed") |#1|) 23)) (-2024 (((-3 |#1| "failed") |#1|) 11)))
+(((-984 |#1|) (-140) (-1201)) (T -984))
+((-3906 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-3785 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2889 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-1711 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-1507 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-3596 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2187 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-1949 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2217 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-3994 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2677 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2504 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2496 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-1330 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-1964 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2763 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2024 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-4373 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-3355 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-1933 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2951 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-3623 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-4393 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-2402 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-1786 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-4299 (*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))) (-3729 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(-13 (-10 -7 (-15 -3729 ((-3 |t#1| "failed") |t#1| (-772))) (-15 -4299 ((-3 |t#1| "failed") |t#1|)) (-15 -1786 ((-3 |t#1| "failed") |t#1|)) (-15 -2402 ((-3 |t#1| "failed") |t#1|)) (-15 -4393 ((-3 |t#1| "failed") |t#1|)) (-15 -3623 ((-3 |t#1| "failed") |t#1|)) (-15 -2951 ((-3 |t#1| "failed") |t#1|)) (-15 -1933 ((-3 |t#1| "failed") |t#1|)) (-15 -3355 ((-3 |t#1| "failed") |t#1|)) (-15 -4373 ((-3 |t#1| "failed") |t#1|)) (-15 -2024 ((-3 |t#1| "failed") |t#1|)) (-15 -2763 ((-3 |t#1| "failed") |t#1|)) (-15 -1964 ((-3 |t#1| "failed") |t#1|)) (-15 -1330 ((-3 |t#1| "failed") |t#1|)) (-15 -2496 ((-3 |t#1| "failed") |t#1|)) (-15 -2504 ((-3 |t#1| "failed") |t#1|)) (-15 -2677 ((-3 |t#1| "failed") |t#1|)) (-15 -3994 ((-3 |t#1| "failed") |t#1|)) (-15 -2217 ((-3 |t#1| "failed") |t#1|)) (-15 -1949 ((-3 |t#1| "failed") |t#1|)) (-15 -2187 ((-3 |t#1| "failed") |t#1|)) (-15 -3596 ((-3 |t#1| "failed") |t#1|)) (-15 -1507 ((-3 |t#1| "failed") |t#1|)) (-15 -1711 ((-3 |t#1| "failed") |t#1|)) (-15 -2889 ((-3 |t#1| "failed") |t#1|)) (-15 -3785 ((-3 |t#1| "failed") |t#1|)) (-15 -3906 ((-3 |t#1| "failed") |t#1|))))
+((-3703 ((|#4| |#4| (-645 |#3|)) 57) ((|#4| |#4| |#3|) 56)) (-1851 ((|#4| |#4| (-645 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-3494 ((|#4| (-1 |#4| (-953 |#1|)) |#4|) 31)))
+(((-985 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1851 (|#4| |#4| |#3|)) (-15 -1851 (|#4| |#4| (-645 |#3|))) (-15 -3703 (|#4| |#4| |#3|)) (-15 -3703 (|#4| |#4| (-645 |#3|))) (-15 -3494 (|#4| (-1 |#4| (-953 |#1|)) |#4|))) (-1050) (-794) (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176))))) (-950 (-953 |#1|) |#2| |#3|)) (T -985))
+((-3494 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-953 *4))) (-4 *4 (-1050)) (-4 *2 (-950 (-953 *4) *5 *6)) (-4 *5 (-794)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176)))))) (-5 *1 (-985 *4 *5 *6 *2)))) (-3703 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176)))))) (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6)))) (-3703 (*1 *2 *2 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))) (-1851 (*1 *2 *2 *3) (-12 (-5 *3 (-645 *6)) (-4 *6 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176)))))) (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2)) (-4 *2 (-950 (-953 *4) *5 *6)))) (-1851 (*1 *2 *2 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)) (-15 -4295 ((-3 $ "failed") (-1176)))))) (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3)))))
+(-10 -7 (-15 -1851 (|#4| |#4| |#3|)) (-15 -1851 (|#4| |#4| (-645 |#3|))) (-15 -3703 (|#4| |#4| |#3|)) (-15 -3703 (|#4| |#4| (-645 |#3|))) (-15 -3494 (|#4| (-1 |#4| (-953 |#1|)) |#4|)))
+((-1684 ((|#2| |#3|) 35)) (-2627 (((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 83)) (-1835 (((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 103)))
+(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1835 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2627 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -1684 (|#2| |#3|))) (-351) (-1242 |#1|) (-1242 |#2|) (-725 |#2| |#3|)) (T -986))
+((-1684 (*1 *2 *3) (-12 (-4 *3 (-1242 *2)) (-4 *2 (-1242 *4)) (-5 *1 (-986 *4 *2 *3 *5)) (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))) (-2627 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 *3)) (-5 *2 (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-986 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5)))) (-1835 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| -2557 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-986 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5)))))
+(-10 -7 (-15 -1835 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2627 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)) (-15 -1684 (|#2| |#3|)))
+((-2550 (((-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))) 84)))
+(((-987 |#1| |#2|) (-10 -7 (-15 -2550 ((-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567))))))) (-645 (-1176)) (-772)) (T -987))
+((-2550 (*1 *2 *2) (-12 (-5 *2 (-988 (-410 (-567)) (-865 *3) (-240 *4 (-772)) (-247 *3 (-410 (-567))))) (-14 *3 (-645 (-1176))) (-14 *4 (-772)) (-5 *1 (-987 *3 *4)))))
+(-10 -7 (-15 -2550 ((-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))) (-988 (-410 (-567)) (-865 |#1|) (-240 |#2| (-772)) (-247 |#1| (-410 (-567)))))))
+((-2257 (((-112) $ $) NIL)) (-1487 (((-3 (-112) "failed") $) 71)) (-2886 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-308))))) (-4035 (($ $ (-3 (-112) "failed")) 72)) (-1322 (($ (-645 |#4|) |#4|) 25)) (-2451 (((-1158) $) NIL)) (-2837 (($ $) 69)) (-3339 (((-1120) $) NIL)) (-3353 (((-112) $) 70)) (-3164 (($) 30)) (-4383 ((|#4| $) 74)) (-3607 (((-645 |#4|) $) 73)) (-4101 (((-863) $) 68)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-988 |#1| |#2| |#3| |#4|) (-13 (-1100) (-614 (-863)) (-10 -8 (-15 -3164 ($)) (-15 -1322 ($ (-645 |#4|) |#4|)) (-15 -1487 ((-3 (-112) "failed") $)) (-15 -4035 ($ $ (-3 (-112) "failed"))) (-15 -3353 ((-112) $)) (-15 -3607 ((-645 |#4|) $)) (-15 -4383 (|#4| $)) (-15 -2837 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -2886 ($ $)) |%noBranch|) |%noBranch|))) (-455) (-851) (-794) (-950 |#1| |#3| |#2|)) (T -988))
+((-3164 (*1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) (-1322 (*1 *1 *2 *3) (-12 (-5 *2 (-645 *3)) (-4 *3 (-950 *4 *6 *5)) (-4 *4 (-455)) (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-988 *4 *5 *6 *3)))) (-1487 (*1 *2 *1) (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-4035 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-3353 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-3607 (*1 *2 *1) (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))) (-4383 (*1 *2 *1) (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-988 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))) (-2837 (*1 *1 *1) (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))) (-2886 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))))
+(-13 (-1100) (-614 (-863)) (-10 -8 (-15 -3164 ($)) (-15 -1322 ($ (-645 |#4|) |#4|)) (-15 -1487 ((-3 (-112) "failed") $)) (-15 -4035 ($ $ (-3 (-112) "failed"))) (-15 -3353 ((-112) $)) (-15 -3607 ((-645 |#4|) $)) (-15 -4383 (|#4| $)) (-15 -2837 ($ $)) (IF (|has| |#1| (-308)) (IF (|has| |#1| (-147)) (-15 -2886 ($ $)) |%noBranch|) |%noBranch|)))
+((-1434 (((-112) |#5| |#5|) 45)) (-1576 (((-112) |#5| |#5|) 60)) (-1881 (((-112) |#5| (-645 |#5|)) 82) (((-112) |#5| |#5|) 69)) (-2355 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2464 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) 71)) (-2814 (((-1271)) 33)) (-3639 (((-1271) (-1158) (-1158) (-1158)) 29)) (-2556 (((-645 |#5|) (-645 |#5|)) 101)) (-1702 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) 93)) (-3690 (((-645 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 123)) (-1616 (((-112) |#5| |#5|) 54)) (-3810 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3493 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2586 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-2137 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-2178 (((-3 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 118)) (-4194 (((-645 |#5|) (-645 |#5|)) 50)))
+(((-989 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3639 ((-1271) (-1158) (-1158) (-1158))) (-15 -2814 ((-1271))) (-15 -1434 ((-112) |#5| |#5|)) (-15 -4194 ((-645 |#5|) (-645 |#5|))) (-15 -1616 ((-112) |#5| |#5|)) (-15 -1576 ((-112) |#5| |#5|)) (-15 -2355 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3493 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2586 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2137 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3810 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1881 ((-112) |#5| |#5|)) (-15 -1881 ((-112) |#5| (-645 |#5|))) (-15 -2556 ((-645 |#5|) (-645 |#5|))) (-15 -2464 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1702 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-15 -3690 ((-645 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2178 ((-3 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3| |#4|)) (T -989))
+((-2178 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1065 *6 *7 *8)) (-5 *2 (-2 (|:| -2823 (-645 *9)) (|:| -2138 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-989 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1071 *6 *7 *8 *9)))) (-3690 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1071 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1065 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -2823 (-645 *9)) (|:| -2138 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-989 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-1702 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2138 *7)))) (-4 *6 (-1065 *3 *4 *5)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-2464 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8))) (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1071 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)))) (-2556 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8 *3)))) (-1881 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-3810 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-2137 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-2586 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-2355 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-1576 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-1616 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *1 (-989 *3 *4 *5 *6 *7)))) (-1434 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-2814 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271)) (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))) (-3639 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271)) (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3639 ((-1271) (-1158) (-1158) (-1158))) (-15 -2814 ((-1271))) (-15 -1434 ((-112) |#5| |#5|)) (-15 -4194 ((-645 |#5|) (-645 |#5|))) (-15 -1616 ((-112) |#5| |#5|)) (-15 -1576 ((-112) |#5| |#5|)) (-15 -2355 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3493 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2586 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2137 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3810 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1881 ((-112) |#5| |#5|)) (-15 -1881 ((-112) |#5| (-645 |#5|))) (-15 -2556 ((-645 |#5|) (-645 |#5|))) (-15 -2464 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1702 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-15 -3690 ((-645 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2178 ((-3 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-4295 (((-1176) $) 15)) (-3843 (((-1158) $) 16)) (-2190 (($ (-1176) (-1158)) 14)) (-4101 (((-863) $) 13)))
+(((-990) (-13 (-614 (-863)) (-10 -8 (-15 -2190 ($ (-1176) (-1158))) (-15 -4295 ((-1176) $)) (-15 -3843 ((-1158) $))))) (T -990))
+((-2190 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1158)) (-5 *1 (-990)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-990)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-990)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2190 ($ (-1176) (-1158))) (-15 -4295 ((-1176) $)) (-15 -3843 ((-1158) $))))
+((-3494 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-991 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#4| (-1 |#2| |#1|) |#3|))) (-559) (-559) (-993 |#1|) (-993 |#2|)) (T -991))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559)) (-4 *2 (-993 *6)) (-5 *1 (-991 *5 *6 *4 *2)) (-4 *4 (-993 *5)))))
+(-10 -7 (-15 -3494 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-1176) "failed") $) 66) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) 96)) (-1621 ((|#2| $) NIL) (((-1176) $) 61) (((-410 (-567)) $) NIL) (((-567) $) 93)) (-1920 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) 115) (((-690 |#2|) (-690 $)) 28)) (-1649 (($) 99)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 76) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 85)) (-4349 (($ $) 10)) (-2802 (((-3 $ "failed") $) 20)) (-3494 (($ (-1 |#2| |#2|) $) 22)) (-2596 (($) 16)) (-1987 (($ $) 55)) (-1930 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2870 (($ $) 12)) (-3542 (((-893 (-567)) $) 71) (((-893 (-381)) $) 80) (((-539) $) 40) (((-381) $) 44) (((-225) $) 48)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 91) (($ |#2|) NIL) (($ (-1176)) 58)) (-2686 (((-772)) 31)) (-3075 (((-112) $ $) 51)))
+(((-992 |#1| |#2|) (-10 -8 (-15 -3075 ((-112) |#1| |#1|)) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3542 ((-225) |#1|)) (-15 -3542 ((-381) |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -4101 (|#1| (-1176))) (-15 -3417 ((-3 (-1176) "failed") |#1|)) (-15 -1621 ((-1176) |#1|)) (-15 -1649 (|#1|)) (-15 -1987 (|#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -1920 ((-690 |#2|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| |#1|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-993 |#2|) (-559)) (T -992))
+((-2686 (*1 *2) (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4)))))
+(-10 -8 (-15 -3075 ((-112) |#1| |#1|)) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3542 ((-225) |#1|)) (-15 -3542 ((-381) |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -4101 (|#1| (-1176))) (-15 -3417 ((-3 (-1176) "failed") |#1|)) (-15 -1621 ((-1176) |#1|)) (-15 -1649 (|#1|)) (-15 -1987 (|#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -4349 (|#1| |#1|)) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3813 ((-890 (-567) |#1|) |#1| (-893 (-567)) (-890 (-567) |#1|))) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -1920 ((-690 |#2|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| |#1|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2838 ((|#1| $) 147 (|has| |#1| (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-1877 (((-421 (-1172 $)) (-1172 $)) 138 (|has| |#1| (-910)))) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 141 (|has| |#1| (-910)))) (-3405 (((-112) $ $) 65)) (-3179 (((-567) $) 128 (|has| |#1| (-821)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 185) (((-3 (-1176) "failed") $) 136 (|has| |#1| (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) 119 (|has| |#1| (-1039 (-567)))) (((-3 (-567) "failed") $) 117 (|has| |#1| (-1039 (-567))))) (-1621 ((|#1| $) 186) (((-1176) $) 137 (|has| |#1| (-1039 (-1176)))) (((-410 (-567)) $) 120 (|has| |#1| (-1039 (-567)))) (((-567) $) 118 (|has| |#1| (-1039 (-567))))) (-2197 (($ $ $) 61)) (-1920 (((-690 (-567)) (-690 $)) 160 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 159 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 158) (((-690 |#1|) (-690 $)) 157)) (-4014 (((-3 $ "failed") $) 37)) (-1649 (($) 145 (|has| |#1| (-548)))) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-1665 (((-112) $) 79)) (-4095 (((-112) $) 130 (|has| |#1| (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 154 (|has| |#1| (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 153 (|has| |#1| (-887 (-381))))) (-3714 (((-112) $) 35)) (-4349 (($ $) 149)) (-4067 ((|#1| $) 151)) (-2802 (((-3 $ "failed") $) 116 (|has| |#1| (-1151)))) (-3948 (((-112) $) 129 (|has| |#1| (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2056 (($ $ $) 126 (|has| |#1| (-851)))) (-1802 (($ $ $) 125 (|has| |#1| (-851)))) (-3494 (($ (-1 |#1| |#1|) $) 177)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-2596 (($) 115 (|has| |#1| (-1151)) CONST)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-1987 (($ $) 146 (|has| |#1| (-308)))) (-3992 ((|#1| $) 143 (|has| |#1| (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) 140 (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 139 (|has| |#1| (-910)))) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) 183 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 182 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 181 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 180 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) 179 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) 178 (|has| |#1| (-517 (-1176) |#1|)))) (-4369 (((-772) $) 64)) (-1552 (($ $ |#1|) 184 (|has| |#1| (-287 |#1| |#1|)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-1930 (($ $) 176 (|has| |#1| (-233))) (($ $ (-772)) 174 (|has| |#1| (-233))) (($ $ (-1176)) 172 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 171 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 170 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 169 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 162) (($ $ (-1 |#1| |#1|)) 161)) (-2870 (($ $) 148)) (-4078 ((|#1| $) 150)) (-3542 (((-893 (-567)) $) 156 (|has| |#1| (-615 (-893 (-567))))) (((-893 (-381)) $) 155 (|has| |#1| (-615 (-893 (-381))))) (((-539) $) 133 (|has| |#1| (-615 (-539)))) (((-381) $) 132 (|has| |#1| (-1023))) (((-225) $) 131 (|has| |#1| (-1023)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 142 (-1410 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 189) (($ (-1176)) 135 (|has| |#1| (-1039 (-1176))))) (-4242 (((-3 $ "failed") $) 134 (-2909 (|has| |#1| (-145)) (-1410 (|has| $ (-145)) (|has| |#1| (-910)))))) (-2686 (((-772)) 32 T CONST)) (-2721 ((|#1| $) 144 (|has| |#1| (-548)))) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1771 (($ $) 127 (|has| |#1| (-821)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $) 175 (|has| |#1| (-233))) (($ $ (-772)) 173 (|has| |#1| (-233))) (($ $ (-1176)) 168 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 167 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 166 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 165 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 164) (($ $ (-1 |#1| |#1|)) 163)) (-3109 (((-112) $ $) 123 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 122 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 124 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 121 (|has| |#1| (-851)))) (-3168 (($ $ $) 73) (($ |#1| |#1|) 152)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ |#1| $) 188) (($ $ |#1|) 187)))
+(((-993 |#1|) (-140) (-559)) (T -993))
+((-3168 (*1 *1 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-4067 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-4349 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-2870 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-1987 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308)))) (-1649 (*1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-548)) (-4 *2 (-559)))) (-2721 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548)))) (-3992 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548)))))
+(-13 (-365) (-38 |t#1|) (-1039 |t#1|) (-340 |t#1|) (-231 |t#1|) (-379 |t#1|) (-885 |t#1|) (-403 |t#1|) (-10 -8 (-15 -3168 ($ |t#1| |t#1|)) (-15 -4067 (|t#1| $)) (-15 -4078 (|t#1| $)) (-15 -4349 ($ $)) (-15 -2870 ($ $)) (IF (|has| |t#1| (-1151)) (-6 (-1151)) |%noBranch|) (IF (|has| |t#1| (-1039 (-567))) (PROGN (-6 (-1039 (-567))) (-6 (-1039 (-410 (-567))))) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-821)) (-6 (-821)) |%noBranch|) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1039 (-1176))) (-6 (-1039 (-1176))) |%noBranch|) (IF (|has| |t#1| (-308)) (PROGN (-15 -2838 (|t#1| $)) (-15 -1987 ($ $))) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -1649 ($)) (-15 -2721 (|t#1| $)) (-15 -3992 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-910)) (-6 (-910)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 #1=(-1176)) |has| |#1| (-1039 (-1176))) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) |has| |#1| (-1023)) ((-615 (-381)) |has| |#1| (-1023)) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-615 (-893 (-381))) |has| |#1| (-615 (-893 (-381)))) ((-615 (-893 (-567))) |has| |#1| (-615 (-893 (-567)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) . T) ((-308) . T) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-365) . T) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-403 |#1|) . T) ((-455) . T) ((-517 (-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-792) |has| |#1| (-821)) ((-793) |has| |#1| (-821)) ((-795) |has| |#1| (-821)) ((-796) |has| |#1| (-821)) ((-821) |has| |#1| (-821)) ((-849) |has| |#1| (-821)) ((-851) -2909 (|has| |#1| (-851)) (|has| |#1| (-821))) ((-901 (-1176)) |has| |#1| (-901 (-1176))) ((-887 (-381)) |has| |#1| (-887 (-381))) ((-887 (-567)) |has| |#1| (-887 (-567))) ((-885 |#1|) . T) ((-910) |has| |#1| (-910)) ((-921) . T) ((-1023) |has| |#1| (-1023)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-567))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #1#) |has| |#1| (-1039 (-1176))) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) |has| |#1| (-1151)) ((-1216) . T) ((-1220) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-1896 (($ (-1142 |#1| |#2|)) 11)) (-4036 (((-1142 |#1| |#2|) $) 12)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1552 ((|#2| $ (-240 |#1| |#2|)) 16)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL)))
+(((-994 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1896 ($ (-1142 |#1| |#2|))) (-15 -4036 ((-1142 |#1| |#2|) $)) (-15 -1552 (|#2| $ (-240 |#1| |#2|))))) (-922) (-365)) (T -994))
+((-1896 (*1 *1 *2) (-12 (-5 *2 (-1142 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)) (-5 *1 (-994 *3 *4)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-1142 *3 *4)) (-5 *1 (-994 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365)) (-5 *1 (-994 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1896 ($ (-1142 |#1| |#2|))) (-15 -4036 ((-1142 |#1| |#2|) $)) (-15 -1552 (|#2| $ (-240 |#1| |#2|)))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3130 (((-1135) $) 9)) (-4101 (((-863) $) 15) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-995) (-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $))))) (T -995))
+((-3130 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-995)))))
+(-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $))))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) 8)) (-4061 (($) 7 T CONST)) (-2065 (($ $) 47)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-3036 (((-772) $) 46)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-3851 ((|#1| $) 45)) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1301 ((|#1| |#1| $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-3484 ((|#1| $) 48)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-3945 ((|#1| $) 44)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-996 |#1|) (-140) (-1216)) (T -996))
+((-1301 (*1 *2 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-2065 (*1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))) (-3945 (*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4416) (-15 -1301 (|t#1| |t#1| $)) (-15 -3484 (|t#1| $)) (-15 -2065 ($ $)) (-15 -3036 ((-772) $)) (-15 -3851 (|t#1| $)) (-15 -3945 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-2865 (((-112) $) 43)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-1621 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#2| $) 44)) (-4092 (((-3 (-410 (-567)) "failed") $) 78)) (-4379 (((-112) $) 72)) (-3061 (((-410 (-567)) $) 76)) (-3714 (((-112) $) 42)) (-3751 ((|#2| $) 22)) (-3494 (($ (-1 |#2| |#2|) $) 19)) (-2559 (($ $) 58)) (-1930 (($ $) NIL) (($ $ (-772)) NIL) (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-3542 (((-539) $) 67)) (-1443 (($ $) 17)) (-4101 (((-863) $) 53) (($ (-567)) 39) (($ |#2|) 37) (($ (-410 (-567))) NIL)) (-2686 (((-772)) 10)) (-1771 ((|#2| $) 71)) (-3052 (((-112) $ $) 26)) (-3075 (((-112) $ $) 69)) (-3156 (($ $) 30) (($ $ $) 29)) (-3146 (($ $ $) 27)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL)))
+(((-997 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| (-410 (-567)))) (-15 -3075 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2559 (|#1| |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -1771 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 -3714 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2865 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|))) (-998 |#2|) (-172)) (T -997))
+((-2686 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-997 *3 *4)) (-4 *3 (-998 *4)))))
+(-10 -8 (-15 -4101 (|#1| (-410 (-567)))) (-15 -3075 ((-112) |#1| |#1|)) (-15 * (|#1| (-410 (-567)) |#1|)) (-15 * (|#1| |#1| (-410 (-567)))) (-15 -2559 (|#1| |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -1771 (|#2| |#1|)) (-15 -3751 (|#2| |#1|)) (-15 -1443 (|#1| |#1|)) (-15 -3494 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 -3714 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 * (|#1| (-772) |#1|)) (-15 -2865 ((-112) |#1|)) (-15 * (|#1| (-922) |#1|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-3417 (((-3 (-567) "failed") $) 127 (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 125 (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) 122)) (-1621 (((-567) $) 126 (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) 124 (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) 123)) (-1920 (((-690 (-567)) (-690 $)) 97 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 96 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 95) (((-690 |#1|) (-690 $)) 94)) (-4014 (((-3 $ "failed") $) 37)) (-2319 ((|#1| $) 87)) (-4092 (((-3 (-410 (-567)) "failed") $) 83 (|has| |#1| (-548)))) (-4379 (((-112) $) 85 (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) 84 (|has| |#1| (-548)))) (-1641 (($ |#1| |#1| |#1| |#1|) 88)) (-3714 (((-112) $) 35)) (-3751 ((|#1| $) 89)) (-2056 (($ $ $) 76 (|has| |#1| (-851)))) (-1802 (($ $ $) 75 (|has| |#1| (-851)))) (-3494 (($ (-1 |#1| |#1|) $) 98)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 80 (|has| |#1| (-365)))) (-1790 ((|#1| $) 90)) (-3343 ((|#1| $) 91)) (-3585 ((|#1| $) 92)) (-3339 (((-1120) $) 11)) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) 104 (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) 103 (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) 102 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) 101 (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) 100 (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) 99 (|has| |#1| (-517 (-1176) |#1|)))) (-1552 (($ $ |#1|) 105 (|has| |#1| (-287 |#1| |#1|)))) (-1930 (($ $) 121 (|has| |#1| (-233))) (($ $ (-772)) 119 (|has| |#1| (-233))) (($ $ (-1176)) 117 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 116 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 115 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 114 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 107) (($ $ (-1 |#1| |#1|)) 106)) (-3542 (((-539) $) 81 (|has| |#1| (-615 (-539))))) (-1443 (($ $) 93)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 44) (($ (-410 (-567))) 70 (-2909 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-4242 (((-3 $ "failed") $) 82 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1771 ((|#1| $) 86 (|has| |#1| (-1060)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $) 120 (|has| |#1| (-233))) (($ $ (-772)) 118 (|has| |#1| (-233))) (($ $ (-1176)) 113 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 112 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 111 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 110 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 109) (($ $ (-1 |#1| |#1|)) 108)) (-3109 (((-112) $ $) 73 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 72 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 74 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 71 (|has| |#1| (-851)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 79 (|has| |#1| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 46) (($ |#1| $) 45) (($ $ (-410 (-567))) 78 (|has| |#1| (-365))) (($ (-410 (-567)) $) 77 (|has| |#1| (-365)))))
+(((-998 |#1|) (-140) (-172)) (T -998))
+((-1443 (*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-3585 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-1641 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-2319 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))) (-1771 (*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)) (-4 *2 (-1060)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))) (-4092 (*1 *2 *1) (|partial| -12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-410 (-567))))))
+(-13 (-38 |t#1|) (-414 |t#1|) (-231 |t#1|) (-340 |t#1|) (-379 |t#1|) (-10 -8 (-15 -1443 ($ $)) (-15 -3585 (|t#1| $)) (-15 -3343 (|t#1| $)) (-15 -1790 (|t#1| $)) (-15 -3751 (|t#1| $)) (-15 -1641 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2319 (|t#1| $)) (IF (|has| |t#1| (-291)) (-6 (-291)) |%noBranch|) (IF (|has| |t#1| (-851)) (-6 (-851)) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1060)) (-15 -1771 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-548)) (PROGN (-15 -4379 ((-112) $)) (-15 -3061 ((-410 (-567)) $)) (-15 -4092 ((-3 (-410 (-567)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-365)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-365)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-365))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-365)) ((-287 |#1| $) |has| |#1| (-287 |#1| |#1|)) ((-291) -2909 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-310 |#1|) |has| |#1| (-310 |#1|)) ((-340 |#1|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-517 (-1176) |#1|) |has| |#1| (-517 (-1176) |#1|)) ((-517 |#1| |#1|) |has| |#1| (-310 |#1|)) ((-647 #0#) |has| |#1| (-365)) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-365)) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-365)) ((-641 |#1|) . T) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-365)) ((-718 |#1|) . T) ((-727) . T) ((-851) |has| |#1| (-851)) ((-901 (-1176)) |has| |#1| (-901 (-1176))) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1052 #0#) |has| |#1| (-365)) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1057 #0#) |has| |#1| (-365)) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-365)) (|has| |#1| (-291))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-3494 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#3| (-1 |#4| |#2|) |#1|))) (-998 |#2|) (-172) (-998 |#4|) (-172)) (T -999))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-998 *6)) (-5 *1 (-999 *4 *5 *2 *6)) (-4 *4 (-998 *5)))))
+(-10 -7 (-15 -3494 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2319 ((|#1| $) 12)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-548)))) (-4379 (((-112) $) NIL (|has| |#1| (-548)))) (-3061 (((-410 (-567)) $) NIL (|has| |#1| (-548)))) (-1641 (($ |#1| |#1| |#1| |#1|) 16)) (-3714 (((-112) $) NIL)) (-3751 ((|#1| $) NIL)) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-1790 ((|#1| $) 15)) (-3343 ((|#1| $) 14)) (-3585 ((|#1| $) 13)) (-3339 (((-1120) $) NIL)) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-310 |#1|))) (($ $ (-295 |#1|)) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-295 |#1|))) NIL (|has| |#1| (-310 |#1|))) (($ $ (-645 (-1176)) (-645 |#1|)) NIL (|has| |#1| (-517 (-1176) |#1|))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-517 (-1176) |#1|)))) (-1552 (($ $ |#1|) NIL (|has| |#1| (-287 |#1| |#1|)))) (-1930 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-1443 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1771 ((|#1| $) NIL (|has| |#1| (-1060)))) (-1468 (($) 8 T CONST)) (-1484 (($) 10 T CONST)) (-2692 (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-365)))))
+(((-1000 |#1|) (-998 |#1|) (-172)) (T -1000))
+NIL
+(-998 |#1|)
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1580 (((-112) $ (-772)) NIL)) (-4061 (($) NIL T CONST)) (-2065 (($ $) 23)) (-1837 (($ (-645 |#1|)) 33)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3036 (((-772) $) 26)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4341 ((|#1| $) 28)) (-1336 (($ |#1| $) 17)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-3851 ((|#1| $) 27)) (-4394 ((|#1| $) 22)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1301 ((|#1| |#1| $) 16)) (-3353 (((-112) $) 18)) (-3164 (($) NIL)) (-3484 ((|#1| $) 21)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) NIL)) (-3945 ((|#1| $) 30)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1001 |#1|) (-13 (-996 |#1|) (-10 -8 (-15 -1837 ($ (-645 |#1|))))) (-1100)) (T -1001))
+((-1837 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-1001 *3)))))
+(-13 (-996 |#1|) (-10 -8 (-15 -1837 ($ (-645 |#1|)))))
+((-2307 (($ $) 12)) (-3287 (($ $ (-567)) 13)))
+(((-1002 |#1|) (-10 -8 (-15 -2307 (|#1| |#1|)) (-15 -3287 (|#1| |#1| (-567)))) (-1003)) (T -1002))
+NIL
+(-10 -8 (-15 -2307 (|#1| |#1|)) (-15 -3287 (|#1| |#1| (-567))))
+((-2307 (($ $) 6)) (-3287 (($ $ (-567)) 7)) (** (($ $ (-410 (-567))) 8)))
+(((-1003) (-140)) (T -1003))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-410 (-567))))) (-3287 (*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-567)))) (-2307 (*1 *1 *1) (-4 *1 (-1003))))
+(-13 (-10 -8 (-15 -2307 ($ $)) (-15 -3287 ($ $ (-567))) (-15 ** ($ $ (-410 (-567))))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4068 (((-2 (|:| |num| (-1266 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| (-410 |#2|) (-365)))) (-3602 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-2119 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-3007 (((-690 (-410 |#2|)) (-1266 $)) NIL) (((-690 (-410 |#2|))) NIL)) (-4093 (((-410 |#2|) $) NIL)) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| (-410 |#2|) (-351)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-1401 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3405 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2013 (((-772)) NIL (|has| (-410 |#2|) (-370)))) (-3897 (((-112)) NIL)) (-3056 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-3 (-410 |#2|) "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| (-410 |#2|) (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| (-410 |#2|) (-1039 (-410 (-567))))) (((-410 |#2|) $) NIL)) (-3499 (($ (-1266 (-410 |#2|)) (-1266 $)) NIL) (($ (-1266 (-410 |#2|))) 81) (($ (-1266 |#2|) |#2|) NIL)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-410 |#2|) (-351)))) (-2197 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-4253 (((-690 (-410 |#2|)) $ (-1266 $)) NIL) (((-690 (-410 |#2|)) $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-410 |#2|) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-410 |#2|))) (|:| |vec| (-1266 (-410 |#2|)))) (-690 $) (-1266 $)) NIL) (((-690 (-410 |#2|)) (-690 $)) NIL)) (-4015 (((-1266 $) (-1266 $)) NIL)) (-3402 (($ |#3|) 75) (((-3 $ "failed") (-410 |#3|)) NIL (|has| (-410 |#2|) (-365)))) (-4014 (((-3 $ "failed") $) NIL)) (-1339 (((-645 (-645 |#1|))) NIL (|has| |#1| (-370)))) (-4017 (((-112) |#1| |#1|) NIL)) (-2432 (((-922)) NIL)) (-1649 (($) NIL (|has| (-410 |#2|) (-370)))) (-4357 (((-112)) NIL)) (-3095 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-2210 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| (-410 |#2|) (-365)))) (-2958 (($ $) NIL)) (-3896 (($) NIL (|has| (-410 |#2|) (-351)))) (-1596 (((-112) $) NIL (|has| (-410 |#2|) (-351)))) (-2966 (($ $ (-772)) NIL (|has| (-410 |#2|) (-351))) (($ $) NIL (|has| (-410 |#2|) (-351)))) (-1665 (((-112) $) NIL (|has| (-410 |#2|) (-365)))) (-1909 (((-922) $) NIL (|has| (-410 |#2|) (-351))) (((-834 (-922)) $) NIL (|has| (-410 |#2|) (-351)))) (-3714 (((-112) $) NIL)) (-3163 (((-772)) NIL)) (-1413 (((-1266 $) (-1266 $)) NIL)) (-3751 (((-410 |#2|) $) NIL)) (-3456 (((-645 (-953 |#1|)) (-1176)) NIL (|has| |#1| (-365)))) (-2802 (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4110 ((|#3| $) NIL (|has| (-410 |#2|) (-365)))) (-3527 (((-922) $) NIL (|has| (-410 |#2|) (-370)))) (-3392 ((|#3| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2451 (((-1158) $) NIL)) (-1337 (((-690 (-410 |#2|))) 57)) (-3468 (((-690 (-410 |#2|))) 56)) (-2559 (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4244 (($ (-1266 |#2|) |#2|) 82)) (-1742 (((-690 (-410 |#2|))) 55)) (-4219 (((-690 (-410 |#2|))) 54)) (-1938 (((-2 (|:| |num| (-690 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1431 (((-2 (|:| |num| (-1266 |#2|)) (|:| |den| |#2|)) $) 88)) (-3691 (((-1266 $)) 51)) (-1835 (((-1266 $)) 50)) (-4273 (((-112) $) NIL)) (-2517 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2596 (($) NIL (|has| (-410 |#2|) (-351)) CONST)) (-3811 (($ (-922)) NIL (|has| (-410 |#2|) (-370)))) (-2234 (((-3 |#2| "failed")) 70)) (-3339 (((-1120) $) NIL)) (-3529 (((-772)) NIL)) (-4099 (($) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| (-410 |#2|) (-365)))) (-3276 (($ (-645 $)) NIL (|has| (-410 |#2|) (-365))) (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| (-410 |#2|) (-351)))) (-2296 (((-421 $) $) NIL (|has| (-410 |#2|) (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-410 |#2|) (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2245 (((-3 $ "failed") $ $) NIL (|has| (-410 |#2|) (-365)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| (-410 |#2|) (-365)))) (-4369 (((-772) $) NIL (|has| (-410 |#2|) (-365)))) (-1552 ((|#1| $ |#1| |#1|) NIL)) (-1944 (((-3 |#2| "failed")) 68)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| (-410 |#2|) (-365)))) (-3347 (((-410 |#2|) (-1266 $)) NIL) (((-410 |#2|)) 47)) (-2097 (((-772) $) NIL (|has| (-410 |#2|) (-351))) (((-3 (-772) "failed") $ $) NIL (|has| (-410 |#2|) (-351)))) (-1930 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-772)) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3374 (((-690 (-410 |#2|)) (-1266 $) (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365)))) (-2713 ((|#3|) 58)) (-1698 (($) NIL (|has| (-410 |#2|) (-351)))) (-3216 (((-1266 (-410 |#2|)) $ (-1266 $)) NIL) (((-690 (-410 |#2|)) (-1266 $) (-1266 $)) NIL) (((-1266 (-410 |#2|)) $) 83) (((-690 (-410 |#2|)) (-1266 $)) NIL)) (-3542 (((-1266 (-410 |#2|)) $) NIL) (($ (-1266 (-410 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| (-410 |#2|) (-351)))) (-3947 (((-1266 $) (-1266 $)) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 |#2|)) NIL) (($ (-410 (-567))) NIL (-2909 (|has| (-410 |#2|) (-1039 (-410 (-567)))) (|has| (-410 |#2|) (-365)))) (($ $) NIL (|has| (-410 |#2|) (-365)))) (-4242 (($ $) NIL (|has| (-410 |#2|) (-351))) (((-3 $ "failed") $) NIL (|has| (-410 |#2|) (-145)))) (-4121 ((|#3| $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3143 (((-112)) 65)) (-2978 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 143)) (-2469 (((-112) $ $) NIL (|has| (-410 |#2|) (-365)))) (-2773 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1913 (((-112)) NIL)) (-1468 (($) 109 T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-1 (-410 |#2|) (-410 |#2|)) (-772)) NIL (|has| (-410 |#2|) (-365))) (($ $ (-1 (-410 |#2|) (-410 |#2|))) NIL (|has| (-410 |#2|) (-365))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| (-410 |#2|) (-365)) (|has| (-410 |#2|) (-901 (-1176))))) (($ $ (-772)) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351)))) (($ $) NIL (-2909 (-12 (|has| (-410 |#2|) (-233)) (|has| (-410 |#2|) (-365))) (|has| (-410 |#2|) (-351))))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ $) NIL (|has| (-410 |#2|) (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| (-410 |#2|) (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 |#2|)) NIL) (($ (-410 |#2|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-410 |#2|) (-365))) (($ $ (-410 (-567))) NIL (|has| (-410 |#2|) (-365)))))
+(((-1004 |#1| |#2| |#3| |#4| |#5|) (-344 |#1| |#2| |#3|) (-1220) (-1242 |#1|) (-1242 (-410 |#2|)) (-410 |#2|) (-772)) (T -1004))
NIL
(-344 |#1| |#2| |#3|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2715 (((-644 (-566)) $) 73)) (-2375 (($ (-644 (-566))) 81)) (-4191 (((-566) $) 48 (|has| (-566) (-308)))) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL (|has| (-566) (-820)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) 60) (((-3 (-1175) "failed") $) NIL (|has| (-566) (-1038 (-1175)))) (((-3 (-409 (-566)) "failed") $) 57 (|has| (-566) (-1038 (-566)))) (((-3 (-566) "failed") $) 60 (|has| (-566) (-1038 (-566))))) (-3343 (((-566) $) NIL) (((-1175) $) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) NIL (|has| (-566) (-1038 (-566)))) (((-566) $) NIL (|has| (-566) (-1038 (-566))))) (-3919 (($ $ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| (-566) (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3424 (($) NIL (|has| (-566) (-547)))) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-1692 (((-644 (-566)) $) 79)) (-3421 (((-112) $) NIL (|has| (-566) (-820)))) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (|has| (-566) (-886 (-566)))) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (|has| (-566) (-886 (-381))))) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL)) (-2691 (((-566) $) 45)) (-3869 (((-3 $ "failed") $) NIL (|has| (-566) (-1150)))) (-2307 (((-112) $) NIL (|has| (-566) (-820)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-566) (-850)))) (-2101 (($ (-1 (-566) (-566)) $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL)) (-1342 (($) NIL (|has| (-566) (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2941 (($ $) NIL (|has| (-566) (-308))) (((-409 (-566)) $) 50)) (-2835 (((-1155 (-566)) $) 78)) (-3955 (($ (-644 (-566)) (-644 (-566))) 82)) (-2311 (((-566) $) 64 (|has| (-566) (-547)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| (-566) (-909)))) (-4018 (((-420 $) $) NIL)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-1754 (($ $ (-644 (-566)) (-644 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-566) (-566)) NIL (|has| (-566) (-310 (-566)))) (($ $ (-295 (-566))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-295 (-566)))) NIL (|has| (-566) (-310 (-566)))) (($ $ (-644 (-1175)) (-644 (-566))) NIL (|has| (-566) (-516 (-1175) (-566)))) (($ $ (-1175) (-566)) NIL (|has| (-566) (-516 (-1175) (-566))))) (-3792 (((-771) $) NIL)) (-3282 (($ $ (-566)) NIL (|has| (-566) (-287 (-566) (-566))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $) 15 (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-3233 (($ $) NIL)) (-2702 (((-566) $) 47)) (-2343 (((-644 (-566)) $) 80)) (-2150 (((-892 (-566)) $) NIL (|has| (-566) (-614 (-892 (-566))))) (((-892 (-381)) $) NIL (|has| (-566) (-614 (-892 (-381))))) (((-538) $) NIL (|has| (-566) (-614 (-538)))) (((-381) $) NIL (|has| (-566) (-1022))) (((-225) $) NIL (|has| (-566) (-1022)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-566) (-909))))) (-2725 (((-862) $) 107) (($ (-566)) 51) (($ $) NIL) (($ (-409 (-566))) 27) (($ (-566)) 51) (($ (-1175)) NIL (|has| (-566) (-1038 (-1175)))) (((-409 (-566)) $) 25)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-566) (-909))) (|has| (-566) (-145))))) (-2875 (((-771)) 13 T CONST)) (-2119 (((-566) $) 62 (|has| (-566) (-547)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-2274 (($ $) NIL (|has| (-566) (-820)))) (-3200 (($) 14 T CONST)) (-3214 (($) 17 T CONST)) (-1316 (($ $) NIL (|has| (-566) (-233))) (($ $ (-771)) NIL (|has| (-566) (-233))) (($ $ (-1175)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| (-566) (-900 (-1175)))) (($ $ (-1 (-566) (-566)) (-771)) NIL) (($ $ (-1 (-566) (-566))) NIL)) (-2865 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2817 (((-112) $ $) 21)) (-2854 (((-112) $ $) NIL (|has| (-566) (-850)))) (-2833 (((-112) $ $) 40 (|has| (-566) (-850)))) (-2916 (($ $ $) 36) (($ (-566) (-566)) 38)) (-2905 (($ $) 23) (($ $ $) 30)) (-2897 (($ $ $) 28)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 32) (($ $ $) 34) (($ $ (-409 (-566))) NIL) (($ (-409 (-566)) $) NIL) (($ (-566) $) 32) (($ $ (-566)) NIL)))
-(((-1004 |#1|) (-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -2715 ((-644 (-566)) $)) (-15 -2835 ((-1155 (-566)) $)) (-15 -1692 ((-644 (-566)) $)) (-15 -2343 ((-644 (-566)) $)) (-15 -2375 ($ (-644 (-566)))) (-15 -3955 ($ (-644 (-566)) (-644 (-566)))))) (-566)) (T -1004))
-((-2941 (*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2835 (*1 *2 *1) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-1692 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-2375 (*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))) (-3955 (*1 *1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))))
-(-13 (-992 (-566)) (-613 (-409 (-566))) (-10 -8 (-15 -2941 ((-409 (-566)) $)) (-15 -2715 ((-644 (-566)) $)) (-15 -2835 ((-1155 (-566)) $)) (-15 -1692 ((-644 (-566)) $)) (-15 -2343 ((-644 (-566)) $)) (-15 -2375 ($ (-644 (-566)))) (-15 -3955 ($ (-644 (-566)) (-644 (-566))))))
-((-3935 (((-52) (-409 (-566)) (-566)) 9)))
-(((-1005) (-10 -7 (-15 -3935 ((-52) (-409 (-566)) (-566))))) (T -1005))
-((-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52)) (-5 *1 (-1005)))))
-(-10 -7 (-15 -3935 ((-52) (-409 (-566)) (-566))))
-((-3733 (((-566)) 23)) (-1898 (((-566)) 28)) (-3743 (((-1270) (-566)) 26)) (-2842 (((-566) (-566)) 29) (((-566)) 22)))
-(((-1006) (-10 -7 (-15 -2842 ((-566))) (-15 -3733 ((-566))) (-15 -2842 ((-566) (-566))) (-15 -3743 ((-1270) (-566))) (-15 -1898 ((-566))))) (T -1006))
-((-1898 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-3743 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1006)))) (-2842 (*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-3733 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))) (-2842 (*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))))
-(-10 -7 (-15 -2842 ((-566))) (-15 -3733 ((-566))) (-15 -2842 ((-566) (-566))) (-15 -3743 ((-1270) (-566))) (-15 -1898 ((-566))))
-((-1385 (((-420 |#1|) |#1|) 43)) (-4018 (((-420 |#1|) |#1|) 41)))
-(((-1007 |#1|) (-10 -7 (-15 -4018 ((-420 |#1|) |#1|)) (-15 -1385 ((-420 |#1|) |#1|))) (-1241 (-409 (-566)))) (T -1007))
-((-1385 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1241 (-409 (-566)))))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3)) (-4 *3 (-1241 (-409 (-566)))))))
-(-10 -7 (-15 -4018 ((-420 |#1|) |#1|)) (-15 -1385 ((-420 |#1|) |#1|)))
-((-4388 (((-3 (-409 (-566)) "failed") |#1|) 15)) (-1929 (((-112) |#1|) 14)) (-1847 (((-409 (-566)) |#1|) 10)))
-(((-1008 |#1|) (-10 -7 (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|))) (-1038 (-409 (-566)))) (T -1008))
-((-4388 (*1 *2 *3) (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2)))) (-1929 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566)))))) (-1847 (*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2)))))
-(-10 -7 (-15 -1847 ((-409 (-566)) |#1|)) (-15 -1929 ((-112) |#1|)) (-15 -4388 ((-3 (-409 (-566)) "failed") |#1|)))
-((-2858 ((|#2| $ "value" |#2|) 12)) (-3282 ((|#2| $ "value") 10)) (-1379 (((-112) $ $) 18)))
-(((-1009 |#1| |#2|) (-10 -8 (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -1379 ((-112) |#1| |#1|)) (-15 -3282 (|#2| |#1| "value"))) (-1010 |#2|) (-1215)) (T -1009))
-NIL
-(-10 -8 (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -1379 ((-112) |#1| |#1|)) (-15 -3282 (|#2| |#1| "value")))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-2633 (($) 7 T CONST)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48)) (-4104 (((-566) $ $) 45)) (-3810 (((-112) $) 47)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1010 |#1|) (-140) (-1215)) (T -1010))
-((-4202 (*1 *2 *1) (-12 (-4 *3 (-1215)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-4116 (*1 *2 *1) (-12 (-4 *3 (-1215)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))) (-1396 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1215)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1215)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))) (-2801 (*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-644 *3)))) (-4104 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-566)))) (-1379 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-3886 (*1 *2 *1 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4416)) (-4 *1 (-1010 *3)) (-4 *3 (-1215)))) (-2858 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4416)) (-4 *1 (-1010 *2)) (-4 *2 (-1215)))) (-2989 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1010 *2)) (-4 *2 (-1215)))))
-(-13 (-491 |t#1|) (-10 -8 (-15 -4202 ((-644 $) $)) (-15 -4116 ((-644 $) $)) (-15 -1396 ((-112) $)) (-15 -2465 (|t#1| $)) (-15 -3282 (|t#1| $ "value")) (-15 -3810 ((-112) $)) (-15 -2801 ((-644 |t#1|) $)) (-15 -4104 ((-566) $ $)) (IF (|has| |t#1| (-1099)) (PROGN (-15 -1379 ((-112) $ $)) (-15 -3886 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4416)) (PROGN (-15 -3663 ($ $ (-644 $))) (-15 -2858 (|t#1| $ "value" |t#1|)) (-15 -2989 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-4028 (($ $) 9) (($ $ (-921)) 49) (($ (-409 (-566))) 13) (($ (-566)) 15)) (-2563 (((-3 $ "failed") (-1171 $) (-921) (-862)) 24) (((-3 $ "failed") (-1171 $) (-921)) 32)) (-2810 (($ $ (-566)) 58)) (-2875 (((-771)) 18)) (-3674 (((-644 $) (-1171 $)) NIL) (((-644 $) (-1171 (-409 (-566)))) 63) (((-644 $) (-1171 (-566))) 68) (((-644 $) (-952 $)) 72) (((-644 $) (-952 (-409 (-566)))) 76) (((-644 $) (-952 (-566))) 80)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) 53)))
-(((-1011 |#1|) (-10 -8 (-15 -4028 (|#1| (-566))) (-15 -4028 (|#1| (-409 (-566)))) (-15 -4028 (|#1| |#1| (-921))) (-15 -3674 ((-644 |#1|) (-952 (-566)))) (-15 -3674 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -3674 ((-644 |#1|) (-952 |#1|))) (-15 -3674 ((-644 |#1|) (-1171 (-566)))) (-15 -3674 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -3674 ((-644 |#1|) (-1171 |#1|))) (-15 -2563 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -2563 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -2810 (|#1| |#1| (-566))) (-15 -4028 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2875 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921)))) (-1012)) (T -1011))
-((-2875 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1011 *3)) (-4 *3 (-1012)))))
-(-10 -8 (-15 -4028 (|#1| (-566))) (-15 -4028 (|#1| (-409 (-566)))) (-15 -4028 (|#1| |#1| (-921))) (-15 -3674 ((-644 |#1|) (-952 (-566)))) (-15 -3674 ((-644 |#1|) (-952 (-409 (-566))))) (-15 -3674 ((-644 |#1|) (-952 |#1|))) (-15 -3674 ((-644 |#1|) (-1171 (-566)))) (-15 -3674 ((-644 |#1|) (-1171 (-409 (-566))))) (-15 -3674 ((-644 |#1|) (-1171 |#1|))) (-15 -2563 ((-3 |#1| "failed") (-1171 |#1|) (-921))) (-15 -2563 ((-3 |#1| "failed") (-1171 |#1|) (-921) (-862))) (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -2810 (|#1| |#1| (-566))) (-15 -4028 (|#1| |#1|)) (-15 ** (|#1| |#1| (-566))) (-15 -2875 ((-771))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 102)) (-1780 (($ $) 103)) (-3286 (((-112) $) 105)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 122)) (-2555 (((-420 $) $) 123)) (-4028 (($ $) 86) (($ $ (-921)) 72) (($ (-409 (-566))) 71) (($ (-566)) 70)) (-2068 (((-112) $ $) 113)) (-1859 (((-566) $) 139)) (-2633 (($) 18 T CONST)) (-2563 (((-3 $ "failed") (-1171 $) (-921) (-862)) 80) (((-3 $ "failed") (-1171 $) (-921)) 79)) (-2023 (((-3 (-566) "failed") $) 99 (|has| (-409 (-566)) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 97 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) 94)) (-3343 (((-566) $) 98 (|has| (-409 (-566)) (-1038 (-566)))) (((-409 (-566)) $) 96 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 95)) (-4297 (($ $ (-862)) 69)) (-1340 (($ $ (-862)) 68)) (-3919 (($ $ $) 117)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 116)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 111)) (-1968 (((-112) $) 124)) (-3421 (((-112) $) 137)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 85)) (-2307 (((-112) $) 138)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 120)) (-3075 (($ $ $) 136)) (-3936 (($ $ $) 135)) (-4020 (((-3 (-1171 $) "failed") $) 81)) (-1361 (((-3 (-862) "failed") $) 83)) (-1628 (((-3 (-1171 $) "failed") $) 82)) (-1853 (($ (-644 $)) 109) (($ $ $) 108)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 125)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 110)) (-1885 (($ (-644 $)) 107) (($ $ $) 106)) (-4018 (((-420 $) $) 121)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 118)) (-3967 (((-3 $ "failed") $ $) 101)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 112)) (-3792 (((-771) $) 114)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 115)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 129) (($ $) 100) (($ (-409 (-566))) 93) (($ (-566)) 92) (($ (-409 (-566))) 89)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 104)) (-1551 (((-409 (-566)) $ $) 67)) (-3674 (((-644 $) (-1171 $)) 78) (((-644 $) (-1171 (-409 (-566)))) 77) (((-644 $) (-1171 (-566))) 76) (((-644 $) (-952 $)) 75) (((-644 $) (-952 (-409 (-566)))) 74) (((-644 $) (-952 (-566))) 73)) (-2274 (($ $) 140)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2865 (((-112) $ $) 133)) (-2844 (((-112) $ $) 132)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 134)) (-2833 (((-112) $ $) 131)) (-2916 (($ $ $) 130)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 126) (($ $ (-409 (-566))) 84)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ (-409 (-566)) $) 128) (($ $ (-409 (-566))) 127) (($ (-566) $) 91) (($ $ (-566)) 90) (($ (-409 (-566)) $) 88) (($ $ (-409 (-566))) 87)))
-(((-1012) (-140)) (T -1012))
-((-4028 (*1 *1 *1) (-4 *1 (-1012))) (-1361 (*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-1628 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-4020 (*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))) (-2563 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862)) (-4 *1 (-1012)))) (-2563 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-3674 (*1 *2 *3) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012)))) (-4297 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-1340 (*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))) (-1551 (*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566))))))
-(-13 (-147) (-848) (-172) (-365) (-413 (-409 (-566))) (-38 (-566)) (-38 (-409 (-566))) (-1002) (-10 -8 (-15 -1361 ((-3 (-862) "failed") $)) (-15 -1628 ((-3 (-1171 $) "failed") $)) (-15 -4020 ((-3 (-1171 $) "failed") $)) (-15 -2563 ((-3 $ "failed") (-1171 $) (-921) (-862))) (-15 -2563 ((-3 $ "failed") (-1171 $) (-921))) (-15 -3674 ((-644 $) (-1171 $))) (-15 -3674 ((-644 $) (-1171 (-409 (-566))))) (-15 -3674 ((-644 $) (-1171 (-566)))) (-15 -3674 ((-644 $) (-952 $))) (-15 -3674 ((-644 $) (-952 (-409 (-566))))) (-15 -3674 ((-644 $) (-952 (-566)))) (-15 -4028 ($ $ (-921))) (-15 -4028 ($ $)) (-15 -4028 ($ (-409 (-566)))) (-15 -4028 ($ (-566))) (-15 -4297 ($ $ (-862))) (-15 -1340 ($ $ (-862))) (-15 -1551 ((-409 (-566)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 #1=(-566)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-413 (-409 (-566))) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 #1#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 #1#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 #1#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-920) . T) ((-1002) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) |has| (-409 (-566)) (-1038 (-566))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 #1#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T))
-((-1512 (((-2 (|:| |ans| |#2|) (|:| -1627 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
-(((-1013 |#1| |#2|) (-10 -7 (-15 -1512 ((-2 (|:| |ans| |#2|) (|:| -1627 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-27) (-432 |#1|))) (T -1013))
-((-1512 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2070 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1200) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-2 (|:| |ans| *4) (|:| -1627 *4) (|:| |sol?| (-112)))) (-5 *1 (-1013 *8 *4)))))
-(-10 -7 (-15 -1512 ((-2 (|:| |ans| |#2|) (|:| -1627 |#2|) (|:| |sol?| (-112))) (-566) |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3487 (((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
-(((-1014 |#1| |#2|) (-10 -7 (-15 -3487 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))) (-13 (-1200) (-27) (-432 |#1|))) (T -1014))
-((-3487 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1175)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-644 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2070 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1200) (-27) (-432 *8))) (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566)) (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4)))))
-(-10 -7 (-15 -3487 ((-3 (-644 |#2|) "failed") (-566) |#2| |#2| |#2| (-1175) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-644 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-644 |#2|)) (-1 (-3 (-2 (|:| -2070 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3426 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1451 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)) 41)) (-3926 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -3638 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 71)) (-3850 (((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|)) 76)))
-(((-1015 |#1| |#2|) (-10 -7 (-15 -3926 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -3638 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3850 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -3426 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1451 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1241 |#1|)) (T -1015))
-((-3426 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1241 *6)) (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -1451 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1015 *6 *3)))) (-3850 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5)))) (-3926 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6)) (|:| -3638 *6))) (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6)))))
-(-10 -7 (-15 -3926 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |c| (-409 |#2|)) (|:| -3638 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -3850 ((-2 (|:| |ans| (-409 |#2|)) (|:| |nosol| (-112))) (-409 |#2|) (-409 |#2|))) (-15 -3426 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -1451 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-566)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-566) (-1 |#2| |#2|))))
-((-4273 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -3638 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|)) 22)) (-2175 (((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)) 34)))
-(((-1016 |#1| |#2|) (-10 -7 (-15 -4273 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -3638 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2175 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|)))) (-13 (-365) (-147) (-1038 (-566))) (-1241 |#1|)) (T -1016))
-((-2175 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1241 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-409 *5)))) (-4273 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6) (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -3638 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6)))))
-(-10 -7 (-15 -4273 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-409 |#2|)) (|:| |h| |#2|) (|:| |c1| (-409 |#2|)) (|:| |c2| (-409 |#2|)) (|:| -3638 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|) (-1 |#2| |#2|))) (-15 -2175 ((-3 (-644 (-409 |#2|)) "failed") (-409 |#2|) (-409 |#2|) (-409 |#2|))))
-((-2519 (((-1 |#1|) (-644 (-2 (|:| -2465 |#1|) (|:| -3095 (-566))))) 37)) (-3126 (((-1 |#1|) (-1101 |#1|)) 45)) (-3183 (((-1 |#1|) (-1265 |#1|) (-1265 (-566)) (-566)) 34)))
-(((-1017 |#1|) (-10 -7 (-15 -3126 ((-1 |#1|) (-1101 |#1|))) (-15 -2519 ((-1 |#1|) (-644 (-2 (|:| -2465 |#1|) (|:| -3095 (-566)))))) (-15 -3183 ((-1 |#1|) (-1265 |#1|) (-1265 (-566)) (-566)))) (-1099)) (T -1017))
-((-3183 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1265 *6)) (-5 *4 (-1265 (-566))) (-5 *5 (-566)) (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -2465 *4) (|:| -3095 (-566))))) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))))
-(-10 -7 (-15 -3126 ((-1 |#1|) (-1101 |#1|))) (-15 -2519 ((-1 |#1|) (-644 (-2 (|:| -2465 |#1|) (|:| -3095 (-566)))))) (-15 -3183 ((-1 |#1|) (-1265 |#1|) (-1265 (-566)) (-566))))
-((-3077 (((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-1018 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3077 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1241 |#1|) (-1241 (-409 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1018))
-((-3077 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1241 *6)) (-4 *4 (-1241 (-409 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771)) (-5 *1 (-1018 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3077 ((-771) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3979 (((-112) $ $) NIL)) (-3959 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-1134) $) 11)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1019) (-13 (-1082) (-10 -8 (-15 -3959 ((-1134) $)) (-15 -3546 ((-1134) $))))) (T -1019))
-((-3959 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))))
-(-13 (-1082) (-10 -8 (-15 -3959 ((-1134) $)) (-15 -3546 ((-1134) $))))
-((-2521 (((-3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) "failed") |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) 32) (((-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566))) 29)) (-3565 (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566))) 34) (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-409 (-566))) 30) (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) 33) (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1|) 28)) (-3302 (((-644 (-409 (-566))) (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) 20)) (-3805 (((-409 (-566)) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) 17)))
-(((-1020 |#1|) (-10 -7 (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1|)) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) "failed") |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3805 ((-409 (-566)) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3302 ((-644 (-409 (-566))) (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))))) (-1241 (-566))) (T -1020))
-((-3302 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4)) (-4 *4 (-1241 (-566))))) (-3805 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1241 (-566))))) (-2521 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566))))) (-2521 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566))))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -1616 *5) (|:| -1627 *5)))) (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566))) (-5 *4 (-2 (|:| -1616 *5) (|:| -1627 *5))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566))) (-5 *4 (-409 (-566))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566))) (-5 *4 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))) (-3565 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566))))))
-(-10 -7 (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1|)) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) "failed") |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3805 ((-409 (-566)) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3302 ((-644 (-409 (-566))) (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))))
-((-2521 (((-3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) "failed") |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) 35) (((-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566))) 32)) (-3565 (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566))) 30) (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-409 (-566))) 26) (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) 28) (((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1|) 24)))
-(((-1021 |#1|) (-10 -7 (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1|)) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) "failed") |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))) (-1241 (-409 (-566)))) (T -1021))
-((-2521 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) (-5 *1 (-1021 *3)) (-4 *3 (-1241 (-409 (-566)))))) (-2521 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1241 *4)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -1616 *5) (|:| -1627 *5)))) (-5 *1 (-1021 *3)) (-4 *3 (-1241 *5)) (-5 *4 (-2 (|:| -1616 *5) (|:| -1627 *5))))) (-3565 (*1 *2 *3 *4) (-12 (-5 *4 (-409 (-566))) (-5 *2 (-644 (-2 (|:| -1616 *4) (|:| -1627 *4)))) (-5 *1 (-1021 *3)) (-4 *3 (-1241 *4)))) (-3565 (*1 *2 *3 *4) (-12 (-5 *2 (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1241 (-409 (-566)))) (-5 *4 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))) (-3565 (*1 *2 *3) (-12 (-5 *2 (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1241 (-409 (-566)))))))
-(-10 -7 (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1|)) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-409 (-566)))) (-15 -3565 ((-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-409 (-566)))) (-15 -2521 ((-3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) "failed") |#1| (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))) (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))))
-((-2150 (((-225) $) 6) (((-381) $) 9)))
-(((-1022) (-140)) (T -1022))
-NIL
-(-13 (-614 (-225)) (-614 (-381)))
-(((-614 (-225)) . T) ((-614 (-381)) . T))
-((-1409 (((-644 (-381)) (-952 (-566)) (-381)) 28) (((-644 (-381)) (-952 (-409 (-566))) (-381)) 27)) (-4391 (((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381)) 37)))
-(((-1023) (-10 -7 (-15 -1409 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -1409 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -4391 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381))))) (T -1023))
-((-4391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 (-381))) (-5 *1 (-1023)) (-5 *4 (-381)))))
-(-10 -7 (-15 -1409 ((-644 (-381)) (-952 (-409 (-566))) (-381))) (-15 -1409 ((-644 (-381)) (-952 (-566)) (-381))) (-15 -4391 ((-644 (-644 (-381))) (-644 (-952 (-566))) (-644 (-1175)) (-381))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 75)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-4028 (($ $) NIL) (($ $ (-921)) NIL) (($ (-409 (-566))) NIL) (($ (-566)) NIL)) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) 70)) (-2633 (($) NIL T CONST)) (-2563 (((-3 $ "failed") (-1171 $) (-921) (-862)) NIL) (((-3 $ "failed") (-1171 $) (-921)) 55)) (-2023 (((-3 (-409 (-566)) "failed") $) NIL (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-566) "failed") $) NIL (-2676 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-3343 (((-409 (-566)) $) 17 (|has| (-409 (-566)) (-1038 (-409 (-566))))) (((-409 (-566)) $) 17) ((|#1| $) 117) (((-566) $) NIL (-2676 (|has| (-409 (-566)) (-1038 (-566))) (|has| |#1| (-1038 (-566)))))) (-4297 (($ $ (-862)) 47)) (-1340 (($ $ (-862)) 48)) (-3919 (($ $ $) NIL)) (-4325 (((-409 (-566)) $ $) 21)) (-2313 (((-3 $ "failed") $) 88)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-3421 (((-112) $) 66)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL)) (-2307 (((-112) $) 69)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-4020 (((-3 (-1171 $) "failed") $) 83)) (-1361 (((-3 (-862) "failed") $) 82)) (-1628 (((-3 (-1171 $) "failed") $) 80)) (-1818 (((-3 (-1060 $ (-1171 $)) "failed") $) 78)) (-1853 (($ (-644 $)) NIL) (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 89)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ (-644 $)) NIL) (($ $ $) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-2725 (((-862) $) 87) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) 63) (($ (-409 (-566))) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#1|) 119)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-1551 (((-409 (-566)) $ $) 27)) (-3674 (((-644 $) (-1171 $)) 61) (((-644 $) (-1171 (-409 (-566)))) NIL) (((-644 $) (-1171 (-566))) NIL) (((-644 $) (-952 $)) NIL) (((-644 $) (-952 (-409 (-566)))) NIL) (((-644 $) (-952 (-566))) NIL)) (-3823 (($ (-1060 $ (-1171 $)) (-862)) 46)) (-2274 (($ $) 22)) (-3200 (($) 32 T CONST)) (-3214 (($) 39 T CONST)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 76)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 24)) (-2916 (($ $ $) 37)) (-2905 (($ $) 38) (($ $ $) 74)) (-2897 (($ $ $) 112)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL) (($ $ (-409 (-566))) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 104) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ (-566) $) 98) (($ $ (-566)) NIL) (($ (-409 (-566)) $) NIL) (($ $ (-409 (-566))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1024 |#1|) (-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -3823 ($ (-1060 $ (-1171 $)) (-862))) (-15 -1818 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -4325 ((-409 (-566)) $ $)))) (-13 (-848) (-365) (-1022))) (T -1024))
-((-3823 (*1 *1 *2 *3) (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862)) (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022))))) (-1818 (*1 *2 *1) (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3)))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022))))) (-4325 (*1 *2 *1 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022))))))
-(-13 (-1012) (-413 |#1|) (-38 |#1|) (-10 -8 (-15 -3823 ($ (-1060 $ (-1171 $)) (-862))) (-15 -1818 ((-3 (-1060 $ (-1171 $)) "failed") $)) (-15 -4325 ((-409 (-566)) $ $))))
-((-2320 (((-2 (|:| -1451 |#2|) (|:| -2606 (-644 |#1|))) |#2| (-644 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
-(((-1025 |#1| |#2|) (-10 -7 (-15 -2320 (|#2| |#2| |#1|)) (-15 -2320 ((-2 (|:| -1451 |#2|) (|:| -2606 (-644 |#1|))) |#2| (-644 |#1|)))) (-365) (-656 |#1|)) (T -1025))
-((-2320 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -1451 *3) (|:| -2606 (-644 *5)))) (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5)))) (-2320 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3)))))
-(-10 -7 (-15 -2320 (|#2| |#2| |#1|)) (-15 -2320 ((-2 (|:| -1451 |#2|) (|:| -2606 (-644 |#1|))) |#2| (-644 |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3945 ((|#1| $ |#1|) 14)) (-2858 ((|#1| $ |#1|) 12)) (-2263 (($ |#1|) 10)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3282 ((|#1| $) 11)) (-1718 ((|#1| $) 13)) (-2725 (((-862) $) 21 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2817 (((-112) $ $) 9)))
-(((-1026 |#1|) (-13 (-1215) (-10 -8 (-15 -2263 ($ |#1|)) (-15 -3282 (|#1| $)) (-15 -2858 (|#1| $ |#1|)) (-15 -1718 (|#1| $)) (-15 -3945 (|#1| $ |#1|)) (-15 -2817 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1215)) (T -1026))
-((-2263 (*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))) (-3282 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))) (-2858 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))) (-1718 (*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))) (-3945 (*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))) (-2817 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1215)))))
-(-13 (-1215) (-10 -8 (-15 -2263 ($ |#1|)) (-15 -3282 (|#1| $)) (-15 -2858 (|#1| $ |#1|)) (-15 -1718 (|#1| $)) (-15 -3945 (|#1| $ |#1|)) (-15 -2817 ((-112) $ $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3599 (((-644 $) (-644 |#4|)) 118) (((-644 $) (-644 |#4|) (-112)) 119) (((-644 $) (-644 |#4|) (-112) (-112)) 117) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 120)) (-4170 (((-644 |#3|) $) NIL)) (-1323 (((-112) $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3351 ((|#4| |#4| $) NIL)) (-2885 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| $) 112)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3281 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) 66)) (-2633 (($) NIL T CONST)) (-1740 (((-112) $) 29 (|has| |#1| (-558)))) (-3807 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1312 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1407 (((-112) $) NIL (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4185 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3343 (($ (-644 |#4|)) NIL)) (-3781 (((-3 $ "failed") $) 45)) (-1673 ((|#4| |#4| $) 69)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-1752 (($ |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3427 ((|#4| |#4| $) NIL)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) NIL)) (-1733 (((-112) |#4| $) NIL)) (-2509 (((-112) |#4| $) NIL)) (-2511 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2829 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 133)) (-1523 (((-644 |#4|) $) 18 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3779 ((|#3| $) 38)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#4|) $) 19 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-3023 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 23)) (-2054 (((-644 |#3|) $) NIL)) (-2314 (((-112) |#3| $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-2245 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-1665 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| |#4| $) 110)) (-1774 (((-3 |#4| "failed") $) 42)) (-2932 (((-644 $) |#4| $) 93)) (-3439 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3669 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-1799 (((-644 $) |#4| $) 115) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 116) (((-644 $) |#4| (-644 $)) NIL)) (-1841 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 128)) (-4200 (($ |#4| $) 82) (($ (-644 |#4|) $) 83) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-3304 (((-644 |#4|) $) NIL)) (-2751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1642 ((|#4| |#4| $) NIL)) (-4249 (((-112) $ $) NIL)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2117 ((|#4| |#4| $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-3 |#4| "failed") $) 40)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3521 (((-3 $ "failed") $ |#4|) 59)) (-3964 (($ $ |#4|) NIL) (((-644 $) |#4| $) 95) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 89)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 17)) (-3906 (($) 14)) (-3838 (((-771) $) NIL)) (-1958 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) 13)) (-2150 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 22)) (-3317 (($ $ |#3|) 52)) (-3756 (($ $ |#3|) 54)) (-2352 (($ $) NIL)) (-1811 (($ $ |#3|) NIL)) (-2725 (((-862) $) 35) (((-644 |#4|) $) 46)) (-3526 (((-771) $) NIL (|has| |#3| (-370)))) (-1479 (((-112) $ $) NIL)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3735 (((-644 $) |#4| $) 92) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-2610 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) NIL)) (-1950 (((-112) |#4| $) NIL)) (-3314 (((-112) |#3| $) 65)) (-2817 (((-112) $ $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1027 |#1| |#2| |#3| |#4|) (-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4200 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -1841 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -2829 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1027))
-((-4200 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-3599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-3599 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-1841 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8)))) (-2829 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1027 *5 *6 *7 *8))))) (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8)))))
-(-13 (-1070 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4200 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -1841 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -2829 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)))))
-((-2502 (((-644 (-689 |#1|)) (-644 (-689 |#1|))) 73) (((-689 |#1|) (-689 |#1|)) 72) (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 71) (((-689 |#1|) (-689 |#1|) (-689 |#1|)) 68)) (-3071 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 66) (((-689 |#1|) (-689 |#1|) (-921)) 65)) (-2752 (((-644 (-689 (-566))) (-644 (-644 (-566)))) 84) (((-644 (-689 (-566))) (-644 (-905 (-566))) (-566)) 83) (((-689 (-566)) (-644 (-566))) 80) (((-689 (-566)) (-905 (-566)) (-566)) 78)) (-3100 (((-689 (-952 |#1|)) (-771)) 98)) (-2423 (((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921)) 52 (|has| |#1| (-6 (-4417 "*")))) (((-689 |#1|) (-689 |#1|) (-921)) 50 (|has| |#1| (-6 (-4417 "*"))))))
-(((-1028 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4417 "*"))) (-15 -2423 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4417 "*"))) (-15 -2423 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -3100 ((-689 (-952 |#1|)) (-771))) (-15 -3071 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -3071 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -2502 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2502 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2502 ((-689 |#1|) (-689 |#1|))) (-15 -2502 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2752 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -2752 ((-689 (-566)) (-644 (-566)))) (-15 -2752 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -2752 ((-644 (-689 (-566))) (-644 (-644 (-566)))))) (-1049)) (T -1028))
-((-2752 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566)) (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-2752 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4)) (-5 *1 (-1028 *5)) (-4 *5 (-1049)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-2502 (*1 *2 *2 *2) (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-2502 (*1 *2 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))) (-3071 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-3071 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4)) (-4 *4 (-1049)))) (-2423 (*1 *2 *2 *3) (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (|has| *4 (-6 (-4417 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))) (-2423 (*1 *2 *2 *3) (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4417 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4417 "*"))) (-15 -2423 ((-689 |#1|) (-689 |#1|) (-921))) |%noBranch|) (IF (|has| |#1| (-6 (-4417 "*"))) (-15 -2423 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) |%noBranch|) (-15 -3100 ((-689 (-952 |#1|)) (-771))) (-15 -3071 ((-689 |#1|) (-689 |#1|) (-921))) (-15 -3071 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-921))) (-15 -2502 ((-689 |#1|) (-689 |#1|) (-689 |#1|))) (-15 -2502 ((-644 (-689 |#1|)) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2502 ((-689 |#1|) (-689 |#1|))) (-15 -2502 ((-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2752 ((-689 (-566)) (-905 (-566)) (-566))) (-15 -2752 ((-689 (-566)) (-644 (-566)))) (-15 -2752 ((-644 (-689 (-566))) (-644 (-905 (-566))) (-566))) (-15 -2752 ((-644 (-689 (-566))) (-644 (-644 (-566))))))
-((-2249 (((-689 |#1|) (-644 (-689 |#1|)) (-1265 |#1|)) 71 (|has| |#1| (-308)))) (-3993 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1265 (-1265 |#1|))) 112 (|has| |#1| (-365))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1265 |#1|)) 119 (|has| |#1| (-365)))) (-2721 (((-1265 |#1|) (-644 (-1265 |#1|)) (-566)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-3451 (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1974 (((-112) (-644 (-689 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-644 (-689 |#1|)) (-566)) 108 (|has| |#1| (-365)))) (-2566 (((-1265 (-1265 |#1|)) (-644 (-689 |#1|)) (-1265 |#1|)) 68 (|has| |#1| (-308)))) (-2476 (((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|)) 48)) (-2550 (((-689 |#1|) (-1265 (-1265 |#1|))) 41)) (-3902 (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566)) 96 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|))) 95 (|has| |#1| (-365))) (((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566)) 103 (|has| |#1| (-365)))))
-(((-1029 |#1|) (-10 -7 (-15 -2550 ((-689 |#1|) (-1265 (-1265 |#1|)))) (-15 -2476 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2566 ((-1265 (-1265 |#1|)) (-644 (-689 |#1|)) (-1265 |#1|))) (-15 -2249 ((-689 |#1|) (-644 (-689 |#1|)) (-1265 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3902 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3902 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3902 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -1974 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -1974 ((-112) (-644 (-689 |#1|)))) (-15 -3993 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1265 |#1|))) (-15 -3993 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1265 (-1265 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -2721 ((-1265 |#1|) (-644 (-1265 |#1|)) (-566)))) |%noBranch|) |%noBranch|)) (-1049)) (T -1029))
-((-2721 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1265 *5))) (-5 *4 (-566)) (-5 *2 (-1265 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3451 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3451 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049)) (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4)) (-5 *3 (-644 (-689 *4))))) (-3451 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6)) (-5 *3 (-644 (-689 *6))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-1265 (-1265 *5))) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-3993 (*1 *2 *3 *4) (-12 (-5 *4 (-1265 *5)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5)) (-5 *3 (-644 (-689 *5))))) (-1974 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *4)))) (-1974 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365)) (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5)))) (-3902 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049)))) (-3902 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)) (-4 *4 (-365)) (-4 *4 (-1049)))) (-3902 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566)) (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1265 *5)) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)))) (-2566 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049)) (-5 *2 (-1265 (-1265 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1265 *5)))) (-2476 (*1 *2 *3 *2) (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1029 *4)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-1265 (-1265 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4)))))
-(-10 -7 (-15 -2550 ((-689 |#1|) (-1265 (-1265 |#1|)))) (-15 -2476 ((-689 |#1|) (-644 (-689 |#1|)) (-689 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -2566 ((-1265 (-1265 |#1|)) (-644 (-689 |#1|)) (-1265 |#1|))) (-15 -2249 ((-689 |#1|) (-644 (-689 |#1|)) (-1265 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3902 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-112) (-566))) (-15 -3902 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -3902 ((-689 |#1|) (-644 (-689 |#1|)) (-644 (-689 |#1|)) (-566))) (-15 -1974 ((-112) (-644 (-689 |#1|)) (-566))) (-15 -1974 ((-112) (-644 (-689 |#1|)))) (-15 -3993 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1265 |#1|))) (-15 -3993 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-1265 (-1265 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112) (-566) (-566))) (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)))) (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-112))) (-15 -3451 ((-644 (-644 (-689 |#1|))) (-644 (-689 |#1|)) (-921))) (-15 -2721 ((-1265 |#1|) (-644 (-1265 |#1|)) (-566)))) |%noBranch|) |%noBranch|))
-((-3073 ((|#1| (-921) |#1|) 18)))
-(((-1030 |#1|) (-10 -7 (-15 -3073 (|#1| (-921) |#1|))) (-13 (-1099) (-10 -8 (-15 -2897 ($ $ $))))) (T -1030))
-((-3073 (*1 *2 *3 *2) (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 -2897 ($ $ $))))))))
-(-10 -7 (-15 -3073 (|#1| (-921) |#1|)))
-((-4147 (((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566))))) 67)) (-3882 (((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566))))) 52)) (-2837 (((-644 (-317 (-566))) (-689 (-409 (-952 (-566))))) 45)) (-3664 (((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566))))) 88)) (-2921 (((-689 (-317 (-566))) (-689 (-317 (-566)))) 38)) (-3962 (((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566))))) 76)) (-3723 (((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566))))) 85)))
-(((-1031) (-10 -7 (-15 -4147 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -3882 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -2837 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -3723 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -2921 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -3962 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -3664 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566)))))))) (T -1031))
-((-3664 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-3962 (*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))) (-2921 (*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-3723 (*1 *2 *3) (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566)))) (-5 *1 (-1031)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *4 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)) (-5 *3 (-317 (-566))))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566)))))))) (-5 *1 (-1031)))))
-(-10 -7 (-15 -4147 ((-644 (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566)) (|:| |radvect| (-644 (-689 (-317 (-566))))))) (-689 (-409 (-952 (-566)))))) (-15 -3882 ((-644 (-689 (-317 (-566)))) (-317 (-566)) (-689 (-409 (-952 (-566)))))) (-15 -2837 ((-644 (-317 (-566))) (-689 (-409 (-952 (-566)))))) (-15 -3723 ((-3 (-689 (-317 (-566))) "failed") (-689 (-409 (-952 (-566)))))) (-15 -2921 ((-689 (-317 (-566))) (-689 (-317 (-566))))) (-15 -3962 ((-644 (-689 (-317 (-566)))) (-644 (-689 (-317 (-566)))))) (-15 -3664 ((-644 (-689 (-317 (-566)))) (-689 (-409 (-952 (-566)))))))
-((-2978 ((|#1| |#1| (-921)) 18)))
-(((-1032 |#1|) (-10 -7 (-15 -2978 (|#1| |#1| (-921)))) (-13 (-1099) (-10 -8 (-15 * ($ $ $))))) (T -1032))
-((-2978 (*1 *2 *2 *3) (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2)) (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -2978 (|#1| |#1| (-921))))
-((-2725 ((|#1| (-313)) 11) (((-1270) |#1|) 9)))
-(((-1033 |#1|) (-10 -7 (-15 -2725 ((-1270) |#1|)) (-15 -2725 (|#1| (-313)))) (-1215)) (T -1033))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1033 *2)) (-4 *2 (-1215)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-1270)) (-5 *1 (-1033 *3)) (-4 *3 (-1215)))))
-(-10 -7 (-15 -2725 ((-1270) |#1|)) (-15 -2725 (|#1| (-313))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2553 (($ |#4|) 25)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-2542 ((|#4| $) 27)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 46) (($ (-566)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2875 (((-771)) 43 T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 21 T CONST)) (-3214 (($) 23 T CONST)) (-2817 (((-112) $ $) 40)) (-2905 (($ $) 31) (($ $ $) NIL)) (-2897 (($ $ $) 29)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-1034 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2553 ($ |#4|)) (-15 -2725 ($ |#4|)) (-15 -2542 (|#4| $)))) (-365) (-793) (-850) (-949 |#1| |#2| |#3|) (-644 |#4|)) (T -1034))
-((-2553 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-2725 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5)) (-14 *6 (-644 *2)))) (-2542 (*1 *2 *1) (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2)))))
-(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2553 ($ |#4|)) (-15 -2725 ($ |#4|)) (-15 -2542 (|#4| $))))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL)) (-2506 (((-1270) $ (-1175) (-1175)) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-1376 (((-112) (-112)) 43)) (-2347 (((-112) (-112)) 42)) (-2858 (((-52) $ (-1175) (-52)) NIL)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 (-52) "failed") (-1175) $) NIL)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-2367 (($ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-3 (-52) "failed") (-1175) $) NIL)) (-1752 (($ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-3031 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4416)))) (-2975 (((-52) $ (-1175)) NIL)) (-1523 (((-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-644 (-52)) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-1175) $) NIL (|has| (-1175) (-850)))) (-2565 (((-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-644 (-52)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099))))) (-2605 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-2838 (((-644 (-1175)) $) 37)) (-3932 (((-112) (-1175) $) NIL)) (-2668 (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL)) (-1619 (($ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL)) (-4063 (((-644 (-1175)) $) NIL)) (-3054 (((-112) (-1175) $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-3771 (((-52) $) NIL (|has| (-1175) (-850)))) (-3567 (((-3 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) "failed") (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL)) (-3598 (($ $ (-52)) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099))))) (-1948 (((-644 (-52)) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 (((-52) $ (-1175)) 39) (((-52) $ (-1175) (-52)) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL)) (-2725 (((-862) $) 41 (-2676 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1035) (-13 (-1191 (-1175) (-52)) (-10 -7 (-15 -1376 ((-112) (-112))) (-15 -2347 ((-112) (-112))) (-6 -4415)))) (T -1035))
-((-1376 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035)))))
-(-13 (-1191 (-1175) (-52)) (-10 -7 (-15 -1376 ((-112) (-112))) (-15 -2347 ((-112) (-112))) (-6 -4415)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1743 (((-1134) $) 9)) (-2725 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1036) (-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $))))) (T -1036))
-((-1743 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036)))))
-(-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $))))
-((-3343 ((|#2| $) 10)))
-(((-1037 |#1| |#2|) (-10 -8 (-15 -3343 (|#2| |#1|))) (-1038 |#2|) (-1215)) (T -1037))
-NIL
-(-10 -8 (-15 -3343 (|#2| |#1|)))
-((-2023 (((-3 |#1| "failed") $) 9)) (-3343 ((|#1| $) 8)) (-2725 (($ |#1|) 6)))
-(((-1038 |#1|) (-140) (-1215)) (T -1038))
-((-2023 (*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1215)))) (-3343 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1215)))))
-(-13 (-616 |t#1|) (-10 -8 (-15 -2023 ((-3 |t#1| "failed") $)) (-15 -3343 (|t#1| $))))
-(((-616 |#1|) . T))
-((-3639 (((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))) 38)))
-(((-1039 |#1| |#2|) (-10 -7 (-15 -3639 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175))))) (-558) (-13 (-558) (-1038 |#1|))) (T -1039))
-((-3639 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6)))))
-(-10 -7 (-15 -3639 ((-644 (-644 (-295 (-409 (-952 |#2|))))) (-644 (-952 |#2|)) (-644 (-1175)))))
-((-2554 (((-381)) 17)) (-3126 (((-1 (-381)) (-381) (-381)) 22)) (-3638 (((-1 (-381)) (-771)) 50)) (-2027 (((-381)) 37)) (-1741 (((-1 (-381)) (-381) (-381)) 38)) (-4247 (((-381)) 29)) (-1457 (((-1 (-381)) (-381)) 30)) (-1776 (((-381) (-771)) 45)) (-3837 (((-1 (-381)) (-771)) 46)) (-1975 (((-1 (-381)) (-771) (-771)) 49)) (-2434 (((-1 (-381)) (-771) (-771)) 47)))
-(((-1040) (-10 -7 (-15 -2554 ((-381))) (-15 -2027 ((-381))) (-15 -4247 ((-381))) (-15 -1776 ((-381) (-771))) (-15 -3126 ((-1 (-381)) (-381) (-381))) (-15 -1741 ((-1 (-381)) (-381) (-381))) (-15 -1457 ((-1 (-381)) (-381))) (-15 -3837 ((-1 (-381)) (-771))) (-15 -2434 ((-1 (-381)) (-771) (-771))) (-15 -1975 ((-1 (-381)) (-771) (-771))) (-15 -3638 ((-1 (-381)) (-771))))) (T -1040))
-((-3638 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-1975 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-2434 (*1 *2 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-3837 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))) (-1457 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-1741 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-3126 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040)))) (-4247 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-2027 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))) (-2554 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))))
-(-10 -7 (-15 -2554 ((-381))) (-15 -2027 ((-381))) (-15 -4247 ((-381))) (-15 -1776 ((-381) (-771))) (-15 -3126 ((-1 (-381)) (-381) (-381))) (-15 -1741 ((-1 (-381)) (-381) (-381))) (-15 -1457 ((-1 (-381)) (-381))) (-15 -3837 ((-1 (-381)) (-771))) (-15 -2434 ((-1 (-381)) (-771) (-771))) (-15 -1975 ((-1 (-381)) (-771) (-771))) (-15 -3638 ((-1 (-381)) (-771))))
-((-4018 (((-420 |#1|) |#1|) 33)))
-(((-1041 |#1|) (-10 -7 (-15 -4018 ((-420 |#1|) |#1|))) (-1241 (-409 (-952 (-566))))) (T -1041))
-((-4018 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3)) (-4 *3 (-1241 (-409 (-952 (-566))))))))
-(-10 -7 (-15 -4018 ((-420 |#1|) |#1|)))
-((-3125 (((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))) 14)))
-(((-1042 |#1|) (-10 -7 (-15 -3125 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|))))) (-308)) (T -1042))
-((-3125 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308)) (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4)))))
-(-10 -7 (-15 -3125 ((-409 (-420 (-952 |#1|))) (-409 (-952 |#1|)))))
-((-4170 (((-644 (-1175)) (-409 (-952 |#1|))) 17)) (-3983 (((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 24)) (-4157 (((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175)) 26)) (-1742 (((-3 (-1175) "failed") (-409 (-952 |#1|))) 20)) (-1754 (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|))))) 32) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|)))) 33) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|)))) 28) (((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|))) 29)) (-2725 (((-409 (-952 |#1|)) |#1|) 11)))
-(((-1043 |#1|) (-10 -7 (-15 -4170 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -1742 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -3983 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -4157 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -2725 ((-409 (-952 |#1|)) |#1|))) (-558)) (T -1043))
-((-2725 (*1 *2 *3) (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-558)))) (-1754 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-1754 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-1754 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5)))) (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5)))) (-1754 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-1043 *4)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175)) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558)))) (-3983 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5)) (-5 *3 (-409 (-952 *5))))) (-1742 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-1175)) (-5 *1 (-1043 *4)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175))) (-5 *1 (-1043 *4)))))
-(-10 -7 (-15 -4170 ((-644 (-1175)) (-409 (-952 |#1|)))) (-15 -1742 ((-3 (-1175) "failed") (-409 (-952 |#1|)))) (-15 -3983 ((-409 (-1171 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -4157 ((-409 (-952 |#1|)) (-409 (-1171 (-409 (-952 |#1|)))) (-1175))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-1175)) (-644 (-409 (-952 |#1|))))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-295 (-409 (-952 |#1|))))) (-15 -1754 ((-409 (-952 |#1|)) (-409 (-952 |#1|)) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -2725 ((-409 (-952 |#1|)) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2633 (($) 18 T CONST)) (-2661 ((|#1| $) 23)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4264 ((|#1| $) 22)) (-3101 ((|#1|) 20 T CONST)) (-2725 (((-862) $) 12)) (-3681 ((|#1| $) 21)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16)))
-(((-1044 |#1|) (-140) (-23)) (T -1044))
-((-2661 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))) (-3101 (*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -2661 (|t#1| $)) (-15 -4264 (|t#1| $)) (-15 -3681 (|t#1| $)) (-15 -3101 (|t#1|) -3854)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2148 (($) 25 T CONST)) (-2633 (($) 18 T CONST)) (-2661 ((|#1| $) 23)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4264 ((|#1| $) 22)) (-3101 ((|#1|) 20 T CONST)) (-2725 (((-862) $) 12)) (-3681 ((|#1| $) 21)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-3638 (((-645 (-567)) $) 73)) (-3477 (($ (-645 (-567))) 81)) (-2838 (((-567) $) 48 (|has| (-567) (-308)))) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL (|has| (-567) (-821)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) 60) (((-3 (-1176) "failed") $) NIL (|has| (-567) (-1039 (-1176)))) (((-3 (-410 (-567)) "failed") $) 57 (|has| (-567) (-1039 (-567)))) (((-3 (-567) "failed") $) 60 (|has| (-567) (-1039 (-567))))) (-1621 (((-567) $) NIL) (((-1176) $) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) NIL (|has| (-567) (-1039 (-567)))) (((-567) $) NIL (|has| (-567) (-1039 (-567))))) (-2197 (($ $ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| (-567) (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-1649 (($) NIL (|has| (-567) (-548)))) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-3979 (((-645 (-567)) $) 79)) (-4095 (((-112) $) NIL (|has| (-567) (-821)))) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (|has| (-567) (-887 (-567)))) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (|has| (-567) (-887 (-381))))) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL)) (-4067 (((-567) $) 45)) (-2802 (((-3 $ "failed") $) NIL (|has| (-567) (-1151)))) (-3948 (((-112) $) NIL (|has| (-567) (-821)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-567) (-851)))) (-3494 (($ (-1 (-567) (-567)) $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL)) (-2596 (($) NIL (|has| (-567) (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-1987 (($ $) NIL (|has| (-567) (-308))) (((-410 (-567)) $) 50)) (-2295 (((-1156 (-567)) $) 78)) (-2356 (($ (-645 (-567)) (-645 (-567))) 82)) (-3992 (((-567) $) 64 (|has| (-567) (-548)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| (-567) (-910)))) (-2296 (((-421 $) $) NIL)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3140 (($ $ (-645 (-567)) (-645 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-567) (-567)) NIL (|has| (-567) (-310 (-567)))) (($ $ (-295 (-567))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-295 (-567)))) NIL (|has| (-567) (-310 (-567)))) (($ $ (-645 (-1176)) (-645 (-567))) NIL (|has| (-567) (-517 (-1176) (-567)))) (($ $ (-1176) (-567)) NIL (|has| (-567) (-517 (-1176) (-567))))) (-4369 (((-772) $) NIL)) (-1552 (($ $ (-567)) NIL (|has| (-567) (-287 (-567) (-567))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $) 15 (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-2870 (($ $) NIL)) (-4078 (((-567) $) 47)) (-4282 (((-645 (-567)) $) 80)) (-3542 (((-893 (-567)) $) NIL (|has| (-567) (-615 (-893 (-567))))) (((-893 (-381)) $) NIL (|has| (-567) (-615 (-893 (-381))))) (((-539) $) NIL (|has| (-567) (-615 (-539)))) (((-381) $) NIL (|has| (-567) (-1023))) (((-225) $) NIL (|has| (-567) (-1023)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-567) (-910))))) (-4101 (((-863) $) 107) (($ (-567)) 51) (($ $) NIL) (($ (-410 (-567))) 27) (($ (-567)) 51) (($ (-1176)) NIL (|has| (-567) (-1039 (-1176)))) (((-410 (-567)) $) 25)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-567) (-910))) (|has| (-567) (-145))))) (-2686 (((-772)) 13 T CONST)) (-2721 (((-567) $) 62 (|has| (-567) (-548)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1771 (($ $) NIL (|has| (-567) (-821)))) (-1468 (($) 14 T CONST)) (-1484 (($) 17 T CONST)) (-2692 (($ $) NIL (|has| (-567) (-233))) (($ $ (-772)) NIL (|has| (-567) (-233))) (($ $ (-1176)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| (-567) (-901 (-1176)))) (($ $ (-1 (-567) (-567)) (-772)) NIL) (($ $ (-1 (-567) (-567))) NIL)) (-3109 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3052 (((-112) $ $) 21)) (-3098 (((-112) $ $) NIL (|has| (-567) (-851)))) (-3075 (((-112) $ $) 40 (|has| (-567) (-851)))) (-3168 (($ $ $) 36) (($ (-567) (-567)) 38)) (-3156 (($ $) 23) (($ $ $) 30)) (-3146 (($ $ $) 28)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 32) (($ $ $) 34) (($ $ (-410 (-567))) NIL) (($ (-410 (-567)) $) NIL) (($ (-567) $) 32) (($ $ (-567)) NIL)))
+(((-1005 |#1|) (-13 (-993 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -3638 ((-645 (-567)) $)) (-15 -2295 ((-1156 (-567)) $)) (-15 -3979 ((-645 (-567)) $)) (-15 -4282 ((-645 (-567)) $)) (-15 -3477 ($ (-645 (-567)))) (-15 -2356 ($ (-645 (-567)) (-645 (-567)))))) (-567)) (T -1005))
+((-1987 (*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-2295 (*1 *2 *1) (-12 (-5 *2 (-1156 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))) (-2356 (*1 *1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))))
+(-13 (-993 (-567)) (-614 (-410 (-567))) (-10 -8 (-15 -1987 ((-410 (-567)) $)) (-15 -3638 ((-645 (-567)) $)) (-15 -2295 ((-1156 (-567)) $)) (-15 -3979 ((-645 (-567)) $)) (-15 -4282 ((-645 (-567)) $)) (-15 -3477 ($ (-645 (-567)))) (-15 -2356 ($ (-645 (-567)) (-645 (-567))))))
+((-2153 (((-52) (-410 (-567)) (-567)) 9)))
+(((-1006) (-10 -7 (-15 -2153 ((-52) (-410 (-567)) (-567))))) (T -1006))
+((-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52)) (-5 *1 (-1006)))))
+(-10 -7 (-15 -2153 ((-52) (-410 (-567)) (-567))))
+((-2013 (((-567)) 23)) (-2286 (((-567)) 28)) (-3988 (((-1271) (-567)) 26)) (-2367 (((-567) (-567)) 29) (((-567)) 22)))
+(((-1007) (-10 -7 (-15 -2367 ((-567))) (-15 -2013 ((-567))) (-15 -2367 ((-567) (-567))) (-15 -3988 ((-1271) (-567))) (-15 -2286 ((-567))))) (T -1007))
+((-2286 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1007)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) (-2013 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))) (-2367 (*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))))
+(-10 -7 (-15 -2367 ((-567))) (-15 -2013 ((-567))) (-15 -2367 ((-567) (-567))) (-15 -3988 ((-1271) (-567))) (-15 -2286 ((-567))))
+((-3241 (((-421 |#1|) |#1|) 43)) (-2296 (((-421 |#1|) |#1|) 41)))
+(((-1008 |#1|) (-10 -7 (-15 -2296 ((-421 |#1|) |#1|)) (-15 -3241 ((-421 |#1|) |#1|))) (-1242 (-410 (-567)))) (T -1008))
+((-3241 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3)) (-4 *3 (-1242 (-410 (-567)))))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3)) (-4 *3 (-1242 (-410 (-567)))))))
+(-10 -7 (-15 -2296 ((-421 |#1|) |#1|)) (-15 -3241 ((-421 |#1|) |#1|)))
+((-4092 (((-3 (-410 (-567)) "failed") |#1|) 15)) (-4379 (((-112) |#1|) 14)) (-3061 (((-410 (-567)) |#1|) 10)))
+(((-1009 |#1|) (-10 -7 (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|))) (-1039 (-410 (-567)))) (T -1009))
+((-4092 (*1 *2 *3) (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3)) (-4 *3 (-1039 *2)))) (-4379 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1009 *3)) (-4 *3 (-1039 (-410 (-567)))))) (-3061 (*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3)) (-4 *3 (-1039 *2)))))
+(-10 -7 (-15 -3061 ((-410 (-567)) |#1|)) (-15 -4379 ((-112) |#1|)) (-15 -4092 ((-3 (-410 (-567)) "failed") |#1|)))
+((-4230 ((|#2| $ "value" |#2|) 12)) (-1552 ((|#2| $ "value") 10)) (-2684 (((-112) $ $) 18)))
+(((-1010 |#1| |#2|) (-10 -8 (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -2684 ((-112) |#1| |#1|)) (-15 -1552 (|#2| |#1| "value"))) (-1011 |#2|) (-1216)) (T -1010))
+NIL
+(-10 -8 (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -2684 ((-112) |#1| |#1|)) (-15 -1552 (|#2| |#1| "value")))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-4061 (($) 7 T CONST)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48)) (-4304 (((-567) $ $) 45)) (-3436 (((-112) $) 47)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1011 |#1|) (-140) (-1216)) (T -1011))
+((-2936 (*1 *2 *1) (-12 (-4 *3 (-1216)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3)))) (-1306 (*1 *2 *1) (-12 (-4 *3 (-1216)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1216)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1011 *2)) (-4 *2 (-1216)))) (-3436 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))) (-3625 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-645 *3)))) (-4304 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-567)))) (-2684 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-4 *3 (-1100)) (-5 *2 (-112)))) (-2971 (*1 *2 *1 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-4 *3 (-1100)) (-5 *2 (-112)))) (-1352 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4417)) (-4 *1 (-1011 *3)) (-4 *3 (-1216)))) (-4230 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4417)) (-4 *1 (-1011 *2)) (-4 *2 (-1216)))) (-2372 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1011 *2)) (-4 *2 (-1216)))))
+(-13 (-492 |t#1|) (-10 -8 (-15 -2936 ((-645 $) $)) (-15 -1306 ((-645 $) $)) (-15 -1436 ((-112) $)) (-15 -3843 (|t#1| $)) (-15 -1552 (|t#1| $ "value")) (-15 -3436 ((-112) $)) (-15 -3625 ((-645 |t#1|) $)) (-15 -4304 ((-567) $ $)) (IF (|has| |t#1| (-1100)) (PROGN (-15 -2684 ((-112) $ $)) (-15 -2971 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4417)) (PROGN (-15 -1352 ($ $ (-645 $))) (-15 -4230 (|t#1| $ "value" |t#1|)) (-15 -2372 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-2307 (($ $) 9) (($ $ (-922)) 49) (($ (-410 (-567))) 13) (($ (-567)) 15)) (-1515 (((-3 $ "failed") (-1172 $) (-922) (-863)) 24) (((-3 $ "failed") (-1172 $) (-922)) 32)) (-3287 (($ $ (-567)) 58)) (-2686 (((-772)) 18)) (-1471 (((-645 $) (-1172 $)) NIL) (((-645 $) (-1172 (-410 (-567)))) 63) (((-645 $) (-1172 (-567))) 68) (((-645 $) (-953 $)) 72) (((-645 $) (-953 (-410 (-567)))) 76) (((-645 $) (-953 (-567))) 80)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) 53)))
+(((-1012 |#1|) (-10 -8 (-15 -2307 (|#1| (-567))) (-15 -2307 (|#1| (-410 (-567)))) (-15 -2307 (|#1| |#1| (-922))) (-15 -1471 ((-645 |#1|) (-953 (-567)))) (-15 -1471 ((-645 |#1|) (-953 (-410 (-567))))) (-15 -1471 ((-645 |#1|) (-953 |#1|))) (-15 -1471 ((-645 |#1|) (-1172 (-567)))) (-15 -1471 ((-645 |#1|) (-1172 (-410 (-567))))) (-15 -1471 ((-645 |#1|) (-1172 |#1|))) (-15 -1515 ((-3 |#1| "failed") (-1172 |#1|) (-922))) (-15 -1515 ((-3 |#1| "failed") (-1172 |#1|) (-922) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3287 (|#1| |#1| (-567))) (-15 -2307 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -2686 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922)))) (-1013)) (T -1012))
+((-2686 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1012 *3)) (-4 *3 (-1013)))))
+(-10 -8 (-15 -2307 (|#1| (-567))) (-15 -2307 (|#1| (-410 (-567)))) (-15 -2307 (|#1| |#1| (-922))) (-15 -1471 ((-645 |#1|) (-953 (-567)))) (-15 -1471 ((-645 |#1|) (-953 (-410 (-567))))) (-15 -1471 ((-645 |#1|) (-953 |#1|))) (-15 -1471 ((-645 |#1|) (-1172 (-567)))) (-15 -1471 ((-645 |#1|) (-1172 (-410 (-567))))) (-15 -1471 ((-645 |#1|) (-1172 |#1|))) (-15 -1515 ((-3 |#1| "failed") (-1172 |#1|) (-922))) (-15 -1515 ((-3 |#1| "failed") (-1172 |#1|) (-922) (-863))) (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -3287 (|#1| |#1| (-567))) (-15 -2307 (|#1| |#1|)) (-15 ** (|#1| |#1| (-567))) (-15 -2686 ((-772))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 102)) (-3602 (($ $) 103)) (-2119 (((-112) $) 105)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 122)) (-1401 (((-421 $) $) 123)) (-2307 (($ $) 86) (($ $ (-922)) 72) (($ (-410 (-567))) 71) (($ (-567)) 70)) (-3405 (((-112) $ $) 113)) (-3179 (((-567) $) 139)) (-4061 (($) 18 T CONST)) (-1515 (((-3 $ "failed") (-1172 $) (-922) (-863)) 80) (((-3 $ "failed") (-1172 $) (-922)) 79)) (-3417 (((-3 (-567) "failed") $) 99 (|has| (-410 (-567)) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 97 (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) 94)) (-1621 (((-567) $) 98 (|has| (-410 (-567)) (-1039 (-567)))) (((-410 (-567)) $) 96 (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-410 (-567)) $) 95)) (-2642 (($ $ (-863)) 69)) (-1655 (($ $ (-863)) 68)) (-2197 (($ $ $) 117)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 116)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 111)) (-1665 (((-112) $) 124)) (-4095 (((-112) $) 137)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 85)) (-3948 (((-112) $) 138)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 120)) (-2056 (($ $ $) 136)) (-1802 (($ $ $) 135)) (-1661 (((-3 (-1172 $) "failed") $) 81)) (-3066 (((-3 (-863) "failed") $) 83)) (-1404 (((-3 (-1172 $) "failed") $) 82)) (-3245 (($ (-645 $)) 109) (($ $ $) 108)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 125)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 110)) (-3276 (($ (-645 $)) 107) (($ $ $) 106)) (-2296 (((-421 $) $) 121)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 119) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 118)) (-2245 (((-3 $ "failed") $ $) 101)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 112)) (-4369 (((-772) $) 114)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 115)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 129) (($ $) 100) (($ (-410 (-567))) 93) (($ (-567)) 92) (($ (-410 (-567))) 89)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 104)) (-2927 (((-410 (-567)) $ $) 67)) (-1471 (((-645 $) (-1172 $)) 78) (((-645 $) (-1172 (-410 (-567)))) 77) (((-645 $) (-1172 (-567))) 76) (((-645 $) (-953 $)) 75) (((-645 $) (-953 (-410 (-567)))) 74) (((-645 $) (-953 (-567))) 73)) (-1771 (($ $) 140)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3109 (((-112) $ $) 133)) (-3085 (((-112) $ $) 132)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 134)) (-3075 (((-112) $ $) 131)) (-3168 (($ $ $) 130)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 126) (($ $ (-410 (-567))) 84)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ (-410 (-567)) $) 128) (($ $ (-410 (-567))) 127) (($ (-567) $) 91) (($ $ (-567)) 90) (($ (-410 (-567)) $) 88) (($ $ (-410 (-567))) 87)))
+(((-1013) (-140)) (T -1013))
+((-2307 (*1 *1 *1) (-4 *1 (-1013))) (-3066 (*1 *2 *1) (|partial| -12 (-4 *1 (-1013)) (-5 *2 (-863)))) (-1404 (*1 *2 *1) (|partial| -12 (-5 *2 (-1172 *1)) (-4 *1 (-1013)))) (-1661 (*1 *2 *1) (|partial| -12 (-5 *2 (-1172 *1)) (-4 *1 (-1013)))) (-1515 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1172 *1)) (-5 *3 (-922)) (-5 *4 (-863)) (-4 *1 (-1013)))) (-1515 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1172 *1)) (-5 *3 (-922)) (-4 *1 (-1013)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1172 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1172 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013)))) (-2307 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-922)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1013)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1013)))) (-2642 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863)))) (-1655 (*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-410 (-567))))))
+(-13 (-147) (-849) (-172) (-365) (-414 (-410 (-567))) (-38 (-567)) (-38 (-410 (-567))) (-1003) (-10 -8 (-15 -3066 ((-3 (-863) "failed") $)) (-15 -1404 ((-3 (-1172 $) "failed") $)) (-15 -1661 ((-3 (-1172 $) "failed") $)) (-15 -1515 ((-3 $ "failed") (-1172 $) (-922) (-863))) (-15 -1515 ((-3 $ "failed") (-1172 $) (-922))) (-15 -1471 ((-645 $) (-1172 $))) (-15 -1471 ((-645 $) (-1172 (-410 (-567))))) (-15 -1471 ((-645 $) (-1172 (-567)))) (-15 -1471 ((-645 $) (-953 $))) (-15 -1471 ((-645 $) (-953 (-410 (-567))))) (-15 -1471 ((-645 $) (-953 (-567)))) (-15 -2307 ($ $ (-922))) (-15 -2307 ($ $)) (-15 -2307 ($ (-410 (-567)))) (-15 -2307 ($ (-567))) (-15 -2642 ($ $ (-863))) (-15 -1655 ($ $ (-863))) (-15 -2927 ((-410 (-567)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 #1=(-567)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-414 (-410 (-567))) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 #1#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 #1#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 #1#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-921) . T) ((-1003) . T) ((-1039 (-410 (-567))) . T) ((-1039 (-567)) |has| (-410 (-567)) (-1039 (-567))) ((-1052 #0#) . T) ((-1052 #1#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 #1#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T))
+((-2891 (((-2 (|:| |ans| |#2|) (|:| -3005 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1176) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67)))
+(((-1014 |#1| |#2|) (-10 -7 (-15 -2891 ((-2 (|:| |ans| |#2|) (|:| -3005 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1176) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-27) (-433 |#1|))) (T -1014))
+((-2891 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1176)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3424 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1201) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3005 *4) (|:| |sol?| (-112)))) (-5 *1 (-1014 *8 *4)))))
+(-10 -7 (-15 -2891 ((-2 (|:| |ans| |#2|) (|:| -3005 |#2|) (|:| |sol?| (-112))) (-567) |#2| |#2| (-1176) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3565 (((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1176) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55)))
+(((-1015 |#1| |#2|) (-10 -7 (-15 -3565 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1176) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))) (-13 (-1201) (-27) (-433 |#1|))) (T -1015))
+((-3565 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1176)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-645 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3424 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1201) (-27) (-433 *8))) (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567)) (-5 *2 (-645 *4)) (-5 *1 (-1015 *8 *4)))))
+(-10 -7 (-15 -3565 ((-3 (-645 |#2|) "failed") (-567) |#2| |#2| |#2| (-1176) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-645 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-645 |#2|)) (-1 (-3 (-2 (|:| -3424 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-4145 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2823 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)) 41)) (-3327 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -1923 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 71)) (-3787 (((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|)) 76)))
+(((-1016 |#1| |#2|) (-10 -7 (-15 -3327 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -1923 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3787 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -4145 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2823 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|)))) (-13 (-365) (-147) (-1039 (-567))) (-1242 |#1|)) (T -1016))
+((-4145 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1242 *6)) (-4 *6 (-13 (-365) (-147) (-1039 *4))) (-5 *4 (-567)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -2823 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1016 *6 *3)))) (-3787 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1016 *4 *5)) (-5 *3 (-410 *5)))) (-3327 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6)) (|:| -1923 *6))) (-5 *1 (-1016 *5 *6)) (-5 *3 (-410 *6)))))
+(-10 -7 (-15 -3327 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |c| (-410 |#2|)) (|:| -1923 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3787 ((-2 (|:| |ans| (-410 |#2|)) (|:| |nosol| (-112))) (-410 |#2|) (-410 |#2|))) (-15 -4145 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -2823 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-567)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-567) (-1 |#2| |#2|))))
+((-2397 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -1923 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|)) 22)) (-3236 (((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)) 34)))
+(((-1017 |#1| |#2|) (-10 -7 (-15 -2397 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -1923 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3236 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|)))) (-13 (-365) (-147) (-1039 (-567))) (-1242 |#1|)) (T -1017))
+((-3236 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1242 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1017 *4 *5)) (-5 *3 (-410 *5)))) (-2397 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6) (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -1923 *6))) (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6)))))
+(-10 -7 (-15 -2397 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-410 |#2|)) (|:| |h| |#2|) (|:| |c1| (-410 |#2|)) (|:| |c2| (-410 |#2|)) (|:| -1923 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|) (-1 |#2| |#2|))) (-15 -3236 ((-3 (-645 (-410 |#2|)) "failed") (-410 |#2|) (-410 |#2|) (-410 |#2|))))
+((-2416 (((-1 |#1|) (-645 (-2 (|:| -3843 |#1|) (|:| -3933 (-567))))) 37)) (-4213 (((-1 |#1|) (-1102 |#1|)) 45)) (-3608 (((-1 |#1|) (-1266 |#1|) (-1266 (-567)) (-567)) 34)))
+(((-1018 |#1|) (-10 -7 (-15 -4213 ((-1 |#1|) (-1102 |#1|))) (-15 -2416 ((-1 |#1|) (-645 (-2 (|:| -3843 |#1|) (|:| -3933 (-567)))))) (-15 -3608 ((-1 |#1|) (-1266 |#1|) (-1266 (-567)) (-567)))) (-1100)) (T -1018))
+((-3608 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1266 *6)) (-5 *4 (-1266 (-567))) (-5 *5 (-567)) (-4 *6 (-1100)) (-5 *2 (-1 *6)) (-5 *1 (-1018 *6)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -3843 *4) (|:| -3933 (-567))))) (-4 *4 (-1100)) (-5 *2 (-1 *4)) (-5 *1 (-1018 *4)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1102 *4)) (-4 *4 (-1100)) (-5 *2 (-1 *4)) (-5 *1 (-1018 *4)))))
+(-10 -7 (-15 -4213 ((-1 |#1|) (-1102 |#1|))) (-15 -2416 ((-1 |#1|) (-645 (-2 (|:| -3843 |#1|) (|:| -3933 (-567)))))) (-15 -3608 ((-1 |#1|) (-1266 |#1|) (-1266 (-567)) (-567))))
+((-1909 (((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1909 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-365) (-1242 |#1|) (-1242 (-410 |#2|)) (-344 |#1| |#2| |#3|) (-13 (-370) (-365))) (T -1019))
+((-1909 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365)) (-4 *7 (-1242 *6)) (-4 *4 (-1242 (-410 *7))) (-4 *8 (-344 *6 *7 *4)) (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772)) (-5 *1 (-1019 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -1909 ((-772) (-338 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2257 (((-112) $ $) NIL)) (-2236 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-1135) $) 11)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1020) (-13 (-1083) (-10 -8 (-15 -2236 ((-1135) $)) (-15 -1830 ((-1135) $))))) (T -1020))
+((-2236 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1020)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1020)))))
+(-13 (-1083) (-10 -8 (-15 -2236 ((-1135) $)) (-15 -1830 ((-1135) $))))
+((-2442 (((-3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) "failed") |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) 32) (((-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567))) 29)) (-3042 (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567))) 34) (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-410 (-567))) 30) (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) 33) (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1|) 28)) (-2305 (((-645 (-410 (-567))) (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) 20)) (-3397 (((-410 (-567)) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) 17)))
+(((-1021 |#1|) (-10 -7 (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1|)) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) "failed") |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -3397 ((-410 (-567)) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -2305 ((-645 (-410 (-567))) (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))))) (-1242 (-567))) (T -1021))
+((-2305 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1021 *4)) (-4 *4 (-1242 (-567))))) (-3397 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) (-5 *2 (-410 (-567))) (-5 *1 (-1021 *4)) (-4 *4 (-1242 (-567))))) (-2442 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567))))) (-2442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567))))) (-3042 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2993 *5) (|:| -3005 *5)))) (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567))) (-5 *4 (-2 (|:| -2993 *5) (|:| -3005 *5))))) (-3042 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567))) (-5 *4 (-410 (-567))))) (-3042 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567))) (-5 *4 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))) (-3042 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567))))))
+(-10 -7 (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1|)) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) "failed") |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -3397 ((-410 (-567)) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -2305 ((-645 (-410 (-567))) (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))))
+((-2442 (((-3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) "failed") |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) 35) (((-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567))) 32)) (-3042 (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567))) 30) (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-410 (-567))) 26) (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) 28) (((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1|) 24)))
+(((-1022 |#1|) (-10 -7 (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1|)) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) "failed") |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))) (-1242 (-410 (-567)))) (T -1022))
+((-2442 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) (-5 *1 (-1022 *3)) (-4 *3 (-1242 (-410 (-567)))))) (-2442 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1242 *4)))) (-3042 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2993 *5) (|:| -3005 *5)))) (-5 *1 (-1022 *3)) (-4 *3 (-1242 *5)) (-5 *4 (-2 (|:| -2993 *5) (|:| -3005 *5))))) (-3042 (*1 *2 *3 *4) (-12 (-5 *4 (-410 (-567))) (-5 *2 (-645 (-2 (|:| -2993 *4) (|:| -3005 *4)))) (-5 *1 (-1022 *3)) (-4 *3 (-1242 *4)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *2 (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1242 (-410 (-567)))) (-5 *4 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))) (-3042 (*1 *2 *3) (-12 (-5 *2 (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-5 *1 (-1022 *3)) (-4 *3 (-1242 (-410 (-567)))))))
+(-10 -7 (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1|)) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-410 (-567)))) (-15 -3042 ((-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-410 (-567)))) (-15 -2442 ((-3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) "failed") |#1| (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))) (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))))
+((-3542 (((-225) $) 6) (((-381) $) 9)))
+(((-1023) (-140)) (T -1023))
+NIL
+(-13 (-615 (-225)) (-615 (-381)))
+(((-615 (-225)) . T) ((-615 (-381)) . T))
+((-1607 (((-645 (-381)) (-953 (-567)) (-381)) 28) (((-645 (-381)) (-953 (-410 (-567))) (-381)) 27)) (-4130 (((-645 (-645 (-381))) (-645 (-953 (-567))) (-645 (-1176)) (-381)) 37)))
+(((-1024) (-10 -7 (-15 -1607 ((-645 (-381)) (-953 (-410 (-567))) (-381))) (-15 -1607 ((-645 (-381)) (-953 (-567)) (-381))) (-15 -4130 ((-645 (-645 (-381))) (-645 (-953 (-567))) (-645 (-1176)) (-381))))) (T -1024))
+((-4130 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-645 (-1176))) (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1024)) (-5 *5 (-381)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1024)) (-5 *4 (-381)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 (-381))) (-5 *1 (-1024)) (-5 *4 (-381)))))
+(-10 -7 (-15 -1607 ((-645 (-381)) (-953 (-410 (-567))) (-381))) (-15 -1607 ((-645 (-381)) (-953 (-567)) (-381))) (-15 -4130 ((-645 (-645 (-381))) (-645 (-953 (-567))) (-645 (-1176)) (-381))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 75)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-2307 (($ $) NIL) (($ $ (-922)) NIL) (($ (-410 (-567))) NIL) (($ (-567)) NIL)) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) 70)) (-4061 (($) NIL T CONST)) (-1515 (((-3 $ "failed") (-1172 $) (-922) (-863)) NIL) (((-3 $ "failed") (-1172 $) (-922)) 55)) (-3417 (((-3 (-410 (-567)) "failed") $) NIL (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-567) "failed") $) NIL (-2909 (|has| (-410 (-567)) (-1039 (-567))) (|has| |#1| (-1039 (-567)))))) (-1621 (((-410 (-567)) $) 17 (|has| (-410 (-567)) (-1039 (-410 (-567))))) (((-410 (-567)) $) 17) ((|#1| $) 117) (((-567) $) NIL (-2909 (|has| (-410 (-567)) (-1039 (-567))) (|has| |#1| (-1039 (-567)))))) (-2642 (($ $ (-863)) 47)) (-1655 (($ $ (-863)) 48)) (-2197 (($ $ $) NIL)) (-1570 (((-410 (-567)) $ $) 21)) (-4014 (((-3 $ "failed") $) 88)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-4095 (((-112) $) 66)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL)) (-3948 (((-112) $) 69)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-1661 (((-3 (-1172 $) "failed") $) 83)) (-3066 (((-3 (-863) "failed") $) 82)) (-1404 (((-3 (-1172 $) "failed") $) 80)) (-2783 (((-3 (-1061 $ (-1172 $)) "failed") $) 78)) (-3245 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 89)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ (-645 $)) NIL) (($ $ $) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4101 (((-863) $) 87) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) 63) (($ (-410 (-567))) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#1|) 119)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-2927 (((-410 (-567)) $ $) 27)) (-1471 (((-645 $) (-1172 $)) 61) (((-645 $) (-1172 (-410 (-567)))) NIL) (((-645 $) (-1172 (-567))) NIL) (((-645 $) (-953 $)) NIL) (((-645 $) (-953 (-410 (-567)))) NIL) (((-645 $) (-953 (-567))) NIL)) (-3553 (($ (-1061 $ (-1172 $)) (-863)) 46)) (-1771 (($ $) 22)) (-1468 (($) 32 T CONST)) (-1484 (($) 39 T CONST)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 76)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 24)) (-3168 (($ $ $) 37)) (-3156 (($ $) 38) (($ $ $) 74)) (-3146 (($ $ $) 112)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL) (($ $ (-410 (-567))) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 104) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ (-567) $) 98) (($ $ (-567)) NIL) (($ (-410 (-567)) $) NIL) (($ $ (-410 (-567))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1025 |#1|) (-13 (-1013) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -3553 ($ (-1061 $ (-1172 $)) (-863))) (-15 -2783 ((-3 (-1061 $ (-1172 $)) "failed") $)) (-15 -1570 ((-410 (-567)) $ $)))) (-13 (-849) (-365) (-1023))) (T -1025))
+((-3553 (*1 *1 *2 *3) (-12 (-5 *2 (-1061 (-1025 *4) (-1172 (-1025 *4)))) (-5 *3 (-863)) (-5 *1 (-1025 *4)) (-4 *4 (-13 (-849) (-365) (-1023))))) (-2783 (*1 *2 *1) (|partial| -12 (-5 *2 (-1061 (-1025 *3) (-1172 (-1025 *3)))) (-5 *1 (-1025 *3)) (-4 *3 (-13 (-849) (-365) (-1023))))) (-1570 (*1 *2 *1 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1025 *3)) (-4 *3 (-13 (-849) (-365) (-1023))))))
+(-13 (-1013) (-414 |#1|) (-38 |#1|) (-10 -8 (-15 -3553 ($ (-1061 $ (-1172 $)) (-863))) (-15 -2783 ((-3 (-1061 $ (-1172 $)) "failed") $)) (-15 -1570 ((-410 (-567)) $ $))))
+((-4086 (((-2 (|:| -2823 |#2|) (|:| -3986 (-645 |#1|))) |#2| (-645 |#1|)) 32) ((|#2| |#2| |#1|) 27)))
+(((-1026 |#1| |#2|) (-10 -7 (-15 -4086 (|#2| |#2| |#1|)) (-15 -4086 ((-2 (|:| -2823 |#2|) (|:| -3986 (-645 |#1|))) |#2| (-645 |#1|)))) (-365) (-657 |#1|)) (T -1026))
+((-4086 (*1 *2 *3 *4) (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -2823 *3) (|:| -3986 (-645 *5)))) (-5 *1 (-1026 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))) (-4086 (*1 *2 *2 *3) (-12 (-4 *3 (-365)) (-5 *1 (-1026 *3 *2)) (-4 *2 (-657 *3)))))
+(-10 -7 (-15 -4086 (|#2| |#2| |#1|)) (-15 -4086 ((-2 (|:| -2823 |#2|) (|:| -3986 (-645 |#1|))) |#2| (-645 |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2249 ((|#1| $ |#1|) 14)) (-4230 ((|#1| $ |#1|) 12)) (-1615 (($ |#1|) 10)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-1552 ((|#1| $) 11)) (-4199 ((|#1| $) 13)) (-4101 (((-863) $) 21 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3052 (((-112) $ $) 9)))
+(((-1027 |#1|) (-13 (-1216) (-10 -8 (-15 -1615 ($ |#1|)) (-15 -1552 (|#1| $)) (-15 -4230 (|#1| $ |#1|)) (-15 -4199 (|#1| $)) (-15 -2249 (|#1| $ |#1|)) (-15 -3052 ((-112) $ $)) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|))) (-1216)) (T -1027))
+((-1615 (*1 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))) (-1552 (*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))) (-4230 (*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))) (-4199 (*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))) (-2249 (*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))) (-3052 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1216)))))
+(-13 (-1216) (-10 -8 (-15 -1615 ($ |#1|)) (-15 -1552 (|#1| $)) (-15 -4230 (|#1| $ |#1|)) (-15 -4199 (|#1| $)) (-15 -2249 (|#1| $ |#1|)) (-15 -3052 ((-112) $ $)) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) NIL)) (-2102 (((-645 $) (-645 |#4|)) 118) (((-645 $) (-645 |#4|) (-112)) 119) (((-645 $) (-645 |#4|) (-112) (-112)) 117) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 120)) (-2449 (((-645 |#3|) $) NIL)) (-1416 (((-112) $) NIL)) (-2739 (((-112) $) NIL (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1508 ((|#4| |#4| $) NIL)) (-1396 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 112)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-1551 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) 66)) (-4061 (($) NIL T CONST)) (-3289 (((-112) $) 29 (|has| |#1| (-559)))) (-3407 (((-112) $ $) NIL (|has| |#1| (-559)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1579 (((-112) $) NIL (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2786 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) NIL)) (-1621 (($ (-645 |#4|)) NIL)) (-2061 (((-3 $ "failed") $) 45)) (-3816 ((|#4| |#4| $) 69)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-3138 (($ |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4155 ((|#4| |#4| $) NIL)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) NIL)) (-4314 (((-112) |#4| $) NIL)) (-2312 (((-112) |#4| $) NIL)) (-2336 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2237 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 133)) (-2896 (((-645 |#4|) $) 18 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4280 ((|#3| $) 38)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#4|) $) 19 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-4392 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 23)) (-4360 (((-645 |#3|) $) NIL)) (-4023 (((-112) |#3| $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-1372 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-1856 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 110)) (-3162 (((-3 |#4| "failed") $) 42)) (-1894 (((-645 $) |#4| $) 93)) (-4254 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-1414 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 103) (((-112) |#4| $) 64)) (-3754 (((-645 $) |#4| $) 115) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 116) (((-645 $) |#4| (-645 $)) NIL)) (-2994 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 128)) (-2913 (($ |#4| $) 82) (($ (-645 |#4|) $) 83) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 79)) (-2331 (((-645 |#4|) $) NIL)) (-2750 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) NIL)) (-2137 (((-112) $ $) NIL)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2703 ((|#4| |#4| $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-3 |#4| "failed") $) 40)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3809 (((-3 $ "failed") $ |#4|) 59)) (-2436 (($ $ |#4|) NIL) (((-645 $) |#4| $) 95) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 89)) (-2297 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 17)) (-3164 (($) 14)) (-3677 (((-772) $) NIL)) (-3349 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) 13)) (-3542 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 22)) (-2485 (($ $ |#3|) 52)) (-4090 (($ $ |#3|) 54)) (-4367 (($ $) NIL)) (-2716 (($ $ |#3|) NIL)) (-4101 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2718 (((-772) $) NIL (|has| |#3| (-370)))) (-3739 (((-112) $ $) NIL)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3936 (((-645 $) |#4| $) 92) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-2012 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) NIL)) (-1440 (((-112) |#4| $) NIL)) (-2447 (((-112) |#3| $) 65)) (-3052 (((-112) $ $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1028 |#1| |#2| |#3| |#4|) (-13 (-1071 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2913 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2994 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2237 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|)) (T -1028))
+((-2913 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *3))) (-5 *1 (-1028 *5 *6 *7 *3)) (-4 *3 (-1065 *5 *6 *7)))) (-2102 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) (-2102 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) (-2994 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8)))) (-2237 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1028 *5 *6 *7 *8))))) (-5 *1 (-1028 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(-13 (-1071 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2913 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2994 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2237 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)))))
+((-2229 (((-645 (-690 |#1|)) (-645 (-690 |#1|))) 73) (((-690 |#1|) (-690 |#1|)) 72) (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 71) (((-690 |#1|) (-690 |#1|) (-690 |#1|)) 68)) (-1874 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922)) 66) (((-690 |#1|) (-690 |#1|) (-922)) 65)) (-2760 (((-645 (-690 (-567))) (-645 (-645 (-567)))) 84) (((-645 (-690 (-567))) (-645 (-906 (-567))) (-567)) 83) (((-690 (-567)) (-645 (-567))) 80) (((-690 (-567)) (-906 (-567)) (-567)) 78)) (-3961 (((-690 (-953 |#1|)) (-772)) 98)) (-2752 (((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922)) 52 (|has| |#1| (-6 (-4418 "*")))) (((-690 |#1|) (-690 |#1|) (-922)) 50 (|has| |#1| (-6 (-4418 "*"))))))
+(((-1029 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4418 "*"))) (-15 -2752 ((-690 |#1|) (-690 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4418 "*"))) (-15 -2752 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) |%noBranch|) (-15 -3961 ((-690 (-953 |#1|)) (-772))) (-15 -1874 ((-690 |#1|) (-690 |#1|) (-922))) (-15 -1874 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) (-15 -2229 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2229 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2229 ((-690 |#1|) (-690 |#1|))) (-15 -2229 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2760 ((-690 (-567)) (-906 (-567)) (-567))) (-15 -2760 ((-690 (-567)) (-645 (-567)))) (-15 -2760 ((-645 (-690 (-567))) (-645 (-906 (-567))) (-567))) (-15 -2760 ((-645 (-690 (-567))) (-645 (-645 (-567)))))) (-1050)) (T -1029))
+((-2760 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1029 *4)) (-4 *4 (-1050)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-906 (-567)))) (-5 *4 (-567)) (-5 *2 (-645 (-690 *4))) (-5 *1 (-1029 *5)) (-4 *5 (-1050)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1029 *4)) (-4 *4 (-1050)))) (-2760 (*1 *2 *3 *4) (-12 (-5 *3 (-906 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4)) (-5 *1 (-1029 *5)) (-4 *5 (-1050)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-2229 (*1 *2 *2 *2) (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-2229 (*1 *2 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))) (-1874 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922)) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))) (-1874 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-690 (-953 *4))) (-5 *1 (-1029 *4)) (-4 *4 (-1050)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922)) (|has| *4 (-6 (-4418 "*"))) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))) (-2752 (*1 *2 *2 *3) (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4418 "*"))) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4418 "*"))) (-15 -2752 ((-690 |#1|) (-690 |#1|) (-922))) |%noBranch|) (IF (|has| |#1| (-6 (-4418 "*"))) (-15 -2752 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) |%noBranch|) (-15 -3961 ((-690 (-953 |#1|)) (-772))) (-15 -1874 ((-690 |#1|) (-690 |#1|) (-922))) (-15 -1874 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-922))) (-15 -2229 ((-690 |#1|) (-690 |#1|) (-690 |#1|))) (-15 -2229 ((-645 (-690 |#1|)) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2229 ((-690 |#1|) (-690 |#1|))) (-15 -2229 ((-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -2760 ((-690 (-567)) (-906 (-567)) (-567))) (-15 -2760 ((-690 (-567)) (-645 (-567)))) (-15 -2760 ((-645 (-690 (-567))) (-645 (-906 (-567))) (-567))) (-15 -2760 ((-645 (-690 (-567))) (-645 (-645 (-567))))))
+((-1420 (((-690 |#1|) (-645 (-690 |#1|)) (-1266 |#1|)) 71 (|has| |#1| (-308)))) (-2714 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1266 (-1266 |#1|))) 112 (|has| |#1| (-365))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1266 |#1|)) 119 (|has| |#1| (-365)))) (-3686 (((-1266 |#1|) (-645 (-1266 |#1|)) (-567)) 137 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-4358 (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-922)) 125 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112)) 124 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|))) 123 (-12 (|has| |#1| (-365)) (|has| |#1| (-370)))) (((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567)) 122 (-12 (|has| |#1| (-365)) (|has| |#1| (-370))))) (-1750 (((-112) (-645 (-690 |#1|))) 105 (|has| |#1| (-365))) (((-112) (-645 (-690 |#1|)) (-567)) 108 (|has| |#1| (-365)))) (-1555 (((-1266 (-1266 |#1|)) (-645 (-690 |#1|)) (-1266 |#1|)) 68 (|has| |#1| (-308)))) (-3231 (((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|)) 48)) (-1370 (((-690 |#1|) (-1266 (-1266 |#1|))) 41)) (-3128 (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567)) 96 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|))) 95 (|has| |#1| (-365))) (((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567)) 103 (|has| |#1| (-365)))))
+(((-1030 |#1|) (-10 -7 (-15 -1370 ((-690 |#1|) (-1266 (-1266 |#1|)))) (-15 -3231 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -1555 ((-1266 (-1266 |#1|)) (-645 (-690 |#1|)) (-1266 |#1|))) (-15 -1420 ((-690 |#1|) (-645 (-690 |#1|)) (-1266 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3128 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3128 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3128 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1750 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1750 ((-112) (-645 (-690 |#1|)))) (-15 -2714 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1266 |#1|))) (-15 -2714 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1266 (-1266 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-922))) (-15 -3686 ((-1266 |#1|) (-645 (-1266 |#1|)) (-567)))) |%noBranch|) |%noBranch|)) (-1050)) (T -1030))
+((-3686 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1266 *5))) (-5 *4 (-567)) (-5 *2 (-1266 *5)) (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)))) (-4358 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-4358 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-4358 (*1 *2 *3) (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1050)) (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1030 *4)) (-5 *3 (-645 (-690 *4))))) (-4358 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370)) (-4 *6 (-1050)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1030 *6)) (-5 *3 (-645 (-690 *6))))) (-2714 (*1 *2 *3 *4) (-12 (-5 *4 (-1266 (-1266 *5))) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-2714 (*1 *2 *3 *4) (-12 (-5 *4 (-1266 *5)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5)) (-5 *3 (-645 (-690 *5))))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1050)) (-5 *2 (-112)) (-5 *1 (-1030 *4)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365)) (-4 *5 (-1050)) (-5 *2 (-112)) (-5 *1 (-1030 *5)))) (-3128 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5)) (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-1050)))) (-3128 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1030 *4)) (-4 *4 (-365)) (-4 *4 (-1050)))) (-3128 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567)) (-5 *2 (-690 *6)) (-5 *1 (-1030 *6)) (-4 *6 (-365)) (-4 *6 (-1050)))) (-1420 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1266 *5)) (-4 *5 (-308)) (-4 *5 (-1050)) (-5 *2 (-690 *5)) (-5 *1 (-1030 *5)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1050)) (-5 *2 (-1266 (-1266 *5))) (-5 *1 (-1030 *5)) (-5 *4 (-1266 *5)))) (-3231 (*1 *2 *3 *2) (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1050)) (-5 *1 (-1030 *4)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-1266 (-1266 *4))) (-4 *4 (-1050)) (-5 *2 (-690 *4)) (-5 *1 (-1030 *4)))))
+(-10 -7 (-15 -1370 ((-690 |#1|) (-1266 (-1266 |#1|)))) (-15 -3231 ((-690 |#1|) (-645 (-690 |#1|)) (-690 |#1|))) (IF (|has| |#1| (-308)) (PROGN (-15 -1555 ((-1266 (-1266 |#1|)) (-645 (-690 |#1|)) (-1266 |#1|))) (-15 -1420 ((-690 |#1|) (-645 (-690 |#1|)) (-1266 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -3128 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-112) (-567))) (-15 -3128 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3128 ((-690 |#1|) (-645 (-690 |#1|)) (-645 (-690 |#1|)) (-567))) (-15 -1750 ((-112) (-645 (-690 |#1|)) (-567))) (-15 -1750 ((-112) (-645 (-690 |#1|)))) (-15 -2714 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1266 |#1|))) (-15 -2714 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-1266 (-1266 |#1|))))) |%noBranch|) (IF (|has| |#1| (-370)) (IF (|has| |#1| (-365)) (PROGN (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112) (-567) (-567))) (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)))) (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-112))) (-15 -4358 ((-645 (-645 (-690 |#1|))) (-645 (-690 |#1|)) (-922))) (-15 -3686 ((-1266 |#1|) (-645 (-1266 |#1|)) (-567)))) |%noBranch|) |%noBranch|))
+((-1492 ((|#1| (-922) |#1|) 18)))
+(((-1031 |#1|) (-10 -7 (-15 -1492 (|#1| (-922) |#1|))) (-13 (-1100) (-10 -8 (-15 -3146 ($ $ $))))) (T -1031))
+((-1492 (*1 *2 *3 *2) (-12 (-5 *3 (-922)) (-5 *1 (-1031 *2)) (-4 *2 (-13 (-1100) (-10 -8 (-15 -3146 ($ $ $))))))))
+(-10 -7 (-15 -1492 (|#1| (-922) |#1|)))
+((-3605 (((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-953 (-567))))) 67)) (-2930 (((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-953 (-567))))) 52)) (-2317 (((-645 (-317 (-567))) (-690 (-410 (-953 (-567))))) 45)) (-1362 (((-645 (-690 (-317 (-567)))) (-690 (-410 (-953 (-567))))) 88)) (-1799 (((-690 (-317 (-567))) (-690 (-317 (-567)))) 38)) (-2412 (((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567))))) 76)) (-1981 (((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-953 (-567))))) 85)))
+(((-1032) (-10 -7 (-15 -3605 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-953 (-567)))))) (-15 -2930 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-953 (-567)))))) (-15 -2317 ((-645 (-317 (-567))) (-690 (-410 (-953 (-567)))))) (-15 -1981 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-953 (-567)))))) (-15 -1799 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -2412 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -1362 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-953 (-567)))))))) (T -1032))
+((-1362 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)))) (-2412 (*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032)))) (-1981 (*1 *2 *3) (|partial| -12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032)))) (-2317 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-317 (-567)))) (-5 *1 (-1032)))) (-2930 (*1 *2 *3 *4) (-12 (-5 *4 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)) (-5 *3 (-317 (-567))))) (-3605 (*1 *2 *3) (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567)))))))) (-5 *1 (-1032)))))
+(-10 -7 (-15 -3605 ((-645 (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567)) (|:| |radvect| (-645 (-690 (-317 (-567))))))) (-690 (-410 (-953 (-567)))))) (-15 -2930 ((-645 (-690 (-317 (-567)))) (-317 (-567)) (-690 (-410 (-953 (-567)))))) (-15 -2317 ((-645 (-317 (-567))) (-690 (-410 (-953 (-567)))))) (-15 -1981 ((-3 (-690 (-317 (-567))) "failed") (-690 (-410 (-953 (-567)))))) (-15 -1799 ((-690 (-317 (-567))) (-690 (-317 (-567))))) (-15 -2412 ((-645 (-690 (-317 (-567)))) (-645 (-690 (-317 (-567)))))) (-15 -1362 ((-645 (-690 (-317 (-567)))) (-690 (-410 (-953 (-567)))))))
+((-2251 ((|#1| |#1| (-922)) 18)))
+(((-1033 |#1|) (-10 -7 (-15 -2251 (|#1| |#1| (-922)))) (-13 (-1100) (-10 -8 (-15 * ($ $ $))))) (T -1033))
+((-2251 (*1 *2 *2 *3) (-12 (-5 *3 (-922)) (-5 *1 (-1033 *2)) (-4 *2 (-13 (-1100) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2251 (|#1| |#1| (-922))))
+((-4101 ((|#1| (-313)) 11) (((-1271) |#1|) 9)))
+(((-1034 |#1|) (-10 -7 (-15 -4101 ((-1271) |#1|)) (-15 -4101 (|#1| (-313)))) (-1216)) (T -1034))
+((-4101 (*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1034 *2)) (-4 *2 (-1216)))) (-4101 (*1 *2 *3) (-12 (-5 *2 (-1271)) (-5 *1 (-1034 *3)) (-4 *3 (-1216)))))
+(-10 -7 (-15 -4101 ((-1271) |#1|)) (-15 -4101 (|#1| (-313))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3402 (($ |#4|) 25)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-3392 ((|#4| $) 27)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 46) (($ (-567)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2686 (((-772)) 43 T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 21 T CONST)) (-1484 (($) 23 T CONST)) (-3052 (((-112) $ $) 40)) (-3156 (($ $) 31) (($ $ $) NIL)) (-3146 (($ $ $) 29)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-1035 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -3402 ($ |#4|)) (-15 -4101 ($ |#4|)) (-15 -3392 (|#4| $)))) (-365) (-794) (-851) (-950 |#1| |#2| |#3|) (-645 |#4|)) (T -1035))
+((-3402 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-645 *2)))) (-4101 (*1 *1 *2) (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5)) (-14 *6 (-645 *2)))) (-3392 (*1 *2 *1) (-12 (-4 *2 (-950 *3 *4 *5)) (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2)))))
+(-13 (-172) (-38 |#1|) (-10 -8 (-15 -3402 ($ |#4|)) (-15 -4101 ($ |#4|)) (-15 -3392 (|#4| $))))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL)) (-2275 (((-1271) $ (-1176) (-1176)) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-2574 (((-112) (-112)) 43)) (-4324 (((-112) (-112)) 42)) (-4230 (((-52) $ (-1176) (-52)) NIL)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 (-52) "failed") (-1176) $) NIL)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-3410 (($ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-3 (-52) "failed") (-1176) $) NIL)) (-3138 (($ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-1303 (((-52) $ (-1176) (-52)) NIL (|has| $ (-6 -4417)))) (-4344 (((-52) $ (-1176)) NIL)) (-2896 (((-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-645 (-52)) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-1176) $) NIL (|has| (-1176) (-851)))) (-1542 (((-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-645 (-52)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100))))) (-1979 (((-1176) $) NIL (|has| (-1176) (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-3004 (((-645 (-1176)) $) 37)) (-2121 (((-112) (-1176) $) NIL)) (-4341 (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL)) (-1336 (($ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL)) (-3940 (((-645 (-1176)) $) NIL)) (-1664 (((-112) (-1176) $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-2048 (((-52) $) NIL (|has| (-1176) (-851)))) (-3050 (((-3 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) "failed") (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL)) (-2092 (($ $ (-52)) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-295 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100))))) (-1412 (((-645 (-52)) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 (((-52) $ (-1176)) 39) (((-52) $ (-1176) (-52)) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL)) (-4101 (((-863) $) 41 (-2909 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1036) (-13 (-1192 (-1176) (-52)) (-10 -7 (-15 -2574 ((-112) (-112))) (-15 -4324 ((-112) (-112))) (-6 -4416)))) (T -1036))
+((-2574 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036)))))
+(-13 (-1192 (-1176) (-52)) (-10 -7 (-15 -2574 ((-112) (-112))) (-15 -4324 ((-112) (-112))) (-6 -4416)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3130 (((-1135) $) 9)) (-4101 (((-863) $) 15) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1037) (-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $))))) (T -1037))
+((-3130 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1037)))))
+(-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $))))
+((-1621 ((|#2| $) 10)))
+(((-1038 |#1| |#2|) (-10 -8 (-15 -1621 (|#2| |#1|))) (-1039 |#2|) (-1216)) (T -1038))
+NIL
+(-10 -8 (-15 -1621 (|#2| |#1|)))
+((-3417 (((-3 |#1| "failed") $) 9)) (-1621 ((|#1| $) 8)) (-4101 (($ |#1|) 6)))
+(((-1039 |#1|) (-140) (-1216)) (T -1039))
+((-3417 (*1 *2 *1) (|partial| -12 (-4 *1 (-1039 *2)) (-4 *2 (-1216)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1216)))))
+(-13 (-617 |t#1|) (-10 -8 (-15 -3417 ((-3 |t#1| "failed") $)) (-15 -1621 (|t#1| $))))
+(((-617 |#1|) . T))
+((-2503 (((-645 (-645 (-295 (-410 (-953 |#2|))))) (-645 (-953 |#2|)) (-645 (-1176))) 38)))
+(((-1040 |#1| |#2|) (-10 -7 (-15 -2503 ((-645 (-645 (-295 (-410 (-953 |#2|))))) (-645 (-953 |#2|)) (-645 (-1176))))) (-559) (-13 (-559) (-1039 |#1|))) (T -1040))
+((-2503 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1176))) (-4 *6 (-13 (-559) (-1039 *5))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *6)))))) (-5 *1 (-1040 *5 *6)))))
+(-10 -7 (-15 -2503 ((-645 (-645 (-295 (-410 (-953 |#2|))))) (-645 (-953 |#2|)) (-645 (-1176)))))
+((-1389 (((-381)) 17)) (-4213 (((-1 (-381)) (-381) (-381)) 22)) (-1923 (((-1 (-381)) (-772)) 50)) (-4126 (((-381)) 37)) (-3129 (((-1 (-381)) (-381) (-381)) 38)) (-3363 (((-381)) 29)) (-3549 (((-1 (-381)) (-381)) 30)) (-3563 (((-381) (-772)) 45)) (-3667 (((-1 (-381)) (-772)) 46)) (-2111 (((-1 (-381)) (-772) (-772)) 49)) (-2846 (((-1 (-381)) (-772) (-772)) 47)))
+(((-1041) (-10 -7 (-15 -1389 ((-381))) (-15 -4126 ((-381))) (-15 -3363 ((-381))) (-15 -3563 ((-381) (-772))) (-15 -4213 ((-1 (-381)) (-381) (-381))) (-15 -3129 ((-1 (-381)) (-381) (-381))) (-15 -3549 ((-1 (-381)) (-381))) (-15 -3667 ((-1 (-381)) (-772))) (-15 -2846 ((-1 (-381)) (-772) (-772))) (-15 -2111 ((-1 (-381)) (-772) (-772))) (-15 -1923 ((-1 (-381)) (-772))))) (T -1041))
+((-1923 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-2111 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-2846 (*1 *2 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))) (-3549 (*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))) (-3129 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))) (-4213 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))) (-3563 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1041)))) (-3363 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))) (-4126 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))) (-1389 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))))
+(-10 -7 (-15 -1389 ((-381))) (-15 -4126 ((-381))) (-15 -3363 ((-381))) (-15 -3563 ((-381) (-772))) (-15 -4213 ((-1 (-381)) (-381) (-381))) (-15 -3129 ((-1 (-381)) (-381) (-381))) (-15 -3549 ((-1 (-381)) (-381))) (-15 -3667 ((-1 (-381)) (-772))) (-15 -2846 ((-1 (-381)) (-772) (-772))) (-15 -2111 ((-1 (-381)) (-772) (-772))) (-15 -1923 ((-1 (-381)) (-772))))
+((-2296 (((-421 |#1|) |#1|) 33)))
+(((-1042 |#1|) (-10 -7 (-15 -2296 ((-421 |#1|) |#1|))) (-1242 (-410 (-953 (-567))))) (T -1042))
+((-2296 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1042 *3)) (-4 *3 (-1242 (-410 (-953 (-567))))))))
+(-10 -7 (-15 -2296 ((-421 |#1|) |#1|)))
+((-4205 (((-410 (-421 (-953 |#1|))) (-410 (-953 |#1|))) 14)))
+(((-1043 |#1|) (-10 -7 (-15 -4205 ((-410 (-421 (-953 |#1|))) (-410 (-953 |#1|))))) (-308)) (T -1043))
+((-4205 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-308)) (-5 *2 (-410 (-421 (-953 *4)))) (-5 *1 (-1043 *4)))))
+(-10 -7 (-15 -4205 ((-410 (-421 (-953 |#1|))) (-410 (-953 |#1|)))))
+((-2449 (((-645 (-1176)) (-410 (-953 |#1|))) 17)) (-2260 (((-410 (-1172 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1176)) 24)) (-2434 (((-410 (-953 |#1|)) (-410 (-1172 (-410 (-953 |#1|)))) (-1176)) 26)) (-3300 (((-3 (-1176) "failed") (-410 (-953 |#1|))) 20)) (-3140 (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-295 (-410 (-953 |#1|))))) 32) (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|)))) 33) (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-1176)) (-645 (-410 (-953 |#1|)))) 28) (((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|))) 29)) (-4101 (((-410 (-953 |#1|)) |#1|) 11)))
+(((-1044 |#1|) (-10 -7 (-15 -2449 ((-645 (-1176)) (-410 (-953 |#1|)))) (-15 -3300 ((-3 (-1176) "failed") (-410 (-953 |#1|)))) (-15 -2260 ((-410 (-1172 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1176))) (-15 -2434 ((-410 (-953 |#1|)) (-410 (-1172 (-410 (-953 |#1|)))) (-1176))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|)))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-1176)) (-645 (-410 (-953 |#1|))))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -4101 ((-410 (-953 |#1|)) |#1|))) (-559)) (T -1044))
+((-4101 (*1 *2 *3) (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-1044 *3)) (-4 *3 (-559)))) (-3140 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-953 *4))))) (-5 *2 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *1 (-1044 *4)))) (-3140 (*1 *2 *2 *3) (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-5 *2 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *1 (-1044 *4)))) (-3140 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-645 (-1176))) (-5 *4 (-645 (-410 (-953 *5)))) (-5 *2 (-410 (-953 *5))) (-4 *5 (-559)) (-5 *1 (-1044 *5)))) (-3140 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-1044 *4)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-1172 (-410 (-953 *5))))) (-5 *4 (-1176)) (-5 *2 (-410 (-953 *5))) (-5 *1 (-1044 *5)) (-4 *5 (-559)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-559)) (-5 *2 (-410 (-1172 (-410 (-953 *5))))) (-5 *1 (-1044 *5)) (-5 *3 (-410 (-953 *5))))) (-3300 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-1176)) (-5 *1 (-1044 *4)))) (-2449 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1176))) (-5 *1 (-1044 *4)))))
+(-10 -7 (-15 -2449 ((-645 (-1176)) (-410 (-953 |#1|)))) (-15 -3300 ((-3 (-1176) "failed") (-410 (-953 |#1|)))) (-15 -2260 ((-410 (-1172 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1176))) (-15 -2434 ((-410 (-953 |#1|)) (-410 (-1172 (-410 (-953 |#1|)))) (-1176))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|)))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-1176)) (-645 (-410 (-953 |#1|))))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-295 (-410 (-953 |#1|))))) (-15 -3140 ((-410 (-953 |#1|)) (-410 (-953 |#1|)) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -4101 ((-410 (-953 |#1|)) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4061 (($) 18 T CONST)) (-4287 ((|#1| $) 23)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2290 ((|#1| $) 22)) (-3974 ((|#1|) 20 T CONST)) (-4101 (((-863) $) 12)) (-1556 ((|#1| $) 21)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16)))
(((-1045 |#1|) (-140) (-23)) (T -1045))
-((-2148 (*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))))
-(-13 (-1044 |t#1|) (-10 -8 (-15 -2148 ($) -3854)))
-(((-23) . T) ((-25) . T) ((-102) . T) ((-613 (-862)) . T) ((-1044 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 (-780 |#1| (-864 |#2|)))))) (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-3599 (((-644 $) (-644 (-780 |#1| (-864 |#2|)))) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112)) NIL)) (-4170 (((-644 (-864 |#2|)) $) NIL)) (-1323 (((-112) $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-558)))) (-2664 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-3351 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2885 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -3860 $))) (-780 |#1| (-864 |#2|)) $) NIL)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ (-864 |#2|)) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3281 (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 (-780 |#1| (-864 |#2|)) "failed") $ (-864 |#2|)) NIL)) (-2633 (($) NIL T CONST)) (-1740 (((-112) $) NIL (|has| |#1| (-558)))) (-3807 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1312 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1407 (((-112) $) NIL (|has| |#1| (-558)))) (-2924 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-4185 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-2557 (((-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-3343 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-3781 (((-3 $ "failed") $) NIL)) (-1673 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-1752 (($ (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-4315 (((-112) (-780 |#1| (-864 |#2|)) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-3427 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-2553 (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $ (-780 |#1| (-864 |#2|))) NIL (|has| $ (-6 -4415))) (((-780 |#1| (-864 |#2|)) (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-3706 (((-2 (|:| -2482 (-644 (-780 |#1| (-864 |#2|)))) (|:| -3099 (-644 (-780 |#1| (-864 |#2|))))) $) NIL)) (-1733 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-2509 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-2511 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1523 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3492 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-3779 (((-864 |#2|) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-3023 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) $) NIL)) (-2054 (((-644 (-864 |#2|)) $) NIL)) (-2314 (((-112) (-864 |#2|) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-2245 (((-3 (-780 |#1| (-864 |#2|)) (-644 $)) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1665 (((-644 (-2 (|:| |val| (-780 |#1| (-864 |#2|))) (|:| -3860 $))) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1774 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-2932 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL)) (-3439 (((-3 (-112) (-644 $)) (-780 |#1| (-864 |#2|)) $) NIL)) (-3669 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-1799 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL)) (-4200 (($ (-780 |#1| (-864 |#2|)) $) NIL) (($ (-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-3304 (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-2751 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-1642 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-4249 (((-112) $ $) NIL)) (-1670 (((-2 (|:| |num| (-780 |#1| (-864 |#2|))) (|:| |den| |#1|)) (-780 |#1| (-864 |#2|)) $) NIL (|has| |#1| (-558)))) (-2927 (((-112) (-780 |#1| (-864 |#2|)) $) NIL) (((-112) $) NIL)) (-2117 (((-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)) $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-3 (-780 |#1| (-864 |#2|)) "failed") $) NIL)) (-3567 (((-3 (-780 |#1| (-864 |#2|)) "failed") (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL)) (-3521 (((-3 $ "failed") $ (-780 |#1| (-864 |#2|))) NIL)) (-3964 (($ $ (-780 |#1| (-864 |#2|))) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-1900 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-780 |#1| (-864 |#2|))) (-644 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-295 (-780 |#1| (-864 |#2|)))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (($ $ (-644 (-295 (-780 |#1| (-864 |#2|))))) NIL (-12 (|has| (-780 |#1| (-864 |#2|)) (-310 (-780 |#1| (-864 |#2|)))) (|has| (-780 |#1| (-864 |#2|)) (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3838 (((-771) $) NIL)) (-1958 (((-771) (-780 |#1| (-864 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-780 |#1| (-864 |#2|)) (-1099)))) (((-771) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-780 |#1| (-864 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-780 |#1| (-864 |#2|)))) NIL)) (-3317 (($ $ (-864 |#2|)) NIL)) (-3756 (($ $ (-864 |#2|)) NIL)) (-2352 (($ $) NIL)) (-1811 (($ $ (-864 |#2|)) NIL)) (-2725 (((-862) $) NIL) (((-644 (-780 |#1| (-864 |#2|))) $) NIL)) (-3526 (((-771) $) NIL (|has| (-864 |#2|) (-370)))) (-1479 (((-112) $ $) NIL)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 (-780 |#1| (-864 |#2|))))) "failed") (-644 (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|))) (-1 (-112) (-780 |#1| (-864 |#2|)) (-780 |#1| (-864 |#2|)))) NIL)) (-2181 (((-112) $ (-1 (-112) (-780 |#1| (-864 |#2|)) (-644 (-780 |#1| (-864 |#2|))))) NIL)) (-3735 (((-644 $) (-780 |#1| (-864 |#2|)) $) NIL) (((-644 $) (-780 |#1| (-864 |#2|)) (-644 $)) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) $) NIL) (((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-644 $)) NIL)) (-2610 (((-112) (-1 (-112) (-780 |#1| (-864 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-1427 (((-644 (-864 |#2|)) $) NIL)) (-1950 (((-112) (-780 |#1| (-864 |#2|)) $) NIL)) (-3314 (((-112) (-864 |#2|) $) NIL)) (-2817 (((-112) $ $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1046 |#1| |#2|) (-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -3599 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112))))) (-454) (-644 (-1175))) (T -1046))
-((-3599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454)) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1046 *5 *6)))))
-(-13 (-1070 |#1| (-533 (-864 |#2|)) (-864 |#2|) (-780 |#1| (-864 |#2|))) (-10 -8 (-15 -3599 ((-644 $) (-644 (-780 |#1| (-864 |#2|))) (-112) (-112)))))
-((-3126 (((-1 (-566)) (-1093 (-566))) 32)) (-4324 (((-566) (-566) (-566) (-566) (-566)) 29)) (-3768 (((-1 (-566)) |RationalNumber|) NIL)) (-4287 (((-1 (-566)) |RationalNumber|) NIL)) (-1672 (((-1 (-566)) (-566) |RationalNumber|) NIL)))
-(((-1047) (-10 -7 (-15 -3126 ((-1 (-566)) (-1093 (-566)))) (-15 -1672 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -3768 ((-1 (-566)) |RationalNumber|)) (-15 -4287 ((-1 (-566)) |RationalNumber|)) (-15 -4324 ((-566) (-566) (-566) (-566) (-566))))) (T -1047))
-((-4324 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047)))) (-4287 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-3768 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))) (-1672 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)) (-5 *3 (-566)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))))
-(-10 -7 (-15 -3126 ((-1 (-566)) (-1093 (-566)))) (-15 -1672 ((-1 (-566)) (-566) |RationalNumber|)) (-15 -3768 ((-1 (-566)) |RationalNumber|)) (-15 -4287 ((-1 (-566)) |RationalNumber|)) (-15 -4324 ((-566) (-566) (-566) (-566) (-566))))
-((-2725 (((-862) $) NIL) (($ (-566)) 10)))
-(((-1048 |#1|) (-10 -8 (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-1049)) (T -1048))
-NIL
-(-10 -8 (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-1049) (-140)) (T -1049))
-((-2875 (*1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-771)))))
-(-13 (-1057) (-726) (-648 $) (-616 (-566)) (-10 -7 (-15 -2875 ((-771)) -3854) (-6 -4412)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-616 (-566)) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-726) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-1334 (((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)) 60)))
-(((-1050 |#1| |#2|) (-10 -7 (-15 -1334 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771)))) (-1175) (-365)) (T -1050))
-((-1334 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365)) (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175)))))
-(-10 -7 (-15 -1334 ((-409 (-952 |#2|)) (-644 |#2|) (-644 |#2|) (-771) (-771))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 15)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 16 T CONST)) (-2817 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
-(((-1051 |#1|) (-140) (-1057)) (T -1051))
-((-3200 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057)))))
-(-13 (-1099) (-10 -8 (-15 (-3200) ($) -3854) (-15 -3545 ((-112) $)) (-15 * ($ $ |t#1|))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-2192 (((-112) $) 40)) (-2988 (((-112) $) 17)) (-2368 (((-771) $) 13)) (-2378 (((-771) $) 14)) (-3988 (((-112) $) 30)) (-4004 (((-112) $) 42)))
-(((-1052 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2378 ((-771) |#1|)) (-15 -2368 ((-771) |#1|)) (-15 -4004 ((-112) |#1|)) (-15 -2192 ((-112) |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -2988 ((-112) |#1|))) (-1053 |#2| |#3| |#4| |#5| |#6|) (-771) (-771) (-1049) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1052))
-NIL
-(-10 -8 (-15 -2378 ((-771) |#1|)) (-15 -2368 ((-771) |#1|)) (-15 -4004 ((-112) |#1|)) (-15 -2192 ((-112) |#1|)) (-15 -3988 ((-112) |#1|)) (-15 -2988 ((-112) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2192 (((-112) $) 56)) (-4113 (((-3 $ "failed") $ $) 20)) (-2988 (((-112) $) 58)) (-2261 (((-112) $ (-771)) 66)) (-2633 (($) 18 T CONST)) (-2594 (($ $) 39 (|has| |#3| (-308)))) (-1703 ((|#4| $ (-566)) 44)) (-4153 (((-771) $) 38 (|has| |#3| (-558)))) (-2975 ((|#3| $ (-566) (-566)) 46)) (-1523 (((-644 |#3|) $) 73 (|has| $ (-6 -4415)))) (-2883 (((-771) $) 37 (|has| |#3| (-558)))) (-3260 (((-644 |#5|) $) 36 (|has| |#3| (-558)))) (-2368 (((-771) $) 50)) (-2378 (((-771) $) 49)) (-2429 (((-112) $ (-771)) 65)) (-2110 (((-566) $) 54)) (-4086 (((-566) $) 52)) (-2565 (((-644 |#3|) $) 74 (|has| $ (-6 -4415)))) (-3938 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4415))))) (-2952 (((-566) $) 53)) (-4280 (((-566) $) 51)) (-2656 (($ (-644 (-644 |#3|))) 59)) (-3023 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-3662 (((-644 (-644 |#3|)) $) 48)) (-1864 (((-112) $ (-771)) 64)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-558)))) (-1900 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#3|) (-644 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-4165 (((-112) $ $) 60)) (-4246 (((-112) $) 63)) (-3906 (($) 62)) (-3282 ((|#3| $ (-566) (-566)) 47) ((|#3| $ (-566) (-566) |#3|) 45)) (-3988 (((-112) $) 57)) (-1958 (((-771) |#3| $) 75 (-12 (|has| |#3| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4415)))) (-2878 (($ $) 61)) (-1428 ((|#5| $ (-566)) 43)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2610 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4415)))) (-4004 (((-112) $) 55)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-3991 (((-771) $) 67 (|has| $ (-6 -4415)))))
-(((-1053 |#1| |#2| |#3| |#4| |#5|) (-140) (-771) (-771) (-1049) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1053))
-((-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2656 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2988 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3988 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2192 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-4004 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-4280 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5))))) (-3282 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-2975 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))) (-3282 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-1703 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1428 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2101 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3967 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-558)))) (-2916 (*1 *1 *1 *2) (-12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-2594 (*1 *1 *1) (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-4153 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-771)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558)) (-5 *2 (-644 *7)))))
-(-13 (-111 |t#3| |t#3|) (-491 |t#3|) (-10 -8 (-6 -4415) (IF (|has| |t#3| (-172)) (-6 (-717 |t#3|)) |%noBranch|) (-15 -2656 ($ (-644 (-644 |t#3|)))) (-15 -2988 ((-112) $)) (-15 -3988 ((-112) $)) (-15 -2192 ((-112) $)) (-15 -4004 ((-112) $)) (-15 -2110 ((-566) $)) (-15 -2952 ((-566) $)) (-15 -4086 ((-566) $)) (-15 -4280 ((-566) $)) (-15 -2368 ((-771) $)) (-15 -2378 ((-771) $)) (-15 -3662 ((-644 (-644 |t#3|)) $)) (-15 -3282 (|t#3| $ (-566) (-566))) (-15 -2975 (|t#3| $ (-566) (-566))) (-15 -3282 (|t#3| $ (-566) (-566) |t#3|)) (-15 -1703 (|t#4| $ (-566))) (-15 -1428 (|t#5| $ (-566))) (-15 -2101 ($ (-1 |t#3| |t#3|) $)) (-15 -2101 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-558)) (-15 -3967 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -2916 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -2594 ($ $)) |%noBranch|) (IF (|has| |t#3| (-558)) (PROGN (-15 -4153 ((-771) $)) (-15 -2883 ((-771) $)) (-15 -3260 ((-644 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-613 (-862)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))) ((-491 |#3|) . T) ((-516 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))) ((-646 (-566)) . T) ((-646 |#3|) . T) ((-648 |#3|) . T) ((-640 |#3|) |has| |#3| (-172)) ((-717 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1056 |#3|) . T) ((-1099) . T) ((-1215) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2192 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2988 (((-112) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2633 (($) NIL T CONST)) (-2594 (($ $) 47 (|has| |#3| (-308)))) (-1703 (((-240 |#2| |#3|) $ (-566)) 36)) (-1581 (($ (-689 |#3|)) 45)) (-4153 (((-771) $) 49 (|has| |#3| (-558)))) (-2975 ((|#3| $ (-566) (-566)) NIL)) (-1523 (((-644 |#3|) $) NIL (|has| $ (-6 -4415)))) (-2883 (((-771) $) 51 (|has| |#3| (-558)))) (-3260 (((-644 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-558)))) (-2368 (((-771) $) NIL)) (-2378 (((-771) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2110 (((-566) $) NIL)) (-4086 (((-566) $) NIL)) (-2565 (((-644 |#3|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099))))) (-2952 (((-566) $) NIL)) (-4280 (((-566) $) NIL)) (-2656 (($ (-644 (-644 |#3|))) 31)) (-3023 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3662 (((-644 (-644 |#3|)) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-558)))) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#3| $ (-566) (-566)) NIL) ((|#3| $ (-566) (-566) |#3|) NIL)) (-4356 (((-134)) 59 (|has| |#3| (-365)))) (-3988 (((-112) $) NIL)) (-1958 (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099)))) (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) 65 (|has| |#3| (-614 (-538))))) (-1428 (((-240 |#1| |#3|) $ (-566)) 40)) (-2725 (((-862) $) 19) (((-689 |#3|) $) 42)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415)))) (-4004 (((-112) $) NIL)) (-3200 (($) 16 T CONST)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1054 |#1| |#2| |#3|) (-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1272 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -1581 ($ (-689 |#3|))))) (-771) (-771) (-1049)) (T -1054))
-((-1581 (*1 *1 *2) (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5)) (-14 *3 (-771)) (-14 *4 (-771)))))
-(-13 (-1053 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-613 (-689 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1272 |#3|)) |%noBranch|) (IF (|has| |#3| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|) (-15 -1581 ($ (-689 |#3|)))))
-((-2553 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2101 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
-(((-1055 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2101 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2553 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-771) (-771) (-1049) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1053 |#1| |#2| |#3| |#4| |#5|) (-1049) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1053 |#1| |#2| |#7| |#8| |#9|)) (T -1055))
-((-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1049)) (-4 *10 (-1049)) (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1053 *5 *6 *10 *11 *12)) (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
-(-10 -7 (-15 -2101 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2553 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ |#1|) 27)))
-(((-1056 |#1|) (-140) (-1057)) (T -1056))
-NIL
-(-13 (-21) (-1051 |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1051 |#1|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-1057) (-140)) (T -1057))
-NIL
-(-13 (-21) (-1111))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-1111) . T) ((-1099) . T))
-((-1807 (($ $) 17)) (-3995 (($ $) 25)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 55)) (-3202 (($ $) 27)) (-2941 (($ $) 12)) (-2311 (($ $) 43)) (-2150 (((-381) $) NIL) (((-225) $) NIL) (((-892 (-381)) $) 36)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL) (($ (-409 (-566))) 31) (($ (-566)) NIL) (($ (-409 (-566))) 31)) (-2875 (((-771)) 9)) (-2119 (($ $) 45)))
-(((-1058 |#1|) (-10 -8 (-15 -3995 (|#1| |#1|)) (-15 -1807 (|#1| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2119 (|#1| |#1|)) (-15 -3202 (|#1| |#1|)) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| (-566))) (-15 -2150 ((-225) |#1|)) (-15 -2150 ((-381) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| |#1|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-1059)) (T -1058))
-((-2875 (*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1058 *3)) (-4 *3 (-1059)))))
-(-10 -8 (-15 -3995 (|#1| |#1|)) (-15 -1807 (|#1| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -2311 (|#1| |#1|)) (-15 -2119 (|#1| |#1|)) (-15 -3202 (|#1| |#1|)) (-15 -2114 ((-889 (-381) |#1|) |#1| (-892 (-381)) (-889 (-381) |#1|))) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| (-566))) (-15 -2150 ((-225) |#1|)) (-15 -2150 ((-381) |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| |#1|)) (-15 -2875 ((-771))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4191 (((-566) $) 97)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-1807 (($ $) 95)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-4028 (($ $) 105)) (-2068 (((-112) $ $) 65)) (-1859 (((-566) $) 122)) (-2633 (($) 18 T CONST)) (-3995 (($ $) 94)) (-2023 (((-3 (-566) "failed") $) 110) (((-3 (-409 (-566)) "failed") $) 107)) (-3343 (((-566) $) 111) (((-409 (-566)) $) 108)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-1968 (((-112) $) 79)) (-3421 (((-112) $) 120)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 101)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 104)) (-3202 (($ $) 100)) (-2307 (((-112) $) 121)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-3075 (($ $ $) 119)) (-3936 (($ $ $) 118)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-2941 (($ $) 96)) (-2311 (($ $) 98)) (-4018 (((-420 $) $) 82)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2150 (((-381) $) 113) (((-225) $) 112) (((-892 (-381)) $) 102)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ (-566)) 109) (($ (-409 (-566))) 106)) (-2875 (((-771)) 32 T CONST)) (-2119 (($ $) 99)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-2274 (($ $) 123)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2865 (((-112) $ $) 116)) (-2844 (((-112) $ $) 115)) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 117)) (-2833 (((-112) $ $) 114)) (-2916 (($ $ $) 73)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77) (($ $ (-409 (-566))) 103)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75)))
-(((-1059) (-140)) (T -1059))
-((-2274 (*1 *1 *1) (-4 *1 (-1059))) (-3202 (*1 *1 *1) (-4 *1 (-1059))) (-2119 (*1 *1 *1) (-4 *1 (-1059))) (-2311 (*1 *1 *1) (-4 *1 (-1059))) (-4191 (*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566)))) (-2941 (*1 *1 *1) (-4 *1 (-1059))) (-1807 (*1 *1 *1) (-4 *1 (-1059))) (-3995 (*1 *1 *1) (-4 *1 (-1059))))
-(-13 (-365) (-848) (-1022) (-1038 (-566)) (-1038 (-409 (-566))) (-1002) (-614 (-892 (-381))) (-886 (-381)) (-147) (-10 -8 (-15 -3202 ($ $)) (-15 -2119 ($ $)) (-15 -2311 ($ $)) (-15 -4191 ((-566) $)) (-15 -2941 ($ $)) (-15 -1807 ($ $)) (-15 -3995 ($ $)) (-15 -2274 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-614 (-225)) . T) ((-614 (-381)) . T) ((-614 (-892 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 $) . T) ((-726) . T) ((-791) . T) ((-792) . T) ((-794) . T) ((-795) . T) ((-848) . T) ((-850) . T) ((-886 (-381)) . T) ((-920) . T) ((-1002) . T) ((-1022) . T) ((-1038 (-409 (-566))) . T) ((-1038 (-566)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) |#2| $) 26)) (-3733 ((|#1| $) 10)) (-1859 (((-566) |#2| $) 116)) (-2563 (((-3 $ "failed") |#2| (-921)) 75)) (-1627 ((|#1| $) 31)) (-4325 ((|#1| |#2| $ |#1|) 40)) (-2521 (($ $) 28)) (-2313 (((-3 |#2| "failed") |#2| $) 111)) (-3421 (((-112) |#2| $) NIL)) (-2307 (((-112) |#2| $) NIL)) (-4372 (((-112) |#2| $) 27)) (-1550 ((|#1| $) 117)) (-1616 ((|#1| $) 30)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2880 ((|#2| $) 102)) (-2725 (((-862) $) 92)) (-1479 (((-112) $ $) NIL)) (-1551 ((|#1| |#2| $ |#1|) 41)) (-3674 (((-644 $) |#2|) 77)) (-2817 (((-112) $ $) 97)))
-(((-1060 |#1| |#2|) (-13 (-1067 |#1| |#2|) (-10 -8 (-15 -1616 (|#1| $)) (-15 -1627 (|#1| $)) (-15 -3733 (|#1| $)) (-15 -1550 (|#1| $)) (-15 -2521 ($ $)) (-15 -4372 ((-112) |#2| $)) (-15 -4325 (|#1| |#2| $ |#1|)))) (-13 (-848) (-365)) (-1241 |#1|)) (T -1060))
-((-4325 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1241 *2)))) (-1616 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1241 *2)))) (-1627 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1241 *2)))) (-3733 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1241 *2)))) (-1550 (*1 *2 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1241 *2)))) (-2521 (*1 *1 *1) (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3)) (-4 *3 (-1241 *2)))) (-4372 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3)) (-4 *3 (-1241 *4)))))
-(-13 (-1067 |#1| |#2|) (-10 -8 (-15 -1616 (|#1| $)) (-15 -1627 (|#1| $)) (-15 -3733 (|#1| $)) (-15 -1550 (|#1| $)) (-15 -2521 ($ $)) (-15 -4372 ((-112) |#2| $)) (-15 -4325 (|#1| |#2| $ |#1|))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3523 (($ $ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4312 (($ $ $ $) NIL)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-1859 (((-566) $) NIL)) (-2724 (($ $ $) NIL)) (-2633 (($) NIL T CONST)) (-2463 (($ (-1175)) 10) (($ (-566)) 7)) (-2023 (((-3 (-566) "failed") $) NIL)) (-3343 (((-566) $) NIL)) (-3919 (($ $ $) NIL)) (-3717 (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-689 (-566)) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL)) (-1929 (((-112) $) NIL)) (-1847 (((-409 (-566)) $) NIL)) (-3424 (($) NIL) (($ $) NIL)) (-3930 (($ $ $) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-1826 (($ $ $ $) NIL)) (-3042 (($ $ $) NIL)) (-3421 (((-112) $) NIL)) (-1549 (($ $ $) NIL)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3842 (((-112) $) NIL)) (-1687 (((-112) $) NIL)) (-3869 (((-3 $ "failed") $) NIL)) (-2307 (((-112) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2485 (($ $ $ $) NIL)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-2086 (($ $) NIL)) (-1653 (($ $) NIL)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-2063 (($ $ $) NIL)) (-1342 (($) NIL T CONST)) (-3517 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) NIL) (($ (-644 $)) NIL)) (-2062 (($ $) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3934 (((-112) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-3009 (($ $ (-771)) NIL) (($ $) NIL)) (-4302 (($ $) NIL)) (-2878 (($ $) NIL)) (-2150 (((-566) $) 16) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1175)) 9)) (-2725 (((-862) $) 23) (($ (-566)) 6) (($ $) NIL) (($ (-566)) 6)) (-2875 (((-771)) NIL T CONST)) (-1761 (((-112) $ $) NIL)) (-1672 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-1792 (($) NIL)) (-1597 (((-112) $ $) NIL)) (-1804 (($ $ $ $) NIL)) (-2274 (($ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)) (-2905 (($ $) 22) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL)))
-(((-1061) (-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4402) (-6 -4407) (-6 -4403) (-15 -2463 ($ (-1175))) (-15 -2463 ($ (-566)))))) (T -1061))
-((-2463 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061)))) (-2463 (*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061)))))
-(-13 (-547) (-618 (-1175)) (-10 -8 (-6 -4402) (-6 -4407) (-6 -4403) (-15 -2463 ($ (-1175))) (-15 -2463 ($ (-566)))))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL)) (-2506 (((-1270) $ (-1175) (-1175)) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-3353 (($) 9)) (-2858 (((-52) $ (-1175) (-52)) NIL)) (-3615 (($ $) 32)) (-2095 (($ $) 30)) (-2561 (($ $) 29)) (-2258 (($ $) 31)) (-2377 (($ $) 35)) (-3147 (($ $) 36)) (-2622 (($ $) 28)) (-2052 (($ $) 33)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) 27 (|has| $ (-6 -4415)))) (-2629 (((-3 (-52) "failed") (-1175) $) 43)) (-2633 (($) NIL T CONST)) (-3024 (($) 7)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-2367 (($ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) 53 (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-3 (-52) "failed") (-1175) $) NIL)) (-1752 (($ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415)))) (-2324 (((-3 (-1157) "failed") $ (-1157) (-566)) 74)) (-3031 (((-52) $ (-1175) (-52)) NIL (|has| $ (-6 -4416)))) (-2975 (((-52) $ (-1175)) NIL)) (-1523 (((-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-644 (-52)) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-1175) $) NIL (|has| (-1175) (-850)))) (-2565 (((-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) 38 (|has| $ (-6 -4415))) (((-644 (-52)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099))))) (-2605 (((-1175) $) NIL (|has| (-1175) (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-2838 (((-644 (-1175)) $) NIL)) (-3932 (((-112) (-1175) $) NIL)) (-2668 (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL)) (-1619 (($ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) 46)) (-4063 (((-644 (-1175)) $) NIL)) (-3054 (((-112) (-1175) $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-1639 (((-381) $ (-1175)) 52)) (-2224 (((-644 (-1157)) $ (-1157)) 76)) (-3771 (((-52) $) NIL (|has| (-1175) (-850)))) (-3567 (((-3 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) "failed") (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL)) (-3598 (($ $ (-52)) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-295 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL (-12 (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-310 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (($ $ (-644 (-52)) (-644 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099)))) (($ $ (-644 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099))))) (-1948 (((-644 (-52)) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 (((-52) $ (-1175)) NIL) (((-52) $ (-1175) (-52)) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL)) (-1700 (($ $ (-1175)) 54)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099)))) (((-771) (-52) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-52) (-1099)))) (((-771) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) 40)) (-4007 (($ $ $) 41)) (-2725 (((-862) $) NIL (-2676 (|has| (-52) (-613 (-862))) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-613 (-862)))))) (-4285 (($ $ (-1175) (-381)) 50)) (-2177 (($ $ (-1175) (-381)) 51)) (-1479 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 (-1175)) (|:| -2484 (-52)))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-52) (-1099)) (|has| (-2 (|:| -3476 (-1175)) (|:| -2484 (-52))) (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1062) (-13 (-1191 (-1175) (-52)) (-10 -8 (-15 -4007 ($ $ $)) (-15 -3024 ($)) (-15 -2622 ($ $)) (-15 -2561 ($ $)) (-15 -2095 ($ $)) (-15 -2258 ($ $)) (-15 -2052 ($ $)) (-15 -3615 ($ $)) (-15 -2377 ($ $)) (-15 -3147 ($ $)) (-15 -4285 ($ $ (-1175) (-381))) (-15 -2177 ($ $ (-1175) (-381))) (-15 -1639 ((-381) $ (-1175))) (-15 -2224 ((-644 (-1157)) $ (-1157))) (-15 -1700 ($ $ (-1175))) (-15 -3353 ($)) (-15 -2324 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4415)))) (T -1062))
-((-4007 (*1 *1 *1 *1) (-5 *1 (-1062))) (-3024 (*1 *1) (-5 *1 (-1062))) (-2622 (*1 *1 *1) (-5 *1 (-1062))) (-2561 (*1 *1 *1) (-5 *1 (-1062))) (-2095 (*1 *1 *1) (-5 *1 (-1062))) (-2258 (*1 *1 *1) (-5 *1 (-1062))) (-2052 (*1 *1 *1) (-5 *1 (-1062))) (-3615 (*1 *1 *1) (-5 *1 (-1062))) (-2377 (*1 *1 *1) (-5 *1 (-1062))) (-3147 (*1 *1 *1) (-5 *1 (-1062))) (-4285 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-2177 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))) (-1639 (*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062)))) (-3353 (*1 *1) (-5 *1 (-1062))) (-2324 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062)))))
-(-13 (-1191 (-1175) (-52)) (-10 -8 (-15 -4007 ($ $ $)) (-15 -3024 ($)) (-15 -2622 ($ $)) (-15 -2561 ($ $)) (-15 -2095 ($ $)) (-15 -2258 ($ $)) (-15 -2052 ($ $)) (-15 -3615 ($ $)) (-15 -2377 ($ $)) (-15 -3147 ($ $)) (-15 -4285 ($ $ (-1175) (-381))) (-15 -2177 ($ $ (-1175) (-381))) (-15 -1639 ((-381) $ (-1175))) (-15 -2224 ((-644 (-1157)) $ (-1157))) (-15 -1700 ($ $ (-1175))) (-15 -3353 ($)) (-15 -2324 ((-3 (-1157) "failed") $ (-1157) (-566))) (-6 -4415)))
-((-1829 (($ $) 46)) (-3335 (((-112) $ $) 82)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-952 (-409 (-566)))) 253) (((-3 $ "failed") (-952 (-566))) 252) (((-3 $ "failed") (-952 |#2|)) 255)) (-3343 ((|#2| $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL) ((|#4| $) NIL) (($ (-952 (-409 (-566)))) 241) (($ (-952 (-566))) 237) (($ (-952 |#2|)) 257)) (-4358 (($ $) NIL) (($ $ |#4|) 44)) (-4315 (((-112) $ $) 131) (((-112) $ (-644 $)) 135)) (-1588 (((-112) $) 60)) (-2772 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 125)) (-1883 (($ $) 160)) (-1444 (($ $) 156)) (-4259 (($ $) 155)) (-1341 (($ $ $) 87) (($ $ $ |#4|) 92)) (-3369 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3492 (((-112) $ $) 143) (((-112) $ (-644 $)) 144)) (-3779 ((|#4| $) 32)) (-3867 (($ $ $) 128)) (-3518 (((-112) $) 59)) (-1680 (((-771) $) 35)) (-3814 (($ $) 174)) (-3455 (($ $) 171)) (-3379 (((-644 $) $) 72)) (-1612 (($ $) 62)) (-1433 (($ $) 167)) (-3593 (((-644 $) $) 69)) (-3173 (($ $) 64)) (-4334 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1960 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3136 (-771))) $ $) 130)) (-1999 (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $) 126) (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $ |#4|) 127)) (-3640 (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $) 121) (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $ |#4|) 123)) (-3238 (($ $ $) 97) (($ $ $ |#4|) 106)) (-1905 (($ $ $) 98) (($ $ $ |#4|) 107)) (-3412 (((-644 $) $) 54)) (-2751 (((-112) $ $) 140) (((-112) $ (-644 $)) 141)) (-1642 (($ $ $) 116)) (-1342 (($ $) 37)) (-4249 (((-112) $ $) 80)) (-2927 (((-112) $ $) 136) (((-112) $ (-644 $)) 138)) (-2117 (($ $ $) 112)) (-3096 (($ $) 41)) (-1885 ((|#2| |#2| $) 164) (($ (-644 $)) NIL) (($ $ $) NIL)) (-2069 (($ $ |#2|) NIL) (($ $ $) 153)) (-3575 (($ $ |#2|) 148) (($ $ $) 151)) (-2910 (($ $) 49)) (-3851 (($ $) 55)) (-2150 (((-892 (-381)) $) NIL) (((-892 (-566)) $) NIL) (((-538) $) NIL) (($ (-952 (-409 (-566)))) 243) (($ (-952 (-566))) 239) (($ (-952 |#2|)) 254) (((-1157) $) 281) (((-952 |#2|) $) 184)) (-2725 (((-862) $) 29) (($ (-566)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-952 |#2|) $) 185) (($ (-409 (-566))) NIL) (($ $) NIL)) (-2082 (((-3 (-112) "failed") $ $) 79)))
-(((-1063 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2725 (|#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1885 (|#1| (-644 |#1|))) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 ((-952 |#2|) |#1|)) (-15 -2150 ((-952 |#2|) |#1|)) (-15 -2150 ((-1157) |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -1885 (|#2| |#2| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#2|)) (-15 -3575 (|#1| |#1| |#2|)) (-15 -1444 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -2150 (|#1| (-952 |#2|))) (-15 -3343 (|#1| (-952 |#2|))) (-15 -2023 ((-3 |#1| "failed") (-952 |#2|))) (-15 -2150 (|#1| (-952 (-566)))) (-15 -3343 (|#1| (-952 (-566)))) (-15 -2023 ((-3 |#1| "failed") (-952 (-566)))) (-15 -2150 (|#1| (-952 (-409 (-566))))) (-15 -3343 (|#1| (-952 (-409 (-566))))) (-15 -2023 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2117 (|#1| |#1| |#1|)) (-15 -1960 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3136 (-771))) |#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -2772 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1999 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1| |#4|)) (-15 -1999 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -3640 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -3033 |#1|)) |#1| |#1| |#4|)) (-15 -3640 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1905 (|#1| |#1| |#1| |#4|)) (-15 -3238 (|#1| |#1| |#1| |#4|)) (-15 -1905 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1| |#4|)) (-15 -1341 (|#1| |#1| |#1| |#4|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -1341 (|#1| |#1| |#1|)) (-15 -3492 ((-112) |#1| (-644 |#1|))) (-15 -3492 ((-112) |#1| |#1|)) (-15 -2751 ((-112) |#1| (-644 |#1|))) (-15 -2751 ((-112) |#1| |#1|)) (-15 -2927 ((-112) |#1| (-644 |#1|))) (-15 -2927 ((-112) |#1| |#1|)) (-15 -4315 ((-112) |#1| (-644 |#1|))) (-15 -4315 ((-112) |#1| |#1|)) (-15 -3335 ((-112) |#1| |#1|)) (-15 -4249 ((-112) |#1| |#1|)) (-15 -2082 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3379 ((-644 |#1|) |#1|)) (-15 -3593 ((-644 |#1|) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1588 ((-112) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -4358 (|#1| |#1| |#4|)) (-15 -4334 (|#1| |#1| |#4|)) (-15 -3851 (|#1| |#1|)) (-15 -3412 ((-644 |#1|) |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -1680 ((-771) |#1|)) (-15 -3779 (|#4| |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2725 (|#1| |#4|)) (-15 -2023 ((-3 |#4| "failed") |#1|)) (-15 -3343 (|#4| |#1|)) (-15 -4334 (|#2| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-1064 |#2| |#3| |#4|) (-1049) (-793) (-850)) (T -1063))
-NIL
-(-10 -8 (-15 -2725 (|#1| |#1|)) (-15 -1885 (|#1| |#1| |#1|)) (-15 -1885 (|#1| (-644 |#1|))) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 ((-952 |#2|) |#1|)) (-15 -2150 ((-952 |#2|) |#1|)) (-15 -2150 ((-1157) |#1|)) (-15 -3814 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -1433 (|#1| |#1|)) (-15 -1883 (|#1| |#1|)) (-15 -1885 (|#2| |#2| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -3575 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#2|)) (-15 -3575 (|#1| |#1| |#2|)) (-15 -1444 (|#1| |#1|)) (-15 -4259 (|#1| |#1|)) (-15 -2150 (|#1| (-952 |#2|))) (-15 -3343 (|#1| (-952 |#2|))) (-15 -2023 ((-3 |#1| "failed") (-952 |#2|))) (-15 -2150 (|#1| (-952 (-566)))) (-15 -3343 (|#1| (-952 (-566)))) (-15 -2023 ((-3 |#1| "failed") (-952 (-566)))) (-15 -2150 (|#1| (-952 (-409 (-566))))) (-15 -3343 (|#1| (-952 (-409 (-566))))) (-15 -2023 ((-3 |#1| "failed") (-952 (-409 (-566))))) (-15 -1642 (|#1| |#1| |#1|)) (-15 -2117 (|#1| |#1| |#1|)) (-15 -1960 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3136 (-771))) |#1| |#1|)) (-15 -3867 (|#1| |#1| |#1|)) (-15 -2772 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1999 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1| |#4|)) (-15 -1999 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -3640 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -3033 |#1|)) |#1| |#1| |#4|)) (-15 -3640 ((-2 (|:| -1702 |#1|) (|:| |gap| (-771)) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1905 (|#1| |#1| |#1| |#4|)) (-15 -3238 (|#1| |#1| |#1| |#4|)) (-15 -1905 (|#1| |#1| |#1|)) (-15 -3238 (|#1| |#1| |#1|)) (-15 -3369 (|#1| |#1| |#1| |#4|)) (-15 -1341 (|#1| |#1| |#1| |#4|)) (-15 -3369 (|#1| |#1| |#1|)) (-15 -1341 (|#1| |#1| |#1|)) (-15 -3492 ((-112) |#1| (-644 |#1|))) (-15 -3492 ((-112) |#1| |#1|)) (-15 -2751 ((-112) |#1| (-644 |#1|))) (-15 -2751 ((-112) |#1| |#1|)) (-15 -2927 ((-112) |#1| (-644 |#1|))) (-15 -2927 ((-112) |#1| |#1|)) (-15 -4315 ((-112) |#1| (-644 |#1|))) (-15 -4315 ((-112) |#1| |#1|)) (-15 -3335 ((-112) |#1| |#1|)) (-15 -4249 ((-112) |#1| |#1|)) (-15 -2082 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3379 ((-644 |#1|) |#1|)) (-15 -3593 ((-644 |#1|) |#1|)) (-15 -3173 (|#1| |#1|)) (-15 -1612 (|#1| |#1|)) (-15 -1588 ((-112) |#1|)) (-15 -3518 ((-112) |#1|)) (-15 -4358 (|#1| |#1| |#4|)) (-15 -4334 (|#1| |#1| |#4|)) (-15 -3851 (|#1| |#1|)) (-15 -3412 ((-644 |#1|) |#1|)) (-15 -2910 (|#1| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -3096 (|#1| |#1|)) (-15 -1342 (|#1| |#1|)) (-15 -1680 ((-771) |#1|)) (-15 -3779 (|#4| |#1|)) (-15 -2150 ((-538) |#1|)) (-15 -2150 ((-892 (-566)) |#1|)) (-15 -2150 ((-892 (-381)) |#1|)) (-15 -2725 (|#1| |#4|)) (-15 -2023 ((-3 |#4| "failed") |#1|)) (-15 -3343 (|#4| |#1|)) (-15 -4334 (|#2| |#1|)) (-15 -4358 (|#1| |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 |#3|) $) 112)) (-3983 (((-1171 $) $ |#3|) 127) (((-1171 |#1|) $) 126)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-1780 (($ $) 90 (|has| |#1| (-558)))) (-3286 (((-112) $) 92 (|has| |#1| (-558)))) (-3915 (((-771) $) 114) (((-771) $ (-644 |#3|)) 113)) (-1829 (($ $) 273)) (-3335 (((-112) $ $) 259)) (-4113 (((-3 $ "failed") $ $) 20)) (-3921 (($ $ $) 218 (|has| |#1| (-558)))) (-3161 (((-644 $) $ $) 213 (|has| |#1| (-558)))) (-4350 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-2885 (($ $) 100 (|has| |#1| (-454)))) (-2555 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-952 (-409 (-566)))) 233 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (((-3 $ "failed") (-952 (-566))) 230 (-2676 (-12 (-3129 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (((-3 $ "failed") (-952 |#1|)) 227 (-2676 (-12 (-3129 (|has| |#1| (-38 (-409 (-566))))) (-3129 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-3129 (|has| |#1| (-547))) (-3129 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-3129 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-3343 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) ((|#3| $) 139) (($ (-952 (-409 (-566)))) 232 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 229 (-2676 (-12 (-3129 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 226 (-2676 (-12 (-3129 (|has| |#1| (-38 (-409 (-566))))) (-3129 (|has| |#1| (-38 (-566)))) (|has| |#3| (-614 (-1175)))) (-12 (-3129 (|has| |#1| (-547))) (-3129 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (-3129 (|has| |#1| (-992 (-566)))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))))) (-2994 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-558)))) (-4358 (($ $) 156) (($ $ |#3|) 268)) (-3717 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-4315 (((-112) $ $) 258) (((-112) $ (-644 $)) 257)) (-2313 (((-3 $ "failed") $) 37)) (-1588 (((-112) $) 266)) (-2772 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 238)) (-1883 (($ $) 207 (|has| |#1| (-454)))) (-1520 (($ $) 178 (|has| |#1| (-454))) (($ $ |#3|) 107 (|has| |#1| (-454)))) (-4346 (((-644 $) $) 111)) (-1968 (((-112) $) 98 (|has| |#1| (-909)))) (-1444 (($ $) 223 (|has| |#1| (-558)))) (-4259 (($ $) 224 (|has| |#1| (-558)))) (-1341 (($ $ $) 250) (($ $ $ |#3|) 248)) (-3369 (($ $ $) 249) (($ $ $ |#3|) 247)) (-2385 (($ $ |#1| |#2| $) 174)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| |#3| (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| |#3| (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3842 (((-112) $) 35)) (-2436 (((-771) $) 171)) (-3492 (((-112) $ $) 252) (((-112) $ (-644 $)) 251)) (-3435 (($ $ $ $ $) 209 (|has| |#1| (-558)))) (-3779 ((|#3| $) 277)) (-4157 (($ (-1171 |#1|) |#3|) 119) (($ (-1171 $) |#3|) 118)) (-2966 (((-644 $) $) 128)) (-3819 (((-112) $) 154)) (-4145 (($ |#1| |#2|) 155) (($ $ |#3| (-771)) 121) (($ $ (-644 |#3|) (-644 (-771))) 120)) (-3867 (($ $ $) 237)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |#3|) 122)) (-3518 (((-112) $) 267)) (-4090 ((|#2| $) 172) (((-771) $ |#3|) 124) (((-644 (-771)) $ (-644 |#3|)) 123)) (-1680 (((-771) $) 276)) (-1336 (($ (-1 |#2| |#2|) $) 173)) (-2101 (($ (-1 |#1| |#1|) $) 153)) (-1742 (((-3 |#3| "failed") $) 125)) (-3814 (($ $) 204 (|has| |#1| (-454)))) (-3455 (($ $) 205 (|has| |#1| (-454)))) (-3379 (((-644 $) $) 262)) (-1612 (($ $) 265)) (-1433 (($ $) 206 (|has| |#1| (-454)))) (-3593 (((-644 $) $) 263)) (-3173 (($ $) 264)) (-4323 (($ $) 151)) (-4334 ((|#1| $) 150) (($ $ |#3|) 269)) (-1853 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-1960 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3136 (-771))) $ $) 236)) (-1999 (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $) 240) (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $ |#3|) 239)) (-3640 (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $) 242) (((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $ |#3|) 241)) (-3238 (($ $ $) 246) (($ $ $ |#3|) 244)) (-1905 (($ $ $) 245) (($ $ $ |#3|) 243)) (-1390 (((-1157) $) 10)) (-1665 (($ $ $) 212 (|has| |#1| (-558)))) (-3412 (((-644 $) $) 271)) (-2684 (((-3 (-644 $) "failed") $) 116)) (-1660 (((-3 (-644 $) "failed") $) 117)) (-2544 (((-3 (-2 (|:| |var| |#3|) (|:| -3428 (-771))) "failed") $) 115)) (-2751 (((-112) $ $) 254) (((-112) $ (-644 $)) 253)) (-1642 (($ $ $) 234)) (-1342 (($ $) 275)) (-4249 (((-112) $ $) 260)) (-2927 (((-112) $ $) 256) (((-112) $ (-644 $)) 255)) (-2117 (($ $ $) 235)) (-3096 (($ $) 274)) (-1944 (((-1119) $) 11)) (-2595 (((-2 (|:| -1885 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-558)))) (-2303 (((-2 (|:| -1885 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-558)))) (-4290 (((-112) $) 168)) (-4307 ((|#1| $) 169)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-1885 ((|#1| |#1| $) 208 (|has| |#1| (-454))) (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-4018 (((-420 $) $) 101 (|has| |#1| (-909)))) (-3708 (((-2 (|:| -1885 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-558)))) (-3967 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-2069 (($ $ |#1|) 221 (|has| |#1| (-558))) (($ $ $) 219 (|has| |#1| (-558)))) (-3575 (($ $ |#1|) 222 (|has| |#1| (-558))) (($ $ $) 220 (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-644 |#3|) (-644 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-644 |#3|) (-644 $)) 140)) (-2061 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-3009 (($ $ |#3|) 46) (($ $ (-644 |#3|)) 45) (($ $ |#3| (-771)) 44) (($ $ (-644 |#3|) (-644 (-771))) 43)) (-3838 ((|#2| $) 152) (((-771) $ |#3|) 132) (((-644 (-771)) $ (-644 |#3|)) 131)) (-2910 (($ $) 272)) (-3851 (($ $) 270)) (-2150 (((-892 (-381)) $) 84 (-12 (|has| |#3| (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| |#3| (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| |#3| (-614 (-538))) (|has| |#1| (-614 (-538))))) (($ (-952 (-409 (-566)))) 231 (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175))))) (($ (-952 (-566))) 228 (-2676 (-12 (-3129 (|has| |#1| (-38 (-409 (-566))))) (|has| |#1| (-38 (-566))) (|has| |#3| (-614 (-1175)))) (-12 (|has| |#1| (-38 (-409 (-566)))) (|has| |#3| (-614 (-1175)))))) (($ (-952 |#1|)) 225 (|has| |#3| (-614 (-1175)))) (((-1157) $) 203 (-12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175))))) (((-952 |#1|) $) 202 (|has| |#3| (-614 (-1175))))) (-4330 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ |#3|) 108 (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 106 (-3144 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-952 |#1|) $) 201 (|has| |#3| (-614 (-1175)))) (($ (-409 (-566))) 80 (-2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) 170)) (-3623 ((|#1| $ |#2|) 157) (($ $ |#3| (-771)) 130) (($ $ (-644 |#3|) (-644 (-771))) 129)) (-2655 (((-3 $ "failed") $) 81 (-2676 (-3144 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) 32 T CONST)) (-3977 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 91 (|has| |#1| (-558)))) (-3200 (($) 19 T CONST)) (-2082 (((-3 (-112) "failed") $ $) 261)) (-3214 (($) 34 T CONST)) (-2146 (($ $ $ $ (-771)) 210 (|has| |#1| (-558)))) (-1878 (($ $ $ (-771)) 211 (|has| |#1| (-558)))) (-1316 (($ $ |#3|) 42) (($ $ (-644 |#3|)) 41) (($ $ |#3| (-771)) 40) (($ $ (-644 |#3|) (-644 (-771))) 39)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1064 |#1| |#2| |#3|) (-140) (-1049) (-793) (-850)) (T -1064))
-((-3779 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1680 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-771)))) (-1342 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3096 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1829 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2910 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3412 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-3851 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-4334 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-4358 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-1612 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3173 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3593 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-3379 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-2082 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-4249 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3335 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-4315 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-4315 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2927 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-2751 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-2751 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-3492 (*1 *2 *1 *1) (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))) (-3492 (*1 *2 *1 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)))) (-1341 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3369 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1341 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3369 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3238 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1905 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-3238 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-1905 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *2 (-850)))) (-3640 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -3033 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-3640 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -3033 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-1999 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-1999 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1064 *4 *5 *3)))) (-2772 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1064 *3 *4 *5)))) (-3867 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1960 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3136 (-771)))) (-4 *1 (-1064 *3 *4 *5)))) (-2117 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-1642 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)))) (-2023 (*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-3343 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))) (-2023 (*1 *1 *2) (|partial| -2676 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-3343 (*1 *1 *2) (-2676 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-2150 (*1 *1 *2) (-2676 (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5)) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))))) (-2023 (*1 *1 *2) (|partial| -2676 (-12 (-5 *2 (-952 *3)) (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-3129 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-3129 (-4 *3 (-547))) (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-3129 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-3343 (*1 *1 *2) (-2676 (-12 (-5 *2 (-952 *3)) (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-3129 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-3129 (-4 *3 (-547))) (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))) (-12 (-5 *2 (-952 *3)) (-12 (-3129 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793)) (-4 *5 (-850))))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *5 (-614 (-1175))) (-4 *4 (-793)) (-4 *5 (-850)))) (-4259 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-1444 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3575 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2069 (*1 *1 *1 *2) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3575 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-2069 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3921 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3708 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -1885 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2303 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -1885 *1) (|:| |coef1| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2595 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-2 (|:| -1885 *1) (|:| |coef2| *1))) (-4 *1 (-1064 *3 *4 *5)))) (-2994 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-3161 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))) (-1665 (*1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-1878 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-2146 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))) (-3435 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-558)))) (-1885 (*1 *2 *2 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-1883 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-1433 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3455 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))) (-3814 (*1 *1 *1) (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-454)))))
-(-13 (-949 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3779 (|t#3| $)) (-15 -1680 ((-771) $)) (-15 -1342 ($ $)) (-15 -3096 ($ $)) (-15 -1829 ($ $)) (-15 -2910 ($ $)) (-15 -3412 ((-644 $) $)) (-15 -3851 ($ $)) (-15 -4334 ($ $ |t#3|)) (-15 -4358 ($ $ |t#3|)) (-15 -3518 ((-112) $)) (-15 -1588 ((-112) $)) (-15 -1612 ($ $)) (-15 -3173 ($ $)) (-15 -3593 ((-644 $) $)) (-15 -3379 ((-644 $) $)) (-15 -2082 ((-3 (-112) "failed") $ $)) (-15 -4249 ((-112) $ $)) (-15 -3335 ((-112) $ $)) (-15 -4315 ((-112) $ $)) (-15 -4315 ((-112) $ (-644 $))) (-15 -2927 ((-112) $ $)) (-15 -2927 ((-112) $ (-644 $))) (-15 -2751 ((-112) $ $)) (-15 -2751 ((-112) $ (-644 $))) (-15 -3492 ((-112) $ $)) (-15 -3492 ((-112) $ (-644 $))) (-15 -1341 ($ $ $)) (-15 -3369 ($ $ $)) (-15 -1341 ($ $ $ |t#3|)) (-15 -3369 ($ $ $ |t#3|)) (-15 -3238 ($ $ $)) (-15 -1905 ($ $ $)) (-15 -3238 ($ $ $ |t#3|)) (-15 -1905 ($ $ $ |t#3|)) (-15 -3640 ((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $)) (-15 -3640 ((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -3033 $)) $ $ |t#3|)) (-15 -1999 ((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -1999 ((-2 (|:| -1702 $) (|:| |gap| (-771)) (|:| -2383 $) (|:| -3033 $)) $ $ |t#3|)) (-15 -2772 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -3867 ($ $ $)) (-15 -1960 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3136 (-771))) $ $)) (-15 -2117 ($ $ $)) (-15 -1642 ($ $ $)) (IF (|has| |t#3| (-614 (-1175))) (PROGN (-6 (-613 (-952 |t#1|))) (-6 (-614 (-952 |t#1|))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -2023 ((-3 $ "failed") (-952 (-409 (-566))))) (-15 -3343 ($ (-952 (-409 (-566))))) (-15 -2150 ($ (-952 (-409 (-566))))) (-15 -2023 ((-3 $ "failed") (-952 (-566)))) (-15 -3343 ($ (-952 (-566)))) (-15 -2150 ($ (-952 (-566)))) (IF (|has| |t#1| (-992 (-566))) |%noBranch| (PROGN (-15 -2023 ((-3 $ "failed") (-952 |t#1|))) (-15 -3343 ($ (-952 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -2023 ((-3 $ "failed") (-952 (-566)))) (-15 -3343 ($ (-952 (-566)))) (-15 -2150 ($ (-952 (-566)))) (IF (|has| |t#1| (-547)) |%noBranch| (PROGN (-15 -2023 ((-3 $ "failed") (-952 |t#1|))) (-15 -3343 ($ (-952 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-566))) |%noBranch| (IF (|has| |t#1| (-38 (-409 (-566)))) |%noBranch| (PROGN (-15 -2023 ((-3 $ "failed") (-952 |t#1|))) (-15 -3343 ($ (-952 |t#1|)))))) (-15 -2150 ($ (-952 |t#1|))) (IF (|has| |t#1| (-1038 (-566))) (-6 (-614 (-1157))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-15 -4259 ($ $)) (-15 -1444 ($ $)) (-15 -3575 ($ $ |t#1|)) (-15 -2069 ($ $ |t#1|)) (-15 -3575 ($ $ $)) (-15 -2069 ($ $ $)) (-15 -3921 ($ $ $)) (-15 -3708 ((-2 (|:| -1885 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2303 ((-2 (|:| -1885 $) (|:| |coef1| $)) $ $)) (-15 -2595 ((-2 (|:| -1885 $) (|:| |coef2| $)) $ $)) (-15 -2994 ($ $ $)) (-15 -3161 ((-644 $) $ $)) (-15 -1665 ($ $ $)) (-15 -1878 ($ $ $ (-771))) (-15 -2146 ($ $ $ $ (-771))) (-15 -3435 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (PROGN (-15 -1885 (|t#1| |t#1| $)) (-15 -1883 ($ $)) (-15 -1433 ($ $)) (-15 -3455 ($ $)) (-15 -3814 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 |#3|) . T) ((-616 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-613 (-862)) . T) ((-613 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-172) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| |#1| (-614 (-538))) (|has| |#3| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#3| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#3| (-614 (-892 (-566))))) ((-614 (-952 |#1|)) |has| |#3| (-614 (-1175))) ((-614 (-1157)) -12 (|has| |#1| (-1038 (-566))) (|has| |#3| (-614 (-1175)))) ((-291) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2676 (|has| |#1| (-909)) (|has| |#1| (-454))) ((-516 |#3| |#1|) . T) ((-516 |#3| $) . T) ((-516 $ $) . T) ((-558) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454))) ((-726) . T) ((-900 |#3|) . T) ((-886 (-381)) -12 (|has| |#1| (-886 (-381))) (|has| |#3| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-886 (-566))) (|has| |#3| (-886 (-566)))) ((-949 |#1| |#2| |#3|) . T) ((-909) |has| |#1| (-909)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 |#1|) . T) ((-1038 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) |has| |#1| (-909)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-2937 (((-644 (-1134)) $) 18)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 27) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-1134) $) 20)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1065) (-13 (-1082) (-10 -8 (-15 -2937 ((-644 (-1134)) $)) (-15 -3546 ((-1134) $))))) (T -1065))
-((-2937 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065)))) (-3546 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065)))))
-(-13 (-1082) (-10 -8 (-15 -2937 ((-644 (-1134)) $)) (-15 -3546 ((-1134) $))))
-((-3545 (((-112) |#3| $) 15)) (-2563 (((-3 $ "failed") |#3| (-921)) 29)) (-2313 (((-3 |#3| "failed") |#3| $) 45)) (-3421 (((-112) |#3| $) 19)) (-2307 (((-112) |#3| $) 17)))
-(((-1066 |#1| |#2| |#3|) (-10 -8 (-15 -2563 ((-3 |#1| "failed") |#3| (-921))) (-15 -2313 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3421 ((-112) |#3| |#1|)) (-15 -2307 ((-112) |#3| |#1|)) (-15 -3545 ((-112) |#3| |#1|))) (-1067 |#2| |#3|) (-13 (-848) (-365)) (-1241 |#2|)) (T -1066))
-NIL
-(-10 -8 (-15 -2563 ((-3 |#1| "failed") |#3| (-921))) (-15 -2313 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3421 ((-112) |#3| |#1|)) (-15 -2307 ((-112) |#3| |#1|)) (-15 -3545 ((-112) |#3| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) |#2| $) 22)) (-1859 (((-566) |#2| $) 23)) (-2563 (((-3 $ "failed") |#2| (-921)) 16)) (-4325 ((|#1| |#2| $ |#1|) 14)) (-2313 (((-3 |#2| "failed") |#2| $) 19)) (-3421 (((-112) |#2| $) 20)) (-2307 (((-112) |#2| $) 21)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2880 ((|#2| $) 18)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-1551 ((|#1| |#2| $ |#1|) 15)) (-3674 (((-644 $) |#2|) 17)) (-2817 (((-112) $ $) 6)))
-(((-1067 |#1| |#2|) (-140) (-13 (-848) (-365)) (-1241 |t#1|)) (T -1067))
-((-1859 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1241 *4)) (-5 *2 (-566)))) (-3545 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1241 *4)) (-5 *2 (-112)))) (-2307 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1241 *4)) (-5 *2 (-112)))) (-3421 (*1 *2 *3 *1) (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1241 *4)) (-5 *2 (-112)))) (-2313 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1241 *3)))) (-2880 (*1 *2 *1) (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365))) (-4 *2 (-1241 *3)))) (-3674 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1241 *4)) (-5 *2 (-644 *1)) (-4 *1 (-1067 *4 *3)))) (-2563 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365))) (-4 *1 (-1067 *4 *2)) (-4 *2 (-1241 *4)))) (-1551 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1241 *2)))) (-4325 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365))) (-4 *3 (-1241 *2)))))
-(-13 (-1099) (-10 -8 (-15 -1859 ((-566) |t#2| $)) (-15 -3545 ((-112) |t#2| $)) (-15 -2307 ((-112) |t#2| $)) (-15 -3421 ((-112) |t#2| $)) (-15 -2313 ((-3 |t#2| "failed") |t#2| $)) (-15 -2880 (|t#2| $)) (-15 -3674 ((-644 $) |t#2|)) (-15 -2563 ((-3 $ "failed") |t#2| (-921))) (-15 -1551 (|t#1| |t#2| $ |t#1|)) (-15 -4325 (|t#1| |t#2| $ |t#1|))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3576 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-771)) 115)) (-1800 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771)) 63)) (-3796 (((-1270) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-771)) 100)) (-2402 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-3007 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771)) 65) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771) (-112)) 67)) (-2442 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 87)) (-2150 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) 92)) (-1429 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-112)) 62)) (-3425 (((-771) (-644 |#4|) (-644 |#5|)) 21)))
-(((-1068 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3425 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2402 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1429 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-112))) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3576 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-771))) (-15 -2150 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3796 ((-1270) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1068))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1270)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1068 *4 *5 *6 *7 *8)))) (-3576 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3860 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3860 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11)))) (-2442 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-2442 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3007 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-3007 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3)))) (-1800 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-1429 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3425 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2402 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1429 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-112))) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3576 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-771))) (-15 -2150 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3796 ((-1270) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-771))))
-((-1733 (((-112) |#5| $) 26)) (-2509 (((-112) |#5| $) 29)) (-2511 (((-112) |#5| $) 18) (((-112) $) 52)) (-1799 (((-644 $) |#5| $) NIL) (((-644 $) (-644 |#5|) $) 94) (((-644 $) (-644 |#5|) (-644 $)) 92) (((-644 $) |#5| (-644 $)) 95)) (-3964 (($ $ |#5|) NIL) (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 73) (((-644 $) (-644 |#5|) $) 75) (((-644 $) (-644 |#5|) (-644 $)) 77)) (-3735 (((-644 $) |#5| $) NIL) (((-644 $) |#5| (-644 $)) 64) (((-644 $) (-644 |#5|) $) 69) (((-644 $) (-644 |#5|) (-644 $)) 71)) (-1950 (((-112) |#5| $) 32)))
-(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3964 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3964 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3964 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3964 ((-644 |#1|) |#5| |#1|)) (-15 -3735 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3735 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3735 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3735 ((-644 |#1|) |#5| |#1|)) (-15 -1799 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -1799 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -1799 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -1799 ((-644 |#1|) |#5| |#1|)) (-15 -2509 ((-112) |#5| |#1|)) (-15 -2511 ((-112) |#1|)) (-15 -1950 ((-112) |#5| |#1|)) (-15 -1733 ((-112) |#5| |#1|)) (-15 -2511 ((-112) |#5| |#1|)) (-15 -3964 (|#1| |#1| |#5|))) (-1070 |#2| |#3| |#4| |#5|) (-454) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1069))
-NIL
-(-10 -8 (-15 -3964 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3964 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3964 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3964 ((-644 |#1|) |#5| |#1|)) (-15 -3735 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -3735 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -3735 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -3735 ((-644 |#1|) |#5| |#1|)) (-15 -1799 ((-644 |#1|) |#5| (-644 |#1|))) (-15 -1799 ((-644 |#1|) (-644 |#5|) (-644 |#1|))) (-15 -1799 ((-644 |#1|) (-644 |#5|) |#1|)) (-15 -1799 ((-644 |#1|) |#5| |#1|)) (-15 -2509 ((-112) |#5| |#1|)) (-15 -2511 ((-112) |#1|)) (-15 -1950 ((-112) |#5| |#1|)) (-15 -1733 ((-112) |#5| |#1|)) (-15 -2511 ((-112) |#5| |#1|)) (-15 -3964 (|#1| |#1| |#5|)))
-((-3979 (((-112) $ $) 7)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) 86)) (-3599 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-4170 (((-644 |#3|) $) 34)) (-1323 (((-112) $) 27)) (-1494 (((-112) $) 18 (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) 102) (((-112) $) 98)) (-3351 ((|#4| |#4| $) 93)) (-2885 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| $) 127)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) 28)) (-2261 (((-112) $ (-771)) 45)) (-3281 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) 80)) (-2633 (($) 46 T CONST)) (-1740 (((-112) $) 23 (|has| |#1| (-558)))) (-3807 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1312 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1407 (((-112) $) 26 (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4185 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) 37)) (-3343 (($ (-644 |#4|)) 36)) (-3781 (((-3 $ "failed") $) 83)) (-1673 ((|#4| |#4| $) 90)) (-3806 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3427 ((|#4| |#4| $) 88)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) 106)) (-1733 (((-112) |#4| $) 137)) (-2509 (((-112) |#4| $) 134)) (-2511 (((-112) |#4| $) 138) (((-112) $) 135)) (-1523 (((-644 |#4|) $) 53 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) 105) (((-112) $) 104)) (-3779 ((|#3| $) 35)) (-2429 (((-112) $ (-771)) 44)) (-2565 (((-644 |#4|) $) 54 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 48)) (-2054 (((-644 |#3|) $) 33)) (-2314 (((-112) |#3| $) 32)) (-1864 (((-112) $ (-771)) 43)) (-1390 (((-1157) $) 10)) (-2245 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1665 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| |#4| $) 128)) (-1774 (((-3 |#4| "failed") $) 84)) (-2932 (((-644 $) |#4| $) 130)) (-3439 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3669 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1799 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-4200 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3304 (((-644 |#4|) $) 108)) (-2751 (((-112) |#4| $) 100) (((-112) $) 96)) (-1642 ((|#4| |#4| $) 91)) (-4249 (((-112) $ $) 111)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) 101) (((-112) $) 97)) (-2117 ((|#4| |#4| $) 92)) (-1944 (((-1119) $) 11)) (-3771 (((-3 |#4| "failed") $) 85)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3521 (((-3 $ "failed") $ |#4|) 79)) (-3964 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-1900 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) 39)) (-4246 (((-112) $) 42)) (-3906 (($) 41)) (-3838 (((-771) $) 107)) (-1958 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4415)))) (-2878 (($ $) 40)) (-2150 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 61)) (-3317 (($ $ |#3|) 29)) (-3756 (($ $ |#3|) 31)) (-2352 (($ $) 89)) (-1811 (($ $ |#3|) 30)) (-2725 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3526 (((-771) $) 77 (|has| |#3| (-370)))) (-1479 (((-112) $ $) 9)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3735 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2610 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) 82)) (-1950 (((-112) |#4| $) 136)) (-3314 (((-112) |#3| $) 81)) (-2817 (((-112) $ $) 6)) (-3991 (((-771) $) 47 (|has| $ (-6 -4415)))))
-(((-1070 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1070))
-((-2511 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1733 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-1950 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2509 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3439 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3669 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3669 (*1 *2 *3 *1) (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2932 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-2245 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1665 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-2885 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *1)))) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1799 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-1799 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-1799 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-1799 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3735 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3735 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3735 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-3735 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-4200 (*1 *1 *2 *1) (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-4200 (*1 *1 *2 *1) (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)))) (-3964 (*1 *2 *3 *1) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)))) (-3964 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)))) (-3964 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *7)))) (-3964 (*1 *2 *3 *2) (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1070 *5 *6 *7 *8)))))
-(-13 (-1208 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2511 ((-112) |t#4| $)) (-15 -1733 ((-112) |t#4| $)) (-15 -1950 ((-112) |t#4| $)) (-15 -2511 ((-112) $)) (-15 -2509 ((-112) |t#4| $)) (-15 -3439 ((-3 (-112) (-644 $)) |t#4| $)) (-15 -3669 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) |t#4| $)) (-15 -3669 ((-112) |t#4| $)) (-15 -2932 ((-644 $) |t#4| $)) (-15 -2245 ((-3 |t#4| (-644 $)) |t#4| |t#4| $)) (-15 -1665 ((-644 (-2 (|:| |val| |t#4|) (|:| -3860 $))) |t#4| |t#4| $)) (-15 -2885 ((-644 (-2 (|:| |val| |t#4|) (|:| -3860 $))) |t#4| $)) (-15 -1799 ((-644 $) |t#4| $)) (-15 -1799 ((-644 $) (-644 |t#4|) $)) (-15 -1799 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -1799 ((-644 $) |t#4| (-644 $))) (-15 -3735 ((-644 $) |t#4| $)) (-15 -3735 ((-644 $) |t#4| (-644 $))) (-15 -3735 ((-644 $) (-644 |t#4|) $)) (-15 -3735 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -4200 ($ |t#4| $)) (-15 -4200 ($ (-644 |t#4|) $)) (-15 -3964 ((-644 $) |t#4| $)) (-15 -3964 ((-644 $) |t#4| (-644 $))) (-15 -3964 ((-644 $) (-644 |t#4|) $)) (-15 -3964 ((-644 $) (-644 |t#4|) (-644 $))) (-15 -3599 ((-644 $) (-644 |t#4|) (-112)))))
-(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1208 |#1| |#2| |#3| |#4|) . T) ((-1215) . T))
-((-3861 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|) 87)) (-4243 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|) 128)) (-2944 (((-644 |#5|) |#4| |#5|) 75)) (-2055 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3110 (((-1270)) 37)) (-3741 (((-1270)) 26)) (-3262 (((-1270) (-1157) (-1157) (-1157)) 33)) (-2179 (((-1270) (-1157) (-1157) (-1157)) 22)) (-2312 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#4| |#4| |#5|) 108)) (-3336 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#3| (-112)) 119) (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4216 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|) 114)))
-(((-1071 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2179 ((-1270) (-1157) (-1157) (-1157))) (-15 -3741 ((-1270))) (-15 -3262 ((-1270) (-1157) (-1157) (-1157))) (-15 -3110 ((-1270))) (-15 -2312 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -3336 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3336 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#3| (-112))) (-15 -4216 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -4243 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -2055 ((-112) |#4| |#5|)) (-15 -2055 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -2944 ((-644 |#5|) |#4| |#5|)) (-15 -3861 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1071))
-((-3861 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2944 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2055 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2055 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4243 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4216 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3860 *9)))) (-5 *1 (-1071 *6 *7 *4 *8 *9)))) (-3336 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-2312 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))) (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3110 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3741 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270)) (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-2179 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270)) (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2179 ((-1270) (-1157) (-1157) (-1157))) (-15 -3741 ((-1270))) (-15 -3262 ((-1270) (-1157) (-1157) (-1157))) (-15 -3110 ((-1270))) (-15 -2312 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -3336 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3336 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#3| (-112))) (-15 -4216 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -4243 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -2055 ((-112) |#4| |#5|)) (-15 -2055 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -2944 ((-644 |#5|) |#4| |#5|)) (-15 -3861 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|)))
-((-3979 (((-112) $ $) NIL)) (-2231 (((-1214) $) 13)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1743 (((-1134) $) 10)) (-2725 (((-862) $) 20) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1072) (-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -2231 ((-1214) $))))) (T -1072))
-((-1743 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-1072)))))
-(-13 (-1082) (-10 -8 (-15 -1743 ((-1134) $)) (-15 -2231 ((-1214) $))))
-((-1451 (((-112) $ $) 7)))
-(((-1073) (-13 (-1215) (-10 -8 (-15 -1451 ((-112) $ $))))) (T -1073))
-((-1451 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073)))))
-(-13 (-1215) (-10 -8 (-15 -1451 ((-112) $ $))))
-((-3979 (((-112) $ $) NIL)) (-3534 (((-1175) $) 8)) (-1390 (((-1157) $) 17)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 11)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 14)))
-(((-1074 |#1|) (-13 (-1099) (-10 -8 (-15 -3534 ((-1175) $)))) (-1175)) (T -1074))
-((-3534 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2))))
-(-13 (-1099) (-10 -8 (-15 -3534 ((-1175) $))))
-((-3979 (((-112) $ $) NIL)) (-2552 (($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|))) 34)) (-3584 (($ |#3| |#3|) 23) (($ |#3| |#3| (-644 (-1175))) 21)) (-3516 ((|#3| $) 13)) (-2023 (((-3 (-295 |#3|) "failed") $) 60)) (-3343 (((-295 |#3|) $) NIL)) (-1793 (((-644 (-1175)) $) 16)) (-2028 (((-892 |#1|) $) 11)) (-3502 ((|#3| $) 12)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3282 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-921)) 41)) (-2725 (((-862) $) 89) (($ (-295 |#3|)) 22)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 38)))
-(((-1075 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -3584 ($ |#3| |#3|)) (-15 -3584 ($ |#3| |#3| (-644 (-1175)))) (-15 -2552 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -2028 ((-892 |#1|) $)) (-15 -3502 (|#3| $)) (-15 -3516 (|#3| $)) (-15 -3282 (|#3| $ |#3| (-921))) (-15 -1793 ((-644 (-1175)) $)))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1075))
-((-3584 (*1 *1 *2 *2) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-3584 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-2552 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1 (-112) (-644 *6))) (-4 *6 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *6)))) (-2028 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2))) (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2))))) (-3502 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-3516 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1075 *3 *4 *2)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))))) (-3282 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1075 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))) (-1793 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))))
-(-13 (-1099) (-287 |#3| |#3|) (-1038 (-295 |#3|)) (-10 -8 (-15 -3584 ($ |#3| |#3|)) (-15 -3584 ($ |#3| |#3| (-644 (-1175)))) (-15 -2552 ($ $ (-644 (-1175)) (-1 (-112) (-644 |#3|)))) (-15 -2028 ((-892 |#1|) $)) (-15 -3502 (|#3| $)) (-15 -3516 (|#3| $)) (-15 -3282 (|#3| $ |#3| (-921))) (-15 -1793 ((-644 (-1175)) $))))
-((-3979 (((-112) $ $) NIL)) (-3788 (($ (-644 (-1075 |#1| |#2| |#3|))) 14)) (-1423 (((-644 (-1075 |#1| |#2| |#3|)) $) 21)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3282 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-921)) 27)) (-2725 (((-862) $) 17)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 20)))
-(((-1076 |#1| |#2| |#3|) (-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -1423 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -3282 (|#3| $ |#3| (-921))))) (-1099) (-13 (-1049) (-886 |#1|) (-614 (-892 |#1|))) (-13 (-432 |#2|) (-886 |#1|) (-614 (-892 |#1|)))) (T -1076))
-((-3788 (*1 *1 *2) (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))) (-5 *1 (-1076 *3 *4 *5)))) (-1423 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3)))) (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5)) (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))) (-3282 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-921)) (-4 *4 (-1099)) (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4)))) (-5 *1 (-1076 *4 *5 *2)) (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))))
-(-13 (-1099) (-287 |#3| |#3|) (-10 -8 (-15 -3788 ($ (-644 (-1075 |#1| |#2| |#3|)))) (-15 -1423 ((-644 (-1075 |#1| |#2| |#3|)) $)) (-15 -3282 (|#3| $ |#3| (-921)))))
-((-2071 (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 88) (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 92) (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 90)))
-(((-1077 |#1| |#2|) (-10 -7 (-15 -2071 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -2071 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -2071 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-644 (-1175))) (T -1077))
-((-2071 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))))) (-2071 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *4)) (|:| -2803 (-644 (-952 *4)))))) (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))))) (-2071 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5)))))) (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))))))
-(-10 -7 (-15 -2071 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -2071 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -2071 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))))
-((-4018 (((-420 |#3|) |#3|) 18)))
-(((-1078 |#1| |#2| |#3|) (-10 -7 (-15 -4018 ((-420 |#3|) |#3|))) (-1241 (-409 (-566))) (-13 (-365) (-147) (-724 (-409 (-566)) |#1|)) (-1241 |#2|)) (T -1078))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-1241 (-409 (-566)))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1241 *5)))))
-(-10 -7 (-15 -4018 ((-420 |#3|) |#3|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 141)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-1780 (($ $) NIL (|has| |#1| (-365)))) (-3286 (((-112) $) NIL (|has| |#1| (-365)))) (-3561 (((-689 |#1|) (-1265 $)) NIL) (((-689 |#1|)) 125)) (-2717 ((|#1| $) 130)) (-3374 (((-1188 (-921) (-771)) (-566)) NIL (|has| |#1| (-351)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3733 (((-771)) 46 (|has| |#1| (-370)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-1452 (($ (-1265 |#1|) (-1265 $)) NIL) (($ (-1265 |#1|)) 49)) (-3414 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-2340 (((-689 |#1|) $ (-1265 $)) NIL) (((-689 |#1|) $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 115) (((-689 |#1|) (-689 $)) 110)) (-2553 (($ |#2|) 67) (((-3 $ "failed") (-409 |#2|)) NIL (|has| |#1| (-365)))) (-2313 (((-3 $ "failed") $) NIL)) (-4153 (((-921)) 84)) (-3424 (($) 50 (|has| |#1| (-370)))) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-4183 (($) NIL (|has| |#1| (-351)))) (-1963 (((-112) $) NIL (|has| |#1| (-351)))) (-4205 (($ $ (-771)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-3077 (((-921) $) NIL (|has| |#1| (-351))) (((-833 (-921)) $) NIL (|has| |#1| (-351)))) (-3842 (((-112) $) NIL)) (-3202 ((|#1| $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2323 ((|#2| $) 91 (|has| |#1| (-365)))) (-4138 (((-921) $) 150 (|has| |#1| (-370)))) (-2542 ((|#2| $) 64)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1342 (($) NIL (|has| |#1| (-351)) CONST)) (-2430 (($ (-921)) 140 (|has| |#1| (-370)))) (-1944 (((-1119) $) NIL)) (-2723 (($) 132)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2867 (((-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))) NIL (|has| |#1| (-351)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-2061 ((|#1| (-1265 $)) NIL) ((|#1|) 119)) (-2816 (((-771) $) NIL (|has| |#1| (-351))) (((-3 (-771) "failed") $ $) NIL (|has| |#1| (-351)))) (-3009 (($ $) NIL (-2676 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2676 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-1436 (((-689 |#1|) (-1265 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2880 ((|#2|) 80)) (-1344 (($) NIL (|has| |#1| (-351)))) (-2803 (((-1265 |#1|) $ (-1265 $)) 96) (((-689 |#1|) (-1265 $) (-1265 $)) NIL) (((-1265 |#1|) $) 77) (((-689 |#1|) (-1265 $)) 92)) (-2150 (((-1265 |#1|) $) NIL) (($ (-1265 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (|has| |#1| (-351)))) (-2725 (((-862) $) 63) (($ (-566)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-365)) (|has| |#1| (-1038 (-409 (-566))))))) (-2655 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-1707 ((|#2| $) 89)) (-2875 (((-771)) 82 T CONST)) (-1479 (((-112) $ $) NIL)) (-2227 (((-1265 $)) 88)) (-1597 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3200 (($) 32 T CONST)) (-3214 (($) 19 T CONST)) (-1316 (($ $) NIL (-2676 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-771)) NIL (-2676 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-900 (-1175))))) (($ $ (-1 |#1| |#1|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2817 (((-112) $ $) 69)) (-2916 (($ $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) 73) (($ $ $) NIL)) (-2897 (($ $ $) 71)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-409 (-566)) $) NIL (|has| |#1| (-365))) (($ $ (-409 (-566))) NIL (|has| |#1| (-365)))))
-(((-1079 |#1| |#2| |#3|) (-724 |#1| |#2|) (-172) (-1241 |#1|) |#2|) (T -1079))
-NIL
-(-724 |#1| |#2|)
-((-4018 (((-420 |#3|) |#3|) 19)))
-(((-1080 |#1| |#2| |#3|) (-10 -7 (-15 -4018 ((-420 |#3|) |#3|))) (-1241 (-409 (-952 (-566)))) (-13 (-365) (-147) (-724 (-409 (-952 (-566))) |#1|)) (-1241 |#2|)) (T -1080))
-((-4018 (*1 *2 *3) (-12 (-4 *4 (-1241 (-409 (-952 (-566))))) (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4))) (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1241 *5)))))
-(-10 -7 (-15 -4018 ((-420 |#3|) |#3|)))
-((-3979 (((-112) $ $) NIL)) (-3075 (($ $ $) 16)) (-3936 (($ $ $) 17)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2855 (($) 6)) (-2150 (((-1175) $) 20)) (-2725 (((-862) $) 13)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 15)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 9)))
-(((-1081) (-13 (-850) (-614 (-1175)) (-10 -8 (-15 -2855 ($))))) (T -1081))
-((-2855 (*1 *1) (-5 *1 (-1081))))
-(-13 (-850) (-614 (-1175)) (-10 -8 (-15 -2855 ($))))
-((-3979 (((-112) $ $) 7)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-1082) (-140)) (T -1082))
+((-4287 (*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))) (-2290 (*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))) (-3974 (*1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -4287 (|t#1| $)) (-15 -2290 (|t#1| $)) (-15 -1556 (|t#1| $)) (-15 -3974 (|t#1|) -2131)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2989 (($) 25 T CONST)) (-4061 (($) 18 T CONST)) (-4287 ((|#1| $) 23)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2290 ((|#1| $) 22)) (-3974 ((|#1|) 20 T CONST)) (-4101 (((-863) $) 12)) (-1556 ((|#1| $) 21)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16)))
+(((-1046 |#1|) (-140) (-23)) (T -1046))
+((-2989 (*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+(-13 (-1045 |t#1|) (-10 -8 (-15 -2989 ($) -2131)))
+(((-23) . T) ((-25) . T) ((-102) . T) ((-614 (-863)) . T) ((-1045 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 (-781 |#1| (-865 |#2|)))))) (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2102 (((-645 $) (-645 (-781 |#1| (-865 |#2|)))) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)) NIL)) (-2449 (((-645 (-865 |#2|)) $) NIL)) (-1416 (((-112) $) NIL)) (-2739 (((-112) $) NIL (|has| |#1| (-559)))) (-4309 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-1508 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-1396 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2138 $))) (-781 |#1| (-865 |#2|)) $) NIL)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ (-865 |#2|)) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-1551 (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 (-781 |#1| (-865 |#2|)) "failed") $ (-865 |#2|)) NIL)) (-4061 (($) NIL T CONST)) (-3289 (((-112) $) NIL (|has| |#1| (-559)))) (-3407 (((-112) $ $) NIL (|has| |#1| (-559)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1579 (((-112) $) NIL (|has| |#1| (-559)))) (-1825 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-2786 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-1427 (((-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-1621 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2061 (((-3 $ "failed") $) NIL)) (-3816 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-781 |#1| (-865 |#2|)) (-1100))))) (-3138 (($ (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-781 |#1| (-865 |#2|)) (-1100)))) (($ (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-1444 (((-112) (-781 |#1| (-865 |#2|)) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-4155 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3402 (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-781 |#1| (-865 |#2|)) (-1100)))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $ (-781 |#1| (-865 |#2|))) NIL (|has| $ (-6 -4416))) (((-781 |#1| (-865 |#2|)) (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-1818 (((-2 (|:| -3858 (-645 (-781 |#1| (-865 |#2|)))) (|:| -1367 (-645 (-781 |#1| (-865 |#2|))))) $) NIL)) (-4314 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2312 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2336 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2896 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3604 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-4280 (((-865 |#2|) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-781 |#1| (-865 |#2|)) (-1100))))) (-4392 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) $) NIL)) (-4360 (((-645 (-865 |#2|)) $) NIL)) (-4023 (((-112) (-865 |#2|) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-1372 (((-3 (-781 |#1| (-865 |#2|)) (-645 $)) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-1856 (((-645 (-2 (|:| |val| (-781 |#1| (-865 |#2|))) (|:| -2138 $))) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3162 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-1894 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL)) (-4254 (((-3 (-112) (-645 $)) (-781 |#1| (-865 |#2|)) $) NIL)) (-1414 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-3754 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL)) (-2913 (($ (-781 |#1| (-865 |#2|)) $) NIL) (($ (-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2331 (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2750 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-1603 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-2137 (((-112) $ $) NIL)) (-1914 (((-2 (|:| |num| (-781 |#1| (-865 |#2|))) (|:| |den| |#1|)) (-781 |#1| (-865 |#2|)) $) NIL (|has| |#1| (-559)))) (-1849 (((-112) (-781 |#1| (-865 |#2|)) $) NIL) (((-112) $) NIL)) (-2703 (((-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)) $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-3 (-781 |#1| (-865 |#2|)) "failed") $) NIL)) (-3050 (((-3 (-781 |#1| (-865 |#2|)) "failed") (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL)) (-3809 (((-3 $ "failed") $ (-781 |#1| (-865 |#2|))) NIL)) (-2436 (($ $ (-781 |#1| (-865 |#2|))) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-2297 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-781 |#1| (-865 |#2|))) (-645 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1100)))) (($ $ (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1100)))) (($ $ (-295 (-781 |#1| (-865 |#2|)))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1100)))) (($ $ (-645 (-295 (-781 |#1| (-865 |#2|))))) NIL (-12 (|has| (-781 |#1| (-865 |#2|)) (-310 (-781 |#1| (-865 |#2|)))) (|has| (-781 |#1| (-865 |#2|)) (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-3677 (((-772) $) NIL)) (-3349 (((-772) (-781 |#1| (-865 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-781 |#1| (-865 |#2|)) (-1100)))) (((-772) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-781 |#1| (-865 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-781 |#1| (-865 |#2|)))) NIL)) (-2485 (($ $ (-865 |#2|)) NIL)) (-4090 (($ $ (-865 |#2|)) NIL)) (-4367 (($ $) NIL)) (-2716 (($ $ (-865 |#2|)) NIL)) (-4101 (((-863) $) NIL) (((-645 (-781 |#1| (-865 |#2|))) $) NIL)) (-2718 (((-772) $) NIL (|has| (-865 |#2|) (-370)))) (-3739 (((-112) $ $) NIL)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 (-781 |#1| (-865 |#2|))))) "failed") (-645 (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|))) (-1 (-112) (-781 |#1| (-865 |#2|)) (-781 |#1| (-865 |#2|)))) NIL)) (-2041 (((-112) $ (-1 (-112) (-781 |#1| (-865 |#2|)) (-645 (-781 |#1| (-865 |#2|))))) NIL)) (-3936 (((-645 $) (-781 |#1| (-865 |#2|)) $) NIL) (((-645 $) (-781 |#1| (-865 |#2|)) (-645 $)) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) $) NIL) (((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-645 $)) NIL)) (-2012 (((-112) (-1 (-112) (-781 |#1| (-865 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3283 (((-645 (-865 |#2|)) $) NIL)) (-1440 (((-112) (-781 |#1| (-865 |#2|)) $) NIL)) (-2447 (((-112) (-865 |#2|) $) NIL)) (-3052 (((-112) $ $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1047 |#1| |#2|) (-13 (-1071 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -2102 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112))))) (-455) (-645 (-1176))) (T -1047))
+((-2102 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455)) (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1047 *5 *6)))))
+(-13 (-1071 |#1| (-534 (-865 |#2|)) (-865 |#2|) (-781 |#1| (-865 |#2|))) (-10 -8 (-15 -2102 ((-645 $) (-645 (-781 |#1| (-865 |#2|))) (-112) (-112)))))
+((-4213 (((-1 (-567)) (-1094 (-567))) 32)) (-1558 (((-567) (-567) (-567) (-567) (-567)) 29)) (-4198 (((-1 (-567)) |RationalNumber|) NIL)) (-2541 (((-1 (-567)) |RationalNumber|) NIL)) (-3806 (((-1 (-567)) (-567) |RationalNumber|) NIL)))
+(((-1048) (-10 -7 (-15 -4213 ((-1 (-567)) (-1094 (-567)))) (-15 -3806 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -4198 ((-1 (-567)) |RationalNumber|)) (-15 -2541 ((-1 (-567)) |RationalNumber|)) (-15 -1558 ((-567) (-567) (-567) (-567) (-567))))) (T -1048))
+((-1558 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1048)))) (-2541 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))) (-4198 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)) (-5 *3 (-567)))) (-4213 (*1 *2 *3) (-12 (-5 *3 (-1094 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))))
+(-10 -7 (-15 -4213 ((-1 (-567)) (-1094 (-567)))) (-15 -3806 ((-1 (-567)) (-567) |RationalNumber|)) (-15 -4198 ((-1 (-567)) |RationalNumber|)) (-15 -2541 ((-1 (-567)) |RationalNumber|)) (-15 -1558 ((-567) (-567) (-567) (-567) (-567))))
+((-4101 (((-863) $) NIL) (($ (-567)) 10)))
+(((-1049 |#1|) (-10 -8 (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-1050)) (T -1049))
+NIL
+(-10 -8 (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-1050) (-140)) (T -1050))
+((-2686 (*1 *2) (-12 (-4 *1 (-1050)) (-5 *2 (-772)))))
+(-13 (-1058) (-727) (-649 $) (-617 (-567)) (-10 -7 (-15 -2686 ((-772)) -2131) (-6 -4413)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-617 (-567)) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-727) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-1571 (((-410 (-953 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)) 60)))
+(((-1051 |#1| |#2|) (-10 -7 (-15 -1571 ((-410 (-953 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772)))) (-1176) (-365)) (T -1051))
+((-1571 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365)) (-5 *2 (-410 (-953 *6))) (-5 *1 (-1051 *5 *6)) (-14 *5 (-1176)))))
+(-10 -7 (-15 -1571 ((-410 (-953 |#2|)) (-645 |#2|) (-645 |#2|) (-772) (-772))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 15)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 16 T CONST)) (-3052 (((-112) $ $) 6)) (* (($ $ |#1|) 14)))
+(((-1052 |#1|) (-140) (-1058)) (T -1052))
+((-1468 (*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1058)))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-1058)) (-5 *2 (-112)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1058)))))
+(-13 (-1100) (-10 -8 (-15 (-1468) ($) -2131) (-15 -2865 ((-112) $)) (-15 * ($ $ |t#1|))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2141 (((-112) $) 40)) (-2358 (((-112) $) 17)) (-4300 (((-772) $) 13)) (-4311 (((-772) $) 14)) (-2685 (((-112) $) 30)) (-1463 (((-112) $) 42)))
+(((-1053 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -4311 ((-772) |#1|)) (-15 -4300 ((-772) |#1|)) (-15 -1463 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2685 ((-112) |#1|)) (-15 -2358 ((-112) |#1|))) (-1054 |#2| |#3| |#4| |#5| |#6|) (-772) (-772) (-1050) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1053))
+NIL
+(-10 -8 (-15 -4311 ((-772) |#1|)) (-15 -4300 ((-772) |#1|)) (-15 -1463 ((-112) |#1|)) (-15 -2141 ((-112) |#1|)) (-15 -2685 ((-112) |#1|)) (-15 -2358 ((-112) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2141 (((-112) $) 56)) (-4377 (((-3 $ "failed") $ $) 20)) (-2358 (((-112) $) 58)) (-1580 (((-112) $ (-772)) 66)) (-4061 (($) 18 T CONST)) (-1876 (($ $) 39 (|has| |#3| (-308)))) (-4074 ((|#4| $ (-567)) 44)) (-2432 (((-772) $) 38 (|has| |#3| (-559)))) (-4344 ((|#3| $ (-567) (-567)) 46)) (-2896 (((-645 |#3|) $) 73 (|has| $ (-6 -4416)))) (-1375 (((-772) $) 37 (|has| |#3| (-559)))) (-3137 (((-645 |#5|) $) 36 (|has| |#3| (-559)))) (-4300 (((-772) $) 50)) (-4311 (((-772) $) 49)) (-2805 (((-112) $ (-772)) 65)) (-3776 (((-567) $) 54)) (-4176 (((-567) $) 52)) (-1542 (((-645 |#3|) $) 74 (|has| $ (-6 -4416)))) (-2176 (((-112) |#3| $) 76 (-12 (|has| |#3| (-1100)) (|has| $ (-6 -4416))))) (-1977 (((-567) $) 53)) (-2467 (((-567) $) 51)) (-4036 (($ (-645 (-645 |#3|))) 59)) (-4392 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#3| |#3|) $) 68) (($ (-1 |#3| |#3| |#3|) $ $) 42)) (-1343 (((-645 (-645 |#3|)) $) 48)) (-3230 (((-112) $ (-772)) 64)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-559)))) (-2297 (((-112) (-1 (-112) |#3|) $) 71 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#3|) (-645 |#3|)) 80 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-295 |#3|)) 78 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-645 (-295 |#3|))) 77 (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))) (-3748 (((-112) $ $) 60)) (-3353 (((-112) $) 63)) (-3164 (($) 62)) (-1552 ((|#3| $ (-567) (-567)) 47) ((|#3| $ (-567) (-567) |#3|) 45)) (-2685 (((-112) $) 57)) (-3349 (((-772) |#3| $) 75 (-12 (|has| |#3| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#3|) $) 72 (|has| $ (-6 -4416)))) (-4247 (($ $) 61)) (-3295 ((|#5| $ (-567)) 43)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-2012 (((-112) (-1 (-112) |#3|) $) 70 (|has| $ (-6 -4416)))) (-1463 (((-112) $) 55)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#3|) 40 (|has| |#3| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#3| $) 27) (($ $ |#3|) 31)) (-2268 (((-772) $) 67 (|has| $ (-6 -4416)))))
+(((-1054 |#1| |#2| |#3| |#4| |#5|) (-140) (-772) (-772) (-1050) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1054))
+((-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1050)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2358 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2685 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3776 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-1977 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4176 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))) (-4300 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))) (-1343 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5))))) (-1552 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050)))) (-4344 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050)))) (-1552 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *2 (-1050)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-4074 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *2 *7)) (-4 *6 (-1050)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3295 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *7 *2)) (-4 *6 (-1050)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-3494 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-2245 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365)))) (-1876 (*1 *1 *1) (-12 (-4 *1 (-1054 *2 *3 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))) (-2432 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-1375 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-772)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559)) (-5 *2 (-645 *7)))))
+(-13 (-111 |t#3| |t#3|) (-492 |t#3|) (-10 -8 (-6 -4416) (IF (|has| |t#3| (-172)) (-6 (-718 |t#3|)) |%noBranch|) (-15 -4036 ($ (-645 (-645 |t#3|)))) (-15 -2358 ((-112) $)) (-15 -2685 ((-112) $)) (-15 -2141 ((-112) $)) (-15 -1463 ((-112) $)) (-15 -3776 ((-567) $)) (-15 -1977 ((-567) $)) (-15 -4176 ((-567) $)) (-15 -2467 ((-567) $)) (-15 -4300 ((-772) $)) (-15 -4311 ((-772) $)) (-15 -1343 ((-645 (-645 |t#3|)) $)) (-15 -1552 (|t#3| $ (-567) (-567))) (-15 -4344 (|t#3| $ (-567) (-567))) (-15 -1552 (|t#3| $ (-567) (-567) |t#3|)) (-15 -4074 (|t#4| $ (-567))) (-15 -3295 (|t#5| $ (-567))) (-15 -3494 ($ (-1 |t#3| |t#3|) $)) (-15 -3494 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-559)) (-15 -2245 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-365)) (-15 -3168 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-308)) (-15 -1876 ($ $)) |%noBranch|) (IF (|has| |t#3| (-559)) (PROGN (-15 -2432 ((-772) $)) (-15 -1375 ((-772) $)) (-15 -3137 ((-645 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-614 (-863)) . T) ((-310 |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))) ((-492 |#3|) . T) ((-517 |#3| |#3|) -12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))) ((-647 (-567)) . T) ((-647 |#3|) . T) ((-649 |#3|) . T) ((-641 |#3|) |has| |#3| (-172)) ((-718 |#3|) |has| |#3| (-172)) ((-1052 |#3|) . T) ((-1057 |#3|) . T) ((-1100) . T) ((-1216) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2141 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2358 (((-112) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-4061 (($) NIL T CONST)) (-1876 (($ $) 47 (|has| |#3| (-308)))) (-4074 (((-240 |#2| |#3|) $ (-567)) 36)) (-2280 (($ (-690 |#3|)) 45)) (-2432 (((-772) $) 49 (|has| |#3| (-559)))) (-4344 ((|#3| $ (-567) (-567)) NIL)) (-2896 (((-645 |#3|) $) NIL (|has| $ (-6 -4416)))) (-1375 (((-772) $) 51 (|has| |#3| (-559)))) (-3137 (((-645 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-559)))) (-4300 (((-772) $) NIL)) (-4311 (((-772) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-3776 (((-567) $) NIL)) (-4176 (((-567) $) NIL)) (-1542 (((-645 |#3|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100))))) (-1977 (((-567) $) NIL)) (-2467 (((-567) $) NIL)) (-4036 (($ (-645 (-645 |#3|))) 31)) (-4392 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1343 (((-645 (-645 |#3|)) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-559)))) (-2297 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#3| $ (-567) (-567)) NIL) ((|#3| $ (-567) (-567) |#3|) NIL)) (-1948 (((-134)) 59 (|has| |#3| (-365)))) (-2685 (((-112) $) NIL)) (-3349 (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100)))) (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) 65 (|has| |#3| (-615 (-539))))) (-3295 (((-240 |#1| |#3|) $ (-567)) 40)) (-4101 (((-863) $) 19) (((-690 |#3|) $) 42)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416)))) (-1463 (((-112) $) NIL)) (-1468 (($) 16 T CONST)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1055 |#1| |#2| |#3|) (-13 (-1054 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1273 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -2280 ($ (-690 |#3|))))) (-772) (-772) (-1050)) (T -1055))
+((-2280 (*1 *1 *2) (-12 (-5 *2 (-690 *5)) (-4 *5 (-1050)) (-5 *1 (-1055 *3 *4 *5)) (-14 *3 (-772)) (-14 *4 (-772)))))
+(-13 (-1054 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-614 (-690 |#3|)) (-10 -8 (IF (|has| |#3| (-365)) (-6 (-1273 |#3|)) |%noBranch|) (IF (|has| |#3| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|) (-15 -2280 ($ (-690 |#3|)))))
+((-3402 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-3494 ((|#10| (-1 |#7| |#3|) |#6|) 34)))
+(((-1056 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3494 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3402 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-772) (-772) (-1050) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1054 |#1| |#2| |#3| |#4| |#5|) (-1050) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1054 |#1| |#2| |#7| |#8| |#9|)) (T -1056))
+((-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1050)) (-4 *2 (-1050)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *12 (-1054 *5 *6 *2 *10 *11)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1050)) (-4 *10 (-1050)) (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1054 *5 *6 *10 *11 *12)) (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))))
+(-10 -7 (-15 -3494 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3402 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ |#1|) 27)))
+(((-1057 |#1|) (-140) (-1058)) (T -1057))
+NIL
+(-13 (-21) (-1052 |t#1|))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1052 |#1|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-1058) (-140)) (T -1058))
+NIL
+(-13 (-21) (-1112))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-1112) . T) ((-1100) . T))
+((-2674 (($ $) 17)) (-2733 (($ $) 25)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 55)) (-3751 (($ $) 27)) (-1987 (($ $) 12)) (-3992 (($ $) 43)) (-3542 (((-381) $) NIL) (((-225) $) NIL) (((-893 (-381)) $) 36)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL) (($ (-410 (-567))) 31) (($ (-567)) NIL) (($ (-410 (-567))) 31)) (-2686 (((-772)) 9)) (-2721 (($ $) 45)))
+(((-1059 |#1|) (-10 -8 (-15 -2733 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2721 (|#1| |#1|)) (-15 -3751 (|#1| |#1|)) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| (-567))) (-15 -3542 ((-225) |#1|)) (-15 -3542 ((-381) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| |#1|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-1060)) (T -1059))
+((-2686 (*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1059 *3)) (-4 *3 (-1060)))))
+(-10 -8 (-15 -2733 (|#1| |#1|)) (-15 -2674 (|#1| |#1|)) (-15 -1987 (|#1| |#1|)) (-15 -3992 (|#1| |#1|)) (-15 -2721 (|#1| |#1|)) (-15 -3751 (|#1| |#1|)) (-15 -3813 ((-890 (-381) |#1|) |#1| (-893 (-381)) (-890 (-381) |#1|))) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| (-567))) (-15 -3542 ((-225) |#1|)) (-15 -3542 ((-381) |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| |#1|)) (-15 -2686 ((-772))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2838 (((-567) $) 97)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-2674 (($ $) 95)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-2307 (($ $) 105)) (-3405 (((-112) $ $) 65)) (-3179 (((-567) $) 122)) (-4061 (($) 18 T CONST)) (-2733 (($ $) 94)) (-3417 (((-3 (-567) "failed") $) 110) (((-3 (-410 (-567)) "failed") $) 107)) (-1621 (((-567) $) 111) (((-410 (-567)) $) 108)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-1665 (((-112) $) 79)) (-4095 (((-112) $) 120)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 101)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 104)) (-3751 (($ $) 100)) (-3948 (((-112) $) 121)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-2056 (($ $ $) 119)) (-1802 (($ $ $) 118)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-1987 (($ $) 96)) (-3992 (($ $) 98)) (-2296 (((-421 $) $) 82)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-3542 (((-381) $) 113) (((-225) $) 112) (((-893 (-381)) $) 102)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ (-567)) 109) (($ (-410 (-567))) 106)) (-2686 (((-772)) 32 T CONST)) (-2721 (($ $) 99)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1771 (($ $) 123)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3109 (((-112) $ $) 116)) (-3085 (((-112) $ $) 115)) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 117)) (-3075 (((-112) $ $) 114)) (-3168 (($ $ $) 73)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77) (($ $ (-410 (-567))) 103)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75)))
+(((-1060) (-140)) (T -1060))
+((-1771 (*1 *1 *1) (-4 *1 (-1060))) (-3751 (*1 *1 *1) (-4 *1 (-1060))) (-2721 (*1 *1 *1) (-4 *1 (-1060))) (-3992 (*1 *1 *1) (-4 *1 (-1060))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-567)))) (-1987 (*1 *1 *1) (-4 *1 (-1060))) (-2674 (*1 *1 *1) (-4 *1 (-1060))) (-2733 (*1 *1 *1) (-4 *1 (-1060))))
+(-13 (-365) (-849) (-1023) (-1039 (-567)) (-1039 (-410 (-567))) (-1003) (-615 (-893 (-381))) (-887 (-381)) (-147) (-10 -8 (-15 -3751 ($ $)) (-15 -2721 ($ $)) (-15 -3992 ($ $)) (-15 -2838 ((-567) $)) (-15 -1987 ($ $)) (-15 -2674 ($ $)) (-15 -2733 ($ $)) (-15 -1771 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-615 (-225)) . T) ((-615 (-381)) . T) ((-615 (-893 (-381))) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 $) . T) ((-727) . T) ((-792) . T) ((-793) . T) ((-795) . T) ((-796) . T) ((-849) . T) ((-851) . T) ((-887 (-381)) . T) ((-921) . T) ((-1003) . T) ((-1023) . T) ((-1039 (-410 (-567))) . T) ((-1039 (-567)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) |#2| $) 26)) (-2013 ((|#1| $) 10)) (-3179 (((-567) |#2| $) 116)) (-1515 (((-3 $ "failed") |#2| (-922)) 75)) (-3005 ((|#1| $) 31)) (-1570 ((|#1| |#2| $ |#1|) 40)) (-2442 (($ $) 28)) (-4014 (((-3 |#2| "failed") |#2| $) 111)) (-4095 (((-112) |#2| $) NIL)) (-3948 (((-112) |#2| $) NIL)) (-2093 (((-112) |#2| $) 27)) (-1983 ((|#1| $) 117)) (-2993 ((|#1| $) 30)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2713 ((|#2| $) 102)) (-4101 (((-863) $) 92)) (-3739 (((-112) $ $) NIL)) (-2927 ((|#1| |#2| $ |#1|) 41)) (-1471 (((-645 $) |#2|) 77)) (-3052 (((-112) $ $) 97)))
+(((-1061 |#1| |#2|) (-13 (-1068 |#1| |#2|) (-10 -8 (-15 -2993 (|#1| $)) (-15 -3005 (|#1| $)) (-15 -2013 (|#1| $)) (-15 -1983 (|#1| $)) (-15 -2442 ($ $)) (-15 -2093 ((-112) |#2| $)) (-15 -1570 (|#1| |#2| $ |#1|)))) (-13 (-849) (-365)) (-1242 |#1|)) (T -1061))
+((-1570 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1242 *2)))) (-2993 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1242 *2)))) (-3005 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1242 *2)))) (-2013 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1242 *2)))) (-1983 (*1 *2 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1242 *2)))) (-2442 (*1 *1 *1) (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3)) (-4 *3 (-1242 *2)))) (-2093 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1061 *4 *3)) (-4 *3 (-1242 *4)))))
+(-13 (-1068 |#1| |#2|) (-10 -8 (-15 -2993 (|#1| $)) (-15 -3005 (|#1| $)) (-15 -2013 (|#1| $)) (-15 -1983 (|#1| $)) (-15 -2442 ($ $)) (-15 -2093 ((-112) |#2| $)) (-15 -1570 (|#1| |#2| $ |#1|))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-3824 (($ $ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2765 (($ $ $ $) NIL)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-3179 (((-567) $) NIL)) (-4100 (($ $ $) NIL)) (-4061 (($) NIL T CONST)) (-3110 (($ (-1176)) 10) (($ (-567)) 7)) (-3417 (((-3 (-567) "failed") $) NIL)) (-1621 (((-567) $) NIL)) (-2197 (($ $ $) NIL)) (-1920 (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-690 (-567)) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL)) (-4379 (((-112) $) NIL)) (-3061 (((-410 (-567)) $) NIL)) (-1649 (($) NIL) (($ $) NIL)) (-2210 (($ $ $) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-2854 (($ $ $ $) NIL)) (-1499 (($ $ $) NIL)) (-4095 (((-112) $) NIL)) (-1969 (($ $ $) NIL)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-3714 (((-112) $) NIL)) (-3937 (((-112) $) NIL)) (-2802 (((-3 $ "failed") $) NIL)) (-3948 (((-112) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3302 (($ $ $ $) NIL)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-3479 (($ $) NIL)) (-3036 (($ $) NIL)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-3365 (($ $ $) NIL)) (-2596 (($) NIL T CONST)) (-2462 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) NIL) (($ (-645 $)) NIL)) (-3354 (($ $) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2143 (((-112) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-1930 (($ $ (-772)) NIL) (($ $) NIL)) (-2932 (($ $) NIL)) (-4247 (($ $) NIL)) (-3542 (((-567) $) 16) (((-539) $) NIL) (((-893 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL) (($ (-1176)) 9)) (-4101 (((-863) $) 23) (($ (-567)) 6) (($ $) NIL) (($ (-567)) 6)) (-2686 (((-772)) NIL T CONST)) (-3446 (((-112) $ $) NIL)) (-3806 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3183 (($) NIL)) (-2469 (((-112) $ $) NIL)) (-2648 (($ $ $ $) NIL)) (-1771 (($ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)) (-3156 (($ $) 22) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL)))
+(((-1062) (-13 (-548) (-619 (-1176)) (-10 -8 (-6 -4403) (-6 -4408) (-6 -4404) (-15 -3110 ($ (-1176))) (-15 -3110 ($ (-567)))))) (T -1062))
+((-3110 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1062)))) (-3110 (*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1062)))))
+(-13 (-548) (-619 (-1176)) (-10 -8 (-6 -4403) (-6 -4408) (-6 -4404) (-15 -3110 ($ (-1176))) (-15 -3110 ($ (-567)))))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL)) (-2275 (((-1271) $ (-1176) (-1176)) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-1535 (($) 9)) (-4230 (((-52) $ (-1176) (-52)) NIL)) (-2265 (($ $) 32)) (-3645 (($ $) 30)) (-1486 (($ $) 29)) (-1547 (($ $) 31)) (-3497 (($ $) 35)) (-3284 (($ $) 36)) (-3963 (($ $) 28)) (-4343 (($ $) 33)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) 27 (|has| $ (-6 -4416)))) (-4010 (((-3 (-52) "failed") (-1176) $) 43)) (-4061 (($) NIL T CONST)) (-1316 (($) 7)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-3410 (($ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) 53 (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-3 (-52) "failed") (-1176) $) NIL)) (-3138 (($ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416)))) (-4122 (((-3 (-1158) "failed") $ (-1158) (-567)) 74)) (-1303 (((-52) $ (-1176) (-52)) NIL (|has| $ (-6 -4417)))) (-4344 (((-52) $ (-1176)) NIL)) (-2896 (((-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-645 (-52)) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-1176) $) NIL (|has| (-1176) (-851)))) (-1542 (((-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) 38 (|has| $ (-6 -4416))) (((-645 (-52)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100))))) (-1979 (((-1176) $) NIL (|has| (-1176) (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4417))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-3004 (((-645 (-1176)) $) NIL)) (-2121 (((-112) (-1176) $) NIL)) (-4341 (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL)) (-1336 (($ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) 46)) (-3940 (((-645 (-1176)) $) NIL)) (-1664 (((-112) (-1176) $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-1561 (((-381) $ (-1176)) 52)) (-2522 (((-645 (-1158)) $ (-1158)) 76)) (-2048 (((-52) $) NIL (|has| (-1176) (-851)))) (-3050 (((-3 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) "failed") (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL)) (-2092 (($ $ (-52)) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-295 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL (-12 (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-310 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (($ $ (-645 (-52)) (-645 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-295 (-52))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100)))) (($ $ (-645 (-295 (-52)))) NIL (-12 (|has| (-52) (-310 (-52))) (|has| (-52) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100))))) (-1412 (((-645 (-52)) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 (((-52) $ (-1176)) NIL) (((-52) $ (-1176) (-52)) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL)) (-4054 (($ $ (-1176)) 54)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100)))) (((-772) (-52) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-52) (-1100)))) (((-772) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) 40)) (-2285 (($ $ $) 41)) (-4101 (((-863) $) NIL (-2909 (|has| (-52) (-614 (-863))) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-614 (-863)))))) (-2516 (($ $ (-1176) (-381)) 50)) (-3256 (($ $ (-1176) (-381)) 51)) (-3739 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 (-1176)) (|:| -3859 (-52)))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-52) (-1100)) (|has| (-2 (|:| -1762 (-1176)) (|:| -3859 (-52))) (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1063) (-13 (-1192 (-1176) (-52)) (-10 -8 (-15 -2285 ($ $ $)) (-15 -1316 ($)) (-15 -3963 ($ $)) (-15 -1486 ($ $)) (-15 -3645 ($ $)) (-15 -1547 ($ $)) (-15 -4343 ($ $)) (-15 -2265 ($ $)) (-15 -3497 ($ $)) (-15 -3284 ($ $)) (-15 -2516 ($ $ (-1176) (-381))) (-15 -3256 ($ $ (-1176) (-381))) (-15 -1561 ((-381) $ (-1176))) (-15 -2522 ((-645 (-1158)) $ (-1158))) (-15 -4054 ($ $ (-1176))) (-15 -1535 ($)) (-15 -4122 ((-3 (-1158) "failed") $ (-1158) (-567))) (-6 -4416)))) (T -1063))
+((-2285 (*1 *1 *1 *1) (-5 *1 (-1063))) (-1316 (*1 *1) (-5 *1 (-1063))) (-3963 (*1 *1 *1) (-5 *1 (-1063))) (-1486 (*1 *1 *1) (-5 *1 (-1063))) (-3645 (*1 *1 *1) (-5 *1 (-1063))) (-1547 (*1 *1 *1) (-5 *1 (-1063))) (-4343 (*1 *1 *1) (-5 *1 (-1063))) (-2265 (*1 *1 *1) (-5 *1 (-1063))) (-3497 (*1 *1 *1) (-5 *1 (-1063))) (-3284 (*1 *1 *1) (-5 *1 (-1063))) (-2516 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-381)) (-5 *1 (-1063)))) (-3256 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-381)) (-5 *1 (-1063)))) (-1561 (*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-381)) (-5 *1 (-1063)))) (-2522 (*1 *2 *1 *3) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1063)) (-5 *3 (-1158)))) (-4054 (*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1063)))) (-1535 (*1 *1) (-5 *1 (-1063))) (-4122 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1158)) (-5 *3 (-567)) (-5 *1 (-1063)))))
+(-13 (-1192 (-1176) (-52)) (-10 -8 (-15 -2285 ($ $ $)) (-15 -1316 ($)) (-15 -3963 ($ $)) (-15 -1486 ($ $)) (-15 -3645 ($ $)) (-15 -1547 ($ $)) (-15 -4343 ($ $)) (-15 -2265 ($ $)) (-15 -3497 ($ $)) (-15 -3284 ($ $)) (-15 -2516 ($ $ (-1176) (-381))) (-15 -3256 ($ $ (-1176) (-381))) (-15 -1561 ((-381) $ (-1176))) (-15 -2522 ((-645 (-1158)) $ (-1158))) (-15 -4054 ($ $ (-1176))) (-15 -1535 ($)) (-15 -4122 ((-3 (-1158) "failed") $ (-1158) (-567))) (-6 -4416)))
+((-3221 (($ $) 46)) (-1331 (((-112) $ $) 82)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-953 (-410 (-567)))) 253) (((-3 $ "failed") (-953 (-567))) 252) (((-3 $ "failed") (-953 |#2|)) 255)) (-1621 ((|#2| $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL) ((|#4| $) NIL) (($ (-953 (-410 (-567)))) 241) (($ (-953 (-567))) 237) (($ (-953 |#2|)) 257)) (-2637 (($ $) NIL) (($ $ |#4|) 44)) (-1444 (((-112) $ $) 131) (((-112) $ (-645 $)) 135)) (-2365 (((-112) $) 60)) (-2919 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 125)) (-2154 (($ $) 160)) (-3450 (($ $) 156)) (-2230 (($ $) 155)) (-1669 (($ $ $) 87) (($ $ $ |#4|) 92)) (-1732 (($ $ $) 90) (($ $ $ |#4|) 94)) (-3604 (((-112) $ $) 143) (((-112) $ (-645 $)) 144)) (-4280 ((|#4| $) 32)) (-2781 (($ $ $) 128)) (-3782 (((-112) $) 59)) (-3878 (((-772) $) 35)) (-3474 (($ $) 174)) (-4396 (($ $) 171)) (-1833 (((-645 $) $) 72)) (-4384 (($ $) 62)) (-3345 (($ $) 167)) (-3303 (((-645 $) $) 69)) (-3521 (($ $) 64)) (-2613 ((|#2| $) NIL) (($ $ |#4|) 39)) (-1554 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4297 (-772))) $ $) 130)) (-3855 (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $) 126) (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $ |#4|) 127)) (-2514 (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $) 121) (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $ |#4|) 123)) (-2929 (($ $ $) 97) (($ $ $ |#4|) 106)) (-2359 (($ $ $) 98) (($ $ $ |#4|) 107)) (-4013 (((-645 $) $) 54)) (-2750 (((-112) $ $) 140) (((-112) $ (-645 $)) 141)) (-1603 (($ $ $) 116)) (-2596 (($ $) 37)) (-2137 (((-112) $ $) 80)) (-1849 (((-112) $ $) 136) (((-112) $ (-645 $)) 138)) (-2703 (($ $ $) 112)) (-3942 (($ $) 41)) (-3276 ((|#2| |#2| $) 164) (($ (-645 $)) NIL) (($ $ $) NIL)) (-3415 (($ $ |#2|) NIL) (($ $ $) 153)) (-3145 (($ $ |#2|) 148) (($ $ $) 151)) (-1662 (($ $) 49)) (-3796 (($ $) 55)) (-3542 (((-893 (-381)) $) NIL) (((-893 (-567)) $) NIL) (((-539) $) NIL) (($ (-953 (-410 (-567)))) 243) (($ (-953 (-567))) 239) (($ (-953 |#2|)) 254) (((-1158) $) 281) (((-953 |#2|) $) 184)) (-4101 (((-863) $) 29) (($ (-567)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-953 |#2|) $) 185) (($ (-410 (-567))) NIL) (($ $) NIL)) (-3530 (((-3 (-112) "failed") $ $) 79)))
+(((-1064 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -3276 (|#1| |#1| |#1|)) (-15 -3276 (|#1| (-645 |#1|))) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 ((-953 |#2|) |#1|)) (-15 -3542 ((-953 |#2|) |#1|)) (-15 -3542 ((-1158) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -4396 (|#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3276 (|#2| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -3145 (|#1| |#1| |#2|)) (-15 -3450 (|#1| |#1|)) (-15 -2230 (|#1| |#1|)) (-15 -3542 (|#1| (-953 |#2|))) (-15 -1621 (|#1| (-953 |#2|))) (-15 -3417 ((-3 |#1| "failed") (-953 |#2|))) (-15 -3542 (|#1| (-953 (-567)))) (-15 -1621 (|#1| (-953 (-567)))) (-15 -3417 ((-3 |#1| "failed") (-953 (-567)))) (-15 -3542 (|#1| (-953 (-410 (-567))))) (-15 -1621 (|#1| (-953 (-410 (-567))))) (-15 -3417 ((-3 |#1| "failed") (-953 (-410 (-567))))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1| |#1|)) (-15 -1554 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4297 (-772))) |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1|)) (-15 -2919 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -3855 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1| |#4|)) (-15 -3855 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2514 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -1386 |#1|)) |#1| |#1| |#4|)) (-15 -2514 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2359 (|#1| |#1| |#1| |#4|)) (-15 -2929 (|#1| |#1| |#1| |#4|)) (-15 -2359 (|#1| |#1| |#1|)) (-15 -2929 (|#1| |#1| |#1|)) (-15 -1732 (|#1| |#1| |#1| |#4|)) (-15 -1669 (|#1| |#1| |#1| |#4|)) (-15 -1732 (|#1| |#1| |#1|)) (-15 -1669 (|#1| |#1| |#1|)) (-15 -3604 ((-112) |#1| (-645 |#1|))) (-15 -3604 ((-112) |#1| |#1|)) (-15 -2750 ((-112) |#1| (-645 |#1|))) (-15 -2750 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| (-645 |#1|))) (-15 -1849 ((-112) |#1| |#1|)) (-15 -1444 ((-112) |#1| (-645 |#1|))) (-15 -1444 ((-112) |#1| |#1|)) (-15 -1331 ((-112) |#1| |#1|)) (-15 -2137 ((-112) |#1| |#1|)) (-15 -3530 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1833 ((-645 |#1|) |#1|)) (-15 -3303 ((-645 |#1|) |#1|)) (-15 -3521 (|#1| |#1|)) (-15 -4384 (|#1| |#1|)) (-15 -2365 ((-112) |#1|)) (-15 -3782 ((-112) |#1|)) (-15 -2637 (|#1| |#1| |#4|)) (-15 -2613 (|#1| |#1| |#4|)) (-15 -3796 (|#1| |#1|)) (-15 -4013 ((-645 |#1|) |#1|)) (-15 -1662 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -3878 ((-772) |#1|)) (-15 -4280 (|#4| |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -4101 (|#1| |#4|)) (-15 -3417 ((-3 |#4| "failed") |#1|)) (-15 -1621 (|#4| |#1|)) (-15 -2613 (|#2| |#1|)) (-15 -2637 (|#1| |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-1065 |#2| |#3| |#4|) (-1050) (-794) (-851)) (T -1064))
+NIL
+(-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -3276 (|#1| |#1| |#1|)) (-15 -3276 (|#1| (-645 |#1|))) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 ((-953 |#2|) |#1|)) (-15 -3542 ((-953 |#2|) |#1|)) (-15 -3542 ((-1158) |#1|)) (-15 -3474 (|#1| |#1|)) (-15 -4396 (|#1| |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -2154 (|#1| |#1|)) (-15 -3276 (|#2| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3145 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -3145 (|#1| |#1| |#2|)) (-15 -3450 (|#1| |#1|)) (-15 -2230 (|#1| |#1|)) (-15 -3542 (|#1| (-953 |#2|))) (-15 -1621 (|#1| (-953 |#2|))) (-15 -3417 ((-3 |#1| "failed") (-953 |#2|))) (-15 -3542 (|#1| (-953 (-567)))) (-15 -1621 (|#1| (-953 (-567)))) (-15 -3417 ((-3 |#1| "failed") (-953 (-567)))) (-15 -3542 (|#1| (-953 (-410 (-567))))) (-15 -1621 (|#1| (-953 (-410 (-567))))) (-15 -3417 ((-3 |#1| "failed") (-953 (-410 (-567))))) (-15 -1603 (|#1| |#1| |#1|)) (-15 -2703 (|#1| |#1| |#1|)) (-15 -1554 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4297 (-772))) |#1| |#1|)) (-15 -2781 (|#1| |#1| |#1|)) (-15 -2919 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -3855 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1| |#4|)) (-15 -3855 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2514 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -1386 |#1|)) |#1| |#1| |#4|)) (-15 -2514 ((-2 (|:| -3087 |#1|) (|:| |gap| (-772)) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2359 (|#1| |#1| |#1| |#4|)) (-15 -2929 (|#1| |#1| |#1| |#4|)) (-15 -2359 (|#1| |#1| |#1|)) (-15 -2929 (|#1| |#1| |#1|)) (-15 -1732 (|#1| |#1| |#1| |#4|)) (-15 -1669 (|#1| |#1| |#1| |#4|)) (-15 -1732 (|#1| |#1| |#1|)) (-15 -1669 (|#1| |#1| |#1|)) (-15 -3604 ((-112) |#1| (-645 |#1|))) (-15 -3604 ((-112) |#1| |#1|)) (-15 -2750 ((-112) |#1| (-645 |#1|))) (-15 -2750 ((-112) |#1| |#1|)) (-15 -1849 ((-112) |#1| (-645 |#1|))) (-15 -1849 ((-112) |#1| |#1|)) (-15 -1444 ((-112) |#1| (-645 |#1|))) (-15 -1444 ((-112) |#1| |#1|)) (-15 -1331 ((-112) |#1| |#1|)) (-15 -2137 ((-112) |#1| |#1|)) (-15 -3530 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1833 ((-645 |#1|) |#1|)) (-15 -3303 ((-645 |#1|) |#1|)) (-15 -3521 (|#1| |#1|)) (-15 -4384 (|#1| |#1|)) (-15 -2365 ((-112) |#1|)) (-15 -3782 ((-112) |#1|)) (-15 -2637 (|#1| |#1| |#4|)) (-15 -2613 (|#1| |#1| |#4|)) (-15 -3796 (|#1| |#1|)) (-15 -4013 ((-645 |#1|) |#1|)) (-15 -1662 (|#1| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -2596 (|#1| |#1|)) (-15 -3878 ((-772) |#1|)) (-15 -4280 (|#4| |#1|)) (-15 -3542 ((-539) |#1|)) (-15 -3542 ((-893 (-567)) |#1|)) (-15 -3542 ((-893 (-381)) |#1|)) (-15 -4101 (|#1| |#4|)) (-15 -3417 ((-3 |#4| "failed") |#1|)) (-15 -1621 (|#4| |#1|)) (-15 -2613 (|#2| |#1|)) (-15 -2637 (|#1| |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 |#3|) $) 112)) (-2260 (((-1172 $) $ |#3|) 127) (((-1172 |#1|) $) 126)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-3602 (($ $) 90 (|has| |#1| (-559)))) (-2119 (((-112) $) 92 (|has| |#1| (-559)))) (-3238 (((-772) $) 114) (((-772) $ (-645 |#3|)) 113)) (-3221 (($ $) 273)) (-1331 (((-112) $ $) 259)) (-4377 (((-3 $ "failed") $ $) 20)) (-3288 (($ $ $) 218 (|has| |#1| (-559)))) (-3414 (((-645 $) $ $) 213 (|has| |#1| (-559)))) (-1877 (((-421 (-1172 $)) (-1172 $)) 102 (|has| |#1| (-910)))) (-1396 (($ $) 100 (|has| |#1| (-455)))) (-1401 (((-421 $) $) 99 (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 105 (|has| |#1| (-910)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 |#3| "failed") $) 138) (((-3 $ "failed") (-953 (-410 (-567)))) 233 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176))))) (((-3 $ "failed") (-953 (-567))) 230 (-2909 (-12 (-1397 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1176)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176)))))) (((-3 $ "failed") (-953 |#1|)) 227 (-2909 (-12 (-1397 (|has| |#1| (-38 (-410 (-567))))) (-1397 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1176)))) (-12 (-1397 (|has| |#1| (-548))) (-1397 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1176)))) (-12 (-1397 (|has| |#1| (-993 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176))))))) (-1621 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) ((|#3| $) 139) (($ (-953 (-410 (-567)))) 232 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176))))) (($ (-953 (-567))) 229 (-2909 (-12 (-1397 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1176)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176)))))) (($ (-953 |#1|)) 226 (-2909 (-12 (-1397 (|has| |#1| (-38 (-410 (-567))))) (-1397 (|has| |#1| (-38 (-567)))) (|has| |#3| (-615 (-1176)))) (-12 (-1397 (|has| |#1| (-548))) (-1397 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1176)))) (-12 (-1397 (|has| |#1| (-993 (-567)))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176))))))) (-2414 (($ $ $ |#3|) 110 (|has| |#1| (-172))) (($ $ $) 214 (|has| |#1| (-559)))) (-2637 (($ $) 156) (($ $ |#3|) 268)) (-1920 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-1444 (((-112) $ $) 258) (((-112) $ (-645 $)) 257)) (-4014 (((-3 $ "failed") $) 37)) (-2365 (((-112) $) 266)) (-2919 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 238)) (-2154 (($ $) 207 (|has| |#1| (-455)))) (-2958 (($ $) 178 (|has| |#1| (-455))) (($ $ |#3|) 107 (|has| |#1| (-455)))) (-2624 (((-645 $) $) 111)) (-1665 (((-112) $) 98 (|has| |#1| (-910)))) (-3450 (($ $) 223 (|has| |#1| (-559)))) (-2230 (($ $) 224 (|has| |#1| (-559)))) (-1669 (($ $ $) 250) (($ $ $ |#3|) 248)) (-1732 (($ $ $) 249) (($ $ $ |#3|) 247)) (-3564 (($ $ |#1| |#2| $) 174)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| |#3| (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| |#3| (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-3714 (((-112) $) 35)) (-2864 (((-772) $) 171)) (-3604 (((-112) $ $) 252) (((-112) $ (-645 $)) 251)) (-4227 (($ $ $ $ $) 209 (|has| |#1| (-559)))) (-4280 ((|#3| $) 277)) (-2434 (($ (-1172 |#1|) |#3|) 119) (($ (-1172 $) |#3|) 118)) (-2133 (((-645 $) $) 128)) (-3523 (((-112) $) 154)) (-2422 (($ |#1| |#2|) 155) (($ $ |#3| (-772)) 121) (($ $ (-645 |#3|) (-645 (-772))) 120)) (-2781 (($ $ $) 237)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |#3|) 122)) (-3782 (((-112) $) 267)) (-4185 ((|#2| $) 172) (((-772) $ |#3|) 124) (((-645 (-772)) $ (-645 |#3|)) 123)) (-3878 (((-772) $) 276)) (-1599 (($ (-1 |#2| |#2|) $) 173)) (-3494 (($ (-1 |#1| |#1|) $) 153)) (-3300 (((-3 |#3| "failed") $) 125)) (-3474 (($ $) 204 (|has| |#1| (-455)))) (-4396 (($ $) 205 (|has| |#1| (-455)))) (-1833 (((-645 $) $) 262)) (-4384 (($ $) 265)) (-3345 (($ $) 206 (|has| |#1| (-455)))) (-3303 (((-645 $) $) 263)) (-3521 (($ $) 264)) (-2599 (($ $) 151)) (-2613 ((|#1| $) 150) (($ $ |#3|) 269)) (-3245 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-1554 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4297 (-772))) $ $) 236)) (-3855 (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $) 240) (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $ |#3|) 239)) (-2514 (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $) 242) (((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $ |#3|) 241)) (-2929 (($ $ $) 246) (($ $ $ |#3|) 244)) (-2359 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2451 (((-1158) $) 10)) (-1856 (($ $ $) 212 (|has| |#1| (-559)))) (-4013 (((-645 $) $) 271)) (-3376 (((-3 (-645 $) "failed") $) 116)) (-1808 (((-3 (-645 $) "failed") $) 117)) (-2688 (((-3 (-2 (|:| |var| |#3|) (|:| -4164 (-772))) "failed") $) 115)) (-2750 (((-112) $ $) 254) (((-112) $ (-645 $)) 253)) (-1603 (($ $ $) 234)) (-2596 (($ $) 275)) (-2137 (((-112) $ $) 260)) (-1849 (((-112) $ $) 256) (((-112) $ (-645 $)) 255)) (-2703 (($ $ $) 235)) (-3942 (($ $) 274)) (-3339 (((-1120) $) 11)) (-1886 (((-2 (|:| -3276 $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-559)))) (-3913 (((-2 (|:| -3276 $) (|:| |coef1| $)) $ $) 216 (|has| |#1| (-559)))) (-2567 (((-112) $) 168)) (-2583 ((|#1| $) 169)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 97 (|has| |#1| (-455)))) (-3276 ((|#1| |#1| $) 208 (|has| |#1| (-455))) (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) 104 (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 103 (|has| |#1| (-910)))) (-2296 (((-421 $) $) 101 (|has| |#1| (-910)))) (-1841 (((-2 (|:| -3276 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 217 (|has| |#1| (-559)))) (-2245 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-3415 (($ $ |#1|) 221 (|has| |#1| (-559))) (($ $ $) 219 (|has| |#1| (-559)))) (-3145 (($ $ |#1|) 222 (|has| |#1| (-559))) (($ $ $) 220 (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ |#3| |#1|) 143) (($ $ (-645 |#3|) (-645 |#1|)) 142) (($ $ |#3| $) 141) (($ $ (-645 |#3|) (-645 $)) 140)) (-3347 (($ $ |#3|) 109 (|has| |#1| (-172)))) (-1930 (($ $ |#3|) 46) (($ $ (-645 |#3|)) 45) (($ $ |#3| (-772)) 44) (($ $ (-645 |#3|) (-645 (-772))) 43)) (-3677 ((|#2| $) 152) (((-772) $ |#3|) 132) (((-645 (-772)) $ (-645 |#3|)) 131)) (-1662 (($ $) 272)) (-3796 (($ $) 270)) (-3542 (((-893 (-381)) $) 84 (-12 (|has| |#3| (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| |#3| (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| |#3| (-615 (-539))) (|has| |#1| (-615 (-539))))) (($ (-953 (-410 (-567)))) 231 (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176))))) (($ (-953 (-567))) 228 (-2909 (-12 (-1397 (|has| |#1| (-38 (-410 (-567))))) (|has| |#1| (-38 (-567))) (|has| |#3| (-615 (-1176)))) (-12 (|has| |#1| (-38 (-410 (-567)))) (|has| |#3| (-615 (-1176)))))) (($ (-953 |#1|)) 225 (|has| |#3| (-615 (-1176)))) (((-1158) $) 203 (-12 (|has| |#1| (-1039 (-567))) (|has| |#3| (-615 (-1176))))) (((-953 |#1|) $) 202 (|has| |#3| (-615 (-1176))))) (-1640 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ |#3|) 108 (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 106 (-1410 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ |#3|) 137) (((-953 |#1|) $) 201 (|has| |#3| (-615 (-1176)))) (($ (-410 (-567))) 80 (-2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) 170)) (-2339 ((|#1| $ |#2|) 157) (($ $ |#3| (-772)) 130) (($ $ (-645 |#3|) (-645 (-772))) 129)) (-4242 (((-3 $ "failed") $) 81 (-2909 (-1410 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) 32 T CONST)) (-2582 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1468 (($) 19 T CONST)) (-3530 (((-3 (-112) "failed") $ $) 261)) (-1484 (($) 34 T CONST)) (-2969 (($ $ $ $ (-772)) 210 (|has| |#1| (-559)))) (-2100 (($ $ $ (-772)) 211 (|has| |#1| (-559)))) (-2692 (($ $ |#3|) 42) (($ $ (-645 |#3|)) 41) (($ $ |#3| (-772)) 40) (($ $ (-645 |#3|) (-645 (-772))) 39)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1065 |#1| |#2| |#3|) (-140) (-1050) (-794) (-851)) (T -1065))
+((-4280 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3878 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-772)))) (-2596 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3942 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3221 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1662 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-4013 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1065 *3 *4 *5)))) (-3796 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2613 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2365 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-4384 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3521 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3303 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1065 *3 *4 *5)))) (-1833 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1065 *3 *4 *5)))) (-3530 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2137 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1331 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1444 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1444 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1849 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-1849 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-2750 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-2750 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-3604 (*1 *2 *1 *1) (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))) (-3604 (*1 *2 *1 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)))) (-1669 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1732 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1669 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-1732 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2929 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2359 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-2929 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2359 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *2 (-851)))) (-2514 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -1386 *1))) (-4 *1 (-1065 *3 *4 *5)))) (-2514 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -1386 *1))) (-4 *1 (-1065 *4 *5 *3)))) (-3855 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1065 *3 *4 *5)))) (-3855 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1065 *4 *5 *3)))) (-2919 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1065 *3 *4 *5)))) (-2781 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1554 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4297 (-772)))) (-4 *1 (-1065 *3 *4 *5)))) (-2703 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-1603 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)))) (-3417 (*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))) (-1621 (*1 *1 *2) (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))) (-3417 (*1 *1 *2) (|partial| -2909 (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5)) (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) (-1621 (*1 *1 *2) (-2909 (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5)) (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3542 (*1 *1 *2) (-2909 (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5)) (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5)) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3417 (*1 *1 *2) (|partial| -2909 (-12 (-5 *2 (-953 *3)) (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-1397 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1397 (-4 *3 (-548))) (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1397 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-1621 (*1 *1 *2) (-2909 (-12 (-5 *2 (-953 *3)) (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-1397 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1397 (-4 *3 (-548))) (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))) (-12 (-5 *2 (-953 *3)) (-12 (-1397 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176)))) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794)) (-4 *5 (-851))))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *5 (-615 (-1176))) (-4 *4 (-794)) (-4 *5 (-851)))) (-2230 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3450 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3145 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3145 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3415 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3288 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-1841 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3276 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1065 *3 *4 *5)))) (-3913 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3276 *1) (|:| |coef1| *1))) (-4 *1 (-1065 *3 *4 *5)))) (-1886 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-2 (|:| -3276 *1) (|:| |coef2| *1))) (-4 *1 (-1065 *3 *4 *5)))) (-2414 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3414 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1065 *3 *4 *5)))) (-1856 (*1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-2100 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-2969 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))) (-4227 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-559)))) (-3276 (*1 *2 *2 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-2154 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-4396 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))) (-3474 (*1 *1 *1) (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-455)))))
+(-13 (-950 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4280 (|t#3| $)) (-15 -3878 ((-772) $)) (-15 -2596 ($ $)) (-15 -3942 ($ $)) (-15 -3221 ($ $)) (-15 -1662 ($ $)) (-15 -4013 ((-645 $) $)) (-15 -3796 ($ $)) (-15 -2613 ($ $ |t#3|)) (-15 -2637 ($ $ |t#3|)) (-15 -3782 ((-112) $)) (-15 -2365 ((-112) $)) (-15 -4384 ($ $)) (-15 -3521 ($ $)) (-15 -3303 ((-645 $) $)) (-15 -1833 ((-645 $) $)) (-15 -3530 ((-3 (-112) "failed") $ $)) (-15 -2137 ((-112) $ $)) (-15 -1331 ((-112) $ $)) (-15 -1444 ((-112) $ $)) (-15 -1444 ((-112) $ (-645 $))) (-15 -1849 ((-112) $ $)) (-15 -1849 ((-112) $ (-645 $))) (-15 -2750 ((-112) $ $)) (-15 -2750 ((-112) $ (-645 $))) (-15 -3604 ((-112) $ $)) (-15 -3604 ((-112) $ (-645 $))) (-15 -1669 ($ $ $)) (-15 -1732 ($ $ $)) (-15 -1669 ($ $ $ |t#3|)) (-15 -1732 ($ $ $ |t#3|)) (-15 -2929 ($ $ $)) (-15 -2359 ($ $ $)) (-15 -2929 ($ $ $ |t#3|)) (-15 -2359 ($ $ $ |t#3|)) (-15 -2514 ((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $)) (-15 -2514 ((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -1386 $)) $ $ |t#3|)) (-15 -3855 ((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -3855 ((-2 (|:| -3087 $) (|:| |gap| (-772)) (|:| -3545 $) (|:| -1386 $)) $ $ |t#3|)) (-15 -2919 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -2781 ($ $ $)) (-15 -1554 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4297 (-772))) $ $)) (-15 -2703 ($ $ $)) (-15 -1603 ($ $ $)) (IF (|has| |t#3| (-615 (-1176))) (PROGN (-6 (-614 (-953 |t#1|))) (-6 (-615 (-953 |t#1|))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -3417 ((-3 $ "failed") (-953 (-410 (-567))))) (-15 -1621 ($ (-953 (-410 (-567))))) (-15 -3542 ($ (-953 (-410 (-567))))) (-15 -3417 ((-3 $ "failed") (-953 (-567)))) (-15 -1621 ($ (-953 (-567)))) (-15 -3542 ($ (-953 (-567)))) (IF (|has| |t#1| (-993 (-567))) |%noBranch| (PROGN (-15 -3417 ((-3 $ "failed") (-953 |t#1|))) (-15 -1621 ($ (-953 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3417 ((-3 $ "failed") (-953 (-567)))) (-15 -1621 ($ (-953 (-567)))) (-15 -3542 ($ (-953 (-567)))) (IF (|has| |t#1| (-548)) |%noBranch| (PROGN (-15 -3417 ((-3 $ "failed") (-953 |t#1|))) (-15 -1621 ($ (-953 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-567))) |%noBranch| (IF (|has| |t#1| (-38 (-410 (-567)))) |%noBranch| (PROGN (-15 -3417 ((-3 $ "failed") (-953 |t#1|))) (-15 -1621 ($ (-953 |t#1|)))))) (-15 -3542 ($ (-953 |t#1|))) (IF (|has| |t#1| (-1039 (-567))) (-6 (-615 (-1158))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2230 ($ $)) (-15 -3450 ($ $)) (-15 -3145 ($ $ |t#1|)) (-15 -3415 ($ $ |t#1|)) (-15 -3145 ($ $ $)) (-15 -3415 ($ $ $)) (-15 -3288 ($ $ $)) (-15 -1841 ((-2 (|:| -3276 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3913 ((-2 (|:| -3276 $) (|:| |coef1| $)) $ $)) (-15 -1886 ((-2 (|:| -3276 $) (|:| |coef2| $)) $ $)) (-15 -2414 ($ $ $)) (-15 -3414 ((-645 $) $ $)) (-15 -1856 ($ $ $)) (-15 -2100 ($ $ $ (-772))) (-15 -2969 ($ $ $ $ (-772))) (-15 -4227 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (PROGN (-15 -3276 (|t#1| |t#1| $)) (-15 -2154 ($ $)) (-15 -3345 ($ $)) (-15 -4396 ($ $)) (-15 -3474 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 |#3|) . T) ((-617 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-614 (-863)) . T) ((-614 (-953 |#1|)) |has| |#3| (-615 (-1176))) ((-172) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| |#1| (-615 (-539))) (|has| |#3| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#3| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#3| (-615 (-893 (-567))))) ((-615 (-953 |#1|)) |has| |#3| (-615 (-1176))) ((-615 (-1158)) -12 (|has| |#1| (-1039 (-567))) (|has| |#3| (-615 (-1176)))) ((-291) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-310 $) . T) ((-327 |#1| |#2|) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2909 (|has| |#1| (-910)) (|has| |#1| (-455))) ((-517 |#3| |#1|) . T) ((-517 |#3| $) . T) ((-517 $ $) . T) ((-559) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455))) ((-727) . T) ((-901 |#3|) . T) ((-887 (-381)) -12 (|has| |#1| (-887 (-381))) (|has| |#3| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-887 (-567))) (|has| |#3| (-887 (-567)))) ((-950 |#1| |#2| |#3|) . T) ((-910) |has| |#1| (-910)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 |#1|) . T) ((-1039 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) |has| |#1| (-910)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-4305 (((-645 (-1135)) $) 18)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 27) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-1135) $) 20)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1066) (-13 (-1083) (-10 -8 (-15 -4305 ((-645 (-1135)) $)) (-15 -1830 ((-1135) $))))) (T -1066))
+((-4305 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-1066)))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1066)))))
+(-13 (-1083) (-10 -8 (-15 -4305 ((-645 (-1135)) $)) (-15 -1830 ((-1135) $))))
+((-2865 (((-112) |#3| $) 15)) (-1515 (((-3 $ "failed") |#3| (-922)) 29)) (-4014 (((-3 |#3| "failed") |#3| $) 45)) (-4095 (((-112) |#3| $) 19)) (-3948 (((-112) |#3| $) 17)))
+(((-1067 |#1| |#2| |#3|) (-10 -8 (-15 -1515 ((-3 |#1| "failed") |#3| (-922))) (-15 -4014 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4095 ((-112) |#3| |#1|)) (-15 -3948 ((-112) |#3| |#1|)) (-15 -2865 ((-112) |#3| |#1|))) (-1068 |#2| |#3|) (-13 (-849) (-365)) (-1242 |#2|)) (T -1067))
+NIL
+(-10 -8 (-15 -1515 ((-3 |#1| "failed") |#3| (-922))) (-15 -4014 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4095 ((-112) |#3| |#1|)) (-15 -3948 ((-112) |#3| |#1|)) (-15 -2865 ((-112) |#3| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) |#2| $) 22)) (-3179 (((-567) |#2| $) 23)) (-1515 (((-3 $ "failed") |#2| (-922)) 16)) (-1570 ((|#1| |#2| $ |#1|) 14)) (-4014 (((-3 |#2| "failed") |#2| $) 19)) (-4095 (((-112) |#2| $) 20)) (-3948 (((-112) |#2| $) 21)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2713 ((|#2| $) 18)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-2927 ((|#1| |#2| $ |#1|) 15)) (-1471 (((-645 $) |#2|) 17)) (-3052 (((-112) $ $) 6)))
+(((-1068 |#1| |#2|) (-140) (-13 (-849) (-365)) (-1242 |t#1|)) (T -1068))
+((-3179 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1242 *4)) (-5 *2 (-567)))) (-2865 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1242 *4)) (-5 *2 (-112)))) (-3948 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1242 *4)) (-5 *2 (-112)))) (-4095 (*1 *2 *3 *1) (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1242 *4)) (-5 *2 (-112)))) (-4014 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1242 *3)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-13 (-849) (-365))) (-4 *2 (-1242 *3)))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1242 *4)) (-5 *2 (-645 *1)) (-4 *1 (-1068 *4 *3)))) (-1515 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-849) (-365))) (-4 *1 (-1068 *4 *2)) (-4 *2 (-1242 *4)))) (-2927 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1068 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1242 *2)))) (-1570 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1068 *2 *3)) (-4 *2 (-13 (-849) (-365))) (-4 *3 (-1242 *2)))))
+(-13 (-1100) (-10 -8 (-15 -3179 ((-567) |t#2| $)) (-15 -2865 ((-112) |t#2| $)) (-15 -3948 ((-112) |t#2| $)) (-15 -4095 ((-112) |t#2| $)) (-15 -4014 ((-3 |t#2| "failed") |t#2| $)) (-15 -2713 (|t#2| $)) (-15 -1471 ((-645 $) |t#2|)) (-15 -1515 ((-3 $ "failed") |t#2| (-922))) (-15 -2927 (|t#1| |t#2| $ |t#1|)) (-15 -1570 (|t#1| |t#2| $ |t#1|))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-3155 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-772)) 115)) (-3762 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772)) 63)) (-1683 (((-1271) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-772)) 100)) (-3718 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-2538 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772)) 65) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772) (-112)) 67)) (-2912 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 87)) (-3542 (((-1158) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) 92)) (-3305 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-112)) 62)) (-4133 (((-772) (-645 |#4|) (-645 |#5|)) 21)))
+(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4133 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3718 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3305 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-112))) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3155 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-772))) (-15 -3542 ((-1158) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1683 ((-1271) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-772)))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3| |#4|)) (T -1069))
+((-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9)))) (-5 *4 (-772)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1271)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8))) (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1071 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1158)) (-5 *1 (-1069 *4 *5 *6 *7 *8)))) (-3155 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2138 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2138 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1065 *7 *8 *9)) (-4 *11 (-1071 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1069 *7 *8 *9 *10 *11)))) (-2912 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-2912 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-2538 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-2538 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1065 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3)))) (-2538 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1065 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1071 *7 *8 *9 *3)))) (-3762 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3762 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1065 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3)))) (-3305 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1065 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -4133 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3718 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3305 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-112))) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3155 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-772))) (-15 -3542 ((-1158) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1683 ((-1271) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-772))))
+((-4314 (((-112) |#5| $) 26)) (-2312 (((-112) |#5| $) 29)) (-2336 (((-112) |#5| $) 18) (((-112) $) 52)) (-3754 (((-645 $) |#5| $) NIL) (((-645 $) (-645 |#5|) $) 94) (((-645 $) (-645 |#5|) (-645 $)) 92) (((-645 $) |#5| (-645 $)) 95)) (-2436 (($ $ |#5|) NIL) (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 73) (((-645 $) (-645 |#5|) $) 75) (((-645 $) (-645 |#5|) (-645 $)) 77)) (-3936 (((-645 $) |#5| $) NIL) (((-645 $) |#5| (-645 $)) 64) (((-645 $) (-645 |#5|) $) 69) (((-645 $) (-645 |#5|) (-645 $)) 71)) (-1440 (((-112) |#5| $) 32)))
+(((-1070 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2436 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2436 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2436 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2436 ((-645 |#1|) |#5| |#1|)) (-15 -3936 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3936 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3936 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3936 ((-645 |#1|) |#5| |#1|)) (-15 -3754 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3754 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3754 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3754 ((-645 |#1|) |#5| |#1|)) (-15 -2312 ((-112) |#5| |#1|)) (-15 -2336 ((-112) |#1|)) (-15 -1440 ((-112) |#5| |#1|)) (-15 -4314 ((-112) |#5| |#1|)) (-15 -2336 ((-112) |#5| |#1|)) (-15 -2436 (|#1| |#1| |#5|))) (-1071 |#2| |#3| |#4| |#5|) (-455) (-794) (-851) (-1065 |#2| |#3| |#4|)) (T -1070))
+NIL
+(-10 -8 (-15 -2436 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -2436 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -2436 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -2436 ((-645 |#1|) |#5| |#1|)) (-15 -3936 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3936 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3936 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3936 ((-645 |#1|) |#5| |#1|)) (-15 -3754 ((-645 |#1|) |#5| (-645 |#1|))) (-15 -3754 ((-645 |#1|) (-645 |#5|) (-645 |#1|))) (-15 -3754 ((-645 |#1|) (-645 |#5|) |#1|)) (-15 -3754 ((-645 |#1|) |#5| |#1|)) (-15 -2312 ((-112) |#5| |#1|)) (-15 -2336 ((-112) |#1|)) (-15 -1440 ((-112) |#5| |#1|)) (-15 -4314 ((-112) |#5| |#1|)) (-15 -2336 ((-112) |#5| |#1|)) (-15 -2436 (|#1| |#1| |#5|)))
+((-2257 (((-112) $ $) 7)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) 86)) (-2102 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2449 (((-645 |#3|) $) 34)) (-1416 (((-112) $) 27)) (-2739 (((-112) $) 18 (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) 102) (((-112) $) 98)) (-1508 ((|#4| |#4| $) 93)) (-1396 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) 28)) (-1580 (((-112) $ (-772)) 45)) (-1551 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) 80)) (-4061 (($) 46 T CONST)) (-3289 (((-112) $) 23 (|has| |#1| (-559)))) (-3407 (((-112) $ $) 25 (|has| |#1| (-559)))) (-2595 (((-112) $ $) 24 (|has| |#1| (-559)))) (-1579 (((-112) $) 26 (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2786 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) 37)) (-1621 (($ (-645 |#4|)) 36)) (-2061 (((-3 $ "failed") $) 83)) (-3816 ((|#4| |#4| $) 90)) (-2084 (($ $) 69 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#4| $) 68 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4155 ((|#4| |#4| $) 88)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) 106)) (-4314 (((-112) |#4| $) 137)) (-2312 (((-112) |#4| $) 134)) (-2336 (((-112) |#4| $) 138) (((-112) $) 135)) (-2896 (((-645 |#4|) $) 53 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) 105) (((-112) $) 104)) (-4280 ((|#3| $) 35)) (-2805 (((-112) $ (-772)) 44)) (-1542 (((-645 |#4|) $) 54 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 48)) (-4360 (((-645 |#3|) $) 33)) (-4023 (((-112) |#3| $) 32)) (-3230 (((-112) $ (-772)) 43)) (-2451 (((-1158) $) 10)) (-1372 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-1856 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-3162 (((-3 |#4| "failed") $) 84)) (-1894 (((-645 $) |#4| $) 130)) (-4254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-1414 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3754 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2913 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2331 (((-645 |#4|) $) 108)) (-2750 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-2137 (((-112) $ $) 111)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) 101) (((-112) $) 97)) (-2703 ((|#4| |#4| $) 92)) (-3339 (((-1120) $) 11)) (-2048 (((-3 |#4| "failed") $) 85)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3809 (((-3 $ "failed") $ |#4|) 79)) (-2436 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-2297 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) 39)) (-3353 (((-112) $) 42)) (-3164 (($) 41)) (-3677 (((-772) $) 107)) (-3349 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4416)))) (-4247 (($ $) 40)) (-3542 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 61)) (-2485 (($ $ |#3|) 29)) (-4090 (($ $ |#3|) 31)) (-4367 (($ $) 89)) (-2716 (($ $ |#3|) 30)) (-4101 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2718 (((-772) $) 77 (|has| |#3| (-370)))) (-3739 (((-112) $ $) 9)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3936 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2012 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) 82)) (-1440 (((-112) |#4| $) 136)) (-2447 (((-112) |#3| $) 81)) (-3052 (((-112) $ $) 6)) (-2268 (((-772) $) 47 (|has| $ (-6 -4416)))))
+(((-1071 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1065 |t#1| |t#2| |t#3|)) (T -1071))
+((-2336 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-4314 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-1440 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))) (-2312 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-4254 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1))) (-4 *1 (-1071 *4 *5 *6 *3)))) (-1414 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *1)))) (-4 *1 (-1071 *4 *5 *6 *3)))) (-1414 (*1 *2 *3 *1) (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-1894 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)))) (-1372 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1))) (-4 *1 (-1071 *4 *5 *6 *3)))) (-1856 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *1)))) (-4 *1 (-1071 *4 *5 *6 *3)))) (-1396 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *1)))) (-4 *1 (-1071 *4 *5 *6 *3)))) (-3754 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)))) (-3754 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *7)))) (-3754 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1071 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)))) (-3754 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)))) (-3936 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)))) (-3936 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)))) (-3936 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *7)))) (-3936 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1071 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)))) (-2913 (*1 *1 *2 *1) (-12 (-4 *1 (-1071 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-2913 (*1 *1 *2 *1) (-12 (-5 *2 (-645 *6)) (-4 *1 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)))) (-2436 (*1 *2 *3 *1) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)))) (-2436 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)))) (-2436 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *7)))) (-2436 (*1 *2 *3 *2) (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1071 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)))) (-2102 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1071 *5 *6 *7 *8)))))
+(-13 (-1209 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2336 ((-112) |t#4| $)) (-15 -4314 ((-112) |t#4| $)) (-15 -1440 ((-112) |t#4| $)) (-15 -2336 ((-112) $)) (-15 -2312 ((-112) |t#4| $)) (-15 -4254 ((-3 (-112) (-645 $)) |t#4| $)) (-15 -1414 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) |t#4| $)) (-15 -1414 ((-112) |t#4| $)) (-15 -1894 ((-645 $) |t#4| $)) (-15 -1372 ((-3 |t#4| (-645 $)) |t#4| |t#4| $)) (-15 -1856 ((-645 (-2 (|:| |val| |t#4|) (|:| -2138 $))) |t#4| |t#4| $)) (-15 -1396 ((-645 (-2 (|:| |val| |t#4|) (|:| -2138 $))) |t#4| $)) (-15 -3754 ((-645 $) |t#4| $)) (-15 -3754 ((-645 $) (-645 |t#4|) $)) (-15 -3754 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -3754 ((-645 $) |t#4| (-645 $))) (-15 -3936 ((-645 $) |t#4| $)) (-15 -3936 ((-645 $) |t#4| (-645 $))) (-15 -3936 ((-645 $) (-645 |t#4|) $)) (-15 -3936 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -2913 ($ |t#4| $)) (-15 -2913 ($ (-645 |t#4|) $)) (-15 -2436 ((-645 $) |t#4| $)) (-15 -2436 ((-645 $) |t#4| (-645 $))) (-15 -2436 ((-645 $) (-645 |t#4|) $)) (-15 -2436 ((-645 $) (-645 |t#4|) (-645 $))) (-15 -2102 ((-645 $) (-645 |t#4|) (-112)))))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1100) . T) ((-1209 |#1| |#2| |#3| |#4|) . T) ((-1216) . T))
+((-3856 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|) 87)) (-3332 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 128)) (-1999 (((-645 |#5|) |#4| |#5|) 75)) (-3285 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4069 (((-1271)) 37)) (-3964 (((-1271)) 26)) (-3159 (((-1271) (-1158) (-1158) (-1158)) 33)) (-2017 (((-1271) (-1158) (-1158) (-1158)) 22)) (-4003 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|) 108)) (-1338 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#3| (-112)) 119) (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3076 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 114)))
+(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2017 ((-1271) (-1158) (-1158) (-1158))) (-15 -3964 ((-1271))) (-15 -3159 ((-1271) (-1158) (-1158) (-1158))) (-15 -4069 ((-1271))) (-15 -4003 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -1338 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1338 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -3076 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3332 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3285 ((-112) |#4| |#5|)) (-15 -3285 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -1999 ((-645 |#5|) |#4| |#5|)) (-15 -3856 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3| |#4|)) (T -1072))
+((-3856 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-1999 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3285 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3285 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3332 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3076 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-1338 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9)))) (-5 *5 (-112)) (-4 *8 (-1065 *6 *7 *4)) (-4 *9 (-1071 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2138 *9)))) (-5 *1 (-1072 *6 *7 *4 *8 *9)))) (-1338 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1065 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3)))) (-4003 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-4069 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271)) (-5 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))) (-3159 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271)) (-5 *1 (-1072 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-3964 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271)) (-5 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))) (-2017 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271)) (-5 *1 (-1072 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2017 ((-1271) (-1158) (-1158) (-1158))) (-15 -3964 ((-1271))) (-15 -3159 ((-1271) (-1158) (-1158) (-1158))) (-15 -4069 ((-1271))) (-15 -4003 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -1338 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1338 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -3076 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3332 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3285 ((-112) |#4| |#5|)) (-15 -3285 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -1999 ((-645 |#5|) |#4| |#5|)) (-15 -3856 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|)))
+((-2257 (((-112) $ $) NIL)) (-3620 (((-1215) $) 13)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3130 (((-1135) $) 10)) (-4101 (((-863) $) 20) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1073) (-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -3620 ((-1215) $))))) (T -1073))
+((-3130 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1073)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-1073)))))
+(-13 (-1083) (-10 -8 (-15 -3130 ((-1135) $)) (-15 -3620 ((-1215) $))))
+((-2823 (((-112) $ $) 7)))
+(((-1074) (-13 (-1216) (-10 -8 (-15 -2823 ((-112) $ $))))) (T -1074))
+((-2823 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1074)))))
+(-13 (-1216) (-10 -8 (-15 -2823 ((-112) $ $))))
+((-2257 (((-112) $ $) NIL)) (-1817 (((-1176) $) 8)) (-2451 (((-1158) $) 17)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 11)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 14)))
+(((-1075 |#1|) (-13 (-1100) (-10 -8 (-15 -1817 ((-1176) $)))) (-1176)) (T -1075))
+((-1817 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1075 *3)) (-14 *3 *2))))
+(-13 (-1100) (-10 -8 (-15 -1817 ((-1176) $))))
+((-2257 (((-112) $ $) NIL)) (-1973 (($ $ (-645 (-1176)) (-1 (-112) (-645 |#3|))) 34)) (-1867 (($ |#3| |#3|) 23) (($ |#3| |#3| (-645 (-1176))) 21)) (-2606 ((|#3| $) 13)) (-3417 (((-3 (-295 |#3|) "failed") $) 60)) (-1621 (((-295 |#3|) $) NIL)) (-3697 (((-645 (-1176)) $) 16)) (-3422 (((-893 |#1|) $) 11)) (-1787 ((|#3| $) 12)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1552 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-922)) 41)) (-4101 (((-863) $) 89) (($ (-295 |#3|)) 22)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 38)))
+(((-1076 |#1| |#2| |#3|) (-13 (-1100) (-287 |#3| |#3|) (-1039 (-295 |#3|)) (-10 -8 (-15 -1867 ($ |#3| |#3|)) (-15 -1867 ($ |#3| |#3| (-645 (-1176)))) (-15 -1973 ($ $ (-645 (-1176)) (-1 (-112) (-645 |#3|)))) (-15 -3422 ((-893 |#1|) $)) (-15 -1787 (|#3| $)) (-15 -2606 (|#3| $)) (-15 -1552 (|#3| $ |#3| (-922))) (-15 -3697 ((-645 (-1176)) $)))) (-1100) (-13 (-1050) (-887 |#1|) (-615 (-893 |#1|))) (-13 (-433 |#2|) (-887 |#1|) (-615 (-893 |#1|)))) (T -1076))
+((-1867 (*1 *1 *2 *2) (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1076 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))) (-1867 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-645 (-1176))) (-4 *4 (-1100)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1076 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) (-1973 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-1 (-112) (-645 *6))) (-4 *6 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))) (-4 *4 (-1100)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1076 *4 *5 *6)))) (-3422 (*1 *2 *1) (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 *2))) (-5 *2 (-893 *3)) (-5 *1 (-1076 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 *2))))) (-1787 (*1 *2 *1) (-12 (-4 *3 (-1100)) (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1076 *3 *4 *2)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))))) (-2606 (*1 *2 *1) (-12 (-4 *3 (-1100)) (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1076 *3 *4 *2)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))))) (-1552 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1100)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1076 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))) (-3697 (*1 *2 *1) (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-5 *2 (-645 (-1176))) (-5 *1 (-1076 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))))
+(-13 (-1100) (-287 |#3| |#3|) (-1039 (-295 |#3|)) (-10 -8 (-15 -1867 ($ |#3| |#3|)) (-15 -1867 ($ |#3| |#3| (-645 (-1176)))) (-15 -1973 ($ $ (-645 (-1176)) (-1 (-112) (-645 |#3|)))) (-15 -3422 ((-893 |#1|) $)) (-15 -1787 (|#3| $)) (-15 -2606 (|#3| $)) (-15 -1552 (|#3| $ |#3| (-922))) (-15 -3697 ((-645 (-1176)) $))))
+((-2257 (((-112) $ $) NIL)) (-1940 (($ (-645 (-1076 |#1| |#2| |#3|))) 14)) (-3229 (((-645 (-1076 |#1| |#2| |#3|)) $) 21)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1552 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-922)) 27)) (-4101 (((-863) $) 17)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 20)))
+(((-1077 |#1| |#2| |#3|) (-13 (-1100) (-287 |#3| |#3|) (-10 -8 (-15 -1940 ($ (-645 (-1076 |#1| |#2| |#3|)))) (-15 -3229 ((-645 (-1076 |#1| |#2| |#3|)) $)) (-15 -1552 (|#3| $ |#3| (-922))))) (-1100) (-13 (-1050) (-887 |#1|) (-615 (-893 |#1|))) (-13 (-433 |#2|) (-887 |#1|) (-615 (-893 |#1|)))) (T -1077))
+((-1940 (*1 *1 *2) (-12 (-5 *2 (-645 (-1076 *3 *4 *5))) (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))) (-5 *1 (-1077 *3 *4 *5)))) (-3229 (*1 *2 *1) (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3)))) (-5 *2 (-645 (-1076 *3 *4 *5))) (-5 *1 (-1077 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))) (-1552 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-922)) (-4 *4 (-1100)) (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4)))) (-5 *1 (-1077 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))))
+(-13 (-1100) (-287 |#3| |#3|) (-10 -8 (-15 -1940 ($ (-645 (-1076 |#1| |#2| |#3|)))) (-15 -3229 ((-645 (-1076 |#1| |#2| |#3|)) $)) (-15 -1552 (|#3| $ |#3| (-922)))))
+((-3434 (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112)) 88) (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|))) 92) (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112)) 90)))
+(((-1078 |#1| |#2|) (-10 -7 (-15 -3434 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -3434 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -3434 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112)))) (-13 (-308) (-147)) (-645 (-1176))) (T -1078))
+((-3434 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5)))))) (-5 *1 (-1078 *5 *6)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1176))))) (-3434 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *4)) (|:| -3216 (-645 (-953 *4)))))) (-5 *1 (-1078 *4 *5)) (-5 *3 (-645 (-953 *4))) (-14 *5 (-645 (-1176))))) (-3434 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5)))))) (-5 *1 (-1078 *5 *6)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1176))))))
+(-10 -7 (-15 -3434 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -3434 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -3434 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112))))
+((-2296 (((-421 |#3|) |#3|) 18)))
+(((-1079 |#1| |#2| |#3|) (-10 -7 (-15 -2296 ((-421 |#3|) |#3|))) (-1242 (-410 (-567))) (-13 (-365) (-147) (-725 (-410 (-567)) |#1|)) (-1242 |#2|)) (T -1079))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-1242 (-410 (-567)))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1079 *4 *5 *3)) (-4 *3 (-1242 *5)))))
+(-10 -7 (-15 -2296 ((-421 |#3|) |#3|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 141)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-365)))) (-3602 (($ $) NIL (|has| |#1| (-365)))) (-2119 (((-112) $) NIL (|has| |#1| (-365)))) (-3007 (((-690 |#1|) (-1266 $)) NIL) (((-690 |#1|)) 125)) (-4093 ((|#1| $) 130)) (-1783 (((-1189 (-922) (-772)) (-567)) NIL (|has| |#1| (-351)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2013 (((-772)) 46 (|has| |#1| (-370)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-3499 (($ (-1266 |#1|) (-1266 $)) NIL) (($ (-1266 |#1|)) 49)) (-4032 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-351)))) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-4253 (((-690 |#1|) $ (-1266 $)) NIL) (((-690 |#1|) $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 115) (((-690 |#1|) (-690 $)) 110)) (-3402 (($ |#2|) 67) (((-3 $ "failed") (-410 |#2|)) NIL (|has| |#1| (-365)))) (-4014 (((-3 $ "failed") $) NIL)) (-2432 (((-922)) 84)) (-1649 (($) 50 (|has| |#1| (-370)))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-3896 (($) NIL (|has| |#1| (-351)))) (-1596 (((-112) $) NIL (|has| |#1| (-351)))) (-2966 (($ $ (-772)) NIL (|has| |#1| (-351))) (($ $) NIL (|has| |#1| (-351)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-1909 (((-922) $) NIL (|has| |#1| (-351))) (((-834 (-922)) $) NIL (|has| |#1| (-351)))) (-3714 (((-112) $) NIL)) (-3751 ((|#1| $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-351)))) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4110 ((|#2| $) 91 (|has| |#1| (-365)))) (-3527 (((-922) $) 150 (|has| |#1| (-370)))) (-3392 ((|#2| $) 64)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2596 (($) NIL (|has| |#1| (-351)) CONST)) (-3811 (($ (-922)) 140 (|has| |#1| (-370)))) (-3339 (((-1120) $) NIL)) (-4099 (($) 132)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2608 (((-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))) NIL (|has| |#1| (-351)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-3347 ((|#1| (-1266 $)) NIL) ((|#1|) 119)) (-2097 (((-772) $) NIL (|has| |#1| (-351))) (((-3 (-772) "failed") $ $) NIL (|has| |#1| (-351)))) (-1930 (($ $) NIL (-2909 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2909 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3374 (((-690 |#1|) (-1266 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-2713 ((|#2|) 80)) (-1698 (($) NIL (|has| |#1| (-351)))) (-3216 (((-1266 |#1|) $ (-1266 $)) 96) (((-690 |#1|) (-1266 $) (-1266 $)) NIL) (((-1266 |#1|) $) 77) (((-690 |#1|) (-1266 $)) 92)) (-3542 (((-1266 |#1|) $) NIL) (($ (-1266 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (|has| |#1| (-351)))) (-4101 (((-863) $) 63) (($ (-567)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-365))) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-365)) (|has| |#1| (-1039 (-410 (-567))))))) (-4242 (($ $) NIL (|has| |#1| (-351))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-4121 ((|#2| $) 89)) (-2686 (((-772)) 82 T CONST)) (-3739 (((-112) $ $) NIL)) (-2557 (((-1266 $)) 88)) (-2469 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1468 (($) 32 T CONST)) (-1484 (($) 19 T CONST)) (-2692 (($ $) NIL (-2909 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-772)) NIL (-2909 (-12 (|has| |#1| (-233)) (|has| |#1| (-365))) (|has| |#1| (-351)))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-365)) (|has| |#1| (-901 (-1176))))) (($ $ (-1 |#1| |#1|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-365)))) (-3052 (((-112) $ $) 69)) (-3168 (($ $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) 73) (($ $ $) NIL)) (-3146 (($ $ $) 71)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-410 (-567)) $) NIL (|has| |#1| (-365))) (($ $ (-410 (-567))) NIL (|has| |#1| (-365)))))
+(((-1080 |#1| |#2| |#3|) (-725 |#1| |#2|) (-172) (-1242 |#1|) |#2|) (T -1080))
+NIL
+(-725 |#1| |#2|)
+((-2296 (((-421 |#3|) |#3|) 19)))
+(((-1081 |#1| |#2| |#3|) (-10 -7 (-15 -2296 ((-421 |#3|) |#3|))) (-1242 (-410 (-953 (-567)))) (-13 (-365) (-147) (-725 (-410 (-953 (-567))) |#1|)) (-1242 |#2|)) (T -1081))
+((-2296 (*1 *2 *3) (-12 (-4 *4 (-1242 (-410 (-953 (-567))))) (-4 *5 (-13 (-365) (-147) (-725 (-410 (-953 (-567))) *4))) (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1242 *5)))))
+(-10 -7 (-15 -2296 ((-421 |#3|) |#3|)))
+((-2257 (((-112) $ $) NIL)) (-2056 (($ $ $) 16)) (-1802 (($ $ $) 17)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2486 (($) 6)) (-3542 (((-1176) $) 20)) (-4101 (((-863) $) 13)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 15)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 9)))
+(((-1082) (-13 (-851) (-615 (-1176)) (-10 -8 (-15 -2486 ($))))) (T -1082))
+((-2486 (*1 *1) (-5 *1 (-1082))))
+(-13 (-851) (-615 (-1176)) (-10 -8 (-15 -2486 ($))))
+((-2257 (((-112) $ $) 7)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-1181)) 17) (((-1181) $) 16)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-1083) (-140)) (T -1083))
NIL
(-13 (-93))
-(((-93) . T) ((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T))
-((-3242 ((|#1| |#1| (-1 (-566) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-1604 (((-1270)) 22)) (-2648 (((-644 |#1|)) 13)))
-(((-1083 |#1|) (-10 -7 (-15 -1604 ((-1270))) (-15 -2648 ((-644 |#1|))) (-15 -3242 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3242 (|#1| |#1| (-1 (-566) |#1| |#1|)))) (-132)) (T -1083))
-((-3242 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-3242 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))) (-2648 (*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132)))) (-1604 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1083 *3)) (-4 *3 (-132)))))
-(-10 -7 (-15 -1604 ((-1270))) (-15 -2648 ((-644 |#1|))) (-15 -3242 (|#1| |#1| (-1 (-112) |#1|))) (-15 -3242 (|#1| |#1| (-1 (-566) |#1| |#1|))))
-((-4373 (($ (-109) $) 20)) (-3780 (((-691 (-109)) (-508) $) 19)) (-3906 (($) 7)) (-2533 (($) 21)) (-3360 (($) 22)) (-1690 (((-644 (-175)) $) 10)) (-2725 (((-862) $) 25)))
-(((-1084) (-13 (-613 (-862)) (-10 -8 (-15 -3906 ($)) (-15 -1690 ((-644 (-175)) $)) (-15 -3780 ((-691 (-109)) (-508) $)) (-15 -4373 ($ (-109) $)) (-15 -2533 ($)) (-15 -3360 ($))))) (T -1084))
-((-3906 (*1 *1) (-5 *1 (-1084))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084)))) (-3780 (*1 *2 *3 *1) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084)))) (-4373 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084)))) (-2533 (*1 *1) (-5 *1 (-1084))) (-3360 (*1 *1) (-5 *1 (-1084))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3906 ($)) (-15 -1690 ((-644 (-175)) $)) (-15 -3780 ((-691 (-109)) (-508) $)) (-15 -4373 ($ (-109) $)) (-15 -2533 ($)) (-15 -3360 ($))))
-((-3677 (((-1265 (-689 |#1|)) (-644 (-689 |#1|))) 47) (((-1265 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|))) 75) (((-1265 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|)))) 92)) (-2803 (((-1265 |#1|) (-689 |#1|) (-644 (-689 |#1|))) 41)))
-(((-1085 |#1|) (-10 -7 (-15 -3677 ((-1265 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -3677 ((-1265 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -3677 ((-1265 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2803 ((-1265 |#1|) (-689 |#1|) (-644 (-689 |#1|))))) (-365)) (T -1085))
-((-2803 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365)) (-5 *2 (-1265 *5)) (-5 *1 (-1085 *5)))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-5 *2 (-1265 (-689 *4))) (-5 *1 (-1085 *4)))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1265 (-689 (-952 *5)))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-952 *5))))) (-3677 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365)) (-5 *2 (-1265 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5)) (-5 *4 (-689 (-409 (-952 *5)))))))
-(-10 -7 (-15 -3677 ((-1265 (-689 (-409 (-952 |#1|)))) (-644 (-1175)) (-689 (-409 (-952 |#1|))))) (-15 -3677 ((-1265 (-689 (-952 |#1|))) (-644 (-1175)) (-689 (-952 |#1|)))) (-15 -3677 ((-1265 (-689 |#1|)) (-644 (-689 |#1|)))) (-15 -2803 ((-1265 |#1|) (-689 |#1|) (-644 (-689 |#1|)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2058 (((-644 (-771)) $) NIL) (((-644 (-771)) $ (-1175)) NIL)) (-3095 (((-771) $) NIL) (((-771) $ (-1175)) NIL)) (-4170 (((-644 (-1087 (-1175))) $) NIL)) (-3983 (((-1171 $) $ (-1087 (-1175))) NIL) (((-1171 |#1|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-1087 (-1175)))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-1684 (($ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1087 (-1175)) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL) (((-3 (-1124 |#1| (-1175)) "failed") $) NIL)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1087 (-1175)) $) NIL) (((-1175) $) NIL) (((-1124 |#1| (-1175)) $) NIL)) (-2994 (($ $ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-533 (-1087 (-1175))) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1087 (-1175)) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3077 (((-771) $ (-1175)) NIL) (((-771) $) NIL)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-4157 (($ (-1171 |#1|) (-1087 (-1175))) NIL) (($ (-1171 $) (-1087 (-1175))) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-1087 (-1175))) NIL)) (-4090 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL)) (-1336 (($ (-1 (-533 (-1087 (-1175))) (-533 (-1087 (-1175)))) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1661 (((-1 $ (-771)) (-1175)) NIL) (((-1 $ (-771)) $) NIL (|has| |#1| (-233)))) (-1742 (((-3 (-1087 (-1175)) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-3766 (((-1087 (-1175)) $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-2366 (((-112) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-1087 (-1175))) (|:| -3428 (-771))) "failed") $) NIL)) (-2889 (($ $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1087 (-1175)) |#1|) NIL) (($ $ (-644 (-1087 (-1175))) (-644 |#1|)) NIL) (($ $ (-1087 (-1175)) $) NIL) (($ $ (-644 (-1087 (-1175))) (-644 $)) NIL) (($ $ (-1175) $) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 $)) NIL (|has| |#1| (-233))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-233))) (($ $ (-644 (-1175)) (-644 |#1|)) NIL (|has| |#1| (-233)))) (-2061 (($ $ (-1087 (-1175))) NIL (|has| |#1| (-172)))) (-3009 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1416 (((-644 (-1175)) $) NIL)) (-3838 (((-533 (-1087 (-1175))) $) NIL) (((-771) $ (-1087 (-1175))) NIL) (((-644 (-771)) $ (-644 (-1087 (-1175)))) NIL) (((-771) $ (-1175)) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1087 (-1175)) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) NIL (|has| |#1| (-454))) (($ $ (-1087 (-1175))) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-1087 (-1175))) NIL) (($ (-1175)) NIL) (($ (-1124 |#1| (-1175))) NIL) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-533 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-1087 (-1175))) NIL) (($ $ (-644 (-1087 (-1175)))) NIL) (($ $ (-1087 (-1175)) (-771)) NIL) (($ $ (-644 (-1087 (-1175))) (-644 (-771))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-771)) NIL (|has| |#1| (-233))) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1086 |#1|) (-13 (-254 |#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) (-1038 (-1124 |#1| (-1175)))) (-1049)) (T -1086))
-NIL
-(-13 (-254 |#1| (-1175) (-1087 (-1175)) (-533 (-1087 (-1175)))) (-1038 (-1124 |#1| (-1175))))
-((-3979 (((-112) $ $) NIL)) (-3095 (((-771) $) NIL)) (-2928 ((|#1| $) 10)) (-2023 (((-3 |#1| "failed") $) NIL)) (-3343 ((|#1| $) NIL)) (-3077 (((-771) $) 11)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-1661 (($ |#1| (-771)) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3009 (($ $) NIL) (($ $ (-771)) NIL)) (-2725 (((-862) $) NIL) (($ |#1|) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 16)))
-(((-1087 |#1|) (-267 |#1|) (-850)) (T -1087))
+(((-93) . T) ((-102) . T) ((-617 #0=(-1181)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1100) . T))
+((-2960 ((|#1| |#1| (-1 (-567) |#1| |#1|)) 43) ((|#1| |#1| (-1 (-112) |#1|)) 34)) (-2981 (((-1271)) 22)) (-4027 (((-645 |#1|)) 13)))
+(((-1084 |#1|) (-10 -7 (-15 -2981 ((-1271))) (-15 -4027 ((-645 |#1|))) (-15 -2960 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2960 (|#1| |#1| (-1 (-567) |#1| |#1|)))) (-132)) (T -1084))
+((-2960 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1084 *2)))) (-2960 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1084 *2)))) (-4027 (*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-132)))) (-2981 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1084 *3)) (-4 *3 (-132)))))
+(-10 -7 (-15 -2981 ((-1271))) (-15 -4027 ((-645 |#1|))) (-15 -2960 (|#1| |#1| (-1 (-112) |#1|))) (-15 -2960 (|#1| |#1| (-1 (-567) |#1| |#1|))))
+((-2104 (($ (-109) $) 20)) (-4288 (((-692 (-109)) (-509) $) 19)) (-3164 (($) 7)) (-2591 (($) 21)) (-1617 (($) 22)) (-3956 (((-645 (-175)) $) 10)) (-4101 (((-863) $) 25)))
+(((-1085) (-13 (-614 (-863)) (-10 -8 (-15 -3164 ($)) (-15 -3956 ((-645 (-175)) $)) (-15 -4288 ((-692 (-109)) (-509) $)) (-15 -2104 ($ (-109) $)) (-15 -2591 ($)) (-15 -1617 ($))))) (T -1085))
+((-3164 (*1 *1) (-5 *1 (-1085))) (-3956 (*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1085)))) (-4288 (*1 *2 *3 *1) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1085)))) (-2104 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1085)))) (-2591 (*1 *1) (-5 *1 (-1085))) (-1617 (*1 *1) (-5 *1 (-1085))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3164 ($)) (-15 -3956 ((-645 (-175)) $)) (-15 -4288 ((-692 (-109)) (-509) $)) (-15 -2104 ($ (-109) $)) (-15 -2591 ($)) (-15 -1617 ($))))
+((-1502 (((-1266 (-690 |#1|)) (-645 (-690 |#1|))) 47) (((-1266 (-690 (-953 |#1|))) (-645 (-1176)) (-690 (-953 |#1|))) 75) (((-1266 (-690 (-410 (-953 |#1|)))) (-645 (-1176)) (-690 (-410 (-953 |#1|)))) 92)) (-3216 (((-1266 |#1|) (-690 |#1|) (-645 (-690 |#1|))) 41)))
+(((-1086 |#1|) (-10 -7 (-15 -1502 ((-1266 (-690 (-410 (-953 |#1|)))) (-645 (-1176)) (-690 (-410 (-953 |#1|))))) (-15 -1502 ((-1266 (-690 (-953 |#1|))) (-645 (-1176)) (-690 (-953 |#1|)))) (-15 -1502 ((-1266 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3216 ((-1266 |#1|) (-690 |#1|) (-645 (-690 |#1|))))) (-365)) (T -1086))
+((-3216 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365)) (-5 *2 (-1266 *5)) (-5 *1 (-1086 *5)))) (-1502 (*1 *2 *3) (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-5 *2 (-1266 (-690 *4))) (-5 *1 (-1086 *4)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1176))) (-4 *5 (-365)) (-5 *2 (-1266 (-690 (-953 *5)))) (-5 *1 (-1086 *5)) (-5 *4 (-690 (-953 *5))))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-1176))) (-4 *5 (-365)) (-5 *2 (-1266 (-690 (-410 (-953 *5))))) (-5 *1 (-1086 *5)) (-5 *4 (-690 (-410 (-953 *5)))))))
+(-10 -7 (-15 -1502 ((-1266 (-690 (-410 (-953 |#1|)))) (-645 (-1176)) (-690 (-410 (-953 |#1|))))) (-15 -1502 ((-1266 (-690 (-953 |#1|))) (-645 (-1176)) (-690 (-953 |#1|)))) (-15 -1502 ((-1266 (-690 |#1|)) (-645 (-690 |#1|)))) (-15 -3216 ((-1266 |#1|) (-690 |#1|) (-645 (-690 |#1|)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-3312 (((-645 (-772)) $) NIL) (((-645 (-772)) $ (-1176)) NIL)) (-3933 (((-772) $) NIL) (((-772) $ (-1176)) NIL)) (-2449 (((-645 (-1088 (-1176))) $) NIL)) (-2260 (((-1172 $) $ (-1088 (-1176))) NIL) (((-1172 |#1|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-1088 (-1176)))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-3911 (($ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1088 (-1176)) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL) (((-3 (-1125 |#1| (-1176)) "failed") $) NIL)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1088 (-1176)) $) NIL) (((-1176) $) NIL) (((-1125 |#1| (-1176)) $) NIL)) (-2414 (($ $ $ (-1088 (-1176))) NIL (|has| |#1| (-172)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ (-1088 (-1176))) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-534 (-1088 (-1176))) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1088 (-1176)) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1088 (-1176)) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-1909 (((-772) $ (-1176)) NIL) (((-772) $) NIL)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2434 (($ (-1172 |#1|) (-1088 (-1176))) NIL) (($ (-1172 $) (-1088 (-1176))) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-534 (-1088 (-1176)))) NIL) (($ $ (-1088 (-1176)) (-772)) NIL) (($ $ (-645 (-1088 (-1176))) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-1088 (-1176))) NIL)) (-4185 (((-534 (-1088 (-1176))) $) NIL) (((-772) $ (-1088 (-1176))) NIL) (((-645 (-772)) $ (-645 (-1088 (-1176)))) NIL)) (-1599 (($ (-1 (-534 (-1088 (-1176))) (-534 (-1088 (-1176)))) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1820 (((-1 $ (-772)) (-1176)) NIL) (((-1 $ (-772)) $) NIL (|has| |#1| (-233)))) (-3300 (((-3 (-1088 (-1176)) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2046 (((-1088 (-1176)) $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-3399 (((-112) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-1088 (-1176))) (|:| -4164 (-772))) "failed") $) NIL)) (-4258 (($ $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1088 (-1176)) |#1|) NIL) (($ $ (-645 (-1088 (-1176))) (-645 |#1|)) NIL) (($ $ (-1088 (-1176)) $) NIL) (($ $ (-645 (-1088 (-1176))) (-645 $)) NIL) (($ $ (-1176) $) NIL (|has| |#1| (-233))) (($ $ (-645 (-1176)) (-645 $)) NIL (|has| |#1| (-233))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-233))) (($ $ (-645 (-1176)) (-645 |#1|)) NIL (|has| |#1| (-233)))) (-3347 (($ $ (-1088 (-1176))) NIL (|has| |#1| (-172)))) (-1930 (($ $ (-1088 (-1176))) NIL) (($ $ (-645 (-1088 (-1176)))) NIL) (($ $ (-1088 (-1176)) (-772)) NIL) (($ $ (-645 (-1088 (-1176))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1678 (((-645 (-1176)) $) NIL)) (-3677 (((-534 (-1088 (-1176))) $) NIL) (((-772) $ (-1088 (-1176))) NIL) (((-645 (-772)) $ (-645 (-1088 (-1176)))) NIL) (((-772) $ (-1176)) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-1088 (-1176)) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1088 (-1176)) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1088 (-1176)) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) NIL (|has| |#1| (-455))) (($ $ (-1088 (-1176))) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-1088 (-1176))) NIL) (($ (-1176)) NIL) (($ (-1125 |#1| (-1176))) NIL) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-534 (-1088 (-1176)))) NIL) (($ $ (-1088 (-1176)) (-772)) NIL) (($ $ (-645 (-1088 (-1176))) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-1088 (-1176))) NIL) (($ $ (-645 (-1088 (-1176)))) NIL) (($ $ (-1088 (-1176)) (-772)) NIL) (($ $ (-645 (-1088 (-1176))) (-645 (-772))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-772)) NIL (|has| |#1| (-233))) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1087 |#1|) (-13 (-254 |#1| (-1176) (-1088 (-1176)) (-534 (-1088 (-1176)))) (-1039 (-1125 |#1| (-1176)))) (-1050)) (T -1087))
+NIL
+(-13 (-254 |#1| (-1176) (-1088 (-1176)) (-534 (-1088 (-1176)))) (-1039 (-1125 |#1| (-1176))))
+((-2257 (((-112) $ $) NIL)) (-3933 (((-772) $) NIL)) (-4295 ((|#1| $) 10)) (-3417 (((-3 |#1| "failed") $) NIL)) (-1621 ((|#1| $) NIL)) (-1909 (((-772) $) 11)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-1820 (($ |#1| (-772)) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1930 (($ $) NIL) (($ $ (-772)) NIL)) (-4101 (((-863) $) NIL) (($ |#1|) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 16)))
+(((-1088 |#1|) (-267 |#1|) (-851)) (T -1088))
NIL
(-267 |#1|)
-((-2101 (((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 29 (|has| |#1| (-848))) (((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|)) 14)))
-(((-1088 |#1| |#2|) (-10 -7 (-15 -2101 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -2101 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|)) (-1215) (-1215)) (T -1088))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-848)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-644 *6)) (-5 *1 (-1088 *5 *6)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1093 *6)) (-5 *1 (-1088 *5 *6)))))
-(-10 -7 (-15 -2101 ((-1093 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) (IF (|has| |#1| (-848)) (-15 -2101 ((-644 |#2|) (-1 |#2| |#1|) (-1093 |#1|))) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 16) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1675 (((-644 (-1134)) $) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1089) (-13 (-1082) (-10 -8 (-15 -1675 ((-644 (-1134)) $))))) (T -1089))
-((-1675 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089)))))
-(-13 (-1082) (-10 -8 (-15 -1675 ((-644 (-1134)) $))))
-((-2101 (((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)) 19)))
-(((-1090 |#1| |#2|) (-10 -7 (-15 -2101 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|)))) (-1215) (-1215)) (T -1090))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1091 *6)) (-5 *1 (-1090 *5 *6)))))
-(-10 -7 (-15 -2101 ((-1091 |#2|) (-1 |#2| |#1|) (-1091 |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2928 (((-1175) $) 11)) (-3243 (((-1093 |#1|) $) 12)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3911 (($ (-1175) (-1093 |#1|)) 10)) (-2725 (((-862) $) 22 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2817 (((-112) $ $) 17 (|has| |#1| (-1099)))))
-(((-1091 |#1|) (-13 (-1215) (-10 -8 (-15 -3911 ($ (-1175) (-1093 |#1|))) (-15 -2928 ((-1175) $)) (-15 -3243 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1215)) (T -1091))
-((-3911 (*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1215)) (-5 *1 (-1091 *4)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1215)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1215)))))
-(-13 (-1215) (-10 -8 (-15 -3911 ($ (-1175) (-1093 |#1|))) (-15 -2928 ((-1175) $)) (-15 -3243 ((-1093 |#1|) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|)))
-((-3243 (($ |#1| |#1|) 8)) (-2424 ((|#1| $) 11)) (-2732 ((|#1| $) 13)) (-2753 (((-566) $) 9)) (-3145 ((|#1| $) 10)) (-2766 ((|#1| $) 12)) (-2150 (($ |#1|) 6)) (-3905 (($ |#1| |#1|) 15)) (-2590 (($ $ (-566)) 14)))
-(((-1092 |#1|) (-140) (-1215)) (T -1092))
-((-3905 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1215)))) (-2732 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))) (-2424 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))) (-2753 (*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1215)) (-5 *2 (-566)))) (-3243 (*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))))
-(-13 (-618 |t#1|) (-10 -8 (-15 -3905 ($ |t#1| |t#1|)) (-15 -2590 ($ $ (-566))) (-15 -2732 (|t#1| $)) (-15 -2766 (|t#1| $)) (-15 -2424 (|t#1| $)) (-15 -3145 (|t#1| $)) (-15 -2753 ((-566) $)) (-15 -3243 ($ |t#1| |t#1|))))
-(((-618 |#1|) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3243 (($ |#1| |#1|) 16)) (-2101 (((-644 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-848)))) (-2424 ((|#1| $) 12)) (-2732 ((|#1| $) 11)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2753 (((-566) $) 15)) (-3145 ((|#1| $) 14)) (-2766 ((|#1| $) 13)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3240 (((-644 |#1|) $) 44 (|has| |#1| (-848))) (((-644 |#1|) (-644 $)) 43 (|has| |#1| (-848)))) (-2150 (($ |#1|) 29)) (-2725 (((-862) $) 28 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3905 (($ |#1| |#1|) 10)) (-2590 (($ $ (-566)) 17)) (-2817 (((-112) $ $) 22 (|has| |#1| (-1099)))))
-(((-1093 |#1|) (-13 (-1092 |#1|) (-10 -7 (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-644 |#1|))) |%noBranch|))) (-1215)) (T -1093))
-NIL
-(-13 (-1092 |#1|) (-10 -7 (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-644 |#1|))) |%noBranch|)))
-((-3243 (($ |#1| |#1|) 8)) (-2101 ((|#2| (-1 |#1| |#1|) $) 16)) (-2424 ((|#1| $) 11)) (-2732 ((|#1| $) 13)) (-2753 (((-566) $) 9)) (-3145 ((|#1| $) 10)) (-2766 ((|#1| $) 12)) (-3240 ((|#2| (-644 $)) 18) ((|#2| $) 17)) (-2150 (($ |#1|) 6)) (-3905 (($ |#1| |#1|) 15)) (-2590 (($ $ (-566)) 14)))
-(((-1094 |#1| |#2|) (-140) (-848) (-1148 |t#1|)) (T -1094))
-((-3240 (*1 *2 *3) (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3)))) (-2101 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848)) (-4 *2 (-1148 *4)))))
-(-13 (-1092 |t#1|) (-10 -8 (-15 -3240 (|t#2| (-644 $))) (-15 -3240 (|t#2| $)) (-15 -2101 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-618 |#1|) . T) ((-1092 |#1|) . T))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1774 (((-1134) $) 12)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 18) (($ (-1180)) NIL) (((-1180) $) NIL)) (-3546 (((-644 (-1134)) $) 10)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1095) (-13 (-1082) (-10 -8 (-15 -3546 ((-644 (-1134)) $)) (-15 -1774 ((-1134) $))))) (T -1095))
-((-3546 (*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095)))) (-1774 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095)))))
-(-13 (-1082) (-10 -8 (-15 -3546 ((-644 (-1134)) $)) (-15 -1774 ((-1134) $))))
-((-2672 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3913 (($ $ $) 10)) (-2818 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1096 |#1| |#2|) (-10 -8 (-15 -2672 (|#1| |#2| |#1|)) (-15 -2672 (|#1| |#1| |#2|)) (-15 -2672 (|#1| |#1| |#1|)) (-15 -3913 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#2|)) (-15 -2818 (|#1| |#1| |#1|))) (-1097 |#2|) (-1099)) (T -1096))
-NIL
-(-10 -8 (-15 -2672 (|#1| |#2| |#1|)) (-15 -2672 (|#1| |#1| |#2|)) (-15 -2672 (|#1| |#1| |#1|)) (-15 -3913 (|#1| |#1| |#1|)) (-15 -2818 (|#1| |#1| |#2|)) (-15 -2818 (|#1| |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-2672 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3913 (($ $ $) 21)) (-4199 (((-112) $ $) 20)) (-2261 (((-112) $ (-771)) 36)) (-2583 (($) 26) (($ (-644 |#1|)) 25)) (-3281 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4415)))) (-2633 (($) 37 T CONST)) (-3806 (($ $) 60 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#1| $) 59 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4415)))) (-1523 (((-644 |#1|) $) 44 (|has| $ (-6 -4415)))) (-4155 (((-112) $ $) 29)) (-2429 (((-112) $ (-771)) 35)) (-2565 (((-644 |#1|) $) 45 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 39)) (-1864 (((-112) $ (-771)) 34)) (-1390 (((-1157) $) 10)) (-1799 (($ $ $) 24)) (-1944 (((-1119) $) 11)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-1900 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#1|) (-644 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 30)) (-4246 (((-112) $) 33)) (-3906 (($) 32)) (-2818 (($ $ $) 23) (($ $ |#1|) 22)) (-1958 (((-771) |#1| $) 46 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4415)))) (-2878 (($ $) 31)) (-2150 (((-538) $) 61 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 52)) (-2725 (((-862) $) 12)) (-4087 (($) 28) (($ (-644 |#1|)) 27)) (-1479 (((-112) $ $) 9)) (-2610 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 6)) (-3991 (((-771) $) 38 (|has| $ (-6 -4415)))))
-(((-1097 |#1|) (-140) (-1099)) (T -1097))
-((-4155 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-4087 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-4087 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-2583 (*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2583 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3)))) (-1799 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2818 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2818 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-3913 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-4199 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))) (-2672 (*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2672 (*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))) (-2672 (*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))))
-(-13 (-1099) (-151 |t#1|) (-10 -8 (-6 -4405) (-15 -4155 ((-112) $ $)) (-15 -4087 ($)) (-15 -4087 ($ (-644 |t#1|))) (-15 -2583 ($)) (-15 -2583 ($ (-644 |t#1|))) (-15 -1799 ($ $ $)) (-15 -2818 ($ $ $)) (-15 -2818 ($ $ |t#1|)) (-15 -3913 ($ $ $)) (-15 -4199 ((-112) $ $)) (-15 -2672 ($ $ $)) (-15 -2672 ($ $ |t#1|)) (-15 -2672 ($ |t#1| $))))
-(((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) . T) ((-1215) . T))
-((-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 8)) (-1479 (((-112) $ $) 12)))
-(((-1098 |#1|) (-10 -8 (-15 -1479 ((-112) |#1| |#1|)) (-15 -1390 ((-1157) |#1|)) (-15 -1944 ((-1119) |#1|))) (-1099)) (T -1098))
-NIL
-(-10 -8 (-15 -1479 ((-112) |#1| |#1|)) (-15 -1390 ((-1157) |#1|)) (-15 -1944 ((-1119) |#1|)))
-((-3979 (((-112) $ $) 7)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-1099) (-140)) (T -1099))
-((-1944 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157)))) (-1479 (*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112)))))
-(-13 (-102) (-613 (-862)) (-10 -8 (-15 -1944 ((-1119) $)) (-15 -1390 ((-1157) $)) (-15 -1479 ((-112) $ $))))
-(((-102) . T) ((-613 (-862)) . T))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) 36)) (-2209 (($ (-644 (-921))) 73)) (-1967 (((-3 $ "failed") $ (-921) (-921)) 84)) (-3424 (($) 40)) (-3938 (((-112) (-921) $) 44)) (-4138 (((-921) $) 66)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) 39)) (-1330 (((-3 $ "failed") $ (-921)) 80)) (-1944 (((-1119) $) NIL)) (-3710 (((-1265 $)) 49)) (-4218 (((-644 (-921)) $) 27)) (-3560 (((-771) $ (-921) (-921)) 81)) (-2725 (((-862) $) 32)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 24)))
-(((-1100 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1330 ((-3 $ "failed") $ (-921))) (-15 -1967 ((-3 $ "failed") $ (-921) (-921))) (-15 -4218 ((-644 (-921)) $)) (-15 -2209 ($ (-644 (-921)))) (-15 -3710 ((-1265 $))) (-15 -3938 ((-112) (-921) $)) (-15 -3560 ((-771) $ (-921) (-921))))) (-921) (-921)) (T -1100))
-((-1330 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1967 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-2209 (*1 *1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-3710 (*1 *2) (-12 (-5 *2 (-1265 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921)))) (-3938 (*1 *2 *3 *1) (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3560 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-370) (-10 -8 (-15 -1330 ((-3 $ "failed") $ (-921))) (-15 -1967 ((-3 $ "failed") $ (-921) (-921))) (-15 -4218 ((-644 (-921)) $)) (-15 -2209 ($ (-644 (-921)))) (-15 -3710 ((-1265 $))) (-15 -3938 ((-112) (-921) $)) (-15 -3560 ((-771) $ (-921) (-921)))))
-((-3979 (((-112) $ $) NIL)) (-1301 (($) NIL (|has| |#1| (-370)))) (-2672 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3913 (($ $ $) 81)) (-4199 (((-112) $ $) 82)) (-2261 (((-112) $ (-771)) NIL)) (-3733 (((-771)) NIL (|has| |#1| (-370)))) (-2583 (($ (-644 |#1|)) NIL) (($) 13)) (-1607 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2367 (($ |#1| $) 74 (|has| $ (-6 -4415))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4415)))) (-3424 (($) NIL (|has| |#1| (-370)))) (-1523 (((-644 |#1|) $) 19 (|has| $ (-6 -4415)))) (-4155 (((-112) $ $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-3075 ((|#1| $) 55 (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3936 ((|#1| $) 53 (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 34)) (-4138 (((-921) $) NIL (|has| |#1| (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1799 (($ $ $) 79)) (-2668 ((|#1| $) 25)) (-1619 (($ |#1| $) 69)) (-2430 (($ (-921)) NIL (|has| |#1| (-370)))) (-1944 (((-1119) $) NIL)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1613 ((|#1| $) 27)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 21)) (-3906 (($) 11)) (-2818 (($ $ |#1|) NIL) (($ $ $) 80)) (-1873 (($) NIL) (($ (-644 |#1|)) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 16)) (-2150 (((-538) $) 50 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 62)) (-1916 (($ $) NIL (|has| |#1| (-370)))) (-2725 (((-862) $) NIL)) (-1686 (((-771) $) NIL)) (-4087 (($ (-644 |#1|)) NIL) (($) 12)) (-1479 (((-112) $ $) NIL)) (-3619 (($ (-644 |#1|)) NIL)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 52)) (-3991 (((-771) $) 10 (|has| $ (-6 -4415)))))
-(((-1101 |#1|) (-427 |#1|) (-1099)) (T -1101))
-NIL
-(-427 |#1|)
-((-3979 (((-112) $ $) 7)) (-2289 (((-112) $) 33)) (-1731 ((|#2| $) 28)) (-1363 (((-112) $) 34)) (-4198 ((|#1| $) 29)) (-4329 (((-112) $) 36)) (-1709 (((-112) $) 38)) (-2530 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-3855 (((-112) $) 32)) (-1755 ((|#3| $) 27)) (-1944 (((-1119) $) 11)) (-1405 (((-112) $) 31)) (-1449 ((|#4| $) 26)) (-2888 ((|#5| $) 25)) (-1451 (((-112) $ $) 39)) (-3282 (($ $ (-566)) 21) (($ $ (-644 (-566))) 20)) (-4099 (((-644 $) $) 30)) (-2150 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-644 $)) 40)) (-2725 (((-862) $) 12)) (-3661 (($ $) 23)) (-3652 (($ $) 24)) (-1479 (((-112) $ $) 9)) (-2189 (((-112) $) 37)) (-2817 (((-112) $ $) 6)) (-3991 (((-566) $) 22)))
-(((-1102 |#1| |#2| |#3| |#4| |#5|) (-140) (-1099) (-1099) (-1099) (-1099) (-1099)) (T -1102))
-((-1451 (*1 *2 *1 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1709 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-2189 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-2289 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-1405 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))) (-4099 (*1 *2 *1) (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7)))) (-4198 (*1 *2 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1731 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-2888 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))) (-3652 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-3661 (*1 *1 *1) (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))) (-3991 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-566)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)))))
-(-13 (-1099) (-618 |t#1|) (-618 |t#2|) (-618 |t#3|) (-618 |t#4|) (-618 |t#4|) (-618 |t#5|) (-618 (-644 $)) (-10 -8 (-15 -1451 ((-112) $ $)) (-15 -1709 ((-112) $)) (-15 -2189 ((-112) $)) (-15 -4329 ((-112) $)) (-15 -2530 ((-112) $)) (-15 -1363 ((-112) $)) (-15 -2289 ((-112) $)) (-15 -3855 ((-112) $)) (-15 -1405 ((-112) $)) (-15 -4099 ((-644 $) $)) (-15 -4198 (|t#1| $)) (-15 -1731 (|t#2| $)) (-15 -1755 (|t#3| $)) (-15 -1449 (|t#4| $)) (-15 -2888 (|t#5| $)) (-15 -3652 ($ $)) (-15 -3661 ($ $)) (-15 -3991 ((-566) $)) (-15 -3282 ($ $ (-566))) (-15 -3282 ($ $ (-644 (-566))))))
-(((-102) . T) ((-613 (-862)) . T) ((-618 (-644 $)) . T) ((-618 |#1|) . T) ((-618 |#2|) . T) ((-618 |#3|) . T) ((-618 |#4|) . T) ((-618 |#5|) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-2289 (((-112) $) NIL)) (-1731 (((-1175) $) NIL)) (-1363 (((-112) $) NIL)) (-4198 (((-1157) $) NIL)) (-4329 (((-112) $) NIL)) (-1709 (((-112) $) NIL)) (-2530 (((-112) $) NIL)) (-1390 (((-1157) $) NIL)) (-3855 (((-112) $) NIL)) (-1755 (((-566) $) NIL)) (-1944 (((-1119) $) NIL)) (-1405 (((-112) $) NIL)) (-1449 (((-225) $) NIL)) (-2888 (((-862) $) NIL)) (-1451 (((-112) $ $) NIL)) (-3282 (($ $ (-566)) NIL) (($ $ (-644 (-566))) NIL)) (-4099 (((-644 $) $) NIL)) (-2150 (($ (-1157)) NIL) (($ (-1175)) NIL) (($ (-566)) NIL) (($ (-225)) NIL) (($ (-862)) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL)) (-3661 (($ $) NIL)) (-3652 (($ $) NIL)) (-1479 (((-112) $ $) NIL)) (-2189 (((-112) $) NIL)) (-2817 (((-112) $ $) NIL)) (-3991 (((-566) $) NIL)))
-(((-1103) (-1102 (-1157) (-1175) (-566) (-225) (-862))) (T -1103))
-NIL
-(-1102 (-1157) (-1175) (-566) (-225) (-862))
-((-3979 (((-112) $ $) NIL)) (-2289 (((-112) $) 45)) (-1731 ((|#2| $) 48)) (-1363 (((-112) $) 20)) (-4198 ((|#1| $) 21)) (-4329 (((-112) $) 42)) (-1709 (((-112) $) 14)) (-2530 (((-112) $) 44)) (-1390 (((-1157) $) NIL)) (-3855 (((-112) $) 46)) (-1755 ((|#3| $) 50)) (-1944 (((-1119) $) NIL)) (-1405 (((-112) $) 47)) (-1449 ((|#4| $) 49)) (-2888 ((|#5| $) 51)) (-1451 (((-112) $ $) 41)) (-3282 (($ $ (-566)) 62) (($ $ (-644 (-566))) 64)) (-4099 (((-644 $) $) 27)) (-2150 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-644 $)) 52)) (-2725 (((-862) $) 28)) (-3661 (($ $) 26)) (-3652 (($ $) 58)) (-1479 (((-112) $ $) NIL)) (-2189 (((-112) $) 23)) (-2817 (((-112) $ $) 40)) (-3991 (((-566) $) 60)))
-(((-1104 |#1| |#2| |#3| |#4| |#5|) (-1102 |#1| |#2| |#3| |#4| |#5|) (-1099) (-1099) (-1099) (-1099) (-1099)) (T -1104))
-NIL
-(-1102 |#1| |#2| |#3| |#4| |#5|)
-((-2887 (((-1270) $) 23)) (-2518 (($ (-1175) (-436) |#2|) 11)) (-2725 (((-862) $) 16)))
-(((-1105 |#1| |#2|) (-13 (-397) (-10 -8 (-15 -2518 ($ (-1175) (-436) |#2|)))) (-1099) (-432 |#1|)) (T -1105))
-((-2518 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099)) (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5)))))
-(-13 (-397) (-10 -8 (-15 -2518 ($ (-1175) (-436) |#2|))))
-((-2250 (((-112) |#5| |#5|) 45)) (-2260 (((-112) |#5| |#5|) 60)) (-2285 (((-112) |#5| (-644 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-2210 (((-112) (-644 |#4|) (-644 |#4|)) 66)) (-1391 (((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) 71)) (-3539 (((-1270)) 33)) (-3834 (((-1270) (-1157) (-1157) (-1157)) 29)) (-1605 (((-644 |#5|) (-644 |#5|)) 102)) (-3367 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) 94)) (-2399 (((-644 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112)) 124)) (-1644 (((-112) |#5| |#5|) 54)) (-4173 (((-3 (-112) "failed") |#5| |#5|) 79)) (-2699 (((-112) (-644 |#4|) (-644 |#4|)) 65)) (-1311 (((-112) (-644 |#4|) (-644 |#4|)) 67)) (-4249 (((-112) (-644 |#4|) (-644 |#4|)) 68)) (-1887 (((-3 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-4091 (((-644 |#5|) (-644 |#5|)) 50)))
-(((-1106 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3834 ((-1270) (-1157) (-1157) (-1157))) (-15 -3539 ((-1270))) (-15 -2250 ((-112) |#5| |#5|)) (-15 -4091 ((-644 |#5|) (-644 |#5|))) (-15 -1644 ((-112) |#5| |#5|)) (-15 -2260 ((-112) |#5| |#5|)) (-15 -2210 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1311 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4249 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4173 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2285 ((-112) |#5| |#5|)) (-15 -2285 ((-112) |#5| (-644 |#5|))) (-15 -1605 ((-644 |#5|) (-644 |#5|))) (-15 -1391 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3367 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-15 -2399 ((-644 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -1887 ((-3 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1106))
-((-1887 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| -1451 (-644 *9)) (|:| -3860 *4) (|:| |ineq| (-644 *9)))) (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9)) (-4 *4 (-1070 *6 *7 *8 *9)))) (-2399 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| -1451 (-644 *9)) (|:| -3860 *10) (|:| |ineq| (-644 *9))))) (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))) (-3367 (*1 *2 *2) (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3860 *7)))) (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-1391 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-2285 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3)))) (-2285 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-4173 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-1311 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2699 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-2260 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-1644 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-4091 (*1 *2 *2) (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))) (-2250 (*1 *2 *3 *3) (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))) (-3539 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270)) (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3834 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270)) (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3834 ((-1270) (-1157) (-1157) (-1157))) (-15 -3539 ((-1270))) (-15 -2250 ((-112) |#5| |#5|)) (-15 -4091 ((-644 |#5|) (-644 |#5|))) (-15 -1644 ((-112) |#5| |#5|)) (-15 -2260 ((-112) |#5| |#5|)) (-15 -2210 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -2699 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -1311 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4249 ((-112) (-644 |#4|) (-644 |#4|))) (-15 -4173 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2285 ((-112) |#5| |#5|)) (-15 -2285 ((-112) |#5| (-644 |#5|))) (-15 -1605 ((-644 |#5|) (-644 |#5|))) (-15 -1391 ((-112) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3367 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-15 -2399 ((-644 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|)))) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -1887 ((-3 (-2 (|:| -1451 (-644 |#4|)) (|:| -3860 |#5|) (|:| |ineq| (-644 |#4|))) "failed") (-644 |#4|) |#5| (-644 |#4|) (-112) (-112) (-112) (-112) (-112))))
-((-3908 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|) 109)) (-2186 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#4| |#4| |#5|) 81)) (-1347 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|) 103)) (-3734 (((-644 |#5|) |#4| |#5|) 125)) (-4109 (((-644 |#5|) |#4| |#5|) 132)) (-2571 (((-644 |#5|) |#4| |#5|) 133)) (-1915 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|) 110)) (-3653 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|) 131)) (-1426 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3106 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#3| (-112)) 93) (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3897 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|) 88)) (-3110 (((-1270)) 37)) (-3741 (((-1270)) 26)) (-3262 (((-1270) (-1157) (-1157) (-1157)) 33)) (-2179 (((-1270) (-1157) (-1157) (-1157)) 22)))
-(((-1107 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2179 ((-1270) (-1157) (-1157) (-1157))) (-15 -3741 ((-1270))) (-15 -3262 ((-1270) (-1157) (-1157) (-1157))) (-15 -3110 ((-1270))) (-15 -2186 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -3106 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3106 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#3| (-112))) (-15 -3897 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -1426 ((-112) |#4| |#5|)) (-15 -1915 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -3734 ((-644 |#5|) |#4| |#5|)) (-15 -3653 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -4109 ((-644 |#5|) |#4| |#5|)) (-15 -1426 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -2571 ((-644 |#5|) |#4| |#5|)) (-15 -3908 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1070 |#1| |#2| |#3| |#4|)) (T -1107))
-((-3908 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-2571 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1426 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-4109 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3653 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3734 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1915 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1426 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-1347 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3897 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9)))) (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850)) (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3860 *9)))) (-5 *1 (-1107 *6 *7 *4 *8 *9)))) (-3106 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3)))) (-2186 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))) (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))) (-3110 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-3262 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))) (-3741 (*1 *2) (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))) (-2179 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2179 ((-1270) (-1157) (-1157) (-1157))) (-15 -3741 ((-1270))) (-15 -3262 ((-1270) (-1157) (-1157) (-1157))) (-15 -3110 ((-1270))) (-15 -2186 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -3106 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3106 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) |#3| (-112))) (-15 -3897 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -1347 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#4| |#5|)) (-15 -1426 ((-112) |#4| |#5|)) (-15 -1915 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -3734 ((-644 |#5|) |#4| |#5|)) (-15 -3653 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -4109 ((-644 |#5|) |#4| |#5|)) (-15 -1426 ((-644 (-2 (|:| |val| (-112)) (|:| -3860 |#5|))) |#4| |#5|)) (-15 -2571 ((-644 |#5|) |#4| |#5|)) (-15 -3908 ((-644 (-2 (|:| |val| |#4|) (|:| -3860 |#5|))) |#4| |#5|)))
-((-3979 (((-112) $ $) 7)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) 86)) (-3599 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-4170 (((-644 |#3|) $) 34)) (-1323 (((-112) $) 27)) (-1494 (((-112) $) 18 (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) 102) (((-112) $) 98)) (-3351 ((|#4| |#4| $) 93)) (-2885 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| $) 127)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) 28)) (-2261 (((-112) $ (-771)) 45)) (-3281 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) 80)) (-2633 (($) 46 T CONST)) (-1740 (((-112) $) 23 (|has| |#1| (-558)))) (-3807 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1312 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1407 (((-112) $) 26 (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4185 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) 37)) (-3343 (($ (-644 |#4|)) 36)) (-3781 (((-3 $ "failed") $) 83)) (-1673 ((|#4| |#4| $) 90)) (-3806 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3427 ((|#4| |#4| $) 88)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) 106)) (-1733 (((-112) |#4| $) 137)) (-2509 (((-112) |#4| $) 134)) (-2511 (((-112) |#4| $) 138) (((-112) $) 135)) (-1523 (((-644 |#4|) $) 53 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) 105) (((-112) $) 104)) (-3779 ((|#3| $) 35)) (-2429 (((-112) $ (-771)) 44)) (-2565 (((-644 |#4|) $) 54 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 48)) (-2054 (((-644 |#3|) $) 33)) (-2314 (((-112) |#3| $) 32)) (-1864 (((-112) $ (-771)) 43)) (-1390 (((-1157) $) 10)) (-2245 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1665 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| |#4| $) 128)) (-1774 (((-3 |#4| "failed") $) 84)) (-2932 (((-644 $) |#4| $) 130)) (-3439 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3669 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1799 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-4200 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3304 (((-644 |#4|) $) 108)) (-2751 (((-112) |#4| $) 100) (((-112) $) 96)) (-1642 ((|#4| |#4| $) 91)) (-4249 (((-112) $ $) 111)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) 101) (((-112) $) 97)) (-2117 ((|#4| |#4| $) 92)) (-1944 (((-1119) $) 11)) (-3771 (((-3 |#4| "failed") $) 85)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3521 (((-3 $ "failed") $ |#4|) 79)) (-3964 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-1900 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) 39)) (-4246 (((-112) $) 42)) (-3906 (($) 41)) (-3838 (((-771) $) 107)) (-1958 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4415)))) (-2878 (($ $) 40)) (-2150 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 61)) (-3317 (($ $ |#3|) 29)) (-3756 (($ $ |#3|) 31)) (-2352 (($ $) 89)) (-1811 (($ $ |#3|) 30)) (-2725 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3526 (((-771) $) 77 (|has| |#3| (-370)))) (-1479 (((-112) $ $) 9)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3735 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2610 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) 82)) (-1950 (((-112) |#4| $) 136)) (-3314 (((-112) |#3| $) 81)) (-2817 (((-112) $ $) 6)) (-3991 (((-771) $) 47 (|has| $ (-6 -4415)))))
-(((-1108 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1108))
-NIL
-(-13 (-1070 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1208 |#1| |#2| |#3| |#4|) . T) ((-1215) . T))
-((-2577 (((-644 (-566)) (-566) (-566) (-566)) 39)) (-2332 (((-644 (-566)) (-566) (-566) (-566)) 29)) (-2321 (((-644 (-566)) (-566) (-566) (-566)) 34)) (-3133 (((-566) (-566) (-566)) 23)) (-1996 (((-1265 (-566)) (-644 (-566)) (-1265 (-566)) (-566)) 75) (((-1265 (-566)) (-1265 (-566)) (-1265 (-566)) (-566)) 70)) (-2408 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112)) 52)) (-3131 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 74)) (-4038 (((-689 (-566)) (-644 (-566)) (-644 (-566))) 58)) (-2457 (((-644 (-689 (-566))) (-644 (-566))) 63)) (-3547 (((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566))) 78)) (-1855 (((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566))) 88)))
-(((-1109) (-10 -7 (-15 -1855 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3547 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2457 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -4038 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3131 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2408 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -1996 ((-1265 (-566)) (-1265 (-566)) (-1265 (-566)) (-566))) (-15 -1996 ((-1265 (-566)) (-644 (-566)) (-1265 (-566)) (-566))) (-15 -3133 ((-566) (-566) (-566))) (-15 -2321 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2332 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2577 ((-644 (-566)) (-566) (-566) (-566))))) (T -1109))
-((-2577 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-2332 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-2321 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))) (-3133 (*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109)))) (-1996 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1265 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566)) (-5 *1 (-1109)))) (-1996 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1265 (-566))) (-5 *3 (-566)) (-5 *1 (-1109)))) (-2408 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109)))) (-3131 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109)))) (-4038 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-1109)))) (-3547 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109)))) (-1855 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109)))))
-(-10 -7 (-15 -1855 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3547 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2457 ((-644 (-689 (-566))) (-644 (-566)))) (-15 -4038 ((-689 (-566)) (-644 (-566)) (-644 (-566)))) (-15 -3131 ((-689 (-566)) (-644 (-566)) (-644 (-566)) (-689 (-566)))) (-15 -2408 ((-644 (-566)) (-644 (-566)) (-644 (-566)) (-112))) (-15 -1996 ((-1265 (-566)) (-1265 (-566)) (-1265 (-566)) (-566))) (-15 -1996 ((-1265 (-566)) (-644 (-566)) (-1265 (-566)) (-566))) (-15 -3133 ((-566) (-566) (-566))) (-15 -2321 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2332 ((-644 (-566)) (-566) (-566) (-566))) (-15 -2577 ((-644 (-566)) (-566) (-566) (-566))))
-((** (($ $ (-921)) 10)))
-(((-1110 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-921)))) (-1111)) (T -1110))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-921))))
-((-3979 (((-112) $ $) 7)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)) (** (($ $ (-921)) 14)) (* (($ $ $) 15)))
-(((-1111) (-140)) (T -1111))
-((* (*1 *1 *1 *1) (-4 *1 (-1111))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-921)))))
-(-13 (-1099) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-921)))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-3545 (((-112) $) NIL (|has| |#3| (-131)))) (-2338 (($ (-921)) NIL (|has| |#3| (-1049)))) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-3288 (($ $ $) NIL (|has| |#3| (-793)))) (-4113 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2261 (((-112) $ (-771)) NIL)) (-3733 (((-771)) NIL (|has| |#3| (-370)))) (-1859 (((-566) $) NIL (|has| |#3| (-848)))) (-2858 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1099)))) (-3343 (((-566) $) NIL (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099)))) (((-409 (-566)) $) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) ((|#3| $) NIL (|has| |#3| (-1099)))) (-3717 (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#3| (-639 (-566))) (|has| |#3| (-1049)))) (((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 $) (-1265 $)) NIL (|has| |#3| (-1049))) (((-689 |#3|) (-689 $)) NIL (|has| |#3| (-1049)))) (-2313 (((-3 $ "failed") $) NIL (|has| |#3| (-726)))) (-3424 (($) NIL (|has| |#3| (-370)))) (-3031 ((|#3| $ (-566) |#3|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#3| $ (-566)) 12)) (-3421 (((-112) $) NIL (|has| |#3| (-848)))) (-1523 (((-644 |#3|) $) NIL (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL (|has| |#3| (-726)))) (-2307 (((-112) $) NIL (|has| |#3| (-848)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2565 (((-644 |#3|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-3023 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#3| |#3|) $) NIL)) (-4138 (((-921) $) NIL (|has| |#3| (-370)))) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#3| (-1099)))) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-2430 (($ (-921)) NIL (|has| |#3| (-370)))) (-1944 (((-1119) $) NIL (|has| |#3| (-1099)))) (-3771 ((|#3| $) NIL (|has| (-566) (-850)))) (-3598 (($ $ |#3|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099)))) (($ $ (-644 |#3|) (-644 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099))))) (-1948 (((-644 |#3|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#3| $ (-566) |#3|) NIL) ((|#3| $ (-566)) NIL)) (-1836 ((|#3| $ $) NIL (|has| |#3| (-1049)))) (-4059 (($ (-1265 |#3|)) NIL)) (-4356 (((-134)) NIL (|has| |#3| (-365)))) (-3009 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-1958 (((-771) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415))) (((-771) |#3| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#3| (-1099))))) (-2878 (($ $) NIL)) (-2725 (((-1265 |#3|) $) NIL) (($ (-566)) NIL (-2676 (-12 (|has| |#3| (-1038 (-566))) (|has| |#3| (-1099))) (|has| |#3| (-1049)))) (($ (-409 (-566))) NIL (-12 (|has| |#3| (-1038 (-409 (-566)))) (|has| |#3| (-1099)))) (($ |#3|) NIL (|has| |#3| (-1099))) (((-862) $) NIL (|has| |#3| (-613 (-862))))) (-2875 (((-771)) NIL (|has| |#3| (-1049)) CONST)) (-1479 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-2610 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4415)))) (-2274 (($ $) NIL (|has| |#3| (-848)))) (-3200 (($) NIL (|has| |#3| (-131)) CONST)) (-3214 (($) NIL (|has| |#3| (-726)) CONST)) (-1316 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-771)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1049)))) (($ $ (-1175)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#3| (-900 (-1175))) (|has| |#3| (-1049)))) (($ $ (-1 |#3| |#3|) (-771)) NIL (|has| |#3| (-1049))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1049)))) (-2865 (((-112) $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2844 (((-112) $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2817 (((-112) $ $) NIL (|has| |#3| (-1099)))) (-2854 (((-112) $ $) NIL (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2833 (((-112) $ $) 24 (-2676 (|has| |#3| (-793)) (|has| |#3| (-848))))) (-2916 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-2905 (($ $ $) NIL (|has| |#3| (-1049))) (($ $) NIL (|has| |#3| (-1049)))) (-2897 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-771)) NIL (|has| |#3| (-726))) (($ $ (-921)) NIL (|has| |#3| (-726)))) (* (($ (-566) $) NIL (|has| |#3| (-1049))) (($ $ $) NIL (|has| |#3| (-726))) (($ $ |#3|) NIL (|has| |#3| (-726))) (($ |#3| $) NIL (|has| |#3| (-726))) (($ (-771) $) NIL (|has| |#3| (-131))) (($ (-921) $) NIL (|has| |#3| (-25)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1112 |#1| |#2| |#3|) (-238 |#1| |#3|) (-771) (-771) (-793)) (T -1112))
+((-3494 (((-645 |#2|) (-1 |#2| |#1|) (-1094 |#1|)) 29 (|has| |#1| (-849))) (((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|)) 14)))
+(((-1089 |#1| |#2|) (-10 -7 (-15 -3494 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|))) (IF (|has| |#1| (-849)) (-15 -3494 ((-645 |#2|) (-1 |#2| |#1|) (-1094 |#1|))) |%noBranch|)) (-1216) (-1216)) (T -1089))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-849)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-645 *6)) (-5 *1 (-1089 *5 *6)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1094 *6)) (-5 *1 (-1089 *5 *6)))))
+(-10 -7 (-15 -3494 ((-1094 |#2|) (-1 |#2| |#1|) (-1094 |#1|))) (IF (|has| |#1| (-849)) (-15 -3494 ((-645 |#2|) (-1 |#2| |#1|) (-1094 |#1|))) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 16) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3833 (((-645 (-1135)) $) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1090) (-13 (-1083) (-10 -8 (-15 -3833 ((-645 (-1135)) $))))) (T -1090))
+((-3833 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-1090)))))
+(-13 (-1083) (-10 -8 (-15 -3833 ((-645 (-1135)) $))))
+((-3494 (((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|)) 19)))
+(((-1091 |#1| |#2|) (-10 -7 (-15 -3494 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|)))) (-1216) (-1216)) (T -1091))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1092 *6)) (-5 *1 (-1091 *5 *6)))))
+(-10 -7 (-15 -3494 ((-1092 |#2|) (-1 |#2| |#1|) (-1092 |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-4295 (((-1176) $) 11)) (-1907 (((-1094 |#1|) $) 12)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2190 (($ (-1176) (-1094 |#1|)) 10)) (-4101 (((-863) $) 22 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3052 (((-112) $ $) 17 (|has| |#1| (-1100)))))
+(((-1092 |#1|) (-13 (-1216) (-10 -8 (-15 -2190 ($ (-1176) (-1094 |#1|))) (-15 -4295 ((-1176) $)) (-15 -1907 ((-1094 |#1|) $)) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|))) (-1216)) (T -1092))
+((-2190 (*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1094 *4)) (-4 *4 (-1216)) (-5 *1 (-1092 *4)))) (-4295 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1092 *3)) (-4 *3 (-1216)))) (-1907 (*1 *2 *1) (-12 (-5 *2 (-1094 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-1216)))))
+(-13 (-1216) (-10 -8 (-15 -2190 ($ (-1176) (-1094 |#1|))) (-15 -4295 ((-1176) $)) (-15 -1907 ((-1094 |#1|) $)) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|)))
+((-1907 (($ |#1| |#1|) 8)) (-2764 ((|#1| $) 11)) (-4109 ((|#1| $) 13)) (-4131 (((-567) $) 9)) (-4361 ((|#1| $) 10)) (-4143 ((|#1| $) 12)) (-3542 (($ |#1|) 6)) (-2185 (($ |#1| |#1|) 15)) (-2829 (($ $ (-567)) 14)))
+(((-1093 |#1|) (-140) (-1216)) (T -1093))
+((-2185 (*1 *1 *2 *2) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1093 *3)) (-4 *3 (-1216)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-1093 *3)) (-4 *3 (-1216)) (-5 *2 (-567)))) (-1907 (*1 *1 *2 *2) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))))
+(-13 (-619 |t#1|) (-10 -8 (-15 -2185 ($ |t#1| |t#1|)) (-15 -2829 ($ $ (-567))) (-15 -4109 (|t#1| $)) (-15 -4143 (|t#1| $)) (-15 -2764 (|t#1| $)) (-15 -4361 (|t#1| $)) (-15 -4131 ((-567) $)) (-15 -1907 ($ |t#1| |t#1|))))
+(((-619 |#1|) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1907 (($ |#1| |#1|) 16)) (-3494 (((-645 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-849)))) (-2764 ((|#1| $) 12)) (-4109 ((|#1| $) 11)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4131 (((-567) $) 15)) (-4361 ((|#1| $) 14)) (-4143 ((|#1| $) 13)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-1511 (((-645 |#1|) $) 44 (|has| |#1| (-849))) (((-645 |#1|) (-645 $)) 43 (|has| |#1| (-849)))) (-3542 (($ |#1|) 29)) (-4101 (((-863) $) 28 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2185 (($ |#1| |#1|) 10)) (-2829 (($ $ (-567)) 17)) (-3052 (((-112) $ $) 22 (|has| |#1| (-1100)))))
+(((-1094 |#1|) (-13 (-1093 |#1|) (-10 -7 (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1095 |#1| (-645 |#1|))) |%noBranch|))) (-1216)) (T -1094))
+NIL
+(-13 (-1093 |#1|) (-10 -7 (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1095 |#1| (-645 |#1|))) |%noBranch|)))
+((-1907 (($ |#1| |#1|) 8)) (-3494 ((|#2| (-1 |#1| |#1|) $) 16)) (-2764 ((|#1| $) 11)) (-4109 ((|#1| $) 13)) (-4131 (((-567) $) 9)) (-4361 ((|#1| $) 10)) (-4143 ((|#1| $) 12)) (-1511 ((|#2| (-645 $)) 18) ((|#2| $) 17)) (-3542 (($ |#1|) 6)) (-2185 (($ |#1| |#1|) 15)) (-2829 (($ $ (-567)) 14)))
+(((-1095 |#1| |#2|) (-140) (-849) (-1149 |t#1|)) (T -1095))
+((-1511 (*1 *2 *3) (-12 (-5 *3 (-645 *1)) (-4 *1 (-1095 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1149 *4)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-1095 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1149 *3)))) (-3494 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1095 *4 *2)) (-4 *4 (-849)) (-4 *2 (-1149 *4)))))
+(-13 (-1093 |t#1|) (-10 -8 (-15 -1511 (|t#2| (-645 $))) (-15 -1511 (|t#2| $)) (-15 -3494 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-619 |#1|) . T) ((-1093 |#1|) . T))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3162 (((-1135) $) 12)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 18) (($ (-1181)) NIL) (((-1181) $) NIL)) (-1830 (((-645 (-1135)) $) 10)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1096) (-13 (-1083) (-10 -8 (-15 -1830 ((-645 (-1135)) $)) (-15 -3162 ((-1135) $))))) (T -1096))
+((-1830 (*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-1096)))) (-3162 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1096)))))
+(-13 (-1083) (-10 -8 (-15 -1830 ((-645 (-1135)) $)) (-15 -3162 ((-1135) $))))
+((-4051 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3217 (($ $ $) 10)) (-2108 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1097 |#1| |#2|) (-10 -8 (-15 -4051 (|#1| |#2| |#1|)) (-15 -4051 (|#1| |#1| |#2|)) (-15 -4051 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#2|)) (-15 -2108 (|#1| |#1| |#1|))) (-1098 |#2|) (-1100)) (T -1097))
+NIL
+(-10 -8 (-15 -4051 (|#1| |#2| |#1|)) (-15 -4051 (|#1| |#1| |#2|)) (-15 -4051 (|#1| |#1| |#1|)) (-15 -3217 (|#1| |#1| |#1|)) (-15 -2108 (|#1| |#1| |#2|)) (-15 -2108 (|#1| |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-4051 (($ $ $) 19) (($ $ |#1|) 18) (($ |#1| $) 17)) (-3217 (($ $ $) 21)) (-2901 (((-112) $ $) 20)) (-1580 (((-112) $ (-772)) 36)) (-3966 (($) 26) (($ (-645 |#1|)) 25)) (-1551 (($ (-1 (-112) |#1|) $) 57 (|has| $ (-6 -4416)))) (-4061 (($) 37 T CONST)) (-2084 (($ $) 60 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#1| $) 59 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4416)))) (-2896 (((-645 |#1|) $) 44 (|has| $ (-6 -4416)))) (-3672 (((-112) $ $) 29)) (-2805 (((-112) $ (-772)) 35)) (-1542 (((-645 |#1|) $) 45 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 47 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 39)) (-3230 (((-112) $ (-772)) 34)) (-2451 (((-1158) $) 10)) (-3754 (($ $ $) 24)) (-3339 (((-1120) $) 11)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 53)) (-2297 (((-112) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#1|) (-645 |#1|)) 51 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 49 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 (-295 |#1|))) 48 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 30)) (-3353 (((-112) $) 33)) (-3164 (($) 32)) (-2108 (($ $ $) 23) (($ $ |#1|) 22)) (-3349 (((-772) |#1| $) 46 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#1|) $) 43 (|has| $ (-6 -4416)))) (-4247 (($ $) 31)) (-3542 (((-539) $) 61 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 52)) (-4101 (((-863) $) 12)) (-2368 (($) 28) (($ (-645 |#1|)) 27)) (-3739 (((-112) $ $) 9)) (-2012 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 6)) (-2268 (((-772) $) 38 (|has| $ (-6 -4416)))))
+(((-1098 |#1|) (-140) (-1100)) (T -1098))
+((-3672 (*1 *2 *1 *1) (-12 (-4 *1 (-1098 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))) (-2368 (*1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-1098 *3)))) (-3966 (*1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-3966 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-1098 *3)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-2108 (*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-2108 (*1 *1 *1 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-3217 (*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-2901 (*1 *2 *1 *1) (-12 (-4 *1 (-1098 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))) (-4051 (*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-4051 (*1 *1 *1 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))) (-4051 (*1 *1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))))
+(-13 (-1100) (-151 |t#1|) (-10 -8 (-6 -4406) (-15 -3672 ((-112) $ $)) (-15 -2368 ($)) (-15 -2368 ($ (-645 |t#1|))) (-15 -3966 ($)) (-15 -3966 ($ (-645 |t#1|))) (-15 -3754 ($ $ $)) (-15 -2108 ($ $ $)) (-15 -2108 ($ $ |t#1|)) (-15 -3217 ($ $ $)) (-15 -2901 ((-112) $ $)) (-15 -4051 ($ $ $)) (-15 -4051 ($ $ |t#1|)) (-15 -4051 ($ |t#1| $))))
+(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) . T) ((-1216) . T))
+((-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 8)) (-3739 (((-112) $ $) 12)))
+(((-1099 |#1|) (-10 -8 (-15 -3739 ((-112) |#1| |#1|)) (-15 -2451 ((-1158) |#1|)) (-15 -3339 ((-1120) |#1|))) (-1100)) (T -1099))
+NIL
+(-10 -8 (-15 -3739 ((-112) |#1| |#1|)) (-15 -2451 ((-1158) |#1|)) (-15 -3339 ((-1120) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-1100) (-140)) (T -1100))
+((-3339 (*1 *2 *1) (-12 (-4 *1 (-1100)) (-5 *2 (-1120)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-1100)) (-5 *2 (-1158)))) (-3739 (*1 *2 *1 *1) (-12 (-4 *1 (-1100)) (-5 *2 (-112)))))
+(-13 (-102) (-614 (-863)) (-10 -8 (-15 -3339 ((-1120) $)) (-15 -2451 ((-1158) $)) (-15 -3739 ((-112) $ $))))
+(((-102) . T) ((-614 (-863)) . T))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) 36)) (-2344 (($ (-645 (-922))) 73)) (-1651 (((-3 $ "failed") $ (-922) (-922)) 84)) (-1649 (($) 40)) (-2176 (((-112) (-922) $) 44)) (-3527 (((-922) $) 66)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) 39)) (-1517 (((-3 $ "failed") $ (-922)) 80)) (-3339 (((-1120) $) NIL)) (-1853 (((-1266 $)) 49)) (-3100 (((-645 (-922)) $) 27)) (-2605 (((-772) $ (-922) (-922)) 81)) (-4101 (((-863) $) 32)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 24)))
+(((-1101 |#1| |#2|) (-13 (-370) (-10 -8 (-15 -1517 ((-3 $ "failed") $ (-922))) (-15 -1651 ((-3 $ "failed") $ (-922) (-922))) (-15 -3100 ((-645 (-922)) $)) (-15 -2344 ($ (-645 (-922)))) (-15 -1853 ((-1266 $))) (-15 -2176 ((-112) (-922) $)) (-15 -2605 ((-772) $ (-922) (-922))))) (-922) (-922)) (T -1101))
+((-1517 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1101 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1651 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1101 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3100 (*1 *2 *1) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1101 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-2344 (*1 *1 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1101 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-1853 (*1 *2) (-12 (-5 *2 (-1266 (-1101 *3 *4))) (-5 *1 (-1101 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922)))) (-2176 (*1 *2 *3 *1) (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2605 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-772)) (-5 *1 (-1101 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-370) (-10 -8 (-15 -1517 ((-3 $ "failed") $ (-922))) (-15 -1651 ((-3 $ "failed") $ (-922) (-922))) (-15 -3100 ((-645 (-922)) $)) (-15 -2344 ($ (-645 (-922)))) (-15 -1853 ((-1266 $))) (-15 -2176 ((-112) (-922) $)) (-15 -2605 ((-772) $ (-922) (-922)))))
+((-2257 (((-112) $ $) NIL)) (-2495 (($) NIL (|has| |#1| (-370)))) (-4051 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 83)) (-3217 (($ $ $) 81)) (-2901 (((-112) $ $) 82)) (-1580 (((-112) $ (-772)) NIL)) (-2013 (((-772)) NIL (|has| |#1| (-370)))) (-3966 (($ (-645 |#1|)) NIL) (($) 13)) (-2581 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3410 (($ |#1| $) 74 (|has| $ (-6 -4416))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4416)))) (-1649 (($) NIL (|has| |#1| (-370)))) (-2896 (((-645 |#1|) $) 19 (|has| $ (-6 -4416)))) (-3672 (((-112) $ $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-2056 ((|#1| $) 55 (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1802 ((|#1| $) 53 (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 34)) (-3527 (((-922) $) NIL (|has| |#1| (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3754 (($ $ $) 79)) (-4341 ((|#1| $) 25)) (-1336 (($ |#1| $) 69)) (-3811 (($ (-922)) NIL (|has| |#1| (-370)))) (-3339 (((-1120) $) NIL)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-4394 ((|#1| $) 27)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 21)) (-3164 (($) 11)) (-2108 (($ $ |#1|) NIL) (($ $ $) 80)) (-2069 (($) NIL) (($ (-645 |#1|)) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 16)) (-3542 (((-539) $) 50 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 62)) (-2488 (($ $) NIL (|has| |#1| (-370)))) (-4101 (((-863) $) NIL)) (-3929 (((-772) $) NIL)) (-2368 (($ (-645 |#1|)) NIL) (($) 12)) (-3739 (((-112) $ $) NIL)) (-2299 (($ (-645 |#1|)) NIL)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 52)) (-2268 (((-772) $) 10 (|has| $ (-6 -4416)))))
+(((-1102 |#1|) (-428 |#1|) (-1100)) (T -1102))
+NIL
+(-428 |#1|)
+((-2257 (((-112) $ $) 7)) (-1928 (((-112) $) 33)) (-3118 ((|#2| $) 28)) (-1701 (((-112) $) 34)) (-2478 ((|#1| $) 29)) (-1626 (((-112) $) 36)) (-4132 (((-112) $) 38)) (-2551 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3822 (((-112) $) 32)) (-3142 ((|#3| $) 27)) (-3339 (((-1120) $) 11)) (-1550 (((-112) $) 31)) (-2822 ((|#4| $) 26)) (-4256 ((|#5| $) 25)) (-2823 (((-112) $ $) 39)) (-1552 (($ $ (-567)) 21) (($ $ (-645 (-567))) 20)) (-2381 (((-645 $) $) 30)) (-3542 (($ |#1|) 45) (($ |#2|) 44) (($ |#3|) 43) (($ |#4|) 42) (($ |#5|) 41) (($ (-645 $)) 40)) (-4101 (((-863) $) 12)) (-1947 (($ $) 23)) (-1935 (($ $) 24)) (-3739 (((-112) $ $) 9)) (-2107 (((-112) $) 37)) (-3052 (((-112) $ $) 6)) (-2268 (((-567) $) 22)))
+(((-1103 |#1| |#2| |#3| |#4| |#5|) (-140) (-1100) (-1100) (-1100) (-1100) (-1100)) (T -1103))
+((-2823 (*1 *2 *1 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-1701 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-1550 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))) (-2381 (*1 *2 *1) (-12 (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-645 *1)) (-4 *1 (-1103 *3 *4 *5 *6 *7)))) (-2478 (*1 *2 *1) (-12 (-4 *1 (-1103 *2 *3 *4 *5 *6)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *2 *4 *5 *6)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *2 *5 *6)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))) (-2822 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *2 *6)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))) (-4256 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *2)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))) (-1935 (*1 *1 *1) (-12 (-4 *1 (-1103 *2 *3 *4 *5 *6)) (-4 *2 (-1100)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)))) (-1947 (*1 *1 *1) (-12 (-4 *1 (-1103 *2 *3 *4 *5 *6)) (-4 *2 (-1100)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-567)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)))))
+(-13 (-1100) (-619 |t#1|) (-619 |t#2|) (-619 |t#3|) (-619 |t#4|) (-619 |t#4|) (-619 |t#5|) (-619 (-645 $)) (-10 -8 (-15 -2823 ((-112) $ $)) (-15 -4132 ((-112) $)) (-15 -2107 ((-112) $)) (-15 -1626 ((-112) $)) (-15 -2551 ((-112) $)) (-15 -1701 ((-112) $)) (-15 -1928 ((-112) $)) (-15 -3822 ((-112) $)) (-15 -1550 ((-112) $)) (-15 -2381 ((-645 $) $)) (-15 -2478 (|t#1| $)) (-15 -3118 (|t#2| $)) (-15 -3142 (|t#3| $)) (-15 -2822 (|t#4| $)) (-15 -4256 (|t#5| $)) (-15 -1935 ($ $)) (-15 -1947 ($ $)) (-15 -2268 ((-567) $)) (-15 -1552 ($ $ (-567))) (-15 -1552 ($ $ (-645 (-567))))))
+(((-102) . T) ((-614 (-863)) . T) ((-619 (-645 $)) . T) ((-619 |#1|) . T) ((-619 |#2|) . T) ((-619 |#3|) . T) ((-619 |#4|) . T) ((-619 |#5|) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-1928 (((-112) $) NIL)) (-3118 (((-1176) $) NIL)) (-1701 (((-112) $) NIL)) (-2478 (((-1158) $) NIL)) (-1626 (((-112) $) NIL)) (-4132 (((-112) $) NIL)) (-2551 (((-112) $) NIL)) (-2451 (((-1158) $) NIL)) (-3822 (((-112) $) NIL)) (-3142 (((-567) $) NIL)) (-3339 (((-1120) $) NIL)) (-1550 (((-112) $) NIL)) (-2822 (((-225) $) NIL)) (-4256 (((-863) $) NIL)) (-2823 (((-112) $ $) NIL)) (-1552 (($ $ (-567)) NIL) (($ $ (-645 (-567))) NIL)) (-2381 (((-645 $) $) NIL)) (-3542 (($ (-1158)) NIL) (($ (-1176)) NIL) (($ (-567)) NIL) (($ (-225)) NIL) (($ (-863)) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL)) (-1947 (($ $) NIL)) (-1935 (($ $) NIL)) (-3739 (((-112) $ $) NIL)) (-2107 (((-112) $) NIL)) (-3052 (((-112) $ $) NIL)) (-2268 (((-567) $) NIL)))
+(((-1104) (-1103 (-1158) (-1176) (-567) (-225) (-863))) (T -1104))
+NIL
+(-1103 (-1158) (-1176) (-567) (-225) (-863))
+((-2257 (((-112) $ $) NIL)) (-1928 (((-112) $) 45)) (-3118 ((|#2| $) 48)) (-1701 (((-112) $) 20)) (-2478 ((|#1| $) 21)) (-1626 (((-112) $) 42)) (-4132 (((-112) $) 14)) (-2551 (((-112) $) 44)) (-2451 (((-1158) $) NIL)) (-3822 (((-112) $) 46)) (-3142 ((|#3| $) 50)) (-3339 (((-1120) $) NIL)) (-1550 (((-112) $) 47)) (-2822 ((|#4| $) 49)) (-4256 ((|#5| $) 51)) (-2823 (((-112) $ $) 41)) (-1552 (($ $ (-567)) 62) (($ $ (-645 (-567))) 64)) (-2381 (((-645 $) $) 27)) (-3542 (($ |#1|) 53) (($ |#2|) 54) (($ |#3|) 55) (($ |#4|) 56) (($ |#5|) 57) (($ (-645 $)) 52)) (-4101 (((-863) $) 28)) (-1947 (($ $) 26)) (-1935 (($ $) 58)) (-3739 (((-112) $ $) NIL)) (-2107 (((-112) $) 23)) (-3052 (((-112) $ $) 40)) (-2268 (((-567) $) 60)))
+(((-1105 |#1| |#2| |#3| |#4| |#5|) (-1103 |#1| |#2| |#3| |#4| |#5|) (-1100) (-1100) (-1100) (-1100) (-1100)) (T -1105))
+NIL
+(-1103 |#1| |#2| |#3| |#4| |#5|)
+((-1774 (((-1271) $) 23)) (-1317 (($ (-1176) (-437) |#2|) 11)) (-4101 (((-863) $) 16)))
+(((-1106 |#1| |#2|) (-13 (-398) (-10 -8 (-15 -1317 ($ (-1176) (-437) |#2|)))) (-1100) (-433 |#1|)) (T -1106))
+((-1317 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1176)) (-5 *3 (-437)) (-4 *5 (-1100)) (-5 *1 (-1106 *5 *4)) (-4 *4 (-433 *5)))))
+(-13 (-398) (-10 -8 (-15 -1317 ($ (-1176) (-437) |#2|))))
+((-1434 (((-112) |#5| |#5|) 45)) (-1576 (((-112) |#5| |#5|) 60)) (-1881 (((-112) |#5| (-645 |#5|)) 83) (((-112) |#5| |#5|) 69)) (-2355 (((-112) (-645 |#4|) (-645 |#4|)) 66)) (-2464 (((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) 71)) (-2814 (((-1271)) 33)) (-3639 (((-1271) (-1158) (-1158) (-1158)) 29)) (-2556 (((-645 |#5|) (-645 |#5|)) 102)) (-1702 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) 94)) (-3690 (((-645 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112)) 124)) (-1616 (((-112) |#5| |#5|) 54)) (-3810 (((-3 (-112) "failed") |#5| |#5|) 79)) (-3493 (((-112) (-645 |#4|) (-645 |#4|)) 65)) (-2586 (((-112) (-645 |#4|) (-645 |#4|)) 67)) (-2137 (((-112) (-645 |#4|) (-645 |#4|)) 68)) (-2178 (((-3 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)) 119)) (-4194 (((-645 |#5|) (-645 |#5|)) 50)))
+(((-1107 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3639 ((-1271) (-1158) (-1158) (-1158))) (-15 -2814 ((-1271))) (-15 -1434 ((-112) |#5| |#5|)) (-15 -4194 ((-645 |#5|) (-645 |#5|))) (-15 -1616 ((-112) |#5| |#5|)) (-15 -1576 ((-112) |#5| |#5|)) (-15 -2355 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3493 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2586 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2137 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3810 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1881 ((-112) |#5| |#5|)) (-15 -1881 ((-112) |#5| (-645 |#5|))) (-15 -2556 ((-645 |#5|) (-645 |#5|))) (-15 -2464 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1702 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-15 -3690 ((-645 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2178 ((-3 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3| |#4|)) (T -1107))
+((-2178 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1065 *6 *7 *8)) (-5 *2 (-2 (|:| -2823 (-645 *9)) (|:| -2138 *4) (|:| |ineq| (-645 *9)))) (-5 *1 (-1107 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9)) (-4 *4 (-1071 *6 *7 *8 *9)))) (-3690 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1071 *6 *7 *8 *9)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-1065 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| -2823 (-645 *9)) (|:| -2138 *10) (|:| |ineq| (-645 *9))))) (-5 *1 (-1107 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))) (-1702 (*1 *2 *2) (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2138 *7)))) (-4 *6 (-1065 *3 *4 *5)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1107 *3 *4 *5 *6 *7)))) (-2464 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8))) (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1071 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *8)))) (-2556 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *1 (-1107 *3 *4 *5 *6 *7)))) (-1881 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1107 *5 *6 *7 *8 *3)))) (-1881 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-3810 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-2137 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-2586 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-3493 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-2355 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-1576 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-1616 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *1 (-1107 *3 *4 *5 *6 *7)))) (-1434 (*1 *2 *3 *3) (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))) (-2814 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271)) (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))) (-3639 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271)) (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3639 ((-1271) (-1158) (-1158) (-1158))) (-15 -2814 ((-1271))) (-15 -1434 ((-112) |#5| |#5|)) (-15 -4194 ((-645 |#5|) (-645 |#5|))) (-15 -1616 ((-112) |#5| |#5|)) (-15 -1576 ((-112) |#5| |#5|)) (-15 -2355 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3493 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2586 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -2137 ((-112) (-645 |#4|) (-645 |#4|))) (-15 -3810 ((-3 (-112) "failed") |#5| |#5|)) (-15 -1881 ((-112) |#5| |#5|)) (-15 -1881 ((-112) |#5| (-645 |#5|))) (-15 -2556 ((-645 |#5|) (-645 |#5|))) (-15 -2464 ((-112) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1702 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-15 -3690 ((-645 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|)))) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2178 ((-3 (-2 (|:| -2823 (-645 |#4|)) (|:| -2138 |#5|) (|:| |ineq| (-645 |#4|))) "failed") (-645 |#4|) |#5| (-645 |#4|) (-112) (-112) (-112) (-112) (-112))))
+((-3187 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|) 109)) (-2088 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|) 81)) (-1741 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 103)) (-3926 (((-645 |#5|) |#4| |#5|) 125)) (-4340 (((-645 |#5|) |#4| |#5|) 132)) (-1624 (((-645 |#5|) |#4| |#5|) 133)) (-2477 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 110)) (-2640 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 131)) (-3274 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4028 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#3| (-112)) 93) (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3081 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|) 88)) (-4069 (((-1271)) 37)) (-3964 (((-1271)) 26)) (-3159 (((-1271) (-1158) (-1158) (-1158)) 33)) (-2017 (((-1271) (-1158) (-1158) (-1158)) 22)))
+(((-1108 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2017 ((-1271) (-1158) (-1158) (-1158))) (-15 -3964 ((-1271))) (-15 -3159 ((-1271) (-1158) (-1158) (-1158))) (-15 -4069 ((-1271))) (-15 -2088 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -4028 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4028 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -3081 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -1741 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3274 ((-112) |#4| |#5|)) (-15 -2477 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3926 ((-645 |#5|) |#4| |#5|)) (-15 -2640 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -4340 ((-645 |#5|) |#4| |#5|)) (-15 -3274 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -1624 ((-645 |#5|) |#4| |#5|)) (-15 -3187 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1071 |#1| |#2| |#3| |#4|)) (T -1108))
+((-3187 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-1624 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3274 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-4340 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-2640 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3926 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4)) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-2477 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4)))) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3274 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-1741 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-3081 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-4028 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9)))) (-5 *5 (-112)) (-4 *8 (-1065 *6 *7 *4)) (-4 *9 (-1071 *6 *7 *4 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851)) (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2138 *9)))) (-5 *1 (-1108 *6 *7 *4 *8 *9)))) (-4028 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1065 *6 *7 *8)) (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1108 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3)))) (-2088 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))) (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))) (-4069 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271)) (-5 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))) (-3159 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271)) (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))) (-3964 (*1 *2) (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271)) (-5 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))) (-2017 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271)) (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2017 ((-1271) (-1158) (-1158) (-1158))) (-15 -3964 ((-1271))) (-15 -3159 ((-1271) (-1158) (-1158) (-1158))) (-15 -4069 ((-1271))) (-15 -2088 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -4028 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4028 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) |#3| (-112))) (-15 -3081 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -1741 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#4| |#5|)) (-15 -3274 ((-112) |#4| |#5|)) (-15 -2477 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -3926 ((-645 |#5|) |#4| |#5|)) (-15 -2640 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -4340 ((-645 |#5|) |#4| |#5|)) (-15 -3274 ((-645 (-2 (|:| |val| (-112)) (|:| -2138 |#5|))) |#4| |#5|)) (-15 -1624 ((-645 |#5|) |#4| |#5|)) (-15 -3187 ((-645 (-2 (|:| |val| |#4|) (|:| -2138 |#5|))) |#4| |#5|)))
+((-2257 (((-112) $ $) 7)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) 86)) (-2102 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2449 (((-645 |#3|) $) 34)) (-1416 (((-112) $) 27)) (-2739 (((-112) $) 18 (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) 102) (((-112) $) 98)) (-1508 ((|#4| |#4| $) 93)) (-1396 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) 28)) (-1580 (((-112) $ (-772)) 45)) (-1551 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) 80)) (-4061 (($) 46 T CONST)) (-3289 (((-112) $) 23 (|has| |#1| (-559)))) (-3407 (((-112) $ $) 25 (|has| |#1| (-559)))) (-2595 (((-112) $ $) 24 (|has| |#1| (-559)))) (-1579 (((-112) $) 26 (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2786 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) 37)) (-1621 (($ (-645 |#4|)) 36)) (-2061 (((-3 $ "failed") $) 83)) (-3816 ((|#4| |#4| $) 90)) (-2084 (($ $) 69 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#4| $) 68 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4155 ((|#4| |#4| $) 88)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) 106)) (-4314 (((-112) |#4| $) 137)) (-2312 (((-112) |#4| $) 134)) (-2336 (((-112) |#4| $) 138) (((-112) $) 135)) (-2896 (((-645 |#4|) $) 53 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) 105) (((-112) $) 104)) (-4280 ((|#3| $) 35)) (-2805 (((-112) $ (-772)) 44)) (-1542 (((-645 |#4|) $) 54 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 48)) (-4360 (((-645 |#3|) $) 33)) (-4023 (((-112) |#3| $) 32)) (-3230 (((-112) $ (-772)) 43)) (-2451 (((-1158) $) 10)) (-1372 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-1856 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-3162 (((-3 |#4| "failed") $) 84)) (-1894 (((-645 $) |#4| $) 130)) (-4254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-1414 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3754 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2913 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2331 (((-645 |#4|) $) 108)) (-2750 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-2137 (((-112) $ $) 111)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) 101) (((-112) $) 97)) (-2703 ((|#4| |#4| $) 92)) (-3339 (((-1120) $) 11)) (-2048 (((-3 |#4| "failed") $) 85)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3809 (((-3 $ "failed") $ |#4|) 79)) (-2436 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-2297 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) 39)) (-3353 (((-112) $) 42)) (-3164 (($) 41)) (-3677 (((-772) $) 107)) (-3349 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4416)))) (-4247 (($ $) 40)) (-3542 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 61)) (-2485 (($ $ |#3|) 29)) (-4090 (($ $ |#3|) 31)) (-4367 (($ $) 89)) (-2716 (($ $ |#3|) 30)) (-4101 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2718 (((-772) $) 77 (|has| |#3| (-370)))) (-3739 (((-112) $ $) 9)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3936 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2012 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) 82)) (-1440 (((-112) |#4| $) 136)) (-2447 (((-112) |#3| $) 81)) (-3052 (((-112) $ $) 6)) (-2268 (((-772) $) 47 (|has| $ (-6 -4416)))))
+(((-1109 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1065 |t#1| |t#2| |t#3|)) (T -1109))
+NIL
+(-13 (-1071 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1071 |#1| |#2| |#3| |#4|) . T) ((-1100) . T) ((-1209 |#1| |#2| |#3| |#4|) . T) ((-1216) . T))
+((-1712 (((-645 (-567)) (-567) (-567) (-567)) 39)) (-4193 (((-645 (-567)) (-567) (-567) (-567)) 29)) (-4096 (((-645 (-567)) (-567) (-567) (-567)) 34)) (-4269 (((-567) (-567) (-567)) 23)) (-3830 (((-1266 (-567)) (-645 (-567)) (-1266 (-567)) (-567)) 75) (((-1266 (-567)) (-1266 (-567)) (-1266 (-567)) (-567)) 70)) (-3773 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112)) 52)) (-4249 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 74)) (-1871 (((-690 (-567)) (-645 (-567)) (-645 (-567))) 58)) (-3053 (((-645 (-690 (-567))) (-645 (-567))) 63)) (-2875 (((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567))) 78)) (-3131 (((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567))) 88)))
+(((-1110) (-10 -7 (-15 -3131 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2875 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3053 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1871 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -4249 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3773 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -3830 ((-1266 (-567)) (-1266 (-567)) (-1266 (-567)) (-567))) (-15 -3830 ((-1266 (-567)) (-645 (-567)) (-1266 (-567)) (-567))) (-15 -4269 ((-567) (-567) (-567))) (-15 -4096 ((-645 (-567)) (-567) (-567) (-567))) (-15 -4193 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1712 ((-645 (-567)) (-567) (-567) (-567))))) (T -1110))
+((-1712 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1110)) (-5 *3 (-567)))) (-4193 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1110)) (-5 *3 (-567)))) (-4096 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1110)) (-5 *3 (-567)))) (-4269 (*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1110)))) (-3830 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1266 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567)) (-5 *1 (-1110)))) (-3830 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1266 (-567))) (-5 *3 (-567)) (-5 *1 (-1110)))) (-3773 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1110)))) (-4249 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1110)))) (-1871 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1110)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-1110)))) (-2875 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1110)))) (-3131 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1110)))))
+(-10 -7 (-15 -3131 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -2875 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3053 ((-645 (-690 (-567))) (-645 (-567)))) (-15 -1871 ((-690 (-567)) (-645 (-567)) (-645 (-567)))) (-15 -4249 ((-690 (-567)) (-645 (-567)) (-645 (-567)) (-690 (-567)))) (-15 -3773 ((-645 (-567)) (-645 (-567)) (-645 (-567)) (-112))) (-15 -3830 ((-1266 (-567)) (-1266 (-567)) (-1266 (-567)) (-567))) (-15 -3830 ((-1266 (-567)) (-645 (-567)) (-1266 (-567)) (-567))) (-15 -4269 ((-567) (-567) (-567))) (-15 -4096 ((-645 (-567)) (-567) (-567) (-567))) (-15 -4193 ((-645 (-567)) (-567) (-567) (-567))) (-15 -1712 ((-645 (-567)) (-567) (-567) (-567))))
+((** (($ $ (-922)) 10)))
+(((-1111 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-922)))) (-1112)) (T -1111))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-922))))
+((-2257 (((-112) $ $) 7)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)) (** (($ $ (-922)) 14)) (* (($ $ $) 15)))
+(((-1112) (-140)) (T -1112))
+((* (*1 *1 *1 *1) (-4 *1 (-1112))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-922)))))
+(-13 (-1100) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-922)))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL (|has| |#3| (-1100)))) (-2865 (((-112) $) NIL (|has| |#3| (-131)))) (-4245 (($ (-922)) NIL (|has| |#3| (-1050)))) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2140 (($ $ $) NIL (|has| |#3| (-794)))) (-4377 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-1580 (((-112) $ (-772)) NIL)) (-2013 (((-772)) NIL (|has| |#3| (-370)))) (-3179 (((-567) $) NIL (|has| |#3| (-849)))) (-4230 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1100)))) (-1621 (((-567) $) NIL (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100)))) (((-410 (-567)) $) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100)))) ((|#3| $) NIL (|has| |#3| (-1100)))) (-1920 (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#3| (-640 (-567))) (|has| |#3| (-1050)))) (((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 $) (-1266 $)) NIL (|has| |#3| (-1050))) (((-690 |#3|) (-690 $)) NIL (|has| |#3| (-1050)))) (-4014 (((-3 $ "failed") $) NIL (|has| |#3| (-727)))) (-1649 (($) NIL (|has| |#3| (-370)))) (-1303 ((|#3| $ (-567) |#3|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#3| $ (-567)) 12)) (-4095 (((-112) $) NIL (|has| |#3| (-849)))) (-2896 (((-645 |#3|) $) NIL (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL (|has| |#3| (-727)))) (-3948 (((-112) $) NIL (|has| |#3| (-849)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-1542 (((-645 |#3|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-4392 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#3| |#3|) $) NIL)) (-3527 (((-922) $) NIL (|has| |#3| (-370)))) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#3| (-1100)))) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3811 (($ (-922)) NIL (|has| |#3| (-370)))) (-3339 (((-1120) $) NIL (|has| |#3| (-1100)))) (-2048 ((|#3| $) NIL (|has| (-567) (-851)))) (-2092 (($ $ |#3|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#3|))) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-295 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100)))) (($ $ (-645 |#3|) (-645 |#3|)) NIL (-12 (|has| |#3| (-310 |#3|)) (|has| |#3| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100))))) (-1412 (((-645 |#3|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#3| $ (-567) |#3|) NIL) ((|#3| $ (-567)) NIL)) (-2945 ((|#3| $ $) NIL (|has| |#3| (-1050)))) (-2345 (($ (-1266 |#3|)) NIL)) (-1948 (((-134)) NIL (|has| |#3| (-365)))) (-1930 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050)))) (-3349 (((-772) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416))) (((-772) |#3| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#3| (-1100))))) (-4247 (($ $) NIL)) (-4101 (((-1266 |#3|) $) NIL) (($ (-567)) NIL (-2909 (-12 (|has| |#3| (-1039 (-567))) (|has| |#3| (-1100))) (|has| |#3| (-1050)))) (($ (-410 (-567))) NIL (-12 (|has| |#3| (-1039 (-410 (-567)))) (|has| |#3| (-1100)))) (($ |#3|) NIL (|has| |#3| (-1100))) (((-863) $) NIL (|has| |#3| (-614 (-863))))) (-2686 (((-772)) NIL (|has| |#3| (-1050)) CONST)) (-3739 (((-112) $ $) NIL (|has| |#3| (-1100)))) (-2012 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4416)))) (-1771 (($ $) NIL (|has| |#3| (-849)))) (-1468 (($) NIL (|has| |#3| (-131)) CONST)) (-1484 (($) NIL (|has| |#3| (-727)) CONST)) (-2692 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-772)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1050)))) (($ $ (-1176)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#3| (-901 (-1176))) (|has| |#3| (-1050)))) (($ $ (-1 |#3| |#3|) (-772)) NIL (|has| |#3| (-1050))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1050)))) (-3109 (((-112) $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3085 (((-112) $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3052 (((-112) $ $) NIL (|has| |#3| (-1100)))) (-3098 (((-112) $ $) NIL (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3075 (((-112) $ $) 24 (-2909 (|has| |#3| (-794)) (|has| |#3| (-849))))) (-3168 (($ $ |#3|) NIL (|has| |#3| (-365)))) (-3156 (($ $ $) NIL (|has| |#3| (-1050))) (($ $) NIL (|has| |#3| (-1050)))) (-3146 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-772)) NIL (|has| |#3| (-727))) (($ $ (-922)) NIL (|has| |#3| (-727)))) (* (($ (-567) $) NIL (|has| |#3| (-1050))) (($ $ $) NIL (|has| |#3| (-727))) (($ $ |#3|) NIL (|has| |#3| (-727))) (($ |#3| $) NIL (|has| |#3| (-727))) (($ (-772) $) NIL (|has| |#3| (-131))) (($ (-922) $) NIL (|has| |#3| (-25)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1113 |#1| |#2| |#3|) (-238 |#1| |#3|) (-772) (-772) (-794)) (T -1113))
NIL
(-238 |#1| |#3|)
-((-4395 (((-644 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 53)) (-1543 (((-566) (-1238 |#2| |#1|)) 100 (|has| |#1| (-454)))) (-3467 (((-566) (-1238 |#2| |#1|)) 82)) (-3442 (((-644 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 63)) (-2982 (((-566) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 99 (|has| |#1| (-454)))) (-3191 (((-644 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 67)) (-3186 (((-566) (-1238 |#2| |#1|) (-1238 |#2| |#1|)) 81)))
-(((-1113 |#1| |#2|) (-10 -7 (-15 -4395 ((-644 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3442 ((-644 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3191 ((-644 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3186 ((-566) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3467 ((-566) (-1238 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -2982 ((-566) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -1543 ((-566) (-1238 |#2| |#1|)))) |%noBranch|)) (-820) (-1175)) (T -1113))
-((-1543 (*1 *2 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-2982 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3186 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))) (-3191 (*1 *2 *3 *3) (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5)))) (-3442 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1238 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1238 *5 *4)))) (-4395 (*1 *2 *3 *3) (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1238 *5 *4))) (-5 *1 (-1113 *4 *5)) (-5 *3 (-1238 *5 *4)))))
-(-10 -7 (-15 -4395 ((-644 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3442 ((-644 (-1238 |#2| |#1|)) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3191 ((-644 |#1|) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3186 ((-566) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -3467 ((-566) (-1238 |#2| |#1|))) (IF (|has| |#1| (-454)) (PROGN (-15 -2982 ((-566) (-1238 |#2| |#1|) (-1238 |#2| |#1|))) (-15 -1543 ((-566) (-1238 |#2| |#1|)))) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-1965 (($ (-508) (-1117)) 13)) (-2653 (((-1117) $) 19)) (-3534 (((-508) $) 16)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 26) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1114) (-13 (-1082) (-10 -8 (-15 -1965 ($ (-508) (-1117))) (-15 -3534 ((-508) $)) (-15 -2653 ((-1117) $))))) (T -1114))
-((-1965 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114)))) (-3534 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114)))))
-(-13 (-1082) (-10 -8 (-15 -1965 ($ (-508) (-1117))) (-15 -3534 ((-508) $)) (-15 -2653 ((-1117) $))))
-((-1859 (((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)) 19) (((-3 (-566) "failed") |#2| (-1175) (-843 |#2|)) 17) (((-3 (-566) "failed") |#2|) 60)))
-(((-1115 |#1| |#2|) (-10 -7 (-15 -1859 ((-3 (-566) "failed") |#2|)) (-15 -1859 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -1859 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157)))) (-13 (-558) (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1200) (-432 |#1|))) (T -1115))
-((-1859 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6))))) (-1859 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6))) (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *6 *3)))) (-1859 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566)) (-5 *1 (-1115 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))))
-(-10 -7 (-15 -1859 ((-3 (-566) "failed") |#2|)) (-15 -1859 ((-3 (-566) "failed") |#2| (-1175) (-843 |#2|))) (-15 -1859 ((-3 (-566) "failed") |#2| (-1175) |#2| (-1157))))
-((-1859 (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)) 38) (((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|)))) 33) (((-3 (-566) "failed") (-409 (-952 |#1|))) 14)))
-(((-1116 |#1|) (-10 -7 (-15 -1859 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -1859 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -1859 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157)))) (-454)) (T -1116))
-((-1859 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175)) (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-1859 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6)))) (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6)))) (-1859 (*1 *2 *3) (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *4)))))
-(-10 -7 (-15 -1859 ((-3 (-566) "failed") (-409 (-952 |#1|)))) (-15 -1859 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-843 (-409 (-952 |#1|))))) (-15 -1859 ((-3 (-566) "failed") (-409 (-952 |#1|)) (-1175) (-409 (-952 |#1|)) (-1157))))
-((-3979 (((-112) $ $) NIL)) (-2231 (((-1180) $) 12)) (-2183 (((-644 (-1180)) $) 14)) (-2653 (($ (-644 (-1180)) (-1180)) 10)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 29)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 17)))
-(((-1117) (-13 (-1099) (-10 -8 (-15 -2653 ($ (-644 (-1180)) (-1180))) (-15 -2231 ((-1180) $)) (-15 -2183 ((-644 (-1180)) $))))) (T -1117))
-((-2653 (*1 *1 *2 *3) (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117)))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117)))) (-2183 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117)))))
-(-13 (-1099) (-10 -8 (-15 -2653 ($ (-644 (-1180)) (-1180))) (-15 -2231 ((-1180) $)) (-15 -2183 ((-644 (-1180)) $))))
-((-1830 (((-317 (-566)) (-48)) 12)))
-(((-1118) (-10 -7 (-15 -1830 ((-317 (-566)) (-48))))) (T -1118))
-((-1830 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118)))))
-(-10 -7 (-15 -1830 ((-317 (-566)) (-48))))
-((-3979 (((-112) $ $) NIL)) (-4001 (($ $) 44)) (-3545 (((-112) $) 69)) (-3171 (($ $ $) 51)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 97)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-3523 (($ $ $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4312 (($ $ $ $) 80)) (-2885 (($ $) NIL)) (-2555 (((-420 $) $) NIL)) (-2068 (((-112) $ $) NIL)) (-3733 (((-771)) 82)) (-1859 (((-566) $) NIL)) (-2724 (($ $ $) 77)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL)) (-3343 (((-566) $) NIL)) (-3919 (($ $ $) 63)) (-3717 (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 91) (((-689 (-566)) (-689 $)) 32)) (-2313 (((-3 $ "failed") $) NIL)) (-4388 (((-3 (-409 (-566)) "failed") $) NIL)) (-1929 (((-112) $) NIL)) (-1847 (((-409 (-566)) $) NIL)) (-3424 (($) 94) (($ $) 95)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL)) (-1968 (((-112) $) NIL)) (-1826 (($ $ $ $) NIL)) (-3042 (($ $ $) 92)) (-3421 (((-112) $) NIL)) (-1549 (($ $ $) NIL)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL)) (-3842 (((-112) $) 71)) (-1687 (((-112) $) 68)) (-3129 (($ $) 45)) (-3869 (((-3 $ "failed") $) NIL)) (-2307 (((-112) $) 81)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-2485 (($ $ $ $) 78)) (-3075 (($ $ $) 73) (($) 42 T CONST)) (-3936 (($ $ $) 72) (($) 41 T CONST)) (-2086 (($ $) NIL)) (-4138 (((-921) $) 87)) (-1653 (($ $) 76)) (-1853 (($ $ $) NIL) (($ (-644 $)) NIL)) (-1390 (((-1157) $) NIL)) (-2063 (($ $ $) NIL)) (-1342 (($) NIL T CONST)) (-2430 (($ (-921)) 86)) (-3517 (($ $) 56)) (-1944 (((-1119) $) 75)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL)) (-1885 (($ $ $) 66) (($ (-644 $)) NIL)) (-2062 (($ $) NIL)) (-4018 (((-420 $) $) NIL)) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL)) (-3967 (((-3 $ "failed") $ $) NIL)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL)) (-3934 (((-112) $) NIL)) (-3792 (((-771) $) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 65)) (-3009 (($ $ (-771)) NIL) (($ $) NIL)) (-4302 (($ $) 57)) (-2878 (($ $) NIL)) (-2150 (((-566) $) 17) (((-538) $) NIL) (((-892 (-566)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-2725 (((-862) $) 35) (($ (-566)) 93) (($ $) NIL) (($ (-566)) 93)) (-2875 (((-771)) NIL T CONST)) (-1761 (((-112) $ $) NIL)) (-1672 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-1792 (($) 40)) (-1597 (((-112) $ $) NIL)) (-1804 (($ $ $ $) 79)) (-2274 (($ $) 67)) (-4049 (($ $ $) 47)) (-3200 (($) 7 T CONST)) (-3776 (($ $ $) 50)) (-3214 (($) 39 T CONST)) (-2331 (((-1157) $) 26) (((-1157) $ (-112)) 27) (((-1270) (-822) $) 28) (((-1270) (-822) $ (-112)) 29)) (-3787 (($ $) 48)) (-1316 (($ $ (-771)) NIL) (($ $) NIL)) (-3763 (($ $ $) 49)) (-2865 (((-112) $ $) 55)) (-2844 (((-112) $ $) 52)) (-2817 (((-112) $ $) 43)) (-2854 (((-112) $ $) 54)) (-2833 (((-112) $ $) 10)) (-4036 (($ $ $) 46)) (-2905 (($ $) 16) (($ $ $) 59)) (-2897 (($ $ $) 58)) (** (($ $ (-921)) NIL) (($ $ (-771)) 61)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 38) (($ $ $) 37)))
-(((-1119) (-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4402) (-6 -4407) (-6 -4403) (-15 -3129 ($ $)) (-15 -3171 ($ $ $)) (-15 -3787 ($ $)) (-15 -3763 ($ $ $)) (-15 -3776 ($ $ $))))) (T -1119))
-((-3129 (*1 *1 *1) (-5 *1 (-1119))) (-3171 (*1 *1 *1 *1) (-5 *1 (-1119))) (-3787 (*1 *1 *1) (-5 *1 (-1119))) (-3763 (*1 *1 *1 *1) (-5 *1 (-1119))) (-3776 (*1 *1 *1 *1) (-5 *1 (-1119))))
-(-13 (-547) (-844) (-661) (-828) (-10 -8 (-6 -4402) (-6 -4407) (-6 -4403) (-15 -3129 ($ $)) (-15 -3171 ($ $ $)) (-15 -3787 ($ $)) (-15 -3763 ($ $ $)) (-15 -3776 ($ $ $))))
+((-4172 (((-645 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 53)) (-3184 (((-567) (-1239 |#2| |#1|)) 100 (|has| |#1| (-455)))) (-3400 (((-567) (-1239 |#2| |#1|)) 82)) (-4283 (((-645 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 63)) (-2287 (((-567) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 99 (|has| |#1| (-455)))) (-3665 (((-645 |#1|) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 67)) (-3616 (((-567) (-1239 |#2| |#1|) (-1239 |#2| |#1|)) 81)))
+(((-1114 |#1| |#2|) (-10 -7 (-15 -4172 ((-645 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -4283 ((-645 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3665 ((-645 |#1|) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3616 ((-567) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3400 ((-567) (-1239 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2287 ((-567) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3184 ((-567) (-1239 |#2| |#1|)))) |%noBranch|)) (-821) (-1176)) (T -1114))
+((-3184 (*1 *2 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))) (-2287 (*1 *2 *3 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))) (-3616 (*1 *2 *3 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))) (-3665 (*1 *2 *3 *3) (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-645 *4)) (-5 *1 (-1114 *4 *5)))) (-4283 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-645 (-1239 *5 *4))) (-5 *1 (-1114 *4 *5)) (-5 *3 (-1239 *5 *4)))) (-4172 (*1 *2 *3 *3) (-12 (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-645 (-1239 *5 *4))) (-5 *1 (-1114 *4 *5)) (-5 *3 (-1239 *5 *4)))))
+(-10 -7 (-15 -4172 ((-645 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -4283 ((-645 (-1239 |#2| |#1|)) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3665 ((-645 |#1|) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3616 ((-567) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3400 ((-567) (-1239 |#2| |#1|))) (IF (|has| |#1| (-455)) (PROGN (-15 -2287 ((-567) (-1239 |#2| |#1|) (-1239 |#2| |#1|))) (-15 -3184 ((-567) (-1239 |#2| |#1|)))) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-1622 (($ (-509) (-1118)) 13)) (-4034 (((-1118) $) 19)) (-1817 (((-509) $) 16)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 26) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1115) (-13 (-1083) (-10 -8 (-15 -1622 ($ (-509) (-1118))) (-15 -1817 ((-509) $)) (-15 -4034 ((-1118) $))))) (T -1115))
+((-1622 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-1115)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1115)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1115)))))
+(-13 (-1083) (-10 -8 (-15 -1622 ($ (-509) (-1118))) (-15 -1817 ((-509) $)) (-15 -4034 ((-1118) $))))
+((-3179 (((-3 (-567) "failed") |#2| (-1176) |#2| (-1158)) 19) (((-3 (-567) "failed") |#2| (-1176) (-844 |#2|)) 17) (((-3 (-567) "failed") |#2|) 60)))
+(((-1116 |#1| |#2|) (-10 -7 (-15 -3179 ((-3 (-567) "failed") |#2|)) (-15 -3179 ((-3 (-567) "failed") |#2| (-1176) (-844 |#2|))) (-15 -3179 ((-3 (-567) "failed") |#2| (-1176) |#2| (-1158)))) (-13 (-559) (-1039 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1201) (-433 |#1|))) (T -1116))
+((-3179 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-1158)) (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1116 *6 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6))))) (-3179 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-844 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6))) (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1116 *6 *3)))) (-3179 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567)) (-5 *1 (-1116 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))))
+(-10 -7 (-15 -3179 ((-3 (-567) "failed") |#2|)) (-15 -3179 ((-3 (-567) "failed") |#2| (-1176) (-844 |#2|))) (-15 -3179 ((-3 (-567) "failed") |#2| (-1176) |#2| (-1158))))
+((-3179 (((-3 (-567) "failed") (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|)) (-1158)) 38) (((-3 (-567) "failed") (-410 (-953 |#1|)) (-1176) (-844 (-410 (-953 |#1|)))) 33) (((-3 (-567) "failed") (-410 (-953 |#1|))) 14)))
+(((-1117 |#1|) (-10 -7 (-15 -3179 ((-3 (-567) "failed") (-410 (-953 |#1|)))) (-15 -3179 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1176) (-844 (-410 (-953 |#1|))))) (-15 -3179 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|)) (-1158)))) (-455)) (T -1117))
+((-3179 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1176)) (-5 *5 (-1158)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1117 *6)))) (-3179 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-844 (-410 (-953 *6)))) (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1117 *6)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-567)) (-5 *1 (-1117 *4)))))
+(-10 -7 (-15 -3179 ((-3 (-567) "failed") (-410 (-953 |#1|)))) (-15 -3179 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1176) (-844 (-410 (-953 |#1|))))) (-15 -3179 ((-3 (-567) "failed") (-410 (-953 |#1|)) (-1176) (-410 (-953 |#1|)) (-1158))))
+((-2257 (((-112) $ $) NIL)) (-3620 (((-1181) $) 12)) (-3572 (((-645 (-1181)) $) 14)) (-4034 (($ (-645 (-1181)) (-1181)) 10)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 29)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 17)))
+(((-1118) (-13 (-1100) (-10 -8 (-15 -4034 ($ (-645 (-1181)) (-1181))) (-15 -3620 ((-1181) $)) (-15 -3572 ((-645 (-1181)) $))))) (T -1118))
+((-4034 (*1 *1 *2 *3) (-12 (-5 *2 (-645 (-1181))) (-5 *3 (-1181)) (-5 *1 (-1118)))) (-3620 (*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1118)))) (-3572 (*1 *2 *1) (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-1118)))))
+(-13 (-1100) (-10 -8 (-15 -4034 ($ (-645 (-1181)) (-1181))) (-15 -3620 ((-1181) $)) (-15 -3572 ((-645 (-1181)) $))))
+((-2886 (((-317 (-567)) (-48)) 12)))
+(((-1119) (-10 -7 (-15 -2886 ((-317 (-567)) (-48))))) (T -1119))
+((-2886 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1119)))))
+(-10 -7 (-15 -2886 ((-317 (-567)) (-48))))
+((-2257 (((-112) $ $) NIL)) (-2278 (($ $) 44)) (-2865 (((-112) $) 69)) (-1439 (($ $ $) 51)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 97)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-3824 (($ $ $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2765 (($ $ $ $) 80)) (-1396 (($ $) NIL)) (-1401 (((-421 $) $) NIL)) (-3405 (((-112) $ $) NIL)) (-2013 (((-772)) 82)) (-3179 (((-567) $) NIL)) (-4100 (($ $ $) 77)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL)) (-1621 (((-567) $) NIL)) (-2197 (($ $ $) 63)) (-1920 (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 91) (((-690 (-567)) (-690 $)) 32)) (-4014 (((-3 $ "failed") $) NIL)) (-4092 (((-3 (-410 (-567)) "failed") $) NIL)) (-4379 (((-112) $) NIL)) (-3061 (((-410 (-567)) $) NIL)) (-1649 (($) 94) (($ $) 95)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL)) (-1665 (((-112) $) NIL)) (-2854 (($ $ $ $) NIL)) (-1499 (($ $ $) 92)) (-4095 (((-112) $) NIL)) (-1969 (($ $ $) NIL)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL)) (-3714 (((-112) $) 71)) (-3937 (((-112) $) 68)) (-1397 (($ $) 45)) (-2802 (((-3 $ "failed") $) NIL)) (-3948 (((-112) $) 81)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-3302 (($ $ $ $) 78)) (-2056 (($ $ $) 73) (($) 42 T CONST)) (-1802 (($ $ $) 72) (($) 41 T CONST)) (-3479 (($ $) NIL)) (-3527 (((-922) $) 87)) (-3036 (($ $) 76)) (-3245 (($ $ $) NIL) (($ (-645 $)) NIL)) (-2451 (((-1158) $) NIL)) (-3365 (($ $ $) NIL)) (-2596 (($) NIL T CONST)) (-3811 (($ (-922)) 86)) (-2462 (($ $) 56)) (-3339 (((-1120) $) 75)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL)) (-3276 (($ $ $) 66) (($ (-645 $)) NIL)) (-3354 (($ $) NIL)) (-2296 (((-421 $) $) NIL)) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL)) (-2245 (((-3 $ "failed") $ $) NIL)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL)) (-2143 (((-112) $) NIL)) (-4369 (((-772) $) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 65)) (-1930 (($ $ (-772)) NIL) (($ $) NIL)) (-2932 (($ $) 57)) (-4247 (($ $) NIL)) (-3542 (((-567) $) 17) (((-539) $) NIL) (((-893 (-567)) $) NIL) (((-381) $) NIL) (((-225) $) NIL)) (-4101 (((-863) $) 35) (($ (-567)) 93) (($ $) NIL) (($ (-567)) 93)) (-2686 (((-772)) NIL T CONST)) (-3446 (((-112) $ $) NIL)) (-3806 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3183 (($) 40)) (-2469 (((-112) $ $) NIL)) (-2648 (($ $ $ $) 79)) (-1771 (($ $) 67)) (-2328 (($ $ $) 47)) (-1468 (($) 7 T CONST)) (-2053 (($ $ $) 50)) (-1484 (($) 39 T CONST)) (-4184 (((-1158) $) 26) (((-1158) $ (-112)) 27) (((-1271) (-823) $) 28) (((-1271) (-823) $ (-112)) 29)) (-2066 (($ $) 48)) (-2692 (($ $ (-772)) NIL) (($ $) NIL)) (-2042 (($ $ $) 49)) (-3109 (((-112) $ $) 55)) (-3085 (((-112) $ $) 52)) (-3052 (((-112) $ $) 43)) (-3098 (((-112) $ $) 54)) (-3075 (((-112) $ $) 10)) (-2316 (($ $ $) 46)) (-3156 (($ $) 16) (($ $ $) 59)) (-3146 (($ $ $) 58)) (** (($ $ (-922)) NIL) (($ $ (-772)) 61)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 38) (($ $ $) 37)))
+(((-1120) (-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4403) (-6 -4408) (-6 -4404) (-15 -1397 ($ $)) (-15 -1439 ($ $ $)) (-15 -2066 ($ $)) (-15 -2042 ($ $ $)) (-15 -2053 ($ $ $))))) (T -1120))
+((-1397 (*1 *1 *1) (-5 *1 (-1120))) (-1439 (*1 *1 *1 *1) (-5 *1 (-1120))) (-2066 (*1 *1 *1) (-5 *1 (-1120))) (-2042 (*1 *1 *1 *1) (-5 *1 (-1120))) (-2053 (*1 *1 *1 *1) (-5 *1 (-1120))))
+(-13 (-548) (-845) (-662) (-829) (-10 -8 (-6 -4403) (-6 -4408) (-6 -4404) (-15 -1397 ($ $)) (-15 -1439 ($ $ $)) (-15 -2066 ($ $)) (-15 -2042 ($ $ $)) (-15 -2053 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3929 ((|#1| $) 45)) (-2261 (((-112) $ (-771)) 8)) (-2633 (($) 7 T CONST)) (-1455 ((|#1| |#1| $) 47)) (-1922 ((|#1| $) 46)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-2668 ((|#1| $) 40)) (-1619 (($ |#1| $) 41)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-1613 ((|#1| $) 42)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-2279 (((-771) $) 44)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) 43)) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1120 |#1|) (-140) (-1215)) (T -1120))
-((-1455 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1215)))) (-1922 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1215)))) (-3929 (*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1215)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4415) (-15 -1455 (|t#1| |t#1| $)) (-15 -1922 (|t#1| $)) (-15 -3929 (|t#1| $)) (-15 -2279 ((-771) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-2717 ((|#3| $) 87)) (-2023 (((-3 (-566) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-3343 (((-566) $) NIL) (((-409 (-566)) $) NIL) ((|#3| $) 47)) (-3717 (((-689 (-566)) (-689 $)) NIL) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL) (((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 $) (-1265 $)) 84) (((-689 |#3|) (-689 $)) 76)) (-3009 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175)) NIL) (($ $ (-771)) NIL) (($ $) NIL)) (-1858 ((|#3| $) 89)) (-2617 ((|#4| $) 43)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ |#3|) 25)) (** (($ $ (-921)) NIL) (($ $ (-771)) 24) (($ $ (-566)) 95)))
-(((-1121 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -1858 (|#3| |#1|)) (-15 -2717 (|#3| |#1|)) (-15 -2617 (|#4| |#1|)) (-15 -3717 ((-689 |#3|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -2725 (|#1| |#3|)) (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2725 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -2725 ((-862) |#1|))) (-1122 |#2| |#3| |#4| |#5|) (-771) (-1049) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1121))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-566))) (-15 -1858 (|#3| |#1|)) (-15 -2717 (|#3| |#1|)) (-15 -2617 (|#4| |#1|)) (-15 -3717 ((-689 |#3|) (-689 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 |#3|)) (|:| |vec| (-1265 |#3|))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 |#1|) (-1265 |#1|))) (-15 -3717 ((-689 (-566)) (-689 |#1|))) (-15 -2725 (|#1| |#3|)) (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|) (-771))) (-15 -3009 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2725 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2717 ((|#2| $) 77)) (-2192 (((-112) $) 117)) (-4113 (((-3 $ "failed") $ $) 20)) (-2988 (((-112) $) 115)) (-2261 (((-112) $ (-771)) 107)) (-2092 (($ |#2|) 80)) (-2633 (($) 18 T CONST)) (-2594 (($ $) 134 (|has| |#2| (-308)))) (-1703 ((|#3| $ (-566)) 129)) (-2023 (((-3 (-566) "failed") $) 92 (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) 89 (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) 86)) (-3343 (((-566) $) 91 (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) 88 (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) 87)) (-3717 (((-689 (-566)) (-689 $)) 84 (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 83 (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) 82) (((-689 |#2|) (-689 $)) 81)) (-2313 (((-3 $ "failed") $) 37)) (-4153 (((-771) $) 135 (|has| |#2| (-558)))) (-2975 ((|#2| $ (-566) (-566)) 127)) (-1523 (((-644 |#2|) $) 100 (|has| $ (-6 -4415)))) (-3842 (((-112) $) 35)) (-2883 (((-771) $) 136 (|has| |#2| (-558)))) (-3260 (((-644 |#4|) $) 137 (|has| |#2| (-558)))) (-2368 (((-771) $) 123)) (-2378 (((-771) $) 124)) (-2429 (((-112) $ (-771)) 108)) (-4362 ((|#2| $) 72 (|has| |#2| (-6 (-4417 "*"))))) (-2110 (((-566) $) 119)) (-4086 (((-566) $) 121)) (-2565 (((-644 |#2|) $) 99 (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415))))) (-2952 (((-566) $) 120)) (-4280 (((-566) $) 122)) (-2656 (($ (-644 (-644 |#2|))) 114)) (-3023 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-3662 (((-644 (-644 |#2|)) $) 125)) (-1864 (((-112) $ (-771)) 109)) (-1390 (((-1157) $) 10)) (-1764 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-1944 (((-1119) $) 11)) (-3967 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-558)))) (-1900 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) 113)) (-4246 (((-112) $) 110)) (-3906 (($) 111)) (-3282 ((|#2| $ (-566) (-566) |#2|) 128) ((|#2| $ (-566) (-566)) 126)) (-3009 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-771)) 55) (($ $ (-644 (-1175)) (-644 (-771))) 48 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 47 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 46 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 45 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-1858 ((|#2| $) 76)) (-2626 (($ (-644 |#2|)) 79)) (-3988 (((-112) $) 116)) (-2617 ((|#3| $) 78)) (-3586 ((|#2| $) 73 (|has| |#2| (-6 (-4417 "*"))))) (-1958 (((-771) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4415))) (((-771) |#2| $) 98 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 112)) (-1428 ((|#4| $ (-566)) 130)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 90 (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) 85)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-2610 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4415)))) (-4004 (((-112) $) 118)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-771)) 53) (($ $ (-644 (-1175)) (-644 (-771))) 52 (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) 51 (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) 50 (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) 49 (|has| |#2| (-900 (-1175)))) (($ $ (-771)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 70 (|has| |#2| (-365)))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-3991 (((-771) $) 106 (|has| $ (-6 -4415)))))
-(((-1122 |#1| |#2| |#3| |#4|) (-140) (-771) (-1049) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1122))
-((-2092 (*1 *1 *2) (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-2626 (*1 *1 *2) (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-2617 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-2717 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049)))) (-1764 (*1 *1 *1) (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))))
-(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1053 |t#1| |t#1| |t#2| |t#3| |t#4|) (-413 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-717 |t#2|)) |%noBranch|) (-15 -2092 ($ |t#2|)) (-15 -2626 ($ (-644 |t#2|))) (-15 -2617 (|t#3| $)) (-15 -2717 (|t#2| $)) (-15 -1858 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4417 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3586 (|t#2| $)) (-15 -4362 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -1764 ((-3 $ "failed") $)) (-15 ** ($ $ (-566)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4417 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 #0=(-409 (-566))) |has| |#2| (-1038 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-379 |#2|) . T) ((-413 |#2|) . T) ((-491 |#2|) . T) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-6 (-4417 "*")))) ((-639 (-566)) |has| |#2| (-639 (-566))) ((-639 |#2|) . T) ((-717 |#2|) -2676 (|has| |#2| (-172)) (|has| |#2| (-6 (-4417 "*")))) ((-726) . T) ((-900 (-1175)) |has| |#2| (-900 (-1175))) ((-1053 |#1| |#1| |#2| |#3| |#4|) . T) ((-1038 #0#) |has| |#2| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#2| (-1038 (-566))) ((-1038 |#2|) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1215) . T))
-((-1480 ((|#4| |#4|) 81)) (-2968 ((|#4| |#4|) 76)) (-4376 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|))) |#4| |#3|) 91)) (-1848 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-2893 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
-(((-1123 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2968 (|#4| |#4|)) (-15 -2893 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1480 (|#4| |#4|)) (-15 -1848 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4376 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1123))
-((-4376 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4)))) (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))) (-1848 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-2893 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))) (-2968 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(-10 -7 (-15 -2968 (|#4| |#4|)) (-15 -2893 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1480 (|#4| |#4|)) (-15 -1848 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4376 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2227 (-644 |#3|))) |#4| |#3|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 18)) (-4170 (((-644 |#2|) $) 178)) (-3983 (((-1171 $) $ |#2|) 63) (((-1171 |#1|) $) 52)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 118 (|has| |#1| (-558)))) (-1780 (($ $) 120 (|has| |#1| (-558)))) (-3286 (((-112) $) 122 (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 |#2|)) 217)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) 172) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 |#2| "failed") $) NIL)) (-3343 ((|#1| $) 170) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) ((|#2| $) NIL)) (-2994 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-4358 (($ $) 221)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) 92)) (-1520 (($ $) NIL (|has| |#1| (-454))) (($ $ |#2|) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-533 |#2|) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#1| (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#1| (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3842 (((-112) $) 20)) (-2436 (((-771) $) 30)) (-4157 (($ (-1171 |#1|) |#2|) 57) (($ (-1171 $) |#2|) 74)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) 41)) (-4145 (($ |#1| (-533 |#2|)) 81) (($ $ |#2| (-771)) 61) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ |#2|) NIL)) (-4090 (((-533 |#2|) $) 209) (((-771) $ |#2|) 210) (((-644 (-771)) $ (-644 |#2|)) 211)) (-1336 (($ (-1 (-533 |#2|) (-533 |#2|)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) 130)) (-1742 (((-3 |#2| "failed") $) 181)) (-4323 (($ $) 220)) (-4334 ((|#1| $) 46)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| |#2|) (|:| -3428 (-771))) "failed") $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) 42)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 150 (|has| |#1| (-454)))) (-1885 (($ (-644 $)) 155 (|has| |#1| (-454))) (($ $ $) 140 (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#1| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-909)))) (-3967 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-644 |#2|) (-644 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-644 |#2|) (-644 $)) 198)) (-2061 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-3009 (($ $ |#2|) 219) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3838 (((-533 |#2|) $) 205) (((-771) $ |#2|) 200) (((-644 (-771)) $ (-644 |#2|)) 203)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| |#1| (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| |#1| (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| |#1| (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-4330 ((|#1| $) 136 (|has| |#1| (-454))) (($ $ |#2|) 139 (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2725 (((-862) $) 161) (($ (-566)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3624 (((-644 |#1|) $) 164)) (-3623 ((|#1| $ (-533 |#2|)) 83) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) 89 T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) 125 (|has| |#1| (-558)))) (-3200 (($) 12 T CONST)) (-3214 (($) 14 T CONST)) (-1316 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2817 (((-112) $ $) 108)) (-2916 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-2905 (($ $) 95) (($ $ $) 106)) (-2897 (($ $ $) 58)) (** (($ $ (-921)) 112) (($ $ (-771)) 111)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 98) (($ $ $) 75) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
-(((-1124 |#1| |#2|) (-949 |#1| (-533 |#2|) |#2|) (-1049) (-850)) (T -1124))
-NIL
-(-949 |#1| (-533 |#2|) |#2|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 |#2|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3622 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3601 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-3648 (($ $) 156 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-2447 (((-952 |#1|) $ (-771)) NIL) (((-952 |#1|) $ (-771) (-771)) NIL)) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-771) $ |#2|) NIL) (((-771) $ |#2| (-771)) NIL)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3819 (((-112) $) NIL)) (-4145 (($ $ (-644 |#2|) (-644 (-533 |#2|))) NIL) (($ $ |#2| (-533 |#2|)) NIL) (($ |#1| (-533 |#2|)) NIL) (($ $ |#2| (-771)) 63) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1879 (($ $ |#2|) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-3340 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3964 (($ $ (-771)) 16)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1535 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (($ $ |#2| $) 106) (($ $ (-644 |#2|) (-644 $)) 99) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3009 (($ $ |#2|) 109) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-3838 (((-533 |#2|) $) NIL)) (-1440 (((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|))) 87)) (-3658 (($ $) 158 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 18)) (-2725 (((-862) $) 199) (($ (-566)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#2|) 70) (($ |#3|) 68)) (-3623 ((|#1| $ (-533 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL) ((|#3| $ (-771)) 43)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3076 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 52 T CONST)) (-3214 (($) 62 T CONST)) (-1316 (($ $ |#2|) NIL) (($ $ (-644 |#2|)) NIL) (($ $ |#2| (-771)) NIL) (($ $ (-644 |#2|) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 66)) (** (($ $ (-921)) NIL) (($ $ (-771)) 77) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 112 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 65) (($ $ (-409 (-566))) 117 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 115 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
-(((-1125 |#1| |#2| |#3|) (-13 (-740 |#1| |#2|) (-10 -8 (-15 -3623 (|#3| $ (-771))) (-15 -2725 ($ |#2|)) (-15 -2725 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1440 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $ |#2| |#1|)) (-15 -3340 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1049) (-850) (-949 |#1| (-533 |#2|) |#2|)) (T -1125))
-((-3623 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5)) (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850)))) (-2725 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-2725 (*1 *1 *2) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2)) (-4 *2 (-949 *3 (-533 *4) *4)))) (-1440 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850)) (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049)) (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7)))) (-1879 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2)))) (-3340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5)) (-4 *5 (-949 *4 (-533 *3) *3)))))
-(-13 (-740 |#1| |#2|) (-10 -8 (-15 -3623 (|#3| $ (-771))) (-15 -2725 ($ |#2|)) (-15 -2725 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1440 ((-1 (-1155 |#3|) |#3|) (-644 |#2|) (-644 (-1155 |#3|)))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $ |#2| |#1|)) (-15 -3340 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-3979 (((-112) $ $) 7)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) 86)) (-3599 (((-644 $) (-644 |#4|)) 87) (((-644 $) (-644 |#4|) (-112)) 112)) (-4170 (((-644 |#3|) $) 34)) (-1323 (((-112) $) 27)) (-1494 (((-112) $) 18 (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) 102) (((-112) $) 98)) (-3351 ((|#4| |#4| $) 93)) (-2885 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| $) 127)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) 28)) (-2261 (((-112) $ (-771)) 45)) (-3281 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) 80)) (-2633 (($) 46 T CONST)) (-1740 (((-112) $) 23 (|has| |#1| (-558)))) (-3807 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1312 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1407 (((-112) $) 26 (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4185 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) 37)) (-3343 (($ (-644 |#4|)) 36)) (-3781 (((-3 $ "failed") $) 83)) (-1673 ((|#4| |#4| $) 90)) (-3806 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3427 ((|#4| |#4| $) 88)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) 106)) (-1733 (((-112) |#4| $) 137)) (-2509 (((-112) |#4| $) 134)) (-2511 (((-112) |#4| $) 138) (((-112) $) 135)) (-1523 (((-644 |#4|) $) 53 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) 105) (((-112) $) 104)) (-3779 ((|#3| $) 35)) (-2429 (((-112) $ (-771)) 44)) (-2565 (((-644 |#4|) $) 54 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 48)) (-2054 (((-644 |#3|) $) 33)) (-2314 (((-112) |#3| $) 32)) (-1864 (((-112) $ (-771)) 43)) (-1390 (((-1157) $) 10)) (-2245 (((-3 |#4| (-644 $)) |#4| |#4| $) 129)) (-1665 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| |#4| $) 128)) (-1774 (((-3 |#4| "failed") $) 84)) (-2932 (((-644 $) |#4| $) 130)) (-3439 (((-3 (-112) (-644 $)) |#4| $) 133)) (-3669 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-1799 (((-644 $) |#4| $) 126) (((-644 $) (-644 |#4|) $) 125) (((-644 $) (-644 |#4|) (-644 $)) 124) (((-644 $) |#4| (-644 $)) 123)) (-4200 (($ |#4| $) 118) (($ (-644 |#4|) $) 117)) (-3304 (((-644 |#4|) $) 108)) (-2751 (((-112) |#4| $) 100) (((-112) $) 96)) (-1642 ((|#4| |#4| $) 91)) (-4249 (((-112) $ $) 111)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) 101) (((-112) $) 97)) (-2117 ((|#4| |#4| $) 92)) (-1944 (((-1119) $) 11)) (-3771 (((-3 |#4| "failed") $) 85)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3521 (((-3 $ "failed") $ |#4|) 79)) (-3964 (($ $ |#4|) 78) (((-644 $) |#4| $) 116) (((-644 $) |#4| (-644 $)) 115) (((-644 $) (-644 |#4|) $) 114) (((-644 $) (-644 |#4|) (-644 $)) 113)) (-1900 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) 39)) (-4246 (((-112) $) 42)) (-3906 (($) 41)) (-3838 (((-771) $) 107)) (-1958 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4415)))) (-2878 (($ $) 40)) (-2150 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 61)) (-3317 (($ $ |#3|) 29)) (-3756 (($ $ |#3|) 31)) (-2352 (($ $) 89)) (-1811 (($ $ |#3|) 30)) (-2725 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3526 (((-771) $) 77 (|has| |#3| (-370)))) (-1479 (((-112) $ $) 9)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-3735 (((-644 $) |#4| $) 122) (((-644 $) |#4| (-644 $)) 121) (((-644 $) (-644 |#4|) $) 120) (((-644 $) (-644 |#4|) (-644 $)) 119)) (-2610 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) 82)) (-1950 (((-112) |#4| $) 136)) (-3314 (((-112) |#3| $) 81)) (-2817 (((-112) $ $) 6)) (-3991 (((-771) $) 47 (|has| $ (-6 -4415)))))
-(((-1126 |#1| |#2| |#3| |#4|) (-140) (-454) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1126))
-NIL
-(-13 (-1108 |t#1| |t#2| |t#3| |t#4|) (-784 |t#1| |t#2| |t#3| |t#4|))
-(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-784 |#1| |#2| |#3| |#4|) . T) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1070 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1108 |#1| |#2| |#3| |#4|) . T) ((-1208 |#1| |#2| |#3| |#4|) . T) ((-1215) . T))
-((-1409 (((-644 |#2|) |#1|) 15)) (-3765 (((-644 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-644 |#2|) |#1|) 63)) (-3691 (((-644 |#2|) |#2| |#2| |#2|) 45) (((-644 |#2|) |#1|) 61)) (-2222 ((|#2| |#1|) 56)) (-1798 (((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-2428 (((-644 |#2|) |#2| |#2|) 42) (((-644 |#2|) |#1|) 60)) (-3148 (((-644 |#2|) |#2| |#2| |#2| |#2|) 46) (((-644 |#2|) |#1|) 62)) (-2088 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3830 ((|#2| |#2| |#2| |#2|) 53)) (-3835 ((|#2| |#2| |#2|) 52)) (-1925 ((|#2| |#2| |#2| |#2| |#2|) 54)))
-(((-1127 |#1| |#2|) (-10 -7 (-15 -1409 ((-644 |#2|) |#1|)) (-15 -2222 (|#2| |#1|)) (-15 -1798 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2428 ((-644 |#2|) |#1|)) (-15 -3691 ((-644 |#2|) |#1|)) (-15 -3148 ((-644 |#2|) |#1|)) (-15 -3765 ((-644 |#2|) |#1|)) (-15 -2428 ((-644 |#2|) |#2| |#2|)) (-15 -3691 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -3148 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3765 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3835 (|#2| |#2| |#2|)) (-15 -3830 (|#2| |#2| |#2| |#2|)) (-15 -1925 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1241 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (T -1127))
-((-2088 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))) (-1925 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))) (-3830 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))) (-3835 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))) (-3765 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))) (-3148 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))) (-3691 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))) (-2428 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))) (-3765 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4)))) (-3148 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4)))) (-3691 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4)))) (-2428 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4)))) (-1798 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-2 (|:| |solns| (-644 *5)) (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1127 *3 *5)) (-4 *3 (-1241 *5)))) (-2222 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566))))))) (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -1409 ((-644 |#2|) |#1|)) (-15 -2222 (|#2| |#1|)) (-15 -1798 ((-2 (|:| |solns| (-644 |#2|)) (|:| |maps| (-644 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2428 ((-644 |#2|) |#1|)) (-15 -3691 ((-644 |#2|) |#1|)) (-15 -3148 ((-644 |#2|) |#1|)) (-15 -3765 ((-644 |#2|) |#1|)) (-15 -2428 ((-644 |#2|) |#2| |#2|)) (-15 -3691 ((-644 |#2|) |#2| |#2| |#2|)) (-15 -3148 ((-644 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3765 ((-644 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3835 (|#2| |#2| |#2|)) (-15 -3830 (|#2| |#2| |#2| |#2|)) (-15 -1925 (|#2| |#2| |#2| |#2| |#2|)) (-15 -2088 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-3239 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|))))) 124) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 123) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|)))) 121) (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 119) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|)))) 97) (((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175)) 98) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|))) 92) (((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175)) 82)) (-3971 (((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 117) (((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 54)) (-3094 (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)) 128) (((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 127)))
-(((-1128 |#1|) (-10 -7 (-15 -3239 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3239 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -3239 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3239 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3971 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -3971 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3094 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3094 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175)))) (-13 (-308) (-147))) (T -1128))
-((-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3094 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5)))) (-5 *1 (-1128 *5)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5))) (-5 *1 (-1128 *5)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1128 *5)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5)))) (-3239 (*1 *2 *3) (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4)))) (-3239 (*1 *2 *3 *4) (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1128 *5)))))
-(-10 -7 (-15 -3239 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)) (-1175))) (-15 -3239 ((-644 (-295 (-317 |#1|))) (-409 (-952 |#1|)))) (-15 -3239 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3239 ((-644 (-295 (-317 |#1|))) (-295 (-409 (-952 |#1|))))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-409 (-952 |#1|))))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -3239 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -3971 ((-644 (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -3971 ((-644 (-644 (-317 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -3094 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -3094 ((-1164 (-644 (-317 |#1|)) (-644 (-295 (-317 |#1|)))) (-409 (-952 |#1|)) (-1175))))
-((-1488 (((-409 (-1171 (-317 |#1|))) (-1265 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)) 38)) (-3074 (((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|)))) 49)))
-(((-1129 |#1|) (-10 -7 (-15 -3074 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -1488 ((-409 (-1171 (-317 |#1|))) (-1265 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566)))) (-558)) (T -1129))
-((-1488 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1265 (-317 *5))) (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5)))) (-3074 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558)) (-5 *1 (-1129 *3)))))
-(-10 -7 (-15 -3074 ((-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))) (-409 (-1171 (-317 |#1|))))) (-15 -1488 ((-409 (-1171 (-317 |#1|))) (-1265 (-317 |#1|)) (-409 (-1171 (-317 |#1|))) (-566))))
-((-1409 (((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))) 250) (((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175)) 23) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175)) 29) (((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-644 (-295 (-317 |#1|))) (-317 |#1|)) 24)))
-(((-1130 |#1|) (-10 -7 (-15 -1409 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1409 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1409 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -1409 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -1409 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175))))) (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (T -1130))
-((-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1130 *5)) (-5 *3 (-644 (-295 (-317 *5)))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-317 *5)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5)) (-5 *3 (-295 (-317 *5))))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-295 (-317 *4))))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147))) (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4)) (-5 *3 (-317 *4)))))
-(-10 -7 (-15 -1409 ((-644 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1409 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1409 ((-644 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1175))) (-15 -1409 ((-644 (-295 (-317 |#1|))) (-317 |#1|) (-1175))) (-15 -1409 ((-644 (-644 (-295 (-317 |#1|)))) (-644 (-295 (-317 |#1|))) (-644 (-1175)))))
-((-2611 ((|#2| |#2|) 30 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-1785 ((|#2| |#2|) 29 (|has| |#1| (-850))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
-(((-1131 |#1| |#2|) (-10 -7 (-15 -1785 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2611 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -1785 (|#2| |#2|)) (-15 -2611 (|#2| |#2|))) |%noBranch|)) (-1215) (-13 (-604 (-566) |#1|) (-10 -7 (-6 -4415) (-6 -4416)))) (T -1131))
-((-2611 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1215)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4415) (-6 -4416)))))) (-1785 (*1 *2 *2) (-12 (-4 *3 (-850)) (-4 *3 (-1215)) (-5 *1 (-1131 *3 *2)) (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4415) (-6 -4416)))))) (-2611 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4415) (-6 -4416)))))) (-1785 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-1131 *4 *2)) (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4415) (-6 -4416)))))))
-(-10 -7 (-15 -1785 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2611 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-850)) (PROGN (-15 -1785 (|#2| |#2|)) (-15 -2611 (|#2| |#2|))) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-4352 (((-1163 3 |#1|) $) 141)) (-1763 (((-112) $) 101)) (-2149 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 104) (($ (-644 (-943 |#1|))) 103) (((-644 (-943 |#1|)) $) 102)) (-2256 (((-112) $) 72)) (-3011 (($ $ (-943 |#1|)) 76) (($ $ (-644 |#1|)) 81) (($ $ (-771)) 83) (($ (-943 |#1|)) 77) (((-943 |#1|) $) 75)) (-1781 (((-2 (|:| -1357 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 139)) (-2024 (((-771) $) 53)) (-2797 (((-771) $) 52)) (-3459 (($ $ (-771) (-943 |#1|)) 67)) (-3051 (((-112) $) 111)) (-2614 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 118) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 120) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 115) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 127) (($ (-644 (-644 (-943 |#1|)))) 116) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 117) (((-644 (-644 (-943 |#1|))) $) 114)) (-3848 (($ (-644 $)) 56) (($ $ $) 57)) (-4370 (((-644 (-171)) $) 133)) (-4188 (((-644 (-943 |#1|)) $) 130)) (-3608 (((-644 (-644 (-171))) $) 132)) (-2293 (((-644 (-644 (-644 (-943 |#1|)))) $) NIL)) (-1955 (((-644 (-644 (-644 (-771)))) $) 131)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3845 (((-771) $ (-644 (-943 |#1|))) 65)) (-4017 (((-112) $) 84)) (-2647 (($ $ (-644 (-943 |#1|))) 86) (($ $ (-644 (-644 |#1|))) 92) (($ (-644 (-943 |#1|))) 87) (((-644 (-943 |#1|)) $) 85)) (-2573 (($) 48) (($ (-1163 3 |#1|)) 49)) (-2878 (($ $) 63)) (-2776 (((-644 $) $) 62)) (-2035 (($ (-644 $)) 59)) (-3863 (((-644 $) $) 61)) (-2725 (((-862) $) 146)) (-3491 (((-112) $) 94)) (-3220 (($ $ (-644 (-943 |#1|))) 96) (($ $ (-644 (-644 |#1|))) 99) (($ (-644 (-943 |#1|))) 97) (((-644 (-943 |#1|)) $) 95)) (-2444 (($ $) 140)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1132 |#1|) (-1133 |#1|) (-1049)) (T -1132))
-NIL
-(-1133 |#1|)
-((-3979 (((-112) $ $) 7)) (-4352 (((-1163 3 |#1|) $) 14)) (-1763 (((-112) $) 30)) (-2149 (($ $ (-644 (-943 |#1|))) 34) (($ $ (-644 (-644 |#1|))) 33) (($ (-644 (-943 |#1|))) 32) (((-644 (-943 |#1|)) $) 31)) (-2256 (((-112) $) 45)) (-3011 (($ $ (-943 |#1|)) 50) (($ $ (-644 |#1|)) 49) (($ $ (-771)) 48) (($ (-943 |#1|)) 47) (((-943 |#1|) $) 46)) (-1781 (((-2 (|:| -1357 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $) 16)) (-2024 (((-771) $) 59)) (-2797 (((-771) $) 60)) (-3459 (($ $ (-771) (-943 |#1|)) 51)) (-3051 (((-112) $) 22)) (-2614 (($ $ (-644 (-644 (-943 |#1|))) (-644 (-171)) (-171)) 29) (($ $ (-644 (-644 (-644 |#1|))) (-644 (-171)) (-171)) 28) (($ $ (-644 (-644 (-943 |#1|))) (-112) (-112)) 27) (($ $ (-644 (-644 (-644 |#1|))) (-112) (-112)) 26) (($ (-644 (-644 (-943 |#1|)))) 25) (($ (-644 (-644 (-943 |#1|))) (-112) (-112)) 24) (((-644 (-644 (-943 |#1|))) $) 23)) (-3848 (($ (-644 $)) 58) (($ $ $) 57)) (-4370 (((-644 (-171)) $) 17)) (-4188 (((-644 (-943 |#1|)) $) 21)) (-3608 (((-644 (-644 (-171))) $) 18)) (-2293 (((-644 (-644 (-644 (-943 |#1|)))) $) 19)) (-1955 (((-644 (-644 (-644 (-771)))) $) 20)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3845 (((-771) $ (-644 (-943 |#1|))) 52)) (-4017 (((-112) $) 40)) (-2647 (($ $ (-644 (-943 |#1|))) 44) (($ $ (-644 (-644 |#1|))) 43) (($ (-644 (-943 |#1|))) 42) (((-644 (-943 |#1|)) $) 41)) (-2573 (($) 62) (($ (-1163 3 |#1|)) 61)) (-2878 (($ $) 53)) (-2776 (((-644 $) $) 54)) (-2035 (($ (-644 $)) 56)) (-3863 (((-644 $) $) 55)) (-2725 (((-862) $) 12)) (-3491 (((-112) $) 35)) (-3220 (($ $ (-644 (-943 |#1|))) 39) (($ $ (-644 (-644 |#1|))) 38) (($ (-644 (-943 |#1|))) 37) (((-644 (-943 |#1|)) $) 36)) (-2444 (($ $) 15)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-1133 |#1|) (-140) (-1049)) (T -1133))
-((-2725 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-862)))) (-2573 (*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2797 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-2024 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))) (-3848 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3848 (*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-2035 (*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3863 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-2776 (*1 *2 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))) (-2878 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-3845 (*1 *2 *1 *3) (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-3459 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3011 (*1 *1 *2) (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2647 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2647 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3220 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-3220 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))) (-2149 (*1 *1 *2) (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2149 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-1763 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-2614 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-2614 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171))) (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))) (-2614 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-2614 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112)) (-4 *1 (-1133 *4)) (-4 *4 (-1049)))) (-2614 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049)) (-4 *1 (-1133 *3)))) (-2614 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049)) (-4 *1 (-1133 *4)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-943 *3)))))) (-3051 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))) (-4188 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-771))))))) (-2293 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-644 (-943 *3))))))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171)))))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171))))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -1357 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771)))))) (-2444 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))) (-4352 (*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3)))))
-(-13 (-1099) (-10 -8 (-15 -2573 ($)) (-15 -2573 ($ (-1163 3 |t#1|))) (-15 -2797 ((-771) $)) (-15 -2024 ((-771) $)) (-15 -3848 ($ (-644 $))) (-15 -3848 ($ $ $)) (-15 -2035 ($ (-644 $))) (-15 -3863 ((-644 $) $)) (-15 -2776 ((-644 $) $)) (-15 -2878 ($ $)) (-15 -3845 ((-771) $ (-644 (-943 |t#1|)))) (-15 -3459 ($ $ (-771) (-943 |t#1|))) (-15 -3011 ($ $ (-943 |t#1|))) (-15 -3011 ($ $ (-644 |t#1|))) (-15 -3011 ($ $ (-771))) (-15 -3011 ($ (-943 |t#1|))) (-15 -3011 ((-943 |t#1|) $)) (-15 -2256 ((-112) $)) (-15 -2647 ($ $ (-644 (-943 |t#1|)))) (-15 -2647 ($ $ (-644 (-644 |t#1|)))) (-15 -2647 ($ (-644 (-943 |t#1|)))) (-15 -2647 ((-644 (-943 |t#1|)) $)) (-15 -4017 ((-112) $)) (-15 -3220 ($ $ (-644 (-943 |t#1|)))) (-15 -3220 ($ $ (-644 (-644 |t#1|)))) (-15 -3220 ($ (-644 (-943 |t#1|)))) (-15 -3220 ((-644 (-943 |t#1|)) $)) (-15 -3491 ((-112) $)) (-15 -2149 ($ $ (-644 (-943 |t#1|)))) (-15 -2149 ($ $ (-644 (-644 |t#1|)))) (-15 -2149 ($ (-644 (-943 |t#1|)))) (-15 -2149 ((-644 (-943 |t#1|)) $)) (-15 -1763 ((-112) $)) (-15 -2614 ($ $ (-644 (-644 (-943 |t#1|))) (-644 (-171)) (-171))) (-15 -2614 ($ $ (-644 (-644 (-644 |t#1|))) (-644 (-171)) (-171))) (-15 -2614 ($ $ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -2614 ($ $ (-644 (-644 (-644 |t#1|))) (-112) (-112))) (-15 -2614 ($ (-644 (-644 (-943 |t#1|))))) (-15 -2614 ($ (-644 (-644 (-943 |t#1|))) (-112) (-112))) (-15 -2614 ((-644 (-644 (-943 |t#1|))) $)) (-15 -3051 ((-112) $)) (-15 -4188 ((-644 (-943 |t#1|)) $)) (-15 -1955 ((-644 (-644 (-644 (-771)))) $)) (-15 -2293 ((-644 (-644 (-644 (-943 |t#1|)))) $)) (-15 -3608 ((-644 (-644 (-171))) $)) (-15 -4370 ((-644 (-171)) $)) (-15 -1781 ((-2 (|:| -1357 (-771)) (|:| |curves| (-771)) (|:| |polygons| (-771)) (|:| |constructs| (-771))) $)) (-15 -2444 ($ $)) (-15 -4352 ((-1163 3 |t#1|) $)) (-15 -2725 ((-862) $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 174) (($ (-1180)) NIL) (((-1180) $) 7)) (-3185 (((-112) $ (|[\|\|]| (-526))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-676))) 27) (((-112) $ (|[\|\|]| (-1275))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1114))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-681))) 51) (((-112) $ (|[\|\|]| (-519))) 55) (((-112) $ (|[\|\|]| (-1065))) 59) (((-112) $ (|[\|\|]| (-1276))) 63) (((-112) $ (|[\|\|]| (-527))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-671))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1036))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-970))) 91) (((-112) $ (|[\|\|]| (-1072))) 95) (((-112) $ (|[\|\|]| (-1089))) 99) (((-112) $ (|[\|\|]| (-1095))) 103) (((-112) $ (|[\|\|]| (-626))) 107) (((-112) $ (|[\|\|]| (-1165))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-480))) 123) (((-112) $ (|[\|\|]| (-593))) 127) (((-112) $ (|[\|\|]| (-508))) 131) (((-112) $ (|[\|\|]| (-1157))) 135) (((-112) $ (|[\|\|]| (-566))) 139)) (-1479 (((-112) $ $) NIL)) (-2908 (((-526) $) 20) (((-218) $) 24) (((-676) $) 28) (((-1275) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1114) $) 44) (((-96) $) 48) (((-681) $) 52) (((-519) $) 56) (((-1065) $) 60) (((-1276) $) 64) (((-527) $) 68) (((-154) $) 72) (((-671) $) 76) (((-312) $) 80) (((-1036) $) 84) (((-180) $) 88) (((-970) $) 92) (((-1072) $) 96) (((-1089) $) 100) (((-1095) $) 104) (((-626) $) 108) (((-1165) $) 112) (((-156) $) 116) (((-137) $) 120) (((-480) $) 124) (((-593) $) 128) (((-508) $) 132) (((-1157) $) 136) (((-566) $) 140)) (-2817 (((-112) $ $) NIL)))
-(((-1134) (-1136)) (T -1134))
-NIL
-(-1136)
-((-3530 (((-644 (-1180)) (-1157)) 9)))
-(((-1135) (-10 -7 (-15 -3530 ((-644 (-1180)) (-1157))))) (T -1135))
-((-3530 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135)))))
-(-10 -7 (-15 -3530 ((-644 (-1180)) (-1157))))
-((-3979 (((-112) $ $) 7)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-1180)) 17) (((-1180) $) 16)) (-3185 (((-112) $ (|[\|\|]| (-526))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-676))) 77) (((-112) $ (|[\|\|]| (-1275))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1114))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-681))) 65) (((-112) $ (|[\|\|]| (-519))) 63) (((-112) $ (|[\|\|]| (-1065))) 61) (((-112) $ (|[\|\|]| (-1276))) 59) (((-112) $ (|[\|\|]| (-527))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-671))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1036))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-970))) 45) (((-112) $ (|[\|\|]| (-1072))) 43) (((-112) $ (|[\|\|]| (-1089))) 41) (((-112) $ (|[\|\|]| (-1095))) 39) (((-112) $ (|[\|\|]| (-626))) 37) (((-112) $ (|[\|\|]| (-1165))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-480))) 29) (((-112) $ (|[\|\|]| (-593))) 27) (((-112) $ (|[\|\|]| (-508))) 25) (((-112) $ (|[\|\|]| (-1157))) 23) (((-112) $ (|[\|\|]| (-566))) 21)) (-1479 (((-112) $ $) 9)) (-2908 (((-526) $) 80) (((-218) $) 78) (((-676) $) 76) (((-1275) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1114) $) 68) (((-96) $) 66) (((-681) $) 64) (((-519) $) 62) (((-1065) $) 60) (((-1276) $) 58) (((-527) $) 56) (((-154) $) 54) (((-671) $) 52) (((-312) $) 50) (((-1036) $) 48) (((-180) $) 46) (((-970) $) 44) (((-1072) $) 42) (((-1089) $) 40) (((-1095) $) 38) (((-626) $) 36) (((-1165) $) 34) (((-156) $) 32) (((-137) $) 30) (((-480) $) 28) (((-593) $) 26) (((-508) $) 24) (((-1157) $) 22) (((-566) $) 20)) (-2817 (((-112) $ $) 6)))
-(((-1136) (-140)) (T -1136))
-((-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1276))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1276)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157)))) (-3185 (*1 *2 *1 *3) (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566)))))
-(-13 (-1082) (-1260) (-10 -8 (-15 -3185 ((-112) $ (|[\|\|]| (-526)))) (-15 -2908 ((-526) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-218)))) (-15 -2908 ((-218) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-676)))) (-15 -2908 ((-676) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1275)))) (-15 -2908 ((-1275) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-138)))) (-15 -2908 ((-138) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-133)))) (-15 -2908 ((-133) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1114)))) (-15 -2908 ((-1114) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-96)))) (-15 -2908 ((-96) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-681)))) (-15 -2908 ((-681) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-519)))) (-15 -2908 ((-519) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1065)))) (-15 -2908 ((-1065) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1276)))) (-15 -2908 ((-1276) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-527)))) (-15 -2908 ((-527) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-154)))) (-15 -2908 ((-154) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-671)))) (-15 -2908 ((-671) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-312)))) (-15 -2908 ((-312) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1036)))) (-15 -2908 ((-1036) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-180)))) (-15 -2908 ((-180) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-970)))) (-15 -2908 ((-970) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1072)))) (-15 -2908 ((-1072) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1089)))) (-15 -2908 ((-1089) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1095)))) (-15 -2908 ((-1095) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-626)))) (-15 -2908 ((-626) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1165)))) (-15 -2908 ((-1165) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-156)))) (-15 -2908 ((-156) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-137)))) (-15 -2908 ((-137) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-480)))) (-15 -2908 ((-480) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-593)))) (-15 -2908 ((-593) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-508)))) (-15 -2908 ((-508) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-1157)))) (-15 -2908 ((-1157) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-566)))) (-15 -2908 ((-566) $))))
-(((-93) . T) ((-102) . T) ((-616 #0=(-1180)) . T) ((-613 (-862)) . T) ((-613 #0#) . T) ((-492 #0#) . T) ((-1099) . T) ((-1082) . T) ((-1260) . T))
-((-2013 (((-1270) (-644 (-862))) 23) (((-1270) (-862)) 22)) (-1496 (((-1270) (-644 (-862))) 21) (((-1270) (-862)) 20)) (-2887 (((-1270) (-644 (-862))) 19) (((-1270) (-862)) 11) (((-1270) (-1157) (-862)) 17)))
-(((-1137) (-10 -7 (-15 -2887 ((-1270) (-1157) (-862))) (-15 -2887 ((-1270) (-862))) (-15 -1496 ((-1270) (-862))) (-15 -2013 ((-1270) (-862))) (-15 -2887 ((-1270) (-644 (-862)))) (-15 -1496 ((-1270) (-644 (-862)))) (-15 -2013 ((-1270) (-644 (-862)))))) (T -1137))
-((-2013 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1270)) (-5 *1 (-1137)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1270)) (-5 *1 (-1137)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1270)) (-5 *1 (-1137)))) (-2013 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137)))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137)))))
-(-10 -7 (-15 -2887 ((-1270) (-1157) (-862))) (-15 -2887 ((-1270) (-862))) (-15 -1496 ((-1270) (-862))) (-15 -2013 ((-1270) (-862))) (-15 -2887 ((-1270) (-644 (-862)))) (-15 -1496 ((-1270) (-644 (-862)))) (-15 -2013 ((-1270) (-644 (-862)))))
-((-1666 (($ $ $) 10)) (-2895 (($ $) 9)) (-4293 (($ $ $) 13)) (-3394 (($ $ $) 15)) (-3600 (($ $ $) 12)) (-3865 (($ $ $) 14)) (-2852 (($ $) 17)) (-3328 (($ $) 16)) (-2274 (($ $) 6)) (-3181 (($ $ $) 11) (($ $) 7)) (-2434 (($ $ $) 8)))
-(((-1138) (-140)) (T -1138))
-((-2852 (*1 *1 *1) (-4 *1 (-1138))) (-3328 (*1 *1 *1) (-4 *1 (-1138))) (-3394 (*1 *1 *1 *1) (-4 *1 (-1138))) (-3865 (*1 *1 *1 *1) (-4 *1 (-1138))) (-4293 (*1 *1 *1 *1) (-4 *1 (-1138))) (-3600 (*1 *1 *1 *1) (-4 *1 (-1138))) (-3181 (*1 *1 *1 *1) (-4 *1 (-1138))) (-1666 (*1 *1 *1 *1) (-4 *1 (-1138))) (-2895 (*1 *1 *1) (-4 *1 (-1138))) (-2434 (*1 *1 *1 *1) (-4 *1 (-1138))) (-3181 (*1 *1 *1) (-4 *1 (-1138))) (-2274 (*1 *1 *1) (-4 *1 (-1138))))
-(-13 (-10 -8 (-15 -2274 ($ $)) (-15 -3181 ($ $)) (-15 -2434 ($ $ $)) (-15 -2895 ($ $)) (-15 -1666 ($ $ $)) (-15 -3181 ($ $ $)) (-15 -3600 ($ $ $)) (-15 -4293 ($ $ $)) (-15 -3865 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3328 ($ $)) (-15 -2852 ($ $))))
-((-3979 (((-112) $ $) 44)) (-2465 ((|#1| $) 17)) (-3790 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-3363 (((-112) $) 19)) (-3877 (($ $ |#1|) 30)) (-4201 (($ $ (-112)) 32)) (-3497 (($ $) 33)) (-3410 (($ $ |#2|) 31)) (-1390 (((-1157) $) NIL)) (-1576 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-1944 (((-1119) $) NIL)) (-4246 (((-112) $) 16)) (-3906 (($) 13)) (-2878 (($ $) 29)) (-2738 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -3860 |#2|))) 23) (((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -3860 |#2|)))) 26) (((-644 $) |#1| (-644 |#2|)) 28)) (-2607 ((|#2| $) 18)) (-2725 (((-862) $) 53)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 42)))
-(((-1139 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -3906 ($)) (-15 -4246 ((-112) $)) (-15 -2465 (|#1| $)) (-15 -2607 (|#2| $)) (-15 -3363 ((-112) $)) (-15 -2738 ($ |#1| |#2| (-112))) (-15 -2738 ($ |#1| |#2|)) (-15 -2738 ($ (-2 (|:| |val| |#1|) (|:| -3860 |#2|)))) (-15 -2738 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -3860 |#2|))))) (-15 -2738 ((-644 $) |#1| (-644 |#2|))) (-15 -2878 ($ $)) (-15 -3877 ($ $ |#1|)) (-15 -3410 ($ $ |#2|)) (-15 -4201 ($ $ (-112))) (-15 -3497 ($ $)) (-15 -1576 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3790 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1139))
-((-3906 (*1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2465 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3)) (-4 *3 (-13 (-1099) (-34))))) (-2607 (*1 *2 *1) (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2738 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2738 (*1 *1 *2 *3) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3860 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *4)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -3860 *5)))) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5)) (-4 *3 (-13 (-1099) (-34))))) (-2878 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3877 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3410 (*1 *1 *1 *2) (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34))) (-4 *2 (-13 (-1099) (-34))))) (-4201 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-3497 (*1 *1 *1) (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-1576 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *5 *6)))) (-3790 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))))))
-(-13 (-1099) (-10 -8 (-15 -3906 ($)) (-15 -4246 ((-112) $)) (-15 -2465 (|#1| $)) (-15 -2607 (|#2| $)) (-15 -3363 ((-112) $)) (-15 -2738 ($ |#1| |#2| (-112))) (-15 -2738 ($ |#1| |#2|)) (-15 -2738 ($ (-2 (|:| |val| |#1|) (|:| -3860 |#2|)))) (-15 -2738 ((-644 $) (-644 (-2 (|:| |val| |#1|) (|:| -3860 |#2|))))) (-15 -2738 ((-644 $) |#1| (-644 |#2|))) (-15 -2878 ($ $)) (-15 -3877 ($ $ |#1|)) (-15 -3410 ($ $ |#2|)) (-15 -4201 ($ $ (-112))) (-15 -3497 ($ $)) (-15 -1576 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3790 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
-((-3979 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2465 (((-1139 |#1| |#2|) $) 27)) (-3460 (($ $) 91)) (-3203 (((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1645 (($ $ $ (-644 (-1139 |#1| |#2|))) 108) (($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-2261 (((-112) $ (-771)) NIL)) (-2989 (((-1139 |#1| |#2|) $ (-1139 |#1| |#2|)) 46 (|has| $ (-6 -4416)))) (-2858 (((-1139 |#1| |#2|) $ "value" (-1139 |#1| |#2|)) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 44 (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-1930 (((-644 (-2 (|:| |val| |#1|) (|:| -3860 |#2|))) $) 95)) (-2367 (($ (-1139 |#1| |#2|) $) 42)) (-1752 (($ (-1139 |#1| |#2|) $) 34)) (-1523 (((-644 (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 54)) (-2748 (((-112) (-1139 |#1| |#2|) $) 97)) (-3886 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 (-1139 |#1| |#2|)) $) 58 (|has| $ (-6 -4415)))) (-3938 (((-112) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-1139 |#1| |#2|) (-1099))))) (-3023 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 50 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-1139 |#1| |#2|) (-1139 |#1| |#2|)) $) 49)) (-1864 (((-112) $ (-771)) NIL)) (-2801 (((-644 (-1139 |#1| |#2|)) $) 56)) (-1396 (((-112) $) 45)) (-1390 (((-1157) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-1944 (((-1119) $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2983 (((-3 $ "failed") $) 89)) (-1900 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-1139 |#1| |#2|)))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-295 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-1139 |#1| |#2|) (-1139 |#1| |#2|)) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099)))) (($ $ (-644 (-1139 |#1| |#2|)) (-644 (-1139 |#1| |#2|))) NIL (-12 (|has| (-1139 |#1| |#2|) (-310 (-1139 |#1| |#2|))) (|has| (-1139 |#1| |#2|) (-1099))))) (-4165 (((-112) $ $) 53)) (-4246 (((-112) $) 24)) (-3906 (($) 26)) (-3282 (((-1139 |#1| |#2|) $ "value") NIL)) (-4104 (((-566) $ $) NIL)) (-3810 (((-112) $) 47)) (-1958 (((-771) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4415))) (((-771) (-1139 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-1139 |#1| |#2|) (-1099))))) (-2878 (($ $) 52)) (-2738 (($ (-1139 |#1| |#2|)) 10) (($ |#1| |#2| (-644 $)) 13) (($ |#1| |#2| (-644 (-1139 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-644 |#2|)) 18)) (-2439 (((-644 |#2|) $) 96)) (-2725 (((-862) $) 87 (|has| (-1139 |#1| |#2|) (-613 (-862))))) (-4202 (((-644 $) $) 31)) (-1379 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-1479 (((-112) $ $) NIL (|has| (-1139 |#1| |#2|) (-1099)))) (-2610 (((-112) (-1 (-112) (-1139 |#1| |#2|)) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 70 (|has| (-1139 |#1| |#2|) (-1099)))) (-3991 (((-771) $) 64 (|has| $ (-6 -4415)))))
-(((-1140 |#1| |#2|) (-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4416) (-6 -4415) (-15 -2983 ((-3 $ "failed") $)) (-15 -3460 ($ $)) (-15 -2738 ($ (-1139 |#1| |#2|))) (-15 -2738 ($ |#1| |#2| (-644 $))) (-15 -2738 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -2738 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -2439 ((-644 |#2|) $)) (-15 -1930 ((-644 (-2 (|:| |val| |#1|) (|:| -3860 |#2|))) $)) (-15 -2748 ((-112) (-1139 |#1| |#2|) $)) (-15 -3203 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1752 ($ (-1139 |#1| |#2|) $)) (-15 -2367 ($ (-1139 |#1| |#2|) $)) (-15 -1645 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -1645 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1099) (-34)) (-13 (-1099) (-34))) (T -1140))
-((-2983 (*1 *1 *1) (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-3460 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-2738 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))))) (-2738 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)))) (-2738 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34))))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-1930 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4)))) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))) (-2748 (*1 *2 *3 *1) (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5)))) (-3203 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *5 *6)))) (-1752 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-2367 (*1 *1 *2 *1) (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-1645 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))) (-1645 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34))) (-5 *1 (-1140 *4 *5)))))
-(-13 (-1010 (-1139 |#1| |#2|)) (-10 -8 (-6 -4416) (-6 -4415) (-15 -2983 ((-3 $ "failed") $)) (-15 -3460 ($ $)) (-15 -2738 ($ (-1139 |#1| |#2|))) (-15 -2738 ($ |#1| |#2| (-644 $))) (-15 -2738 ($ |#1| |#2| (-644 (-1139 |#1| |#2|)))) (-15 -2738 ($ |#1| |#2| |#1| (-644 |#2|))) (-15 -2439 ((-644 |#2|) $)) (-15 -1930 ((-644 (-2 (|:| |val| |#1|) (|:| -3860 |#2|))) $)) (-15 -2748 ((-112) (-1139 |#1| |#2|) $)) (-15 -3203 ((-112) (-1139 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1752 ($ (-1139 |#1| |#2|) $)) (-15 -2367 ($ (-1139 |#1| |#2|) $)) (-15 -1645 ($ $ $ (-644 (-1139 |#1| |#2|)))) (-15 -1645 ($ $ $ (-644 (-1139 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2453 (($ $) NIL)) (-2717 ((|#2| $) NIL)) (-2192 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4299 (($ (-689 |#2|)) 56)) (-2988 (((-112) $) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-2092 (($ |#2|) 14)) (-2633 (($) NIL T CONST)) (-2594 (($ $) 69 (|has| |#2| (-308)))) (-1703 (((-240 |#1| |#2|) $ (-566)) 42)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 |#2| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) ((|#2| $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) 83)) (-4153 (((-771) $) 71 (|has| |#2| (-558)))) (-2975 ((|#2| $ (-566) (-566)) NIL)) (-1523 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3842 (((-112) $) NIL)) (-2883 (((-771) $) 73 (|has| |#2| (-558)))) (-3260 (((-644 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-558)))) (-2368 (((-771) $) NIL)) (-2631 (($ |#2|) 25)) (-2378 (((-771) $) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-4362 ((|#2| $) 67 (|has| |#2| (-6 (-4417 "*"))))) (-2110 (((-566) $) NIL)) (-4086 (((-566) $) NIL)) (-2565 (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2952 (((-566) $) NIL)) (-4280 (((-566) $) NIL)) (-2656 (($ (-644 (-644 |#2|))) 37)) (-3023 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3662 (((-644 (-644 |#2|)) $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1764 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-1944 (((-1119) $) NIL)) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558)))) (-1900 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ (-566) (-566) |#2|) NIL) ((|#2| $ (-566) (-566)) NIL)) (-3009 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1858 ((|#2| $) NIL)) (-2626 (($ (-644 |#2|)) 50)) (-3988 (((-112) $) NIL)) (-2617 (((-240 |#1| |#2|) $) NIL)) (-3586 ((|#2| $) 65 (|has| |#2| (-6 (-4417 "*"))))) (-1958 (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2878 (($ $) NIL)) (-2150 (((-538) $) 89 (|has| |#2| (-614 (-538))))) (-1428 (((-240 |#1| |#2|) $ (-566)) 44)) (-2725 (((-862) $) 47) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#2| (-1038 (-409 (-566))))) (($ |#2|) NIL) (((-689 |#2|) $) 52)) (-2875 (((-771)) 23 T CONST)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-4004 (((-112) $) NIL)) (-3200 (($) 16 T CONST)) (-3214 (($) 21 T CONST)) (-1316 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-771)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) 63) (($ $ (-566)) 82 (|has| |#2| (-365)))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1141 |#1| |#2|) (-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -2631 ($ |#2|)) (-15 -2453 ($ $)) (-15 -4299 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4417 "*"))) (-6 -4404) |%noBranch|) (IF (|has| |#2| (-6 (-4417 "*"))) (IF (|has| |#2| (-6 -4412)) (-6 -4412) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|))) (-771) (-1049)) (T -1141))
-((-2631 (*1 *1 *2) (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049)))) (-2453 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049)))) (-4299 (*1 *1 *2) (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4)) (-14 *3 (-771)))))
-(-13 (-1122 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-613 (-689 |#2|)) (-10 -8 (-15 -2631 ($ |#2|)) (-15 -2453 ($ $)) (-15 -4299 ($ (-689 |#2|))) (IF (|has| |#2| (-6 (-4417 "*"))) (-6 -4404) |%noBranch|) (IF (|has| |#2| (-6 (-4417 "*"))) (IF (|has| |#2| (-6 -4412)) (-6 -4412) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-614 (-538))) (-6 (-614 (-538))) |%noBranch|)))
-((-2840 (($ $) 19)) (-4093 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1976 (((-112) $ $) 24)) (-2396 (($ $) 17)) (-3282 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1232 (-566))) NIL) (($ $ $) 31)) (-2725 (($ (-144)) 29) (((-862) $) NIL)))
-(((-1142 |#1|) (-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -3282 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| (-141))) (-15 -4093 (|#1| |#1| (-144))) (-15 -2725 (|#1| (-144))) (-15 -1976 ((-112) |#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -3282 ((-144) |#1| (-566))) (-15 -3282 ((-144) |#1| (-566) (-144)))) (-1143)) (T -1142))
-NIL
-(-10 -8 (-15 -2725 ((-862) |#1|)) (-15 -3282 (|#1| |#1| |#1|)) (-15 -4093 (|#1| |#1| (-141))) (-15 -4093 (|#1| |#1| (-144))) (-15 -2725 (|#1| (-144))) (-15 -1976 ((-112) |#1| |#1|)) (-15 -2840 (|#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -3282 ((-144) |#1| (-566))) (-15 -3282 ((-144) |#1| (-566) (-144))))
-((-3979 (((-112) $ $) 19 (|has| (-144) (-1099)))) (-4069 (($ $) 121)) (-2840 (($ $) 122)) (-4093 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-1956 (((-112) $ $) 119)) (-1933 (((-112) $ $ (-566)) 118)) (-3993 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-1305 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-3190 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4416))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4416))))) (-3370 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-2261 (((-112) $ (-771)) 8)) (-2858 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4416))) (((-144) $ (-1232 (-566)) (-144)) 59 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1935 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1970 (($ $) 91 (|has| $ (-6 -4416)))) (-1921 (($ $) 101)) (-3604 (($ $ (-1232 (-566)) $) 115)) (-3806 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4415)))) (-2553 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4415))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4415)))) (-3031 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4416)))) (-2975 (((-144) $ (-566)) 52)) (-1976 (((-112) $ $) 120)) (-2388 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-1523 (((-644 (-144)) $) 31 (|has| $ (-6 -4415)))) (-2631 (($ (-771) (-144)) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3075 (($ $ $) 88 (|has| (-144) (-850)))) (-3848 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-2565 (((-644 (-144)) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3936 (($ $ $) 87 (|has| (-144) (-850)))) (-4360 (((-112) $ $ (-144)) 116)) (-2451 (((-771) $ $ (-144)) 117)) (-3023 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-1667 (($ $) 123)) (-2396 (($ $) 124)) (-1864 (((-112) $ (-771)) 10)) (-1945 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1390 (((-1157) $) 22 (|has| (-144) (-1099)))) (-1510 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21 (|has| (-144) (-1099)))) (-3771 (((-144) $) 43 (|has| (-566) (-850)))) (-3567 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3598 (($ $ (-144)) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-1948 (((-644 (-144)) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1232 (-566))) 64) (($ $ $) 103)) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-1958 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4415))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415))))) (-3199 (($ $ $ (-566)) 92 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-2738 (($ (-644 (-144))) 71)) (-4007 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (($ (-144)) 112) (((-862) $) 18 (|has| (-144) (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| (-144) (-1099)))) (-2610 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2844 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2817 (((-112) $ $) 20 (|has| (-144) (-1099)))) (-2854 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2833 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1143) (-140)) (T -1143))
-((-2396 (*1 *1 *1) (-4 *1 (-1143))) (-1667 (*1 *1 *1) (-4 *1 (-1143))) (-2840 (*1 *1 *1) (-4 *1 (-1143))) (-4069 (*1 *1 *1) (-4 *1 (-1143))) (-1976 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-1956 (*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))) (-1933 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112)))) (-2451 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771)))) (-4360 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112)))) (-3604 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1232 (-566))))) (-2388 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)))) (-2388 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1143)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))) (-4093 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-4093 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-1945 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-1945 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-1935 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))) (-1935 (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141)))) (-3282 (*1 *1 *1 *1) (-4 *1 (-1143))))
-(-13 (-19 (-144)) (-10 -8 (-15 -2396 ($ $)) (-15 -1667 ($ $)) (-15 -2840 ($ $)) (-15 -4069 ($ $)) (-15 -1976 ((-112) $ $)) (-15 -1956 ((-112) $ $)) (-15 -1933 ((-112) $ $ (-566))) (-15 -2451 ((-771) $ $ (-144))) (-15 -4360 ((-112) $ $ (-144))) (-15 -3604 ($ $ (-1232 (-566)) $)) (-15 -2388 ((-566) $ $ (-566))) (-15 -2388 ((-566) (-141) $ (-566))) (-15 -2725 ($ (-144))) (-15 -3993 ((-644 $) $ (-144))) (-15 -3993 ((-644 $) $ (-141))) (-15 -4093 ($ $ (-144))) (-15 -4093 ($ $ (-141))) (-15 -1945 ($ $ (-144))) (-15 -1945 ($ $ (-141))) (-15 -1935 ($ $ (-144))) (-15 -1935 ($ $ (-141))) (-15 -3282 ($ $ $))))
-(((-34) . T) ((-102) -2676 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-613 (-862)) -2676 (|has| (-144) (-1099)) (|has| (-144) (-850)) (|has| (-144) (-613 (-862)))) ((-151 #0=(-144)) . T) ((-614 (-538)) |has| (-144) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-651 #0#) . T) ((-19 #0#) . T) ((-850) |has| (-144) (-850)) ((-1099) -2676 (|has| (-144) (-1099)) (|has| (-144) (-850))) ((-1215) . T))
-((-3576 (((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-771)) 113)) (-1800 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771)) 61)) (-3796 (((-1270) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-771)) 98)) (-2402 (((-771) (-644 |#4|) (-644 |#5|)) 30)) (-3007 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771)) 63) (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771) (-112)) 65)) (-2442 (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112)) 85)) (-2150 (((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) 90)) (-1429 (((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|) 60)) (-3425 (((-771) (-644 |#4|) (-644 |#5|)) 21)))
-(((-1144 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3425 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2402 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1429 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3576 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-771))) (-15 -2150 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3796 ((-1270) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-771)))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|) (-1108 |#1| |#2| |#3| |#4|)) (T -1144))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9)))) (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1270)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8))) (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1108 *4 *5 *6 *7)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157)) (-5 *1 (-1144 *4 *5 *6 *7 *8)))) (-3576 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-644 *11)) (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3860 *11)))))) (-5 *6 (-771)) (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3860 *11)))) (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9)) (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11)))) (-2442 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-2442 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-3007 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-3007 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793)) (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3)))) (-1800 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-1800 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *3 (-1064 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3)))) (-1429 (*1 *2 *3 *4) (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-644 *4)) (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4)))))) (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))) (-2402 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3425 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -2402 ((-771) (-644 |#4|) (-644 |#5|))) (-15 -1429 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -1800 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771) (-112))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5| (-771))) (-15 -3007 ((-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) |#4| |#5|)) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112))) (-15 -2442 ((-644 |#5|) (-644 |#4|) (-644 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3576 ((-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-644 |#4|) (-644 |#5|) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-2 (|:| |done| (-644 |#5|)) (|:| |todo| (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))))) (-771))) (-15 -2150 ((-1157) (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|)))) (-15 -3796 ((-1270) (-644 (-2 (|:| |val| (-644 |#4|)) (|:| -3860 |#5|))) (-771))))
-((-3979 (((-112) $ $) NIL)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3599 (((-644 $) (-644 |#4|)) 124) (((-644 $) (-644 |#4|) (-112)) 125) (((-644 $) (-644 |#4|) (-112) (-112)) 123) (((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112)) 126)) (-4170 (((-644 |#3|) $) NIL)) (-1323 (((-112) $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3351 ((|#4| |#4| $) NIL)) (-2885 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| $) 97)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3281 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) 75)) (-2633 (($) NIL T CONST)) (-1740 (((-112) $) 29 (|has| |#1| (-558)))) (-3807 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1312 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1407 (((-112) $) NIL (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-4185 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3343 (($ (-644 |#4|)) NIL)) (-3781 (((-3 $ "failed") $) 45)) (-1673 ((|#4| |#4| $) 78)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-1752 (($ |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3427 ((|#4| |#4| $) NIL)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) NIL)) (-1733 (((-112) |#4| $) NIL)) (-2509 (((-112) |#4| $) NIL)) (-2511 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2829 (((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)) 139)) (-1523 (((-644 |#4|) $) 18 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3779 ((|#3| $) 38)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#4|) $) 19 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-3023 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 23)) (-2054 (((-644 |#3|) $) NIL)) (-2314 (((-112) |#3| $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-2245 (((-3 |#4| (-644 $)) |#4| |#4| $) NIL)) (-1665 (((-644 (-2 (|:| |val| |#4|) (|:| -3860 $))) |#4| |#4| $) 117)) (-1774 (((-3 |#4| "failed") $) 42)) (-2932 (((-644 $) |#4| $) 102)) (-3439 (((-3 (-112) (-644 $)) |#4| $) NIL)) (-3669 (((-644 (-2 (|:| |val| (-112)) (|:| -3860 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-1799 (((-644 $) |#4| $) 121) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 122) (((-644 $) |#4| (-644 $)) NIL)) (-1841 (((-644 $) (-644 |#4|) (-112) (-112) (-112)) 134)) (-4200 (($ |#4| $) 88) (($ (-644 |#4|) $) 89) (((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-3304 (((-644 |#4|) $) NIL)) (-2751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1642 ((|#4| |#4| $) NIL)) (-4249 (((-112) $ $) NIL)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2117 ((|#4| |#4| $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-3 |#4| "failed") $) 40)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3521 (((-3 $ "failed") $ |#4|) 59)) (-3964 (($ $ |#4|) NIL) (((-644 $) |#4| $) 104) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) 99)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 17)) (-3906 (($) 14)) (-3838 (((-771) $) NIL)) (-1958 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) 13)) (-2150 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 22)) (-3317 (($ $ |#3|) 52)) (-3756 (($ $ |#3|) 54)) (-2352 (($ $) NIL)) (-1811 (($ $ |#3|) NIL)) (-2725 (((-862) $) 35) (((-644 |#4|) $) 46)) (-3526 (((-771) $) NIL (|has| |#3| (-370)))) (-1479 (((-112) $ $) NIL)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-3735 (((-644 $) |#4| $) 66) (((-644 $) |#4| (-644 $)) NIL) (((-644 $) (-644 |#4|) $) NIL) (((-644 $) (-644 |#4|) (-644 $)) NIL)) (-2610 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) NIL)) (-1950 (((-112) |#4| $) NIL)) (-3314 (((-112) |#3| $) 74)) (-2817 (((-112) $ $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1145 |#1| |#2| |#3| |#4|) (-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4200 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -1841 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -2829 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112))))) (-454) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1145))
-((-4200 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3)) (-4 *3 (-1064 *5 *6 *7)))) (-3599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-3599 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-1841 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))) (-2829 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-644 *8)) (|:| |towers| (-644 (-1145 *5 *6 *7 *8))))) (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8)))))
-(-13 (-1108 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4200 ((-644 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112))) (-15 -3599 ((-644 $) (-644 |#4|) (-112) (-112) (-112) (-112))) (-15 -1841 ((-644 $) (-644 |#4|) (-112) (-112) (-112))) (-15 -2829 ((-2 (|:| |val| (-644 |#4|)) (|:| |towers| (-644 $))) (-644 |#4|) (-112) (-112)))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3929 ((|#1| $) 37)) (-3859 (($ (-644 |#1|)) 45)) (-2261 (((-112) $ (-771)) NIL)) (-2633 (($) NIL T CONST)) (-1455 ((|#1| |#1| $) 40)) (-1922 ((|#1| $) 35)) (-1523 (((-644 |#1|) $) 18 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 22)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2668 ((|#1| $) 38)) (-1619 (($ |#1| $) 41)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1613 ((|#1| $) 36)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 32)) (-3906 (($) 43)) (-2279 (((-771) $) 30)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 27)) (-2725 (((-862) $) 14 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3619 (($ (-644 |#1|)) NIL)) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 17 (|has| |#1| (-1099)))) (-3991 (((-771) $) 31 (|has| $ (-6 -4415)))))
-(((-1146 |#1|) (-13 (-1120 |#1|) (-10 -8 (-15 -3859 ($ (-644 |#1|))))) (-1215)) (T -1146))
-((-3859 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-1146 *3)))))
-(-13 (-1120 |#1|) (-10 -8 (-15 -3859 ($ (-644 |#1|)))))
-((-2858 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1232 (-566)) |#2|) 55) ((|#2| $ (-566) |#2|) 52)) (-4336 (((-112) $) 12)) (-3023 (($ (-1 |#2| |#2|) $) 50)) (-3771 ((|#2| $) NIL) (($ $ (-771)) 20)) (-3598 (($ $ |#2|) 51)) (-1890 (((-112) $) 11)) (-3282 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1232 (-566))) 38) ((|#2| $ (-566)) 29) ((|#2| $ (-566) |#2|) NIL)) (-2011 (($ $ $) 58) (($ $ |#2|) NIL)) (-4007 (($ $ $) 40) (($ |#2| $) NIL) (($ (-644 $)) 47) (($ $ |#2|) NIL)))
-(((-1147 |#1| |#2|) (-10 -8 (-15 -4336 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -2858 (|#2| |#1| (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566))) (-15 -3598 (|#1| |#1| |#2|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -4007 (|#1| (-644 |#1|))) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -2858 (|#2| |#1| (-1232 (-566)) |#2|)) (-15 -2858 (|#2| |#1| "last" |#2|)) (-15 -2858 (|#1| |#1| "rest" |#1|)) (-15 -2858 (|#2| |#1| "first" |#2|)) (-15 -2011 (|#1| |#1| |#2|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -3282 (|#2| |#1| "last")) (-15 -3282 (|#1| |#1| "rest")) (-15 -3771 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "first")) (-15 -3771 (|#2| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -3282 (|#2| |#1| "value")) (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|))) (-1148 |#2|) (-1215)) (T -1147))
-NIL
-(-10 -8 (-15 -4336 ((-112) |#1|)) (-15 -1890 ((-112) |#1|)) (-15 -2858 (|#2| |#1| (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566) |#2|)) (-15 -3282 (|#2| |#1| (-566))) (-15 -3598 (|#1| |#1| |#2|)) (-15 -4007 (|#1| |#1| |#2|)) (-15 -4007 (|#1| (-644 |#1|))) (-15 -3282 (|#1| |#1| (-1232 (-566)))) (-15 -2858 (|#2| |#1| (-1232 (-566)) |#2|)) (-15 -2858 (|#2| |#1| "last" |#2|)) (-15 -2858 (|#1| |#1| "rest" |#1|)) (-15 -2858 (|#2| |#1| "first" |#2|)) (-15 -2011 (|#1| |#1| |#2|)) (-15 -2011 (|#1| |#1| |#1|)) (-15 -3282 (|#2| |#1| "last")) (-15 -3282 (|#1| |#1| "rest")) (-15 -3771 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "first")) (-15 -3771 (|#2| |#1|)) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -3282 (|#2| |#1| "value")) (-15 -3023 (|#1| (-1 |#2| |#2|) |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-4088 ((|#1| $) 66)) (-1829 (($ $) 68)) (-2506 (((-1270) $ (-566) (-566)) 98 (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) 53 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-2363 (($ $ $) 57 (|has| $ (-6 -4416)))) (-3478 ((|#1| $ |#1|) 55 (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) 59 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4416))) (($ $ "rest" $) 56 (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 118 (|has| $ (-6 -4416))) ((|#1| $ (-566) |#1|) 87 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4415)))) (-4075 ((|#1| $) 67)) (-2633 (($) 7 T CONST)) (-3781 (($ $) 74) (($ $ (-771)) 72)) (-3806 (($ $) 100 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4415))) (($ |#1| $) 101 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3031 ((|#1| $ (-566) |#1|) 86 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 88)) (-4336 (((-112) $) 84)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2631 (($ (-771) |#1|) 109)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 96 (|has| (-566) (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 95 (|has| (-566) (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-1864 (((-112) $ (-771)) 10)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1774 ((|#1| $) 71) (($ $ (-771)) 69)) (-1510 (($ $ $ (-566)) 117) (($ |#1| $ (-566)) 116)) (-4063 (((-644 (-566)) $) 93)) (-3054 (((-112) (-566) $) 92)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 77) (($ $ (-771)) 75)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-3598 (($ $ |#1|) 97 (|has| $ (-6 -4416)))) (-1890 (((-112) $) 85)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 91)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1232 (-566))) 113) ((|#1| $ (-566)) 90) ((|#1| $ (-566) |#1|) 89)) (-4104 (((-566) $ $) 45)) (-1302 (($ $ (-1232 (-566))) 115) (($ $ (-566)) 114)) (-3810 (((-112) $) 47)) (-4278 (($ $) 63)) (-4160 (($ $) 60 (|has| $ (-6 -4416)))) (-2251 (((-771) $) 64)) (-2546 (($ $) 65)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2150 (((-538) $) 99 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 108)) (-2011 (($ $ $) 62 (|has| $ (-6 -4416))) (($ $ |#1|) 61 (|has| $ (-6 -4416)))) (-4007 (($ $ $) 79) (($ |#1| $) 78) (($ (-644 $)) 111) (($ $ |#1|) 110)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1148 |#1|) (-140) (-1215)) (T -1148))
-((-1890 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))) (-4336 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))))
-(-13 (-1253 |t#1|) (-651 |t#1|) (-10 -8 (-15 -1890 ((-112) $)) (-15 -4336 ((-112) $))))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1215) . T) ((-1253 |#1|) . T))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2506 (((-1270) $ |#1| |#1|) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) NIL)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) NIL)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) NIL)) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 ((|#1| $) NIL (|has| |#1| (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 ((|#1| $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2838 (((-644 |#1|) $) NIL)) (-3932 (((-112) |#1| $) NIL)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-4063 (((-644 |#1|) $) NIL)) (-3054 (((-112) |#1| $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#2| $) NIL (|has| |#1| (-850)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1149 |#1| |#2| |#3|) (-1191 |#1| |#2|) (-1099) (-1099) |#2|) (T -1149))
-NIL
-(-1191 |#1| |#2|)
-((-3979 (((-112) $ $) 7)) (-3869 (((-3 $ "failed") $) 14)) (-1390 (((-1157) $) 10)) (-1342 (($) 15 T CONST)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-2817 (((-112) $ $) 6)))
-(((-1150) (-140)) (T -1150))
-((-1342 (*1 *1) (-4 *1 (-1150))) (-3869 (*1 *1 *1) (|partial| -4 *1 (-1150))))
-(-13 (-1099) (-10 -8 (-15 -1342 ($) -3854) (-15 -3869 ((-3 $ "failed") $))))
-(((-102) . T) ((-613 (-862)) . T) ((-1099) . T))
-((-1606 (((-1155 |#1|) (-1155 |#1|)) 17)) (-3257 (((-1155 |#1|) (-1155 |#1|)) 13)) (-3237 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 20)) (-3274 (((-1155 |#1|) (-1155 |#1|)) 15)))
-(((-1151 |#1|) (-10 -7 (-15 -3257 ((-1155 |#1|) (-1155 |#1|))) (-15 -3274 ((-1155 |#1|) (-1155 |#1|))) (-15 -1606 ((-1155 |#1|) (-1155 |#1|))) (-15 -3237 ((-1155 |#1|) (-1155 |#1|) (-566) (-566)))) (-13 (-558) (-147))) (T -1151))
-((-3237 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1151 *4)))) (-1606 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-3274 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))) (-3257 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1151 *3)))))
-(-10 -7 (-15 -3257 ((-1155 |#1|) (-1155 |#1|))) (-15 -3274 ((-1155 |#1|) (-1155 |#1|))) (-15 -1606 ((-1155 |#1|) (-1155 |#1|))) (-15 -3237 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))))
-((-4007 (((-1155 |#1|) (-1155 (-1155 |#1|))) 15)))
-(((-1152 |#1|) (-10 -7 (-15 -4007 ((-1155 |#1|) (-1155 (-1155 |#1|))))) (-1215)) (T -1152))
-((-4007 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4)) (-4 *4 (-1215)))))
-(-10 -7 (-15 -4007 ((-1155 |#1|) (-1155 (-1155 |#1|)))))
-((-4123 (((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 25)) (-2553 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)) 26)) (-2101 (((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|)) 16)))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -2101 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -4123 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -2553 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|)))) (-1215) (-1215)) (T -1153))
-((-2553 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1215)) (-4 *2 (-1215)) (-5 *1 (-1153 *5 *2)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1215)) (-4 *3 (-1215)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1155 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6)))))
-(-10 -7 (-15 -2101 ((-1155 |#2|) (-1 |#2| |#1|) (-1155 |#1|))) (-15 -4123 ((-1155 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))) (-15 -2553 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1155 |#1|))))
-((-2101 (((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)) 21)))
-(((-1154 |#1| |#2| |#3|) (-10 -7 (-15 -2101 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|)))) (-1215) (-1215) (-1215)) (T -1154))
-((-2101 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-1155 *7)) (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-1155 *8)) (-5 *1 (-1154 *6 *7 *8)))))
-(-10 -7 (-15 -2101 ((-1155 |#3|) (-1 |#3| |#1| |#2|) (-1155 |#1|) (-1155 |#2|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) NIL)) (-4088 ((|#1| $) NIL)) (-1829 (($ $) 67)) (-2506 (((-1270) $ (-566) (-566)) 99 (|has| $ (-6 -4416)))) (-4204 (($ $ (-566)) 129 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-1901 (((-862) $) 56 (|has| |#1| (-1099)))) (-3605 (((-112)) 55 (|has| |#1| (-1099)))) (-2989 ((|#1| $ |#1|) NIL (|has| $ (-6 -4416)))) (-2363 (($ $ $) 116 (|has| $ (-6 -4416))) (($ $ (-566) $) 142)) (-3478 ((|#1| $ |#1|) 126 (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) 121 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4416))) (($ $ "rest" $) 125 (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 113 (|has| $ (-6 -4416))) ((|#1| $ (-566) |#1|) 77 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 80)) (-4075 ((|#1| $) NIL)) (-2633 (($) NIL T CONST)) (-4303 (($ $) 14)) (-3781 (($ $) 42) (($ $ (-771)) 111)) (-1762 (((-112) (-644 |#1|) $) 135 (|has| |#1| (-1099)))) (-3519 (($ (-644 |#1|)) 131)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) 79)) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-4336 (((-112) $) NIL)) (-1523 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2926 (((-1270) (-566) $) 141 (|has| |#1| (-1099)))) (-4061 (((-771) $) 138)) (-4116 (((-644 $) $) NIL)) (-3886 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-1864 (((-112) $ (-771)) NIL)) (-2801 (((-644 |#1|) $) NIL)) (-1396 (((-112) $) NIL)) (-3774 (($ $) 114)) (-4050 (((-112) $) 13)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1774 ((|#1| $) NIL) (($ $ (-771)) NIL)) (-1510 (($ $ $ (-566)) NIL) (($ |#1| $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) 96)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3198 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-2783 ((|#1| $) 10)) (-3771 ((|#1| $) 41) (($ $ (-771)) 65)) (-3417 (((-2 (|:| |cycle?| (-112)) (|:| -1474 (-771)) (|:| |period| (-771))) (-771) $) 36)) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3254 (($ (-1 (-112) |#1|) $) 146)) (-3268 (($ (-1 (-112) |#1|) $) 147)) (-3598 (($ $ |#1|) 90 (|has| $ (-6 -4416)))) (-3964 (($ $ (-566)) 45)) (-1890 (((-112) $) 94)) (-2400 (((-112) $) 12)) (-3246 (((-112) $) 137)) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 30)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) 20)) (-3906 (($) 60)) (-3282 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1232 (-566))) NIL) ((|#1| $ (-566)) 75) ((|#1| $ (-566) |#1|) NIL)) (-4104 (((-566) $ $) 64)) (-1302 (($ $ (-1232 (-566))) NIL) (($ $ (-566)) NIL)) (-3134 (($ (-1 $)) 63)) (-3810 (((-112) $) 91)) (-4278 (($ $) 92)) (-4160 (($ $) 117 (|has| $ (-6 -4416)))) (-2251 (((-771) $) NIL)) (-2546 (($ $) NIL)) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 59)) (-2150 (((-538) $) NIL (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 73)) (-2120 (($ |#1| $) 115)) (-2011 (($ $ $) 119 (|has| $ (-6 -4416))) (($ $ |#1|) 120 (|has| $ (-6 -4416)))) (-4007 (($ $ $) 101) (($ |#1| $) 61) (($ (-644 $)) 106) (($ $ |#1|) 100)) (-3965 (($ $) 66)) (-2725 (($ (-644 |#1|)) 130) (((-862) $) 57 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) NIL)) (-1379 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 133 (|has| |#1| (-1099)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1155 |#1|) (-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4416) (-15 -3519 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1762 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -3417 ((-2 (|:| |cycle?| (-112)) (|:| -1474 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -3134 ($ (-1 $))) (-15 -2120 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -2926 ((-1270) (-566) $)) (-15 -1901 ((-862) $)) (-15 -3605 ((-112)))) |%noBranch|) (-15 -2363 ($ $ (-566) $)) (-15 -3198 ($ (-1 |#1|))) (-15 -3198 ($ (-1 |#1| |#1|) |#1|)) (-15 -3254 ($ (-1 (-112) |#1|) $)) (-15 -3268 ($ (-1 (-112) |#1|) $)))) (-1215)) (T -1155))
-((-3519 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))) (-1762 (*1 *2 *3 *1) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1215)) (-5 *2 (-112)) (-5 *1 (-1155 *4)))) (-3417 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -1474 (-771)) (|:| |period| (-771)))) (-5 *1 (-1155 *4)) (-4 *4 (-1215)) (-5 *3 (-771)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1215)))) (-2120 (*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1215)))) (-2926 (*1 *2 *3 *1) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1155 *4)) (-4 *4 (-1099)) (-4 *4 (-1215)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1215)))) (-3605 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099)) (-4 *3 (-1215)))) (-2363 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1215)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))) (-3198 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))) (-3254 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))) (-3268 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))))
-(-13 (-674 |#1|) (-616 (-644 |#1|)) (-10 -8 (-6 -4416) (-15 -3519 ($ (-644 |#1|))) (IF (|has| |#1| (-1099)) (-15 -1762 ((-112) (-644 |#1|) $)) |%noBranch|) (-15 -3417 ((-2 (|:| |cycle?| (-112)) (|:| -1474 (-771)) (|:| |period| (-771))) (-771) $)) (-15 -3134 ($ (-1 $))) (-15 -2120 ($ |#1| $)) (IF (|has| |#1| (-1099)) (PROGN (-15 -2926 ((-1270) (-566) $)) (-15 -1901 ((-862) $)) (-15 -3605 ((-112)))) |%noBranch|) (-15 -2363 ($ $ (-566) $)) (-15 -3198 ($ (-1 |#1|))) (-15 -3198 ($ (-1 |#1| |#1|) |#1|)) (-15 -3254 ($ (-1 (-112) |#1|) $)) (-15 -3268 ($ (-1 (-112) |#1|) $))))
-((-3979 (((-112) $ $) 19)) (-4069 (($ $) 121)) (-2840 (($ $) 122)) (-4093 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-1956 (((-112) $ $) 119)) (-1933 (((-112) $ $ (-566)) 118)) (-4198 (($ (-566)) 128)) (-3993 (((-644 $) $ (-144)) 111) (((-644 $) $ (-141)) 110)) (-1305 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-850)))) (-3190 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4416))) (($ $) 89 (-12 (|has| (-144) (-850)) (|has| $ (-6 -4416))))) (-3370 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-850)))) (-2261 (((-112) $ (-771)) 8)) (-2858 (((-144) $ (-566) (-144)) 53 (|has| $ (-6 -4416))) (((-144) $ (-1232 (-566)) (-144)) 59 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1935 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1970 (($ $) 91 (|has| $ (-6 -4416)))) (-1921 (($ $) 101)) (-3604 (($ $ (-1232 (-566)) $) 115)) (-3806 (($ $) 79 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ (-144) $) 78 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4415)))) (-2553 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4415))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4415)))) (-3031 (((-144) $ (-566) (-144)) 54 (|has| $ (-6 -4416)))) (-2975 (((-144) $ (-566)) 52)) (-1976 (((-112) $ $) 120)) (-2388 (((-566) (-1 (-112) (-144)) $) 98) (((-566) (-144) $) 97 (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) 96 (|has| (-144) (-1099))) (((-566) $ $ (-566)) 114) (((-566) (-141) $ (-566)) 113)) (-1523 (((-644 (-144)) $) 31 (|has| $ (-6 -4415)))) (-2631 (($ (-771) (-144)) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3075 (($ $ $) 88 (|has| (-144) (-850)))) (-3848 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-850)))) (-2565 (((-644 (-144)) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3936 (($ $ $) 87 (|has| (-144) (-850)))) (-4360 (((-112) $ $ (-144)) 116)) (-2451 (((-771) $ $ (-144)) 117)) (-3023 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-1667 (($ $) 123)) (-2396 (($ $) 124)) (-1864 (((-112) $ (-771)) 10)) (-1945 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-1390 (((-1157) $) 22)) (-1510 (($ (-144) $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21)) (-3771 (((-144) $) 43 (|has| (-566) (-850)))) (-3567 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-3598 (($ $ (-144)) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-1948 (((-644 (-144)) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 (((-144) $ (-566) (-144)) 51) (((-144) $ (-566)) 50) (($ $ (-1232 (-566))) 64) (($ $ $) 103)) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-1958 (((-771) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4415))) (((-771) (-144) $) 29 (-12 (|has| (-144) (-1099)) (|has| $ (-6 -4415))))) (-3199 (($ $ $ (-566)) 92 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| (-144) (-614 (-538))))) (-2738 (($ (-644 (-144))) 71)) (-4007 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (($ (-144)) 112) (((-862) $) 18)) (-1479 (((-112) $ $) 23)) (-2610 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4415)))) (-2331 (((-1157) $) 132) (((-1157) $ (-112)) 131) (((-1270) (-822) $) 130) (((-1270) (-822) $ (-112)) 129)) (-2865 (((-112) $ $) 85 (|has| (-144) (-850)))) (-2844 (((-112) $ $) 84 (|has| (-144) (-850)))) (-2817 (((-112) $ $) 20)) (-2854 (((-112) $ $) 86 (|has| (-144) (-850)))) (-2833 (((-112) $ $) 83 (|has| (-144) (-850)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1156) (-140)) (T -1156))
-((-4198 (*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156)))))
-(-13 (-1143) (-1099) (-828) (-10 -8 (-15 -4198 ($ (-566)))))
-(((-34) . T) ((-102) . T) ((-613 (-862)) . T) ((-151 #0=(-144)) . T) ((-614 (-538)) |has| (-144) (-614 (-538))) ((-287 #1=(-566) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-375 #0#) . T) ((-491 #0#) . T) ((-604 #1# #0#) . T) ((-516 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))) ((-651 #0#) . T) ((-19 #0#) . T) ((-828) . T) ((-850) |has| (-144) (-850)) ((-1099) . T) ((-1143) . T) ((-1215) . T))
-((-3979 (((-112) $ $) NIL)) (-4069 (($ $) NIL)) (-2840 (($ $) NIL)) (-4093 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1956 (((-112) $ $) NIL)) (-1933 (((-112) $ $ (-566)) NIL)) (-4198 (($ (-566)) 8)) (-3993 (((-644 $) $ (-144)) NIL) (((-644 $) $ (-141)) NIL)) (-1305 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-850)))) (-3190 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-850))))) (-3370 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4416))) (((-144) $ (-1232 (-566)) (-144)) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1935 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3604 (($ $ (-1232 (-566)) $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-1752 (($ (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4415))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4415)))) (-3031 (((-144) $ (-566) (-144)) NIL (|has| $ (-6 -4416)))) (-2975 (((-144) $ (-566)) NIL)) (-1976 (((-112) $ $) NIL)) (-2388 (((-566) (-1 (-112) (-144)) $) NIL) (((-566) (-144) $) NIL (|has| (-144) (-1099))) (((-566) (-144) $ (-566)) NIL (|has| (-144) (-1099))) (((-566) $ $ (-566)) NIL) (((-566) (-141) $ (-566)) NIL)) (-1523 (((-644 (-144)) $) NIL (|has| $ (-6 -4415)))) (-2631 (($ (-771) (-144)) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| (-144) (-850)))) (-3848 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-850)))) (-2565 (((-644 (-144)) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| (-144) (-850)))) (-4360 (((-112) $ $ (-144)) NIL)) (-2451 (((-771) $ $ (-144)) NIL)) (-3023 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1667 (($ $) NIL)) (-2396 (($ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1945 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1390 (((-1157) $) NIL)) (-1510 (($ (-144) $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-144) $) NIL (|has| (-566) (-850)))) (-3567 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3598 (($ $ (-144)) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099)))) (($ $ (-644 (-144)) (-644 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-1948 (((-644 (-144)) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 (((-144) $ (-566) (-144)) NIL) (((-144) $ (-566)) NIL) (($ $ (-1232 (-566))) NIL) (($ $ $) NIL)) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1958 (((-771) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415))) (((-771) (-144) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-144) (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-144) (-614 (-538))))) (-2738 (($ (-644 (-144))) NIL)) (-4007 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (($ (-144)) NIL) (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2610 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4415)))) (-2331 (((-1157) $) 19) (((-1157) $ (-112)) 21) (((-1270) (-822) $) 22) (((-1270) (-822) $ (-112)) 23)) (-2865 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2844 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (|has| (-144) (-850)))) (-2833 (((-112) $ $) NIL (|has| (-144) (-850)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1157) (-1156)) (T -1157))
-NIL
-(-1156)
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL)) (-2506 (((-1270) $ (-1157) (-1157)) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-1157) |#1|) NIL)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#1| "failed") (-1157) $) NIL)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#1| "failed") (-1157) $) NIL)) (-1752 (($ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-1157) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-1157)) NIL)) (-1523 (((-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-1157) $) NIL (|has| (-1157) (-850)))) (-2565 (((-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-1157) $) NIL (|has| (-1157) (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-2838 (((-644 (-1157)) $) NIL)) (-3932 (((-112) (-1157) $) NIL)) (-2668 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL)) (-4063 (((-644 (-1157)) $) NIL)) (-3054 (((-112) (-1157) $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-3771 ((|#1| $) NIL (|has| (-1157) (-850)))) (-3567 (((-3 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) "failed") (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ $ (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL (-12 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-310 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-1157)) NIL) ((|#1| $ (-1157) |#1|) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-613 (-862))) (|has| |#1| (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 (-1157)) (|:| -2484 |#1|)) (-1099)) (|has| |#1| (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1158 |#1|) (-13 (-1191 (-1157) |#1|) (-10 -7 (-6 -4415))) (-1099)) (T -1158))
-NIL
-(-13 (-1191 (-1157) |#1|) (-10 -7 (-6 -4415)))
-((-3585 (((-1155 |#1|) (-1155 |#1|)) 85)) (-2313 (((-3 (-1155 |#1|) "failed") (-1155 |#1|)) 42)) (-3927 (((-1155 |#1|) (-409 (-566)) (-1155 |#1|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3136 (((-1155 |#1|) |#1| (-1155 |#1|)) 142 (|has| |#1| (-365)))) (-3783 (((-1155 |#1|) (-1155 |#1|)) 100)) (-3057 (((-1155 (-566)) (-566)) 64)) (-3527 (((-1155 |#1|) (-1155 (-1155 |#1|))) 119 (|has| |#1| (-38 (-409 (-566)))))) (-2019 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 105)) (-3562 (((-1155 |#1|) |#1| (-566)) 54)) (-2700 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 67)) (-1869 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 139 (|has| |#1| (-365)))) (-1313 (((-1155 |#1|) |#1| (-1 (-1155 |#1|))) 118 (|has| |#1| (-38 (-409 (-566)))))) (-3116 (((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|))) 140 (|has| |#1| (-365)))) (-1462 (((-1155 |#1|) (-1155 |#1|)) 99)) (-3626 (((-1155 |#1|) (-1155 |#1|)) 83)) (-1522 (((-1155 |#1|) (-566) (-566) (-1155 |#1|)) 106)) (-1879 (((-1155 |#1|) |#1| (-1155 |#1|)) 115 (|has| |#1| (-38 (-409 (-566)))))) (-2384 (((-1155 (-566)) (-566)) 63)) (-2758 (((-1155 |#1|) |#1|) 66)) (-2394 (((-1155 |#1|) (-1155 |#1|) (-566) (-566)) 102)) (-1556 (((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|)) 73)) (-3967 (((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|)) 40)) (-3981 (((-1155 |#1|) (-1155 |#1|)) 101)) (-1754 (((-1155 |#1|) (-1155 |#1|) |#1|) 78)) (-1367 (((-1155 |#1|) (-1155 |#1|)) 69)) (-2849 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 79)) (-2725 (((-1155 |#1|) |#1|) 74)) (-1506 (((-1155 |#1|) (-1155 (-1155 |#1|))) 90)) (-2916 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41)) (-2905 (((-1155 |#1|) (-1155 |#1|)) 21) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 23)) (-2897 (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 17)) (* (((-1155 |#1|) (-1155 |#1|) |#1|) 29) (((-1155 |#1|) |#1| (-1155 |#1|)) 26) (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 27)))
-(((-1159 |#1|) (-10 -7 (-15 -2897 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2905 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2905 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -3967 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -2916 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2313 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -3562 ((-1155 |#1|) |#1| (-566))) (-15 -2384 ((-1155 (-566)) (-566))) (-15 -3057 ((-1155 (-566)) (-566))) (-15 -2758 ((-1155 |#1|) |#1|)) (-15 -2700 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1367 ((-1155 |#1|) (-1155 |#1|))) (-15 -1556 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -2725 ((-1155 |#1|) |#1|)) (-15 -1754 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2849 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3626 ((-1155 |#1|) (-1155 |#1|))) (-15 -3585 ((-1155 |#1|) (-1155 |#1|))) (-15 -1506 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -1462 ((-1155 |#1|) (-1155 |#1|))) (-15 -3783 ((-1155 |#1|) (-1155 |#1|))) (-15 -3981 ((-1155 |#1|) (-1155 |#1|))) (-15 -2394 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -2019 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -1522 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -1313 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -3527 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3927 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1869 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3116 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -3136 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|)) (-1049)) (T -1159))
-((-3136 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3116 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365)) (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)))) (-1869 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3927 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049)) (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)))) (-1313 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-1879 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1522 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2019 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-2394 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1462 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1506 (*1 *2 *3) (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)) (-4 *4 (-1049)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3626 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2849 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-1754 (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2725 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-1556 (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049)) (-5 *1 (-1159 *4)))) (-1367 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2700 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2758 (*1 *2 *3) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-3057 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-2384 (*1 *2 *3) (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049)) (-5 *3 (-566)))) (-3562 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))) (-2313 (*1 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2916 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-3967 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2905 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2905 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))) (-2897 (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))))
-(-10 -7 (-15 -2897 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2905 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2905 ((-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 * ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 * ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -3967 ((-3 (-1155 |#1|) "failed") (-1155 |#1|) (-1155 |#1|))) (-15 -2916 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2313 ((-3 (-1155 |#1|) "failed") (-1155 |#1|))) (-15 -3562 ((-1155 |#1|) |#1| (-566))) (-15 -2384 ((-1155 (-566)) (-566))) (-15 -3057 ((-1155 (-566)) (-566))) (-15 -2758 ((-1155 |#1|) |#1|)) (-15 -2700 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -1367 ((-1155 |#1|) (-1155 |#1|))) (-15 -1556 ((-1155 |#1|) (-1 |#1| (-566)) (-1155 |#1|))) (-15 -2725 ((-1155 |#1|) |#1|)) (-15 -1754 ((-1155 |#1|) (-1155 |#1|) |#1|)) (-15 -2849 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3626 ((-1155 |#1|) (-1155 |#1|))) (-15 -3585 ((-1155 |#1|) (-1155 |#1|))) (-15 -1506 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -1462 ((-1155 |#1|) (-1155 |#1|))) (-15 -3783 ((-1155 |#1|) (-1155 |#1|))) (-15 -3981 ((-1155 |#1|) (-1155 |#1|))) (-15 -2394 ((-1155 |#1|) (-1155 |#1|) (-566) (-566))) (-15 -2019 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (-15 -1522 ((-1155 |#1|) (-566) (-566) (-1155 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ((-1155 |#1|) |#1| (-1155 |#1|))) (-15 -1313 ((-1155 |#1|) |#1| (-1 (-1155 |#1|)))) (-15 -3527 ((-1155 |#1|) (-1155 (-1155 |#1|)))) (-15 -3927 ((-1155 |#1|) (-409 (-566)) (-1155 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -1869 ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3116 ((-1155 |#1|) (-1 |#1| (-566)) |#1| (-1 (-1155 |#1|)))) (-15 -3136 ((-1155 |#1|) |#1| (-1155 |#1|)))) |%noBranch|))
-((-3622 (((-1155 |#1|) (-1155 |#1|)) 60)) (-3474 (((-1155 |#1|) (-1155 |#1|)) 42)) (-3601 (((-1155 |#1|) (-1155 |#1|)) 56)) (-3449 (((-1155 |#1|) (-1155 |#1|)) 38)) (-3648 (((-1155 |#1|) (-1155 |#1|)) 63)) (-3500 (((-1155 |#1|) (-1155 |#1|)) 45)) (-1565 (((-1155 |#1|) (-1155 |#1|)) 34)) (-1535 (((-1155 |#1|) (-1155 |#1|)) 29)) (-3658 (((-1155 |#1|) (-1155 |#1|)) 64)) (-3515 (((-1155 |#1|) (-1155 |#1|)) 46)) (-3635 (((-1155 |#1|) (-1155 |#1|)) 61)) (-3488 (((-1155 |#1|) (-1155 |#1|)) 43)) (-3612 (((-1155 |#1|) (-1155 |#1|)) 58)) (-3461 (((-1155 |#1|) (-1155 |#1|)) 40)) (-3696 (((-1155 |#1|) (-1155 |#1|)) 68)) (-3553 (((-1155 |#1|) (-1155 |#1|)) 50)) (-3670 (((-1155 |#1|) (-1155 |#1|)) 66)) (-3528 (((-1155 |#1|) (-1155 |#1|)) 48)) (-3719 (((-1155 |#1|) (-1155 |#1|)) 71)) (-3577 (((-1155 |#1|) (-1155 |#1|)) 53)) (-3076 (((-1155 |#1|) (-1155 |#1|)) 72)) (-3589 (((-1155 |#1|) (-1155 |#1|)) 54)) (-3705 (((-1155 |#1|) (-1155 |#1|)) 70)) (-3566 (((-1155 |#1|) (-1155 |#1|)) 52)) (-3682 (((-1155 |#1|) (-1155 |#1|)) 69)) (-3541 (((-1155 |#1|) (-1155 |#1|)) 51)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 36)))
-(((-1160 |#1|) (-10 -7 (-15 -1535 ((-1155 |#1|) (-1155 |#1|))) (-15 -1565 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3449 ((-1155 |#1|) (-1155 |#1|))) (-15 -3461 ((-1155 |#1|) (-1155 |#1|))) (-15 -3474 ((-1155 |#1|) (-1155 |#1|))) (-15 -3488 ((-1155 |#1|) (-1155 |#1|))) (-15 -3500 ((-1155 |#1|) (-1155 |#1|))) (-15 -3515 ((-1155 |#1|) (-1155 |#1|))) (-15 -3528 ((-1155 |#1|) (-1155 |#1|))) (-15 -3541 ((-1155 |#1|) (-1155 |#1|))) (-15 -3553 ((-1155 |#1|) (-1155 |#1|))) (-15 -3566 ((-1155 |#1|) (-1155 |#1|))) (-15 -3577 ((-1155 |#1|) (-1155 |#1|))) (-15 -3589 ((-1155 |#1|) (-1155 |#1|))) (-15 -3601 ((-1155 |#1|) (-1155 |#1|))) (-15 -3612 ((-1155 |#1|) (-1155 |#1|))) (-15 -3622 ((-1155 |#1|) (-1155 |#1|))) (-15 -3635 ((-1155 |#1|) (-1155 |#1|))) (-15 -3648 ((-1155 |#1|) (-1155 |#1|))) (-15 -3658 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3682 ((-1155 |#1|) (-1155 |#1|))) (-15 -3696 ((-1155 |#1|) (-1155 |#1|))) (-15 -3705 ((-1155 |#1|) (-1155 |#1|))) (-15 -3719 ((-1155 |#1|) (-1155 |#1|))) (-15 -3076 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1160))
-((-3076 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3682 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3658 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3553 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3541 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-1565 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1160 *3)))))
-(-10 -7 (-15 -1535 ((-1155 |#1|) (-1155 |#1|))) (-15 -1565 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -3449 ((-1155 |#1|) (-1155 |#1|))) (-15 -3461 ((-1155 |#1|) (-1155 |#1|))) (-15 -3474 ((-1155 |#1|) (-1155 |#1|))) (-15 -3488 ((-1155 |#1|) (-1155 |#1|))) (-15 -3500 ((-1155 |#1|) (-1155 |#1|))) (-15 -3515 ((-1155 |#1|) (-1155 |#1|))) (-15 -3528 ((-1155 |#1|) (-1155 |#1|))) (-15 -3541 ((-1155 |#1|) (-1155 |#1|))) (-15 -3553 ((-1155 |#1|) (-1155 |#1|))) (-15 -3566 ((-1155 |#1|) (-1155 |#1|))) (-15 -3577 ((-1155 |#1|) (-1155 |#1|))) (-15 -3589 ((-1155 |#1|) (-1155 |#1|))) (-15 -3601 ((-1155 |#1|) (-1155 |#1|))) (-15 -3612 ((-1155 |#1|) (-1155 |#1|))) (-15 -3622 ((-1155 |#1|) (-1155 |#1|))) (-15 -3635 ((-1155 |#1|) (-1155 |#1|))) (-15 -3648 ((-1155 |#1|) (-1155 |#1|))) (-15 -3658 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3682 ((-1155 |#1|) (-1155 |#1|))) (-15 -3696 ((-1155 |#1|) (-1155 |#1|))) (-15 -3705 ((-1155 |#1|) (-1155 |#1|))) (-15 -3719 ((-1155 |#1|) (-1155 |#1|))) (-15 -3076 ((-1155 |#1|) (-1155 |#1|))))
-((-3622 (((-1155 |#1|) (-1155 |#1|)) 108)) (-3474 (((-1155 |#1|) (-1155 |#1|)) 65)) (-2749 (((-2 (|:| -3601 (-1155 |#1|)) (|:| -3612 (-1155 |#1|))) (-1155 |#1|)) 104)) (-3601 (((-1155 |#1|) (-1155 |#1|)) 105)) (-2621 (((-2 (|:| -3449 (-1155 |#1|)) (|:| -3461 (-1155 |#1|))) (-1155 |#1|)) 54)) (-3449 (((-1155 |#1|) (-1155 |#1|)) 55)) (-3648 (((-1155 |#1|) (-1155 |#1|)) 110)) (-3500 (((-1155 |#1|) (-1155 |#1|)) 72)) (-1565 (((-1155 |#1|) (-1155 |#1|)) 40)) (-1535 (((-1155 |#1|) (-1155 |#1|)) 37)) (-3658 (((-1155 |#1|) (-1155 |#1|)) 111)) (-3515 (((-1155 |#1|) (-1155 |#1|)) 73)) (-3635 (((-1155 |#1|) (-1155 |#1|)) 109)) (-3488 (((-1155 |#1|) (-1155 |#1|)) 68)) (-3612 (((-1155 |#1|) (-1155 |#1|)) 106)) (-3461 (((-1155 |#1|) (-1155 |#1|)) 56)) (-3696 (((-1155 |#1|) (-1155 |#1|)) 119)) (-3553 (((-1155 |#1|) (-1155 |#1|)) 94)) (-3670 (((-1155 |#1|) (-1155 |#1|)) 113)) (-3528 (((-1155 |#1|) (-1155 |#1|)) 90)) (-3719 (((-1155 |#1|) (-1155 |#1|)) 123)) (-3577 (((-1155 |#1|) (-1155 |#1|)) 98)) (-3076 (((-1155 |#1|) (-1155 |#1|)) 125)) (-3589 (((-1155 |#1|) (-1155 |#1|)) 100)) (-3705 (((-1155 |#1|) (-1155 |#1|)) 121)) (-3566 (((-1155 |#1|) (-1155 |#1|)) 96)) (-3682 (((-1155 |#1|) (-1155 |#1|)) 115)) (-3541 (((-1155 |#1|) (-1155 |#1|)) 92)) (** (((-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) 41)))
-(((-1161 |#1|) (-10 -7 (-15 -1535 ((-1155 |#1|) (-1155 |#1|))) (-15 -1565 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2621 ((-2 (|:| -3449 (-1155 |#1|)) (|:| -3461 (-1155 |#1|))) (-1155 |#1|))) (-15 -3449 ((-1155 |#1|) (-1155 |#1|))) (-15 -3461 ((-1155 |#1|) (-1155 |#1|))) (-15 -3474 ((-1155 |#1|) (-1155 |#1|))) (-15 -3488 ((-1155 |#1|) (-1155 |#1|))) (-15 -3500 ((-1155 |#1|) (-1155 |#1|))) (-15 -3515 ((-1155 |#1|) (-1155 |#1|))) (-15 -3528 ((-1155 |#1|) (-1155 |#1|))) (-15 -3541 ((-1155 |#1|) (-1155 |#1|))) (-15 -3553 ((-1155 |#1|) (-1155 |#1|))) (-15 -3566 ((-1155 |#1|) (-1155 |#1|))) (-15 -3577 ((-1155 |#1|) (-1155 |#1|))) (-15 -3589 ((-1155 |#1|) (-1155 |#1|))) (-15 -2749 ((-2 (|:| -3601 (-1155 |#1|)) (|:| -3612 (-1155 |#1|))) (-1155 |#1|))) (-15 -3601 ((-1155 |#1|) (-1155 |#1|))) (-15 -3612 ((-1155 |#1|) (-1155 |#1|))) (-15 -3622 ((-1155 |#1|) (-1155 |#1|))) (-15 -3635 ((-1155 |#1|) (-1155 |#1|))) (-15 -3648 ((-1155 |#1|) (-1155 |#1|))) (-15 -3658 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3682 ((-1155 |#1|) (-1155 |#1|))) (-15 -3696 ((-1155 |#1|) (-1155 |#1|))) (-15 -3705 ((-1155 |#1|) (-1155 |#1|))) (-15 -3719 ((-1155 |#1|) (-1155 |#1|))) (-15 -3076 ((-1155 |#1|) (-1155 |#1|)))) (-38 (-409 (-566)))) (T -1161))
-((-3076 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3705 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3682 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3670 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3658 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3648 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3635 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3612 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2749 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -3601 (-1155 *4)) (|:| -3612 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3577 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3566 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3553 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3541 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3528 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3515 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3500 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3474 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-3449 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-2621 (*1 *2 *3) (-12 (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-2 (|:| -3449 (-1155 *4)) (|:| -3461 (-1155 *4)))) (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-1565 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))) (-1535 (*1 *2 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1161 *3)))))
-(-10 -7 (-15 -1535 ((-1155 |#1|) (-1155 |#1|))) (-15 -1565 ((-1155 |#1|) (-1155 |#1|))) (-15 ** ((-1155 |#1|) (-1155 |#1|) (-1155 |#1|))) (-15 -2621 ((-2 (|:| -3449 (-1155 |#1|)) (|:| -3461 (-1155 |#1|))) (-1155 |#1|))) (-15 -3449 ((-1155 |#1|) (-1155 |#1|))) (-15 -3461 ((-1155 |#1|) (-1155 |#1|))) (-15 -3474 ((-1155 |#1|) (-1155 |#1|))) (-15 -3488 ((-1155 |#1|) (-1155 |#1|))) (-15 -3500 ((-1155 |#1|) (-1155 |#1|))) (-15 -3515 ((-1155 |#1|) (-1155 |#1|))) (-15 -3528 ((-1155 |#1|) (-1155 |#1|))) (-15 -3541 ((-1155 |#1|) (-1155 |#1|))) (-15 -3553 ((-1155 |#1|) (-1155 |#1|))) (-15 -3566 ((-1155 |#1|) (-1155 |#1|))) (-15 -3577 ((-1155 |#1|) (-1155 |#1|))) (-15 -3589 ((-1155 |#1|) (-1155 |#1|))) (-15 -2749 ((-2 (|:| -3601 (-1155 |#1|)) (|:| -3612 (-1155 |#1|))) (-1155 |#1|))) (-15 -3601 ((-1155 |#1|) (-1155 |#1|))) (-15 -3612 ((-1155 |#1|) (-1155 |#1|))) (-15 -3622 ((-1155 |#1|) (-1155 |#1|))) (-15 -3635 ((-1155 |#1|) (-1155 |#1|))) (-15 -3648 ((-1155 |#1|) (-1155 |#1|))) (-15 -3658 ((-1155 |#1|) (-1155 |#1|))) (-15 -3670 ((-1155 |#1|) (-1155 |#1|))) (-15 -3682 ((-1155 |#1|) (-1155 |#1|))) (-15 -3696 ((-1155 |#1|) (-1155 |#1|))) (-15 -3705 ((-1155 |#1|) (-1155 |#1|))) (-15 -3719 ((-1155 |#1|) (-1155 |#1|))) (-15 -3076 ((-1155 |#1|) (-1155 |#1|))))
-((-1310 (((-958 |#2|) |#2| |#2|) 51)) (-1520 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308)))))
-(((-1162 |#1| |#2|) (-10 -7 (-15 -1310 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -1520 (|#2| |#2| |#1|)) |%noBranch|)) (-558) (-1241 |#1|)) (T -1162))
-((-1520 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2)) (-4 *2 (-1241 *3)))) (-1310 (*1 *2 *3 *3) (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -1310 ((-958 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -1520 (|#2| |#2| |#1|)) |%noBranch|))
-((-3979 (((-112) $ $) NIL)) (-3162 (($ $ (-644 (-771))) 81)) (-4352 (($) 33)) (-3392 (($ $) 51)) (-3951 (((-644 $) $) 60)) (-4364 (((-112) $) 19)) (-3253 (((-644 (-943 |#2|)) $) 88)) (-4212 (($ $) 82)) (-2230 (((-771) $) 47)) (-2631 (($) 32)) (-2537 (($ $ (-644 (-771)) (-943 |#2|)) 74) (($ $ (-644 (-771)) (-771)) 75) (($ $ (-771) (-943 |#2|)) 77)) (-3848 (($ $ $) 57) (($ (-644 $)) 59)) (-1445 (((-771) $) 89)) (-1396 (((-112) $) 15)) (-1390 (((-1157) $) NIL)) (-3486 (((-112) $) 22)) (-1944 (((-1119) $) NIL)) (-2050 (((-171) $) 87)) (-1472 (((-943 |#2|) $) 83)) (-3409 (((-771) $) 84)) (-1787 (((-112) $) 86)) (-2856 (($ $ (-644 (-771)) (-171)) 80)) (-2341 (($ $) 52)) (-2725 (((-862) $) 100)) (-3609 (($ $ (-644 (-771)) (-112)) 79)) (-4202 (((-644 $) $) 11)) (-1856 (($ $ (-771)) 46)) (-3084 (($ $) 43)) (-1479 (((-112) $ $) NIL)) (-3939 (($ $ $ (-943 |#2|) (-771)) 70)) (-1325 (($ $ (-943 |#2|)) 69)) (-1490 (($ $ (-644 (-771)) (-943 |#2|)) 66) (($ $ (-644 (-771)) (-771)) 72) (((-771) $ (-943 |#2|)) 73)) (-2817 (((-112) $ $) 94)))
-(((-1163 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -1396 ((-112) $)) (-15 -4364 ((-112) $)) (-15 -3486 ((-112) $)) (-15 -2631 ($)) (-15 -4352 ($)) (-15 -3084 ($ $)) (-15 -1856 ($ $ (-771))) (-15 -4202 ((-644 $) $)) (-15 -2230 ((-771) $)) (-15 -3392 ($ $)) (-15 -2341 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ (-644 $))) (-15 -3951 ((-644 $) $)) (-15 -1490 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -1325 ($ $ (-943 |#2|))) (-15 -3939 ($ $ $ (-943 |#2|) (-771))) (-15 -2537 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -1490 ($ $ (-644 (-771)) (-771))) (-15 -2537 ($ $ (-644 (-771)) (-771))) (-15 -1490 ((-771) $ (-943 |#2|))) (-15 -2537 ($ $ (-771) (-943 |#2|))) (-15 -3609 ($ $ (-644 (-771)) (-112))) (-15 -2856 ($ $ (-644 (-771)) (-171))) (-15 -3162 ($ $ (-644 (-771)))) (-15 -1472 ((-943 |#2|) $)) (-15 -3409 ((-771) $)) (-15 -1787 ((-112) $)) (-15 -2050 ((-171) $)) (-15 -1445 ((-771) $)) (-15 -4212 ($ $)) (-15 -3253 ((-644 (-943 |#2|)) $)))) (-921) (-1049)) (T -1163))
-((-1396 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2631 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-4352 (*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3084 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-1856 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2230 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3392 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-2341 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3848 (*1 *1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3848 (*1 *1 *2) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3951 (*1 *2 *1) (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-1325 (*1 *1 *1 *2) (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)))) (-3939 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-2537 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-1490 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-2537 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-1490 (*1 *2 *1 *3) (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-2537 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))) (-3609 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)) (-4 *5 (-1049)))) (-3162 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-2050 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921)) (-4 *4 (-1049)))))
-(-13 (-1099) (-10 -8 (-15 -1396 ((-112) $)) (-15 -4364 ((-112) $)) (-15 -3486 ((-112) $)) (-15 -2631 ($)) (-15 -4352 ($)) (-15 -3084 ($ $)) (-15 -1856 ($ $ (-771))) (-15 -4202 ((-644 $) $)) (-15 -2230 ((-771) $)) (-15 -3392 ($ $)) (-15 -2341 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ (-644 $))) (-15 -3951 ((-644 $) $)) (-15 -1490 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -1325 ($ $ (-943 |#2|))) (-15 -3939 ($ $ $ (-943 |#2|) (-771))) (-15 -2537 ($ $ (-644 (-771)) (-943 |#2|))) (-15 -1490 ($ $ (-644 (-771)) (-771))) (-15 -2537 ($ $ (-644 (-771)) (-771))) (-15 -1490 ((-771) $ (-943 |#2|))) (-15 -2537 ($ $ (-771) (-943 |#2|))) (-15 -3609 ($ $ (-644 (-771)) (-112))) (-15 -2856 ($ $ (-644 (-771)) (-171))) (-15 -3162 ($ $ (-644 (-771)))) (-15 -1472 ((-943 |#2|) $)) (-15 -3409 ((-771) $)) (-15 -1787 ((-112) $)) (-15 -2050 ((-171) $)) (-15 -1445 ((-771) $)) (-15 -4212 ($ $)) (-15 -3253 ((-644 (-943 |#2|)) $))))
-((-3979 (((-112) $ $) NIL)) (-3516 ((|#2| $) 11)) (-3502 ((|#1| $) 10)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2738 (($ |#1| |#2|) 9)) (-2725 (((-862) $) 16)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1164 |#1| |#2|) (-13 (-1099) (-10 -8 (-15 -2738 ($ |#1| |#2|)) (-15 -3502 (|#1| $)) (-15 -3516 (|#2| $)))) (-1099) (-1099)) (T -1164))
-((-2738 (*1 *1 *2 *3) (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-3502 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099)))) (-3516 (*1 *2 *1) (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099)))))
-(-13 (-1099) (-10 -8 (-15 -2738 ($ |#1| |#2|)) (-15 -3502 (|#1| $)) (-15 -3516 (|#2| $))))
-((-3979 (((-112) $ $) NIL)) (-3463 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1165) (-13 (-1082) (-10 -8 (-15 -3463 ((-1134) $))))) (T -1165))
-((-3463 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165)))))
-(-13 (-1082) (-10 -8 (-15 -3463 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 11)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1780 (($ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3286 (((-112) $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1807 (($ $ (-566)) NIL) (($ $ (-566) (-566)) 75)) (-3564 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-3027 (((-1173 |#1| |#2| |#3|) $) 42)) (-1442 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 32)) (-4231 (((-1173 |#1| |#2| |#3|) $) 33)) (-3622 (($ $) 116 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 92 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) 112 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 88 (|has| |#1| (-38 (-409 (-566)))))) (-1859 (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3040 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-3648 (($ $) 120 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 96 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-3343 (((-1173 |#1| |#2| |#3|) $) 140) (((-1175) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-4031 (($ $) 37) (($ (-566) $) 38)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-1173 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1265 (-1173 |#1| |#2| |#3|)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-2313 (((-3 $ "failed") $) 54)) (-3447 (((-409 (-952 |#1|)) $ (-566)) 74 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 76 (|has| |#1| (-558)))) (-3424 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-3421 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2039 (((-112) $) 28)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-3077 (((-566) $) NIL) (((-566) $ (-566)) 26)) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL (|has| |#1| (-365)))) (-2691 (((-1173 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3869 (((-3 $ "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-2307 (((-112) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2248 (($ $ (-921)) NIL)) (-1912 (($ (-1 |#1| (-566)) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-566)) 19) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-3075 (($ $ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3936 (($ $ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-1565 (($ $) 81 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4244 (($ (-566) (-1173 |#1| |#2| |#3|)) 36)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1879 (($ $) 79 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200))))) (($ $ (-1261 |#2|)) 80 (|has| |#1| (-38 (-409 (-566)))))) (-1342 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2311 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-566)) 158)) (-3967 (((-3 $ "failed") $ $) 55 (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1535 (($ $) 82 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-516 (-1175) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1173 |#1| |#2| |#3|)) (-644 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-310 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-566)) NIL) (($ $ $) 61 (|has| (-566) (-1111))) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-287 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1261 |#2|)) 57) (($ $ (-771)) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 56 (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3233 (($ $) NIL (|has| |#1| (-365)))) (-2702 (((-1173 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3838 (((-566) $) 43)) (-3658 (($ $) 122 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 98 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 118 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 94 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 114 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 90 (|has| |#1| (-38 (-409 (-566)))))) (-2150 (((-538) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3965 (($ $) NIL)) (-2725 (((-862) $) 162) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1173 |#1| |#2| |#3|)) 30) (($ (-1261 |#2|)) 25) (($ (-1175)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-3623 ((|#1| $ (-566)) 77)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) 12)) (-2119 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 104 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3670 (($ $) 124 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 100 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 108 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 110 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 106 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 126 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 102 (|has| |#1| (-38 (-409 (-566)))))) (-2274 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3200 (($) 21 T CONST)) (-3214 (($) 16 T CONST)) (-1316 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2865 (((-112) $ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2844 (((-112) $ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2833 (((-112) $ $) NIL (-2676 (-12 (|has| (-1173 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 23)) (** (($ $ (-921)) NIL) (($ $ (-771)) 60) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 137 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1173 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1173 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1166 |#1| |#2| |#3|) (-13 (-1227 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1166))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(-13 (-1227 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|)))
-((-4134 ((|#2| |#2| (-1091 |#2|)) 26) ((|#2| |#2| (-1175)) 28)))
-(((-1167 |#1| |#2|) (-10 -7 (-15 -4134 (|#2| |#2| (-1175))) (-15 -4134 (|#2| |#2| (-1091 |#2|)))) (-13 (-558) (-1038 (-566)) (-639 (-566))) (-13 (-432 |#1|) (-160) (-27) (-1200))) (T -1167))
-((-4134 (*1 *2 *2 *3) (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1200))) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)))) (-4134 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1200))))))
-(-10 -7 (-15 -4134 (|#2| |#2| (-1175))) (-15 -4134 (|#2| |#2| (-1091 |#2|))))
-((-4134 (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))) 31) (((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|))) 44) (((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175)) 33) (((-409 (-952 |#1|)) (-952 |#1|) (-1175)) 36)))
-(((-1168 |#1|) (-10 -7 (-15 -4134 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -4134 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -4134 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -4134 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|)))))) (-13 (-558) (-1038 (-566)))) (T -1168))
-((-4134 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5))) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1168 *5)))) (-4134 (*1 *2 *3 *4) (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3)) (-5 *1 (-1168 *5)))) (-4134 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-409 (-952 *5))))) (-4134 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5)))))
-(-10 -7 (-15 -4134 ((-409 (-952 |#1|)) (-952 |#1|) (-1175))) (-15 -4134 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1175))) (-15 -4134 ((-409 (-952 |#1|)) (-952 |#1|) (-1091 (-952 |#1|)))) (-15 -4134 ((-3 (-409 (-952 |#1|)) (-317 |#1|)) (-409 (-952 |#1|)) (-1091 (-409 (-952 |#1|))))))
-((-2101 (((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)) 13)))
-(((-1169 |#1| |#2|) (-10 -7 (-15 -2101 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|)))) (-1049) (-1049)) (T -1169))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6)))))
-(-10 -7 (-15 -2101 ((-1171 |#2|) (-1 |#2| |#1|) (-1171 |#1|))))
-((-2555 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 51)) (-4018 (((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))) 52)))
-(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -2555 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|))))) (-793) (-850) (-454) (-949 |#3| |#1| |#2|)) (T -1170))
-((-2555 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))) (-4018 (*1 *2 *3) (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454)) (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7)))) (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7))))))
-(-10 -7 (-15 -4018 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))) (-15 -2555 ((-420 (-1171 (-409 |#4|))) (-1171 (-409 |#4|)))))
-((-3979 (((-112) $ $) 171)) (-3545 (((-112) $) 43)) (-2729 (((-1265 |#1|) $ (-771)) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2437 (($ (-1171 |#1|)) NIL)) (-3983 (((-1171 $) $ (-1081)) 82) (((-1171 |#1|) $) 71)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) 164 (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3921 (($ $ $) 158 (|has| |#1| (-558)))) (-4350 (((-420 (-1171 $)) (-1171 $)) 95 (|has| |#1| (-909)))) (-2885 (($ $) NIL (|has| |#1| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 115 (|has| |#1| (-909)))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-2166 (($ $ (-771)) 61)) (-1867 (($ $ (-771)) 63)) (-3951 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-454)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#1| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-3343 ((|#1| $) NIL) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-1081) $) NIL)) (-2994 (($ $ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) 80)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) NIL) (((-689 |#1|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-1438 (($ $ $) 131)) (-2297 (($ $ $) NIL (|has| |#1| (-558)))) (-2772 (((-2 (|:| -1702 |#1|) (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-558)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1520 (($ $) 165 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-771) $) 69)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-2799 (((-862) $ (-862)) 148)) (-3077 (((-771) $ $) NIL (|has| |#1| (-558)))) (-3842 (((-112) $) 48)) (-2436 (((-771) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| |#1| (-1150)))) (-4157 (($ (-1171 |#1|) (-1081)) 73) (($ (-1171 $) (-1081)) 89)) (-2248 (($ $ (-771)) 51)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) 87) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-1081)) NIL) (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 153)) (-4090 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1336 (($ (-1 (-771) (-771)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1649 (((-1171 |#1|) $) NIL)) (-1742 (((-3 (-1081) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) 76)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) NIL (|has| |#1| (-454)))) (-1390 (((-1157) $) NIL)) (-1481 (((-2 (|:| -2383 $) (|:| -3033 $)) $ (-771)) 60)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-1081)) (|:| -3428 (-771))) "failed") $) NIL)) (-1879 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1342 (($) NIL (|has| |#1| (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) 50)) (-4307 ((|#1| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 103 (|has| |#1| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-454))) (($ $ $) 167 (|has| |#1| (-454)))) (-3437 (($ $ (-771) |#1| $) 123)) (-2254 (((-420 (-1171 $)) (-1171 $)) 101 (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 100 (|has| |#1| (-909)))) (-4018 (((-420 $) $) 108 (|has| |#1| (-909)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#1|) NIL) (($ $ (-644 (-1081)) (-644 |#1|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) NIL (|has| |#1| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#1| (-558)))) (-4374 (((-3 $ "failed") $ (-771)) 54)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 172 (|has| |#1| (-365)))) (-2061 (($ $ (-1081)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-3009 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3838 (((-771) $) 78) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) 162 (|has| |#1| (-454))) (($ $ (-1081)) NIL (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-909))))) (-2035 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#1| (-558)))) (-2725 (((-862) $) 149) (($ (-566)) NIL) (($ |#1|) 77) (($ (-1081)) NIL) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) 41 (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) 17 T CONST)) (-3214 (($) 19 T CONST)) (-1316 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2817 (((-112) $ $) 120)) (-2916 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 90)) (** (($ $ (-921)) 14) (($ $ (-771)) 12)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 39) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
-(((-1171 |#1|) (-13 (-1241 |#1|) (-10 -8 (-15 -2799 ((-862) $ (-862))) (-15 -3437 ($ $ (-771) |#1| $)))) (-1049)) (T -1171))
-((-2799 (*1 *2 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))) (-3437 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))))
-(-13 (-1241 |#1|) (-10 -8 (-15 -2799 ((-862) $ (-862))) (-15 -3437 ($ $ (-771) |#1| $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 11)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-3564 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3648 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 36)) (-3343 (((-1166 |#1| |#2| |#3|) $) NIL) (((-1173 |#1| |#2| |#3|) $) NIL)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1482 (((-409 (-566)) $) 59)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-4256 (($ (-409 (-566)) (-1166 |#1| |#2| |#3|)) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-409 (-566))) 20) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1633 (((-1166 |#1| |#2| |#3|) $) 41)) (-2640 (((-3 (-1166 |#1| |#2| |#3|) "failed") $) NIL)) (-4244 (((-1166 |#1| |#2| |#3|) $) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1879 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200))))) (($ $ (-1261 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-409 (-566))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1535 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1261 |#2|)) 38)) (-3838 (((-409 (-566)) $) NIL)) (-3658 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) NIL)) (-2725 (((-862) $) 62) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1166 |#1| |#2| |#3|)) 30) (($ (-1173 |#1| |#2| |#3|)) 31) (($ (-1261 |#2|)) 26) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3623 ((|#1| $ (-409 (-566))) NIL)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) 12)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 22 T CONST)) (-3214 (($) 16 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 24)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1172 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1261 |#2|)) (-10 -8 (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1172))
-((-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(-13 (-1248 |#1| (-1166 |#1| |#2| |#3|)) (-1038 (-1173 |#1| |#2| |#3|)) (-616 (-1261 |#2|)) (-10 -8 (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 131)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 121)) (-3003 (((-1238 |#2| |#1|) $ (-771)) 69)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-771)) 85) (($ $ (-771) (-771)) 82)) (-3564 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 107)) (-3622 (($ $) 175 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3601 (($ $) 171 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 120) (($ (-1155 |#1|)) 115)) (-3648 (($ $) 179 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) 25)) (-1590 (($ $) 28)) (-2447 (((-952 |#1|) $ (-771)) 81) (((-952 |#1|) $ (-771) (-771)) 83)) (-2039 (((-112) $) 126)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-771) $) 128) (((-771) $ (-771)) 130)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) NIL)) (-1912 (($ (-1 |#1| (-566)) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) 13) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1879 (($ $) 135 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200))))) (($ $ (-1261 |#2|)) 136 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-3964 (($ $ (-771)) 15)) (-3967 (((-3 $ "failed") $ $) 26 (|has| |#1| (-558)))) (-1535 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-3282 ((|#1| $ (-771)) 124) (($ $ $) 134 (|has| (-771) (-1111)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1261 |#2|)) 31)) (-3838 (((-771) $) NIL)) (-3658 (($ $) 181 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 177 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 173 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) NIL)) (-2725 (((-862) $) 208) (($ (-566)) NIL) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1238 |#2| |#1|)) 55) (($ (-1261 |#2|)) 36)) (-3624 (((-1155 |#1|) $) 103)) (-3623 ((|#1| $ (-771)) 123)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) 58)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) 187 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 163 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) 183 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 159 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 191 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 167 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-771)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 193 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 169 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 189 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 165 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 185 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 161 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 17 T CONST)) (-3214 (($) 20 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) 200)) (-2897 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 143 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1173 |#1| |#2| |#3|) (-13 (-1256 |#1|) (-10 -8 (-15 -2725 ($ (-1238 |#2| |#1|))) (-15 -3003 ((-1238 |#2| |#1|) $ (-771))) (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1173))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(-13 (-1256 |#1|) (-10 -8 (-15 -2725 ($ (-1238 |#2| |#1|))) (-15 -3003 ((-1238 |#2| |#1|) $ (-771))) (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|)))
-((-2725 (((-862) $) 33) (($ (-1175)) 35)) (-2676 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2663 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-1567 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-1554 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-1544 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-1533 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2034 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45)))
-(((-1174) (-13 (-613 (-862)) (-10 -8 (-15 -2725 ($ (-1175))) (-15 -1567 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -1544 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -1554 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -1533 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2676 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2034 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2663 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2663 ($ $))))) (T -1174))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174)))) (-1567 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-1544 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-1554 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-1533 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2676 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2034 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2663 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174)))) (-5 *1 (-1174)))) (-2663 (*1 *1 *1) (-5 *1 (-1174))))
-(-13 (-613 (-862)) (-10 -8 (-15 -2725 ($ (-1175))) (-15 -1567 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -1544 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -1554 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -1533 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2676 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2034 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2663 ($ (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2663 ($ $))))
-((-3979 (((-112) $ $) NIL)) (-1328 (($ $ (-644 (-862))) 64)) (-2900 (($ $ (-644 (-862))) 62)) (-4198 (((-1157) $) 103)) (-1664 (((-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862)))) $) 110)) (-3587 (((-112) $) 23)) (-2638 (($ $ (-644 (-644 (-862)))) 61) (($ $ (-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862))))) 101)) (-2633 (($) 166 T CONST)) (-2713 (((-1270)) 138)) (-2114 (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 71) (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 78)) (-2631 (($) 124) (($ $) 133)) (-3534 (($ $) 102)) (-3075 (($ $ $) NIL)) (-3936 (($ $ $) NIL)) (-3641 (((-644 $) $) 139)) (-1390 (((-1157) $) 116)) (-1944 (((-1119) $) NIL)) (-3282 (($ $ (-644 (-862))) 63)) (-2150 (((-538) $) 48) (((-1175) $) 49) (((-892 (-566)) $) 82) (((-892 (-381)) $) 80)) (-2725 (((-862) $) 55) (($ (-1157)) 50)) (-1479 (((-112) $ $) NIL)) (-2510 (($ $ (-644 (-862))) 65)) (-2331 (((-1157) $) 34) (((-1157) $ (-112)) 35) (((-1270) (-822) $) 36) (((-1270) (-822) $ (-112)) 37)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 51)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) 52)))
-(((-1175) (-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -2631 ($)) (-15 -2631 ($ $)) (-15 -2713 ((-1270))) (-15 -3534 ($ $)) (-15 -3587 ((-112) $)) (-15 -1664 ((-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -2638 ($ $ (-644 (-644 (-862))))) (-15 -2638 ($ $ (-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -2900 ($ $ (-644 (-862)))) (-15 -1328 ($ $ (-644 (-862)))) (-15 -2510 ($ $ (-644 (-862)))) (-15 -3282 ($ $ (-644 (-862)))) (-15 -4198 ((-1157) $)) (-15 -3641 ((-644 $) $)) (-15 -2633 ($) -3854)))) (T -1175))
-((-2631 (*1 *1) (-5 *1 (-1175))) (-2631 (*1 *1 *1) (-5 *1 (-1175))) (-2713 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1175)))) (-3534 (*1 *1 *1) (-5 *1 (-1175))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-1664 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-2638 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175)))) (-2638 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862))))) (-5 *1 (-1175)))) (-2900 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-1328 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-2510 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))) (-4198 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175)))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175)))) (-2633 (*1 *1) (-5 *1 (-1175))))
-(-13 (-850) (-614 (-538)) (-828) (-614 (-1175)) (-616 (-1157)) (-614 (-892 (-566))) (-614 (-892 (-381))) (-886 (-566)) (-886 (-381)) (-10 -8 (-15 -2631 ($)) (-15 -2631 ($ $)) (-15 -2713 ((-1270))) (-15 -3534 ($ $)) (-15 -3587 ((-112) $)) (-15 -1664 ((-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862)))) $)) (-15 -2638 ($ $ (-644 (-644 (-862))))) (-15 -2638 ($ $ (-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862))) (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862))) (|:| |args| (-644 (-862)))))) (-15 -2900 ($ $ (-644 (-862)))) (-15 -1328 ($ $ (-644 (-862)))) (-15 -2510 ($ $ (-644 (-862)))) (-15 -3282 ($ $ (-644 (-862)))) (-15 -4198 ((-1157) $)) (-15 -3641 ((-644 $) $)) (-15 -2633 ($) -3854)))
-((-4262 (((-1265 |#1|) |#1| (-921)) 18) (((-1265 |#1|) (-644 |#1|)) 25)))
-(((-1176 |#1|) (-10 -7 (-15 -4262 ((-1265 |#1|) (-644 |#1|))) (-15 -4262 ((-1265 |#1|) |#1| (-921)))) (-1049)) (T -1176))
-((-4262 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1265 *3)) (-5 *1 (-1176 *3)) (-4 *3 (-1049)))) (-4262 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1265 *4)) (-5 *1 (-1176 *4)))))
-(-10 -7 (-15 -4262 ((-1265 |#1|) (-644 |#1|))) (-15 -4262 ((-1265 |#1|) |#1| (-921))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| |#1| (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#1| (-1038 (-409 (-566))))) (((-3 |#1| "failed") $) NIL)) (-3343 (((-566) $) NIL (|has| |#1| (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| |#1| (-1038 (-409 (-566))))) ((|#1| $) NIL)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1520 (($ $) NIL (|has| |#1| (-454)))) (-2385 (($ $ |#1| (-971) $) NIL)) (-3842 (((-112) $) 17)) (-2436 (((-771) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-971)) NIL)) (-4090 (((-971) $) NIL)) (-1336 (($ (-1 (-971) (-971)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#1| $) NIL)) (-3437 (($ $ (-971) |#1| $) NIL (-12 (|has| (-971) (-131)) (|has| |#1| (-558))))) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-558)))) (-3838 (((-971) $) NIL)) (-4330 ((|#1| $) NIL (|has| |#1| (-454)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) NIL) (($ (-409 (-566))) NIL (-2676 (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-1038 (-409 (-566))))))) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ (-971)) NIL)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#1| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3200 (($) 11 T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 21)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1177 |#1|) (-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -3437 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|))) (-1049)) (T -1177))
-((-3437 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))))
-(-13 (-327 |#1| (-971)) (-10 -8 (IF (|has| |#1| (-558)) (IF (|has| (-971) (-131)) (-15 -3437 ($ $ (-971) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|)))
-((-3694 (((-1179) (-1175) $) 25)) (-3489 (($) 29)) (-2079 (((-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-1175) $) 22)) (-4392 (((-1270) (-1175) (-3 (|:| |fst| (-436)) (|:| -4106 "void")) $) 41) (((-1270) (-1175) (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) 42) (((-1270) (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) 43)) (-3298 (((-1270) (-1175)) 58)) (-2811 (((-1270) (-1175) $) 55) (((-1270) (-1175)) 56) (((-1270)) 57)) (-2957 (((-1270) (-1175)) 37)) (-2121 (((-1175)) 36)) (-3906 (($) 34)) (-3146 (((-439) (-1175) (-439) (-1175) $) 45) (((-439) (-644 (-1175)) (-439) (-1175) $) 49) (((-439) (-1175) (-439)) 46) (((-439) (-1175) (-439) (-1175)) 50)) (-2168 (((-1175)) 35)) (-2725 (((-862) $) 28)) (-3368 (((-1270)) 30) (((-1270) (-1175)) 33)) (-1756 (((-644 (-1175)) (-1175) $) 24)) (-4105 (((-1270) (-1175) (-644 (-1175)) $) 38) (((-1270) (-1175) (-644 (-1175))) 39) (((-1270) (-644 (-1175))) 40)))
-(((-1178) (-13 (-613 (-862)) (-10 -8 (-15 -3489 ($)) (-15 -3368 ((-1270))) (-15 -3368 ((-1270) (-1175))) (-15 -3146 ((-439) (-1175) (-439) (-1175) $)) (-15 -3146 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -3146 ((-439) (-1175) (-439))) (-15 -3146 ((-439) (-1175) (-439) (-1175))) (-15 -2957 ((-1270) (-1175))) (-15 -2168 ((-1175))) (-15 -2121 ((-1175))) (-15 -4105 ((-1270) (-1175) (-644 (-1175)) $)) (-15 -4105 ((-1270) (-1175) (-644 (-1175)))) (-15 -4105 ((-1270) (-644 (-1175)))) (-15 -4392 ((-1270) (-1175) (-3 (|:| |fst| (-436)) (|:| -4106 "void")) $)) (-15 -4392 ((-1270) (-1175) (-3 (|:| |fst| (-436)) (|:| -4106 "void")))) (-15 -4392 ((-1270) (-3 (|:| |fst| (-436)) (|:| -4106 "void")))) (-15 -2811 ((-1270) (-1175) $)) (-15 -2811 ((-1270) (-1175))) (-15 -2811 ((-1270))) (-15 -3298 ((-1270) (-1175))) (-15 -3906 ($)) (-15 -2079 ((-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-1175) $)) (-15 -1756 ((-644 (-1175)) (-1175) $)) (-15 -3694 ((-1179) (-1175) $))))) (T -1178))
-((-3489 (*1 *1) (-5 *1 (-1178))) (-3368 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1178)))) (-3368 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-3146 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-3146 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175)) (-5 *1 (-1178)))) (-3146 (*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-3146 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-2168 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-2121 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))) (-4105 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-4392 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-2811 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-2811 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-2811 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1178)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))) (-3906 (*1 *1) (-5 *1 (-1178))) (-2079 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *1 (-1178)))) (-1756 (*1 *2 *3 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175)))) (-3694 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -3489 ($)) (-15 -3368 ((-1270))) (-15 -3368 ((-1270) (-1175))) (-15 -3146 ((-439) (-1175) (-439) (-1175) $)) (-15 -3146 ((-439) (-644 (-1175)) (-439) (-1175) $)) (-15 -3146 ((-439) (-1175) (-439))) (-15 -3146 ((-439) (-1175) (-439) (-1175))) (-15 -2957 ((-1270) (-1175))) (-15 -2168 ((-1175))) (-15 -2121 ((-1175))) (-15 -4105 ((-1270) (-1175) (-644 (-1175)) $)) (-15 -4105 ((-1270) (-1175) (-644 (-1175)))) (-15 -4105 ((-1270) (-644 (-1175)))) (-15 -4392 ((-1270) (-1175) (-3 (|:| |fst| (-436)) (|:| -4106 "void")) $)) (-15 -4392 ((-1270) (-1175) (-3 (|:| |fst| (-436)) (|:| -4106 "void")))) (-15 -4392 ((-1270) (-3 (|:| |fst| (-436)) (|:| -4106 "void")))) (-15 -2811 ((-1270) (-1175) $)) (-15 -2811 ((-1270) (-1175))) (-15 -2811 ((-1270))) (-15 -3298 ((-1270) (-1175))) (-15 -3906 ($)) (-15 -2079 ((-3 (|:| |fst| (-436)) (|:| -4106 "void")) (-1175) $)) (-15 -1756 ((-644 (-1175)) (-1175) $)) (-15 -3694 ((-1179) (-1175) $))))
-((-2754 (((-644 (-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $) 66)) (-4175 (((-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $) 47)) (-2848 (($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-439))))) 17)) (-3298 (((-1270) $) 74)) (-4112 (((-644 (-1175)) $) 22)) (-4286 (((-1103) $) 60)) (-1386 (((-439) (-1175) $) 27)) (-4055 (((-644 (-1175)) $) 30)) (-3906 (($) 19)) (-3146 (((-439) (-644 (-1175)) (-439) $) 25) (((-439) (-1175) (-439) $) 24)) (-2725 (((-862) $) 9) (((-1188 (-1175) (-439)) $) 13)))
-(((-1179) (-13 (-613 (-862)) (-10 -8 (-15 -2725 ((-1188 (-1175) (-439)) $)) (-15 -3906 ($)) (-15 -3146 ((-439) (-644 (-1175)) (-439) $)) (-15 -3146 ((-439) (-1175) (-439) $)) (-15 -1386 ((-439) (-1175) $)) (-15 -4112 ((-644 (-1175)) $)) (-15 -4175 ((-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -4055 ((-644 (-1175)) $)) (-15 -2754 ((-644 (-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -4286 ((-1103) $)) (-15 -3298 ((-1270) $)) (-15 -2848 ($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-439))))))))) (T -1179))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-1188 (-1175) (-439))) (-5 *1 (-1179)))) (-3906 (*1 *1) (-5 *1 (-1179))) (-3146 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179)))) (-3146 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179)))) (-1386 (*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-4175 (*1 *2 *3 *1) (-12 (-5 *3 (-436)) (-5 *2 (-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) (-5 *1 (-1179)))) (-4055 (*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))) (-5 *1 (-1179)))) (-4286 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179)))) (-3298 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1179)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-439))))) (-5 *1 (-1179)))))
-(-13 (-613 (-862)) (-10 -8 (-15 -2725 ((-1188 (-1175) (-439)) $)) (-15 -3906 ($)) (-15 -3146 ((-439) (-644 (-1175)) (-439) $)) (-15 -3146 ((-439) (-1175) (-439) $)) (-15 -1386 ((-439) (-1175) $)) (-15 -4112 ((-644 (-1175)) $)) (-15 -4175 ((-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))) (-436) $)) (-15 -4055 ((-644 (-1175)) $)) (-15 -2754 ((-644 (-644 (-3 (|:| -3534 (-1175)) (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))) $)) (-15 -4286 ((-1103) $)) (-15 -3298 ((-1270) $)) (-15 -2848 ($ (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-439))))))))
-((-3979 (((-112) $ $) NIL)) (-2023 (((-3 (-566) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-508) "failed") $) 43) (((-3 (-1157) "failed") $) 47)) (-3343 (((-566) $) 30) (((-225) $) 36) (((-508) $) 40) (((-1157) $) 48)) (-2053 (((-112) $) 53)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3413 (((-3 (-566) (-225) (-508) (-1157) $) $) 55)) (-2682 (((-644 $) $) 57)) (-2150 (((-1103) $) 24) (($ (-1103)) 25)) (-2126 (((-112) $) 56)) (-2725 (((-862) $) 23) (($ (-566)) 26) (($ (-225)) 32) (($ (-508)) 38) (($ (-1157)) 44) (((-538) $) 59) (((-566) $) 31) (((-225) $) 37) (((-508) $) 41) (((-1157) $) 49)) (-3185 (((-112) $ (|[\|\|]| (-566))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-508))) 19) (((-112) $ (|[\|\|]| (-1157))) 16)) (-1946 (($ (-508) (-644 $)) 51) (($ $ (-644 $)) 52)) (-1479 (((-112) $ $) NIL)) (-2908 (((-566) $) 27) (((-225) $) 33) (((-508) $) 39) (((-1157) $) 45)) (-2817 (((-112) $ $) 7)))
-(((-1180) (-13 (-1260) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -2150 ((-1103) $)) (-15 -2150 ($ (-1103))) (-15 -2725 ((-566) $)) (-15 -2908 ((-566) $)) (-15 -2725 ((-225) $)) (-15 -2908 ((-225) $)) (-15 -2725 ((-508) $)) (-15 -2908 ((-508) $)) (-15 -2725 ((-1157) $)) (-15 -2908 ((-1157) $)) (-15 -1946 ($ (-508) (-644 $))) (-15 -1946 ($ $ (-644 $))) (-15 -2053 ((-112) $)) (-15 -3413 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -2682 ((-644 $) $)) (-15 -2126 ((-112) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-566)))) (-15 -3185 ((-112) $ (|[\|\|]| (-225)))) (-15 -3185 ((-112) $ (|[\|\|]| (-508)))) (-15 -3185 ((-112) $ (|[\|\|]| (-1157))))))) (T -1180))
-((-2150 (*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-2150 (*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-1180)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180)))) (-1946 (*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180)))) (-1946 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-2053 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-3413 (*1 *2 *1) (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180))) (-5 *1 (-1180)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180)))) (-3185 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180)))))
-(-13 (-1260) (-1099) (-1038 (-566)) (-1038 (-225)) (-1038 (-508)) (-1038 (-1157)) (-613 (-538)) (-10 -8 (-15 -2150 ((-1103) $)) (-15 -2150 ($ (-1103))) (-15 -2725 ((-566) $)) (-15 -2908 ((-566) $)) (-15 -2725 ((-225) $)) (-15 -2908 ((-225) $)) (-15 -2725 ((-508) $)) (-15 -2908 ((-508) $)) (-15 -2725 ((-1157) $)) (-15 -2908 ((-1157) $)) (-15 -1946 ($ (-508) (-644 $))) (-15 -1946 ($ $ (-644 $))) (-15 -2053 ((-112) $)) (-15 -3413 ((-3 (-566) (-225) (-508) (-1157) $) $)) (-15 -2682 ((-644 $) $)) (-15 -2126 ((-112) $)) (-15 -3185 ((-112) $ (|[\|\|]| (-566)))) (-15 -3185 ((-112) $ (|[\|\|]| (-225)))) (-15 -3185 ((-112) $ (|[\|\|]| (-508)))) (-15 -3185 ((-112) $ (|[\|\|]| (-1157))))))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) 22)) (-2633 (($) 12 T CONST)) (-3424 (($) 26)) (-3075 (($ $ $) NIL) (($) 19 T CONST)) (-3936 (($ $ $) NIL) (($) 20 T CONST)) (-4138 (((-921) $) 24)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) 23)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-1181 |#1|) (-13 (-844) (-10 -8 (-15 -2633 ($) -3854))) (-921)) (T -1181))
-((-2633 (*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921)))))
-(-13 (-844) (-10 -8 (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2207 ((|#1| $) 45)) (-1580 (((-112) $ (-772)) 8)) (-4061 (($) 7 T CONST)) (-3528 ((|#1| |#1| $) 47)) (-2548 ((|#1| $) 46)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-4341 ((|#1| $) 40)) (-1336 (($ |#1| $) 41)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-4394 ((|#1| $) 42)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1716 (((-772) $) 44)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) 43)) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1121 |#1|) (-140) (-1216)) (T -1121))
+((-3528 (*1 *2 *2 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1216)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1216)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1216)))) (-1716 (*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4416) (-15 -3528 (|t#1| |t#1| $)) (-15 -2548 (|t#1| $)) (-15 -2207 (|t#1| $)) (-15 -1716 ((-772) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-4093 ((|#3| $) 87)) (-3417 (((-3 (-567) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-1621 (((-567) $) NIL) (((-410 (-567)) $) NIL) ((|#3| $) 47)) (-1920 (((-690 (-567)) (-690 $)) NIL) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL) (((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 $) (-1266 $)) 84) (((-690 |#3|) (-690 $)) 76)) (-1930 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176)) NIL) (($ $ (-772)) NIL) (($ $) NIL)) (-3167 ((|#3| $) 89)) (-3927 ((|#4| $) 43)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ |#3|) 25)) (** (($ $ (-922)) NIL) (($ $ (-772)) 24) (($ $ (-567)) 95)))
+(((-1122 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -3167 (|#3| |#1|)) (-15 -4093 (|#3| |#1|)) (-15 -3927 (|#4| |#1|)) (-15 -1920 ((-690 |#3|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -4101 (|#1| |#3|)) (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#3| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4101 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -4101 ((-863) |#1|))) (-1123 |#2| |#3| |#4| |#5|) (-772) (-1050) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1122))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-567))) (-15 -3167 (|#3| |#1|)) (-15 -4093 (|#3| |#1|)) (-15 -3927 (|#4| |#1|)) (-15 -1920 ((-690 |#3|) (-690 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 |#3|)) (|:| |vec| (-1266 |#3|))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 |#1|) (-1266 |#1|))) (-15 -1920 ((-690 (-567)) (-690 |#1|))) (-15 -4101 (|#1| |#3|)) (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#3| |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|) (-772))) (-15 -1930 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4101 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4093 ((|#2| $) 77)) (-2141 (((-112) $) 117)) (-4377 (((-3 $ "failed") $ $) 20)) (-2358 (((-112) $) 115)) (-1580 (((-112) $ (-772)) 107)) (-3617 (($ |#2|) 80)) (-4061 (($) 18 T CONST)) (-1876 (($ $) 134 (|has| |#2| (-308)))) (-4074 ((|#3| $ (-567)) 129)) (-3417 (((-3 (-567) "failed") $) 92 (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) 89 (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) 86)) (-1621 (((-567) $) 91 (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) 88 (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) 87)) (-1920 (((-690 (-567)) (-690 $)) 84 (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 83 (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) 82) (((-690 |#2|) (-690 $)) 81)) (-4014 (((-3 $ "failed") $) 37)) (-2432 (((-772) $) 135 (|has| |#2| (-559)))) (-4344 ((|#2| $ (-567) (-567)) 127)) (-2896 (((-645 |#2|) $) 100 (|has| $ (-6 -4416)))) (-3714 (((-112) $) 35)) (-1375 (((-772) $) 136 (|has| |#2| (-559)))) (-3137 (((-645 |#4|) $) 137 (|has| |#2| (-559)))) (-4300 (((-772) $) 123)) (-4311 (((-772) $) 124)) (-2805 (((-112) $ (-772)) 108)) (-1982 ((|#2| $) 72 (|has| |#2| (-6 (-4418 "*"))))) (-3776 (((-567) $) 119)) (-4176 (((-567) $) 121)) (-1542 (((-645 |#2|) $) 99 (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) 97 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416))))) (-1977 (((-567) $) 120)) (-2467 (((-567) $) 122)) (-4036 (($ (-645 (-645 |#2|))) 114)) (-4392 (($ (-1 |#2| |#2|) $) 104 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2| |#2|) $ $) 131) (($ (-1 |#2| |#2|) $) 105)) (-1343 (((-645 (-645 |#2|)) $) 125)) (-3230 (((-112) $ (-772)) 109)) (-2451 (((-1158) $) 10)) (-3475 (((-3 $ "failed") $) 71 (|has| |#2| (-365)))) (-3339 (((-1120) $) 11)) (-2245 (((-3 $ "failed") $ |#2|) 132 (|has| |#2| (-559)))) (-2297 (((-112) (-1 (-112) |#2|) $) 102 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) 96 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) 95 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) 94 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) 93 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) 113)) (-3353 (((-112) $) 110)) (-3164 (($) 111)) (-1552 ((|#2| $ (-567) (-567) |#2|) 128) ((|#2| $ (-567) (-567)) 126)) (-1930 (($ $ (-1 |#2| |#2|)) 56) (($ $ (-1 |#2| |#2|) (-772)) 55) (($ $ (-645 (-1176)) (-645 (-772))) 48 (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) 47 (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) 46 (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) 45 (|has| |#2| (-901 (-1176)))) (($ $ (-772)) 43 (|has| |#2| (-233))) (($ $) 41 (|has| |#2| (-233)))) (-3167 ((|#2| $) 76)) (-4008 (($ (-645 |#2|)) 79)) (-2685 (((-112) $) 116)) (-3927 ((|#3| $) 78)) (-3240 ((|#2| $) 73 (|has| |#2| (-6 (-4418 "*"))))) (-3349 (((-772) (-1 (-112) |#2|) $) 101 (|has| $ (-6 -4416))) (((-772) |#2| $) 98 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 112)) (-3295 ((|#4| $ (-567)) 130)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 90 (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) 85)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2012 (((-112) (-1 (-112) |#2|) $) 103 (|has| $ (-6 -4416)))) (-1463 (((-112) $) 118)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-1 |#2| |#2|)) 54) (($ $ (-1 |#2| |#2|) (-772)) 53) (($ $ (-645 (-1176)) (-645 (-772))) 52 (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) 51 (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) 50 (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) 49 (|has| |#2| (-901 (-1176)))) (($ $ (-772)) 44 (|has| |#2| (-233))) (($ $) 42 (|has| |#2| (-233)))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#2|) 133 (|has| |#2| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 70 (|has| |#2| (-365)))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#2|) 139) (($ |#2| $) 138) ((|#4| $ |#4|) 75) ((|#3| |#3| $) 74)) (-2268 (((-772) $) 106 (|has| $ (-6 -4416)))))
+(((-1123 |#1| |#2| |#3| |#4|) (-140) (-772) (-1050) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1123))
+((-3617 (*1 *1 *2) (-12 (-4 *2 (-1050)) (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-4008 (*1 *1 *2) (-12 (-5 *2 (-645 *4)) (-4 *4 (-1050)) (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1050)))) (-3167 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1050)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1123 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050)))) (-3475 (*1 *1 *1) (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365)))))
+(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1054 |t#1| |t#1| |t#2| |t#3| |t#4|) (-414 |t#2|) (-379 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-718 |t#2|)) |%noBranch|) (-15 -3617 ($ |t#2|)) (-15 -4008 ($ (-645 |t#2|))) (-15 -3927 (|t#3| $)) (-15 -4093 (|t#2| $)) (-15 -3167 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4418 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3240 (|t#2| $)) (-15 -1982 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-365)) (PROGN (-15 -3475 ((-3 $ "failed") $)) (-15 ** ($ $ (-567)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4418 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 #0=(-410 (-567))) |has| |#2| (-1039 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-379 |#2|) . T) ((-414 |#2|) . T) ((-492 |#2|) . T) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-6 (-4418 "*")))) ((-640 (-567)) |has| |#2| (-640 (-567))) ((-640 |#2|) . T) ((-718 |#2|) -2909 (|has| |#2| (-172)) (|has| |#2| (-6 (-4418 "*")))) ((-727) . T) ((-901 (-1176)) |has| |#2| (-901 (-1176))) ((-1054 |#1| |#1| |#2| |#3| |#4|) . T) ((-1039 #0#) |has| |#2| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#2| (-1039 (-567))) ((-1039 |#2|) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1216) . T))
+((-3749 ((|#4| |#4|) 81)) (-2155 ((|#4| |#4|) 76)) (-3965 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|))) |#4| |#3|) 91)) (-3073 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80)) (-1464 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78)))
+(((-1124 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2155 (|#4| |#4|)) (-15 -1464 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3749 (|#4| |#4|)) (-15 -3073 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3965 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|))) |#4| |#3|))) (-308) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1124))
+((-3965 (*1 *2 *3 *4) (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4)))) (-5 *1 (-1124 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))) (-3073 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1124 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-3749 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-1464 (*1 *2 *3) (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1124 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(-10 -7 (-15 -2155 (|#4| |#4|)) (-15 -1464 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3749 (|#4| |#4|)) (-15 -3073 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3965 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2557 (-645 |#3|))) |#4| |#3|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 18)) (-2449 (((-645 |#2|) $) 178)) (-2260 (((-1172 $) $ |#2|) 63) (((-1172 |#1|) $) 52)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 118 (|has| |#1| (-559)))) (-3602 (($ $) 120 (|has| |#1| (-559)))) (-2119 (((-112) $) 122 (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 |#2|)) 217)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) 172) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 |#2| "failed") $) NIL)) (-1621 ((|#1| $) 170) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) ((|#2| $) NIL)) (-2414 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-2637 (($ $) 221)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) 92)) (-2958 (($ $) NIL (|has| |#1| (-455))) (($ $ |#2|) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-534 |#2|) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#1| (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#1| (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-3714 (((-112) $) 20)) (-2864 (((-772) $) 30)) (-2434 (($ (-1172 |#1|) |#2|) 57) (($ (-1172 $) |#2|) 74)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) 41)) (-2422 (($ |#1| (-534 |#2|)) 81) (($ $ |#2| (-772)) 61) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ |#2|) NIL)) (-4185 (((-534 |#2|) $) 209) (((-772) $ |#2|) 210) (((-645 (-772)) $ (-645 |#2|)) 211)) (-1599 (($ (-1 (-534 |#2|) (-534 |#2|)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) 130)) (-3300 (((-3 |#2| "failed") $) 181)) (-2599 (($ $) 220)) (-2613 ((|#1| $) 46)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| |#2|) (|:| -4164 (-772))) "failed") $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) 42)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 150 (|has| |#1| (-455)))) (-3276 (($ (-645 $)) 155 (|has| |#1| (-455))) (($ $ $) 140 (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#1| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-910)))) (-2245 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ |#2| |#1|) 184) (($ $ (-645 |#2|) (-645 |#1|)) 199) (($ $ |#2| $) 183) (($ $ (-645 |#2|) (-645 $)) 198)) (-3347 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1930 (($ $ |#2|) 219) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3677 (((-534 |#2|) $) 205) (((-772) $ |#2|) 200) (((-645 (-772)) $ (-645 |#2|)) 203)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| |#1| (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| |#1| (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| |#1| (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1640 ((|#1| $) 136 (|has| |#1| (-455))) (($ $ |#2|) 139 (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4101 (((-863) $) 161) (($ (-567)) 86) (($ |#1|) 87) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-2350 (((-645 |#1|) $) 164)) (-2339 ((|#1| $ (-534 |#2|)) 83) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) 89 T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) 125 (|has| |#1| (-559)))) (-1468 (($) 12 T CONST)) (-1484 (($) 14 T CONST)) (-2692 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3052 (((-112) $ $) 108)) (-3168 (($ $ |#1|) 134 (|has| |#1| (-365)))) (-3156 (($ $) 95) (($ $ $) 106)) (-3146 (($ $ $) 58)) (** (($ $ (-922)) 112) (($ $ (-772)) 111)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 98) (($ $ $) 75) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 101) (($ $ |#1|) NIL)))
+(((-1125 |#1| |#2|) (-950 |#1| (-534 |#2|) |#2|) (-1050) (-851)) (T -1125))
+NIL
+(-950 |#1| (-534 |#2|) |#2|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 |#2|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-1772 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1747 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-1798 (($ $) 156 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-3825 (((-953 |#1|) $ (-772)) NIL) (((-953 |#1|) $ (-772) (-772)) NIL)) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-772) $ |#2|) NIL) (((-772) $ |#2| (-772)) NIL)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3523 (((-112) $) NIL)) (-2422 (($ $ (-645 |#2|) (-645 (-534 |#2|))) NIL) (($ $ |#2| (-534 |#2|)) NIL) (($ |#1| (-534 |#2|)) NIL) (($ $ |#2| (-772)) 63) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-2113 (($ $ |#2|) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-1373 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-410 (-567)))))) (-2436 (($ $ (-772)) 16)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2910 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (($ $ |#2| $) 106) (($ $ (-645 |#2|) (-645 $)) 99) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1930 (($ $ |#2|) 109) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3677 (((-534 |#2|) $) NIL)) (-3413 (((-1 (-1156 |#3|) |#3|) (-645 |#2|) (-645 (-1156 |#3|))) 87)) (-1810 (($ $) 158 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 18)) (-4101 (((-863) $) 199) (($ (-567)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#2|) 70) (($ |#3|) 68)) (-2339 ((|#1| $ (-534 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL) ((|#3| $ (-772)) 43)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-1345 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 52 T CONST)) (-1484 (($) 62 T CONST)) (-2692 (($ $ |#2|) NIL) (($ $ (-645 |#2|)) NIL) (($ $ |#2| (-772)) NIL) (($ $ (-645 |#2|) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) 201 (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 66)) (** (($ $ (-922)) NIL) (($ $ (-772)) 77) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 112 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 65) (($ $ (-410 (-567))) 117 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 115 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47)))
+(((-1126 |#1| |#2| |#3|) (-13 (-741 |#1| |#2|) (-10 -8 (-15 -2339 (|#3| $ (-772))) (-15 -4101 ($ |#2|)) (-15 -4101 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3413 ((-1 (-1156 |#3|) |#3|) (-645 |#2|) (-645 (-1156 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $ |#2| |#1|)) (-15 -1373 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1050) (-851) (-950 |#1| (-534 |#2|) |#2|)) (T -1126))
+((-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *2 (-950 *4 (-534 *5) *5)) (-5 *1 (-1126 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-851)))) (-4101 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *2 (-851)) (-5 *1 (-1126 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) (-4101 (*1 *1 *2) (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1126 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1126 *3 *4 *2)) (-4 *2 (-950 *3 (-534 *4) *4)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1156 *7))) (-4 *6 (-851)) (-4 *7 (-950 *5 (-534 *6) *6)) (-4 *5 (-1050)) (-5 *2 (-1 (-1156 *7) *7)) (-5 *1 (-1126 *5 *6 *7)))) (-2113 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-4 *2 (-851)) (-5 *1 (-1126 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2)))) (-1373 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1126 *4 *3 *5))) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050)) (-4 *3 (-851)) (-5 *1 (-1126 *4 *3 *5)) (-4 *5 (-950 *4 (-534 *3) *3)))))
+(-13 (-741 |#1| |#2|) (-10 -8 (-15 -2339 (|#3| $ (-772))) (-15 -4101 ($ |#2|)) (-15 -4101 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3413 ((-1 (-1156 |#3|) |#3|) (-645 |#2|) (-645 (-1156 |#3|)))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $ |#2| |#1|)) (-15 -1373 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2257 (((-112) $ $) 7)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) 86)) (-2102 (((-645 $) (-645 |#4|)) 87) (((-645 $) (-645 |#4|) (-112)) 112)) (-2449 (((-645 |#3|) $) 34)) (-1416 (((-112) $) 27)) (-2739 (((-112) $) 18 (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) 102) (((-112) $) 98)) (-1508 ((|#4| |#4| $) 93)) (-1396 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 127)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) 28)) (-1580 (((-112) $ (-772)) 45)) (-1551 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) 80)) (-4061 (($) 46 T CONST)) (-3289 (((-112) $) 23 (|has| |#1| (-559)))) (-3407 (((-112) $ $) 25 (|has| |#1| (-559)))) (-2595 (((-112) $ $) 24 (|has| |#1| (-559)))) (-1579 (((-112) $) 26 (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2786 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) 37)) (-1621 (($ (-645 |#4|)) 36)) (-2061 (((-3 $ "failed") $) 83)) (-3816 ((|#4| |#4| $) 90)) (-2084 (($ $) 69 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#4| $) 68 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4155 ((|#4| |#4| $) 88)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) 106)) (-4314 (((-112) |#4| $) 137)) (-2312 (((-112) |#4| $) 134)) (-2336 (((-112) |#4| $) 138) (((-112) $) 135)) (-2896 (((-645 |#4|) $) 53 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) 105) (((-112) $) 104)) (-4280 ((|#3| $) 35)) (-2805 (((-112) $ (-772)) 44)) (-1542 (((-645 |#4|) $) 54 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 48)) (-4360 (((-645 |#3|) $) 33)) (-4023 (((-112) |#3| $) 32)) (-3230 (((-112) $ (-772)) 43)) (-2451 (((-1158) $) 10)) (-1372 (((-3 |#4| (-645 $)) |#4| |#4| $) 129)) (-1856 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 128)) (-3162 (((-3 |#4| "failed") $) 84)) (-1894 (((-645 $) |#4| $) 130)) (-4254 (((-3 (-112) (-645 $)) |#4| $) 133)) (-1414 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 132) (((-112) |#4| $) 131)) (-3754 (((-645 $) |#4| $) 126) (((-645 $) (-645 |#4|) $) 125) (((-645 $) (-645 |#4|) (-645 $)) 124) (((-645 $) |#4| (-645 $)) 123)) (-2913 (($ |#4| $) 118) (($ (-645 |#4|) $) 117)) (-2331 (((-645 |#4|) $) 108)) (-2750 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-2137 (((-112) $ $) 111)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) 101) (((-112) $) 97)) (-2703 ((|#4| |#4| $) 92)) (-3339 (((-1120) $) 11)) (-2048 (((-3 |#4| "failed") $) 85)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3809 (((-3 $ "failed") $ |#4|) 79)) (-2436 (($ $ |#4|) 78) (((-645 $) |#4| $) 116) (((-645 $) |#4| (-645 $)) 115) (((-645 $) (-645 |#4|) $) 114) (((-645 $) (-645 |#4|) (-645 $)) 113)) (-2297 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) 39)) (-3353 (((-112) $) 42)) (-3164 (($) 41)) (-3677 (((-772) $) 107)) (-3349 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4416)))) (-4247 (($ $) 40)) (-3542 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 61)) (-2485 (($ $ |#3|) 29)) (-4090 (($ $ |#3|) 31)) (-4367 (($ $) 89)) (-2716 (($ $ |#3|) 30)) (-4101 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2718 (((-772) $) 77 (|has| |#3| (-370)))) (-3739 (((-112) $ $) 9)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-3936 (((-645 $) |#4| $) 122) (((-645 $) |#4| (-645 $)) 121) (((-645 $) (-645 |#4|) $) 120) (((-645 $) (-645 |#4|) (-645 $)) 119)) (-2012 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) 82)) (-1440 (((-112) |#4| $) 136)) (-2447 (((-112) |#3| $) 81)) (-3052 (((-112) $ $) 6)) (-2268 (((-772) $) 47 (|has| $ (-6 -4416)))))
+(((-1127 |#1| |#2| |#3| |#4|) (-140) (-455) (-794) (-851) (-1065 |t#1| |t#2| |t#3|)) (T -1127))
+NIL
+(-13 (-1109 |t#1| |t#2| |t#3| |t#4|) (-785 |t#1| |t#2| |t#3| |t#4|))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-785 |#1| |#2| |#3| |#4|) . T) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1071 |#1| |#2| |#3| |#4|) . T) ((-1100) . T) ((-1109 |#1| |#2| |#3| |#4|) . T) ((-1209 |#1| |#2| |#3| |#4|) . T) ((-1216) . T))
+((-1607 (((-645 |#2|) |#1|) 15)) (-4180 (((-645 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-645 |#2|) |#1|) 63)) (-1652 (((-645 |#2|) |#2| |#2| |#2|) 45) (((-645 |#2|) |#1|) 61)) (-2497 ((|#2| |#1|) 56)) (-3745 (((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3808 (((-645 |#2|) |#2| |#2|) 42) (((-645 |#2|) |#1|) 60)) (-3297 (((-645 |#2|) |#2| |#2| |#2| |#2|) 46) (((-645 |#2|) |#1|) 62)) (-3580 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3610 ((|#2| |#2| |#2| |#2|) 53)) (-3648 ((|#2| |#2| |#2|) 52)) (-2589 ((|#2| |#2| |#2| |#2| |#2|) 54)))
+(((-1128 |#1| |#2|) (-10 -7 (-15 -1607 ((-645 |#2|) |#1|)) (-15 -2497 (|#2| |#1|)) (-15 -3745 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3808 ((-645 |#2|) |#1|)) (-15 -1652 ((-645 |#2|) |#1|)) (-15 -3297 ((-645 |#2|) |#1|)) (-15 -4180 ((-645 |#2|) |#1|)) (-15 -3808 ((-645 |#2|) |#2| |#2|)) (-15 -1652 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -3297 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4180 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3648 (|#2| |#2| |#2|)) (-15 -3610 (|#2| |#2| |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3580 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1242 |#2|) (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (T -1128))
+((-3580 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))) (-2589 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))) (-3610 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))) (-3648 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))) (-4180 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))) (-3297 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))) (-1652 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))) (-3808 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))) (-4180 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4)))) (-3297 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4)))) (-3808 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4)))) (-3745 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-2 (|:| |solns| (-645 *5)) (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1128 *3 *5)) (-4 *3 (-1242 *5)))) (-2497 (*1 *2 *3) (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567))))))) (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -1607 ((-645 |#2|) |#1|)) (-15 -2497 (|#2| |#1|)) (-15 -3745 ((-2 (|:| |solns| (-645 |#2|)) (|:| |maps| (-645 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3808 ((-645 |#2|) |#1|)) (-15 -1652 ((-645 |#2|) |#1|)) (-15 -3297 ((-645 |#2|) |#1|)) (-15 -4180 ((-645 |#2|) |#1|)) (-15 -3808 ((-645 |#2|) |#2| |#2|)) (-15 -1652 ((-645 |#2|) |#2| |#2| |#2|)) (-15 -3297 ((-645 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4180 ((-645 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3648 (|#2| |#2| |#2|)) (-15 -3610 (|#2| |#2| |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3580 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-2940 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|))))) 124) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1176))) 123) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|)))) 121) (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))) (-645 (-1176))) 119) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|)))) 97) (((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))) (-1176)) 98) (((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|))) 92) (((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)) (-1176)) 82)) (-2510 (((-645 (-645 (-317 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1176))) 117) (((-645 (-317 |#1|)) (-410 (-953 |#1|)) (-1176)) 54)) (-3925 (((-1165 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-953 |#1|)) (-1176)) 128) (((-1165 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-953 |#1|))) (-1176)) 127)))
+(((-1129 |#1|) (-10 -7 (-15 -2940 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)) (-1176))) (-15 -2940 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)))) (-15 -2940 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))) (-1176))) (-15 -2940 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1176)))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -2510 ((-645 (-317 |#1|)) (-410 (-953 |#1|)) (-1176))) (-15 -2510 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -3925 ((-1165 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-953 |#1|))) (-1176))) (-15 -3925 ((-1165 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-953 |#1|)) (-1176)))) (-13 (-308) (-147))) (T -1129))
+((-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1165 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1129 *5)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-1165 (-645 (-317 *5)) (-645 (-295 (-317 *5))))) (-5 *1 (-1129 *5)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5)))) (-5 *1 (-1129 *5)))) (-2510 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5))) (-5 *1 (-1129 *5)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-645 (-295 (-410 (-953 *4))))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1129 *4)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-295 (-410 (-953 *5))))) (-5 *4 (-645 (-1176))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1129 *5)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1129 *4)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176))) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1129 *5)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1129 *4)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1129 *5)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1129 *4)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1129 *5)))))
+(-10 -7 (-15 -2940 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)) (-1176))) (-15 -2940 ((-645 (-295 (-317 |#1|))) (-410 (-953 |#1|)))) (-15 -2940 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))) (-1176))) (-15 -2940 ((-645 (-295 (-317 |#1|))) (-295 (-410 (-953 |#1|))))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-410 (-953 |#1|))))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1176)))) (-15 -2940 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -2510 ((-645 (-317 |#1|)) (-410 (-953 |#1|)) (-1176))) (-15 -2510 ((-645 (-645 (-317 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -3925 ((-1165 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-295 (-410 (-953 |#1|))) (-1176))) (-15 -3925 ((-1165 (-645 (-317 |#1|)) (-645 (-295 (-317 |#1|)))) (-410 (-953 |#1|)) (-1176))))
+((-2680 (((-410 (-1172 (-317 |#1|))) (-1266 (-317 |#1|)) (-410 (-1172 (-317 |#1|))) (-567)) 38)) (-1897 (((-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|)))) 49)))
+(((-1130 |#1|) (-10 -7 (-15 -1897 ((-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))))) (-15 -2680 ((-410 (-1172 (-317 |#1|))) (-1266 (-317 |#1|)) (-410 (-1172 (-317 |#1|))) (-567)))) (-559)) (T -1130))
+((-2680 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-410 (-1172 (-317 *5)))) (-5 *3 (-1266 (-317 *5))) (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1130 *5)))) (-1897 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-410 (-1172 (-317 *3)))) (-4 *3 (-559)) (-5 *1 (-1130 *3)))))
+(-10 -7 (-15 -1897 ((-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))) (-410 (-1172 (-317 |#1|))))) (-15 -2680 ((-410 (-1172 (-317 |#1|))) (-1266 (-317 |#1|)) (-410 (-1172 (-317 |#1|))) (-567))))
+((-1607 (((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1176))) 250) (((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1176)) 23) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1176)) 29) (((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|))) 28) (((-645 (-295 (-317 |#1|))) (-317 |#1|)) 24)))
+(((-1131 |#1|) (-10 -7 (-15 -1607 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1607 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1607 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1176))) (-15 -1607 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1176))) (-15 -1607 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1176))))) (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (T -1131))
+((-1607 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1176))) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5)) (-5 *3 (-645 (-295 (-317 *5)))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)) (-5 *3 (-317 *5)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5)) (-5 *3 (-295 (-317 *5))))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)) (-5 *3 (-295 (-317 *4))))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147))) (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4)) (-5 *3 (-317 *4)))))
+(-10 -7 (-15 -1607 ((-645 (-295 (-317 |#1|))) (-317 |#1|))) (-15 -1607 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)))) (-15 -1607 ((-645 (-295 (-317 |#1|))) (-295 (-317 |#1|)) (-1176))) (-15 -1607 ((-645 (-295 (-317 |#1|))) (-317 |#1|) (-1176))) (-15 -1607 ((-645 (-645 (-295 (-317 |#1|)))) (-645 (-295 (-317 |#1|))) (-645 (-1176)))))
+((-2025 ((|#2| |#2|) 30 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3631 ((|#2| |#2|) 29 (|has| |#1| (-851))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22)))
+(((-1132 |#1| |#2|) (-10 -7 (-15 -3631 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2025 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3631 (|#2| |#2|)) (-15 -2025 (|#2| |#2|))) |%noBranch|)) (-1216) (-13 (-605 (-567) |#1|) (-10 -7 (-6 -4416) (-6 -4417)))) (T -1132))
+((-2025 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1216)) (-5 *1 (-1132 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4416) (-6 -4417)))))) (-3631 (*1 *2 *2) (-12 (-4 *3 (-851)) (-4 *3 (-1216)) (-5 *1 (-1132 *3 *2)) (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4416) (-6 -4417)))))) (-2025 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-1132 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4416) (-6 -4417)))))) (-3631 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-1132 *4 *2)) (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4416) (-6 -4417)))))))
+(-10 -7 (-15 -3631 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2025 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-851)) (PROGN (-15 -3631 (|#2| |#2|)) (-15 -2025 (|#2| |#2|))) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-1900 (((-1164 3 |#1|) $) 141)) (-3465 (((-112) $) 101)) (-3001 (($ $ (-645 (-944 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 104) (($ (-645 (-944 |#1|))) 103) (((-645 (-944 |#1|)) $) 102)) (-1522 (((-112) $) 72)) (-1976 (($ $ (-944 |#1|)) 76) (($ $ (-645 |#1|)) 81) (($ $ (-772)) 83) (($ (-944 |#1|)) 77) (((-944 |#1|) $) 75)) (-3171 (((-2 (|:| -4229 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 139)) (-4088 (((-772) $) 53)) (-3163 (((-772) $) 52)) (-3342 (($ $ (-772) (-944 |#1|)) 67)) (-1623 (((-112) $) 111)) (-3901 (($ $ (-645 (-645 (-944 |#1|))) (-645 (-171)) (-171)) 118) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 120) (($ $ (-645 (-645 (-944 |#1|))) (-112) (-112)) 115) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 127) (($ (-645 (-645 (-944 |#1|)))) 116) (($ (-645 (-645 (-944 |#1|))) (-112) (-112)) 117) (((-645 (-645 (-944 |#1|))) $) 114)) (-3768 (($ (-645 $)) 56) (($ $ $) 57)) (-2074 (((-645 (-171)) $) 133)) (-2338 (((-645 (-944 |#1|)) $) 130)) (-2194 (((-645 (-645 (-171))) $) 132)) (-1962 (((-645 (-645 (-645 (-944 |#1|)))) $) NIL)) (-1513 (((-645 (-645 (-645 (-772)))) $) 131)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3743 (((-772) $ (-645 (-944 |#1|))) 65)) (-1633 (((-112) $) 84)) (-4189 (($ $ (-645 (-944 |#1|))) 86) (($ $ (-645 (-645 |#1|))) 92) (($ (-645 (-944 |#1|))) 87) (((-645 (-944 |#1|)) $) 85)) (-1653 (($) 48) (($ (-1164 3 |#1|)) 49)) (-4247 (($ $) 63)) (-2962 (((-645 $) $) 62)) (-4187 (($ (-645 $)) 59)) (-3876 (((-645 $) $) 61)) (-4101 (((-863) $) 146)) (-3595 (((-112) $) 94)) (-2747 (($ $ (-645 (-944 |#1|))) 96) (($ $ (-645 (-645 |#1|))) 99) (($ (-645 (-944 |#1|))) 97) (((-645 (-944 |#1|)) $) 95)) (-2935 (($ $) 140)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1133 |#1|) (-1134 |#1|) (-1050)) (T -1133))
+NIL
+(-1134 |#1|)
+((-2257 (((-112) $ $) 7)) (-1900 (((-1164 3 |#1|) $) 14)) (-3465 (((-112) $) 30)) (-3001 (($ $ (-645 (-944 |#1|))) 34) (($ $ (-645 (-645 |#1|))) 33) (($ (-645 (-944 |#1|))) 32) (((-645 (-944 |#1|)) $) 31)) (-1522 (((-112) $) 45)) (-1976 (($ $ (-944 |#1|)) 50) (($ $ (-645 |#1|)) 49) (($ $ (-772)) 48) (($ (-944 |#1|)) 47) (((-944 |#1|) $) 46)) (-3171 (((-2 (|:| -4229 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $) 16)) (-4088 (((-772) $) 59)) (-3163 (((-772) $) 60)) (-3342 (($ $ (-772) (-944 |#1|)) 51)) (-1623 (((-112) $) 22)) (-3901 (($ $ (-645 (-645 (-944 |#1|))) (-645 (-171)) (-171)) 29) (($ $ (-645 (-645 (-645 |#1|))) (-645 (-171)) (-171)) 28) (($ $ (-645 (-645 (-944 |#1|))) (-112) (-112)) 27) (($ $ (-645 (-645 (-645 |#1|))) (-112) (-112)) 26) (($ (-645 (-645 (-944 |#1|)))) 25) (($ (-645 (-645 (-944 |#1|))) (-112) (-112)) 24) (((-645 (-645 (-944 |#1|))) $) 23)) (-3768 (($ (-645 $)) 58) (($ $ $) 57)) (-2074 (((-645 (-171)) $) 17)) (-2338 (((-645 (-944 |#1|)) $) 21)) (-2194 (((-645 (-645 (-171))) $) 18)) (-1962 (((-645 (-645 (-645 (-944 |#1|)))) $) 19)) (-1513 (((-645 (-645 (-645 (-772)))) $) 20)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3743 (((-772) $ (-645 (-944 |#1|))) 52)) (-1633 (((-112) $) 40)) (-4189 (($ $ (-645 (-944 |#1|))) 44) (($ $ (-645 (-645 |#1|))) 43) (($ (-645 (-944 |#1|))) 42) (((-645 (-944 |#1|)) $) 41)) (-1653 (($) 62) (($ (-1164 3 |#1|)) 61)) (-4247 (($ $) 53)) (-2962 (((-645 $) $) 54)) (-4187 (($ (-645 $)) 56)) (-3876 (((-645 $) $) 55)) (-4101 (((-863) $) 12)) (-3595 (((-112) $) 35)) (-2747 (($ $ (-645 (-944 |#1|))) 39) (($ $ (-645 (-645 |#1|))) 38) (($ (-645 (-944 |#1|))) 37) (((-645 (-944 |#1|)) $) 36)) (-2935 (($ $) 15)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-1134 |#1|) (-140) (-1050)) (T -1134))
+((-4101 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-863)))) (-1653 (*1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050)))) (-1653 (*1 *1 *2) (-12 (-5 *2 (-1164 3 *3)) (-4 *3 (-1050)) (-4 *1 (-1134 *3)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-3768 (*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050)))) (-4187 (*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-3876 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)))) (-2962 (*1 *2 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)))) (-4247 (*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050)))) (-3743 (*1 *2 *1 *3) (-12 (-5 *3 (-645 (-944 *4))) (-4 *1 (-1134 *4)) (-4 *4 (-1050)) (-5 *2 (-772)))) (-3342 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-944 *4)) (-4 *1 (-1134 *4)) (-4 *4 (-1050)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-1976 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-1976 (*1 *1 *2) (-12 (-5 *2 (-944 *3)) (-4 *3 (-1050)) (-4 *1 (-1134 *3)))) (-1976 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-944 *3)))) (-1522 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-4189 (*1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1134 *3)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-2747 (*1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1134 *3)))) (-2747 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-3595 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-3001 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-3001 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))) (-3001 (*1 *1 *2) (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1134 *3)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-3465 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-3901 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-944 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1134 *5)) (-4 *5 (-1050)))) (-3901 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171))) (-5 *4 (-171)) (-4 *1 (-1134 *5)) (-4 *5 (-1050)))) (-3901 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112)) (-4 *1 (-1134 *4)) (-4 *4 (-1050)))) (-3901 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112)) (-4 *1 (-1134 *4)) (-4 *4 (-1050)))) (-3901 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 *3)))) (-4 *3 (-1050)) (-4 *1 (-1134 *3)))) (-3901 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112)) (-4 *4 (-1050)) (-4 *1 (-1134 *4)))) (-3901 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-944 *3)))))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))) (-1513 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-645 (-772))))))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-645 (-944 *3))))))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-171)))))) (-2074 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-171))))) (-3171 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -4229 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772)))))) (-2935 (*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-1164 3 *3)))))
+(-13 (-1100) (-10 -8 (-15 -1653 ($)) (-15 -1653 ($ (-1164 3 |t#1|))) (-15 -3163 ((-772) $)) (-15 -4088 ((-772) $)) (-15 -3768 ($ (-645 $))) (-15 -3768 ($ $ $)) (-15 -4187 ($ (-645 $))) (-15 -3876 ((-645 $) $)) (-15 -2962 ((-645 $) $)) (-15 -4247 ($ $)) (-15 -3743 ((-772) $ (-645 (-944 |t#1|)))) (-15 -3342 ($ $ (-772) (-944 |t#1|))) (-15 -1976 ($ $ (-944 |t#1|))) (-15 -1976 ($ $ (-645 |t#1|))) (-15 -1976 ($ $ (-772))) (-15 -1976 ($ (-944 |t#1|))) (-15 -1976 ((-944 |t#1|) $)) (-15 -1522 ((-112) $)) (-15 -4189 ($ $ (-645 (-944 |t#1|)))) (-15 -4189 ($ $ (-645 (-645 |t#1|)))) (-15 -4189 ($ (-645 (-944 |t#1|)))) (-15 -4189 ((-645 (-944 |t#1|)) $)) (-15 -1633 ((-112) $)) (-15 -2747 ($ $ (-645 (-944 |t#1|)))) (-15 -2747 ($ $ (-645 (-645 |t#1|)))) (-15 -2747 ($ (-645 (-944 |t#1|)))) (-15 -2747 ((-645 (-944 |t#1|)) $)) (-15 -3595 ((-112) $)) (-15 -3001 ($ $ (-645 (-944 |t#1|)))) (-15 -3001 ($ $ (-645 (-645 |t#1|)))) (-15 -3001 ($ (-645 (-944 |t#1|)))) (-15 -3001 ((-645 (-944 |t#1|)) $)) (-15 -3465 ((-112) $)) (-15 -3901 ($ $ (-645 (-645 (-944 |t#1|))) (-645 (-171)) (-171))) (-15 -3901 ($ $ (-645 (-645 (-645 |t#1|))) (-645 (-171)) (-171))) (-15 -3901 ($ $ (-645 (-645 (-944 |t#1|))) (-112) (-112))) (-15 -3901 ($ $ (-645 (-645 (-645 |t#1|))) (-112) (-112))) (-15 -3901 ($ (-645 (-645 (-944 |t#1|))))) (-15 -3901 ($ (-645 (-645 (-944 |t#1|))) (-112) (-112))) (-15 -3901 ((-645 (-645 (-944 |t#1|))) $)) (-15 -1623 ((-112) $)) (-15 -2338 ((-645 (-944 |t#1|)) $)) (-15 -1513 ((-645 (-645 (-645 (-772)))) $)) (-15 -1962 ((-645 (-645 (-645 (-944 |t#1|)))) $)) (-15 -2194 ((-645 (-645 (-171))) $)) (-15 -2074 ((-645 (-171)) $)) (-15 -3171 ((-2 (|:| -4229 (-772)) (|:| |curves| (-772)) (|:| |polygons| (-772)) (|:| |constructs| (-772))) $)) (-15 -2935 ($ $)) (-15 -1900 ((-1164 3 |t#1|) $)) (-15 -4101 ((-863) $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 174) (($ (-1181)) NIL) (((-1181) $) 7)) (-1453 (((-112) $ (|[\|\|]| (-527))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-677))) 27) (((-112) $ (|[\|\|]| (-1276))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1115))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-682))) 51) (((-112) $ (|[\|\|]| (-520))) 55) (((-112) $ (|[\|\|]| (-1066))) 59) (((-112) $ (|[\|\|]| (-1277))) 63) (((-112) $ (|[\|\|]| (-528))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-672))) 75) (((-112) $ (|[\|\|]| (-312))) 79) (((-112) $ (|[\|\|]| (-1037))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-971))) 91) (((-112) $ (|[\|\|]| (-1073))) 95) (((-112) $ (|[\|\|]| (-1090))) 99) (((-112) $ (|[\|\|]| (-1096))) 103) (((-112) $ (|[\|\|]| (-627))) 107) (((-112) $ (|[\|\|]| (-1166))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-481))) 123) (((-112) $ (|[\|\|]| (-594))) 127) (((-112) $ (|[\|\|]| (-509))) 131) (((-112) $ (|[\|\|]| (-1158))) 135) (((-112) $ (|[\|\|]| (-567))) 139)) (-3739 (((-112) $ $) NIL)) (-4276 (((-527) $) 20) (((-218) $) 24) (((-677) $) 28) (((-1276) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1115) $) 44) (((-96) $) 48) (((-682) $) 52) (((-520) $) 56) (((-1066) $) 60) (((-1277) $) 64) (((-528) $) 68) (((-154) $) 72) (((-672) $) 76) (((-312) $) 80) (((-1037) $) 84) (((-180) $) 88) (((-971) $) 92) (((-1073) $) 96) (((-1090) $) 100) (((-1096) $) 104) (((-627) $) 108) (((-1166) $) 112) (((-156) $) 116) (((-137) $) 120) (((-481) $) 124) (((-594) $) 128) (((-509) $) 132) (((-1158) $) 136) (((-567) $) 140)) (-3052 (((-112) $ $) NIL)))
+(((-1135) (-1137)) (T -1135))
+NIL
+(-1137)
+((-1814 (((-645 (-1181)) (-1158)) 9)))
+(((-1136) (-10 -7 (-15 -1814 ((-645 (-1181)) (-1158))))) (T -1136))
+((-1814 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-645 (-1181))) (-5 *1 (-1136)))))
+(-10 -7 (-15 -1814 ((-645 (-1181)) (-1158))))
+((-2257 (((-112) $ $) 7)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-1181)) 17) (((-1181) $) 16)) (-1453 (((-112) $ (|[\|\|]| (-527))) 81) (((-112) $ (|[\|\|]| (-218))) 79) (((-112) $ (|[\|\|]| (-677))) 77) (((-112) $ (|[\|\|]| (-1276))) 75) (((-112) $ (|[\|\|]| (-138))) 73) (((-112) $ (|[\|\|]| (-133))) 71) (((-112) $ (|[\|\|]| (-1115))) 69) (((-112) $ (|[\|\|]| (-96))) 67) (((-112) $ (|[\|\|]| (-682))) 65) (((-112) $ (|[\|\|]| (-520))) 63) (((-112) $ (|[\|\|]| (-1066))) 61) (((-112) $ (|[\|\|]| (-1277))) 59) (((-112) $ (|[\|\|]| (-528))) 57) (((-112) $ (|[\|\|]| (-154))) 55) (((-112) $ (|[\|\|]| (-672))) 53) (((-112) $ (|[\|\|]| (-312))) 51) (((-112) $ (|[\|\|]| (-1037))) 49) (((-112) $ (|[\|\|]| (-180))) 47) (((-112) $ (|[\|\|]| (-971))) 45) (((-112) $ (|[\|\|]| (-1073))) 43) (((-112) $ (|[\|\|]| (-1090))) 41) (((-112) $ (|[\|\|]| (-1096))) 39) (((-112) $ (|[\|\|]| (-627))) 37) (((-112) $ (|[\|\|]| (-1166))) 35) (((-112) $ (|[\|\|]| (-156))) 33) (((-112) $ (|[\|\|]| (-137))) 31) (((-112) $ (|[\|\|]| (-481))) 29) (((-112) $ (|[\|\|]| (-594))) 27) (((-112) $ (|[\|\|]| (-509))) 25) (((-112) $ (|[\|\|]| (-1158))) 23) (((-112) $ (|[\|\|]| (-567))) 21)) (-3739 (((-112) $ $) 9)) (-4276 (((-527) $) 80) (((-218) $) 78) (((-677) $) 76) (((-1276) $) 74) (((-138) $) 72) (((-133) $) 70) (((-1115) $) 68) (((-96) $) 66) (((-682) $) 64) (((-520) $) 62) (((-1066) $) 60) (((-1277) $) 58) (((-528) $) 56) (((-154) $) 54) (((-672) $) 52) (((-312) $) 50) (((-1037) $) 48) (((-180) $) 46) (((-971) $) 44) (((-1073) $) 42) (((-1090) $) 40) (((-1096) $) 38) (((-627) $) 36) (((-1166) $) 34) (((-156) $) 32) (((-137) $) 30) (((-481) $) 28) (((-594) $) 26) (((-509) $) 24) (((-1158) $) 22) (((-567) $) 20)) (-3052 (((-112) $ $) 6)))
+(((-1137) (-140)) (T -1137))
+((-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-527)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-218)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-677)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1276))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1276)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-138)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-133)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1115)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-96)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-682)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-520)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1066)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1277))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1277)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-528)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-154)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-672)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-312)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1037))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1037)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-180)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-971))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-971)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1073)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1090)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1096)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-627)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1166)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-156)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-137)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-481)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-594)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-509)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1158)))) (-1453 (*1 *2 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)))) (-4276 (*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-567)))))
+(-13 (-1083) (-1261) (-10 -8 (-15 -1453 ((-112) $ (|[\|\|]| (-527)))) (-15 -4276 ((-527) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-218)))) (-15 -4276 ((-218) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-677)))) (-15 -4276 ((-677) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1276)))) (-15 -4276 ((-1276) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-138)))) (-15 -4276 ((-138) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-133)))) (-15 -4276 ((-133) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1115)))) (-15 -4276 ((-1115) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-96)))) (-15 -4276 ((-96) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-682)))) (-15 -4276 ((-682) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-520)))) (-15 -4276 ((-520) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1066)))) (-15 -4276 ((-1066) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1277)))) (-15 -4276 ((-1277) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-528)))) (-15 -4276 ((-528) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-154)))) (-15 -4276 ((-154) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-672)))) (-15 -4276 ((-672) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-312)))) (-15 -4276 ((-312) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1037)))) (-15 -4276 ((-1037) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-180)))) (-15 -4276 ((-180) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-971)))) (-15 -4276 ((-971) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1073)))) (-15 -4276 ((-1073) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1090)))) (-15 -4276 ((-1090) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1096)))) (-15 -4276 ((-1096) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-627)))) (-15 -4276 ((-627) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1166)))) (-15 -4276 ((-1166) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-156)))) (-15 -4276 ((-156) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-137)))) (-15 -4276 ((-137) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-481)))) (-15 -4276 ((-481) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-594)))) (-15 -4276 ((-594) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-509)))) (-15 -4276 ((-509) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-1158)))) (-15 -4276 ((-1158) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-567)))) (-15 -4276 ((-567) $))))
+(((-93) . T) ((-102) . T) ((-617 #0=(-1181)) . T) ((-614 (-863)) . T) ((-614 #0#) . T) ((-493 #0#) . T) ((-1100) . T) ((-1083) . T) ((-1261) . T))
+((-3987 (((-1271) (-645 (-863))) 23) (((-1271) (-863)) 22)) (-2757 (((-1271) (-645 (-863))) 21) (((-1271) (-863)) 20)) (-1774 (((-1271) (-645 (-863))) 19) (((-1271) (-863)) 11) (((-1271) (-1158) (-863)) 17)))
+(((-1138) (-10 -7 (-15 -1774 ((-1271) (-1158) (-863))) (-15 -1774 ((-1271) (-863))) (-15 -2757 ((-1271) (-863))) (-15 -3987 ((-1271) (-863))) (-15 -1774 ((-1271) (-645 (-863)))) (-15 -2757 ((-1271) (-645 (-863)))) (-15 -3987 ((-1271) (-645 (-863)))))) (T -1138))
+((-3987 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1271)) (-5 *1 (-1138)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1271)) (-5 *1 (-1138)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1271)) (-5 *1 (-1138)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138)))) (-1774 (*1 *2 *3 *4) (-12 (-5 *3 (-1158)) (-5 *4 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138)))))
+(-10 -7 (-15 -1774 ((-1271) (-1158) (-863))) (-15 -1774 ((-1271) (-863))) (-15 -2757 ((-1271) (-863))) (-15 -3987 ((-1271) (-863))) (-15 -1774 ((-1271) (-645 (-863)))) (-15 -2757 ((-1271) (-645 (-863)))) (-15 -3987 ((-1271) (-645 (-863)))))
+((-1868 (($ $ $) 10)) (-1496 (($ $) 9)) (-2604 (($ $ $) 13)) (-1997 (($ $ $) 15)) (-2115 (($ $ $) 12)) (-2761 (($ $ $) 14)) (-2460 (($ $) 17)) (-2623 (($ $) 16)) (-1771 (($ $) 6)) (-3589 (($ $ $) 11) (($ $) 7)) (-2846 (($ $ $) 8)))
+(((-1139) (-140)) (T -1139))
+((-2460 (*1 *1 *1) (-4 *1 (-1139))) (-2623 (*1 *1 *1) (-4 *1 (-1139))) (-1997 (*1 *1 *1 *1) (-4 *1 (-1139))) (-2761 (*1 *1 *1 *1) (-4 *1 (-1139))) (-2604 (*1 *1 *1 *1) (-4 *1 (-1139))) (-2115 (*1 *1 *1 *1) (-4 *1 (-1139))) (-3589 (*1 *1 *1 *1) (-4 *1 (-1139))) (-1868 (*1 *1 *1 *1) (-4 *1 (-1139))) (-1496 (*1 *1 *1) (-4 *1 (-1139))) (-2846 (*1 *1 *1 *1) (-4 *1 (-1139))) (-3589 (*1 *1 *1) (-4 *1 (-1139))) (-1771 (*1 *1 *1) (-4 *1 (-1139))))
+(-13 (-10 -8 (-15 -1771 ($ $)) (-15 -3589 ($ $)) (-15 -2846 ($ $ $)) (-15 -1496 ($ $)) (-15 -1868 ($ $ $)) (-15 -3589 ($ $ $)) (-15 -2115 ($ $ $)) (-15 -2604 ($ $ $)) (-15 -2761 ($ $ $)) (-15 -1997 ($ $ $)) (-15 -2623 ($ $)) (-15 -2460 ($ $))))
+((-2257 (((-112) $ $) 44)) (-3843 ((|#1| $) 17)) (-4355 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-1487 (((-112) $) 19)) (-2882 (($ $ |#1|) 30)) (-2924 (($ $ (-112)) 32)) (-3650 (($ $) 33)) (-3993 (($ $ |#2|) 31)) (-2451 (((-1158) $) NIL)) (-2221 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3339 (((-1120) $) NIL)) (-3353 (((-112) $) 16)) (-3164 (($) 13)) (-4247 (($ $) 29)) (-4114 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) 23) (((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2138 |#2|)))) 26) (((-645 $) |#1| (-645 |#2|)) 28)) (-3989 ((|#2| $) 18)) (-4101 (((-863) $) 53)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 42)))
+(((-1140 |#1| |#2|) (-13 (-1100) (-10 -8 (-15 -3164 ($)) (-15 -3353 ((-112) $)) (-15 -3843 (|#1| $)) (-15 -3989 (|#2| $)) (-15 -1487 ((-112) $)) (-15 -4114 ($ |#1| |#2| (-112))) (-15 -4114 ($ |#1| |#2|)) (-15 -4114 ($ (-2 (|:| |val| |#1|) (|:| -2138 |#2|)))) (-15 -4114 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))))) (-15 -4114 ((-645 $) |#1| (-645 |#2|))) (-15 -4247 ($ $)) (-15 -2882 ($ $ |#1|)) (-15 -3993 ($ $ |#2|)) (-15 -2924 ($ $ (-112))) (-15 -3650 ($ $)) (-15 -2221 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4355 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1100) (-34)) (-13 (-1100) (-34))) (T -1140))
+((-3164 (*1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-3353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))))) (-3843 (*1 *2 *1) (-12 (-4 *2 (-13 (-1100) (-34))) (-5 *1 (-1140 *2 *3)) (-4 *3 (-13 (-1100) (-34))))) (-3989 (*1 *2 *1) (-12 (-4 *2 (-13 (-1100) (-34))) (-5 *1 (-1140 *3 *2)) (-4 *3 (-13 (-1100) (-34))))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2138 *4))) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1140 *3 *4)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2138 *5)))) (-4 *4 (-13 (-1100) (-34))) (-4 *5 (-13 (-1100) (-34))) (-5 *2 (-645 (-1140 *4 *5))) (-5 *1 (-1140 *4 *5)))) (-4114 (*1 *2 *3 *4) (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1100) (-34))) (-5 *2 (-645 (-1140 *3 *5))) (-5 *1 (-1140 *3 *5)) (-4 *3 (-13 (-1100) (-34))))) (-4247 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-2882 (*1 *1 *1 *2) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-3993 (*1 *1 *1 *2) (-12 (-5 *1 (-1140 *3 *2)) (-4 *3 (-13 (-1100) (-34))) (-4 *2 (-13 (-1100) (-34))))) (-2924 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))))) (-3650 (*1 *1 *1) (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-2221 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1100) (-34))) (-4 *6 (-13 (-1100) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *5 *6)))) (-4355 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1100) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5)) (-4 *4 (-13 (-1100) (-34))))))
+(-13 (-1100) (-10 -8 (-15 -3164 ($)) (-15 -3353 ((-112) $)) (-15 -3843 (|#1| $)) (-15 -3989 (|#2| $)) (-15 -1487 ((-112) $)) (-15 -4114 ($ |#1| |#2| (-112))) (-15 -4114 ($ |#1| |#2|)) (-15 -4114 ($ (-2 (|:| |val| |#1|) (|:| -2138 |#2|)))) (-15 -4114 ((-645 $) (-645 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))))) (-15 -4114 ((-645 $) |#1| (-645 |#2|))) (-15 -4247 ($ $)) (-15 -2882 ($ $ |#1|)) (-15 -3993 ($ $ |#2|)) (-15 -2924 ($ $ (-112))) (-15 -3650 ($ $)) (-15 -2221 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -4355 ((-112) $ $ (-1 (-112) |#2| |#2|)))))
+((-2257 (((-112) $ $) NIL (|has| (-1140 |#1| |#2|) (-1100)))) (-3843 (((-1140 |#1| |#2|) $) 27)) (-3351 (($ $) 91)) (-3758 (((-112) (-1140 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 100)) (-1630 (($ $ $ (-645 (-1140 |#1| |#2|))) 108) (($ $ $ (-645 (-1140 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 109)) (-1580 (((-112) $ (-772)) NIL)) (-2372 (((-1140 |#1| |#2|) $ (-1140 |#1| |#2|)) 46 (|has| $ (-6 -4417)))) (-4230 (((-1140 |#1| |#2|) $ "value" (-1140 |#1| |#2|)) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 44 (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-3325 (((-645 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) $) 95)) (-3410 (($ (-1140 |#1| |#2|) $) 42)) (-3138 (($ (-1140 |#1| |#2|) $) 34)) (-2896 (((-645 (-1140 |#1| |#2|)) $) NIL (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 54)) (-3857 (((-112) (-1140 |#1| |#2|) $) 97)) (-2971 (((-112) $ $) NIL (|has| (-1140 |#1| |#2|) (-1100)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 (-1140 |#1| |#2|)) $) 58 (|has| $ (-6 -4416)))) (-2176 (((-112) (-1140 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-1140 |#1| |#2|) (-1100))))) (-4392 (($ (-1 (-1140 |#1| |#2|) (-1140 |#1| |#2|)) $) 50 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-1140 |#1| |#2|) (-1140 |#1| |#2|)) $) 49)) (-3230 (((-112) $ (-772)) NIL)) (-3625 (((-645 (-1140 |#1| |#2|)) $) 56)) (-1436 (((-112) $) 45)) (-2451 (((-1158) $) NIL (|has| (-1140 |#1| |#2|) (-1100)))) (-3339 (((-1120) $) NIL (|has| (-1140 |#1| |#2|) (-1100)))) (-2298 (((-3 $ "failed") $) 89)) (-2297 (((-112) (-1 (-112) (-1140 |#1| |#2|)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-1140 |#1| |#2|)))) NIL (-12 (|has| (-1140 |#1| |#2|) (-310 (-1140 |#1| |#2|))) (|has| (-1140 |#1| |#2|) (-1100)))) (($ $ (-295 (-1140 |#1| |#2|))) NIL (-12 (|has| (-1140 |#1| |#2|) (-310 (-1140 |#1| |#2|))) (|has| (-1140 |#1| |#2|) (-1100)))) (($ $ (-1140 |#1| |#2|) (-1140 |#1| |#2|)) NIL (-12 (|has| (-1140 |#1| |#2|) (-310 (-1140 |#1| |#2|))) (|has| (-1140 |#1| |#2|) (-1100)))) (($ $ (-645 (-1140 |#1| |#2|)) (-645 (-1140 |#1| |#2|))) NIL (-12 (|has| (-1140 |#1| |#2|) (-310 (-1140 |#1| |#2|))) (|has| (-1140 |#1| |#2|) (-1100))))) (-3748 (((-112) $ $) 53)) (-3353 (((-112) $) 24)) (-3164 (($) 26)) (-1552 (((-1140 |#1| |#2|) $ "value") NIL)) (-4304 (((-567) $ $) NIL)) (-3436 (((-112) $) 47)) (-3349 (((-772) (-1 (-112) (-1140 |#1| |#2|)) $) NIL (|has| $ (-6 -4416))) (((-772) (-1140 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-1140 |#1| |#2|) (-1100))))) (-4247 (($ $) 52)) (-4114 (($ (-1140 |#1| |#2|)) 10) (($ |#1| |#2| (-645 $)) 13) (($ |#1| |#2| (-645 (-1140 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-645 |#2|)) 18)) (-3820 (((-645 |#2|) $) 96)) (-4101 (((-863) $) 87 (|has| (-1140 |#1| |#2|) (-614 (-863))))) (-2936 (((-645 $) $) 31)) (-2684 (((-112) $ $) NIL (|has| (-1140 |#1| |#2|) (-1100)))) (-3739 (((-112) $ $) NIL (|has| (-1140 |#1| |#2|) (-1100)))) (-2012 (((-112) (-1 (-112) (-1140 |#1| |#2|)) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 70 (|has| (-1140 |#1| |#2|) (-1100)))) (-2268 (((-772) $) 64 (|has| $ (-6 -4416)))))
+(((-1141 |#1| |#2|) (-13 (-1011 (-1140 |#1| |#2|)) (-10 -8 (-6 -4417) (-6 -4416) (-15 -2298 ((-3 $ "failed") $)) (-15 -3351 ($ $)) (-15 -4114 ($ (-1140 |#1| |#2|))) (-15 -4114 ($ |#1| |#2| (-645 $))) (-15 -4114 ($ |#1| |#2| (-645 (-1140 |#1| |#2|)))) (-15 -4114 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -3820 ((-645 |#2|) $)) (-15 -3325 ((-645 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) $)) (-15 -3857 ((-112) (-1140 |#1| |#2|) $)) (-15 -3758 ((-112) (-1140 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3138 ($ (-1140 |#1| |#2|) $)) (-15 -3410 ($ (-1140 |#1| |#2|) $)) (-15 -1630 ($ $ $ (-645 (-1140 |#1| |#2|)))) (-15 -1630 ($ $ $ (-645 (-1140 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1100) (-34)) (-13 (-1100) (-34))) (T -1141))
+((-2298 (*1 *1 *1) (|partial| -12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-3351 (*1 *1 *1) (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-4114 (*1 *1 *2) (-12 (-5 *2 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4)))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1141 *2 *3))) (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))))) (-4114 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-645 (-1140 *2 *3))) (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34))) (-5 *1 (-1141 *2 *3)))) (-4114 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1100) (-34))) (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1100) (-34))))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-645 *4)) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))))) (-3325 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4)))) (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))))) (-3857 (*1 *2 *3 *1) (-12 (-5 *3 (-1140 *4 *5)) (-4 *4 (-13 (-1100) (-34))) (-4 *5 (-13 (-1100) (-34))) (-5 *2 (-112)) (-5 *1 (-1141 *4 *5)))) (-3758 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1140 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1100) (-34))) (-4 *6 (-13 (-1100) (-34))) (-5 *2 (-112)) (-5 *1 (-1141 *5 *6)))) (-3138 (*1 *1 *2 *1) (-12 (-5 *2 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4)))) (-3410 (*1 *1 *2 *1) (-12 (-5 *2 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4)))) (-1630 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-645 (-1140 *3 *4))) (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4)))) (-1630 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-1140 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1100) (-34))) (-4 *5 (-13 (-1100) (-34))) (-5 *1 (-1141 *4 *5)))))
+(-13 (-1011 (-1140 |#1| |#2|)) (-10 -8 (-6 -4417) (-6 -4416) (-15 -2298 ((-3 $ "failed") $)) (-15 -3351 ($ $)) (-15 -4114 ($ (-1140 |#1| |#2|))) (-15 -4114 ($ |#1| |#2| (-645 $))) (-15 -4114 ($ |#1| |#2| (-645 (-1140 |#1| |#2|)))) (-15 -4114 ($ |#1| |#2| |#1| (-645 |#2|))) (-15 -3820 ((-645 |#2|) $)) (-15 -3325 ((-645 (-2 (|:| |val| |#1|) (|:| -2138 |#2|))) $)) (-15 -3857 ((-112) (-1140 |#1| |#2|) $)) (-15 -3758 ((-112) (-1140 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -3138 ($ (-1140 |#1| |#2|) $)) (-15 -3410 ($ (-1140 |#1| |#2|) $)) (-15 -1630 ($ $ $ (-645 (-1140 |#1| |#2|)))) (-15 -1630 ($ $ $ (-645 (-1140 |#1| |#2|)) (-1 (-112) |#2| |#2|)))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-3008 (($ $) NIL)) (-4093 ((|#2| $) NIL)) (-2141 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2660 (($ (-690 |#2|)) 56)) (-2358 (((-112) $) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-3617 (($ |#2|) 14)) (-4061 (($) NIL T CONST)) (-1876 (($ $) 69 (|has| |#2| (-308)))) (-4074 (((-240 |#1| |#2|) $ (-567)) 42)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 |#2| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) ((|#2| $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) 83)) (-2432 (((-772) $) 71 (|has| |#2| (-559)))) (-4344 ((|#2| $ (-567) (-567)) NIL)) (-2896 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-3714 (((-112) $) NIL)) (-1375 (((-772) $) 73 (|has| |#2| (-559)))) (-3137 (((-645 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-559)))) (-4300 (((-772) $) NIL)) (-4012 (($ |#2|) 25)) (-4311 (((-772) $) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1982 ((|#2| $) 67 (|has| |#2| (-6 (-4418 "*"))))) (-3776 (((-567) $) NIL)) (-4176 (((-567) $) NIL)) (-1542 (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1977 (((-567) $) NIL)) (-2467 (((-567) $) NIL)) (-4036 (($ (-645 (-645 |#2|))) 37)) (-4392 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1343 (((-645 (-645 |#2|)) $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3475 (((-3 $ "failed") $) 80 (|has| |#2| (-365)))) (-3339 (((-1120) $) NIL)) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559)))) (-2297 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ (-567) (-567) |#2|) NIL) ((|#2| $ (-567) (-567)) NIL)) (-1930 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3167 ((|#2| $) NIL)) (-4008 (($ (-645 |#2|)) 50)) (-2685 (((-112) $) NIL)) (-3927 (((-240 |#1| |#2|) $) NIL)) (-3240 ((|#2| $) 65 (|has| |#2| (-6 (-4418 "*"))))) (-3349 (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-4247 (($ $) NIL)) (-3542 (((-539) $) 89 (|has| |#2| (-615 (-539))))) (-3295 (((-240 |#1| |#2|) $ (-567)) 44)) (-4101 (((-863) $) 47) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#2| (-1039 (-410 (-567))))) (($ |#2|) NIL) (((-690 |#2|) $) 52)) (-2686 (((-772)) 23 T CONST)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-1463 (((-112) $) NIL)) (-1468 (($) 16 T CONST)) (-1484 (($) 21 T CONST)) (-2692 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-772)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) 63) (($ $ (-567)) 82 (|has| |#2| (-365)))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1142 |#1| |#2|) (-13 (-1123 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -4012 ($ |#2|)) (-15 -3008 ($ $)) (-15 -2660 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4418 "*"))) (-6 -4405) |%noBranch|) (IF (|has| |#2| (-6 (-4418 "*"))) (IF (|has| |#2| (-6 -4413)) (-6 -4413) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|))) (-772) (-1050)) (T -1142))
+((-4012 (*1 *1 *2) (-12 (-5 *1 (-1142 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1050)))) (-3008 (*1 *1 *1) (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1050)))) (-2660 (*1 *1 *2) (-12 (-5 *2 (-690 *4)) (-4 *4 (-1050)) (-5 *1 (-1142 *3 *4)) (-14 *3 (-772)))))
+(-13 (-1123 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-614 (-690 |#2|)) (-10 -8 (-15 -4012 ($ |#2|)) (-15 -3008 ($ $)) (-15 -2660 ($ (-690 |#2|))) (IF (|has| |#2| (-6 (-4418 "*"))) (-6 -4405) |%noBranch|) (IF (|has| |#2| (-6 (-4418 "*"))) (IF (|has| |#2| (-6 -4413)) (-6 -4413) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-615 (-539))) (-6 (-615 (-539))) |%noBranch|)))
+((-2346 (($ $) 19)) (-4211 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-3902 (((-112) $ $) 24)) (-3660 (($ $) 17)) (-1552 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1233 (-567))) NIL) (($ $ $) 31)) (-4101 (($ (-144)) 29) (((-863) $) NIL)))
+(((-1143 |#1|) (-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -1552 (|#1| |#1| |#1|)) (-15 -4211 (|#1| |#1| (-141))) (-15 -4211 (|#1| |#1| (-144))) (-15 -4101 (|#1| (-144))) (-15 -3902 ((-112) |#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -1552 ((-144) |#1| (-567))) (-15 -1552 ((-144) |#1| (-567) (-144)))) (-1144)) (T -1143))
+NIL
+(-10 -8 (-15 -4101 ((-863) |#1|)) (-15 -1552 (|#1| |#1| |#1|)) (-15 -4211 (|#1| |#1| (-141))) (-15 -4211 (|#1| |#1| (-144))) (-15 -4101 (|#1| (-144))) (-15 -3902 ((-112) |#1| |#1|)) (-15 -2346 (|#1| |#1|)) (-15 -3660 (|#1| |#1|)) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -1552 ((-144) |#1| (-567))) (-15 -1552 ((-144) |#1| (-567) (-144))))
+((-2257 (((-112) $ $) 19 (|has| (-144) (-1100)))) (-4004 (($ $) 121)) (-2346 (($ $) 122)) (-4211 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-3884 (((-112) $ $) 119)) (-3868 (((-112) $ $ (-567)) 118)) (-2714 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2530 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-3655 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4417))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4417))))) (-1594 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-1580 (((-112) $ (-772)) 8)) (-4230 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4417))) (((-144) $ (-1233 (-567)) (-144)) 59 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-3328 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1695 (($ $) 91 (|has| $ (-6 -4417)))) (-3315 (($ $) 101)) (-2147 (($ $ (-1233 (-567)) $) 115)) (-2084 (($ $) 79 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ (-144) $) 78 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4416)))) (-3402 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4416))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4416)))) (-1303 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4417)))) (-4344 (((-144) $ (-567)) 52)) (-3902 (((-112) $ $) 120)) (-3771 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1100))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1100))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2896 (((-645 (-144)) $) 31 (|has| $ (-6 -4416)))) (-4012 (($ (-772) (-144)) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-2056 (($ $ $) 88 (|has| (-144) (-851)))) (-3768 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-1542 (((-645 (-144)) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-1802 (($ $ $) 87 (|has| (-144) (-851)))) (-2639 (((-112) $ $ (-144)) 116)) (-3828 (((-772) $ $ (-144)) 117)) (-4392 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-1879 (($ $) 123)) (-3660 (($ $) 124)) (-3230 (((-112) $ (-772)) 10)) (-3340 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2451 (((-1158) $) 22 (|has| (-144) (-1100)))) (-2884 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21 (|has| (-144) (-1100)))) (-2048 (((-144) $) 43 (|has| (-567) (-851)))) (-3050 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2092 (($ $ (-144)) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1412 (((-645 (-144)) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1233 (-567))) 64) (($ $ $) 103)) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-3349 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4416))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416))))) (-3732 (($ $ $ (-567)) 92 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4114 (($ (-645 (-144))) 71)) (-2285 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (($ (-144)) 112) (((-863) $) 18 (|has| (-144) (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| (-144) (-1100)))) (-2012 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) 85 (|has| (-144) (-851)))) (-3085 (((-112) $ $) 84 (|has| (-144) (-851)))) (-3052 (((-112) $ $) 20 (|has| (-144) (-1100)))) (-3098 (((-112) $ $) 86 (|has| (-144) (-851)))) (-3075 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1144) (-140)) (T -1144))
+((-3660 (*1 *1 *1) (-4 *1 (-1144))) (-1879 (*1 *1 *1) (-4 *1 (-1144))) (-2346 (*1 *1 *1) (-4 *1 (-1144))) (-4004 (*1 *1 *1) (-4 *1 (-1144))) (-3902 (*1 *2 *1 *1) (-12 (-4 *1 (-1144)) (-5 *2 (-112)))) (-3884 (*1 *2 *1 *1) (-12 (-4 *1 (-1144)) (-5 *2 (-112)))) (-3868 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1144)) (-5 *3 (-567)) (-5 *2 (-112)))) (-3828 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1144)) (-5 *3 (-144)) (-5 *2 (-772)))) (-2639 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1144)) (-5 *3 (-144)) (-5 *2 (-112)))) (-2147 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1144)) (-5 *2 (-1233 (-567))))) (-3771 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-567)))) (-3771 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-567)) (-5 *3 (-141)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1144)))) (-2714 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1144)))) (-2714 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1144)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-144)))) (-4211 (*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-141)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-144)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-141)))) (-3328 (*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-144)))) (-3328 (*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-141)))) (-1552 (*1 *1 *1 *1) (-4 *1 (-1144))))
+(-13 (-19 (-144)) (-10 -8 (-15 -3660 ($ $)) (-15 -1879 ($ $)) (-15 -2346 ($ $)) (-15 -4004 ($ $)) (-15 -3902 ((-112) $ $)) (-15 -3884 ((-112) $ $)) (-15 -3868 ((-112) $ $ (-567))) (-15 -3828 ((-772) $ $ (-144))) (-15 -2639 ((-112) $ $ (-144))) (-15 -2147 ($ $ (-1233 (-567)) $)) (-15 -3771 ((-567) $ $ (-567))) (-15 -3771 ((-567) (-141) $ (-567))) (-15 -4101 ($ (-144))) (-15 -2714 ((-645 $) $ (-144))) (-15 -2714 ((-645 $) $ (-141))) (-15 -4211 ($ $ (-144))) (-15 -4211 ($ $ (-141))) (-15 -3340 ($ $ (-144))) (-15 -3340 ($ $ (-141))) (-15 -3328 ($ $ (-144))) (-15 -3328 ($ $ (-141))) (-15 -1552 ($ $ $))))
+(((-34) . T) ((-102) -2909 (|has| (-144) (-1100)) (|has| (-144) (-851))) ((-614 (-863)) -2909 (|has| (-144) (-1100)) (|has| (-144) (-851)) (|has| (-144) (-614 (-863)))) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))) ((-652 #0#) . T) ((-19 #0#) . T) ((-851) |has| (-144) (-851)) ((-1100) -2909 (|has| (-144) (-1100)) (|has| (-144) (-851))) ((-1216) . T))
+((-3155 (((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-772)) 113)) (-3762 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772)) 61)) (-1683 (((-1271) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-772)) 98)) (-3718 (((-772) (-645 |#4|) (-645 |#5|)) 30)) (-2538 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772)) 63) (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772) (-112)) 65)) (-2912 (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112)) 85)) (-3542 (((-1158) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) 90)) (-3305 (((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|) 60)) (-4133 (((-772) (-645 |#4|) (-645 |#5|)) 21)))
+(((-1145 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4133 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3718 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3305 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3155 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-772))) (-15 -3542 ((-1158) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1683 ((-1271) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-772)))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|) (-1109 |#1| |#2| |#3| |#4|)) (T -1145))
+((-1683 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9)))) (-5 *4 (-772)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1271)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8))) (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1109 *4 *5 *6 *7)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1158)) (-5 *1 (-1145 *4 *5 *6 *7 *8)))) (-3155 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-645 *11)) (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2138 *11)))))) (-5 *6 (-772)) (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2138 *11)))) (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1065 *7 *8 *9)) (-4 *11 (-1109 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-5 *1 (-1145 *7 *8 *9 *10 *11)))) (-2912 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))) (-2912 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))) (-2538 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1145 *5 *6 *7 *3 *4)) (-4 *4 (-1109 *5 *6 *7 *3)))) (-2538 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1065 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1145 *6 *7 *8 *3 *4)) (-4 *4 (-1109 *6 *7 *8 *3)))) (-2538 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794)) (-4 *9 (-851)) (-4 *3 (-1065 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1145 *7 *8 *9 *3 *4)) (-4 *4 (-1109 *7 *8 *9 *3)))) (-3762 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1145 *5 *6 *7 *3 *4)) (-4 *4 (-1109 *5 *6 *7 *3)))) (-3762 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *3 (-1065 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1145 *6 *7 *8 *3 *4)) (-4 *4 (-1109 *6 *7 *8 *3)))) (-3305 (*1 *2 *3 *4) (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-645 *4)) (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4)))))) (-5 *1 (-1145 *5 *6 *7 *3 *4)) (-4 *4 (-1109 *5 *6 *7 *3)))) (-3718 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -4133 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3718 ((-772) (-645 |#4|) (-645 |#5|))) (-15 -3305 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -3762 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772) (-112))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5| (-772))) (-15 -2538 ((-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) |#4| |#5|)) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112))) (-15 -2912 ((-645 |#5|) (-645 |#4|) (-645 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3155 ((-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-645 |#4|) (-645 |#5|) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-2 (|:| |done| (-645 |#5|)) (|:| |todo| (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))))) (-772))) (-15 -3542 ((-1158) (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|)))) (-15 -1683 ((-1271) (-645 (-2 (|:| |val| (-645 |#4|)) (|:| -2138 |#5|))) (-772))))
+((-2257 (((-112) $ $) NIL)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) NIL)) (-2102 (((-645 $) (-645 |#4|)) 124) (((-645 $) (-645 |#4|) (-112)) 125) (((-645 $) (-645 |#4|) (-112) (-112)) 123) (((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112)) 126)) (-2449 (((-645 |#3|) $) NIL)) (-1416 (((-112) $) NIL)) (-2739 (((-112) $) NIL (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1508 ((|#4| |#4| $) NIL)) (-1396 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| $) 97)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-1551 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) 75)) (-4061 (($) NIL T CONST)) (-3289 (((-112) $) 29 (|has| |#1| (-559)))) (-3407 (((-112) $ $) NIL (|has| |#1| (-559)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1579 (((-112) $) NIL (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2786 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) NIL)) (-1621 (($ (-645 |#4|)) NIL)) (-2061 (((-3 $ "failed") $) 45)) (-3816 ((|#4| |#4| $) 78)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-3138 (($ |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4155 ((|#4| |#4| $) NIL)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) NIL)) (-4314 (((-112) |#4| $) NIL)) (-2312 (((-112) |#4| $) NIL)) (-2336 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2237 (((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)) 139)) (-2896 (((-645 |#4|) $) 18 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4280 ((|#3| $) 38)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#4|) $) 19 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-4392 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 23)) (-4360 (((-645 |#3|) $) NIL)) (-4023 (((-112) |#3| $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-1372 (((-3 |#4| (-645 $)) |#4| |#4| $) NIL)) (-1856 (((-645 (-2 (|:| |val| |#4|) (|:| -2138 $))) |#4| |#4| $) 117)) (-3162 (((-3 |#4| "failed") $) 42)) (-1894 (((-645 $) |#4| $) 102)) (-4254 (((-3 (-112) (-645 $)) |#4| $) NIL)) (-1414 (((-645 (-2 (|:| |val| (-112)) (|:| -2138 $))) |#4| $) 112) (((-112) |#4| $) 65)) (-3754 (((-645 $) |#4| $) 121) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 122) (((-645 $) |#4| (-645 $)) NIL)) (-2994 (((-645 $) (-645 |#4|) (-112) (-112) (-112)) 134)) (-2913 (($ |#4| $) 88) (($ (-645 |#4|) $) 89) (((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 87)) (-2331 (((-645 |#4|) $) NIL)) (-2750 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) NIL)) (-2137 (((-112) $ $) NIL)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2703 ((|#4| |#4| $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-3 |#4| "failed") $) 40)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3809 (((-3 $ "failed") $ |#4|) 59)) (-2436 (($ $ |#4|) NIL) (((-645 $) |#4| $) 104) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) 99)) (-2297 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 17)) (-3164 (($) 14)) (-3677 (((-772) $) NIL)) (-3349 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) 13)) (-3542 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 22)) (-2485 (($ $ |#3|) 52)) (-4090 (($ $ |#3|) 54)) (-4367 (($ $) NIL)) (-2716 (($ $ |#3|) NIL)) (-4101 (((-863) $) 35) (((-645 |#4|) $) 46)) (-2718 (((-772) $) NIL (|has| |#3| (-370)))) (-3739 (((-112) $ $) NIL)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-3936 (((-645 $) |#4| $) 66) (((-645 $) |#4| (-645 $)) NIL) (((-645 $) (-645 |#4|) $) NIL) (((-645 $) (-645 |#4|) (-645 $)) NIL)) (-2012 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) NIL)) (-1440 (((-112) |#4| $) NIL)) (-2447 (((-112) |#3| $) 74)) (-3052 (((-112) $ $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1146 |#1| |#2| |#3| |#4|) (-13 (-1109 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2913 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2994 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2237 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112))))) (-455) (-794) (-851) (-1065 |#1| |#2| |#3|)) (T -1146))
+((-2913 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1146 *5 *6 *7 *3))) (-5 *1 (-1146 *5 *6 *7 *3)) (-4 *3 (-1065 *5 *6 *7)))) (-2102 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1146 *5 *6 *7 *8))) (-5 *1 (-1146 *5 *6 *7 *8)))) (-2102 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1146 *5 *6 *7 *8))) (-5 *1 (-1146 *5 *6 *7 *8)))) (-2994 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 (-1146 *5 *6 *7 *8))) (-5 *1 (-1146 *5 *6 *7 *8)))) (-2237 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-645 *8)) (|:| |towers| (-645 (-1146 *5 *6 *7 *8))))) (-5 *1 (-1146 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(-13 (-1109 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2913 ((-645 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112))) (-15 -2102 ((-645 $) (-645 |#4|) (-112) (-112) (-112) (-112))) (-15 -2994 ((-645 $) (-645 |#4|) (-112) (-112) (-112))) (-15 -2237 ((-2 (|:| |val| (-645 |#4|)) (|:| |towers| (-645 $))) (-645 |#4|) (-112) (-112)))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2207 ((|#1| $) 37)) (-2136 (($ (-645 |#1|)) 45)) (-1580 (((-112) $ (-772)) NIL)) (-4061 (($) NIL T CONST)) (-3528 ((|#1| |#1| $) 40)) (-2548 ((|#1| $) 35)) (-2896 (((-645 |#1|) $) 18 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 22)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4341 ((|#1| $) 38)) (-1336 (($ |#1| $) 41)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-4394 ((|#1| $) 36)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 32)) (-3164 (($) 43)) (-1716 (((-772) $) 30)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 27)) (-4101 (((-863) $) 14 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2299 (($ (-645 |#1|)) NIL)) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 17 (|has| |#1| (-1100)))) (-2268 (((-772) $) 31 (|has| $ (-6 -4416)))))
+(((-1147 |#1|) (-13 (-1121 |#1|) (-10 -8 (-15 -2136 ($ (-645 |#1|))))) (-1216)) (T -1147))
+((-2136 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-1147 *3)))))
+(-13 (-1121 |#1|) (-10 -8 (-15 -2136 ($ (-645 |#1|)))))
+((-4230 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1233 (-567)) |#2|) 55) ((|#2| $ (-567) |#2|) 52)) (-1714 (((-112) $) 12)) (-4392 (($ (-1 |#2| |#2|) $) 50)) (-2048 ((|#2| $) NIL) (($ $ (-772)) 20)) (-2092 (($ $ |#2|) 51)) (-2216 (((-112) $) 11)) (-1552 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1233 (-567))) 38) ((|#2| $ (-567)) 29) ((|#2| $ (-567) |#2|) NIL)) (-3962 (($ $ $) 58) (($ $ |#2|) NIL)) (-2285 (($ $ $) 40) (($ |#2| $) NIL) (($ (-645 $)) 47) (($ $ |#2|) NIL)))
+(((-1148 |#1| |#2|) (-10 -8 (-15 -1714 ((-112) |#1|)) (-15 -2216 ((-112) |#1|)) (-15 -4230 (|#2| |#1| (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567))) (-15 -2092 (|#1| |#1| |#2|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -2285 (|#1| (-645 |#1|))) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -4230 (|#2| |#1| (-1233 (-567)) |#2|)) (-15 -4230 (|#2| |#1| "last" |#2|)) (-15 -4230 (|#1| |#1| "rest" |#1|)) (-15 -4230 (|#2| |#1| "first" |#2|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1552 (|#2| |#1| "last")) (-15 -1552 (|#1| |#1| "rest")) (-15 -2048 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "first")) (-15 -2048 (|#2| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -1552 (|#2| |#1| "value")) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|))) (-1149 |#2|) (-1216)) (T -1148))
+NIL
+(-10 -8 (-15 -1714 ((-112) |#1|)) (-15 -2216 ((-112) |#1|)) (-15 -4230 (|#2| |#1| (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567) |#2|)) (-15 -1552 (|#2| |#1| (-567))) (-15 -2092 (|#1| |#1| |#2|)) (-15 -2285 (|#1| |#1| |#2|)) (-15 -2285 (|#1| (-645 |#1|))) (-15 -1552 (|#1| |#1| (-1233 (-567)))) (-15 -4230 (|#2| |#1| (-1233 (-567)) |#2|)) (-15 -4230 (|#2| |#1| "last" |#2|)) (-15 -4230 (|#1| |#1| "rest" |#1|)) (-15 -4230 (|#2| |#1| "first" |#2|)) (-15 -3962 (|#1| |#1| |#2|)) (-15 -3962 (|#1| |#1| |#1|)) (-15 -1552 (|#2| |#1| "last")) (-15 -1552 (|#1| |#1| "rest")) (-15 -2048 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "first")) (-15 -2048 (|#2| |#1|)) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -1552 (|#2| |#1| "value")) (-15 -4392 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-2369 ((|#1| $) 66)) (-3221 (($ $) 68)) (-2275 (((-1271) $ (-567) (-567)) 98 (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) 53 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-3371 (($ $ $) 57 (|has| $ (-6 -4417)))) (-3487 ((|#1| $ |#1|) 55 (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) 59 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4417))) (($ $ "rest" $) 56 (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 118 (|has| $ (-6 -4417))) ((|#1| $ (-567) |#1|) 87 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4416)))) (-2357 ((|#1| $) 67)) (-4061 (($) 7 T CONST)) (-2061 (($ $) 74) (($ $ (-772)) 72)) (-2084 (($ $) 100 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ (-1 (-112) |#1|) $) 104 (|has| $ (-6 -4416))) (($ |#1| $) 101 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) 106 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 105 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 102 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1303 ((|#1| $ (-567) |#1|) 86 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 88)) (-1714 (((-112) $) 84)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-4012 (($ (-772) |#1|) 109)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 96 (|has| (-567) (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 95 (|has| (-567) (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 112)) (-3230 (((-112) $ (-772)) 10)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3162 ((|#1| $) 71) (($ $ (-772)) 69)) (-2884 (($ $ $ (-567)) 117) (($ |#1| $ (-567)) 116)) (-3940 (((-645 (-567)) $) 93)) (-1664 (((-112) (-567) $) 92)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 77) (($ $ (-772)) 75)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 107)) (-2092 (($ $ |#1|) 97 (|has| $ (-6 -4417)))) (-2216 (((-112) $) 85)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 94 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 91)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70) (($ $ (-1233 (-567))) 113) ((|#1| $ (-567)) 90) ((|#1| $ (-567) |#1|) 89)) (-4304 (((-567) $ $) 45)) (-2675 (($ $ (-1233 (-567))) 115) (($ $ (-567)) 114)) (-3436 (((-112) $) 47)) (-2443 (($ $) 63)) (-3709 (($ $) 60 (|has| $ (-6 -4417)))) (-1449 (((-772) $) 64)) (-1344 (($ $) 65)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3542 (((-539) $) 99 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 108)) (-3962 (($ $ $) 62 (|has| $ (-6 -4417))) (($ $ |#1|) 61 (|has| $ (-6 -4417)))) (-2285 (($ $ $) 79) (($ |#1| $) 78) (($ (-645 $)) 111) (($ $ |#1|) 110)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1149 |#1|) (-140) (-1216)) (T -1149))
+((-2216 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))) (-1714 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))))
+(-13 (-1254 |t#1|) (-652 |t#1|) (-10 -8 (-15 -2216 ((-112) $)) (-15 -1714 ((-112) $))))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-1011 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1216) . T) ((-1254 |#1|) . T))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2275 (((-1271) $ |#1| |#1|) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#2| $ |#1| |#2|) NIL)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) NIL)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) NIL)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) NIL)) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 ((|#1| $) NIL (|has| |#1| (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 ((|#1| $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3004 (((-645 |#1|) $) NIL)) (-2121 (((-112) |#1| $) NIL)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3940 (((-645 |#1|) $) NIL)) (-1664 (((-112) |#1| $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#2| $) NIL (|has| |#1| (-851)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1150 |#1| |#2| |#3|) (-1192 |#1| |#2|) (-1100) (-1100) |#2|) (T -1150))
+NIL
+(-1192 |#1| |#2|)
+((-2257 (((-112) $ $) 7)) (-2802 (((-3 $ "failed") $) 14)) (-2451 (((-1158) $) 10)) (-2596 (($) 15 T CONST)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-3052 (((-112) $ $) 6)))
+(((-1151) (-140)) (T -1151))
+((-2596 (*1 *1) (-4 *1 (-1151))) (-2802 (*1 *1 *1) (|partial| -4 *1 (-1151))))
+(-13 (-1100) (-10 -8 (-15 -2596 ($) -2131) (-15 -2802 ((-3 $ "failed") $))))
+(((-102) . T) ((-614 (-863)) . T) ((-1100) . T))
+((-2570 (((-1156 |#1|) (-1156 |#1|)) 17)) (-3104 (((-1156 |#1|) (-1156 |#1|)) 13)) (-2917 (((-1156 |#1|) (-1156 |#1|) (-567) (-567)) 20)) (-3266 (((-1156 |#1|) (-1156 |#1|)) 15)))
+(((-1152 |#1|) (-10 -7 (-15 -3104 ((-1156 |#1|) (-1156 |#1|))) (-15 -3266 ((-1156 |#1|) (-1156 |#1|))) (-15 -2570 ((-1156 |#1|) (-1156 |#1|))) (-15 -2917 ((-1156 |#1|) (-1156 |#1|) (-567) (-567)))) (-13 (-559) (-147))) (T -1152))
+((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1152 *4)))) (-2570 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1152 *3)))) (-3266 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1152 *3)))) (-3104 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1152 *3)))))
+(-10 -7 (-15 -3104 ((-1156 |#1|) (-1156 |#1|))) (-15 -3266 ((-1156 |#1|) (-1156 |#1|))) (-15 -2570 ((-1156 |#1|) (-1156 |#1|))) (-15 -2917 ((-1156 |#1|) (-1156 |#1|) (-567) (-567))))
+((-2285 (((-1156 |#1|) (-1156 (-1156 |#1|))) 15)))
+(((-1153 |#1|) (-10 -7 (-15 -2285 ((-1156 |#1|) (-1156 (-1156 |#1|))))) (-1216)) (T -1153))
+((-2285 (*1 *2 *3) (-12 (-5 *3 (-1156 (-1156 *4))) (-5 *2 (-1156 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-1216)))))
+(-10 -7 (-15 -2285 ((-1156 |#1|) (-1156 (-1156 |#1|)))))
+((-3391 (((-1156 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1156 |#1|)) 25)) (-3402 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1156 |#1|)) 26)) (-3494 (((-1156 |#2|) (-1 |#2| |#1|) (-1156 |#1|)) 16)))
+(((-1154 |#1| |#2|) (-10 -7 (-15 -3494 ((-1156 |#2|) (-1 |#2| |#1|) (-1156 |#1|))) (-15 -3391 ((-1156 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1156 |#1|))) (-15 -3402 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1156 |#1|)))) (-1216) (-1216)) (T -1154))
+((-3402 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1156 *5)) (-4 *5 (-1216)) (-4 *2 (-1216)) (-5 *1 (-1154 *5 *2)))) (-3391 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1156 *6)) (-4 *6 (-1216)) (-4 *3 (-1216)) (-5 *2 (-1156 *3)) (-5 *1 (-1154 *6 *3)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1156 *6)) (-5 *1 (-1154 *5 *6)))))
+(-10 -7 (-15 -3494 ((-1156 |#2|) (-1 |#2| |#1|) (-1156 |#1|))) (-15 -3391 ((-1156 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1156 |#1|))) (-15 -3402 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1156 |#1|))))
+((-3494 (((-1156 |#3|) (-1 |#3| |#1| |#2|) (-1156 |#1|) (-1156 |#2|)) 21)))
+(((-1155 |#1| |#2| |#3|) (-10 -7 (-15 -3494 ((-1156 |#3|) (-1 |#3| |#1| |#2|) (-1156 |#1|) (-1156 |#2|)))) (-1216) (-1216) (-1216)) (T -1155))
+((-3494 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1156 *6)) (-5 *5 (-1156 *7)) (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-1156 *8)) (-5 *1 (-1155 *6 *7 *8)))))
+(-10 -7 (-15 -3494 ((-1156 |#3|) (-1 |#3| |#1| |#2|) (-1156 |#1|) (-1156 |#2|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) NIL)) (-2369 ((|#1| $) NIL)) (-3221 (($ $) 67)) (-2275 (((-1271) $ (-567) (-567)) 99 (|has| $ (-6 -4417)))) (-2957 (($ $ (-567)) 129 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-2310 (((-863) $) 56 (|has| |#1| (-1100)))) (-2157 (((-112)) 55 (|has| |#1| (-1100)))) (-2372 ((|#1| $ |#1|) NIL (|has| $ (-6 -4417)))) (-3371 (($ $ $) 116 (|has| $ (-6 -4417))) (($ $ (-567) $) 142)) (-3487 ((|#1| $ |#1|) 126 (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) 121 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) 123 (|has| $ (-6 -4417))) (($ $ "rest" $) 125 (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) 128 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 113 (|has| $ (-6 -4417))) ((|#1| $ (-567) |#1|) 77 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 80)) (-2357 ((|#1| $) NIL)) (-4061 (($) NIL T CONST)) (-2690 (($ $) 14)) (-2061 (($ $) 42) (($ $ (-772)) 111)) (-3455 (((-112) (-645 |#1|) $) 135 (|has| |#1| (-1100)))) (-3790 (($ (-645 |#1|)) 131)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) 79)) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-1714 (((-112) $) NIL)) (-2896 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-4293 (((-1271) (-567) $) 141 (|has| |#1| (-1100)))) (-3923 (((-772) $) 138)) (-1306 (((-645 $) $) NIL)) (-2971 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 85) (($ (-1 |#1| |#1| |#1|) $ $) 89)) (-3230 (((-112) $ (-772)) NIL)) (-3625 (((-645 |#1|) $) NIL)) (-1436 (((-112) $) NIL)) (-4241 (($ $) 114)) (-1986 (((-112) $) 13)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3162 ((|#1| $) NIL) (($ $ (-772)) NIL)) (-2884 (($ $ $ (-567)) NIL) (($ |#1| $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) 96)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-1466 (($ (-1 |#1|)) 144) (($ (-1 |#1| |#1|) |#1|) 145)) (-3026 ((|#1| $) 10)) (-2048 ((|#1| $) 41) (($ $ (-772)) 65)) (-4065 (((-2 (|:| |cycle?| (-112)) (|:| -2847 (-772)) (|:| |period| (-772))) (-772) $) 36)) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1525 (($ (-1 (-112) |#1|) $) 146)) (-1538 (($ (-1 (-112) |#1|) $) 147)) (-2092 (($ $ |#1|) 90 (|has| $ (-6 -4417)))) (-2436 (($ $ (-567)) 45)) (-2216 (((-112) $) 94)) (-3699 (((-112) $) 12)) (-2988 (((-112) $) 137)) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 30)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) 20)) (-3164 (($) 60)) (-1552 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1233 (-567))) NIL) ((|#1| $ (-567)) 75) ((|#1| $ (-567) |#1|) NIL)) (-4304 (((-567) $ $) 64)) (-2675 (($ $ (-1233 (-567))) NIL) (($ $ (-567)) NIL)) (-4278 (($ (-1 $)) 63)) (-3436 (((-112) $) 91)) (-2443 (($ $) 92)) (-3709 (($ $) 117 (|has| $ (-6 -4417)))) (-1449 (((-772) $) NIL)) (-1344 (($ $) NIL)) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 59)) (-3542 (((-539) $) NIL (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 73)) (-3513 (($ |#1| $) 115)) (-3962 (($ $ $) 119 (|has| $ (-6 -4417))) (($ $ |#1|) 120 (|has| $ (-6 -4417)))) (-2285 (($ $ $) 101) (($ |#1| $) 61) (($ (-645 $)) 106) (($ $ |#1|) 100)) (-2448 (($ $) 66)) (-4101 (($ (-645 |#1|)) 130) (((-863) $) 57 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) NIL)) (-2684 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 133 (|has| |#1| (-1100)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1156 |#1|) (-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4417) (-15 -3790 ($ (-645 |#1|))) (IF (|has| |#1| (-1100)) (-15 -3455 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -4065 ((-2 (|:| |cycle?| (-112)) (|:| -2847 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -4278 ($ (-1 $))) (-15 -3513 ($ |#1| $)) (IF (|has| |#1| (-1100)) (PROGN (-15 -4293 ((-1271) (-567) $)) (-15 -2310 ((-863) $)) (-15 -2157 ((-112)))) |%noBranch|) (-15 -3371 ($ $ (-567) $)) (-15 -1466 ($ (-1 |#1|))) (-15 -1466 ($ (-1 |#1| |#1|) |#1|)) (-15 -1525 ($ (-1 (-112) |#1|) $)) (-15 -1538 ($ (-1 (-112) |#1|) $)))) (-1216)) (T -1156))
+((-3790 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))) (-3455 (*1 *2 *3 *1) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1100)) (-4 *4 (-1216)) (-5 *2 (-112)) (-5 *1 (-1156 *4)))) (-4065 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -2847 (-772)) (|:| |period| (-772)))) (-5 *1 (-1156 *4)) (-4 *4 (-1216)) (-5 *3 (-772)))) (-4278 (*1 *1 *2) (-12 (-5 *2 (-1 (-1156 *3))) (-5 *1 (-1156 *3)) (-4 *3 (-1216)))) (-3513 (*1 *1 *2 *1) (-12 (-5 *1 (-1156 *2)) (-4 *2 (-1216)))) (-4293 (*1 *2 *3 *1) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1156 *4)) (-4 *4 (-1100)) (-4 *4 (-1216)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1156 *3)) (-4 *3 (-1100)) (-4 *3 (-1216)))) (-2157 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3)) (-4 *3 (-1100)) (-4 *3 (-1216)))) (-3371 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1156 *3)) (-4 *3 (-1216)))) (-1466 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))) (-1466 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))) (-1525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))) (-1538 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))))
+(-13 (-675 |#1|) (-617 (-645 |#1|)) (-10 -8 (-6 -4417) (-15 -3790 ($ (-645 |#1|))) (IF (|has| |#1| (-1100)) (-15 -3455 ((-112) (-645 |#1|) $)) |%noBranch|) (-15 -4065 ((-2 (|:| |cycle?| (-112)) (|:| -2847 (-772)) (|:| |period| (-772))) (-772) $)) (-15 -4278 ($ (-1 $))) (-15 -3513 ($ |#1| $)) (IF (|has| |#1| (-1100)) (PROGN (-15 -4293 ((-1271) (-567) $)) (-15 -2310 ((-863) $)) (-15 -2157 ((-112)))) |%noBranch|) (-15 -3371 ($ $ (-567) $)) (-15 -1466 ($ (-1 |#1|))) (-15 -1466 ($ (-1 |#1| |#1|) |#1|)) (-15 -1525 ($ (-1 (-112) |#1|) $)) (-15 -1538 ($ (-1 (-112) |#1|) $))))
+((-2257 (((-112) $ $) 19)) (-4004 (($ $) 121)) (-2346 (($ $) 122)) (-4211 (($ $ (-144)) 109) (($ $ (-141)) 108)) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-3884 (((-112) $ $) 119)) (-3868 (((-112) $ $ (-567)) 118)) (-2478 (($ (-567)) 128)) (-2714 (((-645 $) $ (-144)) 111) (((-645 $) $ (-141)) 110)) (-2530 (((-112) (-1 (-112) (-144) (-144)) $) 99) (((-112) $) 93 (|has| (-144) (-851)))) (-3655 (($ (-1 (-112) (-144) (-144)) $) 90 (|has| $ (-6 -4417))) (($ $) 89 (-12 (|has| (-144) (-851)) (|has| $ (-6 -4417))))) (-1594 (($ (-1 (-112) (-144) (-144)) $) 100) (($ $) 94 (|has| (-144) (-851)))) (-1580 (((-112) $ (-772)) 8)) (-4230 (((-144) $ (-567) (-144)) 53 (|has| $ (-6 -4417))) (((-144) $ (-1233 (-567)) (-144)) 59 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) (-144)) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-3328 (($ $ (-144)) 105) (($ $ (-141)) 104)) (-1695 (($ $) 91 (|has| $ (-6 -4417)))) (-3315 (($ $) 101)) (-2147 (($ $ (-1233 (-567)) $) 115)) (-2084 (($ $) 79 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ (-144) $) 78 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4416)))) (-3402 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 77 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 74 (|has| $ (-6 -4416))) (((-144) (-1 (-144) (-144) (-144)) $) 73 (|has| $ (-6 -4416)))) (-1303 (((-144) $ (-567) (-144)) 54 (|has| $ (-6 -4417)))) (-4344 (((-144) $ (-567)) 52)) (-3902 (((-112) $ $) 120)) (-3771 (((-567) (-1 (-112) (-144)) $) 98) (((-567) (-144) $) 97 (|has| (-144) (-1100))) (((-567) (-144) $ (-567)) 96 (|has| (-144) (-1100))) (((-567) $ $ (-567)) 114) (((-567) (-141) $ (-567)) 113)) (-2896 (((-645 (-144)) $) 31 (|has| $ (-6 -4416)))) (-4012 (($ (-772) (-144)) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-2056 (($ $ $) 88 (|has| (-144) (-851)))) (-3768 (($ (-1 (-112) (-144) (-144)) $ $) 102) (($ $ $) 95 (|has| (-144) (-851)))) (-1542 (((-645 (-144)) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) (-144) $) 28 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-1802 (($ $ $) 87 (|has| (-144) (-851)))) (-2639 (((-112) $ $ (-144)) 116)) (-3828 (((-772) $ $ (-144)) 117)) (-4392 (($ (-1 (-144) (-144)) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-144) (-144)) $) 36) (($ (-1 (-144) (-144) (-144)) $ $) 65)) (-1879 (($ $) 123)) (-3660 (($ $) 124)) (-3230 (((-112) $ (-772)) 10)) (-3340 (($ $ (-144)) 107) (($ $ (-141)) 106)) (-2451 (((-1158) $) 22)) (-2884 (($ (-144) $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21)) (-2048 (((-144) $) 43 (|has| (-567) (-851)))) (-3050 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 72)) (-2092 (($ $ (-144)) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-144)))) 27 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-295 (-144))) 26 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-144) (-144)) 25 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-645 (-144)) (-645 (-144))) 24 (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) (-144) $) 46 (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1412 (((-645 (-144)) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 (((-144) $ (-567) (-144)) 51) (((-144) $ (-567)) 50) (($ $ (-1233 (-567))) 64) (($ $ $) 103)) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-3349 (((-772) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4416))) (((-772) (-144) $) 29 (-12 (|has| (-144) (-1100)) (|has| $ (-6 -4416))))) (-3732 (($ $ $ (-567)) 92 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| (-144) (-615 (-539))))) (-4114 (($ (-645 (-144))) 71)) (-2285 (($ $ (-144)) 69) (($ (-144) $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (($ (-144)) 112) (((-863) $) 18)) (-3739 (((-112) $ $) 23)) (-2012 (((-112) (-1 (-112) (-144)) $) 34 (|has| $ (-6 -4416)))) (-4184 (((-1158) $) 132) (((-1158) $ (-112)) 131) (((-1271) (-823) $) 130) (((-1271) (-823) $ (-112)) 129)) (-3109 (((-112) $ $) 85 (|has| (-144) (-851)))) (-3085 (((-112) $ $) 84 (|has| (-144) (-851)))) (-3052 (((-112) $ $) 20)) (-3098 (((-112) $ $) 86 (|has| (-144) (-851)))) (-3075 (((-112) $ $) 83 (|has| (-144) (-851)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1157) (-140)) (T -1157))
+((-2478 (*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1157)))))
+(-13 (-1144) (-1100) (-829) (-10 -8 (-15 -2478 ($ (-567)))))
+(((-34) . T) ((-102) . T) ((-614 (-863)) . T) ((-151 #0=(-144)) . T) ((-615 (-539)) |has| (-144) (-615 (-539))) ((-287 #1=(-567) #0#) . T) ((-289 #1# #0#) . T) ((-310 #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))) ((-375 #0#) . T) ((-492 #0#) . T) ((-605 #1# #0#) . T) ((-517 #0# #0#) -12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))) ((-652 #0#) . T) ((-19 #0#) . T) ((-829) . T) ((-851) |has| (-144) (-851)) ((-1100) . T) ((-1144) . T) ((-1216) . T))
+((-2257 (((-112) $ $) NIL)) (-4004 (($ $) NIL)) (-2346 (($ $) NIL)) (-4211 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-3884 (((-112) $ $) NIL)) (-3868 (((-112) $ $ (-567)) NIL)) (-2478 (($ (-567)) 8)) (-2714 (((-645 $) $ (-144)) NIL) (((-645 $) $ (-141)) NIL)) (-2530 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-851)))) (-3655 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| (-144) (-851))))) (-1594 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4417))) (((-144) $ (-1233 (-567)) (-144)) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-3328 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2147 (($ $ (-1233 (-567)) $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-3138 (($ (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4416))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4416)))) (-1303 (((-144) $ (-567) (-144)) NIL (|has| $ (-6 -4417)))) (-4344 (((-144) $ (-567)) NIL)) (-3902 (((-112) $ $) NIL)) (-3771 (((-567) (-1 (-112) (-144)) $) NIL) (((-567) (-144) $) NIL (|has| (-144) (-1100))) (((-567) (-144) $ (-567)) NIL (|has| (-144) (-1100))) (((-567) $ $ (-567)) NIL) (((-567) (-141) $ (-567)) NIL)) (-2896 (((-645 (-144)) $) NIL (|has| $ (-6 -4416)))) (-4012 (($ (-772) (-144)) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| (-144) (-851)))) (-3768 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-851)))) (-1542 (((-645 (-144)) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| (-144) (-851)))) (-2639 (((-112) $ $ (-144)) NIL)) (-3828 (((-772) $ $ (-144)) NIL)) (-4392 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1879 (($ $) NIL)) (-3660 (($ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-3340 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2451 (((-1158) $) NIL)) (-2884 (($ (-144) $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-144) $) NIL (|has| (-567) (-851)))) (-3050 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-2092 (($ $ (-144)) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-144)))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-295 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100)))) (($ $ (-645 (-144)) (-645 (-144))) NIL (-12 (|has| (-144) (-310 (-144))) (|has| (-144) (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-1412 (((-645 (-144)) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 (((-144) $ (-567) (-144)) NIL) (((-144) $ (-567)) NIL) (($ $ (-1233 (-567))) NIL) (($ $ $) NIL)) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-3349 (((-772) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416))) (((-772) (-144) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-144) (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-144) (-615 (-539))))) (-4114 (($ (-645 (-144))) NIL)) (-2285 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (($ (-144)) NIL) (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-2012 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4416)))) (-4184 (((-1158) $) 19) (((-1158) $ (-112)) 21) (((-1271) (-823) $) 22) (((-1271) (-823) $ (-112)) 23)) (-3109 (((-112) $ $) NIL (|has| (-144) (-851)))) (-3085 (((-112) $ $) NIL (|has| (-144) (-851)))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (|has| (-144) (-851)))) (-3075 (((-112) $ $) NIL (|has| (-144) (-851)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1158) (-1157)) (T -1158))
+NIL
+(-1157)
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)) (|has| |#1| (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL)) (-2275 (((-1271) $ (-1158) (-1158)) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-1158) |#1|) NIL)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#1| "failed") (-1158) $) NIL)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#1| "failed") (-1158) $) NIL)) (-3138 (($ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-1158) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-1158)) NIL)) (-2896 (((-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-1158) $) NIL (|has| (-1158) (-851)))) (-1542 (((-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-1158) $) NIL (|has| (-1158) (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)) (|has| |#1| (-1100))))) (-3004 (((-645 (-1158)) $) NIL)) (-2121 (((-112) (-1158) $) NIL)) (-4341 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL)) (-3940 (((-645 (-1158)) $) NIL)) (-1664 (((-112) (-1158) $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)) (|has| |#1| (-1100))))) (-2048 ((|#1| $) NIL (|has| (-1158) (-851)))) (-3050 (((-3 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) "failed") (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ $ (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL (-12 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-310 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-1158)) NIL) ((|#1| $ (-1158) |#1|) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-614 (-863))) (|has| |#1| (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)) (|has| |#1| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 (-1158)) (|:| -3859 |#1|)) (-1100)) (|has| |#1| (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1159 |#1|) (-13 (-1192 (-1158) |#1|) (-10 -7 (-6 -4416))) (-1100)) (T -1159))
+NIL
+(-13 (-1192 (-1158) |#1|) (-10 -7 (-6 -4416)))
+((-3232 (((-1156 |#1|) (-1156 |#1|)) 85)) (-4014 (((-3 (-1156 |#1|) "failed") (-1156 |#1|)) 42)) (-3337 (((-1156 |#1|) (-410 (-567)) (-1156 |#1|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-4297 (((-1156 |#1|) |#1| (-1156 |#1|)) 142 (|has| |#1| (-365)))) (-4310 (((-1156 |#1|) (-1156 |#1|)) 100)) (-1710 (((-1156 (-567)) (-567)) 64)) (-2728 (((-1156 |#1|) (-1156 (-1156 |#1|))) 119 (|has| |#1| (-38 (-410 (-567)))))) (-4050 (((-1156 |#1|) (-567) (-567) (-1156 |#1|)) 105)) (-1845 (((-1156 |#1|) |#1| (-567)) 54)) (-3503 (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 67)) (-2023 (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 139 (|has| |#1| (-365)))) (-2610 (((-1156 |#1|) |#1| (-1 (-1156 |#1|))) 118 (|has| |#1| (-38 (-410 (-567)))))) (-4138 (((-1156 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1156 |#1|))) 140 (|has| |#1| (-365)))) (-3588 (((-1156 |#1|) (-1156 |#1|)) 99)) (-2374 (((-1156 |#1|) (-1156 |#1|)) 83)) (-2977 (((-1156 |#1|) (-567) (-567) (-1156 |#1|)) 106)) (-2113 (((-1156 |#1|) |#1| (-1156 |#1|)) 115 (|has| |#1| (-38 (-410 (-567)))))) (-3555 (((-1156 (-567)) (-567)) 63)) (-3587 (((-1156 |#1|) |#1|) 66)) (-3642 (((-1156 |#1|) (-1156 |#1|) (-567) (-567)) 102)) (-2027 (((-1156 |#1|) (-1 |#1| (-567)) (-1156 |#1|)) 73)) (-2245 (((-3 (-1156 |#1|) "failed") (-1156 |#1|) (-1156 |#1|)) 40)) (-2625 (((-1156 |#1|) (-1156 |#1|)) 101)) (-3140 (((-1156 |#1|) (-1156 |#1|) |#1|) 78)) (-3789 (((-1156 |#1|) (-1156 |#1|)) 69)) (-2423 (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 79)) (-4101 (((-1156 |#1|) |#1|) 74)) (-2849 (((-1156 |#1|) (-1156 (-1156 |#1|))) 90)) (-3168 (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 41)) (-3156 (((-1156 |#1|) (-1156 |#1|)) 21) (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 23)) (-3146 (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 17)) (* (((-1156 |#1|) (-1156 |#1|) |#1|) 29) (((-1156 |#1|) |#1| (-1156 |#1|)) 26) (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 27)))
+(((-1160 |#1|) (-10 -7 (-15 -3146 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3156 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3156 ((-1156 |#1|) (-1156 |#1|))) (-15 * ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 * ((-1156 |#1|) |#1| (-1156 |#1|))) (-15 * ((-1156 |#1|) (-1156 |#1|) |#1|)) (-15 -2245 ((-3 (-1156 |#1|) "failed") (-1156 |#1|) (-1156 |#1|))) (-15 -3168 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -4014 ((-3 (-1156 |#1|) "failed") (-1156 |#1|))) (-15 -1845 ((-1156 |#1|) |#1| (-567))) (-15 -3555 ((-1156 (-567)) (-567))) (-15 -1710 ((-1156 (-567)) (-567))) (-15 -3587 ((-1156 |#1|) |#1|)) (-15 -3503 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3789 ((-1156 |#1|) (-1156 |#1|))) (-15 -2027 ((-1156 |#1|) (-1 |#1| (-567)) (-1156 |#1|))) (-15 -4101 ((-1156 |#1|) |#1|)) (-15 -3140 ((-1156 |#1|) (-1156 |#1|) |#1|)) (-15 -2423 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -2374 ((-1156 |#1|) (-1156 |#1|))) (-15 -3232 ((-1156 |#1|) (-1156 |#1|))) (-15 -2849 ((-1156 |#1|) (-1156 (-1156 |#1|)))) (-15 -3588 ((-1156 |#1|) (-1156 |#1|))) (-15 -4310 ((-1156 |#1|) (-1156 |#1|))) (-15 -2625 ((-1156 |#1|) (-1156 |#1|))) (-15 -3642 ((-1156 |#1|) (-1156 |#1|) (-567) (-567))) (-15 -4050 ((-1156 |#1|) (-567) (-567) (-1156 |#1|))) (-15 -2977 ((-1156 |#1|) (-567) (-567) (-1156 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ((-1156 |#1|) |#1| (-1156 |#1|))) (-15 -2610 ((-1156 |#1|) |#1| (-1 (-1156 |#1|)))) (-15 -2728 ((-1156 |#1|) (-1156 (-1156 |#1|)))) (-15 -3337 ((-1156 |#1|) (-410 (-567)) (-1156 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2023 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -4138 ((-1156 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1156 |#1|)))) (-15 -4297 ((-1156 |#1|) |#1| (-1156 |#1|)))) |%noBranch|)) (-1050)) (T -1160))
+((-4297 (*1 *2 *3 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-4138 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1156 *4))) (-4 *4 (-365)) (-4 *4 (-1050)) (-5 *2 (-1156 *4)) (-5 *1 (-1160 *4)))) (-2023 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-365)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3337 (*1 *2 *3 *2) (-12 (-5 *2 (-1156 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1050)) (-5 *3 (-410 (-567))) (-5 *1 (-1160 *4)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-1156 (-1156 *4))) (-5 *2 (-1156 *4)) (-5 *1 (-1160 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1156 *3))) (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)))) (-2113 (*1 *2 *3 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-2977 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-1160 *4)))) (-4050 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-1160 *4)))) (-3642 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-1050)) (-5 *1 (-1160 *4)))) (-2625 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-4310 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3588 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-1156 (-1156 *4))) (-5 *2 (-1156 *4)) (-5 *1 (-1160 *4)) (-4 *4 (-1050)))) (-3232 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-2374 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-2423 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3140 (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-4101 (*1 *2 *3) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-1050)))) (-2027 (*1 *2 *3 *2) (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1050)) (-5 *1 (-1160 *4)))) (-3789 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3503 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3587 (*1 *2 *3) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-1050)))) (-1710 (*1 *2 *3) (-12 (-5 *2 (-1156 (-567))) (-5 *1 (-1160 *4)) (-4 *4 (-1050)) (-5 *3 (-567)))) (-3555 (*1 *2 *3) (-12 (-5 *2 (-1156 (-567))) (-5 *1 (-1160 *4)) (-4 *4 (-1050)) (-5 *3 (-567)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-1050)))) (-4014 (*1 *2 *2) (|partial| -12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3168 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-2245 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3156 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))) (-3146 (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))))
+(-10 -7 (-15 -3146 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3156 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3156 ((-1156 |#1|) (-1156 |#1|))) (-15 * ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 * ((-1156 |#1|) |#1| (-1156 |#1|))) (-15 * ((-1156 |#1|) (-1156 |#1|) |#1|)) (-15 -2245 ((-3 (-1156 |#1|) "failed") (-1156 |#1|) (-1156 |#1|))) (-15 -3168 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -4014 ((-3 (-1156 |#1|) "failed") (-1156 |#1|))) (-15 -1845 ((-1156 |#1|) |#1| (-567))) (-15 -3555 ((-1156 (-567)) (-567))) (-15 -1710 ((-1156 (-567)) (-567))) (-15 -3587 ((-1156 |#1|) |#1|)) (-15 -3503 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3789 ((-1156 |#1|) (-1156 |#1|))) (-15 -2027 ((-1156 |#1|) (-1 |#1| (-567)) (-1156 |#1|))) (-15 -4101 ((-1156 |#1|) |#1|)) (-15 -3140 ((-1156 |#1|) (-1156 |#1|) |#1|)) (-15 -2423 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -2374 ((-1156 |#1|) (-1156 |#1|))) (-15 -3232 ((-1156 |#1|) (-1156 |#1|))) (-15 -2849 ((-1156 |#1|) (-1156 (-1156 |#1|)))) (-15 -3588 ((-1156 |#1|) (-1156 |#1|))) (-15 -4310 ((-1156 |#1|) (-1156 |#1|))) (-15 -2625 ((-1156 |#1|) (-1156 |#1|))) (-15 -3642 ((-1156 |#1|) (-1156 |#1|) (-567) (-567))) (-15 -4050 ((-1156 |#1|) (-567) (-567) (-1156 |#1|))) (-15 -2977 ((-1156 |#1|) (-567) (-567) (-1156 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ((-1156 |#1|) |#1| (-1156 |#1|))) (-15 -2610 ((-1156 |#1|) |#1| (-1 (-1156 |#1|)))) (-15 -2728 ((-1156 |#1|) (-1156 (-1156 |#1|)))) (-15 -3337 ((-1156 |#1|) (-410 (-567)) (-1156 |#1|)))) |%noBranch|) (IF (|has| |#1| (-365)) (PROGN (-15 -2023 ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -4138 ((-1156 |#1|) (-1 |#1| (-567)) |#1| (-1 (-1156 |#1|)))) (-15 -4297 ((-1156 |#1|) |#1| (-1156 |#1|)))) |%noBranch|))
+((-1772 (((-1156 |#1|) (-1156 |#1|)) 60)) (-1605 (((-1156 |#1|) (-1156 |#1|)) 42)) (-1747 (((-1156 |#1|) (-1156 |#1|)) 56)) (-1577 (((-1156 |#1|) (-1156 |#1|)) 38)) (-1798 (((-1156 |#1|) (-1156 |#1|)) 63)) (-1632 (((-1156 |#1|) (-1156 |#1|)) 45)) (-2942 (((-1156 |#1|) (-1156 |#1|)) 34)) (-2910 (((-1156 |#1|) (-1156 |#1|)) 29)) (-1810 (((-1156 |#1|) (-1156 |#1|)) 64)) (-1647 (((-1156 |#1|) (-1156 |#1|)) 46)) (-1784 (((-1156 |#1|) (-1156 |#1|)) 61)) (-1618 (((-1156 |#1|) (-1156 |#1|)) 43)) (-1757 (((-1156 |#1|) (-1156 |#1|)) 58)) (-1592 (((-1156 |#1|) (-1156 |#1|)) 40)) (-1847 (((-1156 |#1|) (-1156 |#1|)) 68)) (-1690 (((-1156 |#1|) (-1156 |#1|)) 50)) (-1823 (((-1156 |#1|) (-1156 |#1|)) 66)) (-1660 (((-1156 |#1|) (-1156 |#1|)) 48)) (-1869 (((-1156 |#1|) (-1156 |#1|)) 71)) (-1719 (((-1156 |#1|) (-1156 |#1|)) 53)) (-1345 (((-1156 |#1|) (-1156 |#1|)) 72)) (-1733 (((-1156 |#1|) (-1156 |#1|)) 54)) (-1858 (((-1156 |#1|) (-1156 |#1|)) 70)) (-1704 (((-1156 |#1|) (-1156 |#1|)) 52)) (-1834 (((-1156 |#1|) (-1156 |#1|)) 69)) (-1673 (((-1156 |#1|) (-1156 |#1|)) 51)) (** (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 36)))
+(((-1161 |#1|) (-10 -7 (-15 -2910 ((-1156 |#1|) (-1156 |#1|))) (-15 -2942 ((-1156 |#1|) (-1156 |#1|))) (-15 ** ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -1577 ((-1156 |#1|) (-1156 |#1|))) (-15 -1592 ((-1156 |#1|) (-1156 |#1|))) (-15 -1605 ((-1156 |#1|) (-1156 |#1|))) (-15 -1618 ((-1156 |#1|) (-1156 |#1|))) (-15 -1632 ((-1156 |#1|) (-1156 |#1|))) (-15 -1647 ((-1156 |#1|) (-1156 |#1|))) (-15 -1660 ((-1156 |#1|) (-1156 |#1|))) (-15 -1673 ((-1156 |#1|) (-1156 |#1|))) (-15 -1690 ((-1156 |#1|) (-1156 |#1|))) (-15 -1704 ((-1156 |#1|) (-1156 |#1|))) (-15 -1719 ((-1156 |#1|) (-1156 |#1|))) (-15 -1733 ((-1156 |#1|) (-1156 |#1|))) (-15 -1747 ((-1156 |#1|) (-1156 |#1|))) (-15 -1757 ((-1156 |#1|) (-1156 |#1|))) (-15 -1772 ((-1156 |#1|) (-1156 |#1|))) (-15 -1784 ((-1156 |#1|) (-1156 |#1|))) (-15 -1798 ((-1156 |#1|) (-1156 |#1|))) (-15 -1810 ((-1156 |#1|) (-1156 |#1|))) (-15 -1823 ((-1156 |#1|) (-1156 |#1|))) (-15 -1834 ((-1156 |#1|) (-1156 |#1|))) (-15 -1847 ((-1156 |#1|) (-1156 |#1|))) (-15 -1858 ((-1156 |#1|) (-1156 |#1|))) (-15 -1869 ((-1156 |#1|) (-1156 |#1|))) (-15 -1345 ((-1156 |#1|) (-1156 |#1|)))) (-38 (-410 (-567)))) (T -1161))
+((-1345 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1161 *3)))))
+(-10 -7 (-15 -2910 ((-1156 |#1|) (-1156 |#1|))) (-15 -2942 ((-1156 |#1|) (-1156 |#1|))) (-15 ** ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -1577 ((-1156 |#1|) (-1156 |#1|))) (-15 -1592 ((-1156 |#1|) (-1156 |#1|))) (-15 -1605 ((-1156 |#1|) (-1156 |#1|))) (-15 -1618 ((-1156 |#1|) (-1156 |#1|))) (-15 -1632 ((-1156 |#1|) (-1156 |#1|))) (-15 -1647 ((-1156 |#1|) (-1156 |#1|))) (-15 -1660 ((-1156 |#1|) (-1156 |#1|))) (-15 -1673 ((-1156 |#1|) (-1156 |#1|))) (-15 -1690 ((-1156 |#1|) (-1156 |#1|))) (-15 -1704 ((-1156 |#1|) (-1156 |#1|))) (-15 -1719 ((-1156 |#1|) (-1156 |#1|))) (-15 -1733 ((-1156 |#1|) (-1156 |#1|))) (-15 -1747 ((-1156 |#1|) (-1156 |#1|))) (-15 -1757 ((-1156 |#1|) (-1156 |#1|))) (-15 -1772 ((-1156 |#1|) (-1156 |#1|))) (-15 -1784 ((-1156 |#1|) (-1156 |#1|))) (-15 -1798 ((-1156 |#1|) (-1156 |#1|))) (-15 -1810 ((-1156 |#1|) (-1156 |#1|))) (-15 -1823 ((-1156 |#1|) (-1156 |#1|))) (-15 -1834 ((-1156 |#1|) (-1156 |#1|))) (-15 -1847 ((-1156 |#1|) (-1156 |#1|))) (-15 -1858 ((-1156 |#1|) (-1156 |#1|))) (-15 -1869 ((-1156 |#1|) (-1156 |#1|))) (-15 -1345 ((-1156 |#1|) (-1156 |#1|))))
+((-1772 (((-1156 |#1|) (-1156 |#1|)) 108)) (-1605 (((-1156 |#1|) (-1156 |#1|)) 65)) (-3867 (((-2 (|:| -1747 (-1156 |#1|)) (|:| -1757 (-1156 |#1|))) (-1156 |#1|)) 104)) (-1747 (((-1156 |#1|) (-1156 |#1|)) 105)) (-3954 (((-2 (|:| -1577 (-1156 |#1|)) (|:| -1592 (-1156 |#1|))) (-1156 |#1|)) 54)) (-1577 (((-1156 |#1|) (-1156 |#1|)) 55)) (-1798 (((-1156 |#1|) (-1156 |#1|)) 110)) (-1632 (((-1156 |#1|) (-1156 |#1|)) 72)) (-2942 (((-1156 |#1|) (-1156 |#1|)) 40)) (-2910 (((-1156 |#1|) (-1156 |#1|)) 37)) (-1810 (((-1156 |#1|) (-1156 |#1|)) 111)) (-1647 (((-1156 |#1|) (-1156 |#1|)) 73)) (-1784 (((-1156 |#1|) (-1156 |#1|)) 109)) (-1618 (((-1156 |#1|) (-1156 |#1|)) 68)) (-1757 (((-1156 |#1|) (-1156 |#1|)) 106)) (-1592 (((-1156 |#1|) (-1156 |#1|)) 56)) (-1847 (((-1156 |#1|) (-1156 |#1|)) 119)) (-1690 (((-1156 |#1|) (-1156 |#1|)) 94)) (-1823 (((-1156 |#1|) (-1156 |#1|)) 113)) (-1660 (((-1156 |#1|) (-1156 |#1|)) 90)) (-1869 (((-1156 |#1|) (-1156 |#1|)) 123)) (-1719 (((-1156 |#1|) (-1156 |#1|)) 98)) (-1345 (((-1156 |#1|) (-1156 |#1|)) 125)) (-1733 (((-1156 |#1|) (-1156 |#1|)) 100)) (-1858 (((-1156 |#1|) (-1156 |#1|)) 121)) (-1704 (((-1156 |#1|) (-1156 |#1|)) 96)) (-1834 (((-1156 |#1|) (-1156 |#1|)) 115)) (-1673 (((-1156 |#1|) (-1156 |#1|)) 92)) (** (((-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) 41)))
+(((-1162 |#1|) (-10 -7 (-15 -2910 ((-1156 |#1|) (-1156 |#1|))) (-15 -2942 ((-1156 |#1|) (-1156 |#1|))) (-15 ** ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3954 ((-2 (|:| -1577 (-1156 |#1|)) (|:| -1592 (-1156 |#1|))) (-1156 |#1|))) (-15 -1577 ((-1156 |#1|) (-1156 |#1|))) (-15 -1592 ((-1156 |#1|) (-1156 |#1|))) (-15 -1605 ((-1156 |#1|) (-1156 |#1|))) (-15 -1618 ((-1156 |#1|) (-1156 |#1|))) (-15 -1632 ((-1156 |#1|) (-1156 |#1|))) (-15 -1647 ((-1156 |#1|) (-1156 |#1|))) (-15 -1660 ((-1156 |#1|) (-1156 |#1|))) (-15 -1673 ((-1156 |#1|) (-1156 |#1|))) (-15 -1690 ((-1156 |#1|) (-1156 |#1|))) (-15 -1704 ((-1156 |#1|) (-1156 |#1|))) (-15 -1719 ((-1156 |#1|) (-1156 |#1|))) (-15 -1733 ((-1156 |#1|) (-1156 |#1|))) (-15 -3867 ((-2 (|:| -1747 (-1156 |#1|)) (|:| -1757 (-1156 |#1|))) (-1156 |#1|))) (-15 -1747 ((-1156 |#1|) (-1156 |#1|))) (-15 -1757 ((-1156 |#1|) (-1156 |#1|))) (-15 -1772 ((-1156 |#1|) (-1156 |#1|))) (-15 -1784 ((-1156 |#1|) (-1156 |#1|))) (-15 -1798 ((-1156 |#1|) (-1156 |#1|))) (-15 -1810 ((-1156 |#1|) (-1156 |#1|))) (-15 -1823 ((-1156 |#1|) (-1156 |#1|))) (-15 -1834 ((-1156 |#1|) (-1156 |#1|))) (-15 -1847 ((-1156 |#1|) (-1156 |#1|))) (-15 -1858 ((-1156 |#1|) (-1156 |#1|))) (-15 -1869 ((-1156 |#1|) (-1156 |#1|))) (-15 -1345 ((-1156 |#1|) (-1156 |#1|)))) (-38 (-410 (-567)))) (T -1162))
+((-1345 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1869 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1834 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1823 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1798 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1784 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1757 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -1747 (-1156 *4)) (|:| -1757 (-1156 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-1156 *4)))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1719 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1673 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1660 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1647 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1618 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1605 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-1577 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-3954 (*1 *2 *3) (-12 (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-2 (|:| -1577 (-1156 *4)) (|:| -1592 (-1156 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-1156 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-2942 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))) (-2910 (*1 *2 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1162 *3)))))
+(-10 -7 (-15 -2910 ((-1156 |#1|) (-1156 |#1|))) (-15 -2942 ((-1156 |#1|) (-1156 |#1|))) (-15 ** ((-1156 |#1|) (-1156 |#1|) (-1156 |#1|))) (-15 -3954 ((-2 (|:| -1577 (-1156 |#1|)) (|:| -1592 (-1156 |#1|))) (-1156 |#1|))) (-15 -1577 ((-1156 |#1|) (-1156 |#1|))) (-15 -1592 ((-1156 |#1|) (-1156 |#1|))) (-15 -1605 ((-1156 |#1|) (-1156 |#1|))) (-15 -1618 ((-1156 |#1|) (-1156 |#1|))) (-15 -1632 ((-1156 |#1|) (-1156 |#1|))) (-15 -1647 ((-1156 |#1|) (-1156 |#1|))) (-15 -1660 ((-1156 |#1|) (-1156 |#1|))) (-15 -1673 ((-1156 |#1|) (-1156 |#1|))) (-15 -1690 ((-1156 |#1|) (-1156 |#1|))) (-15 -1704 ((-1156 |#1|) (-1156 |#1|))) (-15 -1719 ((-1156 |#1|) (-1156 |#1|))) (-15 -1733 ((-1156 |#1|) (-1156 |#1|))) (-15 -3867 ((-2 (|:| -1747 (-1156 |#1|)) (|:| -1757 (-1156 |#1|))) (-1156 |#1|))) (-15 -1747 ((-1156 |#1|) (-1156 |#1|))) (-15 -1757 ((-1156 |#1|) (-1156 |#1|))) (-15 -1772 ((-1156 |#1|) (-1156 |#1|))) (-15 -1784 ((-1156 |#1|) (-1156 |#1|))) (-15 -1798 ((-1156 |#1|) (-1156 |#1|))) (-15 -1810 ((-1156 |#1|) (-1156 |#1|))) (-15 -1823 ((-1156 |#1|) (-1156 |#1|))) (-15 -1834 ((-1156 |#1|) (-1156 |#1|))) (-15 -1847 ((-1156 |#1|) (-1156 |#1|))) (-15 -1858 ((-1156 |#1|) (-1156 |#1|))) (-15 -1869 ((-1156 |#1|) (-1156 |#1|))) (-15 -1345 ((-1156 |#1|) (-1156 |#1|))))
+((-2571 (((-959 |#2|) |#2| |#2|) 51)) (-2958 ((|#2| |#2| |#1|) 19 (|has| |#1| (-308)))))
+(((-1163 |#1| |#2|) (-10 -7 (-15 -2571 ((-959 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -2958 (|#2| |#2| |#1|)) |%noBranch|)) (-559) (-1242 |#1|)) (T -1163))
+((-2958 (*1 *2 *2 *3) (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-1242 *3)))) (-2571 (*1 *2 *3 *3) (-12 (-4 *4 (-559)) (-5 *2 (-959 *3)) (-5 *1 (-1163 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -2571 ((-959 |#2|) |#2| |#2|)) (IF (|has| |#1| (-308)) (-15 -2958 (|#2| |#2| |#1|)) |%noBranch|))
+((-2257 (((-112) $ $) NIL)) (-3425 (($ $ (-645 (-772))) 81)) (-1900 (($) 33)) (-1985 (($ $) 51)) (-2320 (((-645 $) $) 60)) (-2004 (((-112) $) 19)) (-3068 (((-645 (-944 |#2|)) $) 88)) (-3031 (($ $) 82)) (-2597 (((-772) $) 47)) (-4012 (($) 32)) (-2641 (($ $ (-645 (-772)) (-944 |#2|)) 74) (($ $ (-645 (-772)) (-772)) 75) (($ $ (-772) (-944 |#2|)) 77)) (-3768 (($ $ $) 57) (($ (-645 $)) 59)) (-2818 (((-772) $) 89)) (-1436 (((-112) $) 15)) (-2451 (((-1158) $) NIL)) (-3556 (((-112) $) 22)) (-3339 (((-1120) $) NIL)) (-4327 (((-171) $) 87)) (-3683 (((-944 |#2|) $) 83)) (-3981 (((-772) $) 84)) (-3649 (((-112) $) 86)) (-2499 (($ $ (-645 (-772)) (-171)) 80)) (-4266 (($ $) 52)) (-4101 (((-863) $) 100)) (-2206 (($ $ (-645 (-772)) (-112)) 79)) (-2936 (((-645 $) $) 11)) (-3144 (($ $ (-772)) 46)) (-3849 (($ $) 43)) (-3739 (((-112) $ $) NIL)) (-2188 (($ $ $ (-944 |#2|) (-772)) 70)) (-1445 (($ $ (-944 |#2|)) 69)) (-2701 (($ $ (-645 (-772)) (-944 |#2|)) 66) (($ $ (-645 (-772)) (-772)) 72) (((-772) $ (-944 |#2|)) 73)) (-3052 (((-112) $ $) 94)))
+(((-1164 |#1| |#2|) (-13 (-1100) (-10 -8 (-15 -1436 ((-112) $)) (-15 -2004 ((-112) $)) (-15 -3556 ((-112) $)) (-15 -4012 ($)) (-15 -1900 ($)) (-15 -3849 ($ $)) (-15 -3144 ($ $ (-772))) (-15 -2936 ((-645 $) $)) (-15 -2597 ((-772) $)) (-15 -1985 ($ $)) (-15 -4266 ($ $)) (-15 -3768 ($ $ $)) (-15 -3768 ($ (-645 $))) (-15 -2320 ((-645 $) $)) (-15 -2701 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -1445 ($ $ (-944 |#2|))) (-15 -2188 ($ $ $ (-944 |#2|) (-772))) (-15 -2641 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -2701 ($ $ (-645 (-772)) (-772))) (-15 -2641 ($ $ (-645 (-772)) (-772))) (-15 -2701 ((-772) $ (-944 |#2|))) (-15 -2641 ($ $ (-772) (-944 |#2|))) (-15 -2206 ($ $ (-645 (-772)) (-112))) (-15 -2499 ($ $ (-645 (-772)) (-171))) (-15 -3425 ($ $ (-645 (-772)))) (-15 -3683 ((-944 |#2|) $)) (-15 -3981 ((-772) $)) (-15 -3649 ((-112) $)) (-15 -4327 ((-171) $)) (-15 -2818 ((-772) $)) (-15 -3031 ($ $)) (-15 -3068 ((-645 (-944 |#2|)) $)))) (-922) (-1050)) (T -1164))
+((-1436 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2004 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-4012 (*1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-1900 (*1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3849 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2936 (*1 *2 *1) (-12 (-5 *2 (-645 (-1164 *3 *4))) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-1985 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-4266 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3768 (*1 *1 *1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-645 (-1164 *3 *4))) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-645 (-1164 *3 *4))) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2701 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))) (-1445 (*1 *1 *1 *2) (-12 (-5 *2 (-944 *4)) (-4 *4 (-1050)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)))) (-2188 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-944 *5)) (-5 *3 (-772)) (-4 *5 (-1050)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))) (-2701 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-2701 (*1 *2 *1 *3) (-12 (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *2 (-772)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))) (-2641 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))) (-2206 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-2499 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)) (-4 *5 (-1050)))) (-3425 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3683 (*1 *2 *1) (-12 (-5 *2 (-944 *4)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3981 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-4327 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))) (-3031 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-645 (-944 *4))) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922)) (-4 *4 (-1050)))))
+(-13 (-1100) (-10 -8 (-15 -1436 ((-112) $)) (-15 -2004 ((-112) $)) (-15 -3556 ((-112) $)) (-15 -4012 ($)) (-15 -1900 ($)) (-15 -3849 ($ $)) (-15 -3144 ($ $ (-772))) (-15 -2936 ((-645 $) $)) (-15 -2597 ((-772) $)) (-15 -1985 ($ $)) (-15 -4266 ($ $)) (-15 -3768 ($ $ $)) (-15 -3768 ($ (-645 $))) (-15 -2320 ((-645 $) $)) (-15 -2701 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -1445 ($ $ (-944 |#2|))) (-15 -2188 ($ $ $ (-944 |#2|) (-772))) (-15 -2641 ($ $ (-645 (-772)) (-944 |#2|))) (-15 -2701 ($ $ (-645 (-772)) (-772))) (-15 -2641 ($ $ (-645 (-772)) (-772))) (-15 -2701 ((-772) $ (-944 |#2|))) (-15 -2641 ($ $ (-772) (-944 |#2|))) (-15 -2206 ($ $ (-645 (-772)) (-112))) (-15 -2499 ($ $ (-645 (-772)) (-171))) (-15 -3425 ($ $ (-645 (-772)))) (-15 -3683 ((-944 |#2|) $)) (-15 -3981 ((-772) $)) (-15 -3649 ((-112) $)) (-15 -4327 ((-171) $)) (-15 -2818 ((-772) $)) (-15 -3031 ($ $)) (-15 -3068 ((-645 (-944 |#2|)) $))))
+((-2257 (((-112) $ $) NIL)) (-2606 ((|#2| $) 11)) (-1787 ((|#1| $) 10)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4114 (($ |#1| |#2|) 9)) (-4101 (((-863) $) 16)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1165 |#1| |#2|) (-13 (-1100) (-10 -8 (-15 -4114 ($ |#1| |#2|)) (-15 -1787 (|#1| $)) (-15 -2606 (|#2| $)))) (-1100) (-1100)) (T -1165))
+((-4114 (*1 *1 *2 *3) (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-1787 (*1 *2 *1) (-12 (-4 *2 (-1100)) (-5 *1 (-1165 *2 *3)) (-4 *3 (-1100)))) (-2606 (*1 *2 *1) (-12 (-4 *2 (-1100)) (-5 *1 (-1165 *3 *2)) (-4 *3 (-1100)))))
+(-13 (-1100) (-10 -8 (-15 -4114 ($ |#1| |#2|)) (-15 -1787 (|#1| $)) (-15 -2606 (|#2| $))))
+((-2257 (((-112) $ $) NIL)) (-4203 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 15) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1166) (-13 (-1083) (-10 -8 (-15 -4203 ((-1135) $))))) (T -1166))
+((-4203 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1166)))))
+(-13 (-1083) (-10 -8 (-15 -4203 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 (((-1174 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 11)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3602 (($ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2119 (((-112) $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2674 (($ $ (-567)) NIL) (($ $ (-567) (-567)) 75)) (-3030 (((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-1342 (((-1174 |#1| |#2| |#3|) $) 42)) (-3432 (((-3 (-1174 |#1| |#2| |#3|) "failed") $) 32)) (-2511 (((-1174 |#1| |#2| |#3|) $) 33)) (-1772 (($ $) 116 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 92 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) 112 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 88 (|has| |#1| (-38 (-410 (-567)))))) (-3179 (((-567) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2009 (($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-1798 (($ $) 120 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 96 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-1174 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1176) "failed") $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-1176))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-1621 (((-1174 |#1| |#2| |#3|) $) 140) (((-1176) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-1176))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-1800 (($ $) 37) (($ (-567) $) 38)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-1174 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 (-1174 |#1| |#2| |#3|))) (|:| |vec| (-1266 (-1174 |#1| |#2| |#3|)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-4014 (((-3 $ "failed") $) 54)) (-4332 (((-410 (-953 |#1|)) $ (-567)) 74 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 76 (|has| |#1| (-559)))) (-1649 (($) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4095 (((-112) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-4222 (((-112) $) 28)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-887 (-567))) (|has| |#1| (-365))))) (-1909 (((-567) $) NIL) (((-567) $ (-567)) 26)) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-365)))) (-4067 (((-1174 |#1| |#2| |#3|) $) 44 (|has| |#1| (-365)))) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2802 (((-3 $ "failed") $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1151)) (|has| |#1| (-365))))) (-3948 (((-112) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1406 (($ $ (-922)) NIL)) (-2440 (($ (-1 |#1| (-567)) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-567)) 19) (($ $ (-1082) (-567)) NIL) (($ $ (-645 (-1082)) (-645 (-567))) NIL)) (-2056 (($ $ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-1802 (($ $ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-2942 (($ $) 81 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2524 (($ (-567) (-1174 |#1| |#2| |#3|)) 36)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2113 (($ $) 79 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201))))) (($ $ (-1262 |#2|)) 80 (|has| |#1| (-38 (-410 (-567)))))) (-2596 (($) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1151)) (|has| |#1| (-365))) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1987 (($ $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3992 (((-1174 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-567)) 158)) (-2245 (((-3 $ "failed") $ $) 55 (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2910 (($ $) 82 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1176) (-1174 |#1| |#2| |#3|)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-517 (-1176) (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1176)) (-645 (-1174 |#1| |#2| |#3|))) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-517 (-1176) (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1174 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-310 (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1174 |#1| |#2| |#3|))) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-310 (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-310 (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1174 |#1| |#2| |#3|)) (-645 (-1174 |#1| |#2| |#3|))) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-310 (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-567)) NIL) (($ $ $) 61 (|has| (-567) (-1112))) (($ $ (-1174 |#1| |#2| |#3|)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-287 (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-1 (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1262 |#2|)) 57) (($ $ (-772)) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 56 (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176) (-772)) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-645 (-1176))) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))) (-2870 (($ $) NIL (|has| |#1| (-365)))) (-4078 (((-1174 |#1| |#2| |#3|) $) 46 (|has| |#1| (-365)))) (-3677 (((-567) $) 43)) (-1810 (($ $) 122 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 98 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 118 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 94 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 114 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 90 (|has| |#1| (-38 (-410 (-567)))))) (-3542 (((-539) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-381)) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2448 (($ $) NIL)) (-4101 (((-863) $) 162) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1174 |#1| |#2| |#3|)) 30) (($ (-1262 |#2|)) 25) (($ (-1176)) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-1176))) (|has| |#1| (-365)))) (($ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-2339 ((|#1| $ (-567)) 77)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) 12)) (-2721 (((-1174 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 104 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1823 (($ $) 124 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 100 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 108 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 110 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 106 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 126 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 102 (|has| |#1| (-38 (-410 (-567)))))) (-1771 (($ $) NIL (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1468 (($) 21 T CONST)) (-1484 (($) 16 T CONST)) (-2692 (($ $ (-1 (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176) (-772)) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-645 (-1176))) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))) (-3109 (((-112) $ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3085 (((-112) $ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3075 (((-112) $ $) NIL (-2909 (-12 (|has| (-1174 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1174 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 49 (|has| |#1| (-365))) (($ (-1174 |#1| |#2| |#3|) (-1174 |#1| |#2| |#3|)) 50 (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 23)) (** (($ $ (-922)) NIL) (($ $ (-772)) 60) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) 83 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 137 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1174 |#1| |#2| |#3|)) 48 (|has| |#1| (-365))) (($ (-1174 |#1| |#2| |#3|) $) 47 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1167 |#1| |#2| |#3|) (-13 (-1228 |#1| (-1174 |#1| |#2| |#3|)) (-10 -8 (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|))) (-1050) (-1176) |#1|) (T -1167))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(-13 (-1228 |#1| (-1174 |#1| |#2| |#3|)) (-10 -8 (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|)))
+((-2282 ((|#2| |#2| (-1092 |#2|)) 26) ((|#2| |#2| (-1176)) 28)))
+(((-1168 |#1| |#2|) (-10 -7 (-15 -2282 (|#2| |#2| (-1176))) (-15 -2282 (|#2| |#2| (-1092 |#2|)))) (-13 (-559) (-1039 (-567)) (-640 (-567))) (-13 (-433 |#1|) (-160) (-27) (-1201))) (T -1168))
+((-2282 (*1 *2 *2 *3) (-12 (-5 *3 (-1092 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1201))) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1168 *4 *2)))) (-2282 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1201))))))
+(-10 -7 (-15 -2282 (|#2| |#2| (-1176))) (-15 -2282 (|#2| |#2| (-1092 |#2|))))
+((-2282 (((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1092 (-410 (-953 |#1|)))) 31) (((-410 (-953 |#1|)) (-953 |#1|) (-1092 (-953 |#1|))) 44) (((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1176)) 33) (((-410 (-953 |#1|)) (-953 |#1|) (-1176)) 36)))
+(((-1169 |#1|) (-10 -7 (-15 -2282 ((-410 (-953 |#1|)) (-953 |#1|) (-1176))) (-15 -2282 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1176))) (-15 -2282 ((-410 (-953 |#1|)) (-953 |#1|) (-1092 (-953 |#1|)))) (-15 -2282 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1092 (-410 (-953 |#1|)))))) (-13 (-559) (-1039 (-567)))) (T -1169))
+((-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-1092 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5))) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-3 *3 (-317 *5))) (-5 *1 (-1169 *5)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-1092 (-953 *5))) (-5 *3 (-953 *5)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 *3)) (-5 *1 (-1169 *5)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-3 (-410 (-953 *5)) (-317 *5))) (-5 *1 (-1169 *5)) (-5 *3 (-410 (-953 *5))))) (-2282 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 (-953 *5))) (-5 *1 (-1169 *5)) (-5 *3 (-953 *5)))))
+(-10 -7 (-15 -2282 ((-410 (-953 |#1|)) (-953 |#1|) (-1176))) (-15 -2282 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1176))) (-15 -2282 ((-410 (-953 |#1|)) (-953 |#1|) (-1092 (-953 |#1|)))) (-15 -2282 ((-3 (-410 (-953 |#1|)) (-317 |#1|)) (-410 (-953 |#1|)) (-1092 (-410 (-953 |#1|))))))
+((-3494 (((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 13)))
+(((-1170 |#1| |#2|) (-10 -7 (-15 -3494 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)))) (-1050) (-1050)) (T -1170))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-5 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6)))))
+(-10 -7 (-15 -3494 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))))
+((-1401 (((-421 (-1172 (-410 |#4|))) (-1172 (-410 |#4|))) 51)) (-2296 (((-421 (-1172 (-410 |#4|))) (-1172 (-410 |#4|))) 52)))
+(((-1171 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2296 ((-421 (-1172 (-410 |#4|))) (-1172 (-410 |#4|)))) (-15 -1401 ((-421 (-1172 (-410 |#4|))) (-1172 (-410 |#4|))))) (-794) (-851) (-455) (-950 |#3| |#1| |#2|)) (T -1171))
+((-1401 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1172 (-410 *7)))) (-5 *1 (-1171 *4 *5 *6 *7)) (-5 *3 (-1172 (-410 *7))))) (-2296 (*1 *2 *3) (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455)) (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1172 (-410 *7)))) (-5 *1 (-1171 *4 *5 *6 *7)) (-5 *3 (-1172 (-410 *7))))))
+(-10 -7 (-15 -2296 ((-421 (-1172 (-410 |#4|))) (-1172 (-410 |#4|)))) (-15 -1401 ((-421 (-1172 (-410 |#4|))) (-1172 (-410 |#4|)))))
+((-2257 (((-112) $ $) 171)) (-2865 (((-112) $) 43)) (-3723 (((-1266 |#1|) $ (-772)) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-2876 (($ (-1172 |#1|)) NIL)) (-2260 (((-1172 $) $ (-1082)) 82) (((-1172 |#1|) $) 71)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) 164 (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-1082))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3288 (($ $ $) 158 (|has| |#1| (-559)))) (-1877 (((-421 (-1172 $)) (-1172 $)) 95 (|has| |#1| (-910)))) (-1396 (($ $) NIL (|has| |#1| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 115 (|has| |#1| (-910)))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3139 (($ $ (-772)) 61)) (-2001 (($ $ (-772)) 63)) (-2320 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-455)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#1| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-1082) "failed") $) NIL)) (-1621 ((|#1| $) NIL) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-1082) $) NIL)) (-2414 (($ $ $ (-1082)) NIL (|has| |#1| (-172))) ((|#1| $ $) 160 (|has| |#1| (-172)))) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) 80)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) NIL) (((-690 |#1|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3393 (($ $ $) 131)) (-3862 (($ $ $) NIL (|has| |#1| (-559)))) (-2919 (((-2 (|:| -3087 |#1|) (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-559)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-2958 (($ $) 165 (|has| |#1| (-455))) (($ $ (-1082)) NIL (|has| |#1| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-772) $) 69)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1082) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1082) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-3188 (((-863) $ (-863)) 148)) (-1909 (((-772) $ $) NIL (|has| |#1| (-559)))) (-3714 (((-112) $) 48)) (-2864 (((-772) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| |#1| (-1151)))) (-2434 (($ (-1172 |#1|) (-1082)) 73) (($ (-1172 $) (-1082)) 89)) (-1406 (($ $ (-772)) 51)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) 87) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-1082)) NIL) (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 153)) (-4185 (((-772) $) NIL) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-1599 (($ (-1 (-772) (-772)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1689 (((-1172 |#1|) $) NIL)) (-3300 (((-3 (-1082) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) 76)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) NIL (|has| |#1| (-455)))) (-2451 (((-1158) $) NIL)) (-2607 (((-2 (|:| -3545 $) (|:| -1386 $)) $ (-772)) 60)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-1082)) (|:| -4164 (-772))) "failed") $) NIL)) (-2113 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2596 (($) NIL (|has| |#1| (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) 50)) (-2583 ((|#1| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 103 (|has| |#1| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-455))) (($ $ $) 167 (|has| |#1| (-455)))) (-4237 (($ $ (-772) |#1| $) 123)) (-1495 (((-421 (-1172 $)) (-1172 $)) 101 (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 100 (|has| |#1| (-910)))) (-2296 (((-421 $) $) 108 (|has| |#1| (-910)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2245 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 124 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1082) |#1|) NIL) (($ $ (-645 (-1082)) (-645 |#1|)) NIL) (($ $ (-1082) $) NIL) (($ $ (-645 (-1082)) (-645 $)) NIL)) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ |#1|) 150) (($ $ $) 151) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) NIL (|has| |#1| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#1| (-559)))) (-2116 (((-3 $ "failed") $ (-772)) 54)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 172 (|has| |#1| (-365)))) (-3347 (($ $ (-1082)) NIL (|has| |#1| (-172))) ((|#1| $) 156 (|has| |#1| (-172)))) (-1930 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-3677 (((-772) $) 78) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1082) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) 162 (|has| |#1| (-455))) (($ $ (-1082)) NIL (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-910))))) (-4187 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#1| (-559)))) (-4101 (((-863) $) 149) (($ (-567)) NIL) (($ |#1|) 77) (($ (-1082)) NIL) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) 41 (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) 17 T CONST)) (-1484 (($) 19 T CONST)) (-2692 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3052 (((-112) $ $) 120)) (-3168 (($ $ |#1|) 173 (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 90)) (** (($ $ (-922)) 14) (($ $ (-772)) 12)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 39) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 129) (($ $ |#1|) NIL)))
+(((-1172 |#1|) (-13 (-1242 |#1|) (-10 -8 (-15 -3188 ((-863) $ (-863))) (-15 -4237 ($ $ (-772) |#1| $)))) (-1050)) (T -1172))
+((-3188 (*1 *2 *1 *2) (-12 (-5 *2 (-863)) (-5 *1 (-1172 *3)) (-4 *3 (-1050)))) (-4237 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1172 *3)) (-4 *3 (-1050)))))
+(-13 (-1242 |#1|) (-10 -8 (-15 -3188 ((-863) $ (-863))) (-15 -4237 ($ $ (-772) |#1| $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 11)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3030 (((-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-1772 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1798 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1174 |#1| |#2| |#3|) "failed") $) 36)) (-1621 (((-1167 |#1| |#2| |#3|) $) NIL) (((-1174 |#1| |#2| |#3|) $) NIL)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2619 (((-410 (-567)) $) 59)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2535 (($ (-410 (-567)) (-1167 |#1| |#2| |#3|)) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-410 (-567))) 20) (($ $ (-1082) (-410 (-567))) NIL) (($ $ (-645 (-1082)) (-645 (-410 (-567)))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1476 (((-1167 |#1| |#2| |#3|) $) 41)) (-4118 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) NIL)) (-2524 (((-1167 |#1| |#2| |#3|) $) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2113 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201))))) (($ $ (-1262 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-410 (-567))) NIL)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2910 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1262 |#2|)) 38)) (-3677 (((-410 (-567)) $) NIL)) (-1810 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) NIL)) (-4101 (((-863) $) 62) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1167 |#1| |#2| |#3|)) 30) (($ (-1174 |#1| |#2| |#3|)) 31) (($ (-1262 |#2|)) 26) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2339 ((|#1| $ (-410 (-567))) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) 12)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 22 T CONST)) (-1484 (($) 16 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 24)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1173 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1167 |#1| |#2| |#3|)) (-1039 (-1174 |#1| |#2| |#3|)) (-617 (-1262 |#2|)) (-10 -8 (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|))) (-1050) (-1176) |#1|) (T -1173))
+((-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(-13 (-1249 |#1| (-1167 |#1| |#2| |#3|)) (-1039 (-1174 |#1| |#2| |#3|)) (-617 (-1262 |#2|)) (-10 -8 (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 131)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 121)) (-2501 (((-1239 |#2| |#1|) $ (-772)) 69)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-772)) 85) (($ $ (-772) (-772)) 82)) (-3030 (((-1156 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 107)) (-1772 (($ $) 175 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1747 (($ $) 171 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-1156 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 120) (($ (-1156 |#1|)) 115)) (-1798 (($ $) 179 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) 25)) (-2388 (($ $) 28)) (-3825 (((-953 |#1|) $ (-772)) 81) (((-953 |#1|) $ (-772) (-772)) 83)) (-4222 (((-112) $) 126)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-772) $) 128) (((-772) $ (-772)) 130)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) NIL)) (-2440 (($ (-1 |#1| (-567)) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) 13) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-2113 (($ $) 135 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201))))) (($ $ (-1262 |#2|)) 136 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-2436 (($ $ (-772)) 15)) (-2245 (((-3 $ "failed") $ $) 26 (|has| |#1| (-559)))) (-2910 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1552 ((|#1| $ (-772)) 124) (($ $ $) 134 (|has| (-772) (-1112)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1262 |#2|)) 31)) (-3677 (((-772) $) NIL)) (-1810 (($ $) 181 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 157 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 177 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 173 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) NIL)) (-4101 (((-863) $) 208) (($ (-567)) NIL) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 132 (|has| |#1| (-172))) (($ (-1239 |#2| |#1|)) 55) (($ (-1262 |#2|)) 36)) (-2350 (((-1156 |#1|) $) 103)) (-2339 ((|#1| $ (-772)) 123)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) 58)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) 187 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 163 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) 183 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 159 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 191 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 167 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-772)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 193 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 169 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 189 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 165 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 185 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 161 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 17 T CONST)) (-1484 (($) 20 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) 200)) (-3146 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 205 (|has| |#1| (-365))) (($ $ $) 140 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 143 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 138) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1174 |#1| |#2| |#3|) (-13 (-1257 |#1|) (-10 -8 (-15 -4101 ($ (-1239 |#2| |#1|))) (-15 -2501 ((-1239 |#2| |#1|) $ (-772))) (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|))) (-1050) (-1176) |#1|) (T -1174))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1176)) (-14 *5 *3) (-5 *1 (-1174 *3 *4 *5)))) (-2501 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1174 *4 *5 *6)) (-4 *4 (-1050)) (-14 *5 (-1176)) (-14 *6 *4))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1174 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(-13 (-1257 |#1|) (-10 -8 (-15 -4101 ($ (-1239 |#2| |#1|))) (-15 -2501 ((-1239 |#2| |#1|) $ (-772))) (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|)))
+((-4101 (((-863) $) 33) (($ (-1176)) 35)) (-2909 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 46)) (-2898 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 39) (($ $) 40)) (-2944 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 41)) (-2931 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 43)) (-2918 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 42)) (-2907 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 44)) (-2168 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $))) 45)))
+(((-1175) (-13 (-614 (-863)) (-10 -8 (-15 -4101 ($ (-1176))) (-15 -2944 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2918 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2931 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2907 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2909 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2168 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2898 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2898 ($ $))))) (T -1175))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1175)))) (-2944 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-2918 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-2931 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-2907 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-2909 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-2168 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-2898 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175)))) (-5 *1 (-1175)))) (-2898 (*1 *1 *1) (-5 *1 (-1175))))
+(-13 (-614 (-863)) (-10 -8 (-15 -4101 ($ (-1176))) (-15 -2944 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2918 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2931 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2907 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2909 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2168 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)) (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2898 ($ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381))) (|:| CF (-317 (-169 (-381)))) (|:| |switch| $)))) (-15 -2898 ($ $))))
+((-2257 (((-112) $ $) NIL)) (-1490 (($ $ (-645 (-863))) 64)) (-1549 (($ $ (-645 (-863))) 62)) (-2478 (((-1158) $) 103)) (-3047 (((-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863)))) $) 110)) (-3251 (((-112) $) 23)) (-1441 (($ $ (-645 (-645 (-863)))) 61) (($ $ (-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863))))) 101)) (-4061 (($) 166 T CONST)) (-3619 (((-1271)) 138)) (-3813 (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 71) (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 78)) (-4012 (($) 124) (($ $) 133)) (-1817 (($ $) 102)) (-2056 (($ $ $) NIL)) (-1802 (($ $ $) NIL)) (-1924 (((-645 $) $) 139)) (-2451 (((-1158) $) 116)) (-3339 (((-1120) $) NIL)) (-1552 (($ $ (-645 (-863))) 63)) (-3542 (((-539) $) 48) (((-1176) $) 49) (((-893 (-567)) $) 82) (((-893 (-381)) $) 80)) (-4101 (((-863) $) 55) (($ (-1158)) 50)) (-3739 (((-112) $ $) NIL)) (-2325 (($ $ (-645 (-863))) 65)) (-4184 (((-1158) $) 34) (((-1158) $ (-112)) 35) (((-1271) (-823) $) 36) (((-1271) (-823) $ (-112)) 37)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 51)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) 52)))
+(((-1176) (-13 (-851) (-615 (-539)) (-829) (-615 (-1176)) (-617 (-1158)) (-615 (-893 (-567))) (-615 (-893 (-381))) (-887 (-567)) (-887 (-381)) (-10 -8 (-15 -4012 ($)) (-15 -4012 ($ $)) (-15 -3619 ((-1271))) (-15 -1817 ($ $)) (-15 -3251 ((-112) $)) (-15 -3047 ((-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -1441 ($ $ (-645 (-645 (-863))))) (-15 -1441 ($ $ (-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -1549 ($ $ (-645 (-863)))) (-15 -1490 ($ $ (-645 (-863)))) (-15 -2325 ($ $ (-645 (-863)))) (-15 -1552 ($ $ (-645 (-863)))) (-15 -2478 ((-1158) $)) (-15 -1924 ((-645 $) $)) (-15 -4061 ($) -2131)))) (T -1176))
+((-4012 (*1 *1) (-5 *1 (-1176))) (-4012 (*1 *1 *1) (-5 *1 (-1176))) (-3619 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1176)))) (-1817 (*1 *1 *1) (-5 *1 (-1176))) (-3251 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176)))) (-3047 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1176)))) (-1441 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1176)))) (-1441 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863))))) (-5 *1 (-1176)))) (-1549 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176)))) (-1490 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176)))) (-2325 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1176)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1176)))) (-4061 (*1 *1) (-5 *1 (-1176))))
+(-13 (-851) (-615 (-539)) (-829) (-615 (-1176)) (-617 (-1158)) (-615 (-893 (-567))) (-615 (-893 (-381))) (-887 (-567)) (-887 (-381)) (-10 -8 (-15 -4012 ($)) (-15 -4012 ($ $)) (-15 -3619 ((-1271))) (-15 -1817 ($ $)) (-15 -3251 ((-112) $)) (-15 -3047 ((-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863)))) $)) (-15 -1441 ($ $ (-645 (-645 (-863))))) (-15 -1441 ($ $ (-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863))) (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863))) (|:| |args| (-645 (-863)))))) (-15 -1549 ($ $ (-645 (-863)))) (-15 -1490 ($ $ (-645 (-863)))) (-15 -2325 ($ $ (-645 (-863)))) (-15 -1552 ($ $ (-645 (-863)))) (-15 -2478 ((-1158) $)) (-15 -1924 ((-645 $) $)) (-15 -4061 ($) -2131)))
+((-2266 (((-1266 |#1|) |#1| (-922)) 18) (((-1266 |#1|) (-645 |#1|)) 25)))
+(((-1177 |#1|) (-10 -7 (-15 -2266 ((-1266 |#1|) (-645 |#1|))) (-15 -2266 ((-1266 |#1|) |#1| (-922)))) (-1050)) (T -1177))
+((-2266 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1266 *3)) (-5 *1 (-1177 *3)) (-4 *3 (-1050)))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1050)) (-5 *2 (-1266 *4)) (-5 *1 (-1177 *4)))))
+(-10 -7 (-15 -2266 ((-1266 |#1|) (-645 |#1|))) (-15 -2266 ((-1266 |#1|) |#1| (-922))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| |#1| (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#1| (-1039 (-410 (-567))))) (((-3 |#1| "failed") $) NIL)) (-1621 (((-567) $) NIL (|has| |#1| (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| |#1| (-1039 (-410 (-567))))) ((|#1| $) NIL)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2958 (($ $) NIL (|has| |#1| (-455)))) (-3564 (($ $ |#1| (-972) $) NIL)) (-3714 (((-112) $) 17)) (-2864 (((-772) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-972)) NIL)) (-4185 (((-972) $) NIL)) (-1599 (($ (-1 (-972) (-972)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#1| $) NIL)) (-4237 (($ $ (-972) |#1| $) NIL (-12 (|has| (-972) (-131)) (|has| |#1| (-559))))) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-559)))) (-3677 (((-972) $) NIL)) (-1640 ((|#1| $) NIL (|has| |#1| (-455)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) NIL) (($ (-410 (-567))) NIL (-2909 (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-1039 (-410 (-567))))))) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ (-972)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#1| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1468 (($) 11 T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 21)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1178 |#1|) (-13 (-327 |#1| (-972)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-972) (-131)) (-15 -4237 ($ $ (-972) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|))) (-1050)) (T -1178))
+((-4237 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-972)) (-4 *2 (-131)) (-5 *1 (-1178 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))))
+(-13 (-327 |#1| (-972)) (-10 -8 (IF (|has| |#1| (-559)) (IF (|has| (-972) (-131)) (-15 -4237 ($ $ (-972) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|)))
+((-1697 (((-1180) (-1176) $) 25)) (-3575 (($) 29)) (-3501 (((-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-1176) $) 22)) (-4141 (((-1271) (-1176) (-3 (|:| |fst| (-437)) (|:| -2387 "void")) $) 41) (((-1271) (-1176) (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) 42) (((-1271) (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) 43)) (-2259 (((-1271) (-1176)) 58)) (-3299 (((-1271) (-1176) $) 55) (((-1271) (-1176)) 56) (((-1271)) 57)) (-2035 (((-1271) (-1176)) 37)) (-2732 (((-1176)) 36)) (-3164 (($) 34)) (-1590 (((-440) (-1176) (-440) (-1176) $) 45) (((-440) (-645 (-1176)) (-440) (-1176) $) 49) (((-440) (-1176) (-440)) 46) (((-440) (-1176) (-440) (-1176)) 50)) (-3161 (((-1176)) 35)) (-4101 (((-863) $) 28)) (-1720 (((-1271)) 30) (((-1271) (-1176)) 33)) (-3398 (((-645 (-1176)) (-1176) $) 24)) (-4317 (((-1271) (-1176) (-645 (-1176)) $) 38) (((-1271) (-1176) (-645 (-1176))) 39) (((-1271) (-645 (-1176))) 40)))
+(((-1179) (-13 (-614 (-863)) (-10 -8 (-15 -3575 ($)) (-15 -1720 ((-1271))) (-15 -1720 ((-1271) (-1176))) (-15 -1590 ((-440) (-1176) (-440) (-1176) $)) (-15 -1590 ((-440) (-645 (-1176)) (-440) (-1176) $)) (-15 -1590 ((-440) (-1176) (-440))) (-15 -1590 ((-440) (-1176) (-440) (-1176))) (-15 -2035 ((-1271) (-1176))) (-15 -3161 ((-1176))) (-15 -2732 ((-1176))) (-15 -4317 ((-1271) (-1176) (-645 (-1176)) $)) (-15 -4317 ((-1271) (-1176) (-645 (-1176)))) (-15 -4317 ((-1271) (-645 (-1176)))) (-15 -4141 ((-1271) (-1176) (-3 (|:| |fst| (-437)) (|:| -2387 "void")) $)) (-15 -4141 ((-1271) (-1176) (-3 (|:| |fst| (-437)) (|:| -2387 "void")))) (-15 -4141 ((-1271) (-3 (|:| |fst| (-437)) (|:| -2387 "void")))) (-15 -3299 ((-1271) (-1176) $)) (-15 -3299 ((-1271) (-1176))) (-15 -3299 ((-1271))) (-15 -2259 ((-1271) (-1176))) (-15 -3164 ($)) (-15 -3501 ((-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-1176) $)) (-15 -3398 ((-645 (-1176)) (-1176) $)) (-15 -1697 ((-1180) (-1176) $))))) (T -1179))
+((-3575 (*1 *1) (-5 *1 (-1179))) (-1720 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1179)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-1590 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1179)))) (-1590 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1176))) (-5 *4 (-1176)) (-5 *1 (-1179)))) (-1590 (*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1179)))) (-1590 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1179)))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-3161 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1179)))) (-2732 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1179)))) (-4317 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-4317 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-4317 (*1 *2 *3) (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-4141 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1176)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-3299 (*1 *2 *3 *1) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-3299 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1179)))) (-2259 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))) (-3164 (*1 *1) (-5 *1 (-1179))) (-3501 (*1 *2 *3 *1) (-12 (-5 *3 (-1176)) (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *1 (-1179)))) (-3398 (*1 *2 *3 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1179)) (-5 *3 (-1176)))) (-1697 (*1 *2 *3 *1) (-12 (-5 *3 (-1176)) (-5 *2 (-1180)) (-5 *1 (-1179)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -3575 ($)) (-15 -1720 ((-1271))) (-15 -1720 ((-1271) (-1176))) (-15 -1590 ((-440) (-1176) (-440) (-1176) $)) (-15 -1590 ((-440) (-645 (-1176)) (-440) (-1176) $)) (-15 -1590 ((-440) (-1176) (-440))) (-15 -1590 ((-440) (-1176) (-440) (-1176))) (-15 -2035 ((-1271) (-1176))) (-15 -3161 ((-1176))) (-15 -2732 ((-1176))) (-15 -4317 ((-1271) (-1176) (-645 (-1176)) $)) (-15 -4317 ((-1271) (-1176) (-645 (-1176)))) (-15 -4317 ((-1271) (-645 (-1176)))) (-15 -4141 ((-1271) (-1176) (-3 (|:| |fst| (-437)) (|:| -2387 "void")) $)) (-15 -4141 ((-1271) (-1176) (-3 (|:| |fst| (-437)) (|:| -2387 "void")))) (-15 -4141 ((-1271) (-3 (|:| |fst| (-437)) (|:| -2387 "void")))) (-15 -3299 ((-1271) (-1176) $)) (-15 -3299 ((-1271) (-1176))) (-15 -3299 ((-1271))) (-15 -2259 ((-1271) (-1176))) (-15 -3164 ($)) (-15 -3501 ((-3 (|:| |fst| (-437)) (|:| -2387 "void")) (-1176) $)) (-15 -3398 ((-645 (-1176)) (-1176) $)) (-15 -1697 ((-1180) (-1176) $))))
+((-2770 (((-645 (-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567))))))))) $) 66)) (-3827 (((-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567)))))))) (-437) $) 47)) (-1722 (($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-440))))) 17)) (-2259 (((-1271) $) 74)) (-4368 (((-645 (-1176)) $) 22)) (-2529 (((-1104) $) 60)) (-3253 (((-440) (-1176) $) 27)) (-2031 (((-645 (-1176)) $) 30)) (-3164 (($) 19)) (-1590 (((-440) (-645 (-1176)) (-440) $) 25) (((-440) (-1176) (-440) $) 24)) (-4101 (((-863) $) 9) (((-1189 (-1176) (-440)) $) 13)))
+(((-1180) (-13 (-614 (-863)) (-10 -8 (-15 -4101 ((-1189 (-1176) (-440)) $)) (-15 -3164 ($)) (-15 -1590 ((-440) (-645 (-1176)) (-440) $)) (-15 -1590 ((-440) (-1176) (-440) $)) (-15 -3253 ((-440) (-1176) $)) (-15 -4368 ((-645 (-1176)) $)) (-15 -3827 ((-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567)))))))) (-437) $)) (-15 -2031 ((-645 (-1176)) $)) (-15 -2770 ((-645 (-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567))))))))) $)) (-15 -2529 ((-1104) $)) (-15 -2259 ((-1271) $)) (-15 -1722 ($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-440))))))))) (T -1180))
+((-4101 (*1 *2 *1) (-12 (-5 *2 (-1189 (-1176) (-440))) (-5 *1 (-1180)))) (-3164 (*1 *1) (-5 *1 (-1180))) (-1590 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1176))) (-5 *1 (-1180)))) (-1590 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1180)))) (-3253 (*1 *2 *3 *1) (-12 (-5 *3 (-1176)) (-5 *2 (-440)) (-5 *1 (-1180)))) (-4368 (*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1180)))) (-3827 (*1 *2 *3 *1) (-12 (-5 *3 (-437)) (-5 *2 (-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567))))))))) (-5 *1 (-1180)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1180)))) (-2770 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567)))))))))) (-5 *1 (-1180)))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1180)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1180)))) (-1722 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-440))))) (-5 *1 (-1180)))))
+(-13 (-614 (-863)) (-10 -8 (-15 -4101 ((-1189 (-1176) (-440)) $)) (-15 -3164 ($)) (-15 -1590 ((-440) (-645 (-1176)) (-440) $)) (-15 -1590 ((-440) (-1176) (-440) $)) (-15 -3253 ((-440) (-1176) $)) (-15 -4368 ((-645 (-1176)) $)) (-15 -3827 ((-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567)))))))) (-437) $)) (-15 -2031 ((-645 (-1176)) $)) (-15 -2770 ((-645 (-645 (-3 (|:| -1817 (-1176)) (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567))))))))) $)) (-15 -2529 ((-1104) $)) (-15 -2259 ((-1271) $)) (-15 -1722 ($ (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-440))))))))
+((-2257 (((-112) $ $) NIL)) (-3417 (((-3 (-567) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-509) "failed") $) 43) (((-3 (-1158) "failed") $) 47)) (-1621 (((-567) $) 30) (((-225) $) 36) (((-509) $) 40) (((-1158) $) 48)) (-4353 (((-112) $) 53)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4024 (((-3 (-567) (-225) (-509) (-1158) $) $) 55)) (-3358 (((-645 $) $) 57)) (-3542 (((-1104) $) 24) (($ (-1104)) 25)) (-2779 (((-112) $) 56)) (-4101 (((-863) $) 23) (($ (-567)) 26) (($ (-225)) 32) (($ (-509)) 38) (($ (-1158)) 44) (((-539) $) 59) (((-567) $) 31) (((-225) $) 37) (((-509) $) 41) (((-1158) $) 49)) (-1453 (((-112) $ (|[\|\|]| (-567))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-509))) 19) (((-112) $ (|[\|\|]| (-1158))) 16)) (-1387 (($ (-509) (-645 $)) 51) (($ $ (-645 $)) 52)) (-3739 (((-112) $ $) NIL)) (-4276 (((-567) $) 27) (((-225) $) 33) (((-509) $) 39) (((-1158) $) 45)) (-3052 (((-112) $ $) 7)))
+(((-1181) (-13 (-1261) (-1100) (-1039 (-567)) (-1039 (-225)) (-1039 (-509)) (-1039 (-1158)) (-614 (-539)) (-10 -8 (-15 -3542 ((-1104) $)) (-15 -3542 ($ (-1104))) (-15 -4101 ((-567) $)) (-15 -4276 ((-567) $)) (-15 -4101 ((-225) $)) (-15 -4276 ((-225) $)) (-15 -4101 ((-509) $)) (-15 -4276 ((-509) $)) (-15 -4101 ((-1158) $)) (-15 -4276 ((-1158) $)) (-15 -1387 ($ (-509) (-645 $))) (-15 -1387 ($ $ (-645 $))) (-15 -4353 ((-112) $)) (-15 -4024 ((-3 (-567) (-225) (-509) (-1158) $) $)) (-15 -3358 ((-645 $) $)) (-15 -2779 ((-112) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-567)))) (-15 -1453 ((-112) $ (|[\|\|]| (-225)))) (-15 -1453 ((-112) $ (|[\|\|]| (-509)))) (-15 -1453 ((-112) $ (|[\|\|]| (-1158))))))) (T -1181))
+((-3542 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1181)))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-1104)) (-5 *1 (-1181)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1181)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1181)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1181)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1181)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1181)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1181)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1181)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1181)))) (-1387 (*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1181))) (-5 *1 (-1181)))) (-1387 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-1181)))) (-4353 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))) (-4024 (*1 *2 *1) (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1158) (-1181))) (-5 *1 (-1181)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-1181)))) (-2779 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1181)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1181)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1181)))) (-1453 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)) (-5 *1 (-1181)))))
+(-13 (-1261) (-1100) (-1039 (-567)) (-1039 (-225)) (-1039 (-509)) (-1039 (-1158)) (-614 (-539)) (-10 -8 (-15 -3542 ((-1104) $)) (-15 -3542 ($ (-1104))) (-15 -4101 ((-567) $)) (-15 -4276 ((-567) $)) (-15 -4101 ((-225) $)) (-15 -4276 ((-225) $)) (-15 -4101 ((-509) $)) (-15 -4276 ((-509) $)) (-15 -4101 ((-1158) $)) (-15 -4276 ((-1158) $)) (-15 -1387 ($ (-509) (-645 $))) (-15 -1387 ($ $ (-645 $))) (-15 -4353 ((-112) $)) (-15 -4024 ((-3 (-567) (-225) (-509) (-1158) $) $)) (-15 -3358 ((-645 $) $)) (-15 -2779 ((-112) $)) (-15 -1453 ((-112) $ (|[\|\|]| (-567)))) (-15 -1453 ((-112) $ (|[\|\|]| (-225)))) (-15 -1453 ((-112) $ (|[\|\|]| (-509)))) (-15 -1453 ((-112) $ (|[\|\|]| (-1158))))))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) 22)) (-4061 (($) 12 T CONST)) (-1649 (($) 26)) (-2056 (($ $ $) NIL) (($) 19 T CONST)) (-1802 (($ $ $) NIL) (($) 20 T CONST)) (-3527 (((-922) $) 24)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) 23)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-1182 |#1|) (-13 (-845) (-10 -8 (-15 -4061 ($) -2131))) (-922)) (T -1182))
+((-4061 (*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-922)))))
+(-13 (-845) (-10 -8 (-15 -4061 ($) -2131)))
((|Integer|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) 19 T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) 12 T CONST)) (-3936 (($ $ $) NIL) (($) 18 T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-3218 (($ $ $) 21)) (-3204 (($ $ $) 20)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-1182 |#1|) (-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854))) (-921)) (T -1182))
-((-3204 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-3218 (*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))) (-2633 (*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921)))))
-(-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) 19 T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) 12 T CONST)) (-1802 (($ $ $) NIL) (($) 18 T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-1488 (($ $ $) 21)) (-1472 (($ $ $) 20)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-1183 |#1|) (-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131))) (-922)) (T -1183))
+((-1472 (*1 *1 *1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922)))) (-1488 (*1 *1 *1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922)))) (-4061 (*1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922)))))
+(-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) @1)))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 9)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 7)))
-(((-1183) (-1099)) (T -1183))
-NIL
-(-1099)
-((-1819 (((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 67)) (-1409 (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|)))) 78) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|))) 74) (((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175)) 79) (((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175)) 73) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|))))) 106) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|)))) 105) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175))) 107) (((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175))) 104)))
-(((-1184 |#1|) (-10 -7 (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -1819 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175))))) (-558)) (T -1184))
-((-1819 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1184 *5)))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1184 *4)) (-5 *3 (-295 (-409 (-952 *4)))))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4))))) (-5 *1 (-1184 *4)) (-5 *3 (-409 (-952 *4))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1184 *5)) (-5 *3 (-295 (-409 (-952 *5)))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-1175)) (-4 *5 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1184 *5)) (-5 *3 (-409 (-952 *5))))) (-1409 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1184 *4)) (-5 *3 (-644 (-295 (-409 (-952 *4))))))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1184 *4)))) (-1409 (*1 *2 *3 *4) (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1184 *5)) (-5 *3 (-644 (-295 (-409 (-952 *5))))))) (-1409 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175))) (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1184 *5)))))
-(-10 -7 (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))) (-644 (-1175)))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-409 (-952 |#1|))))) (-15 -1409 ((-644 (-644 (-295 (-409 (-952 |#1|))))) (-644 (-295 (-409 (-952 |#1|)))))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)) (-1175))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))) (-1175))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-409 (-952 |#1|)))) (-15 -1409 ((-644 (-295 (-409 (-952 |#1|)))) (-295 (-409 (-952 |#1|))))) (-15 -1819 ((-644 (-644 (-952 |#1|))) (-644 (-409 (-952 |#1|))) (-644 (-1175)))))
-((-2574 (((-1157)) 7)) (-3731 (((-1157)) 11 T CONST)) (-4225 (((-1270) (-1157)) 13)) (-2390 (((-1157)) 8 T CONST)) (-2299 (((-130)) 10 T CONST)))
-(((-1185) (-13 (-1215) (-10 -7 (-15 -2574 ((-1157))) (-15 -2390 ((-1157)) -3854) (-15 -2299 ((-130)) -3854) (-15 -3731 ((-1157)) -3854) (-15 -4225 ((-1270) (-1157)))))) (T -1185))
-((-2574 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1185)))) (-2390 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1185)))) (-2299 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1185)))) (-3731 (*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1185)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1185)))))
-(-13 (-1215) (-10 -7 (-15 -2574 ((-1157))) (-15 -2390 ((-1157)) -3854) (-15 -2299 ((-130)) -3854) (-15 -3731 ((-1157)) -3854) (-15 -4225 ((-1270) (-1157)))))
-((-1941 (((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 56)) (-3330 (((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|))) 38)) (-3511 (((-1187 (-644 |#1|)) (-644 |#1|)) 49)) (-4211 (((-644 (-644 |#1|)) (-644 |#1|)) 45)) (-2128 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))) 53)) (-2812 (((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|)))) 52)) (-3216 (((-644 (-644 |#1|)) (-644 (-644 |#1|))) 43)) (-1764 (((-644 |#1|) (-644 |#1|)) 46)) (-1648 (((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 32)) (-3555 (((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|)))) 29)) (-1712 (((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|))) 24)) (-2862 (((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|)))) 58)) (-1437 (((-644 (-644 |#1|)) (-1187 (-644 |#1|))) 60)))
-(((-1186 |#1|) (-10 -7 (-15 -1712 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -3555 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1648 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1941 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2862 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -1437 ((-644 (-644 |#1|)) (-1187 (-644 |#1|)))) (-15 -3330 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -3511 ((-1187 (-644 |#1|)) (-644 |#1|))) (-15 -3216 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -4211 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -1764 ((-644 |#1|) (-644 |#1|))) (-15 -2812 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -2128 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|)))))) (-850)) (T -1186))
-((-2128 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4)))) (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4)))))) (-5 *1 (-1186 *4)) (-5 *3 (-644 (-644 (-644 *4)))))) (-2812 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5) (|:| |f4| (-644 *5)))) (-5 *1 (-1186 *6)) (-5 *4 (-644 *5)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1186 *3)))) (-4211 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1186 *4)) (-5 *3 (-644 *4)))) (-3216 (*1 *2 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1186 *3)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-1187 (-644 *4))) (-5 *1 (-1186 *4)) (-5 *3 (-644 *4)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4)))) (-5 *1 (-1186 *4)) (-5 *3 (-644 (-644 *4))))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-1187 (-644 *4))) (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1186 *4)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1186 *4)) (-4 *4 (-850)))) (-1941 (*1 *2 *2 *3) (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4))) (-4 *4 (-850)) (-5 *1 (-1186 *4)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *1 (-1186 *4)))) (-3555 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1186 *5)))) (-1712 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4)))) (-5 *1 (-1186 *6)) (-5 *5 (-644 *4)))))
-(-10 -7 (-15 -1712 ((-2 (|:| |fs| (-112)) (|:| |sd| (-644 |#1|)) (|:| |td| (-644 (-644 |#1|)))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 |#1|)))) (-15 -3555 ((-644 (-644 (-644 |#1|))) (-1 (-112) |#1| |#1|) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1648 ((-644 (-644 (-644 |#1|))) (-644 |#1|) (-644 (-644 (-644 |#1|))))) (-15 -1941 ((-644 (-644 |#1|)) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -2862 ((-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))))) (-15 -1437 ((-644 (-644 |#1|)) (-1187 (-644 |#1|)))) (-15 -3330 ((-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)))) (-15 -3511 ((-1187 (-644 |#1|)) (-644 |#1|))) (-15 -3216 ((-644 (-644 |#1|)) (-644 (-644 |#1|)))) (-15 -4211 ((-644 (-644 |#1|)) (-644 |#1|))) (-15 -1764 ((-644 |#1|) (-644 |#1|))) (-15 -2812 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 |#1|) (-644 (-644 (-644 |#1|))) (-644 (-644 |#1|)) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))) (-644 (-644 (-644 |#1|))))) (-15 -2128 ((-2 (|:| |f1| (-644 |#1|)) (|:| |f2| (-644 (-644 (-644 |#1|)))) (|:| |f3| (-644 (-644 |#1|))) (|:| |f4| (-644 (-644 (-644 |#1|))))) (-644 (-644 (-644 |#1|))))))
-((-3856 (($ (-644 (-644 |#1|))) 10)) (-3662 (((-644 (-644 |#1|)) $) 11)) (-2725 (((-862) $) 38)))
-(((-1187 |#1|) (-10 -8 (-15 -3856 ($ (-644 (-644 |#1|)))) (-15 -3662 ((-644 (-644 |#1|)) $)) (-15 -2725 ((-862) $))) (-1099)) (T -1187))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1187 *3)) (-4 *3 (-1099)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1099)))) (-3856 (*1 *1 *2) (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1187 *3)))))
-(-10 -8 (-15 -3856 ($ (-644 (-644 |#1|)))) (-15 -3662 ((-644 (-644 |#1|)) $)) (-15 -2725 ((-862) $)))
-((-3979 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2619 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2506 (((-1270) $ |#1| |#1|) NIL (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#2| $ |#1| |#2|) NIL)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) NIL)) (-2633 (($) NIL T CONST)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) NIL)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) NIL)) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) NIL)) (-2239 ((|#1| $) NIL (|has| |#1| (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-644 |#2|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-2605 ((|#1| $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-2838 (((-644 |#1|) $) NIL)) (-3932 (((-112) |#1| $) NIL)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-4063 (((-644 |#1|) $) NIL)) (-3054 (((-112) |#1| $) NIL)) (-1944 (((-1119) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3771 ((|#2| $) NIL (|has| |#1| (-850)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL)) (-3598 (($ $ |#2|) NIL (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1873 (($) NIL) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) NIL (-12 (|has| $ (-6 -4415)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (((-771) |#2| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099)))) (((-771) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2725 (((-862) $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862))) (|has| |#2| (-613 (-862)))))) (-1479 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) NIL)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) NIL (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) NIL (-2676 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| |#2| (-1099))))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1188 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415))) (-1099) (-1099)) (T -1188))
-NIL
-(-13 (-1191 |#1| |#2|) (-10 -7 (-6 -4415)))
-((-1318 ((|#1| (-644 |#1|)) 49)) (-2997 ((|#1| |#1| (-566)) 24)) (-3791 (((-1171 |#1|) |#1| (-921)) 20)))
-(((-1189 |#1|) (-10 -7 (-15 -1318 (|#1| (-644 |#1|))) (-15 -3791 ((-1171 |#1|) |#1| (-921))) (-15 -2997 (|#1| |#1| (-566)))) (-365)) (T -1189))
-((-2997 (*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1189 *2)) (-4 *2 (-365)))) (-3791 (*1 *2 *3 *4) (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1189 *3)) (-4 *3 (-365)))) (-1318 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1189 *2)) (-4 *2 (-365)))))
-(-10 -7 (-15 -1318 (|#1| (-644 |#1|))) (-15 -3791 ((-1171 |#1|) |#1| (-921))) (-15 -2997 (|#1| |#1| (-566))))
-((-2619 (($) 10) (($ (-644 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)))) 14)) (-2367 (($ (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-1523 (((-644 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) 39) (((-644 |#3|) $) 41)) (-3023 (($ (-1 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2101 (($ (-1 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2668 (((-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) $) 60)) (-1619 (($ (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) $) 16)) (-4063 (((-644 |#2|) $) 19)) (-3054 (((-112) |#2| $) 65)) (-3567 (((-3 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) "failed") (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) 64)) (-1613 (((-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) $) 69)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1948 (((-644 |#3|) $) 43)) (-3282 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) NIL) (((-771) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) $) NIL) (((-771) |#3| $) NIL) (((-771) (-1 (-112) |#3|) $) 79)) (-2725 (((-862) $) 27)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2817 (((-112) $ $) 51)))
-(((-1190 |#1| |#2| |#3|) (-10 -8 (-15 -2817 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2101 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2619 (|#1| (-644 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))))) (-15 -2619 (|#1|)) (-15 -2101 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3023 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1958 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -1523 ((-644 |#3|) |#1|)) (-15 -1958 ((-771) |#3| |#1|)) (-15 -3282 (|#3| |#1| |#2| |#3|)) (-15 -3282 (|#3| |#1| |#2|)) (-15 -1948 ((-644 |#3|) |#1|)) (-15 -3054 ((-112) |#2| |#1|)) (-15 -4063 ((-644 |#2|) |#1|)) (-15 -2367 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2367 (|#1| (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2367 (|#1| (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -3567 ((-3 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) "failed") (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2668 ((-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1619 (|#1| (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1613 ((-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1958 ((-771) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1523 ((-644 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -1958 ((-771) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -1900 ((-112) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2610 ((-112) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -3023 (|#1| (-1 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2101 (|#1| (-1 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|))) (-1191 |#2| |#3|) (-1099) (-1099)) (T -1190))
-NIL
-(-10 -8 (-15 -2817 ((-112) |#1| |#1|)) (-15 -2725 ((-862) |#1|)) (-15 -2101 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2619 (|#1| (-644 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))))) (-15 -2619 (|#1|)) (-15 -2101 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3023 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2610 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1900 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -1958 ((-771) (-1 (-112) |#3|) |#1|)) (-15 -1523 ((-644 |#3|) |#1|)) (-15 -1958 ((-771) |#3| |#1|)) (-15 -3282 (|#3| |#1| |#2| |#3|)) (-15 -3282 (|#3| |#1| |#2|)) (-15 -1948 ((-644 |#3|) |#1|)) (-15 -3054 ((-112) |#2| |#1|)) (-15 -4063 ((-644 |#2|) |#1|)) (-15 -2367 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2367 (|#1| (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2367 (|#1| (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -3567 ((-3 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) "failed") (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2668 ((-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1619 (|#1| (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1613 ((-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1958 ((-771) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) |#1|)) (-15 -1523 ((-644 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -1958 ((-771) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -1900 ((-112) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2610 ((-112) (-1 (-112) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -3023 (|#1| (-1 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)) (-15 -2101 (|#1| (-1 (-2 (|:| -3476 |#2|) (|:| -2484 |#3|)) (-2 (|:| -3476 |#2|) (|:| -2484 |#3|))) |#1|)))
-((-3979 (((-112) $ $) 19 (-2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2619 (($) 73) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 72)) (-2506 (((-1270) $ |#1| |#1|) 100 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#2| $ |#1| |#2|) 74)) (-1607 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 46 (|has| $ (-6 -4415)))) (-3281 (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 56 (|has| $ (-6 -4415)))) (-2629 (((-3 |#2| "failed") |#1| $) 62)) (-2633 (($) 7 T CONST)) (-3806 (($ $) 59 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415))))) (-2367 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 48 (|has| $ (-6 -4415))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 47 (|has| $ (-6 -4415))) (((-3 |#2| "failed") |#1| $) 63)) (-1752 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 58 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 55 (|has| $ (-6 -4415)))) (-2553 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 57 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 54 (|has| $ (-6 -4415))) (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 53 (|has| $ (-6 -4415)))) (-3031 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4416)))) (-2975 ((|#2| $ |#1|) 89)) (-1523 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 31 (|has| $ (-6 -4415))) (((-644 |#2|) $) 80 (|has| $ (-6 -4415)))) (-2429 (((-112) $ (-771)) 9)) (-2239 ((|#1| $) 97 (|has| |#1| (-850)))) (-2565 (((-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 30 (|has| $ (-6 -4415))) (((-644 |#2|) $) 81 (|has| $ (-6 -4415)))) (-3938 (((-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415))))) (-2605 ((|#1| $) 96 (|has| |#1| (-850)))) (-3023 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 35 (|has| $ (-6 -4416))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4416)))) (-2101 (($ (-1 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-1864 (((-112) $ (-771)) 10)) (-1390 (((-1157) $) 22 (-2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-2838 (((-644 |#1|) $) 64)) (-3932 (((-112) |#1| $) 65)) (-2668 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 40)) (-1619 (($ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 41)) (-4063 (((-644 |#1|) $) 94)) (-3054 (((-112) |#1| $) 93)) (-1944 (((-1119) $) 21 (-2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-3771 ((|#2| $) 98 (|has| |#1| (-850)))) (-3567 (((-3 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) "failed") (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 52)) (-3598 (($ $ |#2|) 99 (|has| $ (-6 -4416)))) (-1613 (((-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 42)) (-1900 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 33 (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))))) 27 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-295 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 26 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) 25 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 24 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)))) (($ $ (-644 |#2|) (-644 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099)))) (($ $ (-644 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4415)) (|has| |#2| (-1099))))) (-1948 (((-644 |#2|) $) 92)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-1873 (($) 50) (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 49)) (-1958 (((-771) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 32 (|has| $ (-6 -4415))) (((-771) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) $) 29 (-12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| $ (-6 -4415)))) (((-771) |#2| $) 82 (-12 (|has| |#2| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4415)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 60 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))))) (-2738 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 51)) (-2725 (((-862) $) 18 (-2676 (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862)))))) (-1479 (((-112) $ $) 23 (-2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-3619 (($ (-644 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) 43)) (-2610 (((-112) (-1 (-112) (-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) $) 34 (|has| $ (-6 -4415))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (-2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1191 |#1| |#2|) (-140) (-1099) (-1099)) (T -1191))
-((-2858 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1191 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))) (-2619 (*1 *1) (-12 (-4 *1 (-1191 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))) (-2619 (*1 *1 *2) (-12 (-5 *2 (-644 (-2 (|:| -3476 *3) (|:| -2484 *4)))) (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1191 *3 *4)))) (-2101 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))))
-(-13 (-610 |t#1| |t#2|) (-604 |t#1| |t#2|) (-10 -8 (-15 -2858 (|t#2| $ |t#1| |t#2|)) (-15 -2619 ($)) (-15 -2619 ($ (-644 (-2 (|:| -3476 |t#1|) (|:| -2484 |t#2|))))) (-15 -2101 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -3476 |#1|) (|:| -2484 |#2|))) . T) ((-102) -2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-613 (-862)) -2676 (|has| |#2| (-1099)) (|has| |#2| (-613 (-862))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-613 (-862)))) ((-151 #0#) . T) ((-614 (-538)) |has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-614 (-538))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-491 #0#) . T) ((-491 |#2|) . T) ((-604 |#1| |#2|) . T) ((-516 #0# #0#) -12 (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-310 (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)))) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-516 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1099))) ((-610 |#1| |#2|) . T) ((-1099) -2676 (|has| |#2| (-1099)) (|has| (-2 (|:| -3476 |#1|) (|:| -2484 |#2|)) (-1099))) ((-1215) . T))
-((-4029 (((-112)) 29)) (-1863 (((-1270) (-1157)) 31)) (-2381 (((-112)) 41)) (-4248 (((-1270)) 39)) (-1348 (((-1270) (-1157) (-1157)) 30)) (-2197 (((-112)) 42)) (-1619 (((-1270) |#1| |#2|) 53)) (-2789 (((-1270)) 27)) (-1997 (((-3 |#2| "failed") |#1|) 51)) (-3873 (((-1270)) 40)))
-(((-1192 |#1| |#2|) (-10 -7 (-15 -2789 ((-1270))) (-15 -1348 ((-1270) (-1157) (-1157))) (-15 -1863 ((-1270) (-1157))) (-15 -4248 ((-1270))) (-15 -3873 ((-1270))) (-15 -4029 ((-112))) (-15 -2381 ((-112))) (-15 -2197 ((-112))) (-15 -1997 ((-3 |#2| "failed") |#1|)) (-15 -1619 ((-1270) |#1| |#2|))) (-1099) (-1099)) (T -1192))
-((-1619 (*1 *2 *3 *4) (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-1997 (*1 *2 *3) (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-1099)))) (-2197 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-2381 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-4029 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-3873 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-4248 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1192 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-1348 (*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1192 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099)))) (-2789 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099)))))
-(-10 -7 (-15 -2789 ((-1270))) (-15 -1348 ((-1270) (-1157) (-1157))) (-15 -1863 ((-1270) (-1157))) (-15 -4248 ((-1270))) (-15 -3873 ((-1270))) (-15 -4029 ((-112))) (-15 -2381 ((-112))) (-15 -2197 ((-112))) (-15 -1997 ((-3 |#2| "failed") |#1|)) (-15 -1619 ((-1270) |#1| |#2|)))
-((-3266 (((-1157) (-1157)) 22)) (-2009 (((-52) (-1157)) 25)))
-(((-1193) (-10 -7 (-15 -2009 ((-52) (-1157))) (-15 -3266 ((-1157) (-1157))))) (T -1193))
-((-3266 (*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1193)))) (-2009 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1193)))))
-(-10 -7 (-15 -2009 ((-52) (-1157))) (-15 -3266 ((-1157) (-1157))))
-((-2725 (((-1195) |#1|) 11)))
-(((-1194 |#1|) (-10 -7 (-15 -2725 ((-1195) |#1|))) (-1099)) (T -1194))
-((-2725 (*1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *1 (-1194 *3)) (-4 *3 (-1099)))))
-(-10 -7 (-15 -2725 ((-1195) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-2671 (((-644 (-1157)) $) 39)) (-2094 (((-644 (-1157)) $ (-644 (-1157))) 42)) (-3008 (((-644 (-1157)) $ (-644 (-1157))) 41)) (-1720 (((-644 (-1157)) $ (-644 (-1157))) 43)) (-1843 (((-644 (-1157)) $) 38)) (-2631 (($) 26)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2031 (((-644 (-1157)) $) 40)) (-2498 (((-1270) $ (-566)) 35) (((-1270) $) 36)) (-2150 (($ (-862) (-566)) 32) (($ (-862) (-566) (-862)) NIL)) (-2725 (((-862) $) 53) (($ (-862)) 31)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1195) (-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2150 ($ (-862) (-566))) (-15 -2150 ($ (-862) (-566) (-862))) (-15 -2498 ((-1270) $ (-566))) (-15 -2498 ((-1270) $)) (-15 -2031 ((-644 (-1157)) $)) (-15 -2671 ((-644 (-1157)) $)) (-15 -2631 ($)) (-15 -1843 ((-644 (-1157)) $)) (-15 -1720 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2094 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3008 ((-644 (-1157)) $ (-644 (-1157))))))) (T -1195))
-((-2150 (*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1195)))) (-2150 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1195)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1195)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1195)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))) (-2631 (*1 *1) (-5 *1 (-1195))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))) (-1720 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))) (-2094 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))) (-3008 (*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))))
-(-13 (-1099) (-616 (-862)) (-10 -8 (-15 -2150 ($ (-862) (-566))) (-15 -2150 ($ (-862) (-566) (-862))) (-15 -2498 ((-1270) $ (-566))) (-15 -2498 ((-1270) $)) (-15 -2031 ((-644 (-1157)) $)) (-15 -2671 ((-644 (-1157)) $)) (-15 -2631 ($)) (-15 -1843 ((-644 (-1157)) $)) (-15 -1720 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -2094 ((-644 (-1157)) $ (-644 (-1157)))) (-15 -3008 ((-644 (-1157)) $ (-644 (-1157))))))
-((-3979 (((-112) $ $) NIL)) (-4127 (((-1157) $ (-1157)) 17) (((-1157) $) 16)) (-1572 (((-1157) $ (-1157)) 15)) (-4281 (($ $ (-1157)) NIL)) (-3361 (((-3 (-1157) "failed") $) 11)) (-3389 (((-1157) $) 8)) (-1746 (((-3 (-1157) "failed") $) 12)) (-2096 (((-1157) $) 9)) (-3099 (($ (-390)) NIL) (($ (-390) (-1157)) NIL)) (-3534 (((-390) $) NIL)) (-1390 (((-1157) $) NIL)) (-1647 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2228 (((-112) $) 21)) (-2725 (((-862) $) NIL)) (-4381 (($ $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1196) (-13 (-366 (-390) (-1157)) (-10 -8 (-15 -4127 ((-1157) $ (-1157))) (-15 -4127 ((-1157) $)) (-15 -3389 ((-1157) $)) (-15 -3361 ((-3 (-1157) "failed") $)) (-15 -1746 ((-3 (-1157) "failed") $)) (-15 -2228 ((-112) $))))) (T -1196))
-((-4127 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1196)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1196)))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1196)))) (-3361 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1196)))) (-1746 (*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1196)))) (-2228 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196)))))
-(-13 (-366 (-390) (-1157)) (-10 -8 (-15 -4127 ((-1157) $ (-1157))) (-15 -4127 ((-1157) $)) (-15 -3389 ((-1157) $)) (-15 -3361 ((-3 (-1157) "failed") $)) (-15 -1746 ((-3 (-1157) "failed") $)) (-15 -2228 ((-112) $))))
-((-1859 (((-3 (-566) "failed") |#1|) 19)) (-4313 (((-3 (-566) "failed") |#1|) 14)) (-4039 (((-566) (-1157)) 33)))
-(((-1197 |#1|) (-10 -7 (-15 -1859 ((-3 (-566) "failed") |#1|)) (-15 -4313 ((-3 (-566) "failed") |#1|)) (-15 -4039 ((-566) (-1157)))) (-1049)) (T -1197))
-((-4039 (*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1197 *4)) (-4 *4 (-1049)))) (-4313 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1197 *3)) (-4 *3 (-1049)))) (-1859 (*1 *2 *3) (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1197 *3)) (-4 *3 (-1049)))))
-(-10 -7 (-15 -1859 ((-3 (-566) "failed") |#1|)) (-15 -4313 ((-3 (-566) "failed") |#1|)) (-15 -4039 ((-566) (-1157))))
-((-3570 (((-1132 (-225))) 9)))
-(((-1198) (-10 -7 (-15 -3570 ((-1132 (-225)))))) (T -1198))
-((-3570 (*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1198)))))
-(-10 -7 (-15 -3570 ((-1132 (-225)))))
-((-2722 (($) 12)) (-3696 (($ $) 36)) (-3670 (($ $) 34)) (-3528 (($ $) 26)) (-3719 (($ $) 18)) (-3076 (($ $) 16)) (-3705 (($ $) 20)) (-3566 (($ $) 31)) (-3682 (($ $) 35)) (-3541 (($ $) 30)))
-(((-1199 |#1|) (-10 -8 (-15 -2722 (|#1|)) (-15 -3696 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3705 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3566 (|#1| |#1|)) (-15 -3541 (|#1| |#1|))) (-1200)) (T -1199))
-NIL
-(-10 -8 (-15 -2722 (|#1|)) (-15 -3696 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3705 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3566 (|#1| |#1|)) (-15 -3541 (|#1| |#1|)))
-((-3622 (($ $) 26)) (-3474 (($ $) 11)) (-3601 (($ $) 27)) (-3449 (($ $) 10)) (-3648 (($ $) 28)) (-3500 (($ $) 9)) (-2722 (($) 16)) (-1565 (($ $) 19)) (-1535 (($ $) 18)) (-3658 (($ $) 29)) (-3515 (($ $) 8)) (-3635 (($ $) 30)) (-3488 (($ $) 7)) (-3612 (($ $) 31)) (-3461 (($ $) 6)) (-3696 (($ $) 20)) (-3553 (($ $) 32)) (-3670 (($ $) 21)) (-3528 (($ $) 33)) (-3719 (($ $) 22)) (-3577 (($ $) 34)) (-3076 (($ $) 23)) (-3589 (($ $) 35)) (-3705 (($ $) 24)) (-3566 (($ $) 36)) (-3682 (($ $) 25)) (-3541 (($ $) 37)) (** (($ $ $) 17)))
-(((-1200) (-140)) (T -1200))
-((-2722 (*1 *1) (-4 *1 (-1200))))
-(-13 (-1203) (-95) (-495) (-35) (-285) (-10 -8 (-15 -2722 ($))))
-(((-35) . T) ((-95) . T) ((-285) . T) ((-495) . T) ((-1203) . T))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2465 ((|#1| $) 19)) (-3754 (($ |#1| (-644 $)) 28) (($ (-644 |#1|)) 35) (($ |#1|) 30)) (-2261 (((-112) $ (-771)) 72)) (-2989 ((|#1| $ |#1|) 14 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 13 (|has| $ (-6 -4416)))) (-2633 (($) NIL T CONST)) (-1523 (((-644 |#1|) $) 76 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 64)) (-3886 (((-112) $ $) 49 (|has| |#1| (-1099)))) (-2429 (((-112) $ (-771)) 62)) (-2565 (((-644 |#1|) $) 77 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3023 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 27)) (-1864 (((-112) $ (-771)) 60)) (-2801 (((-644 |#1|) $) 54)) (-1396 (((-112) $) 52)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-1900 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 107)) (-4246 (((-112) $) 9)) (-3906 (($) 10)) (-3282 ((|#1| $ "value") NIL)) (-4104 (((-566) $ $) 48)) (-3372 (((-644 $) $) 89)) (-2704 (((-112) $ $) 110)) (-1521 (((-644 $) $) 105)) (-4229 (($ $) 106)) (-3810 (((-112) $) 84)) (-1958 (((-771) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4415))) (((-771) |#1| $) 17 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2878 (($ $) 88)) (-2725 (((-862) $) 91 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 12)) (-1379 (((-112) $ $) 39 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 37 (|has| |#1| (-1099)))) (-3991 (((-771) $) 58 (|has| $ (-6 -4415)))))
-(((-1201 |#1|) (-13 (-1010 |#1|) (-10 -8 (-6 -4415) (-6 -4416) (-15 -3754 ($ |#1| (-644 $))) (-15 -3754 ($ (-644 |#1|))) (-15 -3754 ($ |#1|)) (-15 -3810 ((-112) $)) (-15 -4229 ($ $)) (-15 -1521 ((-644 $) $)) (-15 -2704 ((-112) $ $)) (-15 -3372 ((-644 $) $)))) (-1099)) (T -1201))
-((-3810 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))) (-3754 (*1 *1 *2 *3) (-12 (-5 *3 (-644 (-1201 *2))) (-5 *1 (-1201 *2)) (-4 *2 (-1099)))) (-3754 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1201 *3)))) (-3754 (*1 *1 *2) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1099)))) (-4229 (*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1099)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-644 (-1201 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))) (-2704 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-644 (-1201 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))))
-(-13 (-1010 |#1|) (-10 -8 (-6 -4415) (-6 -4416) (-15 -3754 ($ |#1| (-644 $))) (-15 -3754 ($ (-644 |#1|))) (-15 -3754 ($ |#1|)) (-15 -3810 ((-112) $)) (-15 -4229 ($ $)) (-15 -1521 ((-644 $) $)) (-15 -2704 ((-112) $ $)) (-15 -3372 ((-644 $) $))))
-((-3474 (($ $) 15)) (-3500 (($ $) 12)) (-3515 (($ $) 10)) (-3488 (($ $) 17)))
-(((-1202 |#1|) (-10 -8 (-15 -3488 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3474 (|#1| |#1|))) (-1203)) (T -1202))
-NIL
-(-10 -8 (-15 -3488 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3474 (|#1| |#1|)))
-((-3474 (($ $) 11)) (-3449 (($ $) 10)) (-3500 (($ $) 9)) (-3515 (($ $) 8)) (-3488 (($ $) 7)) (-3461 (($ $) 6)))
-(((-1203) (-140)) (T -1203))
-((-3474 (*1 *1 *1) (-4 *1 (-1203))) (-3449 (*1 *1 *1) (-4 *1 (-1203))) (-3500 (*1 *1 *1) (-4 *1 (-1203))) (-3515 (*1 *1 *1) (-4 *1 (-1203))) (-3488 (*1 *1 *1) (-4 *1 (-1203))) (-3461 (*1 *1 *1) (-4 *1 (-1203))))
-(-13 (-10 -8 (-15 -3461 ($ $)) (-15 -3488 ($ $)) (-15 -3515 ($ $)) (-15 -3500 ($ $)) (-15 -3449 ($ $)) (-15 -3474 ($ $))))
-((-3610 ((|#2| |#2|) 98)) (-2912 (((-112) |#2|) 29)) (-4041 ((|#2| |#2|) 33)) (-4052 ((|#2| |#2|) 35)) (-3462 ((|#2| |#2| (-1175)) 92) ((|#2| |#2|) 93)) (-2143 (((-169 |#2|) |#2|) 31)) (-2504 ((|#2| |#2| (-1175)) 94) ((|#2| |#2|) 95)))
-(((-1204 |#1| |#2|) (-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -3462 (|#2| |#2| (-1175))) (-15 -2504 (|#2| |#2|)) (-15 -2504 (|#2| |#2| (-1175))) (-15 -3610 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4052 (|#2| |#2|)) (-15 -2912 ((-112) |#2|)) (-15 -2143 ((-169 |#2|) |#2|))) (-13 (-454) (-1038 (-566)) (-639 (-566))) (-13 (-27) (-1200) (-432 |#1|))) (T -1204))
-((-2143 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-169 *3)) (-5 *1 (-1204 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))) (-2912 (*1 *2 *3) (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112)) (-5 *1 (-1204 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))) (-4052 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))) (-4041 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))) (-2504 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1204 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))) (-2504 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))) (-3462 (*1 *2 *2 *3) (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1204 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))) (-3462 (*1 *2 *2) (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))))
-(-10 -7 (-15 -3462 (|#2| |#2|)) (-15 -3462 (|#2| |#2| (-1175))) (-15 -2504 (|#2| |#2|)) (-15 -2504 (|#2| |#2| (-1175))) (-15 -3610 (|#2| |#2|)) (-15 -4041 (|#2| |#2|)) (-15 -4052 (|#2| |#2|)) (-15 -2912 ((-112) |#2|)) (-15 -2143 ((-169 |#2|) |#2|)))
-((-3969 ((|#4| |#4| |#1|) 32)) (-2970 ((|#4| |#4| |#1|) 33)))
-(((-1205 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3969 (|#4| |#4| |#1|)) (-15 -2970 (|#4| |#4| |#1|))) (-558) (-375 |#1|) (-375 |#1|) (-687 |#1| |#2| |#3|)) (T -1205))
-((-2970 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1205 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))) (-3969 (*1 *2 *2 *3) (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1205 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(-10 -7 (-15 -3969 (|#4| |#4| |#1|)) (-15 -2970 (|#4| |#4| |#1|)))
-((-1828 ((|#2| |#2|) 148)) (-2539 ((|#2| |#2|) 145)) (-3270 ((|#2| |#2|) 136)) (-4053 ((|#2| |#2|) 133)) (-3400 ((|#2| |#2|) 141)) (-3382 ((|#2| |#2|) 129)) (-3001 ((|#2| |#2|) 44)) (-2954 ((|#2| |#2|) 105)) (-1830 ((|#2| |#2|) 88)) (-1350 ((|#2| |#2|) 143)) (-4186 ((|#2| |#2|) 131)) (-1788 ((|#2| |#2|) 153)) (-2512 ((|#2| |#2|) 151)) (-3532 ((|#2| |#2|) 152)) (-4100 ((|#2| |#2|) 150)) (-2891 ((|#2| |#2|) 163)) (-2212 ((|#2| |#2|) 30 (-12 (|has| |#2| (-614 (-892 |#1|))) (|has| |#2| (-886 |#1|)) (|has| |#1| (-614 (-892 |#1|))) (|has| |#1| (-886 |#1|))))) (-2108 ((|#2| |#2|) 89)) (-2601 ((|#2| |#2|) 154)) (-3240 ((|#2| |#2|) 155)) (-3537 ((|#2| |#2|) 142)) (-3849 ((|#2| |#2|) 130)) (-3847 ((|#2| |#2|) 149)) (-3625 ((|#2| |#2|) 147)) (-1917 ((|#2| |#2|) 137)) (-2609 ((|#2| |#2|) 135)) (-1320 ((|#2| |#2|) 139)) (-1823 ((|#2| |#2|) 127)))
-(((-1206 |#1| |#2|) (-10 -7 (-15 -3240 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2954 (|#2| |#2|)) (-15 -3001 (|#2| |#2|)) (-15 -2108 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -3400 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -2212 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-454) (-13 (-432 |#1|) (-1200))) (T -1206))
-((-2212 (*1 *2 *2) (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3)) (-4 *2 (-13 (-432 *3) (-1200))))) (-1788 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3532 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-2512 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3625 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-2609 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-2539 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3270 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3400 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3382 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-1350 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-4186 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3537 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3849 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3847 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-1917 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-1320 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-1823 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-2601 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-2108 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3001 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-2954 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-2891 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-1830 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2)) (-4 *2 (-13 (-432 *3) (-1200))))))
-(-10 -7 (-15 -3240 (|#2| |#2|)) (-15 -1830 (|#2| |#2|)) (-15 -2891 (|#2| |#2|)) (-15 -2954 (|#2| |#2|)) (-15 -3001 (|#2| |#2|)) (-15 -2108 (|#2| |#2|)) (-15 -2601 (|#2| |#2|)) (-15 -1823 (|#2| |#2|)) (-15 -1320 (|#2| |#2|)) (-15 -1917 (|#2| |#2|)) (-15 -3847 (|#2| |#2|)) (-15 -3849 (|#2| |#2|)) (-15 -3537 (|#2| |#2|)) (-15 -4186 (|#2| |#2|)) (-15 -1350 (|#2| |#2|)) (-15 -3382 (|#2| |#2|)) (-15 -3400 (|#2| |#2|)) (-15 -3270 (|#2| |#2|)) (-15 -1828 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -2539 (|#2| |#2|)) (-15 -2609 (|#2| |#2|)) (-15 -3625 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -2512 (|#2| |#2|)) (-15 -3532 (|#2| |#2|)) (-15 -1788 (|#2| |#2|)) (IF (|has| |#1| (-886 |#1|)) (IF (|has| |#1| (-614 (-892 |#1|))) (IF (|has| |#2| (-614 (-892 |#1|))) (IF (|has| |#2| (-886 |#1|)) (-15 -2212 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2664 (((-112) |#5| $) 68) (((-112) $) 110)) (-3351 ((|#5| |#5| $) 83)) (-3281 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-2924 (((-644 |#5|) (-644 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-2023 (((-3 $ "failed") (-644 |#5|)) 135)) (-3781 (((-3 $ "failed") $) 120)) (-1673 ((|#5| |#5| $) 102)) (-4315 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-3427 ((|#5| |#5| $) 106)) (-2553 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-3706 (((-2 (|:| -2482 (-644 |#5|)) (|:| -3099 (-644 |#5|))) $) 63)) (-3492 (((-112) |#5| $) 66) (((-112) $) 111)) (-3779 ((|#4| $) 116)) (-1774 (((-3 |#5| "failed") $) 118)) (-3304 (((-644 |#5|) $) 55)) (-2751 (((-112) |#5| $) 75) (((-112) $) 115)) (-1642 ((|#5| |#5| $) 89)) (-4249 (((-112) $ $) 29)) (-2927 (((-112) |#5| $) 71) (((-112) $) 113)) (-2117 ((|#5| |#5| $) 86)) (-3771 (((-3 |#5| "failed") $) 117)) (-3964 (($ $ |#5|) 136)) (-3838 (((-771) $) 60)) (-2738 (($ (-644 |#5|)) 133)) (-3317 (($ $ |#4|) 131)) (-3756 (($ $ |#4|) 129)) (-2352 (($ $) 128)) (-2725 (((-862) $) NIL) (((-644 |#5|) $) 121)) (-3526 (((-771) $) 140)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2181 (((-112) $ (-1 (-112) |#5| (-644 |#5|))) 108)) (-1427 (((-644 |#4|) $) 123)) (-3314 (((-112) |#4| $) 126)) (-2817 (((-112) $ $) 20)))
-(((-1207 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3526 ((-771) |#1|)) (-15 -3964 (|#1| |#1| |#5|)) (-15 -3281 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3314 ((-112) |#4| |#1|)) (-15 -1427 ((-644 |#4|) |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 -1774 ((-3 |#5| "failed") |#1|)) (-15 -3771 ((-3 |#5| "failed") |#1|)) (-15 -3427 (|#5| |#5| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -1673 (|#5| |#5| |#1|)) (-15 -1642 (|#5| |#5| |#1|)) (-15 -2117 (|#5| |#5| |#1|)) (-15 -3351 (|#5| |#5| |#1|)) (-15 -2924 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2553 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2751 ((-112) |#1|)) (-15 -2927 ((-112) |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -2181 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -2751 ((-112) |#5| |#1|)) (-15 -2927 ((-112) |#5| |#1|)) (-15 -2664 ((-112) |#5| |#1|)) (-15 -4315 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3492 ((-112) |#1|)) (-15 -3492 ((-112) |#5| |#1|)) (-15 -3706 ((-2 (|:| -2482 (-644 |#5|)) (|:| -3099 (-644 |#5|))) |#1|)) (-15 -3838 ((-771) |#1|)) (-15 -3304 ((-644 |#5|) |#1|)) (-15 -3465 ((-3 (-2 (|:| |bas| |#1|) (|:| -3929 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3465 ((-3 (-2 (|:| |bas| |#1|) (|:| -3929 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4249 ((-112) |#1| |#1|)) (-15 -3317 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#4|)) (-15 -3779 (|#4| |#1|)) (-15 -2023 ((-3 |#1| "failed") (-644 |#5|))) (-15 -2725 ((-644 |#5|) |#1|)) (-15 -2738 (|#1| (-644 |#5|))) (-15 -2553 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2553 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3281 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2553 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|))) (-1208 |#2| |#3| |#4| |#5|) (-558) (-793) (-850) (-1064 |#2| |#3| |#4|)) (T -1207))
-NIL
-(-10 -8 (-15 -3526 ((-771) |#1|)) (-15 -3964 (|#1| |#1| |#5|)) (-15 -3281 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3314 ((-112) |#4| |#1|)) (-15 -1427 ((-644 |#4|) |#1|)) (-15 -3781 ((-3 |#1| "failed") |#1|)) (-15 -1774 ((-3 |#5| "failed") |#1|)) (-15 -3771 ((-3 |#5| "failed") |#1|)) (-15 -3427 (|#5| |#5| |#1|)) (-15 -2352 (|#1| |#1|)) (-15 -1673 (|#5| |#5| |#1|)) (-15 -1642 (|#5| |#5| |#1|)) (-15 -2117 (|#5| |#5| |#1|)) (-15 -3351 (|#5| |#5| |#1|)) (-15 -2924 ((-644 |#5|) (-644 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2553 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2751 ((-112) |#1|)) (-15 -2927 ((-112) |#1|)) (-15 -2664 ((-112) |#1|)) (-15 -2181 ((-112) |#1| (-1 (-112) |#5| (-644 |#5|)))) (-15 -2751 ((-112) |#5| |#1|)) (-15 -2927 ((-112) |#5| |#1|)) (-15 -2664 ((-112) |#5| |#1|)) (-15 -4315 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3492 ((-112) |#1|)) (-15 -3492 ((-112) |#5| |#1|)) (-15 -3706 ((-2 (|:| -2482 (-644 |#5|)) (|:| -3099 (-644 |#5|))) |#1|)) (-15 -3838 ((-771) |#1|)) (-15 -3304 ((-644 |#5|) |#1|)) (-15 -3465 ((-3 (-2 (|:| |bas| |#1|) (|:| -3929 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3465 ((-3 (-2 (|:| |bas| |#1|) (|:| -3929 (-644 |#5|))) "failed") (-644 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4249 ((-112) |#1| |#1|)) (-15 -3317 (|#1| |#1| |#4|)) (-15 -3756 (|#1| |#1| |#4|)) (-15 -3779 (|#4| |#1|)) (-15 -2023 ((-3 |#1| "failed") (-644 |#5|))) (-15 -2725 ((-644 |#5|) |#1|)) (-15 -2738 (|#1| (-644 |#5|))) (-15 -2553 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2553 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3281 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2553 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2725 ((-862) |#1|)) (-15 -2817 ((-112) |#1| |#1|)))
-((-3979 (((-112) $ $) 7)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) 86)) (-3599 (((-644 $) (-644 |#4|)) 87)) (-4170 (((-644 |#3|) $) 34)) (-1323 (((-112) $) 27)) (-1494 (((-112) $) 18 (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) 102) (((-112) $) 98)) (-3351 ((|#4| |#4| $) 93)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) 28)) (-2261 (((-112) $ (-771)) 45)) (-3281 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) 80)) (-2633 (($) 46 T CONST)) (-1740 (((-112) $) 23 (|has| |#1| (-558)))) (-3807 (((-112) $ $) 25 (|has| |#1| (-558)))) (-1312 (((-112) $ $) 24 (|has| |#1| (-558)))) (-1407 (((-112) $) 26 (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-4185 (((-644 |#4|) (-644 |#4|) $) 19 (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) 20 (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) 37)) (-3343 (($ (-644 |#4|)) 36)) (-3781 (((-3 $ "failed") $) 83)) (-1673 ((|#4| |#4| $) 90)) (-3806 (($ $) 69 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#4| $) 68 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-3427 ((|#4| |#4| $) 88)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) 106)) (-1523 (((-644 |#4|) $) 53 (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) 105) (((-112) $) 104)) (-3779 ((|#3| $) 35)) (-2429 (((-112) $ (-771)) 44)) (-2565 (((-644 |#4|) $) 54 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) 48)) (-2054 (((-644 |#3|) $) 33)) (-2314 (((-112) |#3| $) 32)) (-1864 (((-112) $ (-771)) 43)) (-1390 (((-1157) $) 10)) (-1774 (((-3 |#4| "failed") $) 84)) (-3304 (((-644 |#4|) $) 108)) (-2751 (((-112) |#4| $) 100) (((-112) $) 96)) (-1642 ((|#4| |#4| $) 91)) (-4249 (((-112) $ $) 111)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) 101) (((-112) $) 97)) (-2117 ((|#4| |#4| $) 92)) (-1944 (((-1119) $) 11)) (-3771 (((-3 |#4| "failed") $) 85)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3521 (((-3 $ "failed") $ |#4|) 79)) (-3964 (($ $ |#4|) 78)) (-1900 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) 39)) (-4246 (((-112) $) 42)) (-3906 (($) 41)) (-3838 (((-771) $) 107)) (-1958 (((-771) |#4| $) 55 (-12 (|has| |#4| (-1099)) (|has| $ (-6 -4415)))) (((-771) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4415)))) (-2878 (($ $) 40)) (-2150 (((-538) $) 70 (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) 61)) (-3317 (($ $ |#3|) 29)) (-3756 (($ $ |#3|) 31)) (-2352 (($ $) 89)) (-1811 (($ $ |#3|) 30)) (-2725 (((-862) $) 12) (((-644 |#4|) $) 38)) (-3526 (((-771) $) 77 (|has| |#3| (-370)))) (-1479 (((-112) $ $) 9)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) 99)) (-2610 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) 82)) (-3314 (((-112) |#3| $) 81)) (-2817 (((-112) $ $) 6)) (-3991 (((-771) $) 47 (|has| $ (-6 -4415)))))
-(((-1208 |#1| |#2| |#3| |#4|) (-140) (-558) (-793) (-850) (-1064 |t#1| |t#2| |t#3|)) (T -1208))
-((-4249 (*1 *2 *1 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-3465 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3929 (-644 *8)))) (-5 *3 (-644 *8)) (-4 *1 (-1208 *5 *6 *7 *8)))) (-3465 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3929 (-644 *9)))) (-5 *3 (-644 *9)) (-4 *1 (-1208 *6 *7 *8 *9)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-2 (|:| -2482 (-644 *6)) (|:| -3099 (-644 *6)))))) (-3492 (*1 *2 *3 *1) (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-4315 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1208 *5 *6 *7 *3)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)))) (-2664 (*1 *2 *3 *1) (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2927 (*1 *2 *3 *1) (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2751 (*1 *2 *3 *1) (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2181 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1208 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)))) (-2664 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2927 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))) (-2553 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1208 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7)))) (-2924 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1208 *5 *6 *7 *8)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)))) (-3351 (*1 *2 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2117 (*1 *2 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-1642 (*1 *2 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-1673 (*1 *2 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-2352 (*1 *1 *1) (-12 (-4 *1 (-1208 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-3427 (*1 *2 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1)) (-4 *1 (-1208 *4 *5 *6 *7)))) (-1424 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-644 (-2 (|:| -2482 *1) (|:| -3099 (-644 *7))))) (-5 *3 (-644 *7)) (-4 *1 (-1208 *4 *5 *6 *7)))) (-3771 (*1 *2 *1) (|partial| -12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-1774 (*1 *2 *1) (|partial| -12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3781 (*1 *1 *1) (|partial| -12 (-4 *1 (-1208 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))) (-3314 (*1 *2 *3 *1) (-12 (-4 *1 (-1208 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))) (-3281 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1208 *4 *5 *3 *2)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3)))) (-3521 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3964 (*1 *1 *1 *2) (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))) (-3526 (*1 *2 *1) (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-771)))))
-(-13 (-976 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4415) (-6 -4416) (-15 -4249 ((-112) $ $)) (-15 -3465 ((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3465 ((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |t#4|))) "failed") (-644 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3304 ((-644 |t#4|) $)) (-15 -3838 ((-771) $)) (-15 -3706 ((-2 (|:| -2482 (-644 |t#4|)) (|:| -3099 (-644 |t#4|))) $)) (-15 -3492 ((-112) |t#4| $)) (-15 -3492 ((-112) $)) (-15 -4315 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -2664 ((-112) |t#4| $)) (-15 -2927 ((-112) |t#4| $)) (-15 -2751 ((-112) |t#4| $)) (-15 -2181 ((-112) $ (-1 (-112) |t#4| (-644 |t#4|)))) (-15 -2664 ((-112) $)) (-15 -2927 ((-112) $)) (-15 -2751 ((-112) $)) (-15 -2553 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2924 ((-644 |t#4|) (-644 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3351 (|t#4| |t#4| $)) (-15 -2117 (|t#4| |t#4| $)) (-15 -1642 (|t#4| |t#4| $)) (-15 -1673 (|t#4| |t#4| $)) (-15 -2352 ($ $)) (-15 -3427 (|t#4| |t#4| $)) (-15 -3599 ((-644 $) (-644 |t#4|))) (-15 -1424 ((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |t#4|)))) (-644 |t#4|))) (-15 -3771 ((-3 |t#4| "failed") $)) (-15 -1774 ((-3 |t#4| "failed") $)) (-15 -3781 ((-3 $ "failed") $)) (-15 -1427 ((-644 |t#3|) $)) (-15 -3314 ((-112) |t#3| $)) (-15 -3281 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3521 ((-3 $ "failed") $ |t#4|)) (-15 -3964 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -3526 ((-771) $)) |%noBranch|)))
-(((-34) . T) ((-102) . T) ((-613 (-644 |#4|)) . T) ((-613 (-862)) . T) ((-151 |#4|) . T) ((-614 (-538)) |has| |#4| (-614 (-538))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-491 |#4|) . T) ((-516 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))) ((-976 |#1| |#2| |#3| |#4|) . T) ((-1099) . T) ((-1215) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1175)) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-3622 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3601 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3648 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-2447 (((-952 |#1|) $ (-771)) 20) (((-952 |#1|) $ (-771) (-771)) NIL)) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-771) $ (-1175)) NIL) (((-771) $ (-1175) (-771)) NIL)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3819 (((-112) $) NIL)) (-4145 (($ $ (-644 (-1175)) (-644 (-533 (-1175)))) NIL) (($ $ (-1175) (-533 (-1175))) NIL) (($ |#1| (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1879 (($ $ (-1175)) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-3340 (($ (-1 $) (-1175) |#1|) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3964 (($ $ (-771)) NIL)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1535 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1754 (($ $ (-1175) $) NIL) (($ $ (-644 (-1175)) (-644 $)) NIL) (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL)) (-3009 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-3838 (((-533 (-1175)) $) NIL)) (-3658 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-558))) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-1175)) NIL) (($ (-952 |#1|)) NIL)) (-3623 ((|#1| $ (-533 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (((-952 |#1|) $ (-771)) NIL)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-1316 (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1209 |#1|) (-13 (-740 |#1| (-1175)) (-10 -8 (-15 -3623 ((-952 |#1|) $ (-771))) (-15 -2725 ($ (-1175))) (-15 -2725 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $ (-1175) |#1|)) (-15 -3340 ($ (-1 $) (-1175) |#1|))) |%noBranch|))) (-1049)) (T -1209))
-((-3623 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1209 *4)) (-4 *4 (-1049)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1209 *3)) (-4 *3 (-1049)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-5 *1 (-1209 *3)))) (-1879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *1 (-1209 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))) (-3340 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1209 *4))) (-5 *3 (-1175)) (-5 *1 (-1209 *4)) (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)))))
-(-13 (-740 |#1| (-1175)) (-10 -8 (-15 -3623 ((-952 |#1|) $ (-771))) (-15 -2725 ($ (-1175))) (-15 -2725 ($ (-952 |#1|))) (IF (|has| |#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $ (-1175) |#1|)) (-15 -3340 ($ (-1 $) (-1175) |#1|))) |%noBranch|)))
-((-3671 (($ |#1| (-644 (-644 (-943 (-225)))) (-112)) 19)) (-1439 (((-112) $ (-112)) 18)) (-4230 (((-112) $) 17)) (-3642 (((-644 (-644 (-943 (-225)))) $) 13)) (-1691 ((|#1| $) 8)) (-2033 (((-112) $) 15)))
-(((-1210 |#1|) (-10 -8 (-15 -1691 (|#1| $)) (-15 -3642 ((-644 (-644 (-943 (-225)))) $)) (-15 -2033 ((-112) $)) (-15 -4230 ((-112) $)) (-15 -1439 ((-112) $ (-112))) (-15 -3671 ($ |#1| (-644 (-644 (-943 (-225)))) (-112)))) (-974)) (T -1210))
-((-3671 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112)) (-5 *1 (-1210 *2)) (-4 *2 (-974)))) (-1439 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-974)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-974)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-974)))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1210 *3)) (-4 *3 (-974)))) (-1691 (*1 *2 *1) (-12 (-5 *1 (-1210 *2)) (-4 *2 (-974)))))
-(-10 -8 (-15 -1691 (|#1| $)) (-15 -3642 ((-644 (-644 (-943 (-225)))) $)) (-15 -2033 ((-112) $)) (-15 -4230 ((-112) $)) (-15 -1439 ((-112) $ (-112))) (-15 -3671 ($ |#1| (-644 (-644 (-943 (-225)))) (-112))))
-((-2338 (((-943 (-225)) (-943 (-225))) 31)) (-3011 (((-943 (-225)) (-225) (-225) (-225) (-225)) 10)) (-1507 (((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225)))) 60)) (-1836 (((-225) (-943 (-225)) (-943 (-225))) 27)) (-3987 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 28)) (-2269 (((-644 (-644 (-225))) (-566)) 48)) (-2905 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 26)) (-2897 (((-943 (-225)) (-943 (-225)) (-943 (-225))) 24)) (* (((-943 (-225)) (-225) (-943 (-225))) 22)))
-(((-1211) (-10 -7 (-15 -3011 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -2897 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2905 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -1836 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -3987 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2338 ((-943 (-225)) (-943 (-225)))) (-15 -2269 ((-644 (-644 (-225))) (-566))) (-15 -1507 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225))))))) (T -1211))
-((-1507 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 (-943 *4))) (-5 *1 (-1211)) (-5 *3 (-943 *4)))) (-2269 (*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1211)))) (-2338 (*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211)))) (-3987 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211)))) (-1836 (*1 *2 *3 *3) (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1211)))) (-2905 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211)))) (-2897 (*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-943 (-225))) (-5 *3 (-225)) (-5 *1 (-1211)))) (-3011 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211)) (-5 *3 (-225)))))
-(-10 -7 (-15 -3011 ((-943 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-943 (-225)) (-225) (-943 (-225)))) (-15 -2897 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2905 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -1836 ((-225) (-943 (-225)) (-943 (-225)))) (-15 -3987 ((-943 (-225)) (-943 (-225)) (-943 (-225)))) (-15 -2338 ((-943 (-225)) (-943 (-225)))) (-15 -2269 ((-644 (-644 (-225))) (-566))) (-15 -1507 ((-644 (-943 (-225))) (-943 (-225)) (-943 (-225)) (-943 (-225)) (-225) (-644 (-644 (-225))))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3281 ((|#1| $ (-771)) 18)) (-1653 (((-771) $) 13)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-2725 (((-958 |#1|) $) 12) (($ (-958 |#1|)) 11) (((-862) $) 29 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2817 (((-112) $ $) 22 (|has| |#1| (-1099)))))
-(((-1212 |#1|) (-13 (-492 (-958 |#1|)) (-10 -8 (-15 -3281 (|#1| $ (-771))) (-15 -1653 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|))) (-1215)) (T -1212))
-((-3281 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-1212 *2)) (-4 *2 (-1215)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1212 *3)) (-4 *3 (-1215)))))
-(-13 (-492 (-958 |#1|)) (-10 -8 (-15 -3281 (|#1| $ (-771))) (-15 -1653 ((-771) $)) (IF (|has| |#1| (-613 (-862))) (-6 (-613 (-862))) |%noBranch|) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|)))
-((-3108 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)) 94)) (-3104 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 86)) (-2860 (((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|))) 70)))
-(((-1213 |#1|) (-10 -7 (-15 -3104 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2860 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -3108 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566)))) (-351)) (T -1213))
-((-3108 (*1 *2 *3 *4) (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5)))) (-5 *1 (-1213 *5)) (-5 *3 (-1171 (-1171 *5))))) (-2860 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1213 *4)) (-5 *3 (-1171 (-1171 *4))))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4)))) (-5 *1 (-1213 *4)) (-5 *3 (-1171 (-1171 *4))))))
-(-10 -7 (-15 -3104 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -2860 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)))) (-15 -3108 ((-420 (-1171 (-1171 |#1|))) (-1171 (-1171 |#1|)) (-566))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 9) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1214) (-1082)) (T -1214))
-NIL
-(-1082)
-NIL
-(((-1215) (-140)) (T -1215))
-NIL
-(-13 (-10 -7 (-6 -1518)))
-((-2124 (((-112)) 18)) (-3091 (((-1270) (-644 |#1|) (-644 |#1|)) 22) (((-1270) (-644 |#1|)) 23)) (-2429 (((-112) |#1| |#1|) 38 (|has| |#1| (-850)))) (-1864 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-3138 ((|#1| (-644 |#1|)) 39 (|has| |#1| (-850))) ((|#1| (-644 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-2193 (((-2 (|:| -2424 (-644 |#1|)) (|:| -3145 (-644 |#1|)))) 20)))
-(((-1216 |#1|) (-10 -7 (-15 -3091 ((-1270) (-644 |#1|))) (-15 -3091 ((-1270) (-644 |#1|) (-644 |#1|))) (-15 -2193 ((-2 (|:| -2424 (-644 |#1|)) (|:| -3145 (-644 |#1|))))) (-15 -1864 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1864 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3138 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2124 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -3138 (|#1| (-644 |#1|))) (-15 -2429 ((-112) |#1| |#1|))) |%noBranch|)) (-1099)) (T -1216))
-((-2429 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-850)) (-4 *3 (-1099)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850)) (-5 *1 (-1216 *2)))) (-2124 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1099)))) (-3138 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1216 *2)) (-4 *2 (-1099)))) (-1864 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-1216 *3)))) (-1864 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1099)))) (-2193 (*1 *2) (-12 (-5 *2 (-2 (|:| -2424 (-644 *3)) (|:| -3145 (-644 *3)))) (-5 *1 (-1216 *3)) (-4 *3 (-1099)))) (-3091 (*1 *2 *3 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1270)) (-5 *1 (-1216 *4)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1270)) (-5 *1 (-1216 *4)))))
-(-10 -7 (-15 -3091 ((-1270) (-644 |#1|))) (-15 -3091 ((-1270) (-644 |#1|) (-644 |#1|))) (-15 -2193 ((-2 (|:| -2424 (-644 |#1|)) (|:| -3145 (-644 |#1|))))) (-15 -1864 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1864 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3138 (|#1| (-644 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2124 ((-112))) (IF (|has| |#1| (-850)) (PROGN (-15 -3138 (|#1| (-644 |#1|))) (-15 -2429 ((-112) |#1| |#1|))) |%noBranch|))
-((-2579 (((-1270) (-644 (-1175)) (-644 (-1175))) 14) (((-1270) (-644 (-1175))) 12)) (-4294 (((-1270)) 16)) (-4192 (((-2 (|:| -3145 (-644 (-1175))) (|:| -2424 (-644 (-1175))))) 20)))
-(((-1217) (-10 -7 (-15 -2579 ((-1270) (-644 (-1175)))) (-15 -2579 ((-1270) (-644 (-1175)) (-644 (-1175)))) (-15 -4192 ((-2 (|:| -3145 (-644 (-1175))) (|:| -2424 (-644 (-1175)))))) (-15 -4294 ((-1270))))) (T -1217))
-((-4294 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1217)))) (-4192 (*1 *2) (-12 (-5 *2 (-2 (|:| -3145 (-644 (-1175))) (|:| -2424 (-644 (-1175))))) (-5 *1 (-1217)))) (-2579 (*1 *2 *3 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1270)) (-5 *1 (-1217)))) (-2579 (*1 *2 *3) (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1270)) (-5 *1 (-1217)))))
-(-10 -7 (-15 -2579 ((-1270) (-644 (-1175)))) (-15 -2579 ((-1270) (-644 (-1175)) (-644 (-1175)))) (-15 -4192 ((-2 (|:| -3145 (-644 (-1175))) (|:| -2424 (-644 (-1175)))))) (-15 -4294 ((-1270))))
-((-2885 (($ $) 17)) (-1968 (((-112) $) 28)))
-(((-1218 |#1|) (-10 -8 (-15 -2885 (|#1| |#1|)) (-15 -1968 ((-112) |#1|))) (-1219)) (T -1218))
-NIL
-(-10 -8 (-15 -2885 (|#1| |#1|)) (-15 -1968 ((-112) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 57)) (-2555 (((-420 $) $) 58)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-1968 (((-112) $) 59)) (-3842 (((-112) $) 35)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-4018 (((-420 $) $) 56)) (-3967 (((-3 $ "failed") $ $) 48)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27)))
-(((-1219) (-140)) (T -1219))
-((-1968 (*1 *2 *1) (-12 (-4 *1 (-1219)) (-5 *2 (-112)))) (-2555 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1219)))) (-2885 (*1 *1 *1) (-4 *1 (-1219))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1219)))))
-(-13 (-454) (-10 -8 (-15 -1968 ((-112) $)) (-15 -2555 ((-420 $) $)) (-15 -2885 ($ $)) (-15 -4018 ((-420 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-291) . T) ((-454) . T) ((-558) . T) ((-646 (-566)) . T) ((-646 $) . T) ((-648 $) . T) ((-640 $) . T) ((-717 $) . T) ((-726) . T) ((-1051 $) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-3218 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-1220) (-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))) (T -1220))
-((-3204 (*1 *1 *1 *1) (-5 *1 (-1220))) (-3218 (*1 *1 *1 *1) (-5 *1 (-1220))) (-2633 (*1 *1) (-5 *1 (-1220))))
-(-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 9)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 7)))
+(((-1184) (-1100)) (T -1184))
+NIL
+(-1100)
+((-2793 (((-645 (-645 (-953 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1176))) 67)) (-1607 (((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|)))) 78) (((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|))) 74) (((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))) (-1176)) 79) (((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1176)) 73) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|))))) 106) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|)))) 105) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1176))) 107) (((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))) (-645 (-1176))) 104)))
+(((-1185 |#1|) (-10 -7 (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1176)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1176))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))) (-1176))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))))) (-15 -2793 ((-645 (-645 (-953 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1176))))) (-559)) (T -1185))
+((-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-953 *5)))) (-5 *1 (-1185 *5)))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4))))) (-5 *1 (-1185 *4)) (-5 *3 (-295 (-410 (-953 *4)))))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4))))) (-5 *1 (-1185 *4)) (-5 *3 (-410 (-953 *4))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1185 *5)) (-5 *3 (-295 (-410 (-953 *5)))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *4 (-1176)) (-4 *5 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1185 *5)) (-5 *3 (-410 (-953 *5))))) (-1607 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-1185 *4)) (-5 *3 (-645 (-295 (-410 (-953 *4))))))) (-1607 (*1 *2 *3) (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-1185 *4)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *4 (-645 (-1176))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-1185 *5)) (-5 *3 (-645 (-295 (-410 (-953 *5))))))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176))) (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-1185 *5)))))
+(-10 -7 (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))) (-645 (-1176)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))) (-645 (-1176)))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-410 (-953 |#1|))))) (-15 -1607 ((-645 (-645 (-295 (-410 (-953 |#1|))))) (-645 (-295 (-410 (-953 |#1|)))))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)) (-1176))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))) (-1176))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-410 (-953 |#1|)))) (-15 -1607 ((-645 (-295 (-410 (-953 |#1|)))) (-295 (-410 (-953 |#1|))))) (-15 -2793 ((-645 (-645 (-953 |#1|))) (-645 (-410 (-953 |#1|))) (-645 (-1176)))))
+((-1667 (((-1158)) 7)) (-3910 (((-1158)) 11 T CONST)) (-4263 (((-1271) (-1158)) 13)) (-3603 (((-1158)) 8 T CONST)) (-3880 (((-130)) 10 T CONST)))
+(((-1186) (-13 (-1216) (-10 -7 (-15 -1667 ((-1158))) (-15 -3603 ((-1158)) -2131) (-15 -3880 ((-130)) -2131) (-15 -3910 ((-1158)) -2131) (-15 -4263 ((-1271) (-1158)))))) (T -1186))
+((-1667 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1186)))) (-3603 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1186)))) (-3880 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1186)))) (-3910 (*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1186)))) (-4263 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1186)))))
+(-13 (-1216) (-10 -7 (-15 -1667 ((-1158))) (-15 -3603 ((-1158)) -2131) (-15 -3880 ((-130)) -2131) (-15 -3910 ((-1158)) -2131) (-15 -4263 ((-1271) (-1158)))))
+((-1360 (((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 56)) (-2645 (((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|))) 38)) (-3756 (((-1188 (-645 |#1|)) (-645 |#1|)) 49)) (-3020 (((-645 (-645 |#1|)) (-645 |#1|)) 45)) (-3011 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))) 53)) (-3309 (((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|)))) 52)) (-2722 (((-645 (-645 |#1|)) (-645 (-645 |#1|))) 43)) (-3475 (((-645 |#1|) (-645 |#1|)) 46)) (-1672 (((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 32)) (-2956 (((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|)))) 29)) (-4163 (((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|))) 24)) (-2560 (((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|)))) 58)) (-3383 (((-645 (-645 |#1|)) (-1188 (-645 |#1|))) 60)))
+(((-1187 |#1|) (-10 -7 (-15 -4163 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -2956 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1672 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1360 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2560 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3383 ((-645 (-645 |#1|)) (-1188 (-645 |#1|)))) (-15 -2645 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -3756 ((-1188 (-645 |#1|)) (-645 |#1|))) (-15 -2722 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -3020 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -3475 ((-645 |#1|) (-645 |#1|))) (-15 -3309 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -3011 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|)))))) (-851)) (T -1187))
+((-3011 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4)))) (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4)))))) (-5 *1 (-1187 *4)) (-5 *3 (-645 (-645 (-645 *4)))))) (-3309 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5) (|:| |f4| (-645 *5)))) (-5 *1 (-1187 *6)) (-5 *4 (-645 *5)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1187 *3)))) (-3020 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1187 *4)) (-5 *3 (-645 *4)))) (-2722 (*1 *2 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1187 *3)))) (-3756 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-1188 (-645 *4))) (-5 *1 (-1187 *4)) (-5 *3 (-645 *4)))) (-2645 (*1 *2 *3) (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4)))) (-5 *1 (-1187 *4)) (-5 *3 (-645 (-645 *4))))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-1188 (-645 *4))) (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1187 *4)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1187 *4)) (-4 *4 (-851)))) (-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4))) (-4 *4 (-851)) (-5 *1 (-1187 *4)))) (-1672 (*1 *2 *3 *2) (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *1 (-1187 *4)))) (-2956 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1187 *5)))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4)))) (-5 *1 (-1187 *6)) (-5 *5 (-645 *4)))))
+(-10 -7 (-15 -4163 ((-2 (|:| |fs| (-112)) (|:| |sd| (-645 |#1|)) (|:| |td| (-645 (-645 |#1|)))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 |#1|)))) (-15 -2956 ((-645 (-645 (-645 |#1|))) (-1 (-112) |#1| |#1|) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1672 ((-645 (-645 (-645 |#1|))) (-645 |#1|) (-645 (-645 (-645 |#1|))))) (-15 -1360 ((-645 (-645 |#1|)) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -2560 ((-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))))) (-15 -3383 ((-645 (-645 |#1|)) (-1188 (-645 |#1|)))) (-15 -2645 ((-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)))) (-15 -3756 ((-1188 (-645 |#1|)) (-645 |#1|))) (-15 -2722 ((-645 (-645 |#1|)) (-645 (-645 |#1|)))) (-15 -3020 ((-645 (-645 |#1|)) (-645 |#1|))) (-15 -3475 ((-645 |#1|) (-645 |#1|))) (-15 -3309 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 |#1|) (-645 (-645 (-645 |#1|))) (-645 (-645 |#1|)) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))) (-645 (-645 (-645 |#1|))))) (-15 -3011 ((-2 (|:| |f1| (-645 |#1|)) (|:| |f2| (-645 (-645 (-645 |#1|)))) (|:| |f3| (-645 (-645 |#1|))) (|:| |f4| (-645 (-645 (-645 |#1|))))) (-645 (-645 (-645 |#1|))))))
+((-3832 (($ (-645 (-645 |#1|))) 10)) (-1343 (((-645 (-645 |#1|)) $) 11)) (-4101 (((-863) $) 38)))
+(((-1188 |#1|) (-10 -8 (-15 -3832 ($ (-645 (-645 |#1|)))) (-15 -1343 ((-645 (-645 |#1|)) $)) (-15 -4101 ((-863) $))) (-1100)) (T -1188))
+((-4101 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1188 *3)) (-4 *3 (-1100)))) (-1343 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1188 *3)) (-4 *3 (-1100)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-1188 *3)))))
+(-10 -8 (-15 -3832 ($ (-645 (-645 |#1|)))) (-15 -1343 ((-645 (-645 |#1|)) $)) (-15 -4101 ((-863) $)))
+((-2257 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-4001 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2275 (((-1271) $ |#1| |#1|) NIL (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#2| $ |#1| |#2|) NIL)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) NIL)) (-4061 (($) NIL T CONST)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) NIL)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) NIL)) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) NIL)) (-1321 ((|#1| $) NIL (|has| |#1| (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-645 |#2|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1979 ((|#1| $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-3004 (((-645 |#1|) $) NIL)) (-2121 (((-112) |#1| $) NIL)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-3940 (((-645 |#1|) $) NIL)) (-1664 (((-112) |#1| $) NIL)) (-3339 (((-1120) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2048 ((|#2| $) NIL (|has| |#1| (-851)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL)) (-2092 (($ $ |#2|) NIL (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2069 (($) NIL) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) NIL (-12 (|has| $ (-6 -4416)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (((-772) |#2| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100)))) (((-772) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-4101 (((-863) $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863))) (|has| |#2| (-614 (-863)))))) (-3739 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) NIL)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) NIL (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) NIL (-2909 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| |#2| (-1100))))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1189 |#1| |#2|) (-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416))) (-1100) (-1100)) (T -1189))
+NIL
+(-13 (-1192 |#1| |#2|) (-10 -7 (-6 -4416)))
+((-2724 ((|#1| (-645 |#1|)) 49)) (-2452 ((|#1| |#1| (-567)) 24)) (-4364 (((-1172 |#1|) |#1| (-922)) 20)))
+(((-1190 |#1|) (-10 -7 (-15 -2724 (|#1| (-645 |#1|))) (-15 -4364 ((-1172 |#1|) |#1| (-922))) (-15 -2452 (|#1| |#1| (-567)))) (-365)) (T -1190))
+((-2452 (*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1190 *2)) (-4 *2 (-365)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *4 (-922)) (-5 *2 (-1172 *3)) (-5 *1 (-1190 *3)) (-4 *3 (-365)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1190 *2)) (-4 *2 (-365)))))
+(-10 -7 (-15 -2724 (|#1| (-645 |#1|))) (-15 -4364 ((-1172 |#1|) |#1| (-922))) (-15 -2452 (|#1| |#1| (-567))))
+((-4001 (($) 10) (($ (-645 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)))) 14)) (-3410 (($ (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2896 (((-645 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) 39) (((-645 |#3|) $) 41)) (-4392 (($ (-1 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-3494 (($ (-1 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-4341 (((-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) $) 60)) (-1336 (($ (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) $) 16)) (-3940 (((-645 |#2|) $) 19)) (-1664 (((-112) |#2| $) 65)) (-3050 (((-3 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) "failed") (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) 64)) (-4394 (((-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) $) 69)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 73)) (-1412 (((-645 |#3|) $) 43)) (-1552 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) NIL) (((-772) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) $) NIL) (((-772) |#3| $) NIL) (((-772) (-1 (-112) |#3|) $) 79)) (-4101 (((-863) $) 27)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-3052 (((-112) $ $) 51)))
+(((-1191 |#1| |#2| |#3|) (-10 -8 (-15 -3052 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3494 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4001 (|#1| (-645 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))))) (-15 -4001 (|#1|)) (-15 -3494 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3349 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2896 ((-645 |#3|) |#1|)) (-15 -3349 ((-772) |#3| |#1|)) (-15 -1552 (|#3| |#1| |#2| |#3|)) (-15 -1552 (|#3| |#1| |#2|)) (-15 -1412 ((-645 |#3|) |#1|)) (-15 -1664 ((-112) |#2| |#1|)) (-15 -3940 ((-645 |#2|) |#1|)) (-15 -3410 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3410 (|#1| (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3410 (|#1| (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3050 ((-3 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) "failed") (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -4341 ((-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -1336 (|#1| (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -4394 ((-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3349 ((-772) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -2896 ((-645 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3349 ((-772) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2297 ((-112) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2012 ((-112) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -4392 (|#1| (-1 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3494 (|#1| (-1 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|))) (-1192 |#2| |#3|) (-1100) (-1100)) (T -1191))
+NIL
+(-10 -8 (-15 -3052 ((-112) |#1| |#1|)) (-15 -4101 ((-863) |#1|)) (-15 -3494 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4001 (|#1| (-645 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))))) (-15 -4001 (|#1|)) (-15 -3494 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4392 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2012 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -2297 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3349 ((-772) (-1 (-112) |#3|) |#1|)) (-15 -2896 ((-645 |#3|) |#1|)) (-15 -3349 ((-772) |#3| |#1|)) (-15 -1552 (|#3| |#1| |#2| |#3|)) (-15 -1552 (|#3| |#1| |#2|)) (-15 -1412 ((-645 |#3|) |#1|)) (-15 -1664 ((-112) |#2| |#1|)) (-15 -3940 ((-645 |#2|) |#1|)) (-15 -3410 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3410 (|#1| (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3410 (|#1| (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3050 ((-3 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) "failed") (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -4341 ((-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -1336 (|#1| (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -4394 ((-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -3349 ((-772) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) |#1|)) (-15 -2896 ((-645 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3349 ((-772) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2297 ((-112) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -2012 ((-112) (-1 (-112) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -4392 (|#1| (-1 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)) (-15 -3494 (|#1| (-1 (-2 (|:| -1762 |#2|) (|:| -3859 |#3|)) (-2 (|:| -1762 |#2|) (|:| -3859 |#3|))) |#1|)))
+((-2257 (((-112) $ $) 19 (-2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-4001 (($) 73) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 72)) (-2275 (((-1271) $ |#1| |#1|) 100 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#2| $ |#1| |#2|) 74)) (-2581 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 46 (|has| $ (-6 -4416)))) (-1551 (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 56 (|has| $ (-6 -4416)))) (-4010 (((-3 |#2| "failed") |#1| $) 62)) (-4061 (($) 7 T CONST)) (-2084 (($ $) 59 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416))))) (-3410 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 48 (|has| $ (-6 -4416))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 47 (|has| $ (-6 -4416))) (((-3 |#2| "failed") |#1| $) 63)) (-3138 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 55 (|has| $ (-6 -4416)))) (-3402 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 57 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 54 (|has| $ (-6 -4416))) (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 53 (|has| $ (-6 -4416)))) (-1303 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4417)))) (-4344 ((|#2| $ |#1|) 89)) (-2896 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 31 (|has| $ (-6 -4416))) (((-645 |#2|) $) 80 (|has| $ (-6 -4416)))) (-2805 (((-112) $ (-772)) 9)) (-1321 ((|#1| $) 97 (|has| |#1| (-851)))) (-1542 (((-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 30 (|has| $ (-6 -4416))) (((-645 |#2|) $) 81 (|has| $ (-6 -4416)))) (-2176 (((-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-112) |#2| $) 83 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416))))) (-1979 ((|#1| $) 96 (|has| |#1| (-851)))) (-4392 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 35 (|has| $ (-6 -4417))) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4417)))) (-3494 (($ (-1 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 36) (($ (-1 |#2| |#2|) $) 75) (($ (-1 |#2| |#2| |#2|) $ $) 71)) (-3230 (((-112) $ (-772)) 10)) (-2451 (((-1158) $) 22 (-2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-3004 (((-645 |#1|) $) 64)) (-2121 (((-112) |#1| $) 65)) (-4341 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 40)) (-1336 (($ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 41)) (-3940 (((-645 |#1|) $) 94)) (-1664 (((-112) |#1| $) 93)) (-3339 (((-1120) $) 21 (-2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-2048 ((|#2| $) 98 (|has| |#1| (-851)))) (-3050 (((-3 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) "failed") (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 52)) (-2092 (($ $ |#2|) 99 (|has| $ (-6 -4417)))) (-4394 (((-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 42)) (-2297 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 33 (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))))) 27 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-295 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 26 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) 25 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 24 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)))) (($ $ (-645 |#2|) (-645 |#2|)) 87 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-295 |#2|)) 85 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100)))) (($ $ (-645 (-295 |#2|))) 84 (-12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#2| $) 95 (-12 (|has| $ (-6 -4416)) (|has| |#2| (-1100))))) (-1412 (((-645 |#2|) $) 92)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#2| $ |#1|) 91) ((|#2| $ |#1| |#2|) 90)) (-2069 (($) 50) (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 49)) (-3349 (((-772) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 32 (|has| $ (-6 -4416))) (((-772) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| $ (-6 -4416)))) (((-772) |#2| $) 82 (-12 (|has| |#2| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#2|) $) 79 (|has| $ (-6 -4416)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 60 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))))) (-4114 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 51)) (-4101 (((-863) $) 18 (-2909 (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863)))))) (-3739 (((-112) $ $) 23 (-2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-2299 (($ (-645 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) 43)) (-2012 (((-112) (-1 (-112) (-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) $) 34 (|has| $ (-6 -4416))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (-2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1192 |#1| |#2|) (-140) (-1100) (-1100)) (T -1192))
+((-4230 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))) (-4001 (*1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))) (-4001 (*1 *1 *2) (-12 (-5 *2 (-645 (-2 (|:| -1762 *3) (|:| -3859 *4)))) (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *1 (-1192 *3 *4)))) (-3494 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))))
+(-13 (-611 |t#1| |t#2|) (-605 |t#1| |t#2|) (-10 -8 (-15 -4230 (|t#2| $ |t#1| |t#2|)) (-15 -4001 ($)) (-15 -4001 ($ (-645 (-2 (|:| -1762 |t#1|) (|:| -3859 |t#2|))))) (-15 -3494 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1762 |#1|) (|:| -3859 |#2|))) . T) ((-102) -2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-614 (-863)) -2909 (|has| |#2| (-1100)) (|has| |#2| (-614 (-863))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-614 (-863)))) ((-151 #0#) . T) ((-615 (-539)) |has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-615 (-539))) ((-229 #0#) . T) ((-235 #0#) . T) ((-287 |#1| |#2|) . T) ((-289 |#1| |#2|) . T) ((-310 #0#) -12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-310 |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-492 #0#) . T) ((-492 |#2|) . T) ((-605 |#1| |#2|) . T) ((-517 #0# #0#) -12 (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-310 (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)))) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-517 |#2| |#2|) -12 (|has| |#2| (-310 |#2|)) (|has| |#2| (-1100))) ((-611 |#1| |#2|) . T) ((-1100) -2909 (|has| |#2| (-1100)) (|has| (-2 (|:| -1762 |#1|) (|:| -3859 |#2|)) (-1100))) ((-1216) . T))
+((-1775 (((-112)) 29)) (-3219 (((-1271) (-1158)) 31)) (-3526 (((-112)) 41)) (-3372 (((-1271)) 39)) (-2873 (((-1271) (-1158) (-1158)) 30)) (-2200 (((-112)) 42)) (-1336 (((-1271) |#1| |#2|) 53)) (-3082 (((-1271)) 27)) (-3838 (((-3 |#2| "failed") |#1|) 51)) (-2843 (((-1271)) 40)))
+(((-1193 |#1| |#2|) (-10 -7 (-15 -3082 ((-1271))) (-15 -2873 ((-1271) (-1158) (-1158))) (-15 -3219 ((-1271) (-1158))) (-15 -3372 ((-1271))) (-15 -2843 ((-1271))) (-15 -1775 ((-112))) (-15 -3526 ((-112))) (-15 -2200 ((-112))) (-15 -3838 ((-3 |#2| "failed") |#1|)) (-15 -1336 ((-1271) |#1| |#2|))) (-1100) (-1100)) (T -1193))
+((-1336 (*1 *2 *3 *4) (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-3838 (*1 *2 *3) (|partial| -12 (-4 *2 (-1100)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-1100)))) (-2200 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-3526 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-1775 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-2843 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-3372 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))) (-3219 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1193 *4 *5)) (-4 *4 (-1100)) (-4 *5 (-1100)))) (-2873 (*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1193 *4 *5)) (-4 *4 (-1100)) (-4 *5 (-1100)))) (-3082 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100)))))
+(-10 -7 (-15 -3082 ((-1271))) (-15 -2873 ((-1271) (-1158) (-1158))) (-15 -3219 ((-1271) (-1158))) (-15 -3372 ((-1271))) (-15 -2843 ((-1271))) (-15 -1775 ((-112))) (-15 -3526 ((-112))) (-15 -2200 ((-112))) (-15 -3838 ((-3 |#2| "failed") |#1|)) (-15 -1336 ((-1271) |#1| |#2|)))
+((-3205 (((-1158) (-1158)) 22)) (-3943 (((-52) (-1158)) 25)))
+(((-1194) (-10 -7 (-15 -3943 ((-52) (-1158))) (-15 -3205 ((-1158) (-1158))))) (T -1194))
+((-3205 (*1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1194)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-1194)))))
+(-10 -7 (-15 -3943 ((-52) (-1158))) (-15 -3205 ((-1158) (-1158))))
+((-4101 (((-1196) |#1|) 11)))
+(((-1195 |#1|) (-10 -7 (-15 -4101 ((-1196) |#1|))) (-1100)) (T -1195))
+((-4101 (*1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *1 (-1195 *3)) (-4 *3 (-1100)))))
+(-10 -7 (-15 -4101 ((-1196) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-1483 (((-645 (-1158)) $) 39)) (-3637 (((-645 (-1158)) $ (-645 (-1158))) 42)) (-2549 (((-645 (-1158)) $ (-645 (-1158))) 41)) (-4216 (((-645 (-1158)) $ (-645 (-1158))) 43)) (-3016 (((-645 (-1158)) $) 38)) (-4012 (($) 26)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4159 (((-645 (-1158)) $) 40)) (-3877 (((-1271) $ (-567)) 35) (((-1271) $) 36)) (-3542 (($ (-863) (-567)) 32) (($ (-863) (-567) (-863)) NIL)) (-4101 (((-863) $) 53) (($ (-863)) 31)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1196) (-13 (-1100) (-617 (-863)) (-10 -8 (-15 -3542 ($ (-863) (-567))) (-15 -3542 ($ (-863) (-567) (-863))) (-15 -3877 ((-1271) $ (-567))) (-15 -3877 ((-1271) $)) (-15 -4159 ((-645 (-1158)) $)) (-15 -1483 ((-645 (-1158)) $)) (-15 -4012 ($)) (-15 -3016 ((-645 (-1158)) $)) (-15 -4216 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -3637 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -2549 ((-645 (-1158)) $ (-645 (-1158))))))) (T -1196))
+((-3542 (*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1196)))) (-3542 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1196)))) (-3877 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1196)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1196)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))) (-1483 (*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))) (-4012 (*1 *1) (-5 *1 (-1196))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))) (-4216 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))) (-3637 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))) (-2549 (*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))))
+(-13 (-1100) (-617 (-863)) (-10 -8 (-15 -3542 ($ (-863) (-567))) (-15 -3542 ($ (-863) (-567) (-863))) (-15 -3877 ((-1271) $ (-567))) (-15 -3877 ((-1271) $)) (-15 -4159 ((-645 (-1158)) $)) (-15 -1483 ((-645 (-1158)) $)) (-15 -4012 ($)) (-15 -3016 ((-645 (-1158)) $)) (-15 -4216 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -3637 ((-645 (-1158)) $ (-645 (-1158)))) (-15 -2549 ((-645 (-1158)) $ (-645 (-1158))))))
+((-2257 (((-112) $ $) NIL)) (-3431 (((-1158) $ (-1158)) 17) (((-1158) $) 16)) (-2172 (((-1158) $ (-1158)) 15)) (-2481 (($ $ (-1158)) NIL)) (-1631 (((-3 (-1158) "failed") $) 11)) (-1951 (((-1158) $) 8)) (-3329 (((-3 (-1158) "failed") $) 12)) (-3654 (((-1158) $) 9)) (-1367 (($ (-391)) NIL) (($ (-391) (-1158)) NIL)) (-1817 (((-391) $) NIL)) (-2451 (((-1158) $) NIL)) (-1658 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2572 (((-112) $) 21)) (-4101 (((-863) $) NIL)) (-4021 (($ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1197) (-13 (-366 (-391) (-1158)) (-10 -8 (-15 -3431 ((-1158) $ (-1158))) (-15 -3431 ((-1158) $)) (-15 -1951 ((-1158) $)) (-15 -1631 ((-3 (-1158) "failed") $)) (-15 -3329 ((-3 (-1158) "failed") $)) (-15 -2572 ((-112) $))))) (T -1197))
+((-3431 (*1 *2 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1197)))) (-3431 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1197)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1197)))) (-1631 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-1197)))) (-3329 (*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-1197)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))))
+(-13 (-366 (-391) (-1158)) (-10 -8 (-15 -3431 ((-1158) $ (-1158))) (-15 -3431 ((-1158) $)) (-15 -1951 ((-1158) $)) (-15 -1631 ((-3 (-1158) "failed") $)) (-15 -3329 ((-3 (-1158) "failed") $)) (-15 -2572 ((-112) $))))
+((-3179 (((-3 (-567) "failed") |#1|) 19)) (-1415 (((-3 (-567) "failed") |#1|) 14)) (-1883 (((-567) (-1158)) 33)))
+(((-1198 |#1|) (-10 -7 (-15 -3179 ((-3 (-567) "failed") |#1|)) (-15 -1415 ((-3 (-567) "failed") |#1|)) (-15 -1883 ((-567) (-1158)))) (-1050)) (T -1198))
+((-1883 (*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-567)) (-5 *1 (-1198 *4)) (-4 *4 (-1050)))) (-1415 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1198 *3)) (-4 *3 (-1050)))) (-3179 (*1 *2 *3) (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1198 *3)) (-4 *3 (-1050)))))
+(-10 -7 (-15 -3179 ((-3 (-567) "failed") |#1|)) (-15 -1415 ((-3 (-567) "failed") |#1|)) (-15 -1883 ((-567) (-1158))))
+((-3086 (((-1133 (-225))) 9)))
+(((-1199) (-10 -7 (-15 -3086 ((-1133 (-225)))))) (T -1199))
+((-3086 (*1 *2) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-1199)))))
+(-10 -7 (-15 -3086 ((-1133 (-225)))))
+((-4098 (($) 12)) (-1847 (($ $) 36)) (-1823 (($ $) 34)) (-1660 (($ $) 26)) (-1869 (($ $) 18)) (-1345 (($ $) 16)) (-1858 (($ $) 20)) (-1704 (($ $) 31)) (-1834 (($ $) 35)) (-1673 (($ $) 30)))
+(((-1200 |#1|) (-10 -8 (-15 -4098 (|#1|)) (-15 -1847 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1869 (|#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -1673 (|#1| |#1|))) (-1201)) (T -1200))
+NIL
+(-10 -8 (-15 -4098 (|#1|)) (-15 -1847 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1869 (|#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)))
+((-1772 (($ $) 26)) (-1605 (($ $) 11)) (-1747 (($ $) 27)) (-1577 (($ $) 10)) (-1798 (($ $) 28)) (-1632 (($ $) 9)) (-4098 (($) 16)) (-2942 (($ $) 19)) (-2910 (($ $) 18)) (-1810 (($ $) 29)) (-1647 (($ $) 8)) (-1784 (($ $) 30)) (-1618 (($ $) 7)) (-1757 (($ $) 31)) (-1592 (($ $) 6)) (-1847 (($ $) 20)) (-1690 (($ $) 32)) (-1823 (($ $) 21)) (-1660 (($ $) 33)) (-1869 (($ $) 22)) (-1719 (($ $) 34)) (-1345 (($ $) 23)) (-1733 (($ $) 35)) (-1858 (($ $) 24)) (-1704 (($ $) 36)) (-1834 (($ $) 25)) (-1673 (($ $) 37)) (** (($ $ $) 17)))
+(((-1201) (-140)) (T -1201))
+((-4098 (*1 *1) (-4 *1 (-1201))))
+(-13 (-1204) (-95) (-496) (-35) (-285) (-10 -8 (-15 -4098 ($))))
+(((-35) . T) ((-95) . T) ((-285) . T) ((-496) . T) ((-1204) . T))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3843 ((|#1| $) 19)) (-2033 (($ |#1| (-645 $)) 28) (($ (-645 |#1|)) 35) (($ |#1|) 30)) (-1580 (((-112) $ (-772)) 72)) (-2372 ((|#1| $ |#1|) 14 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 13 (|has| $ (-6 -4417)))) (-4061 (($) NIL T CONST)) (-2896 (((-645 |#1|) $) 76 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 64)) (-2971 (((-112) $ $) 49 (|has| |#1| (-1100)))) (-2805 (((-112) $ (-772)) 62)) (-1542 (((-645 |#1|) $) 77 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 75 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4392 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 27)) (-3230 (((-112) $ (-772)) 60)) (-3625 (((-645 |#1|) $) 54)) (-1436 (((-112) $) 52)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2297 (((-112) (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 107)) (-3353 (((-112) $) 9)) (-3164 (($) 10)) (-1552 ((|#1| $ "value") NIL)) (-4304 (((-567) $ $) 48)) (-1758 (((-645 $) $) 89)) (-3531 (((-112) $ $) 110)) (-2967 (((-645 $) $) 105)) (-3212 (($ $) 106)) (-3436 (((-112) $) 84)) (-3349 (((-772) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4416))) (((-772) |#1| $) 17 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-4247 (($ $) 88)) (-4101 (((-863) $) 91 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 12)) (-2684 (((-112) $ $) 39 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 73 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 37 (|has| |#1| (-1100)))) (-2268 (((-772) $) 58 (|has| $ (-6 -4416)))))
+(((-1202 |#1|) (-13 (-1011 |#1|) (-10 -8 (-6 -4416) (-6 -4417) (-15 -2033 ($ |#1| (-645 $))) (-15 -2033 ($ (-645 |#1|))) (-15 -2033 ($ |#1|)) (-15 -3436 ((-112) $)) (-15 -3212 ($ $)) (-15 -2967 ((-645 $) $)) (-15 -3531 ((-112) $ $)) (-15 -1758 ((-645 $) $)))) (-1100)) (T -1202))
+((-3436 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))) (-2033 (*1 *1 *2 *3) (-12 (-5 *3 (-645 (-1202 *2))) (-5 *1 (-1202 *2)) (-4 *2 (-1100)))) (-2033 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-1202 *3)))) (-2033 (*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1100)))) (-3212 (*1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1100)))) (-2967 (*1 *2 *1) (-12 (-5 *2 (-645 (-1202 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))) (-3531 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-645 (-1202 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))))
+(-13 (-1011 |#1|) (-10 -8 (-6 -4416) (-6 -4417) (-15 -2033 ($ |#1| (-645 $))) (-15 -2033 ($ (-645 |#1|))) (-15 -2033 ($ |#1|)) (-15 -3436 ((-112) $)) (-15 -3212 ($ $)) (-15 -2967 ((-645 $) $)) (-15 -3531 ((-112) $ $)) (-15 -1758 ((-645 $) $))))
+((-1605 (($ $) 15)) (-1632 (($ $) 12)) (-1647 (($ $) 10)) (-1618 (($ $) 17)))
+(((-1203 |#1|) (-10 -8 (-15 -1618 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1605 (|#1| |#1|))) (-1204)) (T -1203))
+NIL
+(-10 -8 (-15 -1618 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1605 (|#1| |#1|)))
+((-1605 (($ $) 11)) (-1577 (($ $) 10)) (-1632 (($ $) 9)) (-1647 (($ $) 8)) (-1618 (($ $) 7)) (-1592 (($ $) 6)))
+(((-1204) (-140)) (T -1204))
+((-1605 (*1 *1 *1) (-4 *1 (-1204))) (-1577 (*1 *1 *1) (-4 *1 (-1204))) (-1632 (*1 *1 *1) (-4 *1 (-1204))) (-1647 (*1 *1 *1) (-4 *1 (-1204))) (-1618 (*1 *1 *1) (-4 *1 (-1204))) (-1592 (*1 *1 *1) (-4 *1 (-1204))))
+(-13 (-10 -8 (-15 -1592 ($ $)) (-15 -1618 ($ $)) (-15 -1647 ($ $)) (-15 -1632 ($ $)) (-15 -1577 ($ $)) (-15 -1605 ($ $))))
+((-2218 ((|#2| |#2|) 98)) (-1693 (((-112) |#2|) 29)) (-2319 ((|#2| |#2|) 33)) (-2333 ((|#2| |#2|) 35)) (-3362 ((|#2| |#2| (-1176)) 92) ((|#2| |#2|) 93)) (-2941 (((-169 |#2|) |#2|) 31)) (-2253 ((|#2| |#2| (-1176)) 94) ((|#2| |#2|) 95)))
+(((-1205 |#1| |#2|) (-10 -7 (-15 -3362 (|#2| |#2|)) (-15 -3362 (|#2| |#2| (-1176))) (-15 -2253 (|#2| |#2|)) (-15 -2253 (|#2| |#2| (-1176))) (-15 -2218 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -1693 ((-112) |#2|)) (-15 -2941 ((-169 |#2|) |#2|))) (-13 (-455) (-1039 (-567)) (-640 (-567))) (-13 (-27) (-1201) (-433 |#1|))) (T -1205))
+((-2941 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-169 *3)) (-5 *1 (-1205 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))) (-1693 (*1 *2 *3) (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112)) (-5 *1 (-1205 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))) (-2333 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))) (-2253 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))) (-3362 (*1 *2 *2 *3) (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1205 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))) (-3362 (*1 *2 *2) (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))))
+(-10 -7 (-15 -3362 (|#2| |#2|)) (-15 -3362 (|#2| |#2| (-1176))) (-15 -2253 (|#2| |#2|)) (-15 -2253 (|#2| |#2| (-1176))) (-15 -2218 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2333 (|#2| |#2|)) (-15 -1693 ((-112) |#2|)) (-15 -2941 ((-169 |#2|) |#2|)))
+((-2487 ((|#4| |#4| |#1|) 32)) (-2179 ((|#4| |#4| |#1|) 33)))
+(((-1206 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2487 (|#4| |#4| |#1|)) (-15 -2179 (|#4| |#4| |#1|))) (-559) (-375 |#1|) (-375 |#1|) (-688 |#1| |#2| |#3|)) (T -1206))
+((-2179 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1206 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))) (-2487 (*1 *2 *2 *3) (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-5 *1 (-1206 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(-10 -7 (-15 -2487 (|#4| |#4| |#1|)) (-15 -2179 (|#4| |#4| |#1|)))
+((-2874 ((|#2| |#2|) 148)) (-2650 ((|#2| |#2|) 145)) (-3227 ((|#2| |#2|) 136)) (-2007 ((|#2| |#2|) 133)) (-3905 ((|#2| |#2|) 141)) (-1870 ((|#2| |#2|) 129)) (-2490 ((|#2| |#2|) 44)) (-2000 ((|#2| |#2|) 105)) (-2886 ((|#2| |#2|) 88)) (-1326 ((|#2| |#2|) 143)) (-2796 ((|#2| |#2|) 131)) (-3658 ((|#2| |#2|) 153)) (-2349 ((|#2| |#2|) 151)) (-2753 ((|#2| |#2|) 152)) (-4267 ((|#2| |#2|) 150)) (-1435 ((|#2| |#2|) 163)) (-2379 ((|#2| |#2|) 30 (-12 (|has| |#2| (-615 (-893 |#1|))) (|has| |#2| (-887 |#1|)) (|has| |#1| (-615 (-893 |#1|))) (|has| |#1| (-887 |#1|))))) (-3759 ((|#2| |#2|) 89)) (-1934 ((|#2| |#2|) 154)) (-1511 ((|#2| |#2|) 155)) (-2795 ((|#2| |#2|) 142)) (-3778 ((|#2| |#2|) 130)) (-3761 ((|#2| |#2|) 149)) (-2361 ((|#2| |#2|) 147)) (-2500 ((|#2| |#2|) 137)) (-2003 ((|#2| |#2|) 135)) (-2992 ((|#2| |#2|) 139)) (-2824 ((|#2| |#2|) 127)))
+(((-1207 |#1| |#2|) (-10 -7 (-15 -1511 (|#2| |#2|)) (-15 -2886 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -2000 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -2824 (|#2| |#2|)) (-15 -2992 (|#2| |#2|)) (-15 -2500 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -1326 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -2361 (|#2| |#2|)) (-15 -4267 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (IF (|has| |#1| (-887 |#1|)) (IF (|has| |#1| (-615 (-893 |#1|))) (IF (|has| |#2| (-615 (-893 |#1|))) (IF (|has| |#2| (-887 |#1|)) (-15 -2379 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-455) (-13 (-433 |#1|) (-1201))) (T -1207))
+((-2379 (*1 *2 *2) (-12 (-4 *3 (-615 (-893 *3))) (-4 *3 (-887 *3)) (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-615 (-893 *3))) (-4 *2 (-887 *3)) (-4 *2 (-13 (-433 *3) (-1201))))) (-3658 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2349 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-4267 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2361 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2007 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2874 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-3227 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-1326 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2796 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2795 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-3761 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2500 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2992 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2824 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-1934 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-3759 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2490 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2000 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-2886 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2)) (-4 *2 (-13 (-433 *3) (-1201))))))
+(-10 -7 (-15 -1511 (|#2| |#2|)) (-15 -2886 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -2000 (|#2| |#2|)) (-15 -2490 (|#2| |#2|)) (-15 -3759 (|#2| |#2|)) (-15 -1934 (|#2| |#2|)) (-15 -2824 (|#2| |#2|)) (-15 -2992 (|#2| |#2|)) (-15 -2500 (|#2| |#2|)) (-15 -3761 (|#2| |#2|)) (-15 -3778 (|#2| |#2|)) (-15 -2795 (|#2| |#2|)) (-15 -2796 (|#2| |#2|)) (-15 -1326 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3227 (|#2| |#2|)) (-15 -2874 (|#2| |#2|)) (-15 -2007 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -2361 (|#2| |#2|)) (-15 -4267 (|#2| |#2|)) (-15 -2349 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -3658 (|#2| |#2|)) (IF (|has| |#1| (-887 |#1|)) (IF (|has| |#1| (-615 (-893 |#1|))) (IF (|has| |#2| (-615 (-893 |#1|))) (IF (|has| |#2| (-887 |#1|)) (-15 -2379 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-4309 (((-112) |#5| $) 68) (((-112) $) 110)) (-1508 ((|#5| |#5| $) 83)) (-1551 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 127)) (-1825 (((-645 |#5|) (-645 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 81)) (-3417 (((-3 $ "failed") (-645 |#5|)) 135)) (-2061 (((-3 $ "failed") $) 120)) (-3816 ((|#5| |#5| $) 102)) (-1444 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 36)) (-4155 ((|#5| |#5| $) 106)) (-3402 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 77)) (-1818 (((-2 (|:| -3858 (-645 |#5|)) (|:| -1367 (-645 |#5|))) $) 63)) (-3604 (((-112) |#5| $) 66) (((-112) $) 111)) (-4280 ((|#4| $) 116)) (-3162 (((-3 |#5| "failed") $) 118)) (-2331 (((-645 |#5|) $) 55)) (-2750 (((-112) |#5| $) 75) (((-112) $) 115)) (-1603 ((|#5| |#5| $) 89)) (-2137 (((-112) $ $) 29)) (-1849 (((-112) |#5| $) 71) (((-112) $) 113)) (-2703 ((|#5| |#5| $) 86)) (-2048 (((-3 |#5| "failed") $) 117)) (-2436 (($ $ |#5|) 136)) (-3677 (((-772) $) 60)) (-4114 (($ (-645 |#5|)) 133)) (-2485 (($ $ |#4|) 131)) (-4090 (($ $ |#4|) 129)) (-4367 (($ $) 128)) (-4101 (((-863) $) NIL) (((-645 |#5|) $) 121)) (-2718 (((-772) $) 140)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|)) 49) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 51)) (-2041 (((-112) $ (-1 (-112) |#5| (-645 |#5|))) 108)) (-3283 (((-645 |#4|) $) 123)) (-2447 (((-112) |#4| $) 126)) (-3052 (((-112) $ $) 20)))
+(((-1208 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2718 ((-772) |#1|)) (-15 -2436 (|#1| |#1| |#5|)) (-15 -1551 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2447 ((-112) |#4| |#1|)) (-15 -3283 ((-645 |#4|) |#1|)) (-15 -2061 ((-3 |#1| "failed") |#1|)) (-15 -3162 ((-3 |#5| "failed") |#1|)) (-15 -2048 ((-3 |#5| "failed") |#1|)) (-15 -4155 (|#5| |#5| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 -3816 (|#5| |#5| |#1|)) (-15 -1603 (|#5| |#5| |#1|)) (-15 -2703 (|#5| |#5| |#1|)) (-15 -1508 (|#5| |#5| |#1|)) (-15 -1825 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3402 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2750 ((-112) |#1|)) (-15 -1849 ((-112) |#1|)) (-15 -4309 ((-112) |#1|)) (-15 -2041 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -2750 ((-112) |#5| |#1|)) (-15 -1849 ((-112) |#5| |#1|)) (-15 -4309 ((-112) |#5| |#1|)) (-15 -1444 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3604 ((-112) |#1|)) (-15 -3604 ((-112) |#5| |#1|)) (-15 -1818 ((-2 (|:| -3858 (-645 |#5|)) (|:| -1367 (-645 |#5|))) |#1|)) (-15 -3677 ((-772) |#1|)) (-15 -2331 ((-645 |#5|) |#1|)) (-15 -3381 ((-3 (-2 (|:| |bas| |#1|) (|:| -2207 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3381 ((-3 (-2 (|:| |bas| |#1|) (|:| -2207 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2137 ((-112) |#1| |#1|)) (-15 -2485 (|#1| |#1| |#4|)) (-15 -4090 (|#1| |#1| |#4|)) (-15 -4280 (|#4| |#1|)) (-15 -3417 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4101 ((-645 |#5|) |#1|)) (-15 -4114 (|#1| (-645 |#5|))) (-15 -3402 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3402 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1551 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3402 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|))) (-1209 |#2| |#3| |#4| |#5|) (-559) (-794) (-851) (-1065 |#2| |#3| |#4|)) (T -1208))
+NIL
+(-10 -8 (-15 -2718 ((-772) |#1|)) (-15 -2436 (|#1| |#1| |#5|)) (-15 -1551 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2447 ((-112) |#4| |#1|)) (-15 -3283 ((-645 |#4|) |#1|)) (-15 -2061 ((-3 |#1| "failed") |#1|)) (-15 -3162 ((-3 |#5| "failed") |#1|)) (-15 -2048 ((-3 |#5| "failed") |#1|)) (-15 -4155 (|#5| |#5| |#1|)) (-15 -4367 (|#1| |#1|)) (-15 -3816 (|#5| |#5| |#1|)) (-15 -1603 (|#5| |#5| |#1|)) (-15 -2703 (|#5| |#5| |#1|)) (-15 -1508 (|#5| |#5| |#1|)) (-15 -1825 ((-645 |#5|) (-645 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -3402 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2750 ((-112) |#1|)) (-15 -1849 ((-112) |#1|)) (-15 -4309 ((-112) |#1|)) (-15 -2041 ((-112) |#1| (-1 (-112) |#5| (-645 |#5|)))) (-15 -2750 ((-112) |#5| |#1|)) (-15 -1849 ((-112) |#5| |#1|)) (-15 -4309 ((-112) |#5| |#1|)) (-15 -1444 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -3604 ((-112) |#1|)) (-15 -3604 ((-112) |#5| |#1|)) (-15 -1818 ((-2 (|:| -3858 (-645 |#5|)) (|:| -1367 (-645 |#5|))) |#1|)) (-15 -3677 ((-772) |#1|)) (-15 -2331 ((-645 |#5|) |#1|)) (-15 -3381 ((-3 (-2 (|:| |bas| |#1|) (|:| -2207 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3381 ((-3 (-2 (|:| |bas| |#1|) (|:| -2207 (-645 |#5|))) "failed") (-645 |#5|) (-1 (-112) |#5| |#5|))) (-15 -2137 ((-112) |#1| |#1|)) (-15 -2485 (|#1| |#1| |#4|)) (-15 -4090 (|#1| |#1| |#4|)) (-15 -4280 (|#4| |#1|)) (-15 -3417 ((-3 |#1| "failed") (-645 |#5|))) (-15 -4101 ((-645 |#5|) |#1|)) (-15 -4114 (|#1| (-645 |#5|))) (-15 -3402 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3402 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1551 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -3402 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4101 ((-863) |#1|)) (-15 -3052 ((-112) |#1| |#1|)))
+((-2257 (((-112) $ $) 7)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) 86)) (-2102 (((-645 $) (-645 |#4|)) 87)) (-2449 (((-645 |#3|) $) 34)) (-1416 (((-112) $) 27)) (-2739 (((-112) $) 18 (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) 102) (((-112) $) 98)) (-1508 ((|#4| |#4| $) 93)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) 28)) (-1580 (((-112) $ (-772)) 45)) (-1551 (($ (-1 (-112) |#4|) $) 66 (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) 80)) (-4061 (($) 46 T CONST)) (-3289 (((-112) $) 23 (|has| |#1| (-559)))) (-3407 (((-112) $ $) 25 (|has| |#1| (-559)))) (-2595 (((-112) $ $) 24 (|has| |#1| (-559)))) (-1579 (((-112) $) 26 (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-2786 (((-645 |#4|) (-645 |#4|) $) 19 (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) 20 (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) 37)) (-1621 (($ (-645 |#4|)) 36)) (-2061 (((-3 $ "failed") $) 83)) (-3816 ((|#4| |#4| $) 90)) (-2084 (($ $) 69 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#4| $) 68 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 103)) (-4155 ((|#4| |#4| $) 88)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 95)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) 106)) (-2896 (((-645 |#4|) $) 53 (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) 105) (((-112) $) 104)) (-4280 ((|#3| $) 35)) (-2805 (((-112) $ (-772)) 44)) (-1542 (((-645 |#4|) $) 54 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) 56 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) 48)) (-4360 (((-645 |#3|) $) 33)) (-4023 (((-112) |#3| $) 32)) (-3230 (((-112) $ (-772)) 43)) (-2451 (((-1158) $) 10)) (-3162 (((-3 |#4| "failed") $) 84)) (-2331 (((-645 |#4|) $) 108)) (-2750 (((-112) |#4| $) 100) (((-112) $) 96)) (-1603 ((|#4| |#4| $) 91)) (-2137 (((-112) $ $) 111)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) 101) (((-112) $) 97)) (-2703 ((|#4| |#4| $) 92)) (-3339 (((-1120) $) 11)) (-2048 (((-3 |#4| "failed") $) 85)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 62)) (-3809 (((-3 $ "failed") $ |#4|) 79)) (-2436 (($ $ |#4|) 78)) (-2297 (((-112) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) 60 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) 58 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) 57 (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) 39)) (-3353 (((-112) $) 42)) (-3164 (($) 41)) (-3677 (((-772) $) 107)) (-3349 (((-772) |#4| $) 55 (-12 (|has| |#4| (-1100)) (|has| $ (-6 -4416)))) (((-772) (-1 (-112) |#4|) $) 52 (|has| $ (-6 -4416)))) (-4247 (($ $) 40)) (-3542 (((-539) $) 70 (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) 61)) (-2485 (($ $ |#3|) 29)) (-4090 (($ $ |#3|) 31)) (-4367 (($ $) 89)) (-2716 (($ $ |#3|) 30)) (-4101 (((-863) $) 12) (((-645 |#4|) $) 38)) (-2718 (((-772) $) 77 (|has| |#3| (-370)))) (-3739 (((-112) $ $) 9)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 110) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 109)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) 99)) (-2012 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) 82)) (-2447 (((-112) |#3| $) 81)) (-3052 (((-112) $ $) 6)) (-2268 (((-772) $) 47 (|has| $ (-6 -4416)))))
+(((-1209 |#1| |#2| |#3| |#4|) (-140) (-559) (-794) (-851) (-1065 |t#1| |t#2| |t#3|)) (T -1209))
+((-2137 (*1 *2 *1 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))) (-3381 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2207 (-645 *8)))) (-5 *3 (-645 *8)) (-4 *1 (-1209 *5 *6 *7 *8)))) (-3381 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1065 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2207 (-645 *9)))) (-5 *3 (-645 *9)) (-4 *1 (-1209 *6 *7 *8 *9)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *6)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-772)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-2 (|:| -3858 (-645 *6)) (|:| -1367 (-645 *6)))))) (-3604 (*1 *2 *3 *1) (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))) (-1444 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1209 *5 *6 *7 *3)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-112)))) (-4309 (*1 *2 *3 *1) (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-1849 (*1 *2 *3 *1) (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-2750 (*1 *2 *3 *1) (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-2041 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1209 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)))) (-4309 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))) (-2750 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))) (-3402 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1209 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *2 (-1065 *5 *6 *7)))) (-1825 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1209 *5 *6 *7 *8)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)))) (-1508 (*1 *2 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-2703 (*1 *2 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-1603 (*1 *2 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-3816 (*1 *2 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-4367 (*1 *1 *1) (-12 (-4 *1 (-1209 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1065 *2 *3 *4)))) (-4155 (*1 *2 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1)) (-4 *1 (-1209 *4 *5 *6 *7)))) (-3263 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-645 (-2 (|:| -3858 *1) (|:| -1367 (-645 *7))))) (-5 *3 (-645 *7)) (-4 *1 (-1209 *4 *5 *6 *7)))) (-2048 (*1 *2 *1) (|partial| -12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-3162 (*1 *2 *1) (|partial| -12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-2061 (*1 *1 *1) (|partial| -12 (-4 *1 (-1209 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1065 *2 *3 *4)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *5)))) (-2447 (*1 *2 *3 *1) (-12 (-4 *1 (-1209 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *6 (-1065 *4 *5 *3)) (-5 *2 (-112)))) (-1551 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1209 *4 *5 *3 *2)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1065 *4 *5 *3)))) (-3809 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-2436 (*1 *1 *1 *2) (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))) (-2718 (*1 *2 *1) (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *5 (-370)) (-5 *2 (-772)))))
+(-13 (-977 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4416) (-6 -4417) (-15 -2137 ((-112) $ $)) (-15 -3381 ((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3381 ((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |t#4|))) "failed") (-645 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2331 ((-645 |t#4|) $)) (-15 -3677 ((-772) $)) (-15 -1818 ((-2 (|:| -3858 (-645 |t#4|)) (|:| -1367 (-645 |t#4|))) $)) (-15 -3604 ((-112) |t#4| $)) (-15 -3604 ((-112) $)) (-15 -1444 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -4309 ((-112) |t#4| $)) (-15 -1849 ((-112) |t#4| $)) (-15 -2750 ((-112) |t#4| $)) (-15 -2041 ((-112) $ (-1 (-112) |t#4| (-645 |t#4|)))) (-15 -4309 ((-112) $)) (-15 -1849 ((-112) $)) (-15 -2750 ((-112) $)) (-15 -3402 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1825 ((-645 |t#4|) (-645 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1508 (|t#4| |t#4| $)) (-15 -2703 (|t#4| |t#4| $)) (-15 -1603 (|t#4| |t#4| $)) (-15 -3816 (|t#4| |t#4| $)) (-15 -4367 ($ $)) (-15 -4155 (|t#4| |t#4| $)) (-15 -2102 ((-645 $) (-645 |t#4|))) (-15 -3263 ((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |t#4|)))) (-645 |t#4|))) (-15 -2048 ((-3 |t#4| "failed") $)) (-15 -3162 ((-3 |t#4| "failed") $)) (-15 -2061 ((-3 $ "failed") $)) (-15 -3283 ((-645 |t#3|) $)) (-15 -2447 ((-112) |t#3| $)) (-15 -1551 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3809 ((-3 $ "failed") $ |t#4|)) (-15 -2436 ($ $ |t#4|)) (IF (|has| |t#3| (-370)) (-15 -2718 ((-772) $)) |%noBranch|)))
+(((-34) . T) ((-102) . T) ((-614 (-645 |#4|)) . T) ((-614 (-863)) . T) ((-151 |#4|) . T) ((-615 (-539)) |has| |#4| (-615 (-539))) ((-310 |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-492 |#4|) . T) ((-517 |#4| |#4|) -12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))) ((-977 |#1| |#2| |#3| |#4|) . T) ((-1100) . T) ((-1216) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1176)) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-1772 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1747 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1798 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-3825 (((-953 |#1|) $ (-772)) 20) (((-953 |#1|) $ (-772) (-772)) NIL)) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-772) $ (-1176)) NIL) (((-772) $ (-1176) (-772)) NIL)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3523 (((-112) $) NIL)) (-2422 (($ $ (-645 (-1176)) (-645 (-534 (-1176)))) NIL) (($ $ (-1176) (-534 (-1176))) NIL) (($ |#1| (-534 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-2113 (($ $ (-1176)) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-1373 (($ (-1 $) (-1176) |#1|) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2436 (($ $ (-772)) NIL)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2910 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3140 (($ $ (-1176) $) NIL) (($ $ (-645 (-1176)) (-645 $)) NIL) (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL)) (-1930 (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL)) (-3677 (((-534 (-1176)) $) NIL)) (-1810 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-559))) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-1176)) NIL) (($ (-953 |#1|)) NIL)) (-2339 ((|#1| $ (-534 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (((-953 |#1|) $ (-772)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1345 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-2692 (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1210 |#1|) (-13 (-741 |#1| (-1176)) (-10 -8 (-15 -2339 ((-953 |#1|) $ (-772))) (-15 -4101 ($ (-1176))) (-15 -4101 ($ (-953 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $ (-1176) |#1|)) (-15 -1373 ($ (-1 $) (-1176) |#1|))) |%noBranch|))) (-1050)) (T -1210))
+((-2339 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-953 *4)) (-5 *1 (-1210 *4)) (-4 *4 (-1050)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1210 *3)) (-4 *3 (-1050)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-5 *1 (-1210 *3)))) (-2113 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *1 (-1210 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)))) (-1373 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1210 *4))) (-5 *3 (-1176)) (-5 *1 (-1210 *4)) (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050)))))
+(-13 (-741 |#1| (-1176)) (-10 -8 (-15 -2339 ((-953 |#1|) $ (-772))) (-15 -4101 ($ (-1176))) (-15 -4101 ($ (-953 |#1|))) (IF (|has| |#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $ (-1176) |#1|)) (-15 -1373 ($ (-1 $) (-1176) |#1|))) |%noBranch|)))
+((-1428 (($ |#1| (-645 (-645 (-944 (-225)))) (-112)) 19)) (-3403 (((-112) $ (-112)) 18)) (-3222 (((-112) $) 17)) (-2528 (((-645 (-645 (-944 (-225)))) $) 13)) (-3967 ((|#1| $) 8)) (-4178 (((-112) $) 15)))
+(((-1211 |#1|) (-10 -8 (-15 -3967 (|#1| $)) (-15 -2528 ((-645 (-645 (-944 (-225)))) $)) (-15 -4178 ((-112) $)) (-15 -3222 ((-112) $)) (-15 -3403 ((-112) $ (-112))) (-15 -1428 ($ |#1| (-645 (-645 (-944 (-225)))) (-112)))) (-975)) (T -1211))
+((-1428 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-112)) (-5 *1 (-1211 *2)) (-4 *2 (-975)))) (-3403 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-975)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-975)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-975)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-1211 *3)) (-4 *3 (-975)))) (-3967 (*1 *2 *1) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-975)))))
+(-10 -8 (-15 -3967 (|#1| $)) (-15 -2528 ((-645 (-645 (-944 (-225)))) $)) (-15 -4178 ((-112) $)) (-15 -3222 ((-112) $)) (-15 -3403 ((-112) $ (-112))) (-15 -1428 ($ |#1| (-645 (-645 (-944 (-225)))) (-112))))
+((-4245 (((-944 (-225)) (-944 (-225))) 31)) (-1976 (((-944 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2858 (((-645 (-944 (-225))) (-944 (-225)) (-944 (-225)) (-944 (-225)) (-225) (-645 (-645 (-225)))) 60)) (-2945 (((-225) (-944 (-225)) (-944 (-225))) 27)) (-2673 (((-944 (-225)) (-944 (-225)) (-944 (-225))) 28)) (-1705 (((-645 (-645 (-225))) (-567)) 48)) (-3156 (((-944 (-225)) (-944 (-225)) (-944 (-225))) 26)) (-3146 (((-944 (-225)) (-944 (-225)) (-944 (-225))) 24)) (* (((-944 (-225)) (-225) (-944 (-225))) 22)))
+(((-1212) (-10 -7 (-15 -1976 ((-944 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-944 (-225)) (-225) (-944 (-225)))) (-15 -3146 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3156 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -2945 ((-225) (-944 (-225)) (-944 (-225)))) (-15 -2673 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -4245 ((-944 (-225)) (-944 (-225)))) (-15 -1705 ((-645 (-645 (-225))) (-567))) (-15 -2858 ((-645 (-944 (-225))) (-944 (-225)) (-944 (-225)) (-944 (-225)) (-225) (-645 (-645 (-225))))))) (T -1212))
+((-2858 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 (-944 *4))) (-5 *1 (-1212)) (-5 *3 (-944 *4)))) (-1705 (*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1212)))) (-4245 (*1 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212)))) (-2673 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212)))) (-2945 (*1 *2 *3 *3) (-12 (-5 *3 (-944 (-225))) (-5 *2 (-225)) (-5 *1 (-1212)))) (-3156 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212)))) (-3146 (*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-944 (-225))) (-5 *3 (-225)) (-5 *1 (-1212)))) (-1976 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212)) (-5 *3 (-225)))))
+(-10 -7 (-15 -1976 ((-944 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-944 (-225)) (-225) (-944 (-225)))) (-15 -3146 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -3156 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -2945 ((-225) (-944 (-225)) (-944 (-225)))) (-15 -2673 ((-944 (-225)) (-944 (-225)) (-944 (-225)))) (-15 -4245 ((-944 (-225)) (-944 (-225)))) (-15 -1705 ((-645 (-645 (-225))) (-567))) (-15 -2858 ((-645 (-944 (-225))) (-944 (-225)) (-944 (-225)) (-944 (-225)) (-225) (-645 (-645 (-225))))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1551 ((|#1| $ (-772)) 18)) (-3036 (((-772) $) 13)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-4101 (((-959 |#1|) $) 12) (($ (-959 |#1|)) 11) (((-863) $) 29 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3052 (((-112) $ $) 22 (|has| |#1| (-1100)))))
+(((-1213 |#1|) (-13 (-493 (-959 |#1|)) (-10 -8 (-15 -1551 (|#1| $ (-772))) (-15 -3036 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|))) (-1216)) (T -1213))
+((-1551 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-1213 *2)) (-4 *2 (-1216)))) (-3036 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1213 *3)) (-4 *3 (-1216)))))
+(-13 (-493 (-959 |#1|)) (-10 -8 (-15 -1551 (|#1| $ (-772))) (-15 -3036 ((-772) $)) (IF (|has| |#1| (-614 (-863))) (-6 (-614 (-863))) |%noBranch|) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|)))
+((-4049 (((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|)) (-567)) 94)) (-4006 (((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|))) 86)) (-2534 (((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|))) 70)))
+(((-1214 |#1|) (-10 -7 (-15 -4006 ((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|)))) (-15 -2534 ((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|)))) (-15 -4049 ((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|)) (-567)))) (-351)) (T -1214))
+((-4049 (*1 *2 *3 *4) (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1172 (-1172 *5)))) (-5 *1 (-1214 *5)) (-5 *3 (-1172 (-1172 *5))))) (-2534 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1172 (-1172 *4)))) (-5 *1 (-1214 *4)) (-5 *3 (-1172 (-1172 *4))))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1172 (-1172 *4)))) (-5 *1 (-1214 *4)) (-5 *3 (-1172 (-1172 *4))))))
+(-10 -7 (-15 -4006 ((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|)))) (-15 -2534 ((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|)))) (-15 -4049 ((-421 (-1172 (-1172 |#1|))) (-1172 (-1172 |#1|)) (-567))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 9) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1215) (-1083)) (T -1215))
+NIL
+(-1083)
+NIL
+(((-1216) (-140)) (T -1216))
+NIL
+(-13 (-10 -7 (-6 -2890)))
+((-2759 (((-112)) 18)) (-3899 (((-1271) (-645 |#1|) (-645 |#1|)) 22) (((-1271) (-645 |#1|)) 23)) (-2805 (((-112) |#1| |#1|) 38 (|has| |#1| (-851)))) (-3230 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 30) (((-3 (-112) "failed") |#1| |#1|) 28)) (-4319 ((|#1| (-645 |#1|)) 39 (|has| |#1| (-851))) ((|#1| (-645 |#1|) (-1 (-112) |#1| |#1|)) 33)) (-2151 (((-2 (|:| -2764 (-645 |#1|)) (|:| -4361 (-645 |#1|)))) 20)))
+(((-1217 |#1|) (-10 -7 (-15 -3899 ((-1271) (-645 |#1|))) (-15 -3899 ((-1271) (-645 |#1|) (-645 |#1|))) (-15 -2151 ((-2 (|:| -2764 (-645 |#1|)) (|:| -4361 (-645 |#1|))))) (-15 -3230 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3230 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4319 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2759 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -4319 (|#1| (-645 |#1|))) (-15 -2805 ((-112) |#1| |#1|))) |%noBranch|)) (-1100)) (T -1217))
+((-2805 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-851)) (-4 *3 (-1100)))) (-4319 (*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-851)) (-5 *1 (-1217 *2)))) (-2759 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1100)))) (-4319 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1217 *2)) (-4 *2 (-1100)))) (-3230 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1100)) (-5 *2 (-112)) (-5 *1 (-1217 *3)))) (-3230 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1100)))) (-2151 (*1 *2) (-12 (-5 *2 (-2 (|:| -2764 (-645 *3)) (|:| -4361 (-645 *3)))) (-5 *1 (-1217 *3)) (-4 *3 (-1100)))) (-3899 (*1 *2 *3 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1100)) (-5 *2 (-1271)) (-5 *1 (-1217 *4)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-645 *4)) (-4 *4 (-1100)) (-5 *2 (-1271)) (-5 *1 (-1217 *4)))))
+(-10 -7 (-15 -3899 ((-1271) (-645 |#1|))) (-15 -3899 ((-1271) (-645 |#1|) (-645 |#1|))) (-15 -2151 ((-2 (|:| -2764 (-645 |#1|)) (|:| -4361 (-645 |#1|))))) (-15 -3230 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3230 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -4319 (|#1| (-645 |#1|) (-1 (-112) |#1| |#1|))) (-15 -2759 ((-112))) (IF (|has| |#1| (-851)) (PROGN (-15 -4319 (|#1| (-645 |#1|))) (-15 -2805 ((-112) |#1| |#1|))) |%noBranch|))
+((-1739 (((-1271) (-645 (-1176)) (-645 (-1176))) 14) (((-1271) (-645 (-1176))) 12)) (-2618 (((-1271)) 16)) (-2848 (((-2 (|:| -4361 (-645 (-1176))) (|:| -2764 (-645 (-1176))))) 20)))
+(((-1218) (-10 -7 (-15 -1739 ((-1271) (-645 (-1176)))) (-15 -1739 ((-1271) (-645 (-1176)) (-645 (-1176)))) (-15 -2848 ((-2 (|:| -4361 (-645 (-1176))) (|:| -2764 (-645 (-1176)))))) (-15 -2618 ((-1271))))) (T -1218))
+((-2618 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1218)))) (-2848 (*1 *2) (-12 (-5 *2 (-2 (|:| -4361 (-645 (-1176))) (|:| -2764 (-645 (-1176))))) (-5 *1 (-1218)))) (-1739 (*1 *2 *3 *3) (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1271)) (-5 *1 (-1218)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1271)) (-5 *1 (-1218)))))
+(-10 -7 (-15 -1739 ((-1271) (-645 (-1176)))) (-15 -1739 ((-1271) (-645 (-1176)) (-645 (-1176)))) (-15 -2848 ((-2 (|:| -4361 (-645 (-1176))) (|:| -2764 (-645 (-1176)))))) (-15 -2618 ((-1271))))
+((-1396 (($ $) 17)) (-1665 (((-112) $) 28)))
+(((-1219 |#1|) (-10 -8 (-15 -1396 (|#1| |#1|)) (-15 -1665 ((-112) |#1|))) (-1220)) (T -1219))
+NIL
+(-10 -8 (-15 -1396 (|#1| |#1|)) (-15 -1665 ((-112) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 57)) (-1401 (((-421 $) $) 58)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-1665 (((-112) $) 59)) (-3714 (((-112) $) 35)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2296 (((-421 $) $) 56)) (-2245 (((-3 $ "failed") $ $) 48)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27)))
+(((-1220) (-140)) (T -1220))
+((-1665 (*1 *2 *1) (-12 (-4 *1 (-1220)) (-5 *2 (-112)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1220)))) (-1396 (*1 *1 *1) (-4 *1 (-1220))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1220)))))
+(-13 (-455) (-10 -8 (-15 -1665 ((-112) $)) (-15 -1401 ((-421 $) $)) (-15 -1396 ($ $)) (-15 -2296 ((-421 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-291) . T) ((-455) . T) ((-559) . T) ((-647 (-567)) . T) ((-647 $) . T) ((-649 $) . T) ((-641 $) . T) ((-718 $) . T) ((-727) . T) ((-1052 $) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-1488 (($ $ $) NIL)) (-1472 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-1221) (-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))) (T -1221))
+((-1472 (*1 *1 *1 *1) (-5 *1 (-1221))) (-1488 (*1 *1 *1 *1) (-5 *1 (-1221))) (-4061 (*1 *1) (-5 *1 (-1221))))
+(-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 16)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-3218 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-1221) (-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))) (T -1221))
-((-3204 (*1 *1 *1 *1) (-5 *1 (-1221))) (-3218 (*1 *1 *1 *1) (-5 *1 (-1221))) (-2633 (*1 *1) (-5 *1 (-1221))))
-(-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-1488 (($ $ $) NIL)) (-1472 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-1222) (-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))) (T -1222))
+((-1472 (*1 *1 *1 *1) (-5 *1 (-1222))) (-1488 (*1 *1 *1 *1) (-5 *1 (-1222))) (-4061 (*1 *1) (-5 *1 (-1222))))
+(-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 32)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-3218 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-1222) (-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))) (T -1222))
-((-3204 (*1 *1 *1 *1) (-5 *1 (-1222))) (-3218 (*1 *1 *1 *1) (-5 *1 (-1222))) (-2633 (*1 *1) (-5 *1 (-1222))))
-(-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-1488 (($ $ $) NIL)) (-1472 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-1223) (-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))) (T -1223))
+((-1472 (*1 *1 *1 *1) (-5 *1 (-1223))) (-1488 (*1 *1 *1 *1) (-5 *1 (-1223))) (-4061 (*1 *1) (-5 *1 (-1223))))
+(-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 64)))
-((-3979 (((-112) $ $) NIL)) (-3733 (((-771)) NIL)) (-2633 (($) NIL T CONST)) (-3424 (($) NIL)) (-3075 (($ $ $) NIL) (($) NIL T CONST)) (-3936 (($ $ $) NIL) (($) NIL T CONST)) (-4138 (((-921) $) NIL)) (-1390 (((-1157) $) NIL)) (-2430 (($ (-921)) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) NIL)) (-3218 (($ $ $) NIL)) (-3204 (($ $ $) NIL)) (-1479 (((-112) $ $) NIL)) (-2865 (((-112) $ $) NIL)) (-2844 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL)) (-2833 (((-112) $ $) NIL)))
-(((-1223) (-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))) (T -1223))
-((-3204 (*1 *1 *1 *1) (-5 *1 (-1223))) (-3218 (*1 *1 *1 *1) (-5 *1 (-1223))) (-2633 (*1 *1) (-5 *1 (-1223))))
-(-13 (-844) (-10 -8 (-15 -3204 ($ $ $)) (-15 -3218 ($ $ $)) (-15 -2633 ($) -3854)))
+((-2257 (((-112) $ $) NIL)) (-2013 (((-772)) NIL)) (-4061 (($) NIL T CONST)) (-1649 (($) NIL)) (-2056 (($ $ $) NIL) (($) NIL T CONST)) (-1802 (($ $ $) NIL) (($) NIL T CONST)) (-3527 (((-922) $) NIL)) (-2451 (((-1158) $) NIL)) (-3811 (($ (-922)) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) NIL)) (-1488 (($ $ $) NIL)) (-1472 (($ $ $) NIL)) (-3739 (((-112) $ $) NIL)) (-3109 (((-112) $ $) NIL)) (-3085 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL)) (-3075 (((-112) $ $) NIL)))
+(((-1224) (-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))) (T -1224))
+((-1472 (*1 *1 *1 *1) (-5 *1 (-1224))) (-1488 (*1 *1 *1 *1) (-5 *1 (-1224))) (-4061 (*1 *1) (-5 *1 (-1224))))
+(-13 (-845) (-10 -8 (-15 -1472 ($ $ $)) (-15 -1488 ($ $ $)) (-15 -4061 ($) -2131)))
((|NonNegativeInteger|) (NOT (> (INTEGER-LENGTH |#1|) 8)))
-((-2101 (((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)) 23)))
-(((-1224 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2101 ((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1224))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1229 *6 *8 *10)) (-5 *1 (-1224 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175)))))
-(-10 -7 (-15 -2101 ((-1229 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1229 |#1| |#3| |#5|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 (-1081)) $) 86)) (-2928 (((-1175) $) 115)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-1807 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-3564 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-3622 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 174 (|has| |#1| (-365)))) (-2555 (((-420 $) $) 175 (|has| |#1| (-365)))) (-4028 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3601 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-3648 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) 18 T CONST)) (-3919 (($ $ $) 169 (|has| |#1| (-365)))) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-3447 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-3930 (($ $ $) 168 (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1968 (((-112) $) 176 (|has| |#1| (-365)))) (-2039 (((-112) $) 85)) (-2722 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-566) $) 112) (((-566) $ (-566)) 111)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) 113)) (-1912 (($ (-1 |#1| (-566)) $) 184)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3819 (((-112) $) 74)) (-4145 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-1565 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1853 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1390 (((-1157) $) 10)) (-4282 (($ $) 177 (|has| |#1| (-365)))) (-1879 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2676 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1200)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-1885 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4018 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 170 (|has| |#1| (-365)))) (-3964 (($ $ (-566)) 107)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-1535 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566)))))) (-3792 (((-771) $) 166 (|has| |#1| (-365)))) (-3282 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 167 (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-3838 (((-566) $) 76)) (-3658 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 84)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3623 ((|#1| $ (-566)) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-2737 ((|#1| $) 114)) (-1479 (((-112) $ $) 9)) (-3696 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3670 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-566) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-1225 |#1|) (-140) (-1049)) (T -1225))
-((-3040 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1225 *3)))) (-1912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1225 *3)) (-4 *3 (-1049)))) (-3447 (*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1225 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-3447 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-4 *1 (-1225 *4)) (-4 *4 (-1049)) (-4 *4 (-558)) (-5 *2 (-409 (-952 *4))))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-1879 (*1 *1 *1 *2) (-2676 (-12 (-5 *2 (-1175)) (-4 *1 (-1225 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1200)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1225 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -4170 ((-644 *2) *3))) (|has| *3 (-15 -1879 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))))
-(-13 (-1243 |t#1| (-566)) (-10 -8 (-15 -3040 ($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |t#1|))))) (-15 -1912 ($ (-1 |t#1| (-566)) $)) (IF (|has| |t#1| (-558)) (PROGN (-15 -3447 ((-409 (-952 |t#1|)) $ (-566))) (-15 -3447 ((-409 (-952 |t#1|)) $ (-566) (-566)))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $)) (IF (|has| |t#1| (-15 -1879 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -4170 ((-644 (-1175)) |t#1|))) (-15 -1879 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1200)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -1879 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1200))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-566) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1200) |has| |#1| (-38 (-409 (-566)))) ((-1203) |has| |#1| (-38 (-409 (-566)))) ((-1219) |has| |#1| (-365)) ((-1243 |#1| #0#) . T))
-((-3545 (((-112) $) 12)) (-2023 (((-3 |#3| "failed") $) 17) (((-3 (-1175) "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL)) (-3343 ((|#3| $) 14) (((-1175) $) NIL) (((-409 (-566)) $) NIL) (((-566) $) NIL)))
-(((-1226 |#1| |#2| |#3|) (-10 -8 (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-1175) "failed") |#1|)) (-15 -3343 ((-1175) |#1|)) (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3545 ((-112) |#1|))) (-1227 |#2| |#3|) (-1049) (-1256 |#2|)) (T -1226))
-NIL
-(-10 -8 (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -2023 ((-3 (-1175) "failed") |#1|)) (-15 -3343 ((-1175) |#1|)) (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3545 ((-112) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4191 ((|#2| $) 242 (-3144 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-4170 (((-644 (-1081)) $) 86)) (-2928 (((-1175) $) 115)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-1807 (($ $ (-566)) 110) (($ $ (-566) (-566)) 109)) (-3564 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 117)) (-3027 ((|#2| $) 278)) (-1442 (((-3 |#2| "failed") $) 274)) (-4231 ((|#2| $) 275)) (-3622 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) 20)) (-4350 (((-420 (-1171 $)) (-1171 $)) 251 (-3144 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2885 (($ $) 174 (|has| |#1| (-365)))) (-2555 (((-420 $) $) 175 (|has| |#1| (-365)))) (-4028 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 248 (-3144 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2068 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3601 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-1859 (((-566) $) 260 (-3144 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3040 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 185)) (-3648 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#2| "failed") $) 281) (((-3 (-566) "failed") $) 271 (-3144 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) 269 (-3144 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) 253 (-3144 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-3343 ((|#2| $) 282) (((-566) $) 270 (-3144 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) 268 (-3144 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) 252 (-3144 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-4031 (($ $) 277) (($ (-566) $) 276)) (-3919 (($ $ $) 169 (|has| |#1| (-365)))) (-4358 (($ $) 72)) (-3717 (((-689 |#2|) (-689 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 230 (-3144 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) 229 (-3144 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-2313 (((-3 $ "failed") $) 37)) (-3447 (((-409 (-952 |#1|)) $ (-566)) 183 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 182 (|has| |#1| (-558)))) (-3424 (($) 244 (-3144 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3930 (($ $ $) 168 (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1968 (((-112) $) 176 (|has| |#1| (-365)))) (-3421 (((-112) $) 258 (-3144 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2039 (((-112) $) 85)) (-2722 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 236 (-3144 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 235 (-3144 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-3077 (((-566) $) 112) (((-566) $ (-566)) 111)) (-3842 (((-112) $) 35)) (-3450 (($ $) 240 (|has| |#1| (-365)))) (-2691 ((|#2| $) 238 (|has| |#1| (-365)))) (-2810 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-3869 (((-3 $ "failed") $) 272 (-3144 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-2307 (((-112) $) 259 (-3144 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2248 (($ $ (-921)) 113)) (-1912 (($ (-1 |#1| (-566)) $) 184)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3819 (((-112) $) 74)) (-4145 (($ |#1| (-566)) 73) (($ $ (-1081) (-566)) 88) (($ $ (-644 (-1081)) (-644 (-566))) 87)) (-3075 (($ $ $) 262 (-3144 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3936 (($ $ $) 263 (-3144 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2101 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-1565 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1853 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-4244 (($ (-566) |#2|) 279)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 177 (|has| |#1| (-365)))) (-1879 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2676 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1200)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-1342 (($) 273 (-3144 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-1885 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2941 (($ $) 243 (-3144 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2311 ((|#2| $) 246 (-3144 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2254 (((-420 (-1171 $)) (-1171 $)) 249 (-3144 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-4314 (((-420 (-1171 $)) (-1171 $)) 250 (-3144 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-4018 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 170 (|has| |#1| (-365)))) (-3964 (($ $ (-566)) 107)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-1535 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) 223 (-3144 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) 222 (-3144 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) 221 (-3144 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-3144 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-3144 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) 218 (-3144 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-3792 (((-771) $) 166 (|has| |#1| (-365)))) (-3282 ((|#1| $ (-566)) 116) (($ $ $) 93 (|has| (-566) (-1111))) (($ $ |#2|) 217 (-3144 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 167 (|has| |#1| (-365)))) (-3009 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 227 (|has| |#1| (-365))) (($ $ (-771)) 96 (-2676 (-3144 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 94 (-2676 (-3144 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 101 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 100 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 99 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 98 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-3233 (($ $) 241 (|has| |#1| (-365)))) (-2702 ((|#2| $) 239 (|has| |#1| (-365)))) (-3838 (((-566) $) 76)) (-3658 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-2150 (((-225) $) 257 (-3144 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) 256 (-3144 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) 255 (-3144 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) 234 (-3144 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) 233 (-3144 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 247 (-3144 (-3144 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#1| (-365))))) (-3965 (($ $) 84)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1175)) 254 (-3144 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3623 ((|#1| $ (-566)) 71)) (-2655 (((-3 $ "failed") $) 60 (-2676 (-3144 (-2676 (|has| |#2| (-145)) (-3144 (|has| $ (-145)) (|has| |#2| (-909)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2875 (((-771)) 32 T CONST)) (-2737 ((|#1| $) 114)) (-2119 ((|#2| $) 245 (-3144 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-1479 (((-112) $ $) 9)) (-3696 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3670 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-566)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-2274 (($ $) 261 (-3144 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) 225 (|has| |#1| (-365))) (($ $ (-771)) 97 (-2676 (-3144 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 95 (-2676 (-3144 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) 105 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175) (-771)) 104 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-644 (-1175))) 103 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))))) (($ $ (-1175)) 102 (-2676 (-3144 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))))) (-2865 (((-112) $ $) 265 (-3144 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2844 (((-112) $ $) 266 (-3144 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2817 (((-112) $ $) 6)) (-2854 (((-112) $ $) 264 (-3144 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2833 (((-112) $ $) 267 (-3144 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-1227 |#1| |#2|) (-140) (-1049) (-1256 |t#1|)) (T -1227))
-((-3838 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1256 *3)) (-5 *2 (-566)))) (-4244 (*1 *1 *2 *3) (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1227 *4 *3)) (-4 *3 (-1256 *4)))) (-3027 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1256 *3)))) (-4031 (*1 *1 *1) (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1256 *2)))) (-4031 (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1256 *3)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1256 *3)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1256 *3)))))
-(-13 (-1225 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -4244 ($ (-566) |t#2|)) (-15 -3838 ((-566) $)) (-15 -3027 (|t#2| $)) (-15 -4031 ($ $)) (-15 -4031 ($ (-566) $)) (-15 -4231 (|t#2| $)) (-15 -1442 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-992 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-566)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2676 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2676 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-616 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1175)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-614 (-538)) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-614 (-892 (-566))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2676 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-566) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-566) (-1111)) ((-291) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-402 |#2|) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-516 (-1175) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-516 (-1175) |#2|))) ((-516 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-558) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 |#2|) |has| |#1| (-365)) ((-646 $) . T) ((-648 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 |#2|) |has| |#1| (-365)) ((-648 $) . T) ((-640 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 |#2|) |has| |#1| (-365)) ((-640 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-639 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-639 (-566)))) ((-639 |#2|) |has| |#1| (-365)) ((-717 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 |#2|) |has| |#1| (-365)) ((-717 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-791) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-794) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-820) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-848) -12 (|has| |#1| (-365)) (|has| |#2| (-820))) ((-850) -2676 (-12 (|has| |#1| (-365)) (|has| |#2| (-850))) (-12 (|has| |#1| (-365)) (|has| |#2| (-820)))) ((-900 (-1175)) -2676 (-12 (|has| |#1| (-365)) (|has| |#2| (-900 (-1175)))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))) ((-886 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-381)))) ((-886 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-886 (-566)))) ((-884 |#2|) |has| |#1| (-365)) ((-909) -12 (|has| |#1| (-365)) (|has| |#2| (-909))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-992 |#2|) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1022) -12 (|has| |#1| (-365)) (|has| |#2| (-1022))) ((-1038 (-409 (-566))) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 (-566)) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-566)))) ((-1038 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1038 (-1175)))) ((-1038 |#2|) . T) ((-1051 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-365)) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 |#2|) |has| |#1| (-365)) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) -12 (|has| |#1| (-365)) (|has| |#2| (-1150))) ((-1200) |has| |#1| (-38 (-409 (-566)))) ((-1203) |has| |#1| (-38 (-409 (-566)))) ((-1215) |has| |#1| (-365)) ((-1219) |has| |#1| (-365)) ((-1225 |#1|) . T) ((-1243 |#1| #0#) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 81)) (-4191 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 100)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-566)) 109) (($ $ (-566) (-566)) 111)) (-3564 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) 51)) (-3027 ((|#2| $) 11)) (-1442 (((-3 |#2| "failed") $) 35)) (-4231 ((|#2| $) 36)) (-3622 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-1859 (((-566) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3040 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) 59)) (-3648 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) 157) (((-3 (-566) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-1175) "failed") $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-3343 ((|#2| $) 156) (((-566) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| |#2| (-1038 (-566))) (|has| |#1| (-365)))) (((-1175) $) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365))))) (-4031 (($ $) 65) (($ (-566) $) 28)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-3717 (((-689 |#2|) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| |#2| (-639 (-566))) (|has| |#1| (-365))))) (-2313 (((-3 $ "failed") $) 88)) (-3447 (((-409 (-952 |#1|)) $ (-566)) 124 (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) 126 (|has| |#1| (-558)))) (-3424 (($) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-3421 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2039 (((-112) $) 74)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| |#2| (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| |#2| (-886 (-566))) (|has| |#1| (-365))))) (-3077 (((-566) $) 105) (((-566) $ (-566)) 107)) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL (|has| |#1| (-365)))) (-2691 ((|#2| $) 165 (|has| |#1| (-365)))) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3869 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))))) (-2307 (((-112) $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-2248 (($ $ (-921)) 148)) (-1912 (($ (-1 |#1| (-566)) $) 144)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-566)) 20) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-3075 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-3936 (($ $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2101 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-1565 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4244 (($ (-566) |#2|) 10)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 159 (|has| |#1| (-365)))) (-1879 (($ $) 228 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 233 (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200)))))) (-1342 (($) NIL (-12 (|has| |#2| (-1150)) (|has| |#1| (-365))) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2311 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| |#2| (-909)) (|has| |#1| (-365))))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-566)) 138)) (-3967 (((-3 $ "failed") $ $) 128 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1535 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) |#2|) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 |#2|)) NIL (-12 (|has| |#2| (-516 (-1175) |#2|)) (|has| |#1| (-365)))) (($ $ (-644 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-644 |#2|) (-644 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-566)) 103) (($ $ $) 90 (|has| (-566) (-1111))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2676 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 149 (-2676 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) 153 (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3233 (($ $) NIL (|has| |#1| (-365)))) (-2702 ((|#2| $) 166 (|has| |#1| (-365)))) (-3838 (((-566) $) 12)) (-3658 (($ $) 212 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-2150 (((-225) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1022)) (|has| |#1| (-365)))) (((-538) $) NIL (-12 (|has| |#2| (-614 (-538))) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| |#2| (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| |#2| (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))))) (-3965 (($ $) 136)) (-2725 (((-862) $) 267) (($ (-566)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1175)) NIL (-12 (|has| |#2| (-1038 (-1175))) (|has| |#1| (-365)))) (($ (-409 (-566))) 169 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3623 ((|#1| $ (-566)) 85)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#2| (-909)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2875 (((-771)) 155 T CONST)) (-2737 ((|#1| $) 102)) (-2119 ((|#2| $) NIL (-12 (|has| |#2| (-547)) (|has| |#1| (-365))))) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) 214 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 222 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-566)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 224 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 220 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 216 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-2274 (($ $) NIL (-12 (|has| |#2| (-820)) (|has| |#1| (-365))))) (-3200 (($) 13 T CONST)) (-3214 (($) 18 T CONST)) (-1316 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2676 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2676 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| |#2| (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2865 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2844 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2817 (((-112) $ $) 72)) (-2854 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2833 (((-112) $ $) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-365))))) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-2905 (($ $) 227) (($ $ $) 78)) (-2897 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 84) (($ $ (-566)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 172 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1228 |#1| |#2|) (-1227 |#1| |#2|) (-1049) (-1256 |#1|)) (T -1228))
-NIL
-(-1227 |#1| |#2|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4191 (((-1257 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 10)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1780 (($ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3286 (((-112) $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-1807 (($ $ (-566)) NIL) (($ $ (-566) (-566)) NIL)) (-3564 (((-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|))) $) NIL)) (-3027 (((-1257 |#1| |#2| |#3|) $) NIL)) (-1442 (((-3 (-1257 |#1| |#2| |#3|) "failed") $) NIL)) (-4231 (((-1257 |#1| |#2| |#3|) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1859 (((-566) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3040 (($ (-1155 (-2 (|:| |k| (-566)) (|:| |c| |#1|)))) NIL)) (-3648 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-1257 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1175) "failed") $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-3 (-409 (-566)) "failed") $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-3 (-566) "failed") $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-3343 (((-1257 |#1| |#2| |#3|) $) NIL) (((-1175) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (((-409 (-566)) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365)))) (((-566) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))))) (-4031 (($ $) NIL) (($ (-566) $) NIL)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-1257 |#1| |#2| |#3|)) (-689 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 (-1257 |#1| |#2| |#3|))) (|:| |vec| (-1265 (-1257 |#1| |#2| |#3|)))) (-689 $) (-1265 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365)))) (((-689 (-566)) (-689 $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-639 (-566))) (|has| |#1| (-365))))) (-2313 (((-3 $ "failed") $) NIL)) (-3447 (((-409 (-952 |#1|)) $ (-566)) NIL (|has| |#1| (-558))) (((-409 (-952 |#1|)) $ (-566) (-566)) NIL (|has| |#1| (-558)))) (-3424 (($) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-3421 (((-112) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-886 (-381))) (|has| |#1| (-365)))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-886 (-566))) (|has| |#1| (-365))))) (-3077 (((-566) $) NIL) (((-566) $ (-566)) NIL)) (-3842 (((-112) $) NIL)) (-3450 (($ $) NIL (|has| |#1| (-365)))) (-2691 (((-1257 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3869 (((-3 $ "failed") $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))))) (-2307 (((-112) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-2248 (($ $ (-921)) NIL)) (-1912 (($ (-1 |#1| (-566)) $) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-566)) 18) (($ $ (-1081) (-566)) NIL) (($ $ (-644 (-1081)) (-644 (-566))) NIL)) (-3075 (($ $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-3936 (($ $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-1565 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4244 (($ (-566) (-1257 |#1| |#2| |#3|)) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1879 (($ $) 27 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200))))) (($ $ (-1261 |#2|)) 28 (|has| |#1| (-38 (-409 (-566)))))) (-1342 (($) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1150)) (|has| |#1| (-365))) CONST)) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2941 (($ $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2311 (((-1257 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-566)) NIL)) (-3967 (((-3 $ "failed") $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1535 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-566))))) (($ $ (-1175) (-1257 |#1| |#2| |#3|)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-516 (-1175) (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1175)) (-644 (-1257 |#1| |#2| |#3|))) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-516 (-1175) (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-295 (-1257 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-310 (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1257 |#1| |#2| |#3|))) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-310 (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-310 (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-644 (-1257 |#1| |#2| |#3|)) (-644 (-1257 |#1| |#2| |#3|))) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-310 (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-566)) NIL) (($ $ $) NIL (|has| (-566) (-1111))) (($ $ (-1257 |#1| |#2| |#3|)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-287 (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-1 (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-1261 |#2|)) 26) (($ $ (-771)) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) 25 (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-3233 (($ $) NIL (|has| |#1| (-365)))) (-2702 (((-1257 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3838 (((-566) $) NIL)) (-3658 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2150 (((-538) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-614 (-538))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1022)) (|has| |#1| (-365)))) (((-892 (-381)) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-614 (-892 (-381)))) (|has| |#1| (-365)))) (((-892 (-566)) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-614 (-892 (-566)))) (|has| |#1| (-365))))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))))) (-3965 (($ $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1257 |#1| |#2| |#3|)) NIL) (($ (-1261 |#2|)) 24) (($ (-1175)) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-1175))) (|has| |#1| (-365)))) (($ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558)))) (($ (-409 (-566))) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-1038 (-566))) (|has| |#1| (-365))) (|has| |#1| (-38 (-409 (-566))))))) (-3623 ((|#1| $ (-566)) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) 11)) (-2119 (((-1257 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-547)) (|has| |#1| (-365))))) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-909)) (|has| |#1| (-365))) (|has| |#1| (-558))))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-566)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-566)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2274 (($ $) NIL (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))))) (-3200 (($) 20 T CONST)) (-3214 (($) 15 T CONST)) (-1316 (($ $ (-1 (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|)) (-771)) NIL (|has| |#1| (-365))) (($ $ (-771)) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-566) |#1|))))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175) (-771)) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-644 (-1175))) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175)))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-900 (-1175))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-566) |#1|))) (|has| |#1| (-900 (-1175))))))) (-2865 (((-112) $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2844 (((-112) $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2817 (((-112) $ $) NIL)) (-2854 (((-112) $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2833 (((-112) $ $) NIL (-2676 (-12 (|has| (-1257 |#1| |#2| |#3|) (-820)) (|has| |#1| (-365))) (-12 (|has| (-1257 |#1| |#2| |#3|) (-850)) (|has| |#1| (-365)))))) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1257 |#1| |#2| |#3|) (-1257 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 22)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1257 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1257 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1229 |#1| |#2| |#3|) (-13 (-1227 |#1| (-1257 |#1| |#2| |#3|)) (-10 -8 (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1229))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1229 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(-13 (-1227 |#1| (-1257 |#1| |#2| |#3|)) (-10 -8 (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|)))
-((-3931 (((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112)) 13)) (-1385 (((-420 |#1|) |#1|) 26)) (-4018 (((-420 |#1|) |#1|) 24)))
-(((-1230 |#1|) (-10 -7 (-15 -4018 ((-420 |#1|) |#1|)) (-15 -1385 ((-420 |#1|) |#1|)) (-15 -3931 ((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112)))) (-1241 (-566))) (T -1230))
-((-3931 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566))))))) (-5 *1 (-1230 *3)) (-4 *3 (-1241 (-566))))) (-1385 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1230 *3)) (-4 *3 (-1241 (-566))))) (-4018 (*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-1230 *3)) (-4 *3 (-1241 (-566))))))
-(-10 -7 (-15 -4018 ((-420 |#1|) |#1|)) (-15 -1385 ((-420 |#1|) |#1|)) (-15 -3931 ((-2 (|:| |contp| (-566)) (|:| -1502 (-644 (-2 (|:| |irr| |#1|) (|:| -1737 (-566)))))) |#1| (-112))))
-((-2101 (((-1155 |#2|) (-1 |#2| |#1|) (-1232 |#1|)) 23 (|has| |#1| (-848))) (((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|)) 17)))
-(((-1231 |#1| |#2|) (-10 -7 (-15 -2101 ((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) (IF (|has| |#1| (-848)) (-15 -2101 ((-1155 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) |%noBranch|)) (-1215) (-1215)) (T -1231))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-848)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1155 *6)) (-5 *1 (-1231 *5 *6)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6)))))
-(-10 -7 (-15 -2101 ((-1232 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) (IF (|has| |#1| (-848)) (-15 -2101 ((-1155 |#2|) (-1 |#2| |#1|) (-1232 |#1|))) |%noBranch|))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3243 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2101 (((-1155 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-848)))) (-2424 ((|#1| $) 15)) (-2732 ((|#1| $) 12)) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-2753 (((-566) $) 19)) (-3145 ((|#1| $) 18)) (-2766 ((|#1| $) 13)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3895 (((-112) $) 17)) (-3240 (((-1155 |#1|) $) 41 (|has| |#1| (-848))) (((-1155 |#1|) (-644 $)) 40 (|has| |#1| (-848)))) (-2150 (($ |#1|) 26)) (-2725 (($ (-1093 |#1|)) 25) (((-862) $) 37 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3905 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2590 (($ $ (-566)) 14)) (-2817 (((-112) $ $) 30 (|has| |#1| (-1099)))))
-(((-1232 |#1|) (-13 (-1092 |#1|) (-10 -8 (-15 -3905 ($ |#1|)) (-15 -3243 ($ |#1|)) (-15 -2725 ($ (-1093 |#1|))) (-15 -3895 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|))) (-1215)) (T -1232))
-((-3905 (*1 *1 *2) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-1215)))) (-3243 (*1 *1 *2) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-1215)))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1215)) (-5 *1 (-1232 *3)))) (-3895 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1215)))))
-(-13 (-1092 |#1|) (-10 -8 (-15 -3905 ($ |#1|)) (-15 -3243 ($ |#1|)) (-15 -2725 ($ (-1093 |#1|))) (-15 -3895 ((-112) $)) (IF (|has| |#1| (-1099)) (-6 (-1099)) |%noBranch|) (IF (|has| |#1| (-848)) (-6 (-1094 |#1| (-1155 |#1|))) |%noBranch|)))
-((-2101 (((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)) 15)))
-(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 ((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|)))) (-1175) (-1049) (-1175) (-1049)) (T -1233))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1238 *5 *6)) (-14 *5 (-1175)) (-4 *6 (-1049)) (-4 *8 (-1049)) (-5 *2 (-1238 *7 *8)) (-5 *1 (-1233 *5 *6 *7 *8)) (-14 *7 (-1175)))))
-(-10 -7 (-15 -2101 ((-1238 |#3| |#4|) (-1 |#4| |#2|) (-1238 |#1| |#2|))))
-((-1624 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-1602 ((|#1| |#3|) 13)) (-2153 ((|#3| |#3|) 19)))
-(((-1234 |#1| |#2| |#3|) (-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -1624 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-558) (-992 |#1|) (-1241 |#2|)) (T -1234))
-((-1624 (*1 *2 *3) (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1234 *4 *5 *3)) (-4 *3 (-1241 *5)))) (-2153 (*1 *2 *2) (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1234 *3 *4 *2)) (-4 *2 (-1241 *4)))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1234 *2 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -1602 (|#1| |#3|)) (-15 -2153 (|#3| |#3|)) (-15 -1624 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2309 (((-3 |#2| "failed") |#2| (-771) |#1|) 37)) (-2979 (((-3 |#2| "failed") |#2| (-771)) 38)) (-3824 (((-3 (-2 (|:| -1616 |#2|) (|:| -1627 |#2|)) "failed") |#2|) 52)) (-2850 (((-644 |#2|) |#2|) 54)) (-3563 (((-3 |#2| "failed") |#2| |#2|) 48)))
-(((-1235 |#1| |#2|) (-10 -7 (-15 -2979 ((-3 |#2| "failed") |#2| (-771))) (-15 -2309 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -3563 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3824 ((-3 (-2 (|:| -1616 |#2|) (|:| -1627 |#2|)) "failed") |#2|)) (-15 -2850 ((-644 |#2|) |#2|))) (-13 (-558) (-147)) (-1241 |#1|)) (T -1235))
-((-2850 (*1 *2 *3) (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3)) (-5 *1 (-1235 *4 *3)) (-4 *3 (-1241 *4)))) (-3824 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-2 (|:| -1616 *3) (|:| -1627 *3))) (-5 *1 (-1235 *4 *3)) (-4 *3 (-1241 *4)))) (-3563 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1235 *3 *2)) (-4 *2 (-1241 *3)))) (-2309 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1235 *4 *2)) (-4 *2 (-1241 *4)))) (-2979 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-1235 *4 *2)) (-4 *2 (-1241 *4)))))
-(-10 -7 (-15 -2979 ((-3 |#2| "failed") |#2| (-771))) (-15 -2309 ((-3 |#2| "failed") |#2| (-771) |#1|)) (-15 -3563 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3824 ((-3 (-2 (|:| -1616 |#2|) (|:| -1627 |#2|)) "failed") |#2|)) (-15 -2850 ((-644 |#2|) |#2|)))
-((-2666 (((-3 (-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) "failed") |#2| |#2|) 30)))
-(((-1236 |#1| |#2|) (-10 -7 (-15 -2666 ((-3 (-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) "failed") |#2| |#2|))) (-558) (-1241 |#1|)) (T -1236))
-((-2666 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-1236 *4 *3)) (-4 *3 (-1241 *4)))))
-(-10 -7 (-15 -2666 ((-3 (-2 (|:| -2383 |#2|) (|:| -3033 |#2|)) "failed") |#2| |#2|)))
-((-3714 ((|#2| |#2| |#2|) 22)) (-1555 ((|#2| |#2| |#2|) 36)) (-3028 ((|#2| |#2| |#2| (-771) (-771)) 44)))
-(((-1237 |#1| |#2|) (-10 -7 (-15 -3714 (|#2| |#2| |#2|)) (-15 -1555 (|#2| |#2| |#2|)) (-15 -3028 (|#2| |#2| |#2| (-771) (-771)))) (-1049) (-1241 |#1|)) (T -1237))
-((-3028 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1237 *4 *2)) (-4 *2 (-1241 *4)))) (-1555 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1237 *3 *2)) (-4 *2 (-1241 *3)))) (-3714 (*1 *2 *2 *2) (-12 (-4 *3 (-1049)) (-5 *1 (-1237 *3 *2)) (-4 *2 (-1241 *3)))))
-(-10 -7 (-15 -3714 (|#2| |#2| |#2|)) (-15 -1555 (|#2| |#2| |#2|)) (-15 -3028 (|#2| |#2| |#2| (-771) (-771))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-2729 (((-1265 |#2|) $ (-771)) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2437 (($ (-1171 |#2|)) NIL)) (-3983 (((-1171 $) $ (-1081)) NIL) (((-1171 |#2|) $) NIL)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#2| (-558)))) (-1780 (($ $) NIL (|has| |#2| (-558)))) (-3286 (((-112) $) NIL (|has| |#2| (-558)))) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-1081))) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3921 (($ $ $) NIL (|has| |#2| (-558)))) (-4350 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2885 (($ $) NIL (|has| |#2| (-454)))) (-2555 (((-420 $) $) NIL (|has| |#2| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-2068 (((-112) $ $) NIL (|has| |#2| (-365)))) (-2166 (($ $ (-771)) NIL)) (-1867 (($ $ (-771)) NIL)) (-3951 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-454)))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) NIL) (((-3 (-409 (-566)) "failed") $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) NIL (|has| |#2| (-1038 (-566)))) (((-3 (-1081) "failed") $) NIL)) (-3343 ((|#2| $) NIL) (((-409 (-566)) $) NIL (|has| |#2| (-1038 (-409 (-566))))) (((-566) $) NIL (|has| |#2| (-1038 (-566)))) (((-1081) $) NIL)) (-2994 (($ $ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-3919 (($ $ $) NIL (|has| |#2| (-365)))) (-4358 (($ $) NIL)) (-3717 (((-689 (-566)) (-689 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) NIL (|has| |#2| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#2|)) (|:| |vec| (-1265 |#2|))) (-689 $) (-1265 $)) NIL) (((-689 |#2|) (-689 $)) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-3930 (($ $ $) NIL (|has| |#2| (-365)))) (-1438 (($ $ $) NIL)) (-2297 (($ $ $) NIL (|has| |#2| (-558)))) (-2772 (((-2 (|:| -1702 |#2|) (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#2| (-558)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#2| (-365)))) (-1520 (($ $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-4346 (((-644 $) $) NIL)) (-1968 (((-112) $) NIL (|has| |#2| (-909)))) (-2385 (($ $ |#2| (-771) $) NIL)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) NIL (-12 (|has| (-1081) (-886 (-381))) (|has| |#2| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) NIL (-12 (|has| (-1081) (-886 (-566))) (|has| |#2| (-886 (-566)))))) (-3077 (((-771) $ $) NIL (|has| |#2| (-558)))) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-3869 (((-3 $ "failed") $) NIL (|has| |#2| (-1150)))) (-4157 (($ (-1171 |#2|) (-1081)) NIL) (($ (-1171 $) (-1081)) NIL)) (-2248 (($ $ (-771)) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-4145 (($ |#2| (-771)) 18) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-1081)) NIL) (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL)) (-4090 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-1336 (($ (-1 (-771) (-771)) $) NIL)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1649 (((-1171 |#2|) $) NIL)) (-1742 (((-3 (-1081) "failed") $) NIL)) (-4323 (($ $) NIL)) (-4334 ((|#2| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-1390 (((-1157) $) NIL)) (-1481 (((-2 (|:| -2383 $) (|:| -3033 $)) $ (-771)) NIL)) (-2684 (((-3 (-644 $) "failed") $) NIL)) (-1660 (((-3 (-644 $) "failed") $) NIL)) (-2544 (((-3 (-2 (|:| |var| (-1081)) (|:| -3428 (-771))) "failed") $) NIL)) (-1879 (($ $) NIL (|has| |#2| (-38 (-409 (-566)))))) (-1342 (($) NIL (|has| |#2| (-1150)) CONST)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 ((|#2| $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#2| (-454)))) (-1885 (($ (-644 $)) NIL (|has| |#2| (-454))) (($ $ $) NIL (|has| |#2| (-454)))) (-3437 (($ $ (-771) |#2| $) NIL)) (-2254 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) NIL (|has| |#2| (-909)))) (-4018 (((-420 $) $) NIL (|has| |#2| (-909)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#2| (-365)))) (-3967 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-558))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#2| (-365)))) (-1754 (($ $ (-644 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) NIL) (($ $ (-644 (-1081)) (-644 |#2|)) NIL) (($ $ (-1081) $) NIL) (($ $ (-644 (-1081)) (-644 $)) NIL)) (-3792 (((-771) $) NIL (|has| |#2| (-365)))) (-3282 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) NIL (|has| |#2| (-558))) ((|#2| (-409 $) |#2|) NIL (|has| |#2| (-365))) (((-409 $) $ (-409 $)) NIL (|has| |#2| (-558)))) (-4374 (((-3 $ "failed") $ (-771)) NIL)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#2| (-365)))) (-2061 (($ $ (-1081)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-3009 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3838 (((-771) $) NIL) (((-771) $ (-1081)) NIL) (((-644 (-771)) $ (-644 (-1081))) NIL)) (-2150 (((-892 (-381)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#2| (-614 (-892 (-381)))))) (((-892 (-566)) $) NIL (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#2| (-614 (-892 (-566)))))) (((-538) $) NIL (-12 (|has| (-1081) (-614 (-538))) (|has| |#2| (-614 (-538)))))) (-4330 ((|#2| $) NIL (|has| |#2| (-454))) (($ $ (-1081)) NIL (|has| |#2| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-909))))) (-2035 (((-3 $ "failed") $ $) NIL (|has| |#2| (-558))) (((-3 (-409 $) "failed") (-409 $) $) NIL (|has| |#2| (-558)))) (-2725 (((-862) $) 13) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) NIL) (($ (-1261 |#1|)) 20) (($ (-409 (-566))) NIL (-2676 (|has| |#2| (-38 (-409 (-566)))) (|has| |#2| (-1038 (-409 (-566)))))) (($ $) NIL (|has| |#2| (-558)))) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-771)) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2655 (((-3 $ "failed") $) NIL (-2676 (-12 (|has| $ (-145)) (|has| |#2| (-909))) (|has| |#2| (-145))))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| |#2| (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL (|has| |#2| (-558)))) (-3200 (($) NIL T CONST)) (-3214 (($) 14 T CONST)) (-1316 (($ $ (-1081)) NIL) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) NIL) (($ $ (-1175)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1175) (-771)) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) NIL (|has| |#2| (-900 (-1175)))) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-409 (-566))) NIL (|has| |#2| (-38 (-409 (-566))))) (($ (-409 (-566)) $) NIL (|has| |#2| (-38 (-409 (-566))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1238 |#1| |#2|) (-13 (-1241 |#2|) (-616 (-1261 |#1|)) (-10 -8 (-15 -3437 ($ $ (-771) |#2| $)))) (-1175) (-1049)) (T -1238))
-((-3437 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1238 *4 *3)) (-14 *4 (-1175)) (-4 *3 (-1049)))))
-(-13 (-1241 |#2|) (-616 (-1261 |#1|)) (-10 -8 (-15 -3437 ($ $ (-771) |#2| $))))
-((-2101 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1239 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|))) (-1049) (-1241 |#1|) (-1049) (-1241 |#3|)) (T -1239))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1241 *6)) (-5 *1 (-1239 *5 *4 *6 *2)) (-4 *4 (-1241 *5)))))
-(-10 -7 (-15 -2101 (|#4| (-1 |#3| |#1|) |#2|)))
-((-2729 (((-1265 |#2|) $ (-771)) 129)) (-4170 (((-644 (-1081)) $) 16)) (-2437 (($ (-1171 |#2|)) 80)) (-3915 (((-771) $) NIL) (((-771) $ (-644 (-1081))) 21)) (-4350 (((-420 (-1171 $)) (-1171 $)) 204)) (-2885 (($ $) 194)) (-2555 (((-420 $) $) 192)) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 95)) (-2166 (($ $ (-771)) 84)) (-1867 (($ $ (-771)) 86)) (-3951 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-2023 (((-3 |#2| "failed") $) 132) (((-3 (-409 (-566)) "failed") $) NIL) (((-3 (-566) "failed") $) NIL) (((-3 (-1081) "failed") $) NIL)) (-3343 ((|#2| $) 130) (((-409 (-566)) $) NIL) (((-566) $) NIL) (((-1081) $) NIL)) (-2297 (($ $ $) 170)) (-2772 (((-2 (|:| -1702 |#2|) (|:| -2383 $) (|:| -3033 $)) $ $) 172)) (-3077 (((-771) $ $) 189)) (-3869 (((-3 $ "failed") $) 138)) (-4145 (($ |#2| (-771)) NIL) (($ $ (-1081) (-771)) 59) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-4090 (((-771) $) NIL) (((-771) $ (-1081)) 54) (((-644 (-771)) $ (-644 (-1081))) 55)) (-1649 (((-1171 |#2|) $) 72)) (-1742 (((-3 (-1081) "failed") $) 52)) (-1481 (((-2 (|:| -2383 $) (|:| -3033 $)) $ (-771)) 83)) (-1879 (($ $) 219)) (-1342 (($) 134)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 201)) (-2254 (((-420 (-1171 $)) (-1171 $)) 101)) (-4314 (((-420 (-1171 $)) (-1171 $)) 99)) (-4018 (((-420 $) $) 120)) (-1754 (($ $ (-644 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-644 $) (-644 $)) NIL) (($ $ (-1081) |#2|) 39) (($ $ (-644 (-1081)) (-644 |#2|)) 36) (($ $ (-1081) $) 32) (($ $ (-644 (-1081)) (-644 $)) 30)) (-3792 (((-771) $) 207)) (-3282 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-409 $) (-409 $) (-409 $)) 164) ((|#2| (-409 $) |#2|) 206) (((-409 $) $ (-409 $)) 188)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 212)) (-3009 (($ $ (-1081)) 157) (($ $ (-644 (-1081))) NIL) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL) (($ $ (-771)) NIL) (($ $) 155) (($ $ (-1175)) NIL) (($ $ (-644 (-1175))) NIL) (($ $ (-1175) (-771)) NIL) (($ $ (-644 (-1175)) (-644 (-771))) NIL) (($ $ (-1 |#2| |#2|) (-771)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3838 (((-771) $) NIL) (((-771) $ (-1081)) 17) (((-644 (-771)) $ (-644 (-1081))) 23)) (-4330 ((|#2| $) NIL) (($ $ (-1081)) 140)) (-2035 (((-3 $ "failed") $ $) 180) (((-3 (-409 $) "failed") (-409 $) $) 176)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#2|) NIL) (($ (-1081)) 64) (($ (-409 (-566))) NIL) (($ $) NIL)))
-(((-1240 |#1| |#2|) (-10 -8 (-15 -2725 (|#1| |#1|)) (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -2885 (|#1| |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -3282 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -3792 ((-771) |#1|)) (-15 -4301 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1879 (|#1| |#1|)) (-15 -3282 (|#2| (-409 |#1|) |#2|)) (-15 -3951 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2772 ((-2 (|:| -1702 |#2|) (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -2297 (|#1| |#1| |#1|)) (-15 -2035 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -2035 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 ((-771) |#1| |#1|)) (-15 -3282 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1867 (|#1| |#1| (-771))) (-15 -2166 (|#1| |#1| (-771))) (-15 -1481 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| (-771))) (-15 -2437 (|#1| (-1171 |#2|))) (-15 -1649 ((-1171 |#2|) |#1|)) (-15 -2729 ((-1265 |#2|) |#1| (-771))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3282 (|#1| |#1| |#1|)) (-15 -3282 (|#2| |#1| |#2|)) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4350 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4314 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2254 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4330 (|#1| |#1| (-1081))) (-15 -4170 ((-644 (-1081)) |#1|)) (-15 -3915 ((-771) |#1| (-644 (-1081)))) (-15 -3915 ((-771) |#1|)) (-15 -4145 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -4145 (|#1| |#1| (-1081) (-771))) (-15 -4090 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -4090 ((-771) |#1| (-1081))) (-15 -1742 ((-3 (-1081) "failed") |#1|)) (-15 -3838 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3838 ((-771) |#1| (-1081))) (-15 -2725 (|#1| (-1081))) (-15 -2023 ((-3 (-1081) "failed") |#1|)) (-15 -3343 ((-1081) |#1|)) (-15 -1754 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -1754 (|#1| |#1| (-1081) |#1|)) (-15 -1754 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -1754 (|#1| |#1| (-1081) |#2|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3838 ((-771) |#1|)) (-15 -4145 (|#1| |#2| (-771))) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -4090 ((-771) |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -3009 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1081) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1081)))) (-15 -3009 (|#1| |#1| (-1081))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|))) (-1241 |#2|) (-1049)) (T -1240))
-NIL
-(-10 -8 (-15 -2725 (|#1| |#1|)) (-15 -4344 ((-1171 |#1|) (-1171 |#1|) (-1171 |#1|))) (-15 -2555 ((-420 |#1|) |#1|)) (-15 -2885 (|#1| |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -1342 (|#1|)) (-15 -3869 ((-3 |#1| "failed") |#1|)) (-15 -3282 ((-409 |#1|) |#1| (-409 |#1|))) (-15 -3792 ((-771) |#1|)) (-15 -4301 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -1879 (|#1| |#1|)) (-15 -3282 (|#2| (-409 |#1|) |#2|)) (-15 -3951 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2772 ((-2 (|:| -1702 |#2|) (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| |#1|)) (-15 -2297 (|#1| |#1| |#1|)) (-15 -2035 ((-3 (-409 |#1|) "failed") (-409 |#1|) |#1|)) (-15 -2035 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3077 ((-771) |#1| |#1|)) (-15 -3282 ((-409 |#1|) (-409 |#1|) (-409 |#1|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1867 (|#1| |#1| (-771))) (-15 -2166 (|#1| |#1| (-771))) (-15 -1481 ((-2 (|:| -2383 |#1|) (|:| -3033 |#1|)) |#1| (-771))) (-15 -2437 (|#1| (-1171 |#2|))) (-15 -1649 ((-1171 |#2|) |#1|)) (-15 -2729 ((-1265 |#2|) |#1| (-771))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3009 (|#1| |#1| (-1 |#2| |#2|) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1175) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1175)))) (-15 -3009 (|#1| |#1| (-1175))) (-15 -3009 (|#1| |#1|)) (-15 -3009 (|#1| |#1| (-771))) (-15 -3282 (|#1| |#1| |#1|)) (-15 -3282 (|#2| |#1| |#2|)) (-15 -4018 ((-420 |#1|) |#1|)) (-15 -4350 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4314 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -2254 ((-420 (-1171 |#1|)) (-1171 |#1|))) (-15 -4078 ((-3 (-644 (-1171 |#1|)) "failed") (-644 (-1171 |#1|)) (-1171 |#1|))) (-15 -4330 (|#1| |#1| (-1081))) (-15 -4170 ((-644 (-1081)) |#1|)) (-15 -3915 ((-771) |#1| (-644 (-1081)))) (-15 -3915 ((-771) |#1|)) (-15 -4145 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -4145 (|#1| |#1| (-1081) (-771))) (-15 -4090 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -4090 ((-771) |#1| (-1081))) (-15 -1742 ((-3 (-1081) "failed") |#1|)) (-15 -3838 ((-644 (-771)) |#1| (-644 (-1081)))) (-15 -3838 ((-771) |#1| (-1081))) (-15 -2725 (|#1| (-1081))) (-15 -2023 ((-3 (-1081) "failed") |#1|)) (-15 -3343 ((-1081) |#1|)) (-15 -1754 (|#1| |#1| (-644 (-1081)) (-644 |#1|))) (-15 -1754 (|#1| |#1| (-1081) |#1|)) (-15 -1754 (|#1| |#1| (-644 (-1081)) (-644 |#2|))) (-15 -1754 (|#1| |#1| (-1081) |#2|)) (-15 -1754 (|#1| |#1| (-644 |#1|) (-644 |#1|))) (-15 -1754 (|#1| |#1| |#1| |#1|)) (-15 -1754 (|#1| |#1| (-295 |#1|))) (-15 -1754 (|#1| |#1| (-644 (-295 |#1|)))) (-15 -3838 ((-771) |#1|)) (-15 -4145 (|#1| |#2| (-771))) (-15 -2023 ((-3 (-566) "failed") |#1|)) (-15 -3343 ((-566) |#1|)) (-15 -2023 ((-3 (-409 (-566)) "failed") |#1|)) (-15 -3343 ((-409 (-566)) |#1|)) (-15 -3343 (|#2| |#1|)) (-15 -2023 ((-3 |#2| "failed") |#1|)) (-15 -2725 (|#1| |#2|)) (-15 -4090 ((-771) |#1|)) (-15 -4330 (|#2| |#1|)) (-15 -3009 (|#1| |#1| (-644 (-1081)) (-644 (-771)))) (-15 -3009 (|#1| |#1| (-1081) (-771))) (-15 -3009 (|#1| |#1| (-644 (-1081)))) (-15 -3009 (|#1| |#1| (-1081))) (-15 -2725 (|#1| (-566))) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2729 (((-1265 |#1|) $ (-771)) 240)) (-4170 (((-644 (-1081)) $) 112)) (-2437 (($ (-1171 |#1|)) 238)) (-3983 (((-1171 $) $ (-1081)) 127) (((-1171 |#1|) $) 126)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 89 (|has| |#1| (-558)))) (-1780 (($ $) 90 (|has| |#1| (-558)))) (-3286 (((-112) $) 92 (|has| |#1| (-558)))) (-3915 (((-771) $) 114) (((-771) $ (-644 (-1081))) 113)) (-4113 (((-3 $ "failed") $ $) 20)) (-3921 (($ $ $) 225 (|has| |#1| (-558)))) (-4350 (((-420 (-1171 $)) (-1171 $)) 102 (|has| |#1| (-909)))) (-2885 (($ $) 100 (|has| |#1| (-454)))) (-2555 (((-420 $) $) 99 (|has| |#1| (-454)))) (-4078 (((-3 (-644 (-1171 $)) "failed") (-644 (-1171 $)) (-1171 $)) 105 (|has| |#1| (-909)))) (-2068 (((-112) $ $) 210 (|has| |#1| (-365)))) (-2166 (($ $ (-771)) 233)) (-1867 (($ $ (-771)) 232)) (-3951 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-454)))) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 166) (((-3 (-409 (-566)) "failed") $) 163 (|has| |#1| (-1038 (-409 (-566))))) (((-3 (-566) "failed") $) 161 (|has| |#1| (-1038 (-566)))) (((-3 (-1081) "failed") $) 138)) (-3343 ((|#1| $) 165) (((-409 (-566)) $) 164 (|has| |#1| (-1038 (-409 (-566))))) (((-566) $) 162 (|has| |#1| (-1038 (-566)))) (((-1081) $) 139)) (-2994 (($ $ $ (-1081)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-3919 (($ $ $) 214 (|has| |#1| (-365)))) (-4358 (($ $) 156)) (-3717 (((-689 (-566)) (-689 $)) 136 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 (-566))) (|:| |vec| (-1265 (-566)))) (-689 $) (-1265 $)) 135 (|has| |#1| (-639 (-566)))) (((-2 (|:| -3444 (-689 |#1|)) (|:| |vec| (-1265 |#1|))) (-689 $) (-1265 $)) 134) (((-689 |#1|) (-689 $)) 133)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 213 (|has| |#1| (-365)))) (-1438 (($ $ $) 231)) (-2297 (($ $ $) 222 (|has| |#1| (-558)))) (-2772 (((-2 (|:| -1702 |#1|) (|:| -2383 $) (|:| -3033 $)) $ $) 221 (|has| |#1| (-558)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 208 (|has| |#1| (-365)))) (-1520 (($ $) 178 (|has| |#1| (-454))) (($ $ (-1081)) 107 (|has| |#1| (-454)))) (-4346 (((-644 $) $) 111)) (-1968 (((-112) $) 98 (|has| |#1| (-909)))) (-2385 (($ $ |#1| (-771) $) 174)) (-2114 (((-889 (-381) $) $ (-892 (-381)) (-889 (-381) $)) 86 (-12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381))))) (((-889 (-566) $) $ (-892 (-566)) (-889 (-566) $)) 85 (-12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))))) (-3077 (((-771) $ $) 226 (|has| |#1| (-558)))) (-3842 (((-112) $) 35)) (-2436 (((-771) $) 171)) (-3869 (((-3 $ "failed") $) 206 (|has| |#1| (-1150)))) (-4157 (($ (-1171 |#1|) (-1081)) 119) (($ (-1171 $) (-1081)) 118)) (-2248 (($ $ (-771)) 237)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 217 (|has| |#1| (-365)))) (-2966 (((-644 $) $) 128)) (-3819 (((-112) $) 154)) (-4145 (($ |#1| (-771)) 155) (($ $ (-1081) (-771)) 121) (($ $ (-644 (-1081)) (-644 (-771))) 120)) (-3112 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $ (-1081)) 122) (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 235)) (-4090 (((-771) $) 172) (((-771) $ (-1081)) 124) (((-644 (-771)) $ (-644 (-1081))) 123)) (-1336 (($ (-1 (-771) (-771)) $) 173)) (-2101 (($ (-1 |#1| |#1|) $) 153)) (-1649 (((-1171 |#1|) $) 239)) (-1742 (((-3 (-1081) "failed") $) 125)) (-4323 (($ $) 151)) (-4334 ((|#1| $) 150)) (-1853 (($ (-644 $)) 96 (|has| |#1| (-454))) (($ $ $) 95 (|has| |#1| (-454)))) (-1390 (((-1157) $) 10)) (-1481 (((-2 (|:| -2383 $) (|:| -3033 $)) $ (-771)) 234)) (-2684 (((-3 (-644 $) "failed") $) 116)) (-1660 (((-3 (-644 $) "failed") $) 117)) (-2544 (((-3 (-2 (|:| |var| (-1081)) (|:| -3428 (-771))) "failed") $) 115)) (-1879 (($ $) 218 (|has| |#1| (-38 (-409 (-566)))))) (-1342 (($) 205 (|has| |#1| (-1150)) CONST)) (-1944 (((-1119) $) 11)) (-4290 (((-112) $) 168)) (-4307 ((|#1| $) 169)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 97 (|has| |#1| (-454)))) (-1885 (($ (-644 $)) 94 (|has| |#1| (-454))) (($ $ $) 93 (|has| |#1| (-454)))) (-2254 (((-420 (-1171 $)) (-1171 $)) 104 (|has| |#1| (-909)))) (-4314 (((-420 (-1171 $)) (-1171 $)) 103 (|has| |#1| (-909)))) (-4018 (((-420 $) $) 101 (|has| |#1| (-909)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 215 (|has| |#1| (-365)))) (-3967 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-558))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 209 (|has| |#1| (-365)))) (-1754 (($ $ (-644 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-644 $) (-644 $)) 144) (($ $ (-1081) |#1|) 143) (($ $ (-644 (-1081)) (-644 |#1|)) 142) (($ $ (-1081) $) 141) (($ $ (-644 (-1081)) (-644 $)) 140)) (-3792 (((-771) $) 211 (|has| |#1| (-365)))) (-3282 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-409 $) (-409 $) (-409 $)) 227 (|has| |#1| (-558))) ((|#1| (-409 $) |#1|) 219 (|has| |#1| (-365))) (((-409 $) $ (-409 $)) 207 (|has| |#1| (-558)))) (-4374 (((-3 $ "failed") $ (-771)) 236)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 212 (|has| |#1| (-365)))) (-2061 (($ $ (-1081)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-3009 (($ $ (-1081)) 46) (($ $ (-644 (-1081))) 45) (($ $ (-1081) (-771)) 44) (($ $ (-644 (-1081)) (-644 (-771))) 43) (($ $ (-771)) 255) (($ $) 253) (($ $ (-1175)) 252 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 251 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 250 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 249 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3838 (((-771) $) 152) (((-771) $ (-1081)) 132) (((-644 (-771)) $ (-644 (-1081))) 131)) (-2150 (((-892 (-381)) $) 84 (-12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381)))))) (((-892 (-566)) $) 83 (-12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566)))))) (((-538) $) 82 (-12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))))) (-4330 ((|#1| $) 177 (|has| |#1| (-454))) (($ $ (-1081)) 108 (|has| |#1| (-454)))) (-3039 (((-3 (-1265 $) "failed") (-689 $)) 106 (-3144 (|has| $ (-145)) (|has| |#1| (-909))))) (-2035 (((-3 $ "failed") $ $) 224 (|has| |#1| (-558))) (((-3 (-409 $) "failed") (-409 $) $) 223 (|has| |#1| (-558)))) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 167) (($ (-1081)) 137) (($ (-409 (-566))) 80 (-2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566)))))) (($ $) 87 (|has| |#1| (-558)))) (-3624 (((-644 |#1|) $) 170)) (-3623 ((|#1| $ (-771)) 157) (($ $ (-1081) (-771)) 130) (($ $ (-644 (-1081)) (-644 (-771))) 129)) (-2655 (((-3 $ "failed") $) 81 (-2676 (-3144 (|has| $ (-145)) (|has| |#1| (-909))) (|has| |#1| (-145))))) (-2875 (((-771)) 32 T CONST)) (-3977 (($ $ $ (-771)) 175 (|has| |#1| (-172)))) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 91 (|has| |#1| (-558)))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-1081)) 42) (($ $ (-644 (-1081))) 41) (($ $ (-1081) (-771)) 40) (($ $ (-644 (-1081)) (-644 (-771))) 39) (($ $ (-771)) 256) (($ $) 254) (($ $ (-1175)) 248 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175))) 247 (|has| |#1| (-900 (-1175)))) (($ $ (-1175) (-771)) 246 (|has| |#1| (-900 (-1175)))) (($ $ (-644 (-1175)) (-644 (-771))) 245 (|has| |#1| (-900 (-1175)))) (($ $ (-1 |#1| |#1|) (-771)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 160 (|has| |#1| (-38 (-409 (-566))))) (($ (-409 (-566)) $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
-(((-1241 |#1|) (-140) (-1049)) (T -1241))
-((-2729 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1241 *4)) (-4 *4 (-1049)) (-5 *2 (-1265 *4)))) (-1649 (*1 *2 *1) (-12 (-4 *1 (-1241 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3)))) (-2437 (*1 *1 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1241 *3)))) (-2248 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))) (-4374 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))) (-3112 (*1 *2 *1 *1) (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1241 *3)))) (-1481 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1241 *4)))) (-2166 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))) (-1867 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)))) (-3009 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))) (-2061 (*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-2994 (*1 *2 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))) (-3282 (*1 *2 *2 *2) (-12 (-5 *2 (-409 *1)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-3077 (*1 *2 *1 *1) (-12 (-4 *1 (-1241 *3)) (-4 *3 (-1049)) (-4 *3 (-558)) (-5 *2 (-771)))) (-3921 (*1 *1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-2035 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-2035 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)) (-4 *3 (-558)))) (-2297 (*1 *1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))) (-2772 (*1 *2 *1 *1) (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| -1702 *3) (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1241 *3)))) (-3951 (*1 *2 *1 *1) (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1241 *3)))) (-3282 (*1 *2 *3 *2) (-12 (-5 *3 (-409 *1)) (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))))
-(-13 (-949 |t#1| (-771) (-1081)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -2729 ((-1265 |t#1|) $ (-771))) (-15 -1649 ((-1171 |t#1|) $)) (-15 -2437 ($ (-1171 |t#1|))) (-15 -2248 ($ $ (-771))) (-15 -4374 ((-3 $ "failed") $ (-771))) (-15 -3112 ((-2 (|:| -2383 $) (|:| -3033 $)) $ $)) (-15 -1481 ((-2 (|:| -2383 $) (|:| -3033 $)) $ (-771))) (-15 -2166 ($ $ (-771))) (-15 -1867 ($ $ (-771))) (-15 -1438 ($ $ $)) (-15 -3009 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1150)) (-6 (-1150)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2061 (|t#1| $)) (-15 -2994 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-558)) (PROGN (-6 (-287 (-409 $) (-409 $))) (-15 -3282 ((-409 $) (-409 $) (-409 $))) (-15 -3077 ((-771) $ $)) (-15 -3921 ($ $ $)) (-15 -2035 ((-3 $ "failed") $ $)) (-15 -2035 ((-3 (-409 $) "failed") (-409 $) $)) (-15 -2297 ($ $ $)) (-15 -2772 ((-2 (|:| -1702 |t#1|) (|:| -2383 $) (|:| -3033 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-454)) (-15 -3951 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4411) (-15 -3282 (|t#1| (-409 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (-15 -1879 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2676 (|has| |#1| (-1038 (-409 (-566)))) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 #2=(-1081)) . T) ((-616 |#1|) . T) ((-616 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-614 (-538)) -12 (|has| (-1081) (-614 (-538))) (|has| |#1| (-614 (-538)))) ((-614 (-892 (-381))) -12 (|has| (-1081) (-614 (-892 (-381)))) (|has| |#1| (-614 (-892 (-381))))) ((-614 (-892 (-566))) -12 (|has| (-1081) (-614 (-892 (-566)))) (|has| |#1| (-614 (-892 (-566))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-409 $) (-409 $)) |has| |#1| (-558)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-413 |#1|) . T) ((-454) -2676 (|has| |#1| (-909)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-516 #2# |#1|) . T) ((-516 #2# $) . T) ((-516 $ $) . T) ((-558) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-639 (-566)) |has| |#1| (-639 (-566))) ((-639 |#1|) . T) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365))) ((-726) . T) ((-900 #2#) . T) ((-900 (-1175)) |has| |#1| (-900 (-1175))) ((-886 (-381)) -12 (|has| (-1081) (-886 (-381))) (|has| |#1| (-886 (-381)))) ((-886 (-566)) -12 (|has| (-1081) (-886 (-566))) (|has| |#1| (-886 (-566)))) ((-949 |#1| #0# #2#) . T) ((-909) |has| |#1| (-909)) ((-920) |has| |#1| (-365)) ((-1038 (-409 (-566))) |has| |#1| (-1038 (-409 (-566)))) ((-1038 (-566)) |has| |#1| (-1038 (-566))) ((-1038 #2#) . T) ((-1038 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-909)) (|has| |#1| (-558)) (|has| |#1| (-454)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1150) |has| |#1| (-1150)) ((-1219) |has| |#1| (-909)))
-((-4170 (((-644 (-1081)) $) 34)) (-4358 (($ $) 31)) (-4145 (($ |#2| |#3|) NIL) (($ $ (-1081) |#3|) 28) (($ $ (-644 (-1081)) (-644 |#3|)) 27)) (-4323 (($ $) 14)) (-4334 ((|#2| $) 12)) (-3838 ((|#3| $) 10)))
-(((-1242 |#1| |#2| |#3|) (-10 -8 (-15 -4170 ((-644 (-1081)) |#1|)) (-15 -4145 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -4145 (|#1| |#1| (-1081) |#3|)) (-15 -4358 (|#1| |#1|)) (-15 -4145 (|#1| |#2| |#3|)) (-15 -3838 (|#3| |#1|)) (-15 -4323 (|#1| |#1|)) (-15 -4334 (|#2| |#1|))) (-1243 |#2| |#3|) (-1049) (-792)) (T -1242))
-NIL
-(-10 -8 (-15 -4170 ((-644 (-1081)) |#1|)) (-15 -4145 (|#1| |#1| (-644 (-1081)) (-644 |#3|))) (-15 -4145 (|#1| |#1| (-1081) |#3|)) (-15 -4358 (|#1| |#1|)) (-15 -4145 (|#1| |#2| |#3|)) (-15 -3838 (|#3| |#1|)) (-15 -4323 (|#1| |#1|)) (-15 -4334 (|#2| |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 (-1081)) $) 86)) (-2928 (((-1175) $) 115)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-1807 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-3564 (((-1155 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-2039 (((-112) $) 85)) (-3077 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-3842 (((-112) $) 35)) (-2248 (($ $ (-921)) 113)) (-3819 (((-112) $) 74)) (-4145 (($ |#1| |#2|) 73) (($ $ (-1081) |#2|) 88) (($ $ (-644 (-1081)) (-644 |#2|)) 87)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3964 (($ $ |#2|) 107)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-1754 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3282 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1111)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3838 ((|#2| $) 76)) (-3965 (($ $) 84)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3623 ((|#1| $ |#2|) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-2737 ((|#1| $) 114)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-1551 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-1243 |#1| |#2|) (-140) (-1049) (-792)) (T -1243))
-((-3564 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3282 (*1 *2 *1 *3) (-12 (-4 *1 (-1243 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (-5 *2 (-1175)))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-1243 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))) (-2248 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)))) (-3077 (*1 *2 *1) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-3077 (*1 *2 *1 *2) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-1807 (*1 *1 *1 *2) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-1807 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-1551 (*1 *2 *1 *3) (-12 (-4 *1 (-1243 *2 *3)) (-4 *3 (-792)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2725 (*2 (-1175)))) (-4 *2 (-1049)))) (-3964 (*1 *1 *1 *2) (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))) (-1754 (*1 *2 *1 *3) (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3)))))
-(-13 (-973 |t#1| |t#2| (-1081)) (-10 -8 (-15 -3564 ((-1155 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3282 (|t#1| $ |t#2|)) (-15 -2928 ((-1175) $)) (-15 -2737 (|t#1| $)) (-15 -2248 ($ $ (-921))) (-15 -3077 (|t#2| $)) (-15 -3077 (|t#2| $ |t#2|)) (-15 -1807 ($ $ |t#2|)) (-15 -1807 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2725 (|t#1| (-1175)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1551 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3964 ($ $ |t#2|)) (IF (|has| |t#2| (-1111)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-900 (-1175))) (-6 (-900 (-1175))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1754 ((-1155 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #0#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1111)) ((-291) |has| |#1| (-558)) ((-558) |has| |#1| (-558)) ((-646 #0#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #0#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| |#2| (-1081)) . T) ((-1051 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #0#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-2885 ((|#2| |#2|) 12)) (-2555 (((-420 |#2|) |#2|) 14)) (-2492 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))) 30)))
-(((-1244 |#1| |#2|) (-10 -7 (-15 -2555 ((-420 |#2|) |#2|)) (-15 -2885 (|#2| |#2|)) (-15 -2492 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566)))))) (-558) (-13 (-1241 |#1|) (-558) (-10 -8 (-15 -1885 ($ $ $))))) (T -1244))
-((-2492 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-566)))) (-4 *4 (-13 (-1241 *3) (-558) (-10 -8 (-15 -1885 ($ $ $))))) (-4 *3 (-558)) (-5 *1 (-1244 *3 *4)))) (-2885 (*1 *2 *2) (-12 (-4 *3 (-558)) (-5 *1 (-1244 *3 *2)) (-4 *2 (-13 (-1241 *3) (-558) (-10 -8 (-15 -1885 ($ $ $))))))) (-2555 (*1 *2 *3) (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1244 *4 *3)) (-4 *3 (-13 (-1241 *4) (-558) (-10 -8 (-15 -1885 ($ $ $))))))))
-(-10 -7 (-15 -2555 ((-420 |#2|) |#2|)) (-15 -2885 (|#2| |#2|)) (-15 -2492 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-566))))))
-((-2101 (((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)) 24)))
-(((-1245 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2101 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|)))) (-1049) (-1049) (-1175) (-1175) |#1| |#2|) (T -1245))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1175)))))
-(-10 -7 (-15 -2101 ((-1250 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1250 |#1| |#3| |#5|))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 (-1081)) $) 86)) (-2928 (((-1175) $) 115)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-1807 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-3564 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-3622 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 174 (|has| |#1| (-365)))) (-2555 (((-420 $) $) 175 (|has| |#1| (-365)))) (-4028 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3601 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-3648 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) 18 T CONST)) (-3919 (($ $ $) 169 (|has| |#1| (-365)))) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 168 (|has| |#1| (-365)))) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1968 (((-112) $) 176 (|has| |#1| (-365)))) (-2039 (((-112) $) 85)) (-2722 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3819 (((-112) $) 74)) (-4145 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-1565 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1853 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1390 (((-1157) $) 10)) (-4282 (($ $) 177 (|has| |#1| (-365)))) (-1879 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2676 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1200)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-1885 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4018 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 170 (|has| |#1| (-365)))) (-3964 (($ $ (-409 (-566))) 107)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-1535 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3792 (((-771) $) 166 (|has| |#1| (-365)))) (-3282 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 167 (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3838 (((-409 (-566)) $) 76)) (-3658 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 84)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3623 ((|#1| $ (-409 (-566))) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-2737 ((|#1| $) 114)) (-1479 (((-112) $ $) 9)) (-3696 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3670 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-1246 |#1|) (-140) (-1049)) (T -1246))
-((-3040 (*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))) (-4 *4 (-1049)) (-4 *1 (-1246 *4)))) (-2248 (*1 *1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1246 *3)) (-4 *3 (-1049)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-1879 (*1 *1 *1 *2) (-2676 (-12 (-5 *2 (-1175)) (-4 *1 (-1246 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1200)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1246 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -4170 ((-644 *2) *3))) (|has| *3 (-15 -1879 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))))
-(-13 (-1243 |t#1| (-409 (-566))) (-10 -8 (-15 -3040 ($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |t#1|))))) (-15 -2248 ($ $ (-409 (-566)))) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $)) (IF (|has| |t#1| (-15 -1879 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -4170 ((-644 (-1175)) |t#1|))) (-15 -1879 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1200)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -1879 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1200))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1200) |has| |#1| (-38 (-409 (-566)))) ((-1203) |has| |#1| (-38 (-409 (-566)))) ((-1219) |has| |#1| (-365)) ((-1243 |#1| #0#) . T))
-((-3545 (((-112) $) 12)) (-2023 (((-3 |#3| "failed") $) 17)) (-3343 ((|#3| $) 14)))
-(((-1247 |#1| |#2| |#3|) (-10 -8 (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3545 ((-112) |#1|))) (-1248 |#2| |#3|) (-1049) (-1225 |#2|)) (T -1247))
-NIL
-(-10 -8 (-15 -2023 ((-3 |#3| "failed") |#1|)) (-15 -3343 (|#3| |#1|)) (-15 -3545 ((-112) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 (-1081)) $) 86)) (-2928 (((-1175) $) 115)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-1807 (($ $ (-409 (-566))) 110) (($ $ (-409 (-566)) (-409 (-566))) 109)) (-3564 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 117)) (-3622 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 174 (|has| |#1| (-365)))) (-2555 (((-420 $) $) 175 (|has| |#1| (-365)))) (-4028 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) 165 (|has| |#1| (-365)))) (-3601 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 183)) (-3648 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#2| "failed") $) 194)) (-3343 ((|#2| $) 195)) (-3919 (($ $ $) 169 (|has| |#1| (-365)))) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-1482 (((-409 (-566)) $) 191)) (-3930 (($ $ $) 168 (|has| |#1| (-365)))) (-4256 (($ (-409 (-566)) |#2|) 192)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 163 (|has| |#1| (-365)))) (-1968 (((-112) $) 176 (|has| |#1| (-365)))) (-2039 (((-112) $) 85)) (-2722 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-409 (-566)) $) 112) (((-409 (-566)) $ (-409 (-566))) 111)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) 113) (($ $ (-409 (-566))) 182)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 172 (|has| |#1| (-365)))) (-3819 (((-112) $) 74)) (-4145 (($ |#1| (-409 (-566))) 73) (($ $ (-1081) (-409 (-566))) 88) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) 87)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-1565 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1853 (($ (-644 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1633 ((|#2| $) 190)) (-2640 (((-3 |#2| "failed") $) 188)) (-4244 ((|#2| $) 189)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 177 (|has| |#1| (-365)))) (-1879 (($ $) 181 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 180 (-2676 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1200)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 162 (|has| |#1| (-365)))) (-1885 (($ (-644 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-4018 (((-420 $) $) 173 (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 170 (|has| |#1| (-365)))) (-3964 (($ $ (-409 (-566))) 107)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 164 (|has| |#1| (-365)))) (-1535 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3792 (((-771) $) 166 (|has| |#1| (-365)))) (-3282 ((|#1| $ (-409 (-566))) 116) (($ $ $) 93 (|has| (-409 (-566)) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 167 (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3838 (((-409 (-566)) $) 76)) (-3658 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 84)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558)))) (-3623 ((|#1| $ (-409 (-566))) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-2737 ((|#1| $) 114)) (-1479 (((-112) $ $) 9)) (-3696 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3670 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-409 (-566))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-1248 |#1| |#2|) (-140) (-1049) (-1225 |t#1|)) (T -1248))
-((-3838 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1225 *3)) (-5 *2 (-409 (-566))))) (-4256 (*1 *1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1248 *4 *3)) (-4 *3 (-1225 *4)))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1225 *3)) (-5 *2 (-409 (-566))))) (-1633 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1225 *3)))) (-4244 (*1 *2 *1) (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1225 *3)))) (-2640 (*1 *2 *1) (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1225 *3)))))
-(-13 (-1246 |t#1|) (-1038 |t#2|) (-616 |t#2|) (-10 -8 (-15 -4256 ($ (-409 (-566)) |t#2|)) (-15 -1482 ((-409 (-566)) $)) (-15 -1633 (|t#2| $)) (-15 -3838 ((-409 (-566)) $)) (-15 -4244 (|t#2| $)) (-15 -2640 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-409 (-566))) . T) ((-25) . T) ((-38 #1=(-409 (-566))) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 |#2|) . T) ((-616 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-409 (-566)) (-1111)) ((-291) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-454) |has| |#1| (-365)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-646 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-717 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365))) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-920) |has| |#1| (-365)) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1038 |#2|) . T) ((-1051 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1056 #1#) -2676 (|has| |#1| (-365)) (|has| |#1| (-38 (-409 (-566))))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1200) |has| |#1| (-38 (-409 (-566)))) ((-1203) |has| |#1| (-38 (-409 (-566)))) ((-1219) |has| |#1| (-365)) ((-1243 |#1| #0#) . T) ((-1246 |#1|) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 104)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-409 (-566))) 116) (($ $ (-409 (-566)) (-409 (-566))) 118)) (-3564 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) 54)) (-3622 (($ $) 192 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 168 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) 188 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 164 (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) 65)) (-3648 (($ $) 196 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 172 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) NIL)) (-3343 ((|#2| $) NIL)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) 85)) (-1482 (((-409 (-566)) $) 13)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-4256 (($ (-409 (-566)) |#2|) 11)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-2039 (((-112) $) 74)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-409 (-566)) $) 113) (((-409 (-566)) $ (-409 (-566))) 114)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) 130) (($ $ (-409 (-566))) 128)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-409 (-566))) 33) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) 125)) (-1565 (($ $) 162 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1633 ((|#2| $) 12)) (-2640 (((-3 |#2| "failed") $) 44)) (-4244 ((|#2| $) 45)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) 101 (|has| |#1| (-365)))) (-1879 (($ $) 146 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 151 (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200)))))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-409 (-566))) 122)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1535 (($ $) 160 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-409 (-566))) 108) (($ $ $) 94 (|has| (-409 (-566)) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 138 (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-3838 (((-409 (-566)) $) 16)) (-3658 (($ $) 198 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 174 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 194 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 170 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 190 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 166 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 120)) (-2725 (((-862) $) NIL) (($ (-566)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-409 (-566))) 139 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3623 ((|#1| $ (-409 (-566))) 107)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) 127 T CONST)) (-2737 ((|#1| $) 106)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) 204 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 180 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) 200 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 176 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 208 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 184 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-409 (-566))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 210 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 186 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 206 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 182 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 202 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 178 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 21 T CONST)) (-3214 (($) 17 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2817 (((-112) $ $) 72)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-2905 (($ $) 142) (($ $ $) 78)) (-2897 (($ $ $) 76)) (** (($ $ (-921)) NIL) (($ $ (-771)) 82) (($ $ (-566)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 158 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1249 |#1| |#2|) (-1248 |#1| |#2|) (-1049) (-1225 |#1|)) (T -1249))
-NIL
-(-1248 |#1| |#2|)
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 11)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) NIL (|has| |#1| (-558)))) (-1807 (($ $ (-409 (-566))) NIL) (($ $ (-409 (-566)) (-409 (-566))) NIL)) (-3564 (((-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|))) $) NIL)) (-3622 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-2885 (($ $) NIL (|has| |#1| (-365)))) (-2555 (((-420 $) $) NIL (|has| |#1| (-365)))) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2068 (((-112) $ $) NIL (|has| |#1| (-365)))) (-3601 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-771) (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#1|)))) NIL)) (-3648 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-1229 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1257 |#1| |#2| |#3|) "failed") $) 22)) (-3343 (((-1229 |#1| |#2| |#3|) $) NIL) (((-1257 |#1| |#2| |#3|) $) NIL)) (-3919 (($ $ $) NIL (|has| |#1| (-365)))) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1482 (((-409 (-566)) $) 69)) (-3930 (($ $ $) NIL (|has| |#1| (-365)))) (-4256 (($ (-409 (-566)) (-1229 |#1| |#2| |#3|)) NIL)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) NIL (|has| |#1| (-365)))) (-1968 (((-112) $) NIL (|has| |#1| (-365)))) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-409 (-566)) $) NIL) (((-409 (-566)) $ (-409 (-566))) NIL)) (-3842 (((-112) $) NIL)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) NIL) (($ $ (-409 (-566))) NIL)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-409 (-566))) 30) (($ $ (-1081) (-409 (-566))) NIL) (($ $ (-644 (-1081)) (-644 (-409 (-566)))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1565 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1853 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1633 (((-1229 |#1| |#2| |#3|) $) 72)) (-2640 (((-3 (-1229 |#1| |#2| |#3|) "failed") $) NIL)) (-4244 (((-1229 |#1| |#2| |#3|) $) NIL)) (-1390 (((-1157) $) NIL)) (-4282 (($ $) NIL (|has| |#1| (-365)))) (-1879 (($ $) 39 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) NIL (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200))))) (($ $ (-1261 |#2|)) 40 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) NIL (|has| |#1| (-365)))) (-1885 (($ (-644 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-4018 (((-420 $) $) NIL (|has| |#1| (-365)))) (-3403 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) NIL (|has| |#1| (-365)))) (-3964 (($ $ (-409 (-566))) NIL)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-3654 (((-3 (-644 $) "failed") (-644 $) $) NIL (|has| |#1| (-365)))) (-1535 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))))) (-3792 (((-771) $) NIL (|has| |#1| (-365)))) (-3282 ((|#1| $ (-409 (-566))) NIL) (($ $ $) NIL (|has| (-409 (-566)) (-1111)))) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) NIL (|has| |#1| (-365)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $ (-1261 |#2|)) 38)) (-3838 (((-409 (-566)) $) NIL)) (-3658 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) NIL)) (-2725 (((-862) $) 109) (($ (-566)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1229 |#1| |#2| |#3|)) 16) (($ (-1257 |#1| |#2| |#3|)) 17) (($ (-1261 |#2|)) 36) (($ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558)))) (-3623 ((|#1| $ (-409 (-566))) NIL)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) 12)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-409 (-566))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-409 (-566))))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 32 T CONST)) (-3214 (($) 26 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-409 (-566)) |#1|))))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 34)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ (-566)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1250 |#1| |#2| |#3|) (-13 (-1248 |#1| (-1229 |#1| |#2| |#3|)) (-1038 (-1257 |#1| |#2| |#3|)) (-616 (-1261 |#2|)) (-10 -8 (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1250))
-((-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1250 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(-13 (-1248 |#1| (-1229 |#1| |#2| |#3|)) (-1038 (-1257 |#1| |#2| |#3|)) (-616 (-1261 |#2|)) (-10 -8 (-15 -3009 ($ $ (-1261 |#2|))) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 37)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL)) (-1780 (($ $) NIL)) (-3286 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 (-566) "failed") $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1038 (-566)))) (((-3 (-409 (-566)) "failed") $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-3 (-1250 |#2| |#3| |#4|) "failed") $) 22)) (-3343 (((-566) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1038 (-566)))) (((-409 (-566)) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-1038 (-409 (-566))))) (((-1250 |#2| |#3| |#4|) $) NIL)) (-4358 (($ $) 41)) (-2313 (((-3 $ "failed") $) 27)) (-1520 (($ $) NIL (|has| (-1250 |#2| |#3| |#4|) (-454)))) (-2385 (($ $ (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) 11)) (-3819 (((-112) $) NIL)) (-4145 (($ (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-4090 (((-320 |#2| |#3| |#4|) $) NIL)) (-1336 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-2101 (($ (-1 (-1250 |#2| |#3| |#4|) (-1250 |#2| |#3| |#4|)) $) NIL)) (-3294 (((-3 (-843 |#2|) "failed") $) 90)) (-4323 (($ $) NIL)) (-4334 (((-1250 |#2| |#3| |#4|) $) 20)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-4290 (((-112) $) NIL)) (-4307 (((-1250 |#2| |#3| |#4|) $) NIL)) (-3967 (((-3 $ "failed") $ (-1250 |#2| |#3| |#4|)) NIL (|has| (-1250 |#2| |#3| |#4|) (-558))) (((-3 $ "failed") $ $) NIL)) (-4057 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $) 74)) (-3838 (((-320 |#2| |#3| |#4|) $) 17)) (-4330 (((-1250 |#2| |#3| |#4|) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-454)))) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ (-1250 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-409 (-566))) NIL (-2676 (|has| (-1250 |#2| |#3| |#4|) (-38 (-409 (-566)))) (|has| (-1250 |#2| |#3| |#4|) (-1038 (-409 (-566))))))) (-3624 (((-644 (-1250 |#2| |#3| |#4|)) $) NIL)) (-3623 (((-1250 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-2655 (((-3 $ "failed") $) NIL (|has| (-1250 |#2| |#3| |#4|) (-145)))) (-2875 (((-771)) NIL T CONST)) (-3977 (($ $ $ (-771)) NIL (|has| (-1250 |#2| |#3| |#4|) (-172)))) (-1479 (((-112) $ $) NIL)) (-1597 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ (-1250 |#2| |#3| |#4|)) NIL (|has| (-1250 |#2| |#3| |#4|) (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ (-1250 |#2| |#3| |#4|)) NIL) (($ (-1250 |#2| |#3| |#4|) $) NIL) (($ (-409 (-566)) $) NIL (|has| (-1250 |#2| |#3| |#4|) (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| (-1250 |#2| |#3| |#4|) (-38 (-409 (-566)))))))
-(((-1251 |#1| |#2| |#3| |#4|) (-13 (-327 (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -3294 ((-3 (-843 |#2|) "failed") $)) (-15 -4057 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $)))) (-13 (-1038 (-566)) (-639 (-566)) (-454)) (-13 (-27) (-1200) (-432 |#1|)) (-1175) |#2|) (T -1251))
-((-3294 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-843 *4)) (-5 *1 (-1251 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1200) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4))) (-4057 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4)))))) (|:| |%type| (-1157)))) (-5 *1 (-1251 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1200) (-432 *3))) (-14 *5 (-1175)) (-14 *6 *4))))
-(-13 (-327 (-1250 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-558) (-10 -8 (-15 -3294 ((-3 (-843 |#2|) "failed") $)) (-15 -4057 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1250 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| |#2|)))))) (|:| |%type| (-1157))) "failed") $))))
-((-2465 ((|#2| $) 34)) (-4088 ((|#2| $) 18)) (-1829 (($ $) 52)) (-4204 (($ $ (-566)) 85)) (-2261 (((-112) $ (-771)) 46)) (-2989 ((|#2| $ |#2|) 82)) (-3478 ((|#2| $ |#2|) 78)) (-2858 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-3663 (($ $ (-644 $)) 81)) (-4075 ((|#2| $) 17)) (-3781 (($ $) NIL) (($ $ (-771)) 59)) (-4116 (((-644 $) $) 31)) (-3886 (((-112) $ $) 69)) (-2429 (((-112) $ (-771)) 45)) (-1864 (((-112) $ (-771)) 43)) (-1396 (((-112) $) 33)) (-1774 ((|#2| $) 25) (($ $ (-771)) 64)) (-3282 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3810 (((-112) $) 23)) (-4278 (($ $) 55)) (-4160 (($ $) 86)) (-2251 (((-771) $) 58)) (-2546 (($ $) 57)) (-4007 (($ $ $) 77) (($ |#2| $) NIL)) (-4202 (((-644 $) $) 32)) (-2817 (((-112) $ $) 67)) (-3991 (((-771) $) 51)))
-(((-1252 |#1| |#2|) (-10 -8 (-15 -4204 (|#1| |#1| (-566))) (-15 -2858 (|#2| |#1| "last" |#2|)) (-15 -3478 (|#2| |#1| |#2|)) (-15 -2858 (|#1| |#1| "rest" |#1|)) (-15 -2858 (|#2| |#1| "first" |#2|)) (-15 -4160 (|#1| |#1|)) (-15 -4278 (|#1| |#1|)) (-15 -2251 ((-771) |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -4088 (|#2| |#1|)) (-15 -4075 (|#2| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1774 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "last")) (-15 -1774 (|#2| |#1|)) (-15 -3781 (|#1| |#1| (-771))) (-15 -3282 (|#1| |#1| "rest")) (-15 -3781 (|#1| |#1|)) (-15 -3282 (|#2| |#1| "first")) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -2989 (|#2| |#1| |#2|)) (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -3663 (|#1| |#1| (-644 |#1|))) (-15 -3886 ((-112) |#1| |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -3282 (|#2| |#1| "value")) (-15 -2465 (|#2| |#1|)) (-15 -1396 ((-112) |#1|)) (-15 -4116 ((-644 |#1|) |#1|)) (-15 -4202 ((-644 |#1|) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771)))) (-1253 |#2|) (-1215)) (T -1252))
-NIL
-(-10 -8 (-15 -4204 (|#1| |#1| (-566))) (-15 -2858 (|#2| |#1| "last" |#2|)) (-15 -3478 (|#2| |#1| |#2|)) (-15 -2858 (|#1| |#1| "rest" |#1|)) (-15 -2858 (|#2| |#1| "first" |#2|)) (-15 -4160 (|#1| |#1|)) (-15 -4278 (|#1| |#1|)) (-15 -2251 ((-771) |#1|)) (-15 -2546 (|#1| |#1|)) (-15 -4088 (|#2| |#1|)) (-15 -4075 (|#2| |#1|)) (-15 -1829 (|#1| |#1|)) (-15 -1774 (|#1| |#1| (-771))) (-15 -3282 (|#2| |#1| "last")) (-15 -1774 (|#2| |#1|)) (-15 -3781 (|#1| |#1| (-771))) (-15 -3282 (|#1| |#1| "rest")) (-15 -3781 (|#1| |#1|)) (-15 -3282 (|#2| |#1| "first")) (-15 -4007 (|#1| |#2| |#1|)) (-15 -4007 (|#1| |#1| |#1|)) (-15 -2989 (|#2| |#1| |#2|)) (-15 -2858 (|#2| |#1| "value" |#2|)) (-15 -3663 (|#1| |#1| (-644 |#1|))) (-15 -3886 ((-112) |#1| |#1|)) (-15 -3810 ((-112) |#1|)) (-15 -3282 (|#2| |#1| "value")) (-15 -2465 (|#2| |#1|)) (-15 -1396 ((-112) |#1|)) (-15 -4116 ((-644 |#1|) |#1|)) (-15 -4202 ((-644 |#1|) |#1|)) (-15 -2817 ((-112) |#1| |#1|)) (-15 -3991 ((-771) |#1|)) (-15 -2261 ((-112) |#1| (-771))) (-15 -2429 ((-112) |#1| (-771))) (-15 -1864 ((-112) |#1| (-771))))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-2465 ((|#1| $) 49)) (-4088 ((|#1| $) 66)) (-1829 (($ $) 68)) (-4204 (($ $ (-566)) 53 (|has| $ (-6 -4416)))) (-2261 (((-112) $ (-771)) 8)) (-2989 ((|#1| $ |#1|) 40 (|has| $ (-6 -4416)))) (-2363 (($ $ $) 57 (|has| $ (-6 -4416)))) (-3478 ((|#1| $ |#1|) 55 (|has| $ (-6 -4416)))) (-3224 ((|#1| $ |#1|) 59 (|has| $ (-6 -4416)))) (-2858 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4416))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4416))) (($ $ "rest" $) 56 (|has| $ (-6 -4416))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4416)))) (-3663 (($ $ (-644 $)) 42 (|has| $ (-6 -4416)))) (-4075 ((|#1| $) 67)) (-2633 (($) 7 T CONST)) (-3781 (($ $) 74) (($ $ (-771)) 72)) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-4116 (((-644 $) $) 51)) (-3886 (((-112) $ $) 43 (|has| |#1| (-1099)))) (-2429 (((-112) $ (-771)) 9)) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36)) (-1864 (((-112) $ (-771)) 10)) (-2801 (((-644 |#1|) $) 46)) (-1396 (((-112) $) 50)) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1774 ((|#1| $) 71) (($ $ (-771)) 69)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 77) (($ $ (-771)) 75)) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-4104 (((-566) $ $) 45)) (-3810 (((-112) $) 47)) (-4278 (($ $) 63)) (-4160 (($ $) 60 (|has| $ (-6 -4416)))) (-2251 (((-771) $) 64)) (-2546 (($ $) 65)) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2878 (($ $) 13)) (-2011 (($ $ $) 62 (|has| $ (-6 -4416))) (($ $ |#1|) 61 (|has| $ (-6 -4416)))) (-4007 (($ $ $) 79) (($ |#1| $) 78)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-4202 (((-644 $) $) 52)) (-1379 (((-112) $ $) 44 (|has| |#1| (-1099)))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1253 |#1|) (-140) (-1215)) (T -1253))
-((-4007 (*1 *1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-4007 (*1 *1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1253 *3)) (-4 *3 (-1215)))) (-3781 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1253 *3)) (-4 *3 (-1215)))) (-3781 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1253 *3)) (-4 *3 (-1215)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-1774 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1253 *3)) (-4 *3 (-1215)))) (-1829 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-4088 (*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2546 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2251 (*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))) (-4278 (*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2011 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2011 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-4160 (*1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-3224 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2858 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2363 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2858 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4416)) (-4 *1 (-1253 *3)) (-4 *3 (-1215)))) (-3478 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-2858 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))) (-4204 (*1 *1 *1 *2) (-12 (-5 *2 (-566)) (|has| *1 (-6 -4416)) (-4 *1 (-1253 *3)) (-4 *3 (-1215)))))
-(-13 (-1010 |t#1|) (-10 -8 (-15 -4007 ($ $ $)) (-15 -4007 ($ |t#1| $)) (-15 -3771 (|t#1| $)) (-15 -3282 (|t#1| $ "first")) (-15 -3771 ($ $ (-771))) (-15 -3781 ($ $)) (-15 -3282 ($ $ "rest")) (-15 -3781 ($ $ (-771))) (-15 -1774 (|t#1| $)) (-15 -3282 (|t#1| $ "last")) (-15 -1774 ($ $ (-771))) (-15 -1829 ($ $)) (-15 -4075 (|t#1| $)) (-15 -4088 (|t#1| $)) (-15 -2546 ($ $)) (-15 -2251 ((-771) $)) (-15 -4278 ($ $)) (IF (|has| $ (-6 -4416)) (PROGN (-15 -2011 ($ $ $)) (-15 -2011 ($ $ |t#1|)) (-15 -4160 ($ $)) (-15 -3224 (|t#1| $ |t#1|)) (-15 -2858 (|t#1| $ "first" |t#1|)) (-15 -2363 ($ $ $)) (-15 -2858 ($ $ "rest" $)) (-15 -3478 (|t#1| $ |t#1|)) (-15 -2858 (|t#1| $ "last" |t#1|)) (-15 -4204 ($ $ (-566)))) |%noBranch|)))
-(((-34) . T) ((-102) |has| |#1| (-1099)) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-613 (-862)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-491 |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-1010 |#1|) . T) ((-1099) |has| |#1| (-1099)) ((-1215) . T))
-((-2101 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1254 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2101 (|#4| (-1 |#2| |#1|) |#3|))) (-1049) (-1049) (-1256 |#1|) (-1256 |#2|)) (T -1254))
-((-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049)) (-4 *2 (-1256 *6)) (-5 *1 (-1254 *5 *6 *4 *2)) (-4 *4 (-1256 *5)))))
-(-10 -7 (-15 -2101 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3545 (((-112) $) 17)) (-3622 (($ $) 106)) (-3474 (($ $) 82)) (-3601 (($ $) 102)) (-3449 (($ $) 78)) (-3648 (($ $) 110)) (-3500 (($ $) 86)) (-1565 (($ $) 76)) (-1535 (($ $) 74)) (-3658 (($ $) 112)) (-3515 (($ $) 88)) (-3635 (($ $) 108)) (-3488 (($ $) 84)) (-3612 (($ $) 104)) (-3461 (($ $) 80)) (-2725 (((-862) $) 62) (($ (-566)) NIL) (($ (-409 (-566))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-3696 (($ $) 118)) (-3553 (($ $) 94)) (-3670 (($ $) 114)) (-3528 (($ $) 90)) (-3719 (($ $) 122)) (-3577 (($ $) 98)) (-3076 (($ $) 124)) (-3589 (($ $) 100)) (-3705 (($ $) 120)) (-3566 (($ $) 96)) (-3682 (($ $) 116)) (-3541 (($ $) 92)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-409 (-566))) 72)))
-(((-1255 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3474 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3566 (|#1| |#1|)) (-15 -3589 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3658 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3601 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3705 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3545 ((-112) |#1|)) (-15 -2725 ((-862) |#1|))) (-1256 |#2|) (-1049)) (T -1255))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-409 (-566)))) (-15 -3474 (|#1| |#1|)) (-15 -3449 (|#1| |#1|)) (-15 -3500 (|#1| |#1|)) (-15 -3515 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3461 (|#1| |#1|)) (-15 -3541 (|#1| |#1|)) (-15 -3566 (|#1| |#1|)) (-15 -3589 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -3528 (|#1| |#1|)) (-15 -3553 (|#1| |#1|)) (-15 -3612 (|#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -3658 (|#1| |#1|)) (-15 -3648 (|#1| |#1|)) (-15 -3601 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -3682 (|#1| |#1|)) (-15 -3705 (|#1| |#1|)) (-15 -3076 (|#1| |#1|)) (-15 -3719 (|#1| |#1|)) (-15 -3670 (|#1| |#1|)) (-15 -3696 (|#1| |#1|)) (-15 -1565 (|#1| |#1|)) (-15 -1535 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2725 (|#1| |#2|)) (-15 -2725 (|#1| |#1|)) (-15 -2725 (|#1| (-409 (-566)))) (-15 -2725 (|#1| (-566))) (-15 ** (|#1| |#1| (-771))) (-15 ** (|#1| |#1| (-921))) (-15 -3545 ((-112) |#1|)) (-15 -2725 ((-862) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4170 (((-644 (-1081)) $) 86)) (-2928 (((-1175) $) 115)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 63 (|has| |#1| (-558)))) (-1780 (($ $) 64 (|has| |#1| (-558)))) (-3286 (((-112) $) 66 (|has| |#1| (-558)))) (-1807 (($ $ (-771)) 110) (($ $ (-771) (-771)) 109)) (-3564 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 117)) (-3622 (($ $) 147 (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) 130 (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) 20)) (-4028 (($ $) 129 (|has| |#1| (-38 (-409 (-566)))))) (-3601 (($ $) 146 (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) 131 (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 167) (($ (-1155 |#1|)) 165)) (-3648 (($ $) 145 (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) 132 (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) 18 T CONST)) (-4358 (($ $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-1590 (($ $) 164)) (-2447 (((-952 |#1|) $ (-771)) 162) (((-952 |#1|) $ (-771) (-771)) 161)) (-2039 (((-112) $) 85)) (-2722 (($) 157 (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-771) $) 112) (((-771) $ (-771)) 111)) (-3842 (((-112) $) 35)) (-2810 (($ $ (-566)) 128 (|has| |#1| (-38 (-409 (-566)))))) (-2248 (($ $ (-921)) 113)) (-1912 (($ (-1 |#1| (-566)) $) 163)) (-3819 (((-112) $) 74)) (-4145 (($ |#1| (-771)) 73) (($ $ (-1081) (-771)) 88) (($ $ (-644 (-1081)) (-644 (-771))) 87)) (-2101 (($ (-1 |#1| |#1|) $) 75)) (-1565 (($ $) 154 (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) 77)) (-4334 ((|#1| $) 78)) (-1390 (((-1157) $) 10)) (-1879 (($ $) 159 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 158 (-2676 (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-959)) (|has| |#1| (-1200)) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-38 (-409 (-566)))))))) (-1944 (((-1119) $) 11)) (-3964 (($ $ (-771)) 107)) (-3967 (((-3 $ "failed") $ $) 62 (|has| |#1| (-558)))) (-1535 (($ $) 155 (|has| |#1| (-38 (-409 (-566)))))) (-1754 (((-1155 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-3282 ((|#1| $ (-771)) 116) (($ $ $) 93 (|has| (-771) (-1111)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) 101 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 100 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 99 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 98 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 96 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-3838 (((-771) $) 76)) (-3658 (($ $) 144 (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) 133 (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) 143 (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) 134 (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) 142 (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) 135 (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 84)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ (-409 (-566))) 69 (|has| |#1| (-38 (-409 (-566))))) (($ $) 61 (|has| |#1| (-558))) (($ |#1|) 59 (|has| |#1| (-172)))) (-3624 (((-1155 |#1|) $) 166)) (-3623 ((|#1| $ (-771)) 71)) (-2655 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2875 (((-771)) 32 T CONST)) (-2737 ((|#1| $) 114)) (-1479 (((-112) $ $) 9)) (-3696 (($ $) 153 (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) 141 (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) 65 (|has| |#1| (-558)))) (-3670 (($ $) 152 (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) 140 (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) 151 (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) 139 (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-771)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) 150 (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) 138 (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) 149 (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) 137 (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) 148 (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) 136 (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) 105 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175) (-771)) 104 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-644 (-1175))) 103 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-1175)) 102 (-12 (|has| |#1| (-900 (-1175))) (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (($ $ (-771)) 97 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 127 (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-409 (-566)) $) 68 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) 67 (|has| |#1| (-38 (-409 (-566)))))))
-(((-1256 |#1|) (-140) (-1049)) (T -1256))
-((-3040 (*1 *1 *2) (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3)))) (-4 *3 (-1049)) (-4 *1 (-1256 *3)))) (-3624 (*1 *2 *1) (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3)))) (-3040 (*1 *1 *2) (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1256 *3)))) (-1590 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1049)))) (-1912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1256 *3)) (-4 *3 (-1049)))) (-2447 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1256 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (-2447 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-4 *1 (-1256 *4)) (-4 *4 (-1049)) (-5 *2 (-952 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))) (-1879 (*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566)))))) (-1879 (*1 *1 *1 *2) (-2676 (-12 (-5 *2 (-1175)) (-4 *1 (-1256 *3)) (-4 *3 (-1049)) (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1200)) (-4 *3 (-38 (-409 (-566)))))) (-12 (-5 *2 (-1175)) (-4 *1 (-1256 *3)) (-4 *3 (-1049)) (-12 (|has| *3 (-15 -4170 ((-644 *2) *3))) (|has| *3 (-15 -1879 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566)))))))))
-(-13 (-1243 |t#1| (-771)) (-10 -8 (-15 -3040 ($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |t#1|))))) (-15 -3624 ((-1155 |t#1|) $)) (-15 -3040 ($ (-1155 |t#1|))) (-15 -1590 ($ $)) (-15 -1912 ($ (-1 |t#1| (-566)) $)) (-15 -2447 ((-952 |t#1|) $ (-771))) (-15 -2447 ((-952 |t#1|) $ (-771) (-771))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-409 (-566)))) (PROGN (-15 -1879 ($ $)) (IF (|has| |t#1| (-15 -1879 (|t#1| |t#1| (-1175)))) (IF (|has| |t#1| (-15 -4170 ((-644 (-1175)) |t#1|))) (-15 -1879 ($ $ (-1175))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1200)) (IF (|has| |t#1| (-959)) (IF (|has| |t#1| (-29 (-566))) (-15 -1879 ($ $ (-1175))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1002)) (-6 (-1200))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-771)) . T) ((-25) . T) ((-38 #1=(-409 (-566))) |has| |#1| (-38 (-409 (-566)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-558)) ((-35) |has| |#1| (-38 (-409 (-566)))) ((-95) |has| |#1| (-38 (-409 (-566)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-409 (-566)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-616 #1#) |has| |#1| (-38 (-409 (-566)))) ((-616 (-566)) . T) ((-616 |#1|) |has| |#1| (-172)) ((-616 $) |has| |#1| (-558)) ((-613 (-862)) . T) ((-172) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-771) |#1|))) ((-285) |has| |#1| (-38 (-409 (-566)))) ((-287 $ $) |has| (-771) (-1111)) ((-291) |has| |#1| (-558)) ((-495) |has| |#1| (-38 (-409 (-566)))) ((-558) |has| |#1| (-558)) ((-646 #1#) |has| |#1| (-38 (-409 (-566)))) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #1#) |has| |#1| (-38 (-409 (-566)))) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #1#) |has| |#1| (-38 (-409 (-566)))) ((-640 |#1|) |has| |#1| (-172)) ((-640 $) |has| |#1| (-558)) ((-717 #1#) |has| |#1| (-38 (-409 (-566)))) ((-717 |#1|) |has| |#1| (-172)) ((-717 $) |has| |#1| (-558)) ((-726) . T) ((-900 (-1175)) -12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175)))) ((-973 |#1| #0# (-1081)) . T) ((-1002) |has| |#1| (-38 (-409 (-566)))) ((-1051 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1051 |#1|) . T) ((-1051 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1056 #1#) |has| |#1| (-38 (-409 (-566)))) ((-1056 |#1|) . T) ((-1056 $) -2676 (|has| |#1| (-558)) (|has| |#1| (-172))) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1200) |has| |#1| (-38 (-409 (-566)))) ((-1203) |has| |#1| (-38 (-409 (-566)))) ((-1243 |#1| #0#) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4170 (((-644 (-1081)) $) NIL)) (-2928 (((-1175) $) 93)) (-3003 (((-1238 |#2| |#1|) $ (-771)) 74)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) NIL (|has| |#1| (-558)))) (-1780 (($ $) NIL (|has| |#1| (-558)))) (-3286 (((-112) $) 145 (|has| |#1| (-558)))) (-1807 (($ $ (-771)) 130) (($ $ (-771) (-771)) 133)) (-3564 (((-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|))) $) 43)) (-3622 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3474 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4113 (((-3 $ "failed") $ $) NIL)) (-4028 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3601 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3449 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3040 (($ (-1155 (-2 (|:| |k| (-771)) (|:| |c| |#1|)))) 53) (($ (-1155 |#1|)) NIL)) (-3648 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3500 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2633 (($) NIL T CONST)) (-3585 (($ $) 137)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-1590 (($ $) 143)) (-2447 (((-952 |#1|) $ (-771)) 64) (((-952 |#1|) $ (-771) (-771)) 66)) (-2039 (((-112) $) NIL)) (-2722 (($) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3077 (((-771) $) NIL) (((-771) $ (-771)) NIL)) (-3842 (((-112) $) NIL)) (-3783 (($ $) 120)) (-2810 (($ $ (-566)) NIL (|has| |#1| (-38 (-409 (-566)))))) (-2019 (($ (-566) (-566) $) 139)) (-2248 (($ $ (-921)) 142)) (-1912 (($ (-1 |#1| (-566)) $) 114)) (-3819 (((-112) $) NIL)) (-4145 (($ |#1| (-771)) 16) (($ $ (-1081) (-771)) NIL) (($ $ (-644 (-1081)) (-644 (-771))) NIL)) (-2101 (($ (-1 |#1| |#1|) $) 101)) (-1565 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-4323 (($ $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1462 (($ $) 118)) (-3626 (($ $) 116)) (-1522 (($ (-566) (-566) $) 141)) (-1879 (($ $) 153 (|has| |#1| (-38 (-409 (-566))))) (($ $ (-1175)) 159 (-2676 (-12 (|has| |#1| (-15 -1879 (|#1| |#1| (-1175)))) (|has| |#1| (-15 -4170 ((-644 (-1175)) |#1|))) (|has| |#1| (-38 (-409 (-566))))) (-12 (|has| |#1| (-29 (-566))) (|has| |#1| (-38 (-409 (-566)))) (|has| |#1| (-959)) (|has| |#1| (-1200))))) (($ $ (-1261 |#2|)) 154 (|has| |#1| (-38 (-409 (-566)))))) (-1944 (((-1119) $) NIL)) (-2394 (($ $ (-566) (-566)) 124)) (-3964 (($ $ (-771)) 126)) (-3967 (((-3 $ "failed") $ $) NIL (|has| |#1| (-558)))) (-1535 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3981 (($ $) 122)) (-1754 (((-1155 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-771)))))) (-3282 ((|#1| $ (-771)) 98) (($ $ $) 135 (|has| (-771) (-1111)))) (-3009 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) 111 (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $ (-1261 |#2|)) 106)) (-3838 (((-771) $) NIL)) (-3658 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3515 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3635 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3488 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3612 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3461 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3965 (($ $) 128)) (-2725 (((-862) $) NIL) (($ (-566)) 26) (($ (-409 (-566))) 151 (|has| |#1| (-38 (-409 (-566))))) (($ $) NIL (|has| |#1| (-558))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1238 |#2| |#1|)) 84) (($ (-1261 |#2|)) 22)) (-3624 (((-1155 |#1|) $) NIL)) (-3623 ((|#1| $ (-771)) 97)) (-2655 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2875 (((-771)) NIL T CONST)) (-2737 ((|#1| $) 94)) (-1479 (((-112) $ $) NIL)) (-3696 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3553 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1597 (((-112) $ $) NIL (|has| |#1| (-558)))) (-3670 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3528 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3719 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3577 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-1551 ((|#1| $ (-771)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-771)))) (|has| |#1| (-15 -2725 (|#1| (-1175))))))) (-3076 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3589 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3705 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3566 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3682 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3541 (($ $) NIL (|has| |#1| (-38 (-409 (-566)))))) (-3200 (($) 18 T CONST)) (-3214 (($) 13 T CONST)) (-1316 (($ $ (-644 (-1175)) (-644 (-771))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175) (-771)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-644 (-1175))) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-1175)) NIL (-12 (|has| |#1| (-15 * (|#1| (-771) |#1|))) (|has| |#1| (-900 (-1175))))) (($ $ (-771)) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-771) |#1|))))) (-2817 (((-112) $ $) NIL)) (-2916 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) 110)) (-2897 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-409 (-566)) $) NIL (|has| |#1| (-38 (-409 (-566))))) (($ $ (-409 (-566))) NIL (|has| |#1| (-38 (-409 (-566)))))))
-(((-1257 |#1| |#2| |#3|) (-13 (-1256 |#1|) (-10 -8 (-15 -2725 ($ (-1238 |#2| |#1|))) (-15 -3003 ((-1238 |#2| |#1|) $ (-771))) (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (-15 -3626 ($ $)) (-15 -1462 ($ $)) (-15 -3783 ($ $)) (-15 -3981 ($ $)) (-15 -2394 ($ $ (-566) (-566))) (-15 -3585 ($ $)) (-15 -2019 ($ (-566) (-566) $)) (-15 -1522 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|))) (-1049) (-1175) |#1|) (T -1257))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3) (-5 *1 (-1257 *3 *4 *5)))) (-3003 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1257 *4 *5 *6)) (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))) (-2725 (*1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3009 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049)) (-14 *5 *3))) (-3626 (*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-1462 (*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-3981 (*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-2394 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-3585 (*1 *1 *1) (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175)) (-14 *4 *2))) (-2019 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-1522 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175)) (-14 *5 *3))) (-1879 (*1 *1 *1 *2) (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(-13 (-1256 |#1|) (-10 -8 (-15 -2725 ($ (-1238 |#2| |#1|))) (-15 -3003 ((-1238 |#2| |#1|) $ (-771))) (-15 -2725 ($ (-1261 |#2|))) (-15 -3009 ($ $ (-1261 |#2|))) (-15 -3626 ($ $)) (-15 -1462 ($ $)) (-15 -3783 ($ $)) (-15 -3981 ($ $)) (-15 -2394 ($ $ (-566) (-566))) (-15 -3585 ($ $)) (-15 -2019 ($ (-566) (-566) $)) (-15 -1522 ($ (-566) (-566) $)) (IF (|has| |#1| (-38 (-409 (-566)))) (-15 -1879 ($ $ (-1261 |#2|))) |%noBranch|)))
-((-3513 (((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|))) 24)) (-3659 (((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4193 (((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|)) 13)) (-4110 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2273 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3985 ((|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|)) 60)) (-3789 (((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))) 66)) (-3475 ((|#2| |#2| |#2|) 43)))
-(((-1258 |#1| |#2|) (-10 -7 (-15 -4193 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -3659 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3513 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -3475 (|#2| |#2| |#2|)) (-15 -2273 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4110 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3985 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -3789 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|)))))) (-38 (-409 (-566))) (-1256 |#1|)) (T -1258))
-((-3789 (*1 *2 *3 *4) (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6)))) (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1256 *5)) (-5 *2 (-644 *6)) (-5 *1 (-1258 *5 *6)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5)) (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1256 *5)) (-5 *1 (-1258 *5 *2)))) (-4110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-1258 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-2273 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-1258 *4 *2)) (-4 *4 (-38 (-409 (-566)))))) (-3475 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1258 *3 *2)) (-4 *2 (-1256 *3)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1256 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1258 *4 *5)))) (-3659 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1258 *4 *5)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1256 *4)) (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1258 *4 *5)))))
-(-10 -7 (-15 -4193 ((-1 (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2|))) (-15 -3659 ((-1 (-1155 |#1|) (-1155 |#1|) (-1155 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3513 ((-1 (-1155 |#1|) (-644 (-1155 |#1|))) (-1 |#2| (-644 |#2|)))) (-15 -3475 (|#2| |#2| |#2|)) (-15 -2273 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4110 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3985 (|#2| (-1 |#2| (-644 |#2|)) (-644 |#1|))) (-15 -3789 ((-644 |#2|) (-644 |#1|) (-644 (-1 |#2| (-644 |#2|))))))
-((-2768 ((|#2| |#4| (-771)) 34)) (-2487 ((|#4| |#2|) 29)) (-4079 ((|#4| (-409 |#2|)) 53 (|has| |#1| (-558)))) (-2735 (((-1 |#4| (-644 |#4|)) |#3|) 46)))
-(((-1259 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2487 (|#4| |#2|)) (-15 -2768 (|#2| |#4| (-771))) (-15 -2735 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -4079 (|#4| (-409 |#2|))) |%noBranch|)) (-1049) (-1241 |#1|) (-656 |#2|) (-1256 |#1|)) (T -1259))
-((-4079 (*1 *2 *3) (-12 (-5 *3 (-409 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-558)) (-4 *4 (-1049)) (-4 *2 (-1256 *4)) (-5 *1 (-1259 *4 *5 *6 *2)) (-4 *6 (-656 *5)))) (-2735 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *5 (-1241 *4)) (-5 *2 (-1 *6 (-644 *6))) (-5 *1 (-1259 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1256 *4)))) (-2768 (*1 *2 *3 *4) (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1241 *5)) (-5 *1 (-1259 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1256 *5)))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-1049)) (-4 *3 (-1241 *4)) (-4 *2 (-1256 *4)) (-5 *1 (-1259 *4 *3 *5 *2)) (-4 *5 (-656 *3)))))
-(-10 -7 (-15 -2487 (|#4| |#2|)) (-15 -2768 (|#2| |#4| (-771))) (-15 -2735 ((-1 |#4| (-644 |#4|)) |#3|)) (IF (|has| |#1| (-558)) (-15 -4079 (|#4| (-409 |#2|))) |%noBranch|))
-NIL
-(((-1260) (-140)) (T -1260))
-NIL
-(-13 (-10 -7 (-6 -1518)))
-((-3979 (((-112) $ $) NIL)) (-2928 (((-1175)) 12)) (-1390 (((-1157) $) 18)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 11) (((-1175) $) 8)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) 15)))
-(((-1261 |#1|) (-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2725 ((-1175) $)) (-15 -2928 ((-1175))))) (-1175)) (T -1261))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1261 *3)) (-14 *3 *2))) (-2928 (*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1261 *3)) (-14 *3 *2))))
-(-13 (-1099) (-613 (-1175)) (-10 -8 (-15 -2725 ((-1175) $)) (-15 -2928 ((-1175)))))
-((-3739 (($ (-771)) 19)) (-2152 (((-689 |#2|) $ $) 41)) (-2267 ((|#2| $) 51)) (-1653 ((|#2| $) 50)) (-1836 ((|#2| $ $) 36)) (-3987 (($ $ $) 47)) (-2905 (($ $) 23) (($ $ $) 29)) (-2897 (($ $ $) 15)) (* (($ (-566) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
-(((-1262 |#1| |#2|) (-10 -8 (-15 -2267 (|#2| |#1|)) (-15 -1653 (|#2| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -2152 ((-689 |#2|) |#1| |#1|)) (-15 -1836 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -3739 (|#1| (-771))) (-15 -2897 (|#1| |#1| |#1|))) (-1263 |#2|) (-1215)) (T -1262))
-NIL
-(-10 -8 (-15 -2267 (|#2| |#1|)) (-15 -1653 (|#2| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -2152 ((-689 |#2|) |#1| |#1|)) (-15 -1836 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-566) |#1|)) (-15 -2905 (|#1| |#1| |#1|)) (-15 -2905 (|#1| |#1|)) (-15 -3739 (|#1| (-771))) (-15 -2897 (|#1| |#1| |#1|)))
-((-3979 (((-112) $ $) 19 (|has| |#1| (-1099)))) (-3739 (($ (-771)) 113 (|has| |#1| (-23)))) (-2506 (((-1270) $ (-566) (-566)) 41 (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4416))) (($ $) 89 (-12 (|has| |#1| (-850)) (|has| $ (-6 -4416))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) 8)) (-2858 ((|#1| $ (-566) |#1|) 53 (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) 59 (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4415)))) (-2633 (($) 7 T CONST)) (-1970 (($ $) 91 (|has| $ (-6 -4416)))) (-1921 (($ $) 101)) (-3806 (($ $) 79 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-1752 (($ |#1| $) 78 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) 54 (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) 52)) (-2388 (((-566) (-1 (-112) |#1|) $) 98) (((-566) |#1| $) 97 (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) 96 (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) 31 (|has| $ (-6 -4415)))) (-2152 (((-689 |#1|) $ $) 106 (|has| |#1| (-1049)))) (-2631 (($ (-771) |#1|) 70)) (-2429 (((-112) $ (-771)) 9)) (-2239 (((-566) $) 44 (|has| (-566) (-850)))) (-3075 (($ $ $) 88 (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) 30 (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-2605 (((-566) $) 45 (|has| (-566) (-850)))) (-3936 (($ $ $) 87 (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-2267 ((|#1| $) 103 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-1864 (((-112) $ (-771)) 10)) (-1653 ((|#1| $) 104 (-12 (|has| |#1| (-1049)) (|has| |#1| (-1002))))) (-1390 (((-1157) $) 22 (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) 61) (($ $ $ (-566)) 60)) (-4063 (((-644 (-566)) $) 47)) (-3054 (((-112) (-566) $) 48)) (-1944 (((-1119) $) 21 (|has| |#1| (-1099)))) (-3771 ((|#1| $) 43 (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-3598 (($ $ |#1|) 42 (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) 14)) (-1346 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) 49)) (-4246 (((-112) $) 11)) (-3906 (($) 12)) (-3282 ((|#1| $ (-566) |#1|) 51) ((|#1| $ (-566)) 50) (($ $ (-1232 (-566))) 64)) (-1836 ((|#1| $ $) 107 (|has| |#1| (-1049)))) (-1302 (($ $ (-566)) 63) (($ $ (-1232 (-566))) 62)) (-3987 (($ $ $) 105 (|has| |#1| (-1049)))) (-1958 (((-771) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4415))) (((-771) |#1| $) 29 (-12 (|has| |#1| (-1099)) (|has| $ (-6 -4415))))) (-3199 (($ $ $ (-566)) 92 (|has| $ (-6 -4416)))) (-2878 (($ $) 13)) (-2150 (((-538) $) 80 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 71)) (-4007 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-644 $)) 66)) (-2725 (((-862) $) 18 (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) 23 (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) 85 (|has| |#1| (-850)))) (-2844 (((-112) $ $) 84 (|has| |#1| (-850)))) (-2817 (((-112) $ $) 20 (|has| |#1| (-1099)))) (-2854 (((-112) $ $) 86 (|has| |#1| (-850)))) (-2833 (((-112) $ $) 83 (|has| |#1| (-850)))) (-2905 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-2897 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-566) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-726))) (($ $ |#1|) 108 (|has| |#1| (-726)))) (-3991 (((-771) $) 6 (|has| $ (-6 -4415)))))
-(((-1263 |#1|) (-140) (-1215)) (T -1263))
-((-2897 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-25)))) (-3739 (*1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1263 *3)) (-4 *3 (-23)) (-4 *3 (-1215)))) (-2905 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-21)))) (-2905 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-4 *1 (-1263 *3)) (-4 *3 (-1215)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-726)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-726)))) (-1836 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1049)))) (-2152 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1215)) (-4 *3 (-1049)) (-5 *2 (-689 *3)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1049)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1002)) (-4 *2 (-1049)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1002)) (-4 *2 (-1049)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2897 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3739 ($ (-771))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2905 ($ $)) (-15 -2905 ($ $ $)) (-15 * ($ (-566) $))) |%noBranch|) (IF (|has| |t#1| (-726)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1049)) (PROGN (-15 -1836 (|t#1| $ $)) (-15 -2152 ((-689 |t#1|) $ $)) (-15 -3987 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1002)) (IF (|has| |t#1| (-1049)) (PROGN (-15 -1653 (|t#1| $)) (-15 -2267 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-613 (-862)) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850)) (|has| |#1| (-613 (-862)))) ((-151 |#1|) . T) ((-614 (-538)) |has| |#1| (-614 (-538))) ((-287 #0=(-566) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-375 |#1|) . T) ((-491 |#1|) . T) ((-604 #0# |#1|) . T) ((-516 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))) ((-651 |#1|) . T) ((-19 |#1|) . T) ((-850) |has| |#1| (-850)) ((-1099) -2676 (|has| |#1| (-1099)) (|has| |#1| (-850))) ((-1215) . T))
-((-4123 (((-1265 |#2|) (-1 |#2| |#1| |#2|) (-1265 |#1|) |#2|) 13)) (-2553 ((|#2| (-1 |#2| |#1| |#2|) (-1265 |#1|) |#2|) 15)) (-2101 (((-3 (-1265 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1265 |#1|)) 30) (((-1265 |#2|) (-1 |#2| |#1|) (-1265 |#1|)) 18)))
-(((-1264 |#1| |#2|) (-10 -7 (-15 -4123 ((-1265 |#2|) (-1 |#2| |#1| |#2|) (-1265 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-1265 |#1|) |#2|)) (-15 -2101 ((-1265 |#2|) (-1 |#2| |#1|) (-1265 |#1|))) (-15 -2101 ((-3 (-1265 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1265 |#1|)))) (-1215) (-1215)) (T -1264))
-((-2101 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1265 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1265 *6)) (-5 *1 (-1264 *5 *6)))) (-2101 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1265 *6)) (-5 *1 (-1264 *5 *6)))) (-2553 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1265 *5)) (-4 *5 (-1215)) (-4 *2 (-1215)) (-5 *1 (-1264 *5 *2)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1265 *6)) (-4 *6 (-1215)) (-4 *5 (-1215)) (-5 *2 (-1265 *5)) (-5 *1 (-1264 *6 *5)))))
-(-10 -7 (-15 -4123 ((-1265 |#2|) (-1 |#2| |#1| |#2|) (-1265 |#1|) |#2|)) (-15 -2553 (|#2| (-1 |#2| |#1| |#2|) (-1265 |#1|) |#2|)) (-15 -2101 ((-1265 |#2|) (-1 |#2| |#1|) (-1265 |#1|))) (-15 -2101 ((-3 (-1265 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1265 |#1|))))
-((-3979 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-3739 (($ (-771)) NIL (|has| |#1| (-23)))) (-2999 (($ (-644 |#1|)) 11)) (-2506 (((-1270) $ (-566) (-566)) NIL (|has| $ (-6 -4416)))) (-1305 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-850)))) (-3190 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4416))) (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-850))))) (-3370 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-850)))) (-2261 (((-112) $ (-771)) NIL)) (-2858 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416))) ((|#1| $ (-1232 (-566)) |#1|) NIL (|has| $ (-6 -4416)))) (-3281 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2633 (($) NIL T CONST)) (-1970 (($ $) NIL (|has| $ (-6 -4416)))) (-1921 (($ $) NIL)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1752 (($ |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2553 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4415))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4415)))) (-3031 ((|#1| $ (-566) |#1|) NIL (|has| $ (-6 -4416)))) (-2975 ((|#1| $ (-566)) NIL)) (-2388 (((-566) (-1 (-112) |#1|) $) NIL) (((-566) |#1| $) NIL (|has| |#1| (-1099))) (((-566) |#1| $ (-566)) NIL (|has| |#1| (-1099)))) (-1523 (((-644 |#1|) $) 15 (|has| $ (-6 -4415)))) (-2152 (((-689 |#1|) $ $) NIL (|has| |#1| (-1049)))) (-2631 (($ (-771) |#1|) NIL)) (-2429 (((-112) $ (-771)) NIL)) (-2239 (((-566) $) NIL (|has| (-566) (-850)))) (-3075 (($ $ $) NIL (|has| |#1| (-850)))) (-3848 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-850)))) (-2565 (((-644 |#1|) $) NIL (|has| $ (-6 -4415)))) (-3938 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-2605 (((-566) $) NIL (|has| (-566) (-850)))) (-3936 (($ $ $) NIL (|has| |#1| (-850)))) (-3023 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2267 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-1864 (((-112) $ (-771)) NIL)) (-1653 ((|#1| $) NIL (-12 (|has| |#1| (-1002)) (|has| |#1| (-1049))))) (-1390 (((-1157) $) NIL (|has| |#1| (-1099)))) (-1510 (($ |#1| $ (-566)) NIL) (($ $ $ (-566)) NIL)) (-4063 (((-644 (-566)) $) NIL)) (-3054 (((-112) (-566) $) NIL)) (-1944 (((-1119) $) NIL (|has| |#1| (-1099)))) (-3771 ((|#1| $) NIL (|has| (-566) (-850)))) (-3567 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3598 (($ $ |#1|) NIL (|has| $ (-6 -4416)))) (-1900 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099)))) (($ $ (-644 |#1|) (-644 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1099))))) (-4165 (((-112) $ $) NIL)) (-1346 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-1948 (((-644 |#1|) $) NIL)) (-4246 (((-112) $) NIL)) (-3906 (($) NIL)) (-3282 ((|#1| $ (-566) |#1|) NIL) ((|#1| $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-1836 ((|#1| $ $) NIL (|has| |#1| (-1049)))) (-1302 (($ $ (-566)) NIL) (($ $ (-1232 (-566))) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-1049)))) (-1958 (((-771) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415))) (((-771) |#1| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#1| (-1099))))) (-3199 (($ $ $ (-566)) NIL (|has| $ (-6 -4416)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) 19 (|has| |#1| (-614 (-538))))) (-2738 (($ (-644 |#1|)) 10)) (-4007 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-644 $)) NIL)) (-2725 (((-862) $) NIL (|has| |#1| (-613 (-862))))) (-1479 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2610 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4415)))) (-2865 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2844 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2817 (((-112) $ $) NIL (|has| |#1| (-1099)))) (-2854 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2833 (((-112) $ $) NIL (|has| |#1| (-850)))) (-2905 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2897 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-566) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-726))) (($ $ |#1|) NIL (|has| |#1| (-726)))) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1265 |#1|) (-13 (-1263 |#1|) (-10 -8 (-15 -2999 ($ (-644 |#1|))))) (-1215)) (T -1265))
-((-2999 (*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-1265 *3)))))
-(-13 (-1263 |#1|) (-10 -8 (-15 -2999 ($ (-644 |#1|)))))
-((-3979 (((-112) $ $) NIL)) (-1986 (((-1157) $ (-1157)) 110) (((-1157) $ (-1157) (-1157)) 108) (((-1157) $ (-1157) (-644 (-1157))) 107)) (-4066 (($) 70)) (-2339 (((-1270) $ (-470) (-921)) 55)) (-3418 (((-1270) $ (-921) (-1157)) 92) (((-1270) $ (-921) (-874)) 93)) (-3085 (((-1270) $ (-921) (-381) (-381)) 58)) (-1772 (((-1270) $ (-1157)) 87)) (-2697 (((-1270) $ (-921) (-1157)) 97)) (-2673 (((-1270) $ (-921) (-381) (-381)) 59)) (-2756 (((-1270) $ (-921) (-921)) 56)) (-3067 (((-1270) $) 88)) (-3826 (((-1270) $ (-921) (-1157)) 96)) (-2637 (((-1270) $ (-470) (-921)) 41)) (-1357 (((-1270) $ (-921) (-1157)) 95)) (-4161 (((-644 (-264)) $) 29) (($ $ (-644 (-264))) 30)) (-2356 (((-1270) $ (-771) (-771)) 53)) (-3683 (($ $) 72) (($ (-470) (-644 (-264))) 73)) (-1390 (((-1157) $) NIL)) (-3476 (((-566) $) 48)) (-1944 (((-1119) $) NIL)) (-3010 (((-1265 (-3 (-470) "undefined")) $) 47)) (-3711 (((-1265 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1357 (-566)) (|:| -2345 (-566)) (|:| |spline| (-566)) (|:| -2809 (-566)) (|:| |axesColor| (-874)) (|:| -3418 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $) 46)) (-3338 (((-1270) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566)) 86)) (-1358 (((-644 (-943 (-225))) $) NIL)) (-2794 (((-470) $ (-921)) 43)) (-3083 (((-1270) $ (-771) (-771) (-921) (-921)) 51)) (-3493 (((-1270) $ (-1157)) 98)) (-2345 (((-1270) $ (-921) (-1157)) 94)) (-2725 (((-862) $) 105)) (-2482 (((-1270) $) 99)) (-1479 (((-112) $ $) NIL)) (-2809 (((-1270) $ (-921) (-1157)) 90) (((-1270) $ (-921) (-874)) 91)) (-2817 (((-112) $ $) NIL)))
-(((-1266) (-13 (-1099) (-10 -8 (-15 -1358 ((-644 (-943 (-225))) $)) (-15 -4066 ($)) (-15 -3683 ($ $)) (-15 -4161 ((-644 (-264)) $)) (-15 -4161 ($ $ (-644 (-264)))) (-15 -3683 ($ (-470) (-644 (-264)))) (-15 -3338 ((-1270) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -3711 ((-1265 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1357 (-566)) (|:| -2345 (-566)) (|:| |spline| (-566)) (|:| -2809 (-566)) (|:| |axesColor| (-874)) (|:| -3418 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -3010 ((-1265 (-3 (-470) "undefined")) $)) (-15 -1772 ((-1270) $ (-1157))) (-15 -2637 ((-1270) $ (-470) (-921))) (-15 -2794 ((-470) $ (-921))) (-15 -2809 ((-1270) $ (-921) (-1157))) (-15 -2809 ((-1270) $ (-921) (-874))) (-15 -3418 ((-1270) $ (-921) (-1157))) (-15 -3418 ((-1270) $ (-921) (-874))) (-15 -1357 ((-1270) $ (-921) (-1157))) (-15 -3826 ((-1270) $ (-921) (-1157))) (-15 -2345 ((-1270) $ (-921) (-1157))) (-15 -3493 ((-1270) $ (-1157))) (-15 -2482 ((-1270) $)) (-15 -3083 ((-1270) $ (-771) (-771) (-921) (-921))) (-15 -2673 ((-1270) $ (-921) (-381) (-381))) (-15 -3085 ((-1270) $ (-921) (-381) (-381))) (-15 -2697 ((-1270) $ (-921) (-1157))) (-15 -2356 ((-1270) $ (-771) (-771))) (-15 -2339 ((-1270) $ (-470) (-921))) (-15 -2756 ((-1270) $ (-921) (-921))) (-15 -1986 ((-1157) $ (-1157))) (-15 -1986 ((-1157) $ (-1157) (-1157))) (-15 -1986 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -3067 ((-1270) $)) (-15 -3476 ((-566) $)) (-15 -2725 ((-862) $))))) (T -1266))
-((-2725 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1266)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1266)))) (-4066 (*1 *1) (-5 *1 (-1266))) (-3683 (*1 *1 *1) (-5 *1 (-1266))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266)))) (-3683 (*1 *1 *2 *3) (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1266)))) (-3338 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3711 (*1 *2 *1) (-12 (-5 *2 (-1265 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1357 (-566)) (|:| -2345 (-566)) (|:| |spline| (-566)) (|:| -2809 (-566)) (|:| |axesColor| (-874)) (|:| -3418 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566))))) (-5 *1 (-1266)))) (-3010 (*1 *2 *1) (-12 (-5 *2 (-1265 (-3 (-470) "undefined"))) (-5 *1 (-1266)))) (-1772 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2637 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2794 (*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1266)))) (-2809 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2809 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3418 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3418 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-1357 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3826 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2345 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3083 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2673 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3085 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2697 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2356 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2339 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-2756 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266)))) (-1986 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-1986 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266)))) (-1986 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1266)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266)))))
-(-13 (-1099) (-10 -8 (-15 -1358 ((-644 (-943 (-225))) $)) (-15 -4066 ($)) (-15 -3683 ($ $)) (-15 -4161 ((-644 (-264)) $)) (-15 -4161 ($ $ (-644 (-264)))) (-15 -3683 ($ (-470) (-644 (-264)))) (-15 -3338 ((-1270) $ (-921) (-225) (-225) (-225) (-225) (-566) (-566) (-566) (-566) (-874) (-566) (-874) (-566))) (-15 -3711 ((-1265 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1357 (-566)) (|:| -2345 (-566)) (|:| |spline| (-566)) (|:| -2809 (-566)) (|:| |axesColor| (-874)) (|:| -3418 (-566)) (|:| |unitsColor| (-874)) (|:| |showing| (-566)))) $)) (-15 -3010 ((-1265 (-3 (-470) "undefined")) $)) (-15 -1772 ((-1270) $ (-1157))) (-15 -2637 ((-1270) $ (-470) (-921))) (-15 -2794 ((-470) $ (-921))) (-15 -2809 ((-1270) $ (-921) (-1157))) (-15 -2809 ((-1270) $ (-921) (-874))) (-15 -3418 ((-1270) $ (-921) (-1157))) (-15 -3418 ((-1270) $ (-921) (-874))) (-15 -1357 ((-1270) $ (-921) (-1157))) (-15 -3826 ((-1270) $ (-921) (-1157))) (-15 -2345 ((-1270) $ (-921) (-1157))) (-15 -3493 ((-1270) $ (-1157))) (-15 -2482 ((-1270) $)) (-15 -3083 ((-1270) $ (-771) (-771) (-921) (-921))) (-15 -2673 ((-1270) $ (-921) (-381) (-381))) (-15 -3085 ((-1270) $ (-921) (-381) (-381))) (-15 -2697 ((-1270) $ (-921) (-1157))) (-15 -2356 ((-1270) $ (-771) (-771))) (-15 -2339 ((-1270) $ (-470) (-921))) (-15 -2756 ((-1270) $ (-921) (-921))) (-15 -1986 ((-1157) $ (-1157))) (-15 -1986 ((-1157) $ (-1157) (-1157))) (-15 -1986 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -3067 ((-1270) $)) (-15 -3476 ((-566) $)) (-15 -2725 ((-862) $))))
-((-3979 (((-112) $ $) NIL)) (-3843 (((-1270) $ (-381)) 172) (((-1270) $ (-381) (-381) (-381)) 173)) (-1986 (((-1157) $ (-1157)) 182) (((-1157) $ (-1157) (-1157)) 180) (((-1157) $ (-1157) (-644 (-1157))) 179)) (-3628 (($) 67)) (-2882 (((-1270) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1270) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1270) $ (-566) (-566) (-381) (-381) (-381)) 147) (((-1270) $ (-381) (-381)) 148) (((-1270) $ (-381) (-381) (-381)) 155)) (-1463 (((-381)) 125) (((-381) (-381)) 126)) (-2170 (((-381)) 120) (((-381) (-381)) 122)) (-3322 (((-381)) 123) (((-381) (-381)) 124)) (-2479 (((-381)) 129) (((-381) (-381)) 130)) (-1744 (((-381)) 127) (((-381) (-381)) 128)) (-3085 (((-1270) $ (-381) (-381)) 174)) (-1772 (((-1270) $ (-1157)) 156)) (-4352 (((-1132 (-225)) $) 68) (($ $ (-1132 (-225))) 69)) (-4102 (((-1270) $ (-1157)) 190)) (-1646 (((-1270) $ (-1157)) 191)) (-4016 (((-1270) $ (-381) (-381)) 154) (((-1270) $ (-566) (-566)) 171)) (-2756 (((-1270) $ (-921) (-921)) 163)) (-3067 (((-1270) $) 140)) (-1402 (((-1270) $ (-1157)) 189)) (-1441 (((-1270) $ (-1157)) 137)) (-4161 (((-644 (-264)) $) 70) (($ $ (-644 (-264))) 71)) (-2356 (((-1270) $ (-771) (-771)) 162)) (-3459 (((-1270) $ (-771) (-943 (-225))) 196)) (-3803 (($ $) 73) (($ (-1132 (-225)) (-1157)) 74) (($ (-1132 (-225)) (-644 (-264))) 75)) (-1594 (((-1270) $ (-381) (-381) (-381)) 134)) (-1390 (((-1157) $) NIL)) (-3476 (((-566) $) 131)) (-4331 (((-1270) $ (-381)) 177)) (-1351 (((-1270) $ (-381)) 194)) (-1944 (((-1119) $) NIL)) (-3909 (((-1270) $ (-381)) 193)) (-2532 (((-1270) $ (-1157)) 139)) (-3083 (((-1270) $ (-771) (-771) (-921) (-921)) 161)) (-2308 (((-1270) $ (-1157)) 136)) (-3493 (((-1270) $ (-1157)) 138)) (-2306 (((-1270) $ (-157) (-157)) 160)) (-2725 (((-862) $) 169)) (-2482 (((-1270) $) 141)) (-4366 (((-1270) $ (-1157)) 192)) (-1479 (((-112) $ $) NIL)) (-2809 (((-1270) $ (-1157)) 135)) (-2817 (((-112) $ $) NIL)))
-(((-1267) (-13 (-1099) (-10 -8 (-15 -2170 ((-381))) (-15 -2170 ((-381) (-381))) (-15 -3322 ((-381))) (-15 -3322 ((-381) (-381))) (-15 -1463 ((-381))) (-15 -1463 ((-381) (-381))) (-15 -1744 ((-381))) (-15 -1744 ((-381) (-381))) (-15 -2479 ((-381))) (-15 -2479 ((-381) (-381))) (-15 -3628 ($)) (-15 -3803 ($ $)) (-15 -3803 ($ (-1132 (-225)) (-1157))) (-15 -3803 ($ (-1132 (-225)) (-644 (-264)))) (-15 -4352 ((-1132 (-225)) $)) (-15 -4352 ($ $ (-1132 (-225)))) (-15 -3459 ((-1270) $ (-771) (-943 (-225)))) (-15 -4161 ((-644 (-264)) $)) (-15 -4161 ($ $ (-644 (-264)))) (-15 -2356 ((-1270) $ (-771) (-771))) (-15 -2756 ((-1270) $ (-921) (-921))) (-15 -1772 ((-1270) $ (-1157))) (-15 -3083 ((-1270) $ (-771) (-771) (-921) (-921))) (-15 -2882 ((-1270) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2882 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2882 ((-1270) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2882 ((-1270) $ (-566) (-566) (-381) (-381) (-381))) (-15 -2882 ((-1270) $ (-381) (-381))) (-15 -2882 ((-1270) $ (-381) (-381) (-381))) (-15 -3493 ((-1270) $ (-1157))) (-15 -2809 ((-1270) $ (-1157))) (-15 -2308 ((-1270) $ (-1157))) (-15 -1441 ((-1270) $ (-1157))) (-15 -2532 ((-1270) $ (-1157))) (-15 -4016 ((-1270) $ (-381) (-381))) (-15 -4016 ((-1270) $ (-566) (-566))) (-15 -3843 ((-1270) $ (-381))) (-15 -3843 ((-1270) $ (-381) (-381) (-381))) (-15 -3085 ((-1270) $ (-381) (-381))) (-15 -1402 ((-1270) $ (-1157))) (-15 -3909 ((-1270) $ (-381))) (-15 -1351 ((-1270) $ (-381))) (-15 -4102 ((-1270) $ (-1157))) (-15 -1646 ((-1270) $ (-1157))) (-15 -4366 ((-1270) $ (-1157))) (-15 -1594 ((-1270) $ (-381) (-381) (-381))) (-15 -4331 ((-1270) $ (-381))) (-15 -3067 ((-1270) $)) (-15 -2306 ((-1270) $ (-157) (-157))) (-15 -1986 ((-1157) $ (-1157))) (-15 -1986 ((-1157) $ (-1157) (-1157))) (-15 -1986 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -2482 ((-1270) $)) (-15 -3476 ((-566) $))))) (T -1267))
-((-2170 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-2170 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-3322 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-1463 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-1463 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-1744 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-1744 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-2479 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))) (-3628 (*1 *1) (-5 *1 (-1267))) (-3803 (*1 *1 *1) (-5 *1 (-1267))) (-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1267)))) (-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1267)))) (-4352 (*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1267)))) (-4352 (*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1267)))) (-3459 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1267)))) (-4161 (*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1267)))) (-2356 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2756 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-1772 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3083 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2882 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2882 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1267)))) (-2882 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2882 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2882 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2882 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3493 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2809 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2308 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-1441 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2532 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-4016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-4016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3843 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3843 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3909 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-1351 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-4102 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-1646 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-4366 (*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-1594 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-4331 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1267)))) (-2306 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1270)) (-5 *1 (-1267)))) (-1986 (*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1267)))) (-1986 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1267)))) (-1986 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1267)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1267)))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1267)))))
-(-13 (-1099) (-10 -8 (-15 -2170 ((-381))) (-15 -2170 ((-381) (-381))) (-15 -3322 ((-381))) (-15 -3322 ((-381) (-381))) (-15 -1463 ((-381))) (-15 -1463 ((-381) (-381))) (-15 -1744 ((-381))) (-15 -1744 ((-381) (-381))) (-15 -2479 ((-381))) (-15 -2479 ((-381) (-381))) (-15 -3628 ($)) (-15 -3803 ($ $)) (-15 -3803 ($ (-1132 (-225)) (-1157))) (-15 -3803 ($ (-1132 (-225)) (-644 (-264)))) (-15 -4352 ((-1132 (-225)) $)) (-15 -4352 ($ $ (-1132 (-225)))) (-15 -3459 ((-1270) $ (-771) (-943 (-225)))) (-15 -4161 ((-644 (-264)) $)) (-15 -4161 ($ $ (-644 (-264)))) (-15 -2356 ((-1270) $ (-771) (-771))) (-15 -2756 ((-1270) $ (-921) (-921))) (-15 -1772 ((-1270) $ (-1157))) (-15 -3083 ((-1270) $ (-771) (-771) (-921) (-921))) (-15 -2882 ((-1270) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2882 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2882 ((-1270) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2882 ((-1270) $ (-566) (-566) (-381) (-381) (-381))) (-15 -2882 ((-1270) $ (-381) (-381))) (-15 -2882 ((-1270) $ (-381) (-381) (-381))) (-15 -3493 ((-1270) $ (-1157))) (-15 -2809 ((-1270) $ (-1157))) (-15 -2308 ((-1270) $ (-1157))) (-15 -1441 ((-1270) $ (-1157))) (-15 -2532 ((-1270) $ (-1157))) (-15 -4016 ((-1270) $ (-381) (-381))) (-15 -4016 ((-1270) $ (-566) (-566))) (-15 -3843 ((-1270) $ (-381))) (-15 -3843 ((-1270) $ (-381) (-381) (-381))) (-15 -3085 ((-1270) $ (-381) (-381))) (-15 -1402 ((-1270) $ (-1157))) (-15 -3909 ((-1270) $ (-381))) (-15 -1351 ((-1270) $ (-381))) (-15 -4102 ((-1270) $ (-1157))) (-15 -1646 ((-1270) $ (-1157))) (-15 -4366 ((-1270) $ (-1157))) (-15 -1594 ((-1270) $ (-381) (-381) (-381))) (-15 -4331 ((-1270) $ (-381))) (-15 -3067 ((-1270) $)) (-15 -2306 ((-1270) $ (-157) (-157))) (-15 -1986 ((-1157) $ (-1157))) (-15 -1986 ((-1157) $ (-1157) (-1157))) (-15 -1986 ((-1157) $ (-1157) (-644 (-1157)))) (-15 -2482 ((-1270) $)) (-15 -3476 ((-566) $))))
-((-3187 (((-644 (-1157)) (-644 (-1157))) 104) (((-644 (-1157))) 96)) (-2548 (((-644 (-1157))) 94)) (-3752 (((-644 (-921)) (-644 (-921))) 69) (((-644 (-921))) 64)) (-3825 (((-644 (-771)) (-644 (-771))) 61) (((-644 (-771))) 55)) (-2930 (((-1270)) 71)) (-3189 (((-921) (-921)) 87) (((-921)) 86)) (-3060 (((-921) (-921)) 85) (((-921)) 84)) (-1589 (((-874) (-874)) 81) (((-874)) 80)) (-2089 (((-225)) 91) (((-225) (-381)) 93)) (-2527 (((-921)) 88) (((-921) (-921)) 89)) (-3688 (((-921) (-921)) 83) (((-921)) 82)) (-2507 (((-874) (-874)) 75) (((-874)) 73)) (-2155 (((-874) (-874)) 77) (((-874)) 76)) (-4166 (((-874) (-874)) 79) (((-874)) 78)))
-(((-1268) (-10 -7 (-15 -2507 ((-874))) (-15 -2507 ((-874) (-874))) (-15 -2155 ((-874))) (-15 -2155 ((-874) (-874))) (-15 -4166 ((-874))) (-15 -4166 ((-874) (-874))) (-15 -1589 ((-874))) (-15 -1589 ((-874) (-874))) (-15 -3688 ((-921))) (-15 -3688 ((-921) (-921))) (-15 -3825 ((-644 (-771)))) (-15 -3825 ((-644 (-771)) (-644 (-771)))) (-15 -3752 ((-644 (-921)))) (-15 -3752 ((-644 (-921)) (-644 (-921)))) (-15 -2930 ((-1270))) (-15 -3187 ((-644 (-1157)))) (-15 -3187 ((-644 (-1157)) (-644 (-1157)))) (-15 -2548 ((-644 (-1157)))) (-15 -3060 ((-921))) (-15 -3189 ((-921))) (-15 -3060 ((-921) (-921))) (-15 -3189 ((-921) (-921))) (-15 -2527 ((-921) (-921))) (-15 -2527 ((-921))) (-15 -2089 ((-225) (-381))) (-15 -2089 ((-225))))) (T -1268))
-((-2089 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1268)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1268)))) (-2527 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-2527 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-3189 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-3060 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-3189 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-3060 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-2548 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1268)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1268)))) (-3187 (*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1268)))) (-2930 (*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1268)))) (-3752 (*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1268)))) (-3752 (*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1268)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1268)))) (-3825 (*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1268)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-3688 (*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))) (-1589 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))) (-1589 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))) (-4166 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))) (-4166 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))) (-2155 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))) (-2155 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))) (-2507 (*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))))
-(-10 -7 (-15 -2507 ((-874))) (-15 -2507 ((-874) (-874))) (-15 -2155 ((-874))) (-15 -2155 ((-874) (-874))) (-15 -4166 ((-874))) (-15 -4166 ((-874) (-874))) (-15 -1589 ((-874))) (-15 -1589 ((-874) (-874))) (-15 -3688 ((-921))) (-15 -3688 ((-921) (-921))) (-15 -3825 ((-644 (-771)))) (-15 -3825 ((-644 (-771)) (-644 (-771)))) (-15 -3752 ((-644 (-921)))) (-15 -3752 ((-644 (-921)) (-644 (-921)))) (-15 -2930 ((-1270))) (-15 -3187 ((-644 (-1157)))) (-15 -3187 ((-644 (-1157)) (-644 (-1157)))) (-15 -2548 ((-644 (-1157)))) (-15 -3060 ((-921))) (-15 -3189 ((-921))) (-15 -3060 ((-921) (-921))) (-15 -3189 ((-921) (-921))) (-15 -2527 ((-921) (-921))) (-15 -2527 ((-921))) (-15 -2089 ((-225) (-381))) (-15 -2089 ((-225))))
-((-3749 (((-470) (-644 (-644 (-943 (-225)))) (-644 (-264))) 22) (((-470) (-644 (-644 (-943 (-225))))) 21) (((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 20)) (-2497 (((-1266) (-644 (-644 (-943 (-225)))) (-644 (-264))) 33) (((-1266) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264))) 32)) (-2725 (((-1266) (-470)) 48)))
-(((-1269) (-10 -7 (-15 -3749 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -3749 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -3749 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2497 ((-1266) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -2497 ((-1266) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2725 ((-1266) (-470))))) (T -1269))
-((-2725 (*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-1266)) (-5 *1 (-1269)))) (-2497 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-1269)))) (-2497 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-1269)))) (-3749 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1269)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470)) (-5 *1 (-1269)))) (-3749 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874)) (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1269)))))
-(-10 -7 (-15 -3749 ((-470) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -3749 ((-470) (-644 (-644 (-943 (-225)))))) (-15 -3749 ((-470) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2497 ((-1266) (-644 (-644 (-943 (-225)))) (-874) (-874) (-921) (-644 (-264)))) (-15 -2497 ((-1266) (-644 (-644 (-943 (-225)))) (-644 (-264)))) (-15 -2725 ((-1266) (-470))))
-((-4106 (($) 7)) (-2725 (((-862) $) 10)))
-(((-1270) (-13 (-613 (-862)) (-10 -8 (-15 -4106 ($))))) (T -1270))
-((-4106 (*1 *1) (-5 *1 (-1270))))
-(-13 (-613 (-862)) (-10 -8 (-15 -4106 ($))))
-((-2916 (($ $ |#2|) 10)))
-(((-1271 |#1| |#2|) (-10 -8 (-15 -2916 (|#1| |#1| |#2|))) (-1272 |#2|) (-365)) (T -1271))
-NIL
-(-10 -8 (-15 -2916 (|#1| |#1| |#2|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-4356 (((-134)) 33)) (-2725 (((-862) $) 12)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-2817 (((-112) $ $) 6)) (-2916 (($ $ |#1|) 34)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
-(((-1272 |#1|) (-140) (-365)) (T -1272))
-((-2916 (*1 *1 *1 *2) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-365)))) (-4356 (*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
-(-13 (-717 |t#1|) (-10 -8 (-15 -2916 ($ $ |t#1|)) (-15 -4356 ((-134)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-648 |#1|) . T) ((-640 |#1|) . T) ((-717 |#1|) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1099) . T))
-((-3419 (((-644 (-1209 |#1|)) (-1175) (-1209 |#1|)) 83)) (-2733 (((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|))) 63)) (-1918 (((-1 (-1155 (-1209 |#1|)) (-1155 (-1209 |#1|))) (-771) (-1209 |#1|) (-1155 (-1209 |#1|))) 74)) (-2325 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 65)) (-2026 (((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175)) 32)) (-1634 (((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771)) 64)))
-(((-1273 |#1|) (-10 -7 (-15 -2325 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -1634 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -2733 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -2026 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -3419 ((-644 (-1209 |#1|)) (-1175) (-1209 |#1|))) (-15 -1918 ((-1 (-1155 (-1209 |#1|)) (-1155 (-1209 |#1|))) (-771) (-1209 |#1|) (-1155 (-1209 |#1|))))) (-365)) (T -1273))
-((-1918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1209 *6)) (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1273 *6)) (-5 *5 (-1155 *4)))) (-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1209 *5))) (-5 *1 (-1273 *5)) (-5 *4 (-1209 *5)))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4))) (-5 *1 (-1273 *4)) (-4 *4 (-365)))) (-2733 (*1 *2 *3 *4) (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5)))) (-5 *1 (-1273 *5)) (-5 *4 (-1155 (-952 *5))))) (-1634 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1273 *4)) (-4 *4 (-365)))) (-2325 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4)))) (-5 *1 (-1273 *4)) (-4 *4 (-365)))))
-(-10 -7 (-15 -2325 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -1634 ((-1 (-1155 (-952 |#1|)) (-1155 (-952 |#1|))) (-771))) (-15 -2733 ((-1155 (-1155 (-952 |#1|))) (-1175) (-1155 (-952 |#1|)))) (-15 -2026 ((-1 (-1171 (-952 |#1|)) (-952 |#1|)) (-1175))) (-15 -3419 ((-644 (-1209 |#1|)) (-1175) (-1209 |#1|))) (-15 -1918 ((-1 (-1155 (-1209 |#1|)) (-1155 (-1209 |#1|))) (-771) (-1209 |#1|) (-1155 (-1209 |#1|)))))
-((-3018 (((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|) 82)) (-2281 (((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|)))) 81)))
-(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2281 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3018 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|))) (-351) (-1241 |#1|) (-1241 |#2|) (-411 |#2| |#3|)) (T -1274))
-((-3018 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 *3)) (-5 *2 (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-689 *3)))) (-5 *1 (-1274 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5)))) (-2281 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 *4)) (-5 *2 (-2 (|:| -2227 (-689 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-689 *4)))) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5)))))
-(-10 -7 (-15 -2281 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))))) (-15 -3018 ((-2 (|:| -2227 (-689 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-689 |#2|))) |#2|)))
-((-3979 (((-112) $ $) NIL)) (-3821 (((-1134) $) 11)) (-1574 (((-1134) $) 9)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 17) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1275) (-13 (-1082) (-10 -8 (-15 -1574 ((-1134) $)) (-15 -3821 ((-1134) $))))) (T -1275))
-((-1574 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275)))))
-(-13 (-1082) (-10 -8 (-15 -1574 ((-1134) $)) (-15 -3821 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2607 (((-1134) $) 9)) (-2725 (((-862) $) 15) (($ (-1180)) NIL) (((-1180) $) NIL)) (-1479 (((-112) $ $) NIL)) (-2817 (((-112) $ $) NIL)))
-(((-1276) (-13 (-1082) (-10 -8 (-15 -2607 ((-1134) $))))) (T -1276))
-((-2607 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1276)))))
-(-13 (-1082) (-10 -8 (-15 -2607 ((-1134) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 58)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) NIL)) (-3842 (((-112) $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-2725 (((-862) $) 81) (($ (-566)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-2875 (((-771)) NIL T CONST)) (-1678 (((-1270) (-771)) 16)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 37 T CONST)) (-3214 (($) 84 T CONST)) (-2817 (((-112) $ $) 87)) (-2916 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-2905 (($ $) 89) (($ $ $) NIL)) (-2897 (($ $ $) 63)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
-(((-1277 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2916 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1678 ((-1270) (-771))))) (-1049) (-850) (-793) (-949 |#1| |#3| |#2|) (-644 |#2|) (-644 (-771)) (-771)) (T -1277))
-((-2916 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-850)) (-4 *4 (-793)) (-14 *6 (-644 *3)) (-5 *1 (-1277 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-949 *2 *4 *3)) (-14 *7 (-644 (-771))) (-14 *8 (-771)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793)) (-14 *8 (-644 *5)) (-5 *2 (-1270)) (-5 *1 (-1277 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5)) (-14 *9 (-644 *3)) (-14 *10 *3))))
-(-13 (-1049) (-492 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -2916 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1678 ((-1270) (-771)))))
-((-3979 (((-112) $ $) NIL)) (-1424 (((-644 (-2 (|:| -2482 $) (|:| -3099 (-644 |#4|)))) (-644 |#4|)) NIL)) (-3599 (((-644 $) (-644 |#4|)) 96)) (-4170 (((-644 |#3|) $) NIL)) (-1323 (((-112) $) NIL)) (-1494 (((-112) $) NIL (|has| |#1| (-558)))) (-2664 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3351 ((|#4| |#4| $) NIL)) (-3370 (((-2 (|:| |under| $) (|:| -2311 $) (|:| |upper| $)) $ |#3|) NIL)) (-2261 (((-112) $ (-771)) NIL)) (-3281 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2633 (($) NIL T CONST)) (-1740 (((-112) $) NIL (|has| |#1| (-558)))) (-3807 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1312 (((-112) $ $) NIL (|has| |#1| (-558)))) (-1407 (((-112) $) NIL (|has| |#1| (-558)))) (-2924 (((-644 |#4|) (-644 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-4185 (((-644 |#4|) (-644 |#4|) $) 28 (|has| |#1| (-558)))) (-2557 (((-644 |#4|) (-644 |#4|) $) NIL (|has| |#1| (-558)))) (-2023 (((-3 $ "failed") (-644 |#4|)) NIL)) (-3343 (($ (-644 |#4|)) NIL)) (-3781 (((-3 $ "failed") $) 78)) (-1673 ((|#4| |#4| $) 83)) (-3806 (($ $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-1752 (($ |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-3033 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-4315 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-3427 ((|#4| |#4| $) NIL)) (-2553 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4415))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4415))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3706 (((-2 (|:| -2482 (-644 |#4|)) (|:| -3099 (-644 |#4|))) $) NIL)) (-1523 (((-644 |#4|) $) NIL (|has| $ (-6 -4415)))) (-3492 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3779 ((|#3| $) 84)) (-2429 (((-112) $ (-771)) NIL)) (-2565 (((-644 |#4|) $) 32 (|has| $ (-6 -4415)))) (-3938 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099))))) (-3155 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-644 |#4|)) 38)) (-3023 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4416)))) (-2101 (($ (-1 |#4| |#4|) $) NIL)) (-2054 (((-644 |#3|) $) NIL)) (-2314 (((-112) |#3| $) NIL)) (-1864 (((-112) $ (-771)) NIL)) (-1390 (((-1157) $) NIL)) (-1774 (((-3 |#4| "failed") $) NIL)) (-3304 (((-644 |#4|) $) 54)) (-2751 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1642 ((|#4| |#4| $) 82)) (-4249 (((-112) $ $) 93)) (-1670 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-558)))) (-2927 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2117 ((|#4| |#4| $) NIL)) (-1944 (((-1119) $) NIL)) (-3771 (((-3 |#4| "failed") $) 77)) (-3567 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3521 (((-3 $ "failed") $ |#4|) NIL)) (-3964 (($ $ |#4|) NIL)) (-1900 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1754 (($ $ (-644 |#4|) (-644 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099)))) (($ $ (-644 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1099))))) (-4165 (((-112) $ $) NIL)) (-4246 (((-112) $) 75)) (-3906 (($) 46)) (-3838 (((-771) $) NIL)) (-1958 (((-771) |#4| $) NIL (-12 (|has| $ (-6 -4415)) (|has| |#4| (-1099)))) (((-771) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-2878 (($ $) NIL)) (-2150 (((-538) $) NIL (|has| |#4| (-614 (-538))))) (-2738 (($ (-644 |#4|)) NIL)) (-3317 (($ $ |#3|) NIL)) (-3756 (($ $ |#3|) NIL)) (-2352 (($ $) NIL)) (-1811 (($ $ |#3|) NIL)) (-2725 (((-862) $) NIL) (((-644 |#4|) $) 63)) (-3526 (((-771) $) NIL (|has| |#3| (-370)))) (-1765 (((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-644 |#4|)) 45)) (-3423 (((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-644 $) (-644 |#4|)) 74)) (-1479 (((-112) $ $) NIL)) (-3465 (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -3929 (-644 |#4|))) "failed") (-644 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2181 (((-112) $ (-1 (-112) |#4| (-644 |#4|))) NIL)) (-2610 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4415)))) (-1427 (((-644 |#3|) $) NIL)) (-3314 (((-112) |#3| $) NIL)) (-2817 (((-112) $ $) NIL)) (-3991 (((-771) $) NIL (|has| $ (-6 -4415)))))
-(((-1278 |#1| |#2| |#3| |#4|) (-13 (-1208 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3155 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3155 ((-3 $ "failed") (-644 |#4|))) (-15 -1765 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1765 ((-3 $ "failed") (-644 |#4|))) (-15 -3423 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3423 ((-644 $) (-644 |#4|))))) (-558) (-793) (-850) (-1064 |#1| |#2| |#3|)) (T -1278))
-((-3155 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1278 *5 *6 *7 *8)))) (-3155 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1278 *3 *4 *5 *6)))) (-1765 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1278 *5 *6 *7 *8)))) (-1765 (*1 *1 *2) (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1278 *3 *4 *5 *6)))) (-3423 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1278 *6 *7 *8 *9))) (-5 *1 (-1278 *6 *7 *8 *9)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1278 *4 *5 *6 *7))) (-5 *1 (-1278 *4 *5 *6 *7)))))
-(-13 (-1208 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3155 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3155 ((-3 $ "failed") (-644 |#4|))) (-15 -1765 ((-3 $ "failed") (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1765 ((-3 $ "failed") (-644 |#4|))) (-15 -3423 ((-644 $) (-644 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3423 ((-644 $) (-644 |#4|)))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-4113 (((-3 $ "failed") $ $) 20)) (-2633 (($) 18 T CONST)) (-2313 (((-3 $ "failed") $) 37)) (-3842 (((-112) $) 35)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#1|) 45)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
-(((-1279 |#1|) (-140) (-1049)) (T -1279))
-NIL
-(-13 (-1049) (-111 |t#1| |t#1|) (-616 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 |#1|) |has| |#1| (-172)) ((-717 |#1|) |has| |#1| (-172)) ((-726) . T) ((-1051 |#1|) . T) ((-1056 |#1|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T))
-((-3979 (((-112) $ $) 67)) (-3545 (((-112) $) NIL)) (-1509 (((-644 |#1|) $) 52)) (-1728 (($ $ (-771)) 46)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $ (-771)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-2633 (($) NIL T CONST)) (-4060 (($ $ $) 70) (($ $ (-819 |#1|)) 56) (($ $ |#1|) 60)) (-2023 (((-3 (-819 |#1|) "failed") $) NIL)) (-3343 (((-819 |#1|) $) NIL)) (-4358 (($ $) 39)) (-2313 (((-3 $ "failed") $) NIL)) (-2831 (((-112) $) NIL)) (-1491 (($ $) NIL)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-3562 (($ (-819 |#1|) |#2|) 38)) (-3746 (($ $) 40)) (-1816 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 12)) (-2123 (((-819 |#1|) $) NIL)) (-1779 (((-819 |#1|) $) 41)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1324 (($ $ $) 69) (($ $ (-819 |#1|)) 58) (($ $ |#1|) 62)) (-2127 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4323 (((-819 |#1|) $) 35)) (-4334 ((|#2| $) 37)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3838 (((-771) $) 43)) (-3258 (((-112) $) 47)) (-3854 ((|#2| $) NIL)) (-2725 (((-862) $) NIL) (($ (-819 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-566)) NIL)) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-819 |#1|)) NIL)) (-1702 ((|#2| $ $) 76) ((|#2| $ (-819 |#1|)) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 13 T CONST)) (-3214 (($) 19 T CONST)) (-1893 (((-644 (-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2817 (((-112) $ $) 44)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 28)) (** (($ $ (-771)) NIL) (($ $ (-921)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-819 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
-(((-1280 |#1| |#2|) (-13 (-384 |#2| (-819 |#1|)) (-1286 |#1| |#2|)) (-850) (-1049)) (T -1280))
-NIL
-(-13 (-384 |#2| (-819 |#1|)) (-1286 |#1| |#2|))
-((-1565 ((|#3| |#3| (-771)) 30)) (-1535 ((|#3| |#3| (-771)) 36)) (-3973 ((|#3| |#3| |#3| (-771)) 37)))
-(((-1281 |#1| |#2| |#3|) (-10 -7 (-15 -1535 (|#3| |#3| (-771))) (-15 -1565 (|#3| |#3| (-771))) (-15 -3973 (|#3| |#3| |#3| (-771)))) (-13 (-1049) (-717 (-409 (-566)))) (-850) (-1286 |#2| |#1|)) (T -1281))
-((-3973 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1281 *4 *5 *2)) (-4 *2 (-1286 *5 *4)))) (-1565 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1281 *4 *5 *2)) (-4 *2 (-1286 *5 *4)))) (-1535 (*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566))))) (-4 *5 (-850)) (-5 *1 (-1281 *4 *5 *2)) (-4 *2 (-1286 *5 *4)))))
-(-10 -7 (-15 -1535 (|#3| |#3| (-771))) (-15 -1565 (|#3| |#3| (-771))) (-15 -3973 (|#3| |#3| |#3| (-771))))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-1509 (((-644 |#1|) $) 47)) (-4113 (((-3 $ "failed") $ $) 20)) (-4332 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-2633 (($) 18 T CONST)) (-4060 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-2023 (((-3 (-819 |#1|) "failed") $) 71)) (-3343 (((-819 |#1|) $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-2831 (((-112) $) 52)) (-1491 (($ $) 51)) (-3842 (((-112) $) 35)) (-3819 (((-112) $) 57)) (-3562 (($ (-819 |#1|) |#2|) 58)) (-3746 (($ $) 56)) (-1816 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-2123 (((-819 |#1|) $) 68)) (-2101 (($ (-1 |#2| |#2|) $) 48)) (-1324 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3258 (((-112) $) 54)) (-3854 ((|#2| $) 53)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-1702 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1282 |#1| |#2|) (-140) (-850) (-1049)) (T -1282))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4))))) (-1702 (*1 *2 *1 *3) (-12 (-5 *3 (-819 *4)) (-4 *1 (-1282 *4 *2)) (-4 *4 (-850)) (-4 *2 (-1049)))) (-1702 (*1 *2 *1 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-1324 (*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-1324 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-1324 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-4060 (*1 *1 *1 *2) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-4060 (*1 *1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-4060 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3562 (*1 *1 *2 *3) (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1282 *4 *3)) (-4 *3 (-1049)))) (-3819 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-3746 (*1 *1 *1) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-2725 (*1 *1 *2) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049)))) (-2831 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-112)))) (-1491 (*1 *1 *1) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))) (-4332 (*1 *1 *1 *1) (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)) (-4 *3 (-172)))) (-4332 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-4 *4 (-172)))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-1509 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-644 *3)))))
-(-13 (-1049) (-1279 |t#2|) (-1038 (-819 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2123 ((-819 |t#1|) $)) (-15 -1816 ((-2 (|:| |k| (-819 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1702 (|t#2| $ (-819 |t#1|))) (-15 -1702 (|t#2| $ $)) (-15 -1324 ($ $ |t#1|)) (-15 -1324 ($ $ (-819 |t#1|))) (-15 -1324 ($ $ $)) (-15 -4060 ($ $ |t#1|)) (-15 -4060 ($ $ (-819 |t#1|))) (-15 -4060 ($ $ $)) (-15 -3562 ($ (-819 |t#1|) |t#2|)) (-15 -3819 ((-112) $)) (-15 -3746 ($ $)) (-15 -2725 ($ |t#1|)) (-15 -3258 ((-112) $)) (-15 -3854 (|t#2| $)) (-15 -2831 ((-112) $)) (-15 -1491 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -4332 ($ $ $)) (-15 -4332 ($ $ (-771)))) |%noBranch|) (-15 -2101 ($ (-1 |t#2| |t#2|) $)) (-15 -1509 ((-644 |t#1|) $)) (IF (|has| |t#2| (-6 -4408)) (-6 -4408) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 #0=(-819 |#1|)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) |has| |#2| (-172)) ((-717 |#2|) |has| |#2| (-172)) ((-726) . T) ((-1038 #0#) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1279 |#2|) . T))
-((-3004 (((-112) $) 15)) (-3314 (((-112) $) 14)) (-3940 (($ $) 19) (($ $ (-771)) 21)))
-(((-1283 |#1| |#2|) (-10 -8 (-15 -3940 (|#1| |#1| (-771))) (-15 -3940 (|#1| |#1|)) (-15 -3004 ((-112) |#1|)) (-15 -3314 ((-112) |#1|))) (-1284 |#2|) (-365)) (T -1283))
-NIL
-(-10 -8 (-15 -3940 (|#1| |#1| (-771))) (-15 -3940 (|#1| |#1|)) (-15 -3004 ((-112) |#1|)) (-15 -3314 ((-112) |#1|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-2920 (((-2 (|:| -4082 $) (|:| -4402 $) (|:| |associate| $)) $) 47)) (-1780 (($ $) 46)) (-3286 (((-112) $) 44)) (-3004 (((-112) $) 104)) (-2967 (((-771)) 100)) (-4113 (((-3 $ "failed") $ $) 20)) (-2885 (($ $) 81)) (-2555 (((-420 $) $) 80)) (-2068 (((-112) $ $) 65)) (-2633 (($) 18 T CONST)) (-2023 (((-3 |#1| "failed") $) 111)) (-3343 ((|#1| $) 112)) (-3919 (($ $ $) 61)) (-2313 (((-3 $ "failed") $) 37)) (-3930 (($ $ $) 62)) (-3481 (((-2 (|:| -1702 (-644 $)) (|:| -2723 $)) (-644 $)) 57)) (-4205 (($ $ (-771)) 97 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1968 (((-112) $) 79)) (-3077 (((-833 (-921)) $) 94 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3842 (((-112) $) 35)) (-1536 (((-3 (-644 $) "failed") (-644 $) $) 58)) (-1853 (($ $ $) 52) (($ (-644 $)) 51)) (-1390 (((-1157) $) 10)) (-4282 (($ $) 78)) (-4274 (((-112) $) 103)) (-1944 (((-1119) $) 11)) (-4344 (((-1171 $) (-1171 $) (-1171 $)) 50)) (-1885 (($ $ $) 54) (($ (-644 $)) 53)) (-4018 (((-420 $) $) 82)) (-2438 (((-833 (-921))) 101)) (-3403 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2723 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-3967 (((-3 $ "failed") $ $) 48)) (-3654 (((-3 (-644 $) "failed") (-644 $) $) 56)) (-3792 (((-771) $) 64)) (-4301 (((-2 (|:| -2383 $) (|:| -3033 $)) $ $) 63)) (-2816 (((-3 (-771) "failed") $ $) 95 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-4356 (((-134)) 109)) (-3838 (((-833 (-921)) $) 102)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ $) 49) (($ (-409 (-566))) 74) (($ |#1|) 110)) (-2655 (((-3 $ "failed") $) 93 (-2676 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-1597 (((-112) $ $) 45)) (-3314 (((-112) $) 105)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-3940 (($ $) 99 (|has| |#1| (-370))) (($ $ (-771)) 98 (|has| |#1| (-370)))) (-2817 (((-112) $ $) 6)) (-2916 (($ $ $) 73) (($ $ |#1|) 108)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36) (($ $ (-566)) 77)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ $ (-409 (-566))) 76) (($ (-409 (-566)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
-(((-1284 |#1|) (-140) (-365)) (T -1284))
-((-3314 (*1 *2 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-4274 (*1 *2 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-2438 (*1 *2) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))) (-2967 (*1 *2) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-771)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-4 *3 (-370)))))
-(-13 (-365) (-1038 |t#1|) (-1272 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-404)) |%noBranch|) (-15 -3314 ((-112) $)) (-15 -3004 ((-112) $)) (-15 -4274 ((-112) $)) (-15 -3838 ((-833 (-921)) $)) (-15 -2438 ((-833 (-921)))) (-15 -2967 ((-771))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-404)) (-15 -3940 ($ $)) (-15 -3940 ($ $ (-771)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-409 (-566))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2676 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-616 #0#) . T) ((-616 (-566)) . T) ((-616 |#1|) . T) ((-616 $) . T) ((-613 (-862)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-404) -2676 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-454) . T) ((-558) . T) ((-646 #0#) . T) ((-646 (-566)) . T) ((-646 |#1|) . T) ((-646 $) . T) ((-648 #0#) . T) ((-648 |#1|) . T) ((-648 $) . T) ((-640 #0#) . T) ((-640 |#1|) . T) ((-640 $) . T) ((-717 #0#) . T) ((-717 |#1|) . T) ((-717 $) . T) ((-726) . T) ((-920) . T) ((-1038 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1056 #0#) . T) ((-1056 |#1|) . T) ((-1056 $) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1219) . T) ((-1272 |#1|) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-1509 (((-644 |#1|) $) 99)) (-1728 (($ $ (-771)) 103)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-771)) NIL (|has| |#2| (-172)))) (-2633 (($) NIL T CONST)) (-4060 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-2023 (((-3 (-819 |#1|) "failed") $) NIL) (((-3 (-893 |#1|) "failed") $) NIL)) (-3343 (((-819 |#1|) $) NIL) (((-893 |#1|) $) NIL)) (-4358 (($ $) 102)) (-2313 (((-3 $ "failed") $) NIL)) (-2831 (((-112) $) 91)) (-1491 (($ $) 94)) (-3839 (($ $ $ (-771)) 104)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-3562 (($ (-819 |#1|) |#2|) NIL) (($ (-893 |#1|) |#2|) 29)) (-3746 (($ $) 121)) (-1816 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2123 (((-819 |#1|) $) NIL)) (-1779 (((-819 |#1|) $) NIL)) (-2101 (($ (-1 |#2| |#2|) $) NIL)) (-1324 (($ $ |#1|) NIL) (($ $ (-819 |#1|)) NIL) (($ $ $) NIL)) (-1565 (($ $ (-771)) 114 (|has| |#2| (-717 (-409 (-566)))))) (-2127 (((-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|)) $) NIL)) (-4323 (((-893 |#1|) $) 84)) (-4334 ((|#2| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-1535 (($ $ (-771)) 111 (|has| |#2| (-717 (-409 (-566)))))) (-3838 (((-771) $) 100)) (-3258 (((-112) $) 85)) (-3854 ((|#2| $) 89)) (-2725 (((-862) $) 70) (($ (-566)) NIL) (($ |#2|) 60) (($ (-819 |#1|)) NIL) (($ |#1|) 72) (($ (-893 |#1|)) NIL) (($ (-664 |#1| |#2|)) 48) (((-1280 |#1| |#2|) $) 77) (((-1289 |#1| |#2|) $) 82)) (-3624 (((-644 |#2|) $) NIL)) (-3623 ((|#2| $ (-893 |#1|)) NIL)) (-1702 ((|#2| $ (-819 |#1|)) NIL) ((|#2| $ $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 21 T CONST)) (-3214 (($) 28 T CONST)) (-1893 (((-644 (-2 (|:| |k| (-893 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4385 (((-3 (-664 |#1| |#2|) "failed") $) 120)) (-2817 (((-112) $ $) 78)) (-2905 (($ $) 113) (($ $ $) 112)) (-2897 (($ $ $) 20)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-893 |#1|)) NIL)))
-(((-1285 |#1| |#2|) (-13 (-1286 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -2725 ($ (-664 |#1| |#2|))) (-15 -2725 ((-1280 |#1| |#2|) $)) (-15 -2725 ((-1289 |#1| |#2|) $)) (-15 -4385 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -3839 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -1535 ($ $ (-771))) (-15 -1565 ($ $ (-771)))) |%noBranch|))) (-850) (-172)) (T -1285))
-((-2725 (*1 *1 *2) (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)) (-5 *1 (-1285 *3 *4)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1289 *3 *4)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-4385 (*1 *2 *1) (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-3839 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172)))) (-1535 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1285 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172)))) (-1565 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1285 *3 *4)) (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172)))))
-(-13 (-1286 |#1| |#2|) (-384 |#2| (-893 |#1|)) (-10 -8 (-15 -2725 ($ (-664 |#1| |#2|))) (-15 -2725 ((-1280 |#1| |#2|) $)) (-15 -2725 ((-1289 |#1| |#2|) $)) (-15 -4385 ((-3 (-664 |#1| |#2|) "failed") $)) (-15 -3839 ($ $ $ (-771))) (IF (|has| |#2| (-717 (-409 (-566)))) (PROGN (-15 -1535 ($ $ (-771))) (-15 -1565 ($ $ (-771)))) |%noBranch|)))
-((-3979 (((-112) $ $) 7)) (-3545 (((-112) $) 17)) (-1509 (((-644 |#1|) $) 47)) (-1728 (($ $ (-771)) 80)) (-4113 (((-3 $ "failed") $ $) 20)) (-4332 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-771)) 49 (|has| |#2| (-172)))) (-2633 (($) 18 T CONST)) (-4060 (($ $ |#1|) 61) (($ $ (-819 |#1|)) 60) (($ $ $) 59)) (-2023 (((-3 (-819 |#1|) "failed") $) 71)) (-3343 (((-819 |#1|) $) 72)) (-2313 (((-3 $ "failed") $) 37)) (-2831 (((-112) $) 52)) (-1491 (($ $) 51)) (-3842 (((-112) $) 35)) (-3819 (((-112) $) 57)) (-3562 (($ (-819 |#1|) |#2|) 58)) (-3746 (($ $) 56)) (-1816 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) 67)) (-2123 (((-819 |#1|) $) 68)) (-1779 (((-819 |#1|) $) 82)) (-2101 (($ (-1 |#2| |#2|) $) 48)) (-1324 (($ $ |#1|) 64) (($ $ (-819 |#1|)) 63) (($ $ $) 62)) (-1390 (((-1157) $) 10)) (-1944 (((-1119) $) 11)) (-3838 (((-771) $) 81)) (-3258 (((-112) $) 54)) (-3854 ((|#2| $) 53)) (-2725 (((-862) $) 12) (($ (-566)) 33) (($ |#2|) 75) (($ (-819 |#1|)) 70) (($ |#1|) 55)) (-1702 ((|#2| $ (-819 |#1|)) 66) ((|#2| $ $) 65)) (-2875 (((-771)) 32 T CONST)) (-1479 (((-112) $ $) 9)) (-3200 (($) 19 T CONST)) (-3214 (($) 34 T CONST)) (-2817 (((-112) $ $) 6)) (-2905 (($ $) 23) (($ $ $) 22)) (-2897 (($ $ $) 15)) (** (($ $ (-921)) 28) (($ $ (-771)) 36)) (* (($ (-921) $) 14) (($ (-771) $) 16) (($ (-566) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
-(((-1286 |#1| |#2|) (-140) (-850) (-1049)) (T -1286))
-((-1779 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-819 *3)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *2 (-771)))) (-1728 (*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))))
-(-13 (-1282 |t#1| |t#2|) (-10 -8 (-15 -1779 ((-819 |t#1|) $)) (-15 -3838 ((-771) $)) (-15 -1728 ($ $ (-771)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-616 (-566)) . T) ((-616 #0=(-819 |#1|)) . T) ((-616 |#2|) . T) ((-613 (-862)) . T) ((-646 (-566)) . T) ((-646 |#2|) . T) ((-646 $) . T) ((-648 |#2|) . T) ((-648 $) . T) ((-640 |#2|) |has| |#2| (-172)) ((-717 |#2|) |has| |#2| (-172)) ((-726) . T) ((-1038 #0#) . T) ((-1051 |#2|) . T) ((-1056 |#2|) . T) ((-1049) . T) ((-1057) . T) ((-1111) . T) ((-1099) . T) ((-1279 |#2|) . T) ((-1282 |#1| |#2|) . T))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-1509 (((-644 (-1175)) $) NIL)) (-2695 (($ (-1280 (-1175) |#1|)) NIL)) (-1728 (($ $ (-771)) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-771)) NIL (|has| |#1| (-172)))) (-2633 (($) NIL T CONST)) (-4060 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-2023 (((-3 (-819 (-1175)) "failed") $) NIL)) (-3343 (((-819 (-1175)) $) NIL)) (-2313 (((-3 $ "failed") $) NIL)) (-2831 (((-112) $) NIL)) (-1491 (($ $) NIL)) (-3842 (((-112) $) NIL)) (-3819 (((-112) $) NIL)) (-3562 (($ (-819 (-1175)) |#1|) NIL)) (-3746 (($ $) NIL)) (-1816 (((-2 (|:| |k| (-819 (-1175))) (|:| |c| |#1|)) $) NIL)) (-2123 (((-819 (-1175)) $) NIL)) (-1779 (((-819 (-1175)) $) NIL)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-1324 (($ $ (-1175)) NIL) (($ $ (-819 (-1175))) NIL) (($ $ $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3240 (((-1280 (-1175) |#1|) $) NIL)) (-3838 (((-771) $) NIL)) (-3258 (((-112) $) NIL)) (-3854 ((|#1| $) NIL)) (-2725 (((-862) $) NIL) (($ (-566)) NIL) (($ |#1|) NIL) (($ (-819 (-1175))) NIL) (($ (-1175)) NIL)) (-1702 ((|#1| $ (-819 (-1175))) NIL) ((|#1| $ $) NIL)) (-2875 (((-771)) NIL T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) NIL T CONST)) (-3396 (((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $) NIL)) (-3214 (($) NIL T CONST)) (-2817 (((-112) $ $) NIL)) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) NIL)) (** (($ $ (-921)) NIL) (($ $ (-771)) NIL)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1175) $) NIL)))
-(((-1287 |#1|) (-13 (-1286 (-1175) |#1|) (-10 -8 (-15 -3240 ((-1280 (-1175) |#1|) $)) (-15 -2695 ($ (-1280 (-1175) |#1|))) (-15 -3396 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $)))) (-1049)) (T -1287))
-((-3240 (*1 *2 *1) (-12 (-5 *2 (-1280 (-1175) *3)) (-5 *1 (-1287 *3)) (-4 *3 (-1049)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-1280 (-1175) *3)) (-4 *3 (-1049)) (-5 *1 (-1287 *3)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1287 *3))))) (-5 *1 (-1287 *3)) (-4 *3 (-1049)))))
-(-13 (-1286 (-1175) |#1|) (-10 -8 (-15 -3240 ((-1280 (-1175) |#1|) $)) (-15 -2695 ($ (-1280 (-1175) |#1|))) (-15 -3396 ((-644 (-2 (|:| |k| (-1175)) (|:| |c| $))) $))))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) NIL)) (-4113 (((-3 $ "failed") $ $) NIL)) (-2633 (($) NIL T CONST)) (-2023 (((-3 |#2| "failed") $) NIL)) (-3343 ((|#2| $) NIL)) (-4358 (($ $) NIL)) (-2313 (((-3 $ "failed") $) 42)) (-2831 (((-112) $) 35)) (-1491 (($ $) 37)) (-3842 (((-112) $) NIL)) (-2436 (((-771) $) NIL)) (-2966 (((-644 $) $) NIL)) (-3819 (((-112) $) NIL)) (-3562 (($ |#2| |#1|) NIL)) (-2123 ((|#2| $) 24)) (-1779 ((|#2| $) 22)) (-2101 (($ (-1 |#1| |#1|) $) NIL)) (-2127 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-4323 ((|#2| $) NIL)) (-4334 ((|#1| $) NIL)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3258 (((-112) $) 32)) (-3854 ((|#1| $) 33)) (-2725 (((-862) $) 65) (($ (-566)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-3624 (((-644 |#1|) $) NIL)) (-3623 ((|#1| $ |#2|) NIL)) (-1702 ((|#1| $ |#2|) 28)) (-2875 (((-771)) 14 T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 29 T CONST)) (-3214 (($) 11 T CONST)) (-1893 (((-644 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2817 (((-112) $ $) 30)) (-2916 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-2905 (($ $) NIL) (($ $ $) NIL)) (-2897 (($ $ $) 50)) (** (($ $ (-921)) NIL) (($ $ (-771)) 52)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3991 (((-771) $) 16)))
-(((-1288 |#1| |#2|) (-13 (-1049) (-1279 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3991 ((-771) $)) (-15 -1779 (|#2| $)) (-15 -2123 (|#2| $)) (-15 -4358 ($ $)) (-15 -1702 (|#1| $ |#2|)) (-15 -3258 ((-112) $)) (-15 -3854 (|#1| $)) (-15 -2831 ((-112) $)) (-15 -1491 ($ $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -2916 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|))) (-1049) (-846)) (T -1288))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-4358 (*1 *1 *1) (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-2101 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-1288 *3 *4)) (-4 *4 (-846)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-1779 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1288 *3 *2)) (-4 *3 (-1049)))) (-2123 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-1288 *3 *2)) (-4 *3 (-1049)))) (-1702 (*1 *2 *1 *3) (-12 (-4 *2 (-1049)) (-5 *1 (-1288 *2 *3)) (-4 *3 (-846)))) (-3258 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-3854 (*1 *2 *1) (-12 (-4 *2 (-1049)) (-5 *1 (-1288 *2 *3)) (-4 *3 (-846)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-846)))) (-1491 (*1 *1 *1) (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-846)))))
-(-13 (-1049) (-1279 |#1|) (-384 |#1| |#2|) (-616 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3991 ((-771) $)) (-15 -1779 (|#2| $)) (-15 -2123 (|#2| $)) (-15 -4358 ($ $)) (-15 -1702 (|#1| $ |#2|)) (-15 -3258 ((-112) $)) (-15 -3854 (|#1| $)) (-15 -2831 ((-112) $)) (-15 -1491 ($ $)) (-15 -2101 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -2916 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|)))
-((-3979 (((-112) $ $) 27)) (-3545 (((-112) $) NIL)) (-1509 (((-644 |#1|) $) 132)) (-2695 (($ (-1280 |#1| |#2|)) 50)) (-1728 (($ $ (-771)) 38)) (-4113 (((-3 $ "failed") $ $) NIL)) (-4332 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-771)) 52 (|has| |#2| (-172)))) (-2633 (($) NIL T CONST)) (-4060 (($ $ |#1|) 114) (($ $ (-819 |#1|)) 115) (($ $ $) 26)) (-2023 (((-3 (-819 |#1|) "failed") $) NIL)) (-3343 (((-819 |#1|) $) NIL)) (-2313 (((-3 $ "failed") $) 122)) (-2831 (((-112) $) 117)) (-1491 (($ $) 118)) (-3842 (((-112) $) NIL)) (-3819 (((-112) $) NIL)) (-3562 (($ (-819 |#1|) |#2|) 20)) (-3746 (($ $) NIL)) (-1816 (((-2 (|:| |k| (-819 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2123 (((-819 |#1|) $) 123)) (-1779 (((-819 |#1|) $) 126)) (-2101 (($ (-1 |#2| |#2|) $) 131)) (-1324 (($ $ |#1|) 112) (($ $ (-819 |#1|)) 113) (($ $ $) 62)) (-1390 (((-1157) $) NIL)) (-1944 (((-1119) $) NIL)) (-3240 (((-1280 |#1| |#2|) $) 94)) (-3838 (((-771) $) 129)) (-3258 (((-112) $) 81)) (-3854 ((|#2| $) 32)) (-2725 (((-862) $) 73) (($ (-566)) 87) (($ |#2|) 85) (($ (-819 |#1|)) 18) (($ |#1|) 84)) (-1702 ((|#2| $ (-819 |#1|)) 116) ((|#2| $ $) 28)) (-2875 (((-771)) 120 T CONST)) (-1479 (((-112) $ $) NIL)) (-3200 (($) 15 T CONST)) (-3396 (((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-3214 (($) 33 T CONST)) (-2817 (((-112) $ $) 14)) (-2905 (($ $) 98) (($ $ $) 101)) (-2897 (($ $ $) 61)) (** (($ $ (-921)) NIL) (($ $ (-771)) 55)) (* (($ (-921) $) NIL) (($ (-771) $) 53) (($ (-566) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
-(((-1289 |#1| |#2|) (-13 (-1286 |#1| |#2|) (-10 -8 (-15 -3240 ((-1280 |#1| |#2|) $)) (-15 -2695 ($ (-1280 |#1| |#2|))) (-15 -3396 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-850) (-1049)) (T -1289))
-((-3240 (*1 *2 *1) (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))) (-2695 (*1 *1 *2) (-12 (-5 *2 (-1280 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)) (-5 *1 (-1289 *3 *4)))) (-3396 (*1 *2 *1) (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1289 *3 *4))))) (-5 *1 (-1289 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))))
-(-13 (-1286 |#1| |#2|) (-10 -8 (-15 -3240 ((-1280 |#1| |#2|) $)) (-15 -2695 ($ (-1280 |#1| |#2|))) (-15 -3396 ((-644 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-3408 (((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)) 20) (((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|))) 13)))
-(((-1290 |#1|) (-10 -7 (-15 -3408 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -3408 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566)))) (-1215)) (T -1290))
-((-3408 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566)) (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1290 *5)) (-4 *5 (-1215)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1290 *4)) (-4 *4 (-1215)))))
-(-10 -7 (-15 -3408 ((-1155 |#1|) (-1 (-1155 |#1|) (-1155 |#1|)))) (-15 -3408 ((-644 (-1155 |#1|)) (-1 (-644 (-1155 |#1|)) (-644 (-1155 |#1|))) (-566))))
-((-1865 (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|))) 174) (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112)) 173) (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112)) 172) (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 171) (((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-1046 |#1| |#2|)) 156)) (-2395 (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|))) 85) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112)) 84) (((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112)) 83)) (-2555 (((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|)) 73)) (-4391 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 140) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 139) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 138) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112)) 137) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 132)) (-2515 (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|))) 145) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112)) 144) (((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112)) 143) (((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|)) 142)) (-2150 (((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) 111) (((-1171 (-1024 (-409 |#1|))) (-1171 |#1|)) 102) (((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|))) 109) (((-952 (-1024 (-409 |#1|))) (-952 |#1|)) 107) (((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|))) 33)))
-(((-1291 |#1| |#2| |#3|) (-10 -7 (-15 -2395 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2395 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -2395 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2555 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -2150 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -2150 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -2150 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -2150 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -2150 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))))) (-13 (-848) (-308) (-147) (-1022)) (-644 (-1175)) (-644 (-1175))) (T -1291))
-((-2150 (*1 *2 *3) (-12 (-5 *3 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6)))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-780 *4 (-864 *6)))) (-5 *1 (-1291 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-1171 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-1171 (-1024 (-409 *4)))) (-5 *1 (-1291 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *6))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1291 *4 *5 *6)) (-14 *5 (-644 (-1175))))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1291 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-780 *4 (-864 *5))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-780 *4 (-864 *6))) (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-2555 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))) (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1291 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2515 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2515 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2515 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1291 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-4391 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4391 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4391 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-4391 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-1865 (*1 *2 *3) (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *4)) (|:| -2803 (-644 (-952 *4)))))) (-5 *1 (-1291 *4 *5 *6)) (-5 *3 (-644 (-952 *4))) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-1865 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5)))))) (-5 *1 (-1291 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-1865 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5)))))) (-5 *1 (-1291 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-1865 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5)))))) (-5 *1 (-1291 *5 *6 *7)) (-5 *3 (-644 (-952 *5))) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-2 (|:| -2301 (-1171 *4)) (|:| -2803 (-644 (-952 *4)))))) (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175))))) (-2395 (*1 *2 *3) (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1291 *4 *5 *6)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))) (-2395 (*1 *2 *3 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1291 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))) (-2395 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022))) (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1291 *5 *6 *7)) (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175))))))
-(-10 -7 (-15 -2395 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2395 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)) (-112))) (-15 -2395 ((-644 (-1046 |#1| |#2|)) (-644 (-952 |#1|)))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-1046 |#1| |#2|))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)) (-112))) (-15 -1865 ((-644 (-2 (|:| -2301 (-1171 |#1|)) (|:| -2803 (-644 (-952 |#1|))))) (-644 (-952 |#1|)))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112) (-112))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -4391 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-1046 |#1| |#2|))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112) (-112))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)) (-112))) (-15 -2515 ((-644 (-644 (-1024 (-409 |#1|)))) (-644 (-952 |#1|)))) (-15 -2555 ((-644 (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|)))) (-1046 |#1| |#2|))) (-15 -2150 ((-780 |#1| (-864 |#3|)) (-780 |#1| (-864 |#2|)))) (-15 -2150 ((-952 (-1024 (-409 |#1|))) (-952 |#1|))) (-15 -2150 ((-952 (-1024 (-409 |#1|))) (-780 |#1| (-864 |#3|)))) (-15 -2150 ((-1171 (-1024 (-409 |#1|))) (-1171 |#1|))) (-15 -2150 ((-644 (-780 |#1| (-864 |#3|))) (-1145 |#1| (-533 (-864 |#3|)) (-864 |#3|) (-780 |#1| (-864 |#3|))))))
-((-1374 (((-3 (-1265 (-409 (-566))) "failed") (-1265 |#1|) |#1|) 21)) (-2995 (((-112) (-1265 |#1|)) 12)) (-1387 (((-3 (-1265 (-566)) "failed") (-1265 |#1|)) 16)))
-(((-1292 |#1|) (-10 -7 (-15 -2995 ((-112) (-1265 |#1|))) (-15 -1387 ((-3 (-1265 (-566)) "failed") (-1265 |#1|))) (-15 -1374 ((-3 (-1265 (-409 (-566))) "failed") (-1265 |#1|) |#1|))) (-639 (-566))) (T -1292))
-((-1374 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1265 (-409 (-566)))) (-5 *1 (-1292 *4)))) (-1387 (*1 *2 *3) (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-1265 (-566))) (-5 *1 (-1292 *4)))) (-2995 (*1 *2 *3) (-12 (-5 *3 (-1265 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112)) (-5 *1 (-1292 *4)))))
-(-10 -7 (-15 -2995 ((-112) (-1265 |#1|))) (-15 -1387 ((-3 (-1265 (-566)) "failed") (-1265 |#1|))) (-15 -1374 ((-3 (-1265 (-409 (-566))) "failed") (-1265 |#1|) |#1|)))
-((-3979 (((-112) $ $) NIL)) (-3545 (((-112) $) 11)) (-4113 (((-3 $ "failed") $ $) NIL)) (-3733 (((-771)) 8)) (-2633 (($) NIL T CONST)) (-2313 (((-3 $ "failed") $) 58)) (-3424 (($) 49)) (-3842 (((-112) $) 57)) (-3869 (((-3 $ "failed") $) 40)) (-4138 (((-921) $) 15)) (-1390 (((-1157) $) NIL)) (-1342 (($) 32 T CONST)) (-2430 (($ (-921)) 50)) (-1944 (((-1119) $) NIL)) (-2150 (((-566) $) 13)) (-2725 (((-862) $) 27) (($ (-566)) 24)) (-2875 (((-771)) 9 T CONST)) (-1479 (((-112) $ $) 60)) (-3200 (($) 29 T CONST)) (-3214 (($) 31 T CONST)) (-2817 (((-112) $ $) 38)) (-2905 (($ $) 52) (($ $ $) 47)) (-2897 (($ $ $) 35)) (** (($ $ (-921)) NIL) (($ $ (-771)) 54)) (* (($ (-921) $) NIL) (($ (-771) $) NIL) (($ (-566) $) 44) (($ $ $) 43)))
-(((-1293 |#1|) (-13 (-172) (-370) (-614 (-566)) (-1150)) (-921)) (T -1293))
-NIL
-(-13 (-172) (-370) (-614 (-566)) (-1150))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3221293 3221298 3221303 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3221278 3221283 3221288 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3221263 3221268 3221273 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3221248 3221253 3221258 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1293 3220391 3221123 3221200 "ZMOD" 3221205 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1292 3219501 3219665 3219874 "ZLINDEP" 3220223 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1291 3208801 3210569 3212541 "ZDSOLVE" 3217631 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1290 3208047 3208188 3208377 "YSTREAM" 3208647 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1289 3205821 3207348 3207552 "XRPOLY" 3207890 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1288 3202374 3203692 3204267 "XPR" 3205293 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1287 3200095 3201705 3201909 "XPOLY" 3202205 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1286 3197748 3199116 3199171 "XPOLYC" 3199459 NIL XPOLYC (NIL T T) -9 NIL 3199572 NIL) (-1285 3194123 3196265 3196653 "XPBWPOLY" 3197406 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1284 3189818 3192113 3192155 "XF" 3192776 NIL XF (NIL T) -9 NIL 3193176 NIL) (-1283 3189439 3189527 3189696 "XF-" 3189701 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1282 3184635 3185924 3185979 "XFALG" 3188151 NIL XFALG (NIL T T) -9 NIL 3188940 NIL) (-1281 3183768 3183872 3184077 "XEXPPKG" 3184527 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1280 3181877 3183618 3183714 "XDPOLY" 3183719 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1279 3180684 3181284 3181327 "XALG" 3181332 NIL XALG (NIL T) -9 NIL 3181443 NIL) (-1278 3174126 3178661 3179155 "WUTSET" 3180276 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1277 3172382 3173178 3173501 "WP" 3173937 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1276 3171984 3172204 3172274 "WHILEAST" 3172334 T WHILEAST (NIL) -8 NIL NIL NIL) (-1275 3171456 3171701 3171795 "WHEREAST" 3171912 T WHEREAST (NIL) -8 NIL NIL NIL) (-1274 3170342 3170540 3170835 "WFFINTBS" 3171253 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1273 3168246 3168673 3169135 "WEIER" 3169914 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1272 3167292 3167742 3167784 "VSPACE" 3167920 NIL VSPACE (NIL T) -9 NIL 3167994 NIL) (-1271 3167130 3167157 3167248 "VSPACE-" 3167253 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1270 3166938 3166981 3167049 "VOID" 3167084 T VOID (NIL) -8 NIL NIL NIL) (-1269 3165074 3165433 3165839 "VIEW" 3166554 T VIEW (NIL) -7 NIL NIL NIL) (-1268 3161498 3162137 3162874 "VIEWDEF" 3164359 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1267 3150802 3153046 3155219 "VIEW3D" 3159347 T VIEW3D (NIL) -8 NIL NIL NIL) (-1266 3143053 3144713 3146292 "VIEW2D" 3149245 T VIEW2D (NIL) -8 NIL NIL NIL) (-1265 3138405 3142823 3142915 "VECTOR" 3142996 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1264 3136982 3137241 3137559 "VECTOR2" 3138135 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1263 3130456 3134763 3134806 "VECTCAT" 3135801 NIL VECTCAT (NIL T) -9 NIL 3136388 NIL) (-1262 3129470 3129724 3130114 "VECTCAT-" 3130119 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1261 3128924 3129121 3129241 "VARIABLE" 3129385 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1260 3128857 3128862 3128892 "UTYPE" 3128897 T UTYPE (NIL) -9 NIL NIL NIL) (-1259 3127687 3127841 3128103 "UTSODETL" 3128683 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1258 3125127 3125587 3126111 "UTSODE" 3127228 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1257 3116964 3122753 3123242 "UTS" 3124696 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1256 3107838 3113205 3113248 "UTSCAT" 3114360 NIL UTSCAT (NIL T) -9 NIL 3115118 NIL) (-1255 3105185 3105908 3106897 "UTSCAT-" 3106902 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1254 3104812 3104855 3104988 "UTS2" 3105136 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1253 3099038 3101650 3101693 "URAGG" 3103763 NIL URAGG (NIL T) -9 NIL 3104486 NIL) (-1252 3095977 3096840 3097963 "URAGG-" 3097968 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1251 3091686 3094612 3095077 "UPXSSING" 3095641 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1250 3083752 3090933 3091206 "UPXS" 3091471 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1249 3076825 3083656 3083728 "UPXSCONS" 3083733 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1248 3066570 3073363 3073425 "UPXSCCA" 3073999 NIL UPXSCCA (NIL T T) -9 NIL 3074232 NIL) (-1247 3066208 3066293 3066467 "UPXSCCA-" 3066472 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1246 3055805 3062371 3062414 "UPXSCAT" 3063062 NIL UPXSCAT (NIL T) -9 NIL 3063671 NIL) (-1245 3055235 3055314 3055493 "UPXS2" 3055720 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1244 3053889 3054142 3054493 "UPSQFREE" 3054978 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1243 3047310 3050367 3050422 "UPSCAT" 3051583 NIL UPSCAT (NIL T T) -9 NIL 3052357 NIL) (-1242 3046514 3046721 3047048 "UPSCAT-" 3047053 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1241 3032169 3039937 3039980 "UPOLYC" 3042081 NIL UPOLYC (NIL T) -9 NIL 3043302 NIL) (-1240 3023497 3025923 3029070 "UPOLYC-" 3029075 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1239 3023124 3023167 3023300 "UPOLYC2" 3023448 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1238 3014935 3022807 3022936 "UP" 3023043 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1237 3014274 3014381 3014545 "UPMP" 3014824 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1236 3013827 3013908 3014047 "UPDIVP" 3014187 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1235 3012395 3012644 3012960 "UPDECOMP" 3013576 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1234 3011630 3011742 3011927 "UPCDEN" 3012279 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1233 3011149 3011218 3011367 "UP2" 3011555 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1232 3009616 3010353 3010630 "UNISEG" 3010907 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1231 3008831 3008958 3009163 "UNISEG2" 3009459 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1230 3007891 3008071 3008297 "UNIFACT" 3008647 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1229 2991823 3007068 3007319 "ULS" 3007698 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1228 2979821 2991727 2991799 "ULSCONS" 2991804 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1227 2961840 2973825 2973887 "ULSCCAT" 2974525 NIL ULSCCAT (NIL T T) -9 NIL 2974813 NIL) (-1226 2960890 2961135 2961523 "ULSCCAT-" 2961528 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1225 2950264 2956744 2956787 "ULSCAT" 2957650 NIL ULSCAT (NIL T) -9 NIL 2958381 NIL) (-1224 2949694 2949773 2949952 "ULS2" 2950179 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1223 2948821 2949331 2949438 "UINT8" 2949549 T UINT8 (NIL) -8 NIL NIL 2949634) (-1222 2947947 2948457 2948564 "UINT64" 2948675 T UINT64 (NIL) -8 NIL NIL 2948760) (-1221 2947073 2947583 2947690 "UINT32" 2947801 T UINT32 (NIL) -8 NIL NIL 2947886) (-1220 2946199 2946709 2946816 "UINT16" 2946927 T UINT16 (NIL) -8 NIL NIL 2947012) (-1219 2944502 2945459 2945489 "UFD" 2945701 T UFD (NIL) -9 NIL 2945815 NIL) (-1218 2944296 2944342 2944437 "UFD-" 2944442 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1217 2943378 2943561 2943777 "UDVO" 2944102 T UDVO (NIL) -7 NIL NIL NIL) (-1216 2941194 2941603 2942074 "UDPO" 2942942 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1215 2941127 2941132 2941162 "TYPE" 2941167 T TYPE (NIL) -9 NIL NIL NIL) (-1214 2940887 2941082 2941113 "TYPEAST" 2941118 T TYPEAST (NIL) -8 NIL NIL NIL) (-1213 2939858 2940060 2940300 "TWOFACT" 2940681 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1212 2938881 2939267 2939502 "TUPLE" 2939658 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1211 2936572 2937091 2937630 "TUBETOOL" 2938364 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1210 2935421 2935626 2935867 "TUBE" 2936365 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1209 2930150 2934393 2934676 "TS" 2935173 NIL TS (NIL T) -8 NIL NIL NIL) (-1208 2918790 2922909 2923006 "TSETCAT" 2928275 NIL TSETCAT (NIL T T T T) -9 NIL 2929806 NIL) (-1207 2913522 2915122 2917013 "TSETCAT-" 2917018 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1206 2908161 2909008 2909937 "TRMANIP" 2912658 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1205 2907602 2907665 2907828 "TRIMAT" 2908093 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1204 2905468 2905705 2906062 "TRIGMNIP" 2907351 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1203 2904988 2905101 2905131 "TRIGCAT" 2905344 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1202 2904657 2904736 2904877 "TRIGCAT-" 2904882 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1201 2901502 2903515 2903796 "TREE" 2904411 NIL TREE (NIL T) -8 NIL NIL NIL) (-1200 2900776 2901304 2901334 "TRANFUN" 2901369 T TRANFUN (NIL) -9 NIL 2901435 NIL) (-1199 2900055 2900246 2900526 "TRANFUN-" 2900531 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1198 2899859 2899891 2899952 "TOPSP" 2900016 T TOPSP (NIL) -7 NIL NIL NIL) (-1197 2899207 2899322 2899476 "TOOLSIGN" 2899740 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1196 2897841 2898384 2898623 "TEXTFILE" 2898990 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1195 2895753 2896294 2896723 "TEX" 2897434 T TEX (NIL) -8 NIL NIL NIL) (-1194 2895534 2895565 2895637 "TEX1" 2895716 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1193 2895182 2895245 2895335 "TEMUTL" 2895466 T TEMUTL (NIL) -7 NIL NIL NIL) (-1192 2893336 2893616 2893941 "TBCMPPK" 2894905 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1191 2885113 2891496 2891552 "TBAGG" 2891952 NIL TBAGG (NIL T T) -9 NIL 2892163 NIL) (-1190 2880183 2881671 2883425 "TBAGG-" 2883430 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1189 2879567 2879674 2879819 "TANEXP" 2880072 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1188 2872957 2879424 2879517 "TABLE" 2879522 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1187 2872369 2872468 2872606 "TABLEAU" 2872854 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1186 2866977 2868197 2869445 "TABLBUMP" 2871155 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1185 2866199 2866346 2866527 "SYSTEM" 2866818 T SYSTEM (NIL) -8 NIL NIL NIL) (-1184 2862658 2863357 2864140 "SYSSOLP" 2865450 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1183 2862456 2862613 2862644 "SYSPTR" 2862649 T SYSPTR (NIL) -8 NIL NIL NIL) (-1182 2861500 2862005 2862124 "SYSNNI" 2862310 NIL SYSNNI (NIL NIL) -8 NIL NIL 2862395) (-1181 2860807 2861266 2861345 "SYSINT" 2861405 NIL SYSINT (NIL NIL) -8 NIL NIL 2861450) (-1180 2857139 2858085 2858795 "SYNTAX" 2860119 T SYNTAX (NIL) -8 NIL NIL NIL) (-1179 2854297 2854899 2855531 "SYMTAB" 2856529 T SYMTAB (NIL) -8 NIL NIL NIL) (-1178 2849546 2850448 2851431 "SYMS" 2853336 T SYMS (NIL) -8 NIL NIL NIL) (-1177 2846781 2849004 2849234 "SYMPOLY" 2849351 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1176 2846298 2846373 2846496 "SYMFUNC" 2846693 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1175 2842317 2843610 2844423 "SYMBOL" 2845507 T SYMBOL (NIL) -8 NIL NIL NIL) (-1174 2835856 2837545 2839265 "SWITCH" 2840619 T SWITCH (NIL) -8 NIL NIL NIL) (-1173 2829090 2834677 2834980 "SUTS" 2835611 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1172 2821156 2828337 2828610 "SUPXS" 2828875 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1171 2812915 2820774 2820900 "SUP" 2821065 NIL SUP (NIL T) -8 NIL NIL NIL) (-1170 2812074 2812201 2812418 "SUPFRACF" 2812783 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1169 2811695 2811754 2811867 "SUP2" 2812009 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1168 2810143 2810417 2810773 "SUMRF" 2811394 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1167 2809478 2809544 2809736 "SUMFS" 2810064 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1166 2793445 2808655 2808906 "SULS" 2809285 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2793047 2793267 2793337 "SUCHTAST" 2793397 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1164 2792342 2792572 2792712 "SUCH" 2792955 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1163 2786208 2787248 2788207 "SUBSPACE" 2791430 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1162 2785638 2785728 2785892 "SUBRESP" 2786096 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1161 2779003 2780303 2781614 "STTF" 2784374 NIL STTF (NIL T) -7 NIL NIL NIL) (-1160 2773176 2774296 2775443 "STTFNC" 2777903 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1159 2764486 2766358 2768152 "STTAYLOR" 2771417 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1158 2757616 2764350 2764433 "STRTBL" 2764438 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1157 2752980 2757571 2757602 "STRING" 2757607 T STRING (NIL) -8 NIL NIL NIL) (-1156 2747841 2752353 2752383 "STRICAT" 2752442 T STRICAT (NIL) -9 NIL 2752504 NIL) (-1155 2740594 2745460 2746071 "STREAM" 2747265 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1154 2740104 2740181 2740325 "STREAM3" 2740511 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1153 2739086 2739269 2739504 "STREAM2" 2739917 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1152 2738774 2738826 2738919 "STREAM1" 2739028 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1151 2737790 2737971 2738202 "STINPROD" 2738590 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1150 2737342 2737552 2737582 "STEP" 2737662 T STEP (NIL) -9 NIL 2737740 NIL) (-1149 2730774 2737241 2737318 "STBL" 2737323 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1148 2725900 2729995 2730038 "STAGG" 2730191 NIL STAGG (NIL T) -9 NIL 2730280 NIL) (-1147 2723602 2724204 2725076 "STAGG-" 2725081 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1146 2721749 2723372 2723464 "STACK" 2723545 NIL STACK (NIL T) -8 NIL NIL NIL) (-1145 2714444 2719890 2720346 "SREGSET" 2721379 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1144 2706869 2708238 2709751 "SRDCMPK" 2713050 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1143 2699786 2704309 2704339 "SRAGG" 2705642 T SRAGG (NIL) -9 NIL 2706250 NIL) (-1142 2698803 2699058 2699437 "SRAGG-" 2699442 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1141 2693263 2697750 2698171 "SQMATRIX" 2698429 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1140 2686948 2689981 2690708 "SPLTREE" 2692608 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1139 2682911 2683604 2684250 "SPLNODE" 2686374 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1138 2681958 2682191 2682221 "SPFCAT" 2682665 T SPFCAT (NIL) -9 NIL NIL NIL) (-1137 2680695 2680905 2681169 "SPECOUT" 2681716 T SPECOUT (NIL) -7 NIL NIL NIL) (-1136 2672321 2674091 2674121 "SPADXPT" 2678513 T SPADXPT (NIL) -9 NIL 2680547 NIL) (-1135 2672082 2672122 2672191 "SPADPRSR" 2672274 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1134 2670237 2672037 2672068 "SPADAST" 2672073 T SPADAST (NIL) -8 NIL NIL NIL) (-1133 2662182 2663955 2663998 "SPACEC" 2668371 NIL SPACEC (NIL T) -9 NIL 2670187 NIL) (-1132 2660312 2662114 2662163 "SPACE3" 2662168 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1131 2659064 2659235 2659526 "SORTPAK" 2660117 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1130 2657156 2657459 2657871 "SOLVETRA" 2658728 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1129 2656206 2656428 2656689 "SOLVESER" 2656929 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1128 2651510 2652398 2653393 "SOLVERAD" 2655258 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1127 2647325 2647934 2648663 "SOLVEFOR" 2650877 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1126 2641595 2646674 2646771 "SNTSCAT" 2646776 NIL SNTSCAT (NIL T T T T) -9 NIL 2646846 NIL) (-1125 2635701 2639918 2640309 "SMTS" 2641285 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1124 2630385 2635589 2635666 "SMP" 2635671 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1123 2628544 2628845 2629243 "SMITH" 2630082 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1122 2621257 2625453 2625556 "SMATCAT" 2626907 NIL SMATCAT (NIL NIL T T T) -9 NIL 2627457 NIL) (-1121 2618197 2619020 2620198 "SMATCAT-" 2620203 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1120 2615863 2617433 2617476 "SKAGG" 2617737 NIL SKAGG (NIL T) -9 NIL 2617872 NIL) (-1119 2612174 2615279 2615474 "SINT" 2615661 T SINT (NIL) -8 NIL NIL 2615834) (-1118 2611946 2611984 2612050 "SIMPAN" 2612130 T SIMPAN (NIL) -7 NIL NIL NIL) (-1117 2611225 2611481 2611621 "SIG" 2611828 T SIG (NIL) -8 NIL NIL NIL) (-1116 2610063 2610284 2610559 "SIGNRF" 2610984 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1115 2608896 2609047 2609331 "SIGNEF" 2609892 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1114 2608202 2608479 2608603 "SIGAST" 2608794 T SIGAST (NIL) -8 NIL NIL NIL) (-1113 2605891 2606346 2606852 "SHP" 2607743 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1112 2599743 2605792 2605868 "SHDP" 2605873 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1111 2599316 2599508 2599538 "SGROUP" 2599631 T SGROUP (NIL) -9 NIL 2599693 NIL) (-1110 2599174 2599200 2599273 "SGROUP-" 2599278 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1109 2596009 2596707 2597430 "SGCF" 2598473 T SGCF (NIL) -7 NIL NIL NIL) (-1108 2590377 2595456 2595553 "SFRTCAT" 2595558 NIL SFRTCAT (NIL T T T T) -9 NIL 2595597 NIL) (-1107 2583798 2584816 2585952 "SFRGCD" 2589360 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1106 2576924 2577997 2579183 "SFQCMPK" 2582731 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1105 2576544 2576633 2576744 "SFORT" 2576865 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1104 2575662 2576384 2576505 "SEXOF" 2576510 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1103 2574769 2575543 2575611 "SEX" 2575616 T SEX (NIL) -8 NIL NIL NIL) (-1102 2570282 2570997 2571092 "SEXCAT" 2574029 NIL SEXCAT (NIL T T T T T) -9 NIL 2574607 NIL) (-1101 2567435 2570216 2570264 "SET" 2570269 NIL SET (NIL T) -8 NIL NIL NIL) (-1100 2565659 2566148 2566453 "SETMN" 2567176 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1099 2565155 2565307 2565337 "SETCAT" 2565513 T SETCAT (NIL) -9 NIL 2565623 NIL) (-1098 2564847 2564925 2565055 "SETCAT-" 2565060 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1097 2561208 2563308 2563351 "SETAGG" 2564221 NIL SETAGG (NIL T) -9 NIL 2564561 NIL) (-1096 2560666 2560782 2561019 "SETAGG-" 2561024 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1095 2560109 2560362 2560463 "SEQAST" 2560587 T SEQAST (NIL) -8 NIL NIL NIL) (-1094 2559308 2559602 2559663 "SEGXCAT" 2559949 NIL SEGXCAT (NIL T T) -9 NIL 2560069 NIL) (-1093 2558314 2558974 2559156 "SEG" 2559161 NIL SEG (NIL T) -8 NIL NIL NIL) (-1092 2557293 2557507 2557550 "SEGCAT" 2558072 NIL SEGCAT (NIL T) -9 NIL 2558293 NIL) (-1091 2556294 2556672 2556872 "SEGBIND" 2557128 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1090 2555915 2555974 2556087 "SEGBIND2" 2556229 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1089 2555488 2555716 2555793 "SEGAST" 2555860 T SEGAST (NIL) -8 NIL NIL NIL) (-1088 2554707 2554833 2555037 "SEG2" 2555332 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1087 2554117 2554642 2554689 "SDVAR" 2554694 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1086 2546644 2553887 2554017 "SDPOL" 2554022 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1085 2545237 2545503 2545822 "SCPKG" 2546359 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1084 2544401 2544573 2544765 "SCOPE" 2545067 T SCOPE (NIL) -8 NIL NIL NIL) (-1083 2543621 2543755 2543934 "SCACHE" 2544256 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1082 2543267 2543453 2543483 "SASTCAT" 2543488 T SASTCAT (NIL) -9 NIL 2543501 NIL) (-1081 2542754 2543102 2543178 "SAOS" 2543213 T SAOS (NIL) -8 NIL NIL NIL) (-1080 2542319 2542354 2542527 "SAERFFC" 2542713 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1079 2536258 2542216 2542296 "SAE" 2542301 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1078 2535851 2535886 2536045 "SAEFACT" 2536217 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1077 2534172 2534486 2534887 "RURPK" 2535517 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1076 2532809 2533115 2533420 "RULESET" 2534006 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1075 2530032 2530562 2531020 "RULE" 2532490 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1074 2529644 2529826 2529909 "RULECOLD" 2529984 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1073 2529434 2529462 2529533 "RTVALUE" 2529595 T RTVALUE (NIL) -8 NIL NIL NIL) (-1072 2528905 2529151 2529245 "RSTRCAST" 2529362 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1071 2523753 2524548 2525468 "RSETGCD" 2528104 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1070 2512983 2518062 2518159 "RSETCAT" 2522278 NIL RSETCAT (NIL T T T T) -9 NIL 2523375 NIL) (-1069 2510910 2511449 2512273 "RSETCAT-" 2512278 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1068 2503295 2504672 2506192 "RSDCMPK" 2509509 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1067 2501274 2501741 2501815 "RRCC" 2502901 NIL RRCC (NIL T T) -9 NIL 2503245 NIL) (-1066 2500625 2500799 2501078 "RRCC-" 2501083 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1065 2500068 2500321 2500422 "RPTAST" 2500546 T RPTAST (NIL) -8 NIL NIL NIL) (-1064 2473919 2483276 2483343 "RPOLCAT" 2494007 NIL RPOLCAT (NIL T T T) -9 NIL 2497166 NIL) (-1063 2465417 2467757 2470879 "RPOLCAT-" 2470884 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1062 2456348 2463628 2464110 "ROUTINE" 2464957 T ROUTINE (NIL) -8 NIL NIL NIL) (-1061 2453146 2455974 2456114 "ROMAN" 2456230 T ROMAN (NIL) -8 NIL NIL NIL) (-1060 2451390 2452006 2452266 "ROIRC" 2452951 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1059 2447622 2449906 2449936 "RNS" 2450240 T RNS (NIL) -9 NIL 2450514 NIL) (-1058 2446131 2446514 2447048 "RNS-" 2447123 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1057 2445534 2445942 2445972 "RNG" 2445977 T RNG (NIL) -9 NIL 2445998 NIL) (-1056 2444933 2445321 2445364 "RMODULE" 2445369 NIL RMODULE (NIL T) -9 NIL 2445396 NIL) (-1055 2443769 2443863 2444199 "RMCAT2" 2444834 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1054 2440619 2443115 2443412 "RMATRIX" 2443531 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1053 2433446 2435706 2435821 "RMATCAT" 2439180 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2440162 NIL) (-1052 2432821 2432968 2433275 "RMATCAT-" 2433280 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1051 2432222 2432443 2432486 "RLINSET" 2432680 NIL RLINSET (NIL T) -9 NIL 2432771 NIL) (-1050 2431789 2431864 2431992 "RINTERP" 2432141 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1049 2430847 2431401 2431431 "RING" 2431487 T RING (NIL) -9 NIL 2431579 NIL) (-1048 2430639 2430683 2430780 "RING-" 2430785 NIL RING- (NIL T) -8 NIL NIL NIL) (-1047 2429480 2429717 2429975 "RIDIST" 2430403 T RIDIST (NIL) -7 NIL NIL NIL) (-1046 2420769 2428948 2429154 "RGCHAIN" 2429328 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1045 2420119 2420525 2420566 "RGBCSPC" 2420624 NIL RGBCSPC (NIL T) -9 NIL 2420676 NIL) (-1044 2419277 2419658 2419699 "RGBCMDL" 2419931 NIL RGBCMDL (NIL T) -9 NIL 2420045 NIL) (-1043 2416271 2416885 2417555 "RF" 2418641 NIL RF (NIL T) -7 NIL NIL NIL) (-1042 2415917 2415980 2416083 "RFFACTOR" 2416202 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1041 2415642 2415677 2415774 "RFFACT" 2415876 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1040 2413759 2414123 2414505 "RFDIST" 2415282 T RFDIST (NIL) -7 NIL NIL NIL) (-1039 2413212 2413304 2413467 "RETSOL" 2413661 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1038 2412848 2412928 2412971 "RETRACT" 2413104 NIL RETRACT (NIL T) -9 NIL 2413191 NIL) (-1037 2412697 2412722 2412809 "RETRACT-" 2412814 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1036 2412299 2412519 2412589 "RETAST" 2412649 T RETAST (NIL) -8 NIL NIL NIL) (-1035 2405037 2411952 2412079 "RESULT" 2412194 T RESULT (NIL) -8 NIL NIL NIL) (-1034 2403628 2404306 2404505 "RESRING" 2404940 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1033 2403264 2403313 2403411 "RESLATC" 2403565 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1032 2402969 2403004 2403111 "REPSQ" 2403223 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1031 2400391 2400971 2401573 "REP" 2402389 T REP (NIL) -7 NIL NIL NIL) (-1030 2400088 2400123 2400234 "REPDB" 2400350 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1029 2393988 2395377 2396600 "REP2" 2398900 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1028 2390365 2391046 2391854 "REP1" 2393215 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1027 2383061 2388506 2388962 "REGSET" 2389995 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1026 2381826 2382209 2382459 "REF" 2382846 NIL REF (NIL T) -8 NIL NIL NIL) (-1025 2381203 2381306 2381473 "REDORDER" 2381710 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1024 2377171 2380416 2380643 "RECLOS" 2381031 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1023 2376223 2376404 2376619 "REALSOLV" 2376978 T REALSOLV (NIL) -7 NIL NIL NIL) (-1022 2376069 2376110 2376140 "REAL" 2376145 T REAL (NIL) -9 NIL 2376180 NIL) (-1021 2372552 2373354 2374238 "REAL0Q" 2375234 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1020 2368153 2369141 2370202 "REAL0" 2371533 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1019 2367624 2367870 2367964 "RDUCEAST" 2368081 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1018 2367029 2367101 2367308 "RDIV" 2367546 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1017 2366097 2366271 2366484 "RDIST" 2366851 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1016 2364694 2364981 2365353 "RDETRS" 2365805 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1015 2362506 2362960 2363498 "RDETR" 2364236 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1014 2361131 2361409 2361806 "RDEEFS" 2362222 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1013 2359640 2359946 2360371 "RDEEF" 2360819 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1012 2353701 2356621 2356651 "RCFIELD" 2357946 T RCFIELD (NIL) -9 NIL 2358677 NIL) (-1011 2351765 2352269 2352965 "RCFIELD-" 2353040 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1010 2348034 2349866 2349909 "RCAGG" 2350993 NIL RCAGG (NIL T) -9 NIL 2351458 NIL) (-1009 2347662 2347756 2347919 "RCAGG-" 2347924 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1008 2346997 2347109 2347274 "RATRET" 2347546 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1007 2346550 2346617 2346738 "RATFACT" 2346925 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1006 2345858 2345978 2346130 "RANDSRC" 2346420 T RANDSRC (NIL) -7 NIL NIL NIL) (-1005 2345592 2345636 2345709 "RADUTIL" 2345807 T RADUTIL (NIL) -7 NIL NIL NIL) (-1004 2338708 2344425 2344735 "RADIX" 2345316 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1003 2330327 2338550 2338680 "RADFF" 2338685 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1002 2329974 2330049 2330079 "RADCAT" 2330239 T RADCAT (NIL) -9 NIL NIL NIL) (-1001 2329756 2329804 2329904 "RADCAT-" 2329909 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1000 2327856 2329528 2329619 "QUEUE" 2329700 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-999 2324397 2327793 2327838 "QUAT" 2327843 NIL QUAT (NIL T) -8 NIL NIL NIL) (-998 2324035 2324078 2324205 "QUATCT2" 2324348 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-997 2317497 2320842 2320882 "QUATCAT" 2321662 NIL QUATCAT (NIL T) -9 NIL 2322428 NIL) (-996 2313641 2314678 2316065 "QUATCAT-" 2316159 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-995 2311114 2312725 2312766 "QUAGG" 2313141 NIL QUAGG (NIL T) -9 NIL 2313316 NIL) (-994 2310719 2310939 2311007 "QQUTAST" 2311066 T QQUTAST (NIL) -8 NIL NIL NIL) (-993 2309617 2310117 2310289 "QFORM" 2310591 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-992 2300622 2305861 2305901 "QFCAT" 2306559 NIL QFCAT (NIL T) -9 NIL 2307560 NIL) (-991 2296194 2297395 2298986 "QFCAT-" 2299080 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-990 2295832 2295875 2296002 "QFCAT2" 2296145 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-989 2295292 2295402 2295532 "QEQUAT" 2295722 T QEQUAT (NIL) -8 NIL NIL NIL) (-988 2288438 2289511 2290695 "QCMPACK" 2294225 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-987 2285987 2286435 2286863 "QALGSET" 2288093 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-986 2285232 2285406 2285638 "QALGSET2" 2285807 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-985 2283922 2284146 2284463 "PWFFINTB" 2285005 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-984 2282104 2282272 2282626 "PUSHVAR" 2283736 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-983 2278022 2279076 2279117 "PTRANFN" 2281001 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-982 2276424 2276715 2277037 "PTPACK" 2277733 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-981 2276056 2276113 2276222 "PTFUNC2" 2276361 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-980 2270533 2274928 2274969 "PTCAT" 2275265 NIL PTCAT (NIL T) -9 NIL 2275418 NIL) (-979 2270191 2270226 2270350 "PSQFR" 2270492 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-978 2268786 2269084 2269418 "PSEUDLIN" 2269889 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-977 2255549 2257920 2260244 "PSETPK" 2266546 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-976 2248567 2251307 2251403 "PSETCAT" 2254424 NIL PSETCAT (NIL T T T T) -9 NIL 2255238 NIL) (-975 2246403 2247037 2247858 "PSETCAT-" 2247863 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-974 2245752 2245917 2245945 "PSCURVE" 2246213 T PSCURVE (NIL) -9 NIL 2246380 NIL) (-973 2241750 2243266 2243331 "PSCAT" 2244175 NIL PSCAT (NIL T T T) -9 NIL 2244415 NIL) (-972 2240813 2241029 2241429 "PSCAT-" 2241434 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-971 2239518 2240178 2240383 "PRTITION" 2240628 T PRTITION (NIL) -8 NIL NIL NIL) (-970 2238993 2239239 2239331 "PRTDAST" 2239446 T PRTDAST (NIL) -8 NIL NIL NIL) (-969 2228082 2230297 2232485 "PRS" 2236855 NIL PRS (NIL T T) -7 NIL NIL NIL) (-968 2225893 2227432 2227472 "PRQAGG" 2227655 NIL PRQAGG (NIL T) -9 NIL 2227757 NIL) (-967 2225097 2225402 2225430 "PROPLOG" 2225677 T PROPLOG (NIL) -9 NIL 2225843 NIL) (-966 2223527 2224048 2224305 "PROPFRML" 2224873 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-965 2222996 2223103 2223231 "PROPERTY" 2223419 T PROPERTY (NIL) -8 NIL NIL NIL) (-964 2217054 2221162 2221982 "PRODUCT" 2222222 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-963 2214332 2216512 2216746 "PR" 2216865 NIL PR (NIL T T) -8 NIL NIL NIL) (-962 2214128 2214160 2214219 "PRINT" 2214293 T PRINT (NIL) -7 NIL NIL NIL) (-961 2213468 2213585 2213737 "PRIMES" 2214008 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-960 2211533 2211934 2212400 "PRIMELT" 2213047 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-959 2211262 2211311 2211339 "PRIMCAT" 2211463 T PRIMCAT (NIL) -9 NIL NIL NIL) (-958 2207377 2211200 2211245 "PRIMARR" 2211250 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-957 2206384 2206562 2206790 "PRIMARR2" 2207195 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-956 2206027 2206083 2206194 "PREASSOC" 2206322 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-955 2205502 2205635 2205663 "PPCURVE" 2205868 T PPCURVE (NIL) -9 NIL 2206004 NIL) (-954 2205097 2205297 2205380 "PORTNUM" 2205439 T PORTNUM (NIL) -8 NIL NIL NIL) (-953 2202456 2202855 2203447 "POLYROOT" 2204678 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-952 2196638 2202060 2202220 "POLY" 2202329 NIL POLY (NIL T) -8 NIL NIL NIL) (-951 2196021 2196079 2196313 "POLYLIFT" 2196574 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-950 2192296 2192745 2193374 "POLYCATQ" 2195566 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-949 2179008 2184136 2184201 "POLYCAT" 2187715 NIL POLYCAT (NIL T T T) -9 NIL 2189593 NIL) (-948 2172457 2174319 2176703 "POLYCAT-" 2176708 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-947 2172044 2172112 2172232 "POLY2UP" 2172383 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-946 2171676 2171733 2171842 "POLY2" 2171981 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-945 2170361 2170600 2170876 "POLUTIL" 2171450 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-944 2168716 2168993 2169324 "POLTOPOL" 2170083 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-943 2164181 2168652 2168698 "POINT" 2168703 NIL POINT (NIL T) -8 NIL NIL NIL) (-942 2162368 2162725 2163100 "PNTHEORY" 2163826 T PNTHEORY (NIL) -7 NIL NIL NIL) (-941 2160826 2161123 2161522 "PMTOOLS" 2162066 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-940 2160419 2160497 2160614 "PMSYM" 2160742 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-939 2159929 2159998 2160172 "PMQFCAT" 2160344 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-938 2159284 2159394 2159550 "PMPRED" 2159806 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-937 2158677 2158763 2158925 "PMPREDFS" 2159185 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-936 2157341 2157549 2157927 "PMPLCAT" 2158439 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-935 2156873 2156952 2157104 "PMLSAGG" 2157256 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-934 2156346 2156422 2156604 "PMKERNEL" 2156791 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-933 2155963 2156038 2156151 "PMINS" 2156265 NIL PMINS (NIL T) -7 NIL NIL NIL) (-932 2155405 2155474 2155683 "PMFS" 2155888 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-931 2154633 2154751 2154956 "PMDOWN" 2155282 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-930 2153800 2153958 2154139 "PMASS" 2154472 T PMASS (NIL) -7 NIL NIL NIL) (-929 2153073 2153183 2153346 "PMASSFS" 2153687 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-928 2152728 2152796 2152890 "PLOTTOOL" 2152999 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-927 2147335 2148539 2149687 "PLOT" 2151600 T PLOT (NIL) -8 NIL NIL NIL) (-926 2143139 2144183 2145104 "PLOT3D" 2146434 T PLOT3D (NIL) -8 NIL NIL NIL) (-925 2142051 2142228 2142463 "PLOT1" 2142943 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-924 2117440 2122117 2126968 "PLEQN" 2137317 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-923 2116758 2116880 2117060 "PINTERP" 2117305 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-922 2116451 2116498 2116601 "PINTERPA" 2116705 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-921 2115672 2116220 2116307 "PI" 2116347 T PI (NIL) -8 NIL NIL 2116414) (-920 2113969 2114944 2114972 "PID" 2115154 T PID (NIL) -9 NIL 2115288 NIL) (-919 2113720 2113757 2113832 "PICOERCE" 2113926 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-918 2113040 2113179 2113355 "PGROEB" 2113576 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-917 2108627 2109441 2110346 "PGE" 2112155 T PGE (NIL) -7 NIL NIL NIL) (-916 2106750 2106997 2107363 "PGCD" 2108344 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-915 2106088 2106191 2106352 "PFRPAC" 2106634 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-914 2102728 2104636 2104989 "PFR" 2105767 NIL PFR (NIL T) -8 NIL NIL NIL) (-913 2101117 2101361 2101686 "PFOTOOLS" 2102475 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-912 2099650 2099889 2100240 "PFOQ" 2100874 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-911 2098151 2098363 2098719 "PFO" 2099434 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-910 2094704 2098040 2098109 "PF" 2098114 NIL PF (NIL NIL) -8 NIL NIL NIL) (-909 2092038 2093309 2093337 "PFECAT" 2093922 T PFECAT (NIL) -9 NIL 2094306 NIL) (-908 2091483 2091637 2091851 "PFECAT-" 2091856 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-907 2090086 2090338 2090639 "PFBRU" 2091232 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-906 2087952 2088304 2088736 "PFBR" 2089737 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-905 2083834 2085328 2086004 "PERM" 2087309 NIL PERM (NIL T) -8 NIL NIL NIL) (-904 2079068 2080041 2080911 "PERMGRP" 2082997 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-903 2077174 2078131 2078172 "PERMCAT" 2078618 NIL PERMCAT (NIL T) -9 NIL 2078923 NIL) (-902 2076827 2076868 2076992 "PERMAN" 2077127 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-901 2074315 2076492 2076614 "PENDTREE" 2076738 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-900 2072339 2073107 2073148 "PDRING" 2073805 NIL PDRING (NIL T) -9 NIL 2074091 NIL) (-899 2071442 2071660 2072022 "PDRING-" 2072027 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-898 2068657 2069435 2070103 "PDEPROB" 2070794 T PDEPROB (NIL) -8 NIL NIL NIL) (-897 2066202 2066706 2067261 "PDEPACK" 2068122 T PDEPACK (NIL) -7 NIL NIL NIL) (-896 2065114 2065304 2065555 "PDECOMP" 2066001 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-895 2062693 2063536 2063564 "PDECAT" 2064351 T PDECAT (NIL) -9 NIL 2065064 NIL) (-894 2062444 2062477 2062567 "PCOMP" 2062654 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-893 2060622 2061245 2061542 "PBWLB" 2062173 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-892 2053095 2054695 2056033 "PATTERN" 2059305 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-891 2052727 2052784 2052893 "PATTERN2" 2053032 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-890 2050484 2050872 2051329 "PATTERN1" 2052316 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-889 2047852 2048433 2048914 "PATRES" 2050049 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-888 2047416 2047483 2047615 "PATRES2" 2047779 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-887 2045299 2045704 2046111 "PATMATCH" 2047083 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-886 2044809 2045018 2045059 "PATMAB" 2045166 NIL PATMAB (NIL T) -9 NIL 2045249 NIL) (-885 2043327 2043663 2043921 "PATLRES" 2044614 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-884 2042873 2042996 2043037 "PATAB" 2043042 NIL PATAB (NIL T) -9 NIL 2043214 NIL) (-883 2040354 2040886 2041459 "PARTPERM" 2042320 T PARTPERM (NIL) -7 NIL NIL NIL) (-882 2039975 2040038 2040140 "PARSURF" 2040285 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-881 2039607 2039664 2039773 "PARSU2" 2039912 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-880 2039371 2039411 2039478 "PARSER" 2039560 T PARSER (NIL) -7 NIL NIL NIL) (-879 2038992 2039055 2039157 "PARSCURV" 2039302 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-878 2038624 2038681 2038790 "PARSC2" 2038929 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-877 2038263 2038321 2038418 "PARPCURV" 2038560 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-876 2037895 2037952 2038061 "PARPC2" 2038200 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-875 2037415 2037501 2037620 "PAN2EXPR" 2037796 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-874 2036192 2036536 2036764 "PALETTE" 2037207 T PALETTE (NIL) -8 NIL NIL NIL) (-873 2034585 2035197 2035557 "PAIR" 2035878 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-872 2028455 2033844 2034038 "PADICRC" 2034440 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-871 2021684 2027801 2027985 "PADICRAT" 2028303 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-870 2019999 2021621 2021666 "PADIC" 2021671 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-869 2017109 2018673 2018713 "PADICCT" 2019294 NIL PADICCT (NIL NIL) -9 NIL 2019576 NIL) (-868 2016066 2016266 2016534 "PADEPAC" 2016896 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-867 2015278 2015411 2015617 "PADE" 2015928 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-866 2013665 2014486 2014766 "OWP" 2015082 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-865 2013158 2013371 2013468 "OVERSET" 2013588 T OVERSET (NIL) -8 NIL NIL NIL) (-864 2012204 2012763 2012935 "OVAR" 2013026 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-863 2011468 2011589 2011750 "OUT" 2012063 T OUT (NIL) -7 NIL NIL NIL) (-862 2000340 2002577 2004777 "OUTFORM" 2009288 T OUTFORM (NIL) -8 NIL NIL NIL) (-861 1999676 1999937 2000064 "OUTBFILE" 2000233 T OUTBFILE (NIL) -8 NIL NIL NIL) (-860 1998983 1999148 1999176 "OUTBCON" 1999494 T OUTBCON (NIL) -9 NIL 1999660 NIL) (-859 1998584 1998696 1998853 "OUTBCON-" 1998858 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-858 1997964 1998313 1998402 "OSI" 1998515 T OSI (NIL) -8 NIL NIL NIL) (-857 1997494 1997832 1997860 "OSGROUP" 1997865 T OSGROUP (NIL) -9 NIL 1997887 NIL) (-856 1996239 1996466 1996751 "ORTHPOL" 1997241 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-855 1993790 1996074 1996195 "OREUP" 1996200 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-854 1991193 1993481 1993608 "ORESUP" 1993732 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-853 1988721 1989221 1989782 "OREPCTO" 1990682 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-852 1982407 1984608 1984649 "OREPCAT" 1986997 NIL OREPCAT (NIL T) -9 NIL 1988101 NIL) (-851 1979554 1980336 1981394 "OREPCAT-" 1981399 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-850 1978705 1979003 1979031 "ORDSET" 1979340 T ORDSET (NIL) -9 NIL 1979504 NIL) (-849 1978136 1978284 1978508 "ORDSET-" 1978513 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-848 1976701 1977492 1977520 "ORDRING" 1977722 T ORDRING (NIL) -9 NIL 1977847 NIL) (-847 1976346 1976440 1976584 "ORDRING-" 1976589 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-846 1975726 1976189 1976217 "ORDMON" 1976222 T ORDMON (NIL) -9 NIL 1976243 NIL) (-845 1974888 1975035 1975230 "ORDFUNS" 1975575 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-844 1974226 1974645 1974673 "ORDFIN" 1974738 T ORDFIN (NIL) -9 NIL 1974812 NIL) (-843 1970785 1972812 1973221 "ORDCOMP" 1973850 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-842 1970051 1970178 1970364 "ORDCOMP2" 1970645 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-841 1966632 1967542 1968356 "OPTPROB" 1969257 T OPTPROB (NIL) -8 NIL NIL NIL) (-840 1963434 1964073 1964777 "OPTPACK" 1965948 T OPTPACK (NIL) -7 NIL NIL NIL) (-839 1961121 1961887 1961915 "OPTCAT" 1962734 T OPTCAT (NIL) -9 NIL 1963384 NIL) (-838 1960505 1960798 1960903 "OPSIG" 1961036 T OPSIG (NIL) -8 NIL NIL NIL) (-837 1960273 1960312 1960378 "OPQUERY" 1960459 T OPQUERY (NIL) -7 NIL NIL NIL) (-836 1957404 1958584 1959088 "OP" 1959802 NIL OP (NIL T) -8 NIL NIL NIL) (-835 1956778 1957004 1957045 "OPERCAT" 1957257 NIL OPERCAT (NIL T) -9 NIL 1957354 NIL) (-834 1956533 1956589 1956706 "OPERCAT-" 1956711 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-833 1953346 1955330 1955699 "ONECOMP" 1956197 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-832 1952651 1952766 1952940 "ONECOMP2" 1953218 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-831 1952070 1952176 1952306 "OMSERVER" 1952541 T OMSERVER (NIL) -7 NIL NIL NIL) (-830 1948932 1951510 1951550 "OMSAGG" 1951611 NIL OMSAGG (NIL T) -9 NIL 1951675 NIL) (-829 1947555 1947818 1948100 "OMPKG" 1948670 T OMPKG (NIL) -7 NIL NIL NIL) (-828 1946985 1947088 1947116 "OM" 1947415 T OM (NIL) -9 NIL NIL NIL) (-827 1945532 1946534 1946703 "OMLO" 1946866 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-826 1944492 1944639 1944859 "OMEXPR" 1945358 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-825 1943783 1944038 1944174 "OMERR" 1944376 T OMERR (NIL) -8 NIL NIL NIL) (-824 1942934 1943204 1943364 "OMERRK" 1943643 T OMERRK (NIL) -8 NIL NIL NIL) (-823 1942385 1942611 1942719 "OMENC" 1942846 T OMENC (NIL) -8 NIL NIL NIL) (-822 1936280 1937465 1938636 "OMDEV" 1941234 T OMDEV (NIL) -8 NIL NIL NIL) (-821 1935349 1935520 1935714 "OMCONN" 1936106 T OMCONN (NIL) -8 NIL NIL NIL) (-820 1933870 1934846 1934874 "OINTDOM" 1934879 T OINTDOM (NIL) -9 NIL 1934900 NIL) (-819 1929649 1930860 1931576 "OFMONOID" 1933186 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-818 1929060 1929586 1929631 "ODVAR" 1929636 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-817 1926483 1928805 1928960 "ODR" 1928965 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-816 1919064 1926259 1926385 "ODPOL" 1926390 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-815 1912886 1918936 1919041 "ODP" 1919046 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-814 1911652 1911867 1912142 "ODETOOLS" 1912660 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-813 1908619 1909277 1909993 "ODESYS" 1910985 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-812 1903501 1904409 1905434 "ODERTRIC" 1907694 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-811 1902927 1903009 1903203 "ODERED" 1903413 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-810 1899815 1900363 1901040 "ODERAT" 1902350 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-809 1896772 1897239 1897836 "ODEPRRIC" 1899344 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-808 1894715 1895311 1895797 "ODEPROB" 1896306 T ODEPROB (NIL) -8 NIL NIL NIL) (-807 1891235 1891720 1892367 "ODEPRIM" 1894194 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-806 1890484 1890586 1890846 "ODEPAL" 1891127 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-805 1886646 1887437 1888301 "ODEPACK" 1889640 T ODEPACK (NIL) -7 NIL NIL NIL) (-804 1885707 1885814 1886036 "ODEINT" 1886535 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-803 1879808 1881233 1882680 "ODEIFTBL" 1884280 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-802 1875206 1875992 1876944 "ODEEF" 1878967 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-801 1874555 1874644 1874867 "ODECONST" 1875111 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-800 1872680 1873341 1873369 "ODECAT" 1873974 T ODECAT (NIL) -9 NIL 1874505 NIL) (-799 1869552 1872392 1872511 "OCT" 1872593 NIL OCT (NIL T) -8 NIL NIL NIL) (-798 1869190 1869233 1869360 "OCTCT2" 1869503 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-797 1863839 1866274 1866314 "OC" 1867411 NIL OC (NIL T) -9 NIL 1868269 NIL) (-796 1861066 1861814 1862804 "OC-" 1862898 NIL OC- (NIL T T) -8 NIL NIL NIL) (-795 1860418 1860886 1860914 "OCAMON" 1860919 T OCAMON (NIL) -9 NIL 1860940 NIL) (-794 1859949 1860290 1860318 "OASGP" 1860323 T OASGP (NIL) -9 NIL 1860343 NIL) (-793 1859210 1859699 1859727 "OAMONS" 1859767 T OAMONS (NIL) -9 NIL 1859810 NIL) (-792 1858624 1859057 1859085 "OAMON" 1859090 T OAMON (NIL) -9 NIL 1859110 NIL) (-791 1857882 1858400 1858428 "OAGROUP" 1858433 T OAGROUP (NIL) -9 NIL 1858453 NIL) (-790 1857572 1857622 1857710 "NUMTUBE" 1857826 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-789 1851145 1852663 1854199 "NUMQUAD" 1856056 T NUMQUAD (NIL) -7 NIL NIL NIL) (-788 1846901 1847889 1848914 "NUMODE" 1850140 T NUMODE (NIL) -7 NIL NIL NIL) (-787 1844256 1845136 1845164 "NUMINT" 1846087 T NUMINT (NIL) -9 NIL 1846851 NIL) (-786 1843204 1843401 1843619 "NUMFMT" 1844058 T NUMFMT (NIL) -7 NIL NIL NIL) (-785 1829563 1832508 1835040 "NUMERIC" 1840711 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-784 1823933 1829012 1829107 "NTSCAT" 1829112 NIL NTSCAT (NIL T T T T) -9 NIL 1829151 NIL) (-783 1823127 1823292 1823485 "NTPOLFN" 1823772 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-782 1811204 1819952 1820764 "NSUP" 1822348 NIL NSUP (NIL T) -8 NIL NIL NIL) (-781 1810836 1810893 1811002 "NSUP2" 1811141 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-780 1801064 1810610 1810743 "NSMP" 1810748 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-779 1799496 1799797 1800154 "NREP" 1800752 NIL NREP (NIL T) -7 NIL NIL NIL) (-778 1798087 1798339 1798697 "NPCOEF" 1799239 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-777 1797153 1797268 1797484 "NORMRETR" 1797968 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-776 1795194 1795484 1795893 "NORMPK" 1796861 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-775 1794879 1794907 1795031 "NORMMA" 1795160 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-774 1794679 1794836 1794865 "NONE" 1794870 T NONE (NIL) -8 NIL NIL NIL) (-773 1794468 1794497 1794566 "NONE1" 1794643 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-772 1793965 1794027 1794206 "NODE1" 1794400 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-771 1792250 1793101 1793356 "NNI" 1793703 T NNI (NIL) -8 NIL NIL 1793938) (-770 1790670 1790983 1791347 "NLINSOL" 1791918 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-769 1786911 1787906 1788805 "NIPROB" 1789791 T NIPROB (NIL) -8 NIL NIL NIL) (-768 1785668 1785902 1786204 "NFINTBAS" 1786673 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-767 1784842 1785318 1785359 "NETCLT" 1785531 NIL NETCLT (NIL T) -9 NIL 1785613 NIL) (-766 1783550 1783781 1784062 "NCODIV" 1784610 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-765 1783312 1783349 1783424 "NCNTFRAC" 1783507 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-764 1781492 1781856 1782276 "NCEP" 1782937 NIL NCEP (NIL T) -7 NIL NIL NIL) (-763 1780343 1781116 1781144 "NASRING" 1781254 T NASRING (NIL) -9 NIL 1781334 NIL) (-762 1780138 1780182 1780276 "NASRING-" 1780281 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-761 1779245 1779770 1779798 "NARNG" 1779915 T NARNG (NIL) -9 NIL 1780006 NIL) (-760 1778937 1779004 1779138 "NARNG-" 1779143 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-759 1777816 1778023 1778258 "NAGSP" 1778722 T NAGSP (NIL) -7 NIL NIL NIL) (-758 1769088 1770772 1772445 "NAGS" 1776163 T NAGS (NIL) -7 NIL NIL NIL) (-757 1767636 1767944 1768275 "NAGF07" 1768777 T NAGF07 (NIL) -7 NIL NIL NIL) (-756 1762174 1763465 1764772 "NAGF04" 1766349 T NAGF04 (NIL) -7 NIL NIL NIL) (-755 1755142 1756756 1758389 "NAGF02" 1760561 T NAGF02 (NIL) -7 NIL NIL NIL) (-754 1750366 1751466 1752583 "NAGF01" 1754045 T NAGF01 (NIL) -7 NIL NIL NIL) (-753 1743994 1745560 1747145 "NAGE04" 1748801 T NAGE04 (NIL) -7 NIL NIL NIL) (-752 1735163 1737284 1739414 "NAGE02" 1741884 T NAGE02 (NIL) -7 NIL NIL NIL) (-751 1731116 1732063 1733027 "NAGE01" 1734219 T NAGE01 (NIL) -7 NIL NIL NIL) (-750 1728911 1729445 1730003 "NAGD03" 1730578 T NAGD03 (NIL) -7 NIL NIL NIL) (-749 1720661 1722589 1724543 "NAGD02" 1726977 T NAGD02 (NIL) -7 NIL NIL NIL) (-748 1714472 1715897 1717337 "NAGD01" 1719241 T NAGD01 (NIL) -7 NIL NIL NIL) (-747 1710681 1711503 1712340 "NAGC06" 1713655 T NAGC06 (NIL) -7 NIL NIL NIL) (-746 1709146 1709478 1709834 "NAGC05" 1710345 T NAGC05 (NIL) -7 NIL NIL NIL) (-745 1708522 1708641 1708785 "NAGC02" 1709022 T NAGC02 (NIL) -7 NIL NIL NIL) (-744 1707481 1708064 1708104 "NAALG" 1708183 NIL NAALG (NIL T) -9 NIL 1708244 NIL) (-743 1707316 1707345 1707435 "NAALG-" 1707440 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-742 1701266 1702374 1703561 "MULTSQFR" 1706212 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-741 1700585 1700660 1700844 "MULTFACT" 1701178 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-740 1693309 1697222 1697275 "MTSCAT" 1698345 NIL MTSCAT (NIL T T) -9 NIL 1698860 NIL) (-739 1693021 1693075 1693167 "MTHING" 1693249 NIL MTHING (NIL T) -7 NIL NIL NIL) (-738 1692813 1692846 1692906 "MSYSCMD" 1692981 T MSYSCMD (NIL) -7 NIL NIL NIL) (-737 1688895 1691568 1691888 "MSET" 1692526 NIL MSET (NIL T) -8 NIL NIL NIL) (-736 1685964 1688456 1688497 "MSETAGG" 1688502 NIL MSETAGG (NIL T) -9 NIL 1688536 NIL) (-735 1681805 1683343 1684088 "MRING" 1685264 NIL MRING (NIL T T) -8 NIL NIL NIL) (-734 1681371 1681438 1681569 "MRF2" 1681732 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-733 1680989 1681024 1681168 "MRATFAC" 1681330 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-732 1678601 1678896 1679327 "MPRFF" 1680694 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-731 1672898 1678455 1678552 "MPOLY" 1678557 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-730 1672388 1672423 1672631 "MPCPF" 1672857 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-729 1671902 1671945 1672129 "MPC3" 1672339 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1671097 1671178 1671399 "MPC2" 1671817 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-727 1669398 1669735 1670125 "MONOTOOL" 1670757 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-726 1668623 1668940 1668968 "MONOID" 1669187 T MONOID (NIL) -9 NIL 1669334 NIL) (-725 1668169 1668288 1668469 "MONOID-" 1668474 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-724 1658644 1664595 1664654 "MONOGEN" 1665328 NIL MONOGEN (NIL T T) -9 NIL 1665784 NIL) (-723 1655862 1656597 1657597 "MONOGEN-" 1657716 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-722 1654695 1655141 1655169 "MONADWU" 1655561 T MONADWU (NIL) -9 NIL 1655799 NIL) (-721 1654067 1654226 1654474 "MONADWU-" 1654479 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-720 1653426 1653670 1653698 "MONAD" 1653905 T MONAD (NIL) -9 NIL 1654017 NIL) (-719 1653111 1653189 1653321 "MONAD-" 1653326 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-718 1651400 1652024 1652303 "MOEBIUS" 1652864 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-717 1650678 1651082 1651122 "MODULE" 1651127 NIL MODULE (NIL T) -9 NIL 1651166 NIL) (-716 1650246 1650342 1650532 "MODULE-" 1650537 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-715 1647926 1648610 1648937 "MODRING" 1650070 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-714 1644870 1646031 1646552 "MODOP" 1647455 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-713 1643458 1643937 1644214 "MODMONOM" 1644733 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-712 1633499 1641749 1642163 "MODMON" 1643095 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-711 1630655 1632343 1632619 "MODFIELD" 1633374 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1629632 1629936 1630126 "MMLFORM" 1630485 T MMLFORM (NIL) -8 NIL NIL NIL) (-709 1629158 1629201 1629380 "MMAP" 1629583 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-708 1627237 1628004 1628045 "MLO" 1628468 NIL MLO (NIL T) -9 NIL 1628710 NIL) (-707 1624603 1625119 1625721 "MLIFT" 1626718 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-706 1623994 1624078 1624232 "MKUCFUNC" 1624514 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-705 1623593 1623663 1623786 "MKRECORD" 1623917 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-704 1622640 1622802 1623030 "MKFUNC" 1623404 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-703 1622028 1622132 1622288 "MKFLCFN" 1622523 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-702 1621305 1621407 1621592 "MKBCFUNC" 1621921 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-701 1618012 1620859 1620995 "MINT" 1621189 T MINT (NIL) -8 NIL NIL NIL) (-700 1616824 1617067 1617344 "MHROWRED" 1617767 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-699 1612203 1615359 1615764 "MFLOAT" 1616439 T MFLOAT (NIL) -8 NIL NIL NIL) (-698 1611560 1611636 1611807 "MFINFACT" 1612115 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-697 1607875 1608723 1609607 "MESH" 1610696 T MESH (NIL) -7 NIL NIL NIL) (-696 1606265 1606577 1606930 "MDDFACT" 1607562 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-695 1603060 1605424 1605465 "MDAGG" 1605720 NIL MDAGG (NIL T) -9 NIL 1605863 NIL) (-694 1592800 1602353 1602560 "MCMPLX" 1602873 T MCMPLX (NIL) -8 NIL NIL NIL) (-693 1591941 1592087 1592287 "MCDEN" 1592649 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-692 1589831 1590101 1590481 "MCALCFN" 1591671 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-691 1588756 1588996 1589229 "MAYBE" 1589637 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-690 1586368 1586891 1587453 "MATSTOR" 1588227 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-689 1582325 1585740 1585988 "MATRIX" 1586153 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-688 1578089 1578798 1579534 "MATLIN" 1581682 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-687 1568195 1571381 1571458 "MATCAT" 1576338 NIL MATCAT (NIL T T T) -9 NIL 1577755 NIL) (-686 1564551 1565572 1566928 "MATCAT-" 1566933 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-685 1563145 1563298 1563631 "MATCAT2" 1564386 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-684 1561257 1561581 1561965 "MAPPKG3" 1562820 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-683 1560238 1560411 1560633 "MAPPKG2" 1561081 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-682 1558737 1559021 1559348 "MAPPKG1" 1559944 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-681 1557816 1558143 1558320 "MAPPAST" 1558580 T MAPPAST (NIL) -8 NIL NIL NIL) (-680 1557427 1557485 1557608 "MAPHACK3" 1557752 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-679 1557019 1557080 1557194 "MAPHACK2" 1557359 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-678 1556456 1556560 1556702 "MAPHACK1" 1556910 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-677 1554535 1555156 1555460 "MAGMA" 1556184 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-676 1554014 1554259 1554350 "MACROAST" 1554464 T MACROAST (NIL) -8 NIL NIL NIL) (-675 1550432 1552253 1552714 "M3D" 1553586 NIL M3D (NIL T) -8 NIL NIL NIL) (-674 1544538 1548801 1548842 "LZSTAGG" 1549624 NIL LZSTAGG (NIL T) -9 NIL 1549919 NIL) (-673 1540495 1541669 1543126 "LZSTAGG-" 1543131 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-672 1537582 1538386 1538873 "LWORD" 1540040 NIL LWORD (NIL T) -8 NIL NIL NIL) (-671 1537158 1537386 1537461 "LSTAST" 1537527 T LSTAST (NIL) -8 NIL NIL NIL) (-670 1530324 1536929 1537063 "LSQM" 1537068 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-669 1529548 1529687 1529915 "LSPP" 1530179 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-668 1527360 1527661 1528117 "LSMP" 1529237 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-667 1524139 1524813 1525543 "LSMP1" 1526662 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-666 1518016 1523306 1523347 "LSAGG" 1523409 NIL LSAGG (NIL T) -9 NIL 1523487 NIL) (-665 1514711 1515635 1516848 "LSAGG-" 1516853 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-664 1512310 1513855 1514104 "LPOLY" 1514506 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-663 1511892 1511977 1512100 "LPEFRAC" 1512219 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-662 1510213 1510986 1511239 "LO" 1511724 NIL LO (NIL T T T) -8 NIL NIL NIL) (-661 1509865 1509977 1510005 "LOGIC" 1510116 T LOGIC (NIL) -9 NIL 1510197 NIL) (-660 1509727 1509750 1509821 "LOGIC-" 1509826 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-659 1508920 1509060 1509253 "LODOOPS" 1509583 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-658 1506343 1508836 1508902 "LODO" 1508907 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-657 1504881 1505116 1505469 "LODOF" 1506090 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-656 1501099 1503530 1503571 "LODOCAT" 1504009 NIL LODOCAT (NIL T) -9 NIL 1504220 NIL) (-655 1500832 1500890 1501017 "LODOCAT-" 1501022 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-654 1498152 1500673 1500791 "LODO2" 1500796 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-653 1495587 1498089 1498134 "LODO1" 1498139 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-652 1494468 1494633 1494938 "LODEEF" 1495410 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-651 1489707 1492598 1492639 "LNAGG" 1493586 NIL LNAGG (NIL T) -9 NIL 1494030 NIL) (-650 1488854 1489068 1489410 "LNAGG-" 1489415 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-649 1484990 1485779 1486418 "LMOPS" 1488269 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-648 1484393 1484781 1484822 "LMODULE" 1484827 NIL LMODULE (NIL T) -9 NIL 1484853 NIL) (-647 1481591 1484038 1484161 "LMDICT" 1484303 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-646 1480997 1481218 1481259 "LLINSET" 1481450 NIL LLINSET (NIL T) -9 NIL 1481541 NIL) (-645 1480696 1480905 1480965 "LITERAL" 1480970 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-644 1473859 1479630 1479934 "LIST" 1480425 NIL LIST (NIL T) -8 NIL NIL NIL) (-643 1473384 1473458 1473597 "LIST3" 1473779 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-642 1472391 1472569 1472797 "LIST2" 1473202 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-641 1470525 1470837 1471236 "LIST2MAP" 1472038 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-640 1470121 1470358 1470399 "LINSET" 1470404 NIL LINSET (NIL T) -9 NIL 1470438 NIL) (-639 1468782 1469452 1469493 "LINEXP" 1469748 NIL LINEXP (NIL T) -9 NIL 1469897 NIL) (-638 1467429 1467689 1467986 "LINDEP" 1468534 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-637 1464196 1464915 1465692 "LIMITRF" 1466684 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-636 1462499 1462795 1463204 "LIMITPS" 1463891 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-635 1456927 1462010 1462238 "LIE" 1462320 NIL LIE (NIL T T) -8 NIL NIL NIL) (-634 1455875 1456344 1456384 "LIECAT" 1456524 NIL LIECAT (NIL T) -9 NIL 1456675 NIL) (-633 1455716 1455743 1455831 "LIECAT-" 1455836 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-632 1448212 1455165 1455330 "LIB" 1455571 T LIB (NIL) -8 NIL NIL NIL) (-631 1443847 1444730 1445665 "LGROBP" 1447329 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-630 1441845 1442119 1442469 "LF" 1443568 NIL LF (NIL T T) -7 NIL NIL NIL) (-629 1440685 1441377 1441405 "LFCAT" 1441612 T LFCAT (NIL) -9 NIL 1441751 NIL) (-628 1437587 1438217 1438905 "LEXTRIPK" 1440049 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-627 1434331 1435157 1435660 "LEXP" 1437167 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-626 1433807 1434052 1434144 "LETAST" 1434259 T LETAST (NIL) -8 NIL NIL NIL) (-625 1432205 1432518 1432919 "LEADCDET" 1433489 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-624 1431395 1431469 1431698 "LAZM3PK" 1432126 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-623 1426312 1429472 1430010 "LAUPOL" 1430907 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-622 1425891 1425935 1426096 "LAPLACE" 1426262 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-621 1423830 1424992 1425243 "LA" 1425724 NIL LA (NIL T T T) -8 NIL NIL NIL) (-620 1422824 1423408 1423449 "LALG" 1423511 NIL LALG (NIL T) -9 NIL 1423570 NIL) (-619 1422538 1422597 1422733 "LALG-" 1422738 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-618 1422373 1422397 1422438 "KVTFROM" 1422500 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-617 1421296 1421740 1421925 "KTVLOGIC" 1422208 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-616 1421131 1421155 1421196 "KRCFROM" 1421258 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-615 1420035 1420222 1420521 "KOVACIC" 1420931 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-614 1419870 1419894 1419935 "KONVERT" 1419997 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-613 1419705 1419729 1419770 "KOERCE" 1419832 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-612 1417535 1418298 1418675 "KERNEL" 1419361 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-611 1417031 1417112 1417244 "KERNEL2" 1417449 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-610 1410801 1415570 1415624 "KDAGG" 1416001 NIL KDAGG (NIL T T) -9 NIL 1416207 NIL) (-609 1410330 1410454 1410659 "KDAGG-" 1410664 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-608 1403478 1409991 1410146 "KAFILE" 1410208 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-607 1397906 1402989 1403217 "JORDAN" 1403299 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-606 1397285 1397555 1397676 "JOINAST" 1397805 T JOINAST (NIL) -8 NIL NIL NIL) (-605 1397131 1397190 1397245 "JAVACODE" 1397250 T JAVACODE (NIL) -8 NIL NIL NIL) (-604 1393383 1395336 1395390 "IXAGG" 1396319 NIL IXAGG (NIL T T) -9 NIL 1396778 NIL) (-603 1392302 1392608 1393027 "IXAGG-" 1393032 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-602 1387832 1392224 1392283 "IVECTOR" 1392288 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-601 1386598 1386835 1387101 "ITUPLE" 1387599 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-600 1385100 1385277 1385572 "ITRIGMNP" 1386420 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-599 1383845 1384049 1384332 "ITFUN3" 1384876 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-598 1383477 1383534 1383643 "ITFUN2" 1383782 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-597 1381279 1382339 1382638 "ITAYLOR" 1383211 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-596 1370224 1375416 1376579 "ISUPS" 1380149 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-595 1369328 1369468 1369704 "ISUMP" 1370071 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-594 1364542 1369129 1369208 "ISTRING" 1369281 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-593 1364018 1364263 1364355 "ISAST" 1364470 T ISAST (NIL) -8 NIL NIL NIL) (-592 1363227 1363309 1363525 "IRURPK" 1363932 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-591 1362163 1362364 1362604 "IRSN" 1363007 T IRSN (NIL) -7 NIL NIL NIL) (-590 1360234 1360589 1361018 "IRRF2F" 1361801 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-589 1359981 1360019 1360095 "IRREDFFX" 1360190 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-588 1358596 1358855 1359154 "IROOT" 1359714 NIL IROOT (NIL T) -7 NIL NIL NIL) (-587 1355200 1356280 1356972 "IR" 1357936 NIL IR (NIL T) -8 NIL NIL NIL) (-586 1352813 1353308 1353874 "IR2" 1354678 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-585 1351913 1352026 1352240 "IR2F" 1352696 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-584 1351704 1351738 1351798 "IPRNTPK" 1351873 T IPRNTPK (NIL) -7 NIL NIL NIL) (-583 1348285 1351593 1351662 "IPF" 1351667 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-582 1346612 1348210 1348267 "IPADIC" 1348272 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-581 1345924 1346172 1346302 "IP4ADDR" 1346502 T IP4ADDR (NIL) -8 NIL NIL NIL) (-580 1345397 1345628 1345738 "IOMODE" 1345834 T IOMODE (NIL) -8 NIL NIL NIL) (-579 1344470 1344994 1345121 "IOBFILE" 1345290 T IOBFILE (NIL) -8 NIL NIL NIL) (-578 1343958 1344374 1344402 "IOBCON" 1344407 T IOBCON (NIL) -9 NIL 1344428 NIL) (-577 1343469 1343527 1343710 "INVLAPLA" 1343894 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-576 1333117 1335471 1337857 "INTTR" 1341133 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-575 1329452 1330194 1331059 "INTTOOLS" 1332302 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-574 1329038 1329129 1329246 "INTSLPE" 1329355 T INTSLPE (NIL) -7 NIL NIL NIL) (-573 1326991 1328961 1329020 "INTRVL" 1329025 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-572 1324593 1325105 1325680 "INTRF" 1326476 NIL INTRF (NIL T) -7 NIL NIL NIL) (-571 1324004 1324101 1324243 "INTRET" 1324491 NIL INTRET (NIL T) -7 NIL NIL NIL) (-570 1322001 1322390 1322860 "INTRAT" 1323612 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-569 1319264 1319847 1320466 "INTPM" 1321486 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-568 1316009 1316608 1317346 "INTPAF" 1318650 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-567 1311188 1312150 1313201 "INTPACK" 1314978 T INTPACK (NIL) -7 NIL NIL NIL) (-566 1308136 1310985 1311094 "INT" 1311099 T INT (NIL) -8 NIL NIL NIL) (-565 1307388 1307540 1307748 "INTHERTR" 1307978 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-564 1306827 1306907 1307095 "INTHERAL" 1307302 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-563 1304673 1305116 1305573 "INTHEORY" 1306390 T INTHEORY (NIL) -7 NIL NIL NIL) (-562 1296079 1297700 1299472 "INTG0" 1303025 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-561 1276652 1281442 1286252 "INTFTBL" 1291289 T INTFTBL (NIL) -8 NIL NIL NIL) (-560 1275901 1276039 1276212 "INTFACT" 1276511 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-559 1273328 1273774 1274331 "INTEF" 1275455 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-558 1271695 1272434 1272462 "INTDOM" 1272763 T INTDOM (NIL) -9 NIL 1272970 NIL) (-557 1271064 1271238 1271480 "INTDOM-" 1271485 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-556 1267452 1269380 1269434 "INTCAT" 1270233 NIL INTCAT (NIL T) -9 NIL 1270554 NIL) (-555 1266924 1267027 1267155 "INTBIT" 1267344 T INTBIT (NIL) -7 NIL NIL NIL) (-554 1265623 1265777 1266084 "INTALG" 1266769 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-553 1265106 1265196 1265353 "INTAF" 1265527 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-552 1258449 1264916 1265056 "INTABL" 1265061 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-551 1257790 1258256 1258321 "INT8" 1258355 T INT8 (NIL) -8 NIL NIL 1258400) (-550 1257130 1257596 1257661 "INT64" 1257695 T INT64 (NIL) -8 NIL NIL 1257740) (-549 1256470 1256936 1257001 "INT32" 1257035 T INT32 (NIL) -8 NIL NIL 1257080) (-548 1255810 1256276 1256341 "INT16" 1256375 T INT16 (NIL) -8 NIL NIL 1256420) (-547 1250720 1253433 1253461 "INS" 1254395 T INS (NIL) -9 NIL 1255060 NIL) (-546 1247960 1248731 1249705 "INS-" 1249778 NIL INS- (NIL T) -8 NIL NIL NIL) (-545 1246735 1246962 1247260 "INPSIGN" 1247713 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-544 1245853 1245970 1246167 "INPRODPF" 1246615 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-543 1244747 1244864 1245101 "INPRODFF" 1245733 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-542 1243747 1243899 1244159 "INNMFACT" 1244583 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-541 1242944 1243041 1243229 "INMODGCD" 1243646 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-540 1241452 1241697 1242021 "INFSP" 1242689 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-539 1240636 1240753 1240936 "INFPROD0" 1241332 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-538 1237491 1238701 1239216 "INFORM" 1240129 T INFORM (NIL) -8 NIL NIL NIL) (-537 1237101 1237161 1237259 "INFORM1" 1237426 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-536 1236624 1236713 1236827 "INFINITY" 1237007 T INFINITY (NIL) -7 NIL NIL NIL) (-535 1235800 1236344 1236445 "INETCLTS" 1236543 T INETCLTS (NIL) -8 NIL NIL NIL) (-534 1234416 1234666 1234987 "INEP" 1235548 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-533 1233665 1234313 1234378 "INDE" 1234383 NIL INDE (NIL T) -8 NIL NIL NIL) (-532 1233229 1233297 1233414 "INCRMAPS" 1233592 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-531 1232047 1232498 1232704 "INBFILE" 1233043 T INBFILE (NIL) -8 NIL NIL NIL) (-530 1227346 1228283 1229227 "INBFF" 1231135 NIL INBFF (NIL T) -7 NIL NIL NIL) (-529 1226254 1226523 1226551 "INBCON" 1227064 T INBCON (NIL) -9 NIL 1227330 NIL) (-528 1225506 1225729 1226005 "INBCON-" 1226010 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-527 1224985 1225230 1225321 "INAST" 1225435 T INAST (NIL) -8 NIL NIL NIL) (-526 1224412 1224664 1224770 "IMPTAST" 1224899 T IMPTAST (NIL) -8 NIL NIL NIL) (-525 1220858 1224256 1224360 "IMATRIX" 1224365 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-524 1219570 1219693 1220008 "IMATQF" 1220714 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-523 1217790 1218017 1218354 "IMATLIN" 1219326 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-522 1212368 1217714 1217772 "ILIST" 1217777 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-521 1210273 1212228 1212341 "IIARRAY2" 1212346 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-520 1205671 1210184 1210248 "IFF" 1210253 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-519 1205018 1205288 1205404 "IFAST" 1205575 T IFAST (NIL) -8 NIL NIL NIL) (-518 1200013 1204310 1204498 "IFARRAY" 1204875 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-517 1199193 1199917 1199990 "IFAMON" 1199995 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-516 1198777 1198842 1198896 "IEVALAB" 1199103 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-515 1198452 1198520 1198680 "IEVALAB-" 1198685 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-514 1198083 1198366 1198429 "IDPO" 1198434 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-513 1197333 1197972 1198047 "IDPOAMS" 1198052 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-512 1196640 1197222 1197297 "IDPOAM" 1197302 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-511 1195699 1195975 1196028 "IDPC" 1196441 NIL IDPC (NIL T T) -9 NIL 1196590 NIL) (-510 1195168 1195591 1195664 "IDPAM" 1195669 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-509 1194544 1195060 1195133 "IDPAG" 1195138 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-508 1194189 1194380 1194455 "IDENT" 1194489 T IDENT (NIL) -8 NIL NIL NIL) (-507 1190444 1191292 1192187 "IDECOMP" 1193346 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-506 1183282 1184367 1185414 "IDEAL" 1189480 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-505 1182446 1182558 1182757 "ICDEN" 1183166 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-504 1181517 1181926 1182073 "ICARD" 1182319 T ICARD (NIL) -8 NIL NIL NIL) (-503 1179577 1179890 1180295 "IBPTOOLS" 1181194 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-502 1175184 1179197 1179310 "IBITS" 1179496 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-501 1171907 1172483 1173178 "IBATOOL" 1174601 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-500 1169686 1170148 1170681 "IBACHIN" 1171442 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-499 1167515 1169532 1169635 "IARRAY2" 1169640 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-498 1163621 1167441 1167498 "IARRAY1" 1167503 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-497 1157730 1162033 1162514 "IAN" 1163160 T IAN (NIL) -8 NIL NIL NIL) (-496 1157241 1157298 1157471 "IALGFACT" 1157667 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-495 1156769 1156882 1156910 "HYPCAT" 1157117 T HYPCAT (NIL) -9 NIL NIL NIL) (-494 1156307 1156424 1156610 "HYPCAT-" 1156615 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-493 1155902 1156102 1156185 "HOSTNAME" 1156244 T HOSTNAME (NIL) -8 NIL NIL NIL) (-492 1155747 1155784 1155825 "HOMOTOP" 1155830 NIL HOMOTOP (NIL T) -9 NIL 1155863 NIL) (-491 1152379 1153757 1153798 "HOAGG" 1154779 NIL HOAGG (NIL T) -9 NIL 1155458 NIL) (-490 1150973 1151372 1151898 "HOAGG-" 1151903 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-489 1144977 1150568 1150717 "HEXADEC" 1150844 T HEXADEC (NIL) -8 NIL NIL NIL) (-488 1143724 1143947 1144210 "HEUGCD" 1144754 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-487 1142800 1143561 1143691 "HELLFDIV" 1143696 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-486 1140979 1142577 1142665 "HEAP" 1142744 NIL HEAP (NIL T) -8 NIL NIL NIL) (-485 1140242 1140531 1140665 "HEADAST" 1140865 T HEADAST (NIL) -8 NIL NIL NIL) (-484 1134108 1140157 1140219 "HDP" 1140224 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-483 1128096 1133743 1133895 "HDMP" 1134009 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-482 1127420 1127560 1127724 "HB" 1127952 T HB (NIL) -7 NIL NIL NIL) (-481 1120806 1127266 1127370 "HASHTBL" 1127375 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-480 1120282 1120527 1120619 "HASAST" 1120734 T HASAST (NIL) -8 NIL NIL NIL) (-479 1118060 1119904 1120086 "HACKPI" 1120120 T HACKPI (NIL) -8 NIL NIL NIL) (-478 1113728 1117913 1118026 "GTSET" 1118031 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-477 1107143 1113606 1113704 "GSTBL" 1113709 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-476 1099421 1106174 1106439 "GSERIES" 1106934 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-475 1098562 1098979 1099007 "GROUP" 1099210 T GROUP (NIL) -9 NIL 1099344 NIL) (-474 1097928 1098087 1098338 "GROUP-" 1098343 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-473 1096295 1096616 1097003 "GROEBSOL" 1097605 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-472 1095209 1095497 1095548 "GRMOD" 1096077 NIL GRMOD (NIL T T) -9 NIL 1096245 NIL) (-471 1094977 1095013 1095141 "GRMOD-" 1095146 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-470 1090267 1091331 1092331 "GRIMAGE" 1093997 T GRIMAGE (NIL) -8 NIL NIL NIL) (-469 1088733 1088994 1089318 "GRDEF" 1089963 T GRDEF (NIL) -7 NIL NIL NIL) (-468 1088177 1088293 1088434 "GRAY" 1088612 T GRAY (NIL) -7 NIL NIL NIL) (-467 1087364 1087770 1087821 "GRALG" 1087974 NIL GRALG (NIL T T) -9 NIL 1088067 NIL) (-466 1087025 1087098 1087261 "GRALG-" 1087266 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-465 1083802 1086610 1086788 "GPOLSET" 1086932 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-464 1083156 1083213 1083471 "GOSPER" 1083739 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-463 1078888 1079594 1080120 "GMODPOL" 1082855 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-462 1077893 1078077 1078315 "GHENSEL" 1078700 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-461 1072049 1072892 1073912 "GENUPS" 1076977 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-460 1071746 1071797 1071886 "GENUFACT" 1071992 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-459 1071158 1071235 1071400 "GENPGCD" 1071664 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-458 1070632 1070667 1070880 "GENMFACT" 1071117 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-457 1069198 1069455 1069762 "GENEEZ" 1070375 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-456 1063344 1068809 1068971 "GDMP" 1069121 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-455 1052686 1057115 1058221 "GCNAALG" 1062327 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-454 1051013 1051875 1051903 "GCDDOM" 1052158 T GCDDOM (NIL) -9 NIL 1052315 NIL) (-453 1050483 1050610 1050825 "GCDDOM-" 1050830 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-452 1049155 1049340 1049644 "GB" 1050262 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-451 1037771 1040101 1042493 "GBINTERN" 1046846 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-450 1035608 1035900 1036321 "GBF" 1037446 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-449 1034389 1034554 1034821 "GBEUCLID" 1035424 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-448 1033738 1033863 1034012 "GAUSSFAC" 1034260 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-447 1032105 1032407 1032721 "GALUTIL" 1033457 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-446 1030413 1030687 1031011 "GALPOLYU" 1031832 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-445 1027778 1028068 1028475 "GALFACTU" 1030110 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-444 1019583 1021083 1022691 "GALFACT" 1026210 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-443 1016971 1017629 1017657 "FVFUN" 1018813 T FVFUN (NIL) -9 NIL 1019533 NIL) (-442 1016237 1016419 1016447 "FVC" 1016738 T FVC (NIL) -9 NIL 1016921 NIL) (-441 1015880 1016062 1016130 "FUNDESC" 1016189 T FUNDESC (NIL) -8 NIL NIL NIL) (-440 1015495 1015677 1015758 "FUNCTION" 1015832 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-439 1013239 1013817 1014283 "FT" 1015049 T FT (NIL) -8 NIL NIL NIL) (-438 1012030 1012540 1012743 "FTEM" 1013056 T FTEM (NIL) -8 NIL NIL NIL) (-437 1010321 1010610 1011007 "FSUPFACT" 1011721 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-436 1008718 1009007 1009339 "FST" 1010009 T FST (NIL) -8 NIL NIL NIL) (-435 1007917 1008023 1008211 "FSRED" 1008600 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-434 1006616 1006872 1007219 "FSPRMELT" 1007632 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-433 1003922 1004360 1004846 "FSPECF" 1006179 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-432 985560 993891 993932 "FS" 997816 NIL FS (NIL T) -9 NIL 1000105 NIL) (-431 974203 977196 981253 "FS-" 981553 NIL FS- (NIL T T) -8 NIL NIL NIL) (-430 973731 973785 973955 "FSINT" 974144 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-429 972023 972724 973027 "FSERIES" 973510 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-428 971065 971181 971405 "FSCINT" 971903 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-427 967273 970009 970050 "FSAGG" 970420 NIL FSAGG (NIL T) -9 NIL 970679 NIL) (-426 965035 965636 966432 "FSAGG-" 966527 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-425 964077 964220 964447 "FSAGG2" 964888 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-424 961759 962039 962586 "FS2UPS" 963795 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-423 961393 961436 961565 "FS2" 961710 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-422 960271 960442 960744 "FS2EXPXP" 961218 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-421 959697 959812 959964 "FRUTIL" 960151 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-420 951110 955192 956550 "FR" 958371 NIL FR (NIL T) -8 NIL NIL NIL) (-419 946079 948753 948793 "FRNAALG" 950189 NIL FRNAALG (NIL T) -9 NIL 950796 NIL) (-418 941752 942828 944103 "FRNAALG-" 944853 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-417 941390 941433 941560 "FRNAAF2" 941703 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-416 939770 940244 940539 "FRMOD" 941202 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-415 937521 938153 938470 "FRIDEAL" 939561 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-414 936716 936803 937092 "FRIDEAL2" 937428 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-413 935849 936263 936304 "FRETRCT" 936309 NIL FRETRCT (NIL T) -9 NIL 936485 NIL) (-412 934961 935192 935543 "FRETRCT-" 935548 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-411 932049 933259 933318 "FRAMALG" 934200 NIL FRAMALG (NIL T T) -9 NIL 934492 NIL) (-410 930183 930638 931268 "FRAMALG-" 931491 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-409 924104 929658 929934 "FRAC" 929939 NIL FRAC (NIL T) -8 NIL NIL NIL) (-408 923740 923797 923904 "FRAC2" 924041 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-407 923376 923433 923540 "FR2" 923677 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-406 917889 920782 920810 "FPS" 921929 T FPS (NIL) -9 NIL 922486 NIL) (-405 917338 917447 917611 "FPS-" 917757 NIL FPS- (NIL T) -8 NIL NIL NIL) (-404 914640 916309 916337 "FPC" 916562 T FPC (NIL) -9 NIL 916704 NIL) (-403 914433 914473 914570 "FPC-" 914575 NIL FPC- (NIL T) -8 NIL NIL NIL) (-402 913223 913921 913962 "FPATMAB" 913967 NIL FPATMAB (NIL T) -9 NIL 914119 NIL) (-401 910896 911399 911825 "FPARFRAC" 912860 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-400 906289 906788 907470 "FORTRAN" 910328 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-399 904005 904505 905044 "FORT" 905770 T FORT (NIL) -7 NIL NIL NIL) (-398 901681 902243 902271 "FORTFN" 903331 T FORTFN (NIL) -9 NIL 903955 NIL) (-397 901445 901495 901523 "FORTCAT" 901582 T FORTCAT (NIL) -9 NIL 901644 NIL) (-396 899551 900061 900451 "FORMULA" 901075 T FORMULA (NIL) -8 NIL NIL NIL) (-395 899339 899369 899438 "FORMULA1" 899515 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-394 898862 898914 899087 "FORDER" 899281 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-393 897958 898122 898315 "FOP" 898689 T FOP (NIL) -7 NIL NIL NIL) (-392 896539 897238 897412 "FNLA" 897840 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-391 895268 895683 895711 "FNCAT" 896171 T FNCAT (NIL) -9 NIL 896431 NIL) (-390 894807 895227 895255 "FNAME" 895260 T FNAME (NIL) -8 NIL NIL NIL) (-389 893370 894333 894361 "FMTC" 894366 T FMTC (NIL) -9 NIL 894402 NIL) (-388 889703 890893 891522 "FMONOID" 892774 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-387 888895 889445 889594 "FM" 889599 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886319 886965 886993 "FMFUN" 888137 T FMFUN (NIL) -9 NIL 888845 NIL) (-385 885588 885769 885797 "FMC" 886087 T FMC (NIL) -9 NIL 886269 NIL) (-384 882667 883527 883581 "FMCAT" 884776 NIL FMCAT (NIL T T) -9 NIL 885271 NIL) (-383 881533 882433 882533 "FM1" 882612 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879307 879723 880217 "FLOATRP" 881084 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872882 877036 877657 "FLOAT" 878706 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870320 870820 871398 "FLOATCP" 872349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869060 869898 869939 "FLINEXP" 869944 NIL FLINEXP (NIL T) -9 NIL 870037 NIL) (-378 868214 868449 868777 "FLINEXP-" 868782 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867290 867434 867658 "FLASORT" 868066 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864406 865274 865326 "FLALG" 866553 NIL FLALG (NIL T T) -9 NIL 867020 NIL) (-375 858142 861892 861933 "FLAGG" 863195 NIL FLAGG (NIL T) -9 NIL 863847 NIL) (-374 856868 857207 857697 "FLAGG-" 857702 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855910 856053 856280 "FLAGG2" 856721 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852761 853769 853828 "FINRALG" 854956 NIL FINRALG (NIL T T) -9 NIL 855464 NIL) (-371 851921 852150 852489 "FINRALG-" 852494 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851301 851540 851568 "FINITE" 851764 T FINITE (NIL) -9 NIL 851871 NIL) (-369 843658 845845 845885 "FINAALG" 849552 NIL FINAALG (NIL T) -9 NIL 851005 NIL) (-368 838990 840040 841184 "FINAALG-" 842563 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838358 838745 838848 "FILE" 838920 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837016 837354 837408 "FILECAT" 838092 NIL FILECAT (NIL T T) -9 NIL 838308 NIL) (-365 834732 836260 836288 "FIELD" 836328 T FIELD (NIL) -9 NIL 836408 NIL) (-364 833352 833737 834248 "FIELD-" 834253 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831202 831987 832334 "FGROUP" 833038 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830292 830456 830676 "FGLMICPK" 831034 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826124 830217 830274 "FFX" 830279 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825725 825786 825921 "FFSLPE" 826057 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821714 822497 823293 "FFPOLY" 824961 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821218 821254 821463 "FFPOLY2" 821672 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817061 821137 821200 "FFP" 821205 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812459 816972 817036 "FF" 817041 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807585 811802 811992 "FFNBX" 812313 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802514 806720 806978 "FFNBP" 807439 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797147 801798 802009 "FFNB" 802347 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795979 796177 796492 "FFINTBAS" 796944 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792048 794268 794296 "FFIELDC" 794916 T FFIELDC (NIL) -9 NIL 795292 NIL) (-350 790710 791081 791578 "FFIELDC-" 791583 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790279 790325 790449 "FFHOM" 790652 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787974 788461 788978 "FFF" 789794 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783592 787716 787817 "FFCGX" 787917 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779213 783324 783431 "FFCGP" 783535 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774396 778940 779048 "FFCG" 779149 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755792 764873 764959 "FFCAT" 770124 NIL FFCAT (NIL T T T) -9 NIL 771575 NIL) (-343 750990 752037 753351 "FFCAT-" 754581 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750401 750444 750679 "FFCAT2" 750941 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739722 743373 744593 "FEXPR" 749253 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738722 739157 739198 "FEVALAB" 739282 NIL FEVALAB (NIL T) -9 NIL 739543 NIL) (-339 737881 738091 738429 "FEVALAB-" 738434 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736447 737264 737467 "FDIV" 737780 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733467 734208 734323 "FDIVCAT" 735891 NIL FDIVCAT (NIL T T T T) -9 NIL 736328 NIL) (-336 733229 733256 733426 "FDIVCAT-" 733431 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732449 732536 732813 "FDIV2" 733136 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731423 731744 731946 "FCTRDATA" 732267 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730109 730368 730657 "FCPAK1" 731154 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729208 729609 729750 "FCOMP" 730000 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712910 716358 719896 "FC" 725690 T FC (NIL) -8 NIL NIL NIL) (-330 705273 709301 709341 "FAXF" 711143 NIL FAXF (NIL T) -9 NIL 711835 NIL) (-329 702549 703207 704032 "FAXF-" 704497 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697601 701925 702101 "FARRAY" 702406 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692495 694562 694615 "FAMR" 695638 NIL FAMR (NIL T T) -9 NIL 696098 NIL) (-326 691385 691687 692122 "FAMR-" 692127 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690554 691307 691360 "FAMONOID" 691365 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688340 689050 689103 "FAMONC" 690044 NIL FAMONC (NIL T T) -9 NIL 690430 NIL) (-323 687004 688094 688231 "FAGROUP" 688236 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684799 685118 685521 "FACUTIL" 686685 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683898 684083 684305 "FACTFUNC" 684609 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676320 683201 683400 "EXPUPXS" 683754 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673803 674343 674929 "EXPRTUBE" 675754 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670074 670666 671396 "EXPRODE" 673142 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655559 668723 669152 "EXPR" 669678 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650113 650700 651506 "EXPR2UPS" 654857 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649745 649802 649911 "EXPR2" 650050 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641135 648898 649188 "EXPEXPAN" 649582 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640935 641092 641121 "EXIT" 641126 T EXIT (NIL) -8 NIL NIL NIL) (-312 640415 640659 640750 "EXITAST" 640864 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640042 640104 640217 "EVALCYC" 640347 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639583 639701 639742 "EVALAB" 639912 NIL EVALAB (NIL T) -9 NIL 640016 NIL) (-309 639064 639186 639407 "EVALAB-" 639412 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636432 637734 637762 "EUCDOM" 638317 T EUCDOM (NIL) -9 NIL 638667 NIL) (-307 634837 635279 635869 "EUCDOM-" 635874 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622375 625135 627885 "ESTOOLS" 632107 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622007 622064 622173 "ESTOOLS2" 622312 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621758 621800 621880 "ESTOOLS1" 621959 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615795 617403 617431 "ES" 620199 T ES (NIL) -9 NIL 621609 NIL) (-302 610742 612029 613846 "ES-" 614010 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607116 607877 608657 "ESCONT" 609982 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606861 606893 606975 "ESCONT1" 607078 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606536 606586 606686 "ES2" 606805 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606166 606224 606333 "ES1" 606472 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605382 605511 605687 "ERROR" 606010 T ERROR (NIL) -7 NIL NIL NIL) (-296 598774 605241 605332 "EQTBL" 605337 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591277 594088 595537 "EQ" 597358 NIL -2034 (NIL T) -8 NIL NIL NIL) (-294 590909 590966 591075 "EQ2" 591214 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586198 587247 588340 "EP" 589848 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584798 585089 585395 "ENV" 585912 T ENV (NIL) -8 NIL NIL NIL) (-291 583892 584446 584474 "ENTIRER" 584479 T ENTIRER (NIL) -9 NIL 584525 NIL) (-290 580359 581847 582217 "EMR" 583691 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579503 579688 579742 "ELTAGG" 580122 NIL ELTAGG (NIL T T) -9 NIL 580333 NIL) (-288 579222 579284 579425 "ELTAGG-" 579430 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579011 579040 579094 "ELTAB" 579178 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578137 578283 578482 "ELFUTS" 578862 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577879 577935 577963 "ELEMFUN" 578068 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577749 577770 577838 "ELEMFUN-" 577843 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572593 575849 575890 "ELAGG" 576830 NIL ELAGG (NIL T) -9 NIL 577293 NIL) (-282 570878 571312 571975 "ELAGG-" 571980 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569539 569818 570112 "ELABEXPR" 570604 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562403 564206 565033 "EFUPXS" 568815 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555853 557654 558464 "EFULS" 561679 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553338 553696 554168 "EFSTRUC" 555485 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543129 544695 546243 "EF" 551853 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542203 542614 542763 "EAB" 543000 T EAB (NIL) -8 NIL NIL NIL) (-275 541385 542162 542190 "E04UCFA" 542195 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540567 541344 541372 "E04NAFA" 541377 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539749 540526 540554 "E04MBFA" 540559 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538931 539708 539736 "E04JAFA" 539741 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538115 538890 538918 "E04GCFA" 538923 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537299 538074 538102 "E04FDFA" 538107 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536481 537258 537286 "E04DGFA" 537291 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530654 532006 533370 "E04AGNT" 535137 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529334 529840 529880 "DVARCAT" 530355 NIL DVARCAT (NIL T) -9 NIL 530554 NIL) (-266 528538 528750 529064 "DVARCAT-" 529069 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521675 528337 528466 "DSMP" 528471 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516456 517620 518688 "DROPT" 520627 T DROPT (NIL) -8 NIL NIL NIL) (-263 516121 516180 516278 "DROPT1" 516391 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511236 512362 513499 "DROPT0" 515004 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509581 509906 510292 "DRAWPT" 510870 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504168 505091 506170 "DRAW" 508555 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503801 503854 503972 "DRAWHACK" 504109 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502532 502801 503092 "DRAWCX" 503530 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502047 502116 502267 "DRAWCURV" 502458 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492515 494477 496592 "DRAWCFUN" 499952 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489281 491210 491251 "DQAGG" 491880 NIL DQAGG (NIL T) -9 NIL 492153 NIL) (-254 477405 483874 483957 "DPOLCAT" 485809 NIL DPOLCAT (NIL T T T T) -9 NIL 486354 NIL) (-253 472241 473590 475548 "DPOLCAT-" 475553 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465363 472102 472200 "DPMO" 472205 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458388 465143 465310 "DPMM" 465315 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457866 458080 458178 "DOMTMPLT" 458310 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457299 457668 457748 "DOMCTOR" 457806 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456511 456779 456930 "DOMAIN" 457168 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450499 456146 456298 "DMP" 456412 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450099 450155 450299 "DLP" 450437 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443921 449426 449616 "DLIST" 449941 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440718 442774 442815 "DLAGG" 443365 NIL DLAGG (NIL T) -9 NIL 443595 NIL) (-243 439394 440058 440086 "DIVRING" 440178 T DIVRING (NIL) -9 NIL 440261 NIL) (-242 438631 438821 439121 "DIVRING-" 439126 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436733 437090 437496 "DISPLAY" 438245 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430621 436647 436710 "DIRPROD" 436715 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429469 429672 429937 "DIRPROD2" 430414 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418244 424250 424303 "DIRPCAT" 424713 NIL DIRPCAT (NIL NIL T) -9 NIL 425553 NIL) (-237 415570 416212 417093 "DIRPCAT-" 417430 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414857 415017 415203 "DIOSP" 415404 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411512 413769 413810 "DIOPS" 414244 NIL DIOPS (NIL T) -9 NIL 414473 NIL) (-234 411061 411175 411366 "DIOPS-" 411371 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409884 410512 410540 "DIFRING" 410727 T DIFRING (NIL) -9 NIL 410837 NIL) (-232 409530 409607 409759 "DIFRING-" 409764 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407266 408538 408579 "DIFEXT" 408942 NIL DIFEXT (NIL T) -9 NIL 409236 NIL) (-230 405551 405979 406645 "DIFEXT-" 406650 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402826 405083 405124 "DIAGG" 405129 NIL DIAGG (NIL T) -9 NIL 405149 NIL) (-228 402210 402367 402619 "DIAGG-" 402624 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397627 401169 401446 "DHMATRIX" 401979 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393239 394148 395158 "DFSFUN" 396637 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388317 392170 392482 "DFLOAT" 392947 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386580 386861 387250 "DFINTTLS" 388025 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383609 384601 385001 "DERHAM" 386246 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381410 383384 383473 "DEQUEUE" 383553 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380664 380797 380980 "DEGRED" 381272 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377094 377839 378685 "DEFINTRF" 379892 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374649 375118 375710 "DEFINTEF" 376613 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373999 374269 374384 "DEFAST" 374554 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368003 373594 373743 "DECIMAL" 373870 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365515 365973 366479 "DDFACT" 367547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365111 365154 365305 "DBLRESP" 365466 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362983 363344 363704 "DBASE" 364878 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362225 362463 362609 "DATAARY" 362882 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361331 362184 362212 "D03FAFA" 362217 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360438 361290 361318 "D03EEFA" 361323 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358388 358854 359343 "D03AGNT" 359969 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357677 358347 358375 "D02EJFA" 358380 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356966 357636 357664 "D02CJFA" 357669 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356255 356925 356953 "D02BHFA" 356958 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355544 356214 356242 "D02BBFA" 356247 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348741 350330 351936 "D02AGNT" 353958 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346509 347032 347578 "D01WGTS" 348215 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345576 346468 346496 "D01TRNS" 346501 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344644 345535 345563 "D01GBFA" 345568 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343712 344603 344631 "D01FCFA" 344636 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342780 343671 343699 "D01ASFA" 343704 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341848 342739 342767 "D01AQFA" 342772 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340916 341807 341835 "D01APFA" 341840 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339984 340875 340903 "D01ANFA" 340908 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339052 339943 339971 "D01AMFA" 339976 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338120 339011 339039 "D01ALFA" 339044 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337188 338079 338107 "D01AKFA" 338112 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336256 337147 337175 "D01AJFA" 337180 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329551 331104 332665 "D01AGNT" 334715 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328888 329016 329168 "CYCLOTOM" 329419 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325622 326336 327063 "CYCLES" 328181 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324934 325068 325239 "CVMP" 325483 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322775 323033 323402 "CTRIGMNP" 324662 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322211 322569 322642 "CTOR" 322722 T CTOR (NIL) -8 NIL NIL NIL) (-186 321720 321942 322043 "CTORKIND" 322130 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321011 321327 321355 "CTORCAT" 321537 T CTORCAT (NIL) -9 NIL 321650 NIL) (-184 320609 320720 320879 "CTORCAT-" 320884 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320071 320283 320391 "CTORCALL" 320533 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319445 319544 319697 "CSTTOOLS" 319968 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315244 315901 316659 "CRFP" 318757 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314719 314965 315057 "CRCEAST" 315172 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313766 313951 314179 "CRAPACK" 314523 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313150 313251 313455 "CPMATCH" 313642 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312875 312903 313009 "CPIMA" 313116 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309223 309895 310614 "COORDSYS" 312210 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308635 308756 308898 "CONTOUR" 309101 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304526 306638 307130 "CONTFRAC" 308175 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304406 304427 304455 "CONDUIT" 304492 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303494 304048 304076 "COMRING" 304081 T COMRING (NIL) -9 NIL 304133 NIL) (-171 302548 302852 303036 "COMPPROP" 303330 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302209 302244 302372 "COMPLPAT" 302507 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292500 302018 302127 "COMPLEX" 302132 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292136 292193 292300 "COMPLEX2" 292437 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291854 291889 291987 "COMPFACT" 292095 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275934 285928 285968 "COMPCAT" 286972 NIL COMPCAT (NIL T) -9 NIL 288320 NIL) (-165 265446 268373 272000 "COMPCAT-" 272356 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265175 265203 265306 "COMMUPC" 265412 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264969 265003 265062 "COMMONOP" 265136 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264525 264720 264807 "COMM" 264902 T COMM (NIL) -8 NIL NIL NIL) (-161 264101 264329 264404 "COMMAAST" 264470 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263350 263544 263572 "COMBOPC" 263910 T COMBOPC (NIL) -9 NIL 264085 NIL) (-159 262246 262456 262698 "COMBINAT" 263140 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258703 259277 259904 "COMBF" 261668 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257461 257819 258054 "COLOR" 258488 T COLOR (NIL) -8 NIL NIL NIL) (-156 256937 257182 257274 "COLONAST" 257389 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256577 256624 256749 "CMPLXRT" 256884 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256025 256277 256376 "CLLCTAST" 256498 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251523 252555 253635 "CLIP" 254965 T CLIP (NIL) -7 NIL NIL NIL) (-152 249869 250629 250868 "CLIF" 251350 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246044 248015 248056 "CLAGG" 248985 NIL CLAGG (NIL T) -9 NIL 249521 NIL) (-150 244466 244923 245506 "CLAGG-" 245511 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244010 244095 244235 "CINTSLPE" 244375 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241511 241982 242530 "CHVAR" 243538 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240685 241239 241267 "CHARZ" 241272 T CHARZ (NIL) -9 NIL 241287 NIL) (-146 240439 240479 240557 "CHARPOL" 240639 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239497 240084 240112 "CHARNZ" 240159 T CHARNZ (NIL) -9 NIL 240215 NIL) (-144 237403 238151 238504 "CHAR" 239164 T CHAR (NIL) -8 NIL NIL NIL) (-143 237129 237190 237218 "CFCAT" 237329 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236374 236485 236667 "CDEN" 237013 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232339 235527 235807 "CCLASS" 236114 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231590 231747 231924 "CATEGORY" 232182 T -10 (NIL) -8 NIL NIL NIL) (-139 231163 231509 231557 "CATCTOR" 231562 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230614 230866 230964 "CATAST" 231085 T CATAST (NIL) -8 NIL NIL NIL) (-137 230090 230335 230427 "CASEAST" 230542 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225099 226119 226872 "CARTEN" 229393 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224207 224355 224576 "CARTEN2" 224946 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222523 223357 223614 "CARD" 223970 T CARD (NIL) -8 NIL NIL NIL) (-133 222099 222327 222402 "CAPSLAST" 222468 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221603 221811 221839 "CACHSET" 221971 T CACHSET (NIL) -9 NIL 222049 NIL) (-131 221073 221395 221423 "CABMON" 221473 T CABMON (NIL) -9 NIL 221529 NIL) (-130 220546 220777 220887 "BYTEORD" 220983 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220080 220222 "BYTE" 220385 T BYTE (NIL) -8 NIL NIL 220507) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-3494 (((-1230 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1230 |#1| |#3| |#5|)) 23)))
+(((-1225 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3494 ((-1230 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1230 |#1| |#3| |#5|)))) (-1050) (-1050) (-1176) (-1176) |#1| |#2|) (T -1225))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1230 *5 *7 *9)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-14 *7 (-1176)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1230 *6 *8 *10)) (-5 *1 (-1225 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1176)))))
+(-10 -7 (-15 -3494 ((-1230 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1230 |#1| |#3| |#5|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 (-1082)) $) 86)) (-4295 (((-1176) $) 115)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-2674 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-3030 (((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-1772 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 174 (|has| |#1| (-365)))) (-1401 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2307 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1747 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-1798 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) 18 T CONST)) (-2197 (($ $ $) 169 (|has| |#1| (-365)))) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-4332 (((-410 (-953 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-2210 (($ $ $) 168 (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-1665 (((-112) $) 176 (|has| |#1| (-365)))) (-4222 (((-112) $) 85)) (-4098 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-567) $) 112) (((-567) $ (-567)) 111)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) 113)) (-2440 (($ (-1 |#1| (-567)) $) 184)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3523 (((-112) $) 74)) (-2422 (($ |#1| (-567)) 73) (($ $ (-1082) (-567)) 88) (($ $ (-645 (-1082)) (-645 (-567))) 87)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2942 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-3245 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2451 (((-1158) $) 10)) (-2559 (($ $) 177 (|has| |#1| (-365)))) (-2113 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 180 (-2909 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1201)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 162 (|has| |#1| (-365)))) (-3276 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2296 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 170 (|has| |#1| (-365)))) (-2436 (($ $ (-567)) 107)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-2910 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567)))))) (-4369 (((-772) $) 166 (|has| |#1| (-365)))) (-1552 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 167 (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1176) (-772)) 100 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176))) 99 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1176)) 98 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3677 (((-567) $) 76)) (-1810 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 84)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2339 ((|#1| $ (-567)) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-4113 ((|#1| $) 114)) (-3739 (((-112) $ $) 9)) (-1847 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1823 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1176) (-772)) 104 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176))) 103 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-1176)) 102 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-567) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1226 |#1|) (-140) (-1050)) (T -1226))
+((-2009 (*1 *1 *2) (-12 (-5 *2 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *3)))) (-4 *3 (-1050)) (-4 *1 (-1226 *3)))) (-2440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1226 *3)) (-4 *3 (-1050)))) (-4332 (*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1226 *4)) (-4 *4 (-1050)) (-4 *4 (-559)) (-5 *2 (-410 (-953 *4))))) (-4332 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-4 *1 (-1226 *4)) (-4 *4 (-1050)) (-4 *4 (-559)) (-5 *2 (-410 (-953 *4))))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) (-2113 (*1 *1 *1 *2) (-2909 (-12 (-5 *2 (-1176)) (-4 *1 (-1226 *3)) (-4 *3 (-1050)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1201)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1176)) (-4 *1 (-1226 *3)) (-4 *3 (-1050)) (-12 (|has| *3 (-15 -2449 ((-645 *2) *3))) (|has| *3 (-15 -2113 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
+(-13 (-1244 |t#1| (-567)) (-10 -8 (-15 -2009 ($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |t#1|))))) (-15 -2440 ($ (-1 |t#1| (-567)) $)) (IF (|has| |t#1| (-559)) (PROGN (-15 -4332 ((-410 (-953 |t#1|)) $ (-567))) (-15 -4332 ((-410 (-953 |t#1|)) $ (-567) (-567)))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $)) (IF (|has| |t#1| (-15 -2113 (|t#1| |t#1| (-1176)))) (IF (|has| |t#1| (-15 -2449 ((-645 (-1176)) |t#1|))) (-15 -2113 ($ $ (-1176))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1201)) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-29 (-567))) (-15 -2113 ($ $ (-1176))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1003)) (-6 (-1201))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-567) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-567) (-1112)) ((-291) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1176)) -12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))) ((-974 |#1| #0# (-1082)) . T) ((-921) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1201) |has| |#1| (-38 (-410 (-567)))) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1220) |has| |#1| (-365)) ((-1244 |#1| #0#) . T))
+((-2865 (((-112) $) 12)) (-3417 (((-3 |#3| "failed") $) 17) (((-3 (-1176) "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL)) (-1621 ((|#3| $) 14) (((-1176) $) NIL) (((-410 (-567)) $) NIL) (((-567) $) NIL)))
+(((-1227 |#1| |#2| |#3|) (-10 -8 (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-1176) "failed") |#1|)) (-15 -1621 ((-1176) |#1|)) (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#3| |#1|)) (-15 -2865 ((-112) |#1|))) (-1228 |#2| |#3|) (-1050) (-1257 |#2|)) (T -1227))
+NIL
+(-10 -8 (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -3417 ((-3 (-1176) "failed") |#1|)) (-15 -1621 ((-1176) |#1|)) (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#3| |#1|)) (-15 -2865 ((-112) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2838 ((|#2| $) 242 (-1410 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2449 (((-645 (-1082)) $) 86)) (-4295 (((-1176) $) 115)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-2674 (($ $ (-567)) 110) (($ $ (-567) (-567)) 109)) (-3030 (((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 117)) (-1342 ((|#2| $) 278)) (-3432 (((-3 |#2| "failed") $) 274)) (-2511 ((|#2| $) 275)) (-1772 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) 20)) (-1877 (((-421 (-1172 $)) (-1172 $)) 251 (-1410 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-1396 (($ $) 174 (|has| |#1| (-365)))) (-1401 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2307 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 248 (-1410 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-3405 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1747 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-3179 (((-567) $) 260 (-1410 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2009 (($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 185)) (-1798 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#2| "failed") $) 281) (((-3 (-567) "failed") $) 271 (-1410 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) 269 (-1410 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-1176) "failed") $) 253 (-1410 (|has| |#2| (-1039 (-1176))) (|has| |#1| (-365))))) (-1621 ((|#2| $) 282) (((-567) $) 270 (-1410 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) 268 (-1410 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-1176) $) 252 (-1410 (|has| |#2| (-1039 (-1176))) (|has| |#1| (-365))))) (-1800 (($ $) 277) (($ (-567) $) 276)) (-2197 (($ $ $) 169 (|has| |#1| (-365)))) (-2637 (($ $) 72)) (-1920 (((-690 |#2|) (-690 $)) 232 (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) 231 (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 230 (-1410 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) 229 (-1410 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-4014 (((-3 $ "failed") $) 37)) (-4332 (((-410 (-953 |#1|)) $ (-567)) 183 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 182 (|has| |#1| (-559)))) (-1649 (($) 244 (-1410 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2210 (($ $ $) 168 (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-1665 (((-112) $) 176 (|has| |#1| (-365)))) (-4095 (((-112) $) 258 (-1410 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-4222 (((-112) $) 85)) (-4098 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 236 (-1410 (|has| |#2| (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 235 (-1410 (|has| |#2| (-887 (-567))) (|has| |#1| (-365))))) (-1909 (((-567) $) 112) (((-567) $ (-567)) 111)) (-3714 (((-112) $) 35)) (-4349 (($ $) 240 (|has| |#1| (-365)))) (-4067 ((|#2| $) 238 (|has| |#1| (-365)))) (-3287 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-2802 (((-3 $ "failed") $) 272 (-1410 (|has| |#2| (-1151)) (|has| |#1| (-365))))) (-3948 (((-112) $) 259 (-1410 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1406 (($ $ (-922)) 113)) (-2440 (($ (-1 |#1| (-567)) $) 184)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3523 (((-112) $) 74)) (-2422 (($ |#1| (-567)) 73) (($ $ (-1082) (-567)) 88) (($ $ (-645 (-1082)) (-645 (-567))) 87)) (-2056 (($ $ $) 262 (-1410 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-1802 (($ $ $) 263 (-1410 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3494 (($ (-1 |#1| |#1|) $) 75) (($ (-1 |#2| |#2|) $) 224 (|has| |#1| (-365)))) (-2942 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-3245 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2524 (($ (-567) |#2|) 279)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 177 (|has| |#1| (-365)))) (-2113 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 180 (-2909 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1201)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-38 (-410 (-567)))))))) (-2596 (($) 273 (-1410 (|has| |#2| (-1151)) (|has| |#1| (-365))) CONST)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 162 (|has| |#1| (-365)))) (-3276 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-1987 (($ $) 243 (-1410 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3992 ((|#2| $) 246 (-1410 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-1495 (((-421 (-1172 $)) (-1172 $)) 249 (-1410 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-1429 (((-421 (-1172 $)) (-1172 $)) 250 (-1410 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-2296 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 170 (|has| |#1| (-365)))) (-2436 (($ $ (-567)) 107)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-2910 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1176) |#2|) 223 (-1410 (|has| |#2| (-517 (-1176) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1176)) (-645 |#2|)) 222 (-1410 (|has| |#2| (-517 (-1176) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) 221 (-1410 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) 220 (-1410 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) 219 (-1410 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) 218 (-1410 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-4369 (((-772) $) 166 (|has| |#1| (-365)))) (-1552 ((|#1| $ (-567)) 116) (($ $ $) 93 (|has| (-567) (-1112))) (($ $ |#2|) 217 (-1410 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 167 (|has| |#1| (-365)))) (-1930 (($ $ (-1 |#2| |#2|)) 228 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 227 (|has| |#1| (-365))) (($ $ (-772)) 96 (-2909 (-1410 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 94 (-2909 (-1410 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) 101 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1176) (-772)) 100 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1176))) 99 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1176)) 98 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-2870 (($ $) 241 (|has| |#1| (-365)))) (-4078 ((|#2| $) 239 (|has| |#1| (-365)))) (-3677 (((-567) $) 76)) (-1810 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-3542 (((-225) $) 257 (-1410 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-381) $) 256 (-1410 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-539) $) 255 (-1410 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-893 (-381)) $) 234 (-1410 (|has| |#2| (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) 233 (-1410 (|has| |#2| (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 247 (-1410 (-1410 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#1| (-365))))) (-2448 (($ $) 84)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 280) (($ (-1176)) 254 (-1410 (|has| |#2| (-1039 (-1176))) (|has| |#1| (-365)))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2339 ((|#1| $ (-567)) 71)) (-4242 (((-3 $ "failed") $) 60 (-2909 (-1410 (-2909 (|has| |#2| (-145)) (-1410 (|has| $ (-145)) (|has| |#2| (-910)))) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2686 (((-772)) 32 T CONST)) (-4113 ((|#1| $) 114)) (-2721 ((|#2| $) 245 (-1410 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3739 (((-112) $ $) 9)) (-1847 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1823 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-567)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1771 (($ $) 261 (-1410 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-1 |#2| |#2|)) 226 (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) 225 (|has| |#1| (-365))) (($ $ (-772)) 97 (-2909 (-1410 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 95 (-2909 (-1410 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) 105 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1176) (-772)) 104 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-645 (-1176))) 103 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))))) (($ $ (-1176)) 102 (-2909 (-1410 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))))) (-3109 (((-112) $ $) 265 (-1410 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3085 (((-112) $ $) 266 (-1410 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3052 (((-112) $ $) 6)) (-3098 (((-112) $ $) 264 (-1410 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3075 (((-112) $ $) 267 (-1410 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365))) (($ |#2| |#2|) 237 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ $ |#2|) 216 (|has| |#1| (-365))) (($ |#2| $) 215 (|has| |#1| (-365))) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1228 |#1| |#2|) (-140) (-1050) (-1257 |t#1|)) (T -1228))
+((-3677 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1257 *3)) (-5 *2 (-567)))) (-2524 (*1 *1 *2 *3) (-12 (-5 *2 (-567)) (-4 *4 (-1050)) (-4 *1 (-1228 *4 *3)) (-4 *3 (-1257 *4)))) (-1342 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1257 *3)))) (-1800 (*1 *1 *1) (-12 (-4 *1 (-1228 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1257 *2)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1228 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1257 *3)))) (-2511 (*1 *2 *1) (-12 (-4 *1 (-1228 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1257 *3)))) (-3432 (*1 *2 *1) (|partial| -12 (-4 *1 (-1228 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1257 *3)))))
+(-13 (-1226 |t#1|) (-1039 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2524 ($ (-567) |t#2|)) (-15 -3677 ((-567) $)) (-15 -1342 (|t#2| $)) (-15 -1800 ($ $)) (-15 -1800 ($ (-567) $)) (-15 -2511 (|t#2| $)) (-15 -3432 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-365)) (-6 (-993 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-567)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-365)) ((-38 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-365)) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2909 (-12 (|has| |#1| (-365)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2909 (-12 (|has| |#1| (-365)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-617 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1176)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1176)))) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-225)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-615 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-615 (-539)) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-615 (-893 (-567))))) ((-231 |#2|) |has| |#1| (-365)) ((-233) -2909 (-12 (|has| |#1| (-365)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-567) |#1|)))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 |#2| $) -12 (|has| |#1| (-365)) (|has| |#2| (-287 |#2| |#2|))) ((-287 $ $) |has| (-567) (-1112)) ((-291) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-365) |has| |#1| (-365)) ((-340 |#2|) |has| |#1| (-365)) ((-379 |#2|) |has| |#1| (-365)) ((-403 |#2|) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-517 (-1176) |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-517 (-1176) |#2|))) ((-517 |#2| |#2|) -12 (|has| |#1| (-365)) (|has| |#2| (-310 |#2|))) ((-559) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 |#2|) |has| |#1| (-365)) ((-647 $) . T) ((-649 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 |#2|) |has| |#1| (-365)) ((-649 $) . T) ((-641 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 |#2|) |has| |#1| (-365)) ((-641 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-640 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-640 (-567)))) ((-640 |#2|) |has| |#1| (-365)) ((-718 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 |#2|) |has| |#1| (-365)) ((-718 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-792) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-793) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-795) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-796) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-821) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-849) -12 (|has| |#1| (-365)) (|has| |#2| (-821))) ((-851) -2909 (-12 (|has| |#1| (-365)) (|has| |#2| (-851))) (-12 (|has| |#1| (-365)) (|has| |#2| (-821)))) ((-901 (-1176)) -2909 (-12 (|has| |#1| (-365)) (|has| |#2| (-901 (-1176)))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))) ((-887 (-381)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-381)))) ((-887 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-887 (-567)))) ((-885 |#2|) |has| |#1| (-365)) ((-910) -12 (|has| |#1| (-365)) (|has| |#2| (-910))) ((-974 |#1| #0# (-1082)) . T) ((-921) |has| |#1| (-365)) ((-993 |#2|) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1023) -12 (|has| |#1| (-365)) (|has| |#2| (-1023))) ((-1039 (-410 (-567))) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567)))) ((-1039 (-567)) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-567)))) ((-1039 #2#) -12 (|has| |#1| (-365)) (|has| |#2| (-1039 (-1176)))) ((-1039 |#2|) . T) ((-1052 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 |#2|) |has| |#1| (-365)) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 |#2|) |has| |#1| (-365)) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) -12 (|has| |#1| (-365)) (|has| |#2| (-1151))) ((-1201) |has| |#1| (-38 (-410 (-567)))) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1216) |has| |#1| (-365)) ((-1220) |has| |#1| (-365)) ((-1226 |#1|) . T) ((-1244 |#1| #0#) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 81)) (-2838 ((|#2| $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 100)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-567)) 109) (($ $ (-567) (-567)) 111)) (-3030 (((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) 51)) (-1342 ((|#2| $) 11)) (-3432 (((-3 |#2| "failed") $) 35)) (-2511 ((|#2| $) 36)) (-1772 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-3179 (((-567) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-2009 (($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) 59)) (-1798 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) 157) (((-3 (-567) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-1176) "failed") $) NIL (-12 (|has| |#2| (-1039 (-1176))) (|has| |#1| (-365))))) (-1621 ((|#2| $) 156) (((-567) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| |#2| (-1039 (-567))) (|has| |#1| (-365)))) (((-1176) $) NIL (-12 (|has| |#2| (-1039 (-1176))) (|has| |#1| (-365))))) (-1800 (($ $) 65) (($ (-567) $) 28)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-1920 (((-690 |#2|) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| |#2| (-640 (-567))) (|has| |#1| (-365))))) (-4014 (((-3 $ "failed") $) 88)) (-4332 (((-410 (-953 |#1|)) $ (-567)) 124 (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) 126 (|has| |#1| (-559)))) (-1649 (($) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4095 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-4222 (((-112) $) 74)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| |#2| (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| |#2| (-887 (-567))) (|has| |#1| (-365))))) (-1909 (((-567) $) 105) (((-567) $ (-567)) 107)) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-365)))) (-4067 ((|#2| $) 165 (|has| |#1| (-365)))) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2802 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1151)) (|has| |#1| (-365))))) (-3948 (((-112) $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1406 (($ $ (-922)) 148)) (-2440 (($ (-1 |#1| (-567)) $) 144)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-567)) 20) (($ $ (-1082) (-567)) NIL) (($ $ (-645 (-1082)) (-645 (-567))) NIL)) (-2056 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-1802 (($ $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3494 (($ (-1 |#1| |#1|) $) 141) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-365)))) (-2942 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2524 (($ (-567) |#2|) 10)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 159 (|has| |#1| (-365)))) (-2113 (($ $) 228 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 233 (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201)))))) (-2596 (($) NIL (-12 (|has| |#2| (-1151)) (|has| |#1| (-365))) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1987 (($ $) NIL (-12 (|has| |#2| (-308)) (|has| |#1| (-365))))) (-3992 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| |#2| (-910)) (|has| |#1| (-365))))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-567)) 138)) (-2245 (((-3 $ "failed") $ $) 128 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2910 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1176) |#2|) NIL (-12 (|has| |#2| (-517 (-1176) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-1176)) (-645 |#2|)) NIL (-12 (|has| |#2| (-517 (-1176) |#2|)) (|has| |#1| (-365)))) (($ $ (-645 (-295 |#2|))) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-295 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365)))) (($ $ (-645 |#2|) (-645 |#2|)) NIL (-12 (|has| |#2| (-310 |#2|)) (|has| |#1| (-365))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-567)) 103) (($ $ $) 90 (|has| (-567) (-1112))) (($ $ |#2|) NIL (-12 (|has| |#2| (-287 |#2| |#2|)) (|has| |#1| (-365))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2909 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 149 (-2909 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176) (-772)) NIL (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-645 (-1176))) NIL (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176)) 153 (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))) (-2870 (($ $) NIL (|has| |#1| (-365)))) (-4078 ((|#2| $) 166 (|has| |#1| (-365)))) (-3677 (((-567) $) 12)) (-1810 (($ $) 212 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-3542 (((-225) $) NIL (-12 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| |#2| (-1023)) (|has| |#1| (-365)))) (((-539) $) NIL (-12 (|has| |#2| (-615 (-539))) (|has| |#1| (-365)))) (((-893 (-381)) $) NIL (-12 (|has| |#2| (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) NIL (-12 (|has| |#2| (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910)) (|has| |#1| (-365))))) (-2448 (($ $) 136)) (-4101 (((-863) $) 267) (($ (-567)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1176)) NIL (-12 (|has| |#2| (-1039 (-1176))) (|has| |#1| (-365)))) (($ (-410 (-567))) 169 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2339 ((|#1| $ (-567)) 85)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#2| (-910)) (|has| |#1| (-365))) (-12 (|has| |#2| (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2686 (((-772)) 155 T CONST)) (-4113 ((|#1| $) 102)) (-2721 ((|#2| $) NIL (-12 (|has| |#2| (-548)) (|has| |#1| (-365))))) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) 214 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 222 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-567)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 224 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 220 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 216 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-1771 (($ $) NIL (-12 (|has| |#2| (-821)) (|has| |#1| (-365))))) (-1468 (($) 13 T CONST)) (-1484 (($) 18 T CONST)) (-2692 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-365))) (($ $ (-1 |#2| |#2|) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2909 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2909 (-12 (|has| |#2| (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176) (-772)) NIL (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-645 (-1176))) NIL (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| |#2| (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))) (-3109 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3085 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3052 (((-112) $ $) 72)) (-3098 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3075 (((-112) $ $) NIL (-12 (|has| |#2| (-851)) (|has| |#1| (-365))))) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 163 (|has| |#1| (-365))) (($ |#2| |#2|) 164 (|has| |#1| (-365)))) (-3156 (($ $) 227) (($ $ $) 78)) (-3146 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-772)) 84) (($ $ (-567)) 160 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 172 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 79) (($ $ |#1|) NIL) (($ |#1| $) 152) (($ $ |#2|) 162 (|has| |#1| (-365))) (($ |#2| $) 161 (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1229 |#1| |#2|) (-1228 |#1| |#2|) (-1050) (-1257 |#1|)) (T -1229))
+NIL
+(-1228 |#1| |#2|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2838 (((-1258 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 10)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-3602 (($ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2119 (((-112) $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2674 (($ $ (-567)) NIL) (($ $ (-567) (-567)) NIL)) (-3030 (((-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|))) $) NIL)) (-1342 (((-1258 |#1| |#2| |#3|) $) NIL)) (-3432 (((-3 (-1258 |#1| |#2| |#3|) "failed") $) NIL)) (-2511 (((-1258 |#1| |#2| |#3|) $) NIL)) (-1772 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3179 (((-567) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-2009 (($ (-1156 (-2 (|:| |k| (-567)) (|:| |c| |#1|)))) NIL)) (-1798 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-1258 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1176) "failed") $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-1176))) (|has| |#1| (-365)))) (((-3 (-410 (-567)) "failed") $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-3 (-567) "failed") $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-1621 (((-1258 |#1| |#2| |#3|) $) NIL) (((-1176) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-1176))) (|has| |#1| (-365)))) (((-410 (-567)) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365)))) (((-567) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))))) (-1800 (($ $) NIL) (($ (-567) $) NIL)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-1258 |#1| |#2| |#3|)) (-690 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 (-1258 |#1| |#2| |#3|))) (|:| |vec| (-1266 (-1258 |#1| |#2| |#3|)))) (-690 $) (-1266 $)) NIL (|has| |#1| (-365))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365)))) (((-690 (-567)) (-690 $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-640 (-567))) (|has| |#1| (-365))))) (-4014 (((-3 $ "failed") $) NIL)) (-4332 (((-410 (-953 |#1|)) $ (-567)) NIL (|has| |#1| (-559))) (((-410 (-953 |#1|)) $ (-567) (-567)) NIL (|has| |#1| (-559)))) (-1649 (($) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4095 (((-112) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-887 (-381))) (|has| |#1| (-365)))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-887 (-567))) (|has| |#1| (-365))))) (-1909 (((-567) $) NIL) (((-567) $ (-567)) NIL)) (-3714 (((-112) $) NIL)) (-4349 (($ $) NIL (|has| |#1| (-365)))) (-4067 (((-1258 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2802 (((-3 $ "failed") $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1151)) (|has| |#1| (-365))))) (-3948 (((-112) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1406 (($ $ (-922)) NIL)) (-2440 (($ (-1 |#1| (-567)) $) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-567)) 18) (($ $ (-1082) (-567)) NIL) (($ $ (-645 (-1082)) (-645 (-567))) NIL)) (-2056 (($ $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-1802 (($ $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-365)))) (-2942 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2524 (($ (-567) (-1258 |#1| |#2| |#3|)) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2113 (($ $) 27 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201))))) (($ $ (-1262 |#2|)) 28 (|has| |#1| (-38 (-410 (-567)))))) (-2596 (($) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1151)) (|has| |#1| (-365))) CONST)) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1987 (($ $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-308)) (|has| |#1| (-365))))) (-3992 (((-1258 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-567)) NIL)) (-2245 (((-3 $ "failed") $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2910 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-567))))) (($ $ (-1176) (-1258 |#1| |#2| |#3|)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-517 (-1176) (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1176)) (-645 (-1258 |#1| |#2| |#3|))) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-517 (-1176) (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-295 (-1258 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-310 (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-295 (-1258 |#1| |#2| |#3|))) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-310 (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-310 (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365)))) (($ $ (-645 (-1258 |#1| |#2| |#3|)) (-645 (-1258 |#1| |#2| |#3|))) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-310 (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-567)) NIL) (($ $ $) NIL (|has| (-567) (-1112))) (($ $ (-1258 |#1| |#2| |#3|)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-287 (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|))) (|has| |#1| (-365))))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-1 (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-1262 |#2|)) 26) (($ $ (-772)) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) 25 (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176) (-772)) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-645 (-1176))) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))) (-2870 (($ $) NIL (|has| |#1| (-365)))) (-4078 (((-1258 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365)))) (-3677 (((-567) $) NIL)) (-1810 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3542 (((-539) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-615 (-539))) (|has| |#1| (-365)))) (((-381) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-225) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1023)) (|has| |#1| (-365)))) (((-893 (-381)) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-615 (-893 (-381)))) (|has| |#1| (-365)))) (((-893 (-567)) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-615 (-893 (-567)))) (|has| |#1| (-365))))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))))) (-2448 (($ $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1258 |#1| |#2| |#3|)) NIL) (($ (-1262 |#2|)) 24) (($ (-1176)) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-1176))) (|has| |#1| (-365)))) (($ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559)))) (($ (-410 (-567))) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-1039 (-567))) (|has| |#1| (-365))) (|has| |#1| (-38 (-410 (-567))))))) (-2339 ((|#1| $ (-567)) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-145)) (|has| |#1| (-365))) (|has| |#1| (-145))))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) 11)) (-2721 (((-1258 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-548)) (|has| |#1| (-365))))) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-910)) (|has| |#1| (-365))) (|has| |#1| (-559))))) (-1823 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-567)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-567)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1771 (($ $) NIL (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))))) (-1468 (($) 20 T CONST)) (-1484 (($) 15 T CONST)) (-2692 (($ $ (-1 (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|))) NIL (|has| |#1| (-365))) (($ $ (-1 (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|)) (-772)) NIL (|has| |#1| (-365))) (($ $ (-772)) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-233)) (|has| |#1| (-365))) (|has| |#1| (-15 * (|#1| (-567) |#1|))))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176) (-772)) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-645 (-1176))) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176)))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-901 (-1176))) (|has| |#1| (-365))) (-12 (|has| |#1| (-15 * (|#1| (-567) |#1|))) (|has| |#1| (-901 (-1176))))))) (-3109 (((-112) $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3085 (((-112) $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3052 (((-112) $ $) NIL)) (-3098 (((-112) $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3075 (((-112) $ $) NIL (-2909 (-12 (|has| (-1258 |#1| |#2| |#3|) (-821)) (|has| |#1| (-365))) (-12 (|has| (-1258 |#1| |#2| |#3|) (-851)) (|has| |#1| (-365)))))) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365))) (($ (-1258 |#1| |#2| |#3|) (-1258 |#1| |#2| |#3|)) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 22)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1258 |#1| |#2| |#3|)) NIL (|has| |#1| (-365))) (($ (-1258 |#1| |#2| |#3|) $) NIL (|has| |#1| (-365))) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1230 |#1| |#2| |#3|) (-13 (-1228 |#1| (-1258 |#1| |#2| |#3|)) (-10 -8 (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|))) (-1050) (-1176) |#1|) (T -1230))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1230 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(-13 (-1228 |#1| (-1258 |#1| |#2| |#3|)) (-10 -8 (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|)))
+((-2109 (((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112)) 13)) (-3241 (((-421 |#1|) |#1|) 26)) (-2296 (((-421 |#1|) |#1|) 24)))
+(((-1231 |#1|) (-10 -7 (-15 -2296 ((-421 |#1|) |#1|)) (-15 -3241 ((-421 |#1|) |#1|)) (-15 -2109 ((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112)))) (-1242 (-567))) (T -1231))
+((-2109 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567))))))) (-5 *1 (-1231 *3)) (-4 *3 (-1242 (-567))))) (-3241 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1231 *3)) (-4 *3 (-1242 (-567))))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-1231 *3)) (-4 *3 (-1242 (-567))))))
+(-10 -7 (-15 -2296 ((-421 |#1|) |#1|)) (-15 -3241 ((-421 |#1|) |#1|)) (-15 -2109 ((-2 (|:| |contp| (-567)) (|:| -2807 (-645 (-2 (|:| |irr| |#1|) (|:| -3259 (-567)))))) |#1| (-112))))
+((-3494 (((-1156 |#2|) (-1 |#2| |#1|) (-1233 |#1|)) 23 (|has| |#1| (-849))) (((-1233 |#2|) (-1 |#2| |#1|) (-1233 |#1|)) 17)))
+(((-1232 |#1| |#2|) (-10 -7 (-15 -3494 ((-1233 |#2|) (-1 |#2| |#1|) (-1233 |#1|))) (IF (|has| |#1| (-849)) (-15 -3494 ((-1156 |#2|) (-1 |#2| |#1|) (-1233 |#1|))) |%noBranch|)) (-1216) (-1216)) (T -1232))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5)) (-4 *5 (-849)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1156 *6)) (-5 *1 (-1232 *5 *6)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1233 *6)) (-5 *1 (-1232 *5 *6)))))
+(-10 -7 (-15 -3494 ((-1233 |#2|) (-1 |#2| |#1|) (-1233 |#1|))) (IF (|has| |#1| (-849)) (-15 -3494 ((-1156 |#2|) (-1 |#2| |#1|) (-1233 |#1|))) |%noBranch|))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-1907 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-3494 (((-1156 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-849)))) (-2764 ((|#1| $) 15)) (-4109 ((|#1| $) 12)) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-4131 (((-567) $) 19)) (-4361 ((|#1| $) 18)) (-4143 ((|#1| $) 13)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-3060 (((-112) $) 17)) (-1511 (((-1156 |#1|) $) 41 (|has| |#1| (-849))) (((-1156 |#1|) (-645 $)) 40 (|has| |#1| (-849)))) (-3542 (($ |#1|) 26)) (-4101 (($ (-1094 |#1|)) 25) (((-863) $) 37 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2185 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2829 (($ $ (-567)) 14)) (-3052 (((-112) $ $) 30 (|has| |#1| (-1100)))))
+(((-1233 |#1|) (-13 (-1093 |#1|) (-10 -8 (-15 -2185 ($ |#1|)) (-15 -1907 ($ |#1|)) (-15 -4101 ($ (-1094 |#1|))) (-15 -3060 ((-112) $)) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1095 |#1| (-1156 |#1|))) |%noBranch|))) (-1216)) (T -1233))
+((-2185 (*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1216)))) (-1907 (*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1216)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1094 *3)) (-4 *3 (-1216)) (-5 *1 (-1233 *3)))) (-3060 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1216)))))
+(-13 (-1093 |#1|) (-10 -8 (-15 -2185 ($ |#1|)) (-15 -1907 ($ |#1|)) (-15 -4101 ($ (-1094 |#1|))) (-15 -3060 ((-112) $)) (IF (|has| |#1| (-1100)) (-6 (-1100)) |%noBranch|) (IF (|has| |#1| (-849)) (-6 (-1095 |#1| (-1156 |#1|))) |%noBranch|)))
+((-3494 (((-1239 |#3| |#4|) (-1 |#4| |#2|) (-1239 |#1| |#2|)) 15)))
+(((-1234 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 ((-1239 |#3| |#4|) (-1 |#4| |#2|) (-1239 |#1| |#2|)))) (-1176) (-1050) (-1176) (-1050)) (T -1234))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1239 *5 *6)) (-14 *5 (-1176)) (-4 *6 (-1050)) (-4 *8 (-1050)) (-5 *2 (-1239 *7 *8)) (-5 *1 (-1234 *5 *6 *7 *8)) (-14 *7 (-1176)))))
+(-10 -7 (-15 -3494 ((-1239 |#3| |#4|) (-1 |#4| |#2|) (-1239 |#1| |#2|))))
+((-1371 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2532 ((|#1| |#3|) 13)) (-3013 ((|#3| |#3|) 19)))
+(((-1235 |#1| |#2| |#3|) (-10 -7 (-15 -2532 (|#1| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -1371 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-559) (-993 |#1|) (-1242 |#2|)) (T -1235))
+((-1371 (*1 *2 *3) (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1235 *4 *5 *3)) (-4 *3 (-1242 *5)))) (-3013 (*1 *2 *2) (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-1235 *3 *4 *2)) (-4 *2 (-1242 *4)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-1235 *2 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -2532 (|#1| |#3|)) (-15 -3013 (|#3| |#3|)) (-15 -1371 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3969 (((-3 |#2| "failed") |#2| (-772) |#1|) 37)) (-2263 (((-3 |#2| "failed") |#2| (-772)) 38)) (-3562 (((-3 (-2 (|:| -2993 |#2|) (|:| -3005 |#2|)) "failed") |#2|) 52)) (-2435 (((-645 |#2|) |#2|) 54)) (-3019 (((-3 |#2| "failed") |#2| |#2|) 48)))
+(((-1236 |#1| |#2|) (-10 -7 (-15 -2263 ((-3 |#2| "failed") |#2| (-772))) (-15 -3969 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -3019 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3562 ((-3 (-2 (|:| -2993 |#2|) (|:| -3005 |#2|)) "failed") |#2|)) (-15 -2435 ((-645 |#2|) |#2|))) (-13 (-559) (-147)) (-1242 |#1|)) (T -1236))
+((-2435 (*1 *2 *3) (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-1242 *4)))) (-3562 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-2 (|:| -2993 *3) (|:| -3005 *3))) (-5 *1 (-1236 *4 *3)) (-4 *3 (-1242 *4)))) (-3019 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1236 *3 *2)) (-4 *2 (-1242 *3)))) (-3969 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1236 *4 *2)) (-4 *2 (-1242 *4)))) (-2263 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-1236 *4 *2)) (-4 *2 (-1242 *4)))))
+(-10 -7 (-15 -2263 ((-3 |#2| "failed") |#2| (-772))) (-15 -3969 ((-3 |#2| "failed") |#2| (-772) |#1|)) (-15 -3019 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3562 ((-3 (-2 (|:| -2993 |#2|) (|:| -3005 |#2|)) "failed") |#2|)) (-15 -2435 ((-645 |#2|) |#2|)))
+((-4329 (((-3 (-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) "failed") |#2| |#2|) 30)))
+(((-1237 |#1| |#2|) (-10 -7 (-15 -4329 ((-3 (-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) "failed") |#2| |#2|))) (-559) (-1242 |#1|)) (T -1237))
+((-4329 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-1237 *4 *3)) (-4 *3 (-1242 *4)))))
+(-10 -7 (-15 -4329 ((-3 (-2 (|:| -3545 |#2|) (|:| -1386 |#2|)) "failed") |#2| |#2|)))
+((-1887 ((|#2| |#2| |#2|) 22)) (-2016 ((|#2| |#2| |#2|) 36)) (-1351 ((|#2| |#2| |#2| (-772) (-772)) 44)))
+(((-1238 |#1| |#2|) (-10 -7 (-15 -1887 (|#2| |#2| |#2|)) (-15 -2016 (|#2| |#2| |#2|)) (-15 -1351 (|#2| |#2| |#2| (-772) (-772)))) (-1050) (-1242 |#1|)) (T -1238))
+((-1351 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-1238 *4 *2)) (-4 *2 (-1242 *4)))) (-2016 (*1 *2 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-1242 *3)))) (-1887 (*1 *2 *2 *2) (-12 (-4 *3 (-1050)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-1242 *3)))))
+(-10 -7 (-15 -1887 (|#2| |#2| |#2|)) (-15 -2016 (|#2| |#2| |#2|)) (-15 -1351 (|#2| |#2| |#2| (-772) (-772))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-3723 (((-1266 |#2|) $ (-772)) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-2876 (($ (-1172 |#2|)) NIL)) (-2260 (((-1172 $) $ (-1082)) NIL) (((-1172 |#2|) $) NIL)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#2| (-559)))) (-3602 (($ $) NIL (|has| |#2| (-559)))) (-2119 (((-112) $) NIL (|has| |#2| (-559)))) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-1082))) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-3288 (($ $ $) NIL (|has| |#2| (-559)))) (-1877 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1396 (($ $) NIL (|has| |#2| (-455)))) (-1401 (((-421 $) $) NIL (|has| |#2| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-3405 (((-112) $ $) NIL (|has| |#2| (-365)))) (-3139 (($ $ (-772)) NIL)) (-2001 (($ $ (-772)) NIL)) (-2320 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-455)))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) NIL) (((-3 (-410 (-567)) "failed") $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) NIL (|has| |#2| (-1039 (-567)))) (((-3 (-1082) "failed") $) NIL)) (-1621 ((|#2| $) NIL) (((-410 (-567)) $) NIL (|has| |#2| (-1039 (-410 (-567))))) (((-567) $) NIL (|has| |#2| (-1039 (-567)))) (((-1082) $) NIL)) (-2414 (($ $ $ (-1082)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-2197 (($ $ $) NIL (|has| |#2| (-365)))) (-2637 (($ $) NIL)) (-1920 (((-690 (-567)) (-690 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) NIL (|has| |#2| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#2|)) (|:| |vec| (-1266 |#2|))) (-690 $) (-1266 $)) NIL) (((-690 |#2|) (-690 $)) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2210 (($ $ $) NIL (|has| |#2| (-365)))) (-3393 (($ $ $) NIL)) (-3862 (($ $ $) NIL (|has| |#2| (-559)))) (-2919 (((-2 (|:| -3087 |#2|) (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#2| (-559)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#2| (-365)))) (-2958 (($ $) NIL (|has| |#2| (-455))) (($ $ (-1082)) NIL (|has| |#2| (-455)))) (-2624 (((-645 $) $) NIL)) (-1665 (((-112) $) NIL (|has| |#2| (-910)))) (-3564 (($ $ |#2| (-772) $) NIL)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) NIL (-12 (|has| (-1082) (-887 (-381))) (|has| |#2| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) NIL (-12 (|has| (-1082) (-887 (-567))) (|has| |#2| (-887 (-567)))))) (-1909 (((-772) $ $) NIL (|has| |#2| (-559)))) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2802 (((-3 $ "failed") $) NIL (|has| |#2| (-1151)))) (-2434 (($ (-1172 |#2|) (-1082)) NIL) (($ (-1172 $) (-1082)) NIL)) (-1406 (($ $ (-772)) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-2422 (($ |#2| (-772)) 18) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-1082)) NIL) (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL)) (-4185 (((-772) $) NIL) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-1599 (($ (-1 (-772) (-772)) $) NIL)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-1689 (((-1172 |#2|) $) NIL)) (-3300 (((-3 (-1082) "failed") $) NIL)) (-2599 (($ $) NIL)) (-2613 ((|#2| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-2451 (((-1158) $) NIL)) (-2607 (((-2 (|:| -3545 $) (|:| -1386 $)) $ (-772)) NIL)) (-3376 (((-3 (-645 $) "failed") $) NIL)) (-1808 (((-3 (-645 $) "failed") $) NIL)) (-2688 (((-3 (-2 (|:| |var| (-1082)) (|:| -4164 (-772))) "failed") $) NIL)) (-2113 (($ $) NIL (|has| |#2| (-38 (-410 (-567)))))) (-2596 (($) NIL (|has| |#2| (-1151)) CONST)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 ((|#2| $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#2| (-455)))) (-3276 (($ (-645 $)) NIL (|has| |#2| (-455))) (($ $ $) NIL (|has| |#2| (-455)))) (-4237 (($ $ (-772) |#2| $) NIL)) (-1495 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) NIL (|has| |#2| (-910)))) (-2296 (((-421 $) $) NIL (|has| |#2| (-910)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#2| (-365)))) (-2245 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-559))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#2| (-365)))) (-3140 (($ $ (-645 (-295 $))) NIL) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1082) |#2|) NIL) (($ $ (-645 (-1082)) (-645 |#2|)) NIL) (($ $ (-1082) $) NIL) (($ $ (-645 (-1082)) (-645 $)) NIL)) (-4369 (((-772) $) NIL (|has| |#2| (-365)))) (-1552 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) NIL (|has| |#2| (-559))) ((|#2| (-410 $) |#2|) NIL (|has| |#2| (-365))) (((-410 $) $ (-410 $)) NIL (|has| |#2| (-559)))) (-2116 (((-3 $ "failed") $ (-772)) NIL)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#2| (-365)))) (-3347 (($ $ (-1082)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-1930 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-3677 (((-772) $) NIL) (((-772) $ (-1082)) NIL) (((-645 (-772)) $ (-645 (-1082))) NIL)) (-3542 (((-893 (-381)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-381)))) (|has| |#2| (-615 (-893 (-381)))))) (((-893 (-567)) $) NIL (-12 (|has| (-1082) (-615 (-893 (-567)))) (|has| |#2| (-615 (-893 (-567)))))) (((-539) $) NIL (-12 (|has| (-1082) (-615 (-539))) (|has| |#2| (-615 (-539)))))) (-1640 ((|#2| $) NIL (|has| |#2| (-455))) (($ $ (-1082)) NIL (|has| |#2| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-910))))) (-4187 (((-3 $ "failed") $ $) NIL (|has| |#2| (-559))) (((-3 (-410 $) "failed") (-410 $) $) NIL (|has| |#2| (-559)))) (-4101 (((-863) $) 13) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1082)) NIL) (($ (-1262 |#1|)) 20) (($ (-410 (-567))) NIL (-2909 (|has| |#2| (-38 (-410 (-567)))) (|has| |#2| (-1039 (-410 (-567)))))) (($ $) NIL (|has| |#2| (-559)))) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-772)) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4242 (((-3 $ "failed") $) NIL (-2909 (-12 (|has| $ (-145)) (|has| |#2| (-910))) (|has| |#2| (-145))))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| |#2| (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL (|has| |#2| (-559)))) (-1468 (($) NIL T CONST)) (-1484 (($) 14 T CONST)) (-2692 (($ $ (-1082)) NIL) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) NIL) (($ $ (-1176)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1176) (-772)) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) NIL (|has| |#2| (-901 (-1176)))) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#2|) NIL (|has| |#2| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-410 (-567))) NIL (|has| |#2| (-38 (-410 (-567))))) (($ (-410 (-567)) $) NIL (|has| |#2| (-38 (-410 (-567))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1239 |#1| |#2|) (-13 (-1242 |#2|) (-617 (-1262 |#1|)) (-10 -8 (-15 -4237 ($ $ (-772) |#2| $)))) (-1176) (-1050)) (T -1239))
+((-4237 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1239 *4 *3)) (-14 *4 (-1176)) (-4 *3 (-1050)))))
+(-13 (-1242 |#2|) (-617 (-1262 |#1|)) (-10 -8 (-15 -4237 ($ $ (-772) |#2| $))))
+((-3494 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1240 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|))) (-1050) (-1242 |#1|) (-1050) (-1242 |#3|)) (T -1240))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *2 (-1242 *6)) (-5 *1 (-1240 *5 *4 *6 *2)) (-4 *4 (-1242 *5)))))
+(-10 -7 (-15 -3494 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3723 (((-1266 |#2|) $ (-772)) 129)) (-2449 (((-645 (-1082)) $) 16)) (-2876 (($ (-1172 |#2|)) 80)) (-3238 (((-772) $) NIL) (((-772) $ (-645 (-1082))) 21)) (-1877 (((-421 (-1172 $)) (-1172 $)) 204)) (-1396 (($ $) 194)) (-1401 (((-421 $) $) 192)) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 95)) (-3139 (($ $ (-772)) 84)) (-2001 (($ $ (-772)) 86)) (-2320 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145)) (-3417 (((-3 |#2| "failed") $) 132) (((-3 (-410 (-567)) "failed") $) NIL) (((-3 (-567) "failed") $) NIL) (((-3 (-1082) "failed") $) NIL)) (-1621 ((|#2| $) 130) (((-410 (-567)) $) NIL) (((-567) $) NIL) (((-1082) $) NIL)) (-3862 (($ $ $) 170)) (-2919 (((-2 (|:| -3087 |#2|) (|:| -3545 $) (|:| -1386 $)) $ $) 172)) (-1909 (((-772) $ $) 189)) (-2802 (((-3 $ "failed") $) 138)) (-2422 (($ |#2| (-772)) NIL) (($ $ (-1082) (-772)) 59) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-4185 (((-772) $) NIL) (((-772) $ (-1082)) 54) (((-645 (-772)) $ (-645 (-1082))) 55)) (-1689 (((-1172 |#2|) $) 72)) (-3300 (((-3 (-1082) "failed") $) 52)) (-2607 (((-2 (|:| -3545 $) (|:| -1386 $)) $ (-772)) 83)) (-2113 (($ $) 219)) (-2596 (($) 134)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 201)) (-1495 (((-421 (-1172 $)) (-1172 $)) 101)) (-1429 (((-421 (-1172 $)) (-1172 $)) 99)) (-2296 (((-421 $) $) 120)) (-3140 (($ $ (-645 (-295 $))) 51) (($ $ (-295 $)) NIL) (($ $ $ $) NIL) (($ $ (-645 $) (-645 $)) NIL) (($ $ (-1082) |#2|) 39) (($ $ (-645 (-1082)) (-645 |#2|)) 36) (($ $ (-1082) $) 32) (($ $ (-645 (-1082)) (-645 $)) 30)) (-4369 (((-772) $) 207)) (-1552 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-410 $) (-410 $) (-410 $)) 164) ((|#2| (-410 $) |#2|) 206) (((-410 $) $ (-410 $)) 188)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 212)) (-1930 (($ $ (-1082)) 157) (($ $ (-645 (-1082))) NIL) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL) (($ $ (-772)) NIL) (($ $) 155) (($ $ (-1176)) NIL) (($ $ (-645 (-1176))) NIL) (($ $ (-1176) (-772)) NIL) (($ $ (-645 (-1176)) (-645 (-772))) NIL) (($ $ (-1 |#2| |#2|) (-772)) NIL) (($ $ (-1 |#2| |#2|)) 154) (($ $ (-1 |#2| |#2|) $) 149)) (-3677 (((-772) $) NIL) (((-772) $ (-1082)) 17) (((-645 (-772)) $ (-645 (-1082))) 23)) (-1640 ((|#2| $) NIL) (($ $ (-1082)) 140)) (-4187 (((-3 $ "failed") $ $) 180) (((-3 (-410 $) "failed") (-410 $) $) 176)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#2|) NIL) (($ (-1082)) 64) (($ (-410 (-567))) NIL) (($ $) NIL)))
+(((-1241 |#1| |#2|) (-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -1552 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -4369 ((-772) |#1|)) (-15 -2679 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -1552 (|#2| (-410 |#1|) |#2|)) (-15 -2320 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2919 ((-2 (|:| -3087 |#2|) (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -4187 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1909 ((-772) |#1| |#1|)) (-15 -1552 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2001 (|#1| |#1| (-772))) (-15 -3139 (|#1| |#1| (-772))) (-15 -2607 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| (-772))) (-15 -2876 (|#1| (-1172 |#2|))) (-15 -1689 ((-1172 |#2|) |#1|)) (-15 -3723 ((-1266 |#2|) |#1| (-772))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1552 (|#1| |#1| |#1|)) (-15 -1552 (|#2| |#1| |#2|)) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1877 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1429 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1495 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -1640 (|#1| |#1| (-1082))) (-15 -2449 ((-645 (-1082)) |#1|)) (-15 -3238 ((-772) |#1| (-645 (-1082)))) (-15 -3238 ((-772) |#1|)) (-15 -2422 (|#1| |#1| (-645 (-1082)) (-645 (-772)))) (-15 -2422 (|#1| |#1| (-1082) (-772))) (-15 -4185 ((-645 (-772)) |#1| (-645 (-1082)))) (-15 -4185 ((-772) |#1| (-1082))) (-15 -3300 ((-3 (-1082) "failed") |#1|)) (-15 -3677 ((-645 (-772)) |#1| (-645 (-1082)))) (-15 -3677 ((-772) |#1| (-1082))) (-15 -4101 (|#1| (-1082))) (-15 -3417 ((-3 (-1082) "failed") |#1|)) (-15 -1621 ((-1082) |#1|)) (-15 -3140 (|#1| |#1| (-645 (-1082)) (-645 |#1|))) (-15 -3140 (|#1| |#1| (-1082) |#1|)) (-15 -3140 (|#1| |#1| (-645 (-1082)) (-645 |#2|))) (-15 -3140 (|#1| |#1| (-1082) |#2|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3677 ((-772) |#1|)) (-15 -2422 (|#1| |#2| (-772))) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -4185 ((-772) |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -1930 (|#1| |#1| (-645 (-1082)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1082) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1082)))) (-15 -1930 (|#1| |#1| (-1082))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|))) (-1242 |#2|) (-1050)) (T -1241))
+NIL
+(-10 -8 (-15 -4101 (|#1| |#1|)) (-15 -1819 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -1401 ((-421 |#1|) |#1|)) (-15 -1396 (|#1| |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -2596 (|#1|)) (-15 -2802 ((-3 |#1| "failed") |#1|)) (-15 -1552 ((-410 |#1|) |#1| (-410 |#1|))) (-15 -4369 ((-772) |#1|)) (-15 -2679 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -2113 (|#1| |#1|)) (-15 -1552 (|#2| (-410 |#1|) |#2|)) (-15 -2320 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2919 ((-2 (|:| -3087 |#2|) (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| |#1|)) (-15 -3862 (|#1| |#1| |#1|)) (-15 -4187 ((-3 (-410 |#1|) "failed") (-410 |#1|) |#1|)) (-15 -4187 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1909 ((-772) |#1| |#1|)) (-15 -1552 ((-410 |#1|) (-410 |#1|) (-410 |#1|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2001 (|#1| |#1| (-772))) (-15 -3139 (|#1| |#1| (-772))) (-15 -2607 ((-2 (|:| -3545 |#1|) (|:| -1386 |#1|)) |#1| (-772))) (-15 -2876 (|#1| (-1172 |#2|))) (-15 -1689 ((-1172 |#2|) |#1|)) (-15 -3723 ((-1266 |#2|) |#1| (-772))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1930 (|#1| |#1| (-1 |#2| |#2|) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1176) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1176)))) (-15 -1930 (|#1| |#1| (-1176))) (-15 -1930 (|#1| |#1|)) (-15 -1930 (|#1| |#1| (-772))) (-15 -1552 (|#1| |#1| |#1|)) (-15 -1552 (|#2| |#1| |#2|)) (-15 -2296 ((-421 |#1|) |#1|)) (-15 -1877 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1429 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -1495 ((-421 (-1172 |#1|)) (-1172 |#1|))) (-15 -4087 ((-3 (-645 (-1172 |#1|)) "failed") (-645 (-1172 |#1|)) (-1172 |#1|))) (-15 -1640 (|#1| |#1| (-1082))) (-15 -2449 ((-645 (-1082)) |#1|)) (-15 -3238 ((-772) |#1| (-645 (-1082)))) (-15 -3238 ((-772) |#1|)) (-15 -2422 (|#1| |#1| (-645 (-1082)) (-645 (-772)))) (-15 -2422 (|#1| |#1| (-1082) (-772))) (-15 -4185 ((-645 (-772)) |#1| (-645 (-1082)))) (-15 -4185 ((-772) |#1| (-1082))) (-15 -3300 ((-3 (-1082) "failed") |#1|)) (-15 -3677 ((-645 (-772)) |#1| (-645 (-1082)))) (-15 -3677 ((-772) |#1| (-1082))) (-15 -4101 (|#1| (-1082))) (-15 -3417 ((-3 (-1082) "failed") |#1|)) (-15 -1621 ((-1082) |#1|)) (-15 -3140 (|#1| |#1| (-645 (-1082)) (-645 |#1|))) (-15 -3140 (|#1| |#1| (-1082) |#1|)) (-15 -3140 (|#1| |#1| (-645 (-1082)) (-645 |#2|))) (-15 -3140 (|#1| |#1| (-1082) |#2|)) (-15 -3140 (|#1| |#1| (-645 |#1|) (-645 |#1|))) (-15 -3140 (|#1| |#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| (-295 |#1|))) (-15 -3140 (|#1| |#1| (-645 (-295 |#1|)))) (-15 -3677 ((-772) |#1|)) (-15 -2422 (|#1| |#2| (-772))) (-15 -3417 ((-3 (-567) "failed") |#1|)) (-15 -1621 ((-567) |#1|)) (-15 -3417 ((-3 (-410 (-567)) "failed") |#1|)) (-15 -1621 ((-410 (-567)) |#1|)) (-15 -1621 (|#2| |#1|)) (-15 -3417 ((-3 |#2| "failed") |#1|)) (-15 -4101 (|#1| |#2|)) (-15 -4185 ((-772) |#1|)) (-15 -1640 (|#2| |#1|)) (-15 -1930 (|#1| |#1| (-645 (-1082)) (-645 (-772)))) (-15 -1930 (|#1| |#1| (-1082) (-772))) (-15 -1930 (|#1| |#1| (-645 (-1082)))) (-15 -1930 (|#1| |#1| (-1082))) (-15 -4101 (|#1| (-567))) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-3723 (((-1266 |#1|) $ (-772)) 240)) (-2449 (((-645 (-1082)) $) 112)) (-2876 (($ (-1172 |#1|)) 238)) (-2260 (((-1172 $) $ (-1082)) 127) (((-1172 |#1|) $) 126)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 89 (|has| |#1| (-559)))) (-3602 (($ $) 90 (|has| |#1| (-559)))) (-2119 (((-112) $) 92 (|has| |#1| (-559)))) (-3238 (((-772) $) 114) (((-772) $ (-645 (-1082))) 113)) (-4377 (((-3 $ "failed") $ $) 20)) (-3288 (($ $ $) 225 (|has| |#1| (-559)))) (-1877 (((-421 (-1172 $)) (-1172 $)) 102 (|has| |#1| (-910)))) (-1396 (($ $) 100 (|has| |#1| (-455)))) (-1401 (((-421 $) $) 99 (|has| |#1| (-455)))) (-4087 (((-3 (-645 (-1172 $)) "failed") (-645 (-1172 $)) (-1172 $)) 105 (|has| |#1| (-910)))) (-3405 (((-112) $ $) 210 (|has| |#1| (-365)))) (-3139 (($ $ (-772)) 233)) (-2001 (($ $ (-772)) 232)) (-2320 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 220 (|has| |#1| (-455)))) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 166) (((-3 (-410 (-567)) "failed") $) 163 (|has| |#1| (-1039 (-410 (-567))))) (((-3 (-567) "failed") $) 161 (|has| |#1| (-1039 (-567)))) (((-3 (-1082) "failed") $) 138)) (-1621 ((|#1| $) 165) (((-410 (-567)) $) 164 (|has| |#1| (-1039 (-410 (-567))))) (((-567) $) 162 (|has| |#1| (-1039 (-567)))) (((-1082) $) 139)) (-2414 (($ $ $ (-1082)) 110 (|has| |#1| (-172))) ((|#1| $ $) 228 (|has| |#1| (-172)))) (-2197 (($ $ $) 214 (|has| |#1| (-365)))) (-2637 (($ $) 156)) (-1920 (((-690 (-567)) (-690 $)) 136 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 (-567))) (|:| |vec| (-1266 (-567)))) (-690 $) (-1266 $)) 135 (|has| |#1| (-640 (-567)))) (((-2 (|:| -4302 (-690 |#1|)) (|:| |vec| (-1266 |#1|))) (-690 $) (-1266 $)) 134) (((-690 |#1|) (-690 $)) 133)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 213 (|has| |#1| (-365)))) (-3393 (($ $ $) 231)) (-3862 (($ $ $) 222 (|has| |#1| (-559)))) (-2919 (((-2 (|:| -3087 |#1|) (|:| -3545 $) (|:| -1386 $)) $ $) 221 (|has| |#1| (-559)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 208 (|has| |#1| (-365)))) (-2958 (($ $) 178 (|has| |#1| (-455))) (($ $ (-1082)) 107 (|has| |#1| (-455)))) (-2624 (((-645 $) $) 111)) (-1665 (((-112) $) 98 (|has| |#1| (-910)))) (-3564 (($ $ |#1| (-772) $) 174)) (-3813 (((-890 (-381) $) $ (-893 (-381)) (-890 (-381) $)) 86 (-12 (|has| (-1082) (-887 (-381))) (|has| |#1| (-887 (-381))))) (((-890 (-567) $) $ (-893 (-567)) (-890 (-567) $)) 85 (-12 (|has| (-1082) (-887 (-567))) (|has| |#1| (-887 (-567)))))) (-1909 (((-772) $ $) 226 (|has| |#1| (-559)))) (-3714 (((-112) $) 35)) (-2864 (((-772) $) 171)) (-2802 (((-3 $ "failed") $) 206 (|has| |#1| (-1151)))) (-2434 (($ (-1172 |#1|) (-1082)) 119) (($ (-1172 $) (-1082)) 118)) (-1406 (($ $ (-772)) 237)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 217 (|has| |#1| (-365)))) (-2133 (((-645 $) $) 128)) (-3523 (((-112) $) 154)) (-2422 (($ |#1| (-772)) 155) (($ $ (-1082) (-772)) 121) (($ $ (-645 (-1082)) (-645 (-772))) 120)) (-4089 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $ (-1082)) 122) (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 235)) (-4185 (((-772) $) 172) (((-772) $ (-1082)) 124) (((-645 (-772)) $ (-645 (-1082))) 123)) (-1599 (($ (-1 (-772) (-772)) $) 173)) (-3494 (($ (-1 |#1| |#1|) $) 153)) (-1689 (((-1172 |#1|) $) 239)) (-3300 (((-3 (-1082) "failed") $) 125)) (-2599 (($ $) 151)) (-2613 ((|#1| $) 150)) (-3245 (($ (-645 $)) 96 (|has| |#1| (-455))) (($ $ $) 95 (|has| |#1| (-455)))) (-2451 (((-1158) $) 10)) (-2607 (((-2 (|:| -3545 $) (|:| -1386 $)) $ (-772)) 234)) (-3376 (((-3 (-645 $) "failed") $) 116)) (-1808 (((-3 (-645 $) "failed") $) 117)) (-2688 (((-3 (-2 (|:| |var| (-1082)) (|:| -4164 (-772))) "failed") $) 115)) (-2113 (($ $) 218 (|has| |#1| (-38 (-410 (-567)))))) (-2596 (($) 205 (|has| |#1| (-1151)) CONST)) (-3339 (((-1120) $) 11)) (-2567 (((-112) $) 168)) (-2583 ((|#1| $) 169)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 97 (|has| |#1| (-455)))) (-3276 (($ (-645 $)) 94 (|has| |#1| (-455))) (($ $ $) 93 (|has| |#1| (-455)))) (-1495 (((-421 (-1172 $)) (-1172 $)) 104 (|has| |#1| (-910)))) (-1429 (((-421 (-1172 $)) (-1172 $)) 103 (|has| |#1| (-910)))) (-2296 (((-421 $) $) 101 (|has| |#1| (-910)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 216 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 215 (|has| |#1| (-365)))) (-2245 (((-3 $ "failed") $ |#1|) 176 (|has| |#1| (-559))) (((-3 $ "failed") $ $) 88 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 209 (|has| |#1| (-365)))) (-3140 (($ $ (-645 (-295 $))) 147) (($ $ (-295 $)) 146) (($ $ $ $) 145) (($ $ (-645 $) (-645 $)) 144) (($ $ (-1082) |#1|) 143) (($ $ (-645 (-1082)) (-645 |#1|)) 142) (($ $ (-1082) $) 141) (($ $ (-645 (-1082)) (-645 $)) 140)) (-4369 (((-772) $) 211 (|has| |#1| (-365)))) (-1552 ((|#1| $ |#1|) 258) (($ $ $) 257) (((-410 $) (-410 $) (-410 $)) 227 (|has| |#1| (-559))) ((|#1| (-410 $) |#1|) 219 (|has| |#1| (-365))) (((-410 $) $ (-410 $)) 207 (|has| |#1| (-559)))) (-2116 (((-3 $ "failed") $ (-772)) 236)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 212 (|has| |#1| (-365)))) (-3347 (($ $ (-1082)) 109 (|has| |#1| (-172))) ((|#1| $) 229 (|has| |#1| (-172)))) (-1930 (($ $ (-1082)) 46) (($ $ (-645 (-1082))) 45) (($ $ (-1082) (-772)) 44) (($ $ (-645 (-1082)) (-645 (-772))) 43) (($ $ (-772)) 255) (($ $) 253) (($ $ (-1176)) 252 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 251 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 250 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 249 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 242) (($ $ (-1 |#1| |#1|)) 241) (($ $ (-1 |#1| |#1|) $) 230)) (-3677 (((-772) $) 152) (((-772) $ (-1082)) 132) (((-645 (-772)) $ (-645 (-1082))) 131)) (-3542 (((-893 (-381)) $) 84 (-12 (|has| (-1082) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381)))))) (((-893 (-567)) $) 83 (-12 (|has| (-1082) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567)))))) (((-539) $) 82 (-12 (|has| (-1082) (-615 (-539))) (|has| |#1| (-615 (-539)))))) (-1640 ((|#1| $) 177 (|has| |#1| (-455))) (($ $ (-1082)) 108 (|has| |#1| (-455)))) (-1470 (((-3 (-1266 $) "failed") (-690 $)) 106 (-1410 (|has| $ (-145)) (|has| |#1| (-910))))) (-4187 (((-3 $ "failed") $ $) 224 (|has| |#1| (-559))) (((-3 (-410 $) "failed") (-410 $) $) 223 (|has| |#1| (-559)))) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 167) (($ (-1082)) 137) (($ (-410 (-567))) 80 (-2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567)))))) (($ $) 87 (|has| |#1| (-559)))) (-2350 (((-645 |#1|) $) 170)) (-2339 ((|#1| $ (-772)) 157) (($ $ (-1082) (-772)) 130) (($ $ (-645 (-1082)) (-645 (-772))) 129)) (-4242 (((-3 $ "failed") $) 81 (-2909 (-1410 (|has| $ (-145)) (|has| |#1| (-910))) (|has| |#1| (-145))))) (-2686 (((-772)) 32 T CONST)) (-2582 (($ $ $ (-772)) 175 (|has| |#1| (-172)))) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 91 (|has| |#1| (-559)))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-1082)) 42) (($ $ (-645 (-1082))) 41) (($ $ (-1082) (-772)) 40) (($ $ (-645 (-1082)) (-645 (-772))) 39) (($ $ (-772)) 256) (($ $) 254) (($ $ (-1176)) 248 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176))) 247 (|has| |#1| (-901 (-1176)))) (($ $ (-1176) (-772)) 246 (|has| |#1| (-901 (-1176)))) (($ $ (-645 (-1176)) (-645 (-772))) 245 (|has| |#1| (-901 (-1176)))) (($ $ (-1 |#1| |#1|) (-772)) 244) (($ $ (-1 |#1| |#1|)) 243)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 158 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 160 (|has| |#1| (-38 (-410 (-567))))) (($ (-410 (-567)) $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ |#1| $) 149) (($ $ |#1|) 148)))
+(((-1242 |#1|) (-140) (-1050)) (T -1242))
+((-3723 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1242 *4)) (-4 *4 (-1050)) (-5 *2 (-1266 *4)))) (-1689 (*1 *2 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1050)) (-5 *2 (-1172 *3)))) (-2876 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1050)) (-4 *1 (-1242 *3)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))) (-2116 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))) (-4089 (*1 *2 *1 *1) (-12 (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1242 *3)))) (-2607 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1242 *4)))) (-3139 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))) (-2001 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))) (-3393 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)))) (-1930 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))) (-3347 (*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-172)))) (-2414 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-172)))) (-1552 (*1 *2 *2 *2) (-12 (-5 *2 (-410 *1)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)) (-4 *3 (-559)))) (-1909 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1050)) (-4 *3 (-559)) (-5 *2 (-772)))) (-3288 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-4187 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-4187 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)) (-4 *3 (-559)))) (-3862 (*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))) (-2919 (*1 *2 *1 *1) (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3087 *3) (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1242 *3)))) (-2320 (*1 *2 *1 *1) (-12 (-4 *3 (-455)) (-4 *3 (-1050)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1242 *3)))) (-1552 (*1 *2 *3 *2) (-12 (-5 *3 (-410 *1)) (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))))
+(-13 (-950 |t#1| (-772) (-1082)) (-287 |t#1| |t#1|) (-287 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -3723 ((-1266 |t#1|) $ (-772))) (-15 -1689 ((-1172 |t#1|) $)) (-15 -2876 ($ (-1172 |t#1|))) (-15 -1406 ($ $ (-772))) (-15 -2116 ((-3 $ "failed") $ (-772))) (-15 -4089 ((-2 (|:| -3545 $) (|:| -1386 $)) $ $)) (-15 -2607 ((-2 (|:| -3545 $) (|:| -1386 $)) $ (-772))) (-15 -3139 ($ $ (-772))) (-15 -2001 ($ $ (-772))) (-15 -3393 ($ $ $)) (-15 -1930 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1151)) (-6 (-1151)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3347 (|t#1| $)) (-15 -2414 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-6 (-287 (-410 $) (-410 $))) (-15 -1552 ((-410 $) (-410 $) (-410 $))) (-15 -1909 ((-772) $ $)) (-15 -3288 ($ $ $)) (-15 -4187 ((-3 $ "failed") $ $)) (-15 -4187 ((-3 (-410 $) "failed") (-410 $) $)) (-15 -3862 ($ $ $)) (-15 -2919 ((-2 (|:| -3087 |t#1|) (|:| -3545 $) (|:| -1386 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-455)) (-15 -2320 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-365)) (PROGN (-6 (-308)) (-6 -4412) (-15 -1552 (|t#1| (-410 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (-15 -2113 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2909 (|has| |#1| (-1039 (-410 (-567)))) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 #2=(-1082)) . T) ((-617 |#1|) . T) ((-617 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-615 (-539)) -12 (|has| (-1082) (-615 (-539))) (|has| |#1| (-615 (-539)))) ((-615 (-893 (-381))) -12 (|has| (-1082) (-615 (-893 (-381)))) (|has| |#1| (-615 (-893 (-381))))) ((-615 (-893 (-567))) -12 (|has| (-1082) (-615 (-893 (-567)))) (|has| |#1| (-615 (-893 (-567))))) ((-231 |#1|) . T) ((-233) . T) ((-287 (-410 $) (-410 $)) |has| |#1| (-559)) ((-287 |#1| |#1|) . T) ((-287 $ $) . T) ((-291) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-310 $) . T) ((-327 |#1| #0#) . T) ((-379 |#1|) . T) ((-414 |#1|) . T) ((-455) -2909 (|has| |#1| (-910)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-517 #2# |#1|) . T) ((-517 #2# $) . T) ((-517 $ $) . T) ((-559) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-640 (-567)) |has| |#1| (-640 (-567))) ((-640 |#1|) . T) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365))) ((-727) . T) ((-901 #2#) . T) ((-901 (-1176)) |has| |#1| (-901 (-1176))) ((-887 (-381)) -12 (|has| (-1082) (-887 (-381))) (|has| |#1| (-887 (-381)))) ((-887 (-567)) -12 (|has| (-1082) (-887 (-567))) (|has| |#1| (-887 (-567)))) ((-950 |#1| #0# #2#) . T) ((-910) |has| |#1| (-910)) ((-921) |has| |#1| (-365)) ((-1039 (-410 (-567))) |has| |#1| (-1039 (-410 (-567)))) ((-1039 (-567)) |has| |#1| (-1039 (-567))) ((-1039 #2#) . T) ((-1039 |#1|) . T) ((-1052 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-910)) (|has| |#1| (-559)) (|has| |#1| (-455)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1151) |has| |#1| (-1151)) ((-1220) |has| |#1| (-910)))
+((-2449 (((-645 (-1082)) $) 34)) (-2637 (($ $) 31)) (-2422 (($ |#2| |#3|) NIL) (($ $ (-1082) |#3|) 28) (($ $ (-645 (-1082)) (-645 |#3|)) 27)) (-2599 (($ $) 14)) (-2613 ((|#2| $) 12)) (-3677 ((|#3| $) 10)))
+(((-1243 |#1| |#2| |#3|) (-10 -8 (-15 -2449 ((-645 (-1082)) |#1|)) (-15 -2422 (|#1| |#1| (-645 (-1082)) (-645 |#3|))) (-15 -2422 (|#1| |#1| (-1082) |#3|)) (-15 -2637 (|#1| |#1|)) (-15 -2422 (|#1| |#2| |#3|)) (-15 -3677 (|#3| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2613 (|#2| |#1|))) (-1244 |#2| |#3|) (-1050) (-793)) (T -1243))
+NIL
+(-10 -8 (-15 -2449 ((-645 (-1082)) |#1|)) (-15 -2422 (|#1| |#1| (-645 (-1082)) (-645 |#3|))) (-15 -2422 (|#1| |#1| (-1082) |#3|)) (-15 -2637 (|#1| |#1|)) (-15 -2422 (|#1| |#2| |#3|)) (-15 -3677 (|#3| |#1|)) (-15 -2599 (|#1| |#1|)) (-15 -2613 (|#2| |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 (-1082)) $) 86)) (-4295 (((-1176) $) 115)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-2674 (($ $ |#2|) 110) (($ $ |#2| |#2|) 109)) (-3030 (((-1156 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 117)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-4222 (((-112) $) 85)) (-1909 ((|#2| $) 112) ((|#2| $ |#2|) 111)) (-3714 (((-112) $) 35)) (-1406 (($ $ (-922)) 113)) (-3523 (((-112) $) 74)) (-2422 (($ |#1| |#2|) 73) (($ $ (-1082) |#2|) 88) (($ $ (-645 (-1082)) (-645 |#2|)) 87)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-2436 (($ $ |#2|) 107)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-3140 (((-1156 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1552 ((|#1| $ |#2|) 116) (($ $ $) 93 (|has| |#2| (-1112)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1176) (-772)) 100 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1176))) 99 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1176)) 98 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3677 ((|#2| $) 76)) (-2448 (($ $) 84)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2339 ((|#1| $ |#2|) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-4113 ((|#1| $) 114)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-2927 ((|#1| $ |#2|) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1176) (-772)) 104 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-645 (-1176))) 103 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1176)) 102 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1244 |#1| |#2|) (-140) (-1050) (-793)) (T -1244))
+((-3030 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-1156 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1552 (*1 *2 *1 *3) (-12 (-4 *1 (-1244 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-4295 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (-5 *2 (-1176)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1244 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-1909 (*1 *2 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-2674 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-2674 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-2927 (*1 *2 *1 *3) (-12 (-4 *1 (-1244 *2 *3)) (-4 *3 (-793)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4101 (*2 (-1176)))) (-4 *2 (-1050)))) (-2436 (*1 *1 *1 *2) (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))) (-3140 (*1 *2 *1 *3) (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1156 *3)))))
+(-13 (-974 |t#1| |t#2| (-1082)) (-10 -8 (-15 -3030 ((-1156 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1552 (|t#1| $ |t#2|)) (-15 -4295 ((-1176) $)) (-15 -4113 (|t#1| $)) (-15 -1406 ($ $ (-922))) (-15 -1909 (|t#2| $)) (-15 -1909 (|t#2| $ |t#2|)) (-15 -2674 ($ $ |t#2|)) (-15 -2674 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4101 (|t#1| (-1176)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2927 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2436 ($ $ |t#2|)) (IF (|has| |t#2| (-1112)) (-6 (-287 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-901 (-1176))) (-6 (-901 (-1176))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3140 ((-1156 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #0#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-287 $ $) |has| |#2| (-1112)) ((-291) |has| |#1| (-559)) ((-559) |has| |#1| (-559)) ((-647 #0#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #0#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-901 (-1176)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-901 (-1176)))) ((-974 |#1| |#2| (-1082)) . T) ((-1052 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #0#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-1396 ((|#2| |#2|) 12)) (-1401 (((-421 |#2|) |#2|) 14)) (-2125 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))) 30)))
+(((-1245 |#1| |#2|) (-10 -7 (-15 -1401 ((-421 |#2|) |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -2125 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567)))))) (-559) (-13 (-1242 |#1|) (-559) (-10 -8 (-15 -3276 ($ $ $))))) (T -1245))
+((-2125 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-567)))) (-4 *4 (-13 (-1242 *3) (-559) (-10 -8 (-15 -3276 ($ $ $))))) (-4 *3 (-559)) (-5 *1 (-1245 *3 *4)))) (-1396 (*1 *2 *2) (-12 (-4 *3 (-559)) (-5 *1 (-1245 *3 *2)) (-4 *2 (-13 (-1242 *3) (-559) (-10 -8 (-15 -3276 ($ $ $))))))) (-1401 (*1 *2 *3) (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1245 *4 *3)) (-4 *3 (-13 (-1242 *4) (-559) (-10 -8 (-15 -3276 ($ $ $))))))))
+(-10 -7 (-15 -1401 ((-421 |#2|) |#2|)) (-15 -1396 (|#2| |#2|)) (-15 -2125 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-567))))))
+((-3494 (((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)) 24)))
+(((-1246 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3494 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|)))) (-1050) (-1050) (-1176) (-1176) |#1| |#2|) (T -1246))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-14 *7 (-1176)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1176)))))
+(-10 -7 (-15 -3494 ((-1251 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1251 |#1| |#3| |#5|))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 (-1082)) $) 86)) (-4295 (((-1176) $) 115)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-2674 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-3030 (((-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-1772 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 174 (|has| |#1| (-365)))) (-1401 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2307 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1747 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-1798 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) 18 T CONST)) (-2197 (($ $ $) 169 (|has| |#1| (-365)))) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 168 (|has| |#1| (-365)))) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-1665 (((-112) $) 176 (|has| |#1| (-365)))) (-4222 (((-112) $) 85)) (-4098 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) 113) (($ $ (-410 (-567))) 182)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3523 (((-112) $) 74)) (-2422 (($ |#1| (-410 (-567))) 73) (($ $ (-1082) (-410 (-567))) 88) (($ $ (-645 (-1082)) (-645 (-410 (-567)))) 87)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2942 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-3245 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-2451 (((-1158) $) 10)) (-2559 (($ $) 177 (|has| |#1| (-365)))) (-2113 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 180 (-2909 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1201)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 162 (|has| |#1| (-365)))) (-3276 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2296 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 170 (|has| |#1| (-365)))) (-2436 (($ $ (-410 (-567))) 107)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-2910 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4369 (((-772) $) 166 (|has| |#1| (-365)))) (-1552 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 167 (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176) (-772)) 100 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1176))) 99 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176)) 98 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3677 (((-410 (-567)) $) 76)) (-1810 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 84)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2339 ((|#1| $ (-410 (-567))) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-4113 ((|#1| $) 114)) (-3739 (((-112) $ $) 9)) (-1847 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1823 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176) (-772)) 104 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1176))) 103 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176)) 102 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1247 |#1|) (-140) (-1050)) (T -1247))
+((-2009 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))) (-4 *4 (-1050)) (-4 *1 (-1247 *4)))) (-1406 (*1 *1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1247 *3)) (-4 *3 (-1050)))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) (-2113 (*1 *1 *1 *2) (-2909 (-12 (-5 *2 (-1176)) (-4 *1 (-1247 *3)) (-4 *3 (-1050)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1201)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1176)) (-4 *1 (-1247 *3)) (-4 *3 (-1050)) (-12 (|has| *3 (-15 -2449 ((-645 *2) *3))) (|has| *3 (-15 -2113 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
+(-13 (-1244 |t#1| (-410 (-567))) (-10 -8 (-15 -2009 ($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |t#1|))))) (-15 -1406 ($ $ (-410 (-567)))) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $)) (IF (|has| |t#1| (-15 -2113 (|t#1| |t#1| (-1176)))) (IF (|has| |t#1| (-15 -2449 ((-645 (-1176)) |t#1|))) (-15 -2113 ($ $ (-1176))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1201)) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-29 (-567))) (-15 -2113 ($ $ (-1176))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1003)) (-6 (-1201))) |%noBranch|) (IF (|has| |t#1| (-365)) (-6 (-365)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1112)) ((-291) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1176)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176)))) ((-974 |#1| #0# (-1082)) . T) ((-921) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1201) |has| |#1| (-38 (-410 (-567)))) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1220) |has| |#1| (-365)) ((-1244 |#1| #0#) . T))
+((-2865 (((-112) $) 12)) (-3417 (((-3 |#3| "failed") $) 17)) (-1621 ((|#3| $) 14)))
+(((-1248 |#1| |#2| |#3|) (-10 -8 (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#3| |#1|)) (-15 -2865 ((-112) |#1|))) (-1249 |#2| |#3|) (-1050) (-1226 |#2|)) (T -1248))
+NIL
+(-10 -8 (-15 -3417 ((-3 |#3| "failed") |#1|)) (-15 -1621 (|#3| |#1|)) (-15 -2865 ((-112) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 (-1082)) $) 86)) (-4295 (((-1176) $) 115)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-2674 (($ $ (-410 (-567))) 110) (($ $ (-410 (-567)) (-410 (-567))) 109)) (-3030 (((-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 117)) (-1772 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 174 (|has| |#1| (-365)))) (-1401 (((-421 $) $) 175 (|has| |#1| (-365)))) (-2307 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) 165 (|has| |#1| (-365)))) (-1747 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 183)) (-1798 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#2| "failed") $) 194)) (-1621 ((|#2| $) 195)) (-2197 (($ $ $) 169 (|has| |#1| (-365)))) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-2619 (((-410 (-567)) $) 191)) (-2210 (($ $ $) 168 (|has| |#1| (-365)))) (-2535 (($ (-410 (-567)) |#2|) 192)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 163 (|has| |#1| (-365)))) (-1665 (((-112) $) 176 (|has| |#1| (-365)))) (-4222 (((-112) $) 85)) (-4098 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-410 (-567)) $) 112) (((-410 (-567)) $ (-410 (-567))) 111)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) 113) (($ $ (-410 (-567))) 182)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 172 (|has| |#1| (-365)))) (-3523 (((-112) $) 74)) (-2422 (($ |#1| (-410 (-567))) 73) (($ $ (-1082) (-410 (-567))) 88) (($ $ (-645 (-1082)) (-645 (-410 (-567)))) 87)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2942 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-3245 (($ (-645 $)) 161 (|has| |#1| (-365))) (($ $ $) 160 (|has| |#1| (-365)))) (-1476 ((|#2| $) 190)) (-4118 (((-3 |#2| "failed") $) 188)) (-2524 ((|#2| $) 189)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 177 (|has| |#1| (-365)))) (-2113 (($ $) 181 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 180 (-2909 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1201)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 162 (|has| |#1| (-365)))) (-3276 (($ (-645 $)) 159 (|has| |#1| (-365))) (($ $ $) 158 (|has| |#1| (-365)))) (-2296 (((-421 $) $) 173 (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 171 (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 170 (|has| |#1| (-365)))) (-2436 (($ $ (-410 (-567))) 107)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 164 (|has| |#1| (-365)))) (-2910 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4369 (((-772) $) 166 (|has| |#1| (-365)))) (-1552 ((|#1| $ (-410 (-567))) 116) (($ $ $) 93 (|has| (-410 (-567)) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 167 (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176) (-772)) 100 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1176))) 99 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176)) 98 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3677 (((-410 (-567)) $) 76)) (-1810 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 84)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 59 (|has| |#1| (-172))) (($ |#2|) 193) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559)))) (-2339 ((|#1| $ (-410 (-567))) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-4113 ((|#1| $) 114)) (-3739 (((-112) $ $) 9)) (-1847 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1823 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-410 (-567))) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176) (-772)) 104 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-645 (-1176))) 103 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-1176)) 102 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365))) (($ $ $) 179 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 178 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1249 |#1| |#2|) (-140) (-1050) (-1226 |t#1|)) (T -1249))
+((-3677 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1226 *3)) (-5 *2 (-410 (-567))))) (-2535 (*1 *1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1050)) (-4 *1 (-1249 *4 *3)) (-4 *3 (-1226 *4)))) (-2619 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1226 *3)) (-5 *2 (-410 (-567))))) (-1476 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1226 *3)))) (-2524 (*1 *2 *1) (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1226 *3)))) (-4118 (*1 *2 *1) (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1226 *3)))))
+(-13 (-1247 |t#1|) (-1039 |t#2|) (-617 |t#2|) (-10 -8 (-15 -2535 ($ (-410 (-567)) |t#2|)) (-15 -2619 ((-410 (-567)) $)) (-15 -1476 (|t#2| $)) (-15 -3677 ((-410 (-567)) $)) (-15 -2524 (|t#2| $)) (-15 -4118 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-410 (-567))) . T) ((-25) . T) ((-38 #1=(-410 (-567))) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 |#2|) . T) ((-617 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) ((-243) |has| |#1| (-365)) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-410 (-567)) (-1112)) ((-291) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-308) |has| |#1| (-365)) ((-365) |has| |#1| (-365)) ((-455) |has| |#1| (-365)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-647 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-718 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365))) ((-727) . T) ((-901 (-1176)) -12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176)))) ((-974 |#1| #0# (-1082)) . T) ((-921) |has| |#1| (-365)) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1039 |#2|) . T) ((-1052 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1057 #1#) -2909 (|has| |#1| (-365)) (|has| |#1| (-38 (-410 (-567))))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-365)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1201) |has| |#1| (-38 (-410 (-567)))) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1220) |has| |#1| (-365)) ((-1244 |#1| #0#) . T) ((-1247 |#1|) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 104)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-410 (-567))) 116) (($ $ (-410 (-567)) (-410 (-567))) 118)) (-3030 (((-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) 54)) (-1772 (($ $) 192 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 168 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) 188 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 164 (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) 65)) (-1798 (($ $) 196 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 172 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) NIL)) (-1621 ((|#2| $) NIL)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) 85)) (-2619 (((-410 (-567)) $) 13)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2535 (($ (-410 (-567)) |#2|) 11)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4222 (((-112) $) 74)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-410 (-567)) $) 113) (((-410 (-567)) $ (-410 (-567))) 114)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) 130) (($ $ (-410 (-567))) 128)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-410 (-567))) 33) (($ $ (-1082) (-410 (-567))) NIL) (($ $ (-645 (-1082)) (-645 (-410 (-567)))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) 125)) (-2942 (($ $) 162 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1476 ((|#2| $) 12)) (-4118 (((-3 |#2| "failed") $) 44)) (-2524 ((|#2| $) 45)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) 101 (|has| |#1| (-365)))) (-2113 (($ $) 146 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 151 (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201)))))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-410 (-567))) 122)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2910 (($ $) 160 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-410 (-567))) 108) (($ $ $) 94 (|has| (-410 (-567)) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) 138 (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3677 (((-410 (-567)) $) 16)) (-1810 (($ $) 198 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 174 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 194 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 170 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 190 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 166 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 120)) (-4101 (((-863) $) NIL) (($ (-567)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-410 (-567))) 139 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2339 ((|#1| $ (-410 (-567))) 107)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) 127 T CONST)) (-4113 ((|#1| $) 106)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) 204 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 180 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) 200 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 176 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 208 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 184 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-410 (-567))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 210 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 186 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 206 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 182 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 202 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 178 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 21 T CONST)) (-1484 (($) 17 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3052 (((-112) $ $) 72)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) 100 (|has| |#1| (-365)))) (-3156 (($ $) 142) (($ $ $) 78)) (-3146 (($ $ $) 76)) (** (($ $ (-922)) NIL) (($ $ (-772)) 82) (($ $ (-567)) 157 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 158 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1250 |#1| |#2|) (-1249 |#1| |#2|) (-1050) (-1226 |#1|)) (T -1250))
+NIL
+(-1249 |#1| |#2|)
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 11)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) NIL (|has| |#1| (-559)))) (-2674 (($ $ (-410 (-567))) NIL) (($ $ (-410 (-567)) (-410 (-567))) NIL)) (-3030 (((-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|))) $) NIL)) (-1772 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-1396 (($ $) NIL (|has| |#1| (-365)))) (-1401 (((-421 $) $) NIL (|has| |#1| (-365)))) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3405 (((-112) $ $) NIL (|has| |#1| (-365)))) (-1747 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-772) (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#1|)))) NIL)) (-1798 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-1230 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1258 |#1| |#2| |#3|) "failed") $) 22)) (-1621 (((-1230 |#1| |#2| |#3|) $) NIL) (((-1258 |#1| |#2| |#3|) $) NIL)) (-2197 (($ $ $) NIL (|has| |#1| (-365)))) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2619 (((-410 (-567)) $) 69)) (-2210 (($ $ $) NIL (|has| |#1| (-365)))) (-2535 (($ (-410 (-567)) (-1230 |#1| |#2| |#3|)) NIL)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) NIL (|has| |#1| (-365)))) (-1665 (((-112) $) NIL (|has| |#1| (-365)))) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-410 (-567)) $) NIL) (((-410 (-567)) $ (-410 (-567))) NIL)) (-3714 (((-112) $) NIL)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) NIL) (($ $ (-410 (-567))) NIL)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-410 (-567))) 30) (($ $ (-1082) (-410 (-567))) NIL) (($ $ (-645 (-1082)) (-645 (-410 (-567)))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2942 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-3245 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-1476 (((-1230 |#1| |#2| |#3|) $) 72)) (-4118 (((-3 (-1230 |#1| |#2| |#3|) "failed") $) NIL)) (-2524 (((-1230 |#1| |#2| |#3|) $) NIL)) (-2451 (((-1158) $) NIL)) (-2559 (($ $) NIL (|has| |#1| (-365)))) (-2113 (($ $) 39 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) NIL (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201))))) (($ $ (-1262 |#2|)) 40 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) NIL (|has| |#1| (-365)))) (-3276 (($ (-645 $)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-2296 (((-421 $) $) NIL (|has| |#1| (-365)))) (-3930 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-365))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) NIL (|has| |#1| (-365)))) (-2436 (($ $ (-410 (-567))) NIL)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2649 (((-3 (-645 $) "failed") (-645 $) $) NIL (|has| |#1| (-365)))) (-2910 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))))) (-4369 (((-772) $) NIL (|has| |#1| (-365)))) (-1552 ((|#1| $ (-410 (-567))) NIL) (($ $ $) NIL (|has| (-410 (-567)) (-1112)))) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) NIL (|has| |#1| (-365)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $ (-1262 |#2|)) 38)) (-3677 (((-410 (-567)) $) NIL)) (-1810 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) NIL)) (-4101 (((-863) $) 109) (($ (-567)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1230 |#1| |#2| |#3|)) 16) (($ (-1258 |#1| |#2| |#3|)) 17) (($ (-1262 |#2|)) 36) (($ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559)))) (-2339 ((|#1| $ (-410 (-567))) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) 12)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-410 (-567))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-410 (-567))))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 32 T CONST)) (-1484 (($) 26 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-410 (-567)) |#1|))))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 34)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ (-567)) NIL (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1251 |#1| |#2| |#3|) (-13 (-1249 |#1| (-1230 |#1| |#2| |#3|)) (-1039 (-1258 |#1| |#2| |#3|)) (-617 (-1262 |#2|)) (-10 -8 (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|))) (-1050) (-1176) |#1|) (T -1251))
+((-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(-13 (-1249 |#1| (-1230 |#1| |#2| |#3|)) (-1039 (-1258 |#1| |#2| |#3|)) (-617 (-1262 |#2|)) (-10 -8 (-15 -1930 ($ $ (-1262 |#2|))) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 37)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL)) (-3602 (($ $) NIL)) (-2119 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 (-567) "failed") $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1039 (-567)))) (((-3 (-410 (-567)) "failed") $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1039 (-410 (-567))))) (((-3 (-1251 |#2| |#3| |#4|) "failed") $) 22)) (-1621 (((-567) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1039 (-567)))) (((-410 (-567)) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-1039 (-410 (-567))))) (((-1251 |#2| |#3| |#4|) $) NIL)) (-2637 (($ $) 41)) (-4014 (((-3 $ "failed") $) 27)) (-2958 (($ $) NIL (|has| (-1251 |#2| |#3| |#4|) (-455)))) (-3564 (($ $ (-1251 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|) $) NIL)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) 11)) (-3523 (((-112) $) NIL)) (-2422 (($ (-1251 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) 25)) (-4185 (((-320 |#2| |#3| |#4|) $) NIL)) (-1599 (($ (-1 (-320 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) $) NIL)) (-3494 (($ (-1 (-1251 |#2| |#3| |#4|) (-1251 |#2| |#3| |#4|)) $) NIL)) (-2212 (((-3 (-844 |#2|) "failed") $) 90)) (-2599 (($ $) NIL)) (-2613 (((-1251 |#2| |#3| |#4|) $) 20)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2567 (((-112) $) NIL)) (-2583 (((-1251 |#2| |#3| |#4|) $) NIL)) (-2245 (((-3 $ "failed") $ (-1251 |#2| |#3| |#4|)) NIL (|has| (-1251 |#2| |#3| |#4|) (-559))) (((-3 $ "failed") $ $) NIL)) (-2055 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1158))) "failed") $) 74)) (-3677 (((-320 |#2| |#3| |#4|) $) 17)) (-1640 (((-1251 |#2| |#3| |#4|) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-455)))) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ (-1251 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-410 (-567))) NIL (-2909 (|has| (-1251 |#2| |#3| |#4|) (-38 (-410 (-567)))) (|has| (-1251 |#2| |#3| |#4|) (-1039 (-410 (-567))))))) (-2350 (((-645 (-1251 |#2| |#3| |#4|)) $) NIL)) (-2339 (((-1251 |#2| |#3| |#4|) $ (-320 |#2| |#3| |#4|)) NIL)) (-4242 (((-3 $ "failed") $) NIL (|has| (-1251 |#2| |#3| |#4|) (-145)))) (-2686 (((-772)) NIL T CONST)) (-2582 (($ $ $ (-772)) NIL (|has| (-1251 |#2| |#3| |#4|) (-172)))) (-3739 (((-112) $ $) NIL)) (-2469 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ (-1251 |#2| |#3| |#4|)) NIL (|has| (-1251 |#2| |#3| |#4|) (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ (-1251 |#2| |#3| |#4|)) NIL) (($ (-1251 |#2| |#3| |#4|) $) NIL) (($ (-410 (-567)) $) NIL (|has| (-1251 |#2| |#3| |#4|) (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| (-1251 |#2| |#3| |#4|) (-38 (-410 (-567)))))))
+(((-1252 |#1| |#2| |#3| |#4|) (-13 (-327 (-1251 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -2212 ((-3 (-844 |#2|) "failed") $)) (-15 -2055 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1158))) "failed") $)))) (-13 (-1039 (-567)) (-640 (-567)) (-455)) (-13 (-27) (-1201) (-433 |#1|)) (-1176) |#2|) (T -1252))
+((-2212 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *2 (-844 *4)) (-5 *1 (-1252 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1201) (-433 *3))) (-14 *5 (-1176)) (-14 *6 *4))) (-2055 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 *4 *5 *6)) (|:| |%expon| (-320 *4 *5 *6)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4)))))) (|:| |%type| (-1158)))) (-5 *1 (-1252 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1201) (-433 *3))) (-14 *5 (-1176)) (-14 *6 *4))))
+(-13 (-327 (-1251 |#2| |#3| |#4|) (-320 |#2| |#3| |#4|)) (-559) (-10 -8 (-15 -2212 ((-3 (-844 |#2|) "failed") $)) (-15 -2055 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1251 |#2| |#3| |#4|)) (|:| |%expon| (-320 |#2| |#3| |#4|)) (|:| |%expTerms| (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| |#2|)))))) (|:| |%type| (-1158))) "failed") $))))
+((-3843 ((|#2| $) 34)) (-2369 ((|#2| $) 18)) (-3221 (($ $) 52)) (-2957 (($ $ (-567)) 85)) (-1580 (((-112) $ (-772)) 46)) (-2372 ((|#2| $ |#2|) 82)) (-3487 ((|#2| $ |#2|) 78)) (-4230 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 71) (($ $ "rest" $) 75) ((|#2| $ "last" |#2|) 73)) (-1352 (($ $ (-645 $)) 81)) (-2357 ((|#2| $) 17)) (-2061 (($ $) NIL) (($ $ (-772)) 59)) (-1306 (((-645 $) $) 31)) (-2971 (((-112) $ $) 69)) (-2805 (((-112) $ (-772)) 45)) (-3230 (((-112) $ (-772)) 43)) (-1436 (((-112) $) 33)) (-3162 ((|#2| $) 25) (($ $ (-772)) 64)) (-1552 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3436 (((-112) $) 23)) (-2443 (($ $) 55)) (-3709 (($ $) 86)) (-1449 (((-772) $) 58)) (-1344 (($ $) 57)) (-2285 (($ $ $) 77) (($ |#2| $) NIL)) (-2936 (((-645 $) $) 32)) (-3052 (((-112) $ $) 67)) (-2268 (((-772) $) 51)))
+(((-1253 |#1| |#2|) (-10 -8 (-15 -2957 (|#1| |#1| (-567))) (-15 -4230 (|#2| |#1| "last" |#2|)) (-15 -3487 (|#2| |#1| |#2|)) (-15 -4230 (|#1| |#1| "rest" |#1|)) (-15 -4230 (|#2| |#1| "first" |#2|)) (-15 -3709 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -1449 ((-772) |#1|)) (-15 -1344 (|#1| |#1|)) (-15 -2369 (|#2| |#1|)) (-15 -2357 (|#2| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3162 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "last")) (-15 -3162 (|#2| |#1|)) (-15 -2061 (|#1| |#1| (-772))) (-15 -1552 (|#1| |#1| "rest")) (-15 -2061 (|#1| |#1|)) (-15 -1552 (|#2| |#1| "first")) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2372 (|#2| |#1| |#2|)) (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -1352 (|#1| |#1| (-645 |#1|))) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -1552 (|#2| |#1| "value")) (-15 -3843 (|#2| |#1|)) (-15 -1436 ((-112) |#1|)) (-15 -1306 ((-645 |#1|) |#1|)) (-15 -2936 ((-645 |#1|) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772)))) (-1254 |#2|) (-1216)) (T -1253))
+NIL
+(-10 -8 (-15 -2957 (|#1| |#1| (-567))) (-15 -4230 (|#2| |#1| "last" |#2|)) (-15 -3487 (|#2| |#1| |#2|)) (-15 -4230 (|#1| |#1| "rest" |#1|)) (-15 -4230 (|#2| |#1| "first" |#2|)) (-15 -3709 (|#1| |#1|)) (-15 -2443 (|#1| |#1|)) (-15 -1449 ((-772) |#1|)) (-15 -1344 (|#1| |#1|)) (-15 -2369 (|#2| |#1|)) (-15 -2357 (|#2| |#1|)) (-15 -3221 (|#1| |#1|)) (-15 -3162 (|#1| |#1| (-772))) (-15 -1552 (|#2| |#1| "last")) (-15 -3162 (|#2| |#1|)) (-15 -2061 (|#1| |#1| (-772))) (-15 -1552 (|#1| |#1| "rest")) (-15 -2061 (|#1| |#1|)) (-15 -1552 (|#2| |#1| "first")) (-15 -2285 (|#1| |#2| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -2372 (|#2| |#1| |#2|)) (-15 -4230 (|#2| |#1| "value" |#2|)) (-15 -1352 (|#1| |#1| (-645 |#1|))) (-15 -2971 ((-112) |#1| |#1|)) (-15 -3436 ((-112) |#1|)) (-15 -1552 (|#2| |#1| "value")) (-15 -3843 (|#2| |#1|)) (-15 -1436 ((-112) |#1|)) (-15 -1306 ((-645 |#1|) |#1|)) (-15 -2936 ((-645 |#1|) |#1|)) (-15 -3052 ((-112) |#1| |#1|)) (-15 -2268 ((-772) |#1|)) (-15 -1580 ((-112) |#1| (-772))) (-15 -2805 ((-112) |#1| (-772))) (-15 -3230 ((-112) |#1| (-772))))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-3843 ((|#1| $) 49)) (-2369 ((|#1| $) 66)) (-3221 (($ $) 68)) (-2957 (($ $ (-567)) 53 (|has| $ (-6 -4417)))) (-1580 (((-112) $ (-772)) 8)) (-2372 ((|#1| $ |#1|) 40 (|has| $ (-6 -4417)))) (-3371 (($ $ $) 57 (|has| $ (-6 -4417)))) (-3487 ((|#1| $ |#1|) 55 (|has| $ (-6 -4417)))) (-2790 ((|#1| $ |#1|) 59 (|has| $ (-6 -4417)))) (-4230 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4417))) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4417))) (($ $ "rest" $) 56 (|has| $ (-6 -4417))) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4417)))) (-1352 (($ $ (-645 $)) 42 (|has| $ (-6 -4417)))) (-2357 ((|#1| $) 67)) (-4061 (($) 7 T CONST)) (-2061 (($ $) 74) (($ $ (-772)) 72)) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-1306 (((-645 $) $) 51)) (-2971 (((-112) $ $) 43 (|has| |#1| (-1100)))) (-2805 (((-112) $ (-772)) 9)) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36)) (-3230 (((-112) $ (-772)) 10)) (-3625 (((-645 |#1|) $) 46)) (-1436 (((-112) $) 50)) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-3162 ((|#1| $) 71) (($ $ (-772)) 69)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 77) (($ $ (-772)) 75)) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ "value") 48) ((|#1| $ "first") 76) (($ $ "rest") 73) ((|#1| $ "last") 70)) (-4304 (((-567) $ $) 45)) (-3436 (((-112) $) 47)) (-2443 (($ $) 63)) (-3709 (($ $) 60 (|has| $ (-6 -4417)))) (-1449 (((-772) $) 64)) (-1344 (($ $) 65)) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-4247 (($ $) 13)) (-3962 (($ $ $) 62 (|has| $ (-6 -4417))) (($ $ |#1|) 61 (|has| $ (-6 -4417)))) (-2285 (($ $ $) 79) (($ |#1| $) 78)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-2936 (((-645 $) $) 52)) (-2684 (((-112) $ $) 44 (|has| |#1| (-1100)))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1254 |#1|) (-140) (-1216)) (T -1254))
+((-2285 (*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-2285 (*1 *1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-2048 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1254 *3)) (-4 *3 (-1216)))) (-2061 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-1552 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1254 *3)) (-4 *3 (-1216)))) (-2061 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1254 *3)) (-4 *3 (-1216)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-1552 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-3162 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1254 *3)) (-4 *3 (-1216)))) (-3221 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-2357 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-1344 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-1449 (*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))) (-2443 (*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-3962 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-3962 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-3709 (*1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-2790 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-4230 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-3371 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-4230 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4417)) (-4 *1 (-1254 *3)) (-4 *3 (-1216)))) (-3487 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-4230 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))) (-2957 (*1 *1 *1 *2) (-12 (-5 *2 (-567)) (|has| *1 (-6 -4417)) (-4 *1 (-1254 *3)) (-4 *3 (-1216)))))
+(-13 (-1011 |t#1|) (-10 -8 (-15 -2285 ($ $ $)) (-15 -2285 ($ |t#1| $)) (-15 -2048 (|t#1| $)) (-15 -1552 (|t#1| $ "first")) (-15 -2048 ($ $ (-772))) (-15 -2061 ($ $)) (-15 -1552 ($ $ "rest")) (-15 -2061 ($ $ (-772))) (-15 -3162 (|t#1| $)) (-15 -1552 (|t#1| $ "last")) (-15 -3162 ($ $ (-772))) (-15 -3221 ($ $)) (-15 -2357 (|t#1| $)) (-15 -2369 (|t#1| $)) (-15 -1344 ($ $)) (-15 -1449 ((-772) $)) (-15 -2443 ($ $)) (IF (|has| $ (-6 -4417)) (PROGN (-15 -3962 ($ $ $)) (-15 -3962 ($ $ |t#1|)) (-15 -3709 ($ $)) (-15 -2790 (|t#1| $ |t#1|)) (-15 -4230 (|t#1| $ "first" |t#1|)) (-15 -3371 ($ $ $)) (-15 -4230 ($ $ "rest" $)) (-15 -3487 (|t#1| $ |t#1|)) (-15 -4230 (|t#1| $ "last" |t#1|)) (-15 -2957 ($ $ (-567)))) |%noBranch|)))
+(((-34) . T) ((-102) |has| |#1| (-1100)) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-614 (-863)))) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-492 |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-1011 |#1|) . T) ((-1100) |has| |#1| (-1100)) ((-1216) . T))
+((-3494 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1255 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3494 (|#4| (-1 |#2| |#1|) |#3|))) (-1050) (-1050) (-1257 |#1|) (-1257 |#2|)) (T -1255))
+((-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050)) (-4 *2 (-1257 *6)) (-5 *1 (-1255 *5 *6 *4 *2)) (-4 *4 (-1257 *5)))))
+(-10 -7 (-15 -3494 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2865 (((-112) $) 17)) (-1772 (($ $) 106)) (-1605 (($ $) 82)) (-1747 (($ $) 102)) (-1577 (($ $) 78)) (-1798 (($ $) 110)) (-1632 (($ $) 86)) (-2942 (($ $) 76)) (-2910 (($ $) 74)) (-1810 (($ $) 112)) (-1647 (($ $) 88)) (-1784 (($ $) 108)) (-1618 (($ $) 84)) (-1757 (($ $) 104)) (-1592 (($ $) 80)) (-4101 (((-863) $) 62) (($ (-567)) NIL) (($ (-410 (-567))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-1847 (($ $) 118)) (-1690 (($ $) 94)) (-1823 (($ $) 114)) (-1660 (($ $) 90)) (-1869 (($ $) 122)) (-1719 (($ $) 98)) (-1345 (($ $) 124)) (-1733 (($ $) 100)) (-1858 (($ $) 120)) (-1704 (($ $) 96)) (-1834 (($ $) 116)) (-1673 (($ $) 92)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ |#2|) 66) (($ $ $) 69) (($ $ (-410 (-567))) 72)))
+(((-1256 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -1605 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1810 (|#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1772 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -1869 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -2865 ((-112) |#1|)) (-15 -4101 ((-863) |#1|))) (-1257 |#2|) (-1050)) (T -1256))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-410 (-567)))) (-15 -1605 (|#1| |#1|)) (-15 -1577 (|#1| |#1|)) (-15 -1632 (|#1| |#1|)) (-15 -1647 (|#1| |#1|)) (-15 -1618 (|#1| |#1|)) (-15 -1592 (|#1| |#1|)) (-15 -1673 (|#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -1733 (|#1| |#1|)) (-15 -1719 (|#1| |#1|)) (-15 -1660 (|#1| |#1|)) (-15 -1690 (|#1| |#1|)) (-15 -1757 (|#1| |#1|)) (-15 -1784 (|#1| |#1|)) (-15 -1810 (|#1| |#1|)) (-15 -1798 (|#1| |#1|)) (-15 -1747 (|#1| |#1|)) (-15 -1772 (|#1| |#1|)) (-15 -1834 (|#1| |#1|)) (-15 -1858 (|#1| |#1|)) (-15 -1345 (|#1| |#1|)) (-15 -1869 (|#1| |#1|)) (-15 -1823 (|#1| |#1|)) (-15 -1847 (|#1| |#1|)) (-15 -2942 (|#1| |#1|)) (-15 -2910 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4101 (|#1| |#2|)) (-15 -4101 (|#1| |#1|)) (-15 -4101 (|#1| (-410 (-567)))) (-15 -4101 (|#1| (-567))) (-15 ** (|#1| |#1| (-772))) (-15 ** (|#1| |#1| (-922))) (-15 -2865 ((-112) |#1|)) (-15 -4101 ((-863) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2449 (((-645 (-1082)) $) 86)) (-4295 (((-1176) $) 115)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 63 (|has| |#1| (-559)))) (-3602 (($ $) 64 (|has| |#1| (-559)))) (-2119 (((-112) $) 66 (|has| |#1| (-559)))) (-2674 (($ $ (-772)) 110) (($ $ (-772) (-772)) 109)) (-3030 (((-1156 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 117)) (-1772 (($ $) 147 (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) 130 (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) 20)) (-2307 (($ $) 129 (|has| |#1| (-38 (-410 (-567)))))) (-1747 (($ $) 146 (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) 131 (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-1156 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 167) (($ (-1156 |#1|)) 165)) (-1798 (($ $) 145 (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) 132 (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) 18 T CONST)) (-2637 (($ $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-2388 (($ $) 164)) (-3825 (((-953 |#1|) $ (-772)) 162) (((-953 |#1|) $ (-772) (-772)) 161)) (-4222 (((-112) $) 85)) (-4098 (($) 157 (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-772) $) 112) (((-772) $ (-772)) 111)) (-3714 (((-112) $) 35)) (-3287 (($ $ (-567)) 128 (|has| |#1| (-38 (-410 (-567)))))) (-1406 (($ $ (-922)) 113)) (-2440 (($ (-1 |#1| (-567)) $) 163)) (-3523 (((-112) $) 74)) (-2422 (($ |#1| (-772)) 73) (($ $ (-1082) (-772)) 88) (($ $ (-645 (-1082)) (-645 (-772))) 87)) (-3494 (($ (-1 |#1| |#1|) $) 75)) (-2942 (($ $) 154 (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) 77)) (-2613 ((|#1| $) 78)) (-2451 (((-1158) $) 10)) (-2113 (($ $) 159 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 158 (-2909 (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-960)) (|has| |#1| (-1201)) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-38 (-410 (-567)))))))) (-3339 (((-1120) $) 11)) (-2436 (($ $ (-772)) 107)) (-2245 (((-3 $ "failed") $ $) 62 (|has| |#1| (-559)))) (-2910 (($ $) 155 (|has| |#1| (-38 (-410 (-567)))))) (-3140 (((-1156 |#1|) $ |#1|) 106 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1552 ((|#1| $ (-772)) 116) (($ $ $) 93 (|has| (-772) (-1112)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) 101 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1176) (-772)) 100 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1176))) 99 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1176)) 98 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 96 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 94 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3677 (((-772) $) 76)) (-1810 (($ $) 144 (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) 133 (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) 143 (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) 134 (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) 142 (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) 135 (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 84)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ (-410 (-567))) 69 (|has| |#1| (-38 (-410 (-567))))) (($ $) 61 (|has| |#1| (-559))) (($ |#1|) 59 (|has| |#1| (-172)))) (-2350 (((-1156 |#1|) $) 166)) (-2339 ((|#1| $ (-772)) 71)) (-4242 (((-3 $ "failed") $) 60 (|has| |#1| (-145)))) (-2686 (((-772)) 32 T CONST)) (-4113 ((|#1| $) 114)) (-3739 (((-112) $ $) 9)) (-1847 (($ $) 153 (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) 141 (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) 65 (|has| |#1| (-559)))) (-1823 (($ $) 152 (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) 140 (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) 151 (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) 139 (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-772)) 108 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) 150 (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) 138 (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) 149 (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) 137 (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) 148 (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) 136 (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) 105 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1176) (-772)) 104 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-645 (-1176))) 103 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-1176)) 102 (-12 (|has| |#1| (-901 (-1176))) (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (($ $ (-772)) 97 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 95 (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 70 (|has| |#1| (-365)))) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ |#1|) 160 (|has| |#1| (-365))) (($ $ $) 156 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 127 (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 80) (($ |#1| $) 79) (($ (-410 (-567)) $) 68 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) 67 (|has| |#1| (-38 (-410 (-567)))))))
+(((-1257 |#1|) (-140) (-1050)) (T -1257))
+((-2009 (*1 *1 *2) (-12 (-5 *2 (-1156 (-2 (|:| |k| (-772)) (|:| |c| *3)))) (-4 *3 (-1050)) (-4 *1 (-1257 *3)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1050)) (-5 *2 (-1156 *3)))) (-2009 (*1 *1 *2) (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-4 *1 (-1257 *3)))) (-2388 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1050)))) (-2440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1257 *3)) (-4 *3 (-1050)))) (-3825 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1257 *4)) (-4 *4 (-1050)) (-5 *2 (-953 *4)))) (-3825 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-4 *1 (-1257 *4)) (-4 *4 (-1050)) (-5 *2 (-953 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))) (-2113 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567)))))) (-2113 (*1 *1 *1 *2) (-2909 (-12 (-5 *2 (-1176)) (-4 *1 (-1257 *3)) (-4 *3 (-1050)) (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1201)) (-4 *3 (-38 (-410 (-567)))))) (-12 (-5 *2 (-1176)) (-4 *1 (-1257 *3)) (-4 *3 (-1050)) (-12 (|has| *3 (-15 -2449 ((-645 *2) *3))) (|has| *3 (-15 -2113 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567)))))))))
+(-13 (-1244 |t#1| (-772)) (-10 -8 (-15 -2009 ($ (-1156 (-2 (|:| |k| (-772)) (|:| |c| |t#1|))))) (-15 -2350 ((-1156 |t#1|) $)) (-15 -2009 ($ (-1156 |t#1|))) (-15 -2388 ($ $)) (-15 -2440 ($ (-1 |t#1| (-567)) $)) (-15 -3825 ((-953 |t#1|) $ (-772))) (-15 -3825 ((-953 |t#1|) $ (-772) (-772))) (IF (|has| |t#1| (-365)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-410 (-567)))) (PROGN (-15 -2113 ($ $)) (IF (|has| |t#1| (-15 -2113 (|t#1| |t#1| (-1176)))) (IF (|has| |t#1| (-15 -2449 ((-645 (-1176)) |t#1|))) (-15 -2113 ($ $ (-1176))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1201)) (IF (|has| |t#1| (-960)) (IF (|has| |t#1| (-29 (-567))) (-15 -2113 ($ $ (-1176))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1003)) (-6 (-1201))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-772)) . T) ((-25) . T) ((-38 #1=(-410 (-567))) |has| |#1| (-38 (-410 (-567)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-559)) ((-35) |has| |#1| (-38 (-410 (-567)))) ((-95) |has| |#1| (-38 (-410 (-567)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-410 (-567)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-617 #1#) |has| |#1| (-38 (-410 (-567)))) ((-617 (-567)) . T) ((-617 |#1|) |has| |#1| (-172)) ((-617 $) |has| |#1| (-559)) ((-614 (-863)) . T) ((-172) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-772) |#1|))) ((-285) |has| |#1| (-38 (-410 (-567)))) ((-287 $ $) |has| (-772) (-1112)) ((-291) |has| |#1| (-559)) ((-496) |has| |#1| (-38 (-410 (-567)))) ((-559) |has| |#1| (-559)) ((-647 #1#) |has| |#1| (-38 (-410 (-567)))) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #1#) |has| |#1| (-38 (-410 (-567)))) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #1#) |has| |#1| (-38 (-410 (-567)))) ((-641 |#1|) |has| |#1| (-172)) ((-641 $) |has| |#1| (-559)) ((-718 #1#) |has| |#1| (-38 (-410 (-567)))) ((-718 |#1|) |has| |#1| (-172)) ((-718 $) |has| |#1| (-559)) ((-727) . T) ((-901 (-1176)) -12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176)))) ((-974 |#1| #0# (-1082)) . T) ((-1003) |has| |#1| (-38 (-410 (-567)))) ((-1052 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1052 |#1|) . T) ((-1052 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1057 #1#) |has| |#1| (-38 (-410 (-567)))) ((-1057 |#1|) . T) ((-1057 $) -2909 (|has| |#1| (-559)) (|has| |#1| (-172))) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1201) |has| |#1| (-38 (-410 (-567)))) ((-1204) |has| |#1| (-38 (-410 (-567)))) ((-1244 |#1| #0#) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2449 (((-645 (-1082)) $) NIL)) (-4295 (((-1176) $) 93)) (-2501 (((-1239 |#2| |#1|) $ (-772)) 74)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) NIL (|has| |#1| (-559)))) (-3602 (($ $) NIL (|has| |#1| (-559)))) (-2119 (((-112) $) 145 (|has| |#1| (-559)))) (-2674 (($ $ (-772)) 130) (($ $ (-772) (-772)) 133)) (-3030 (((-1156 (-2 (|:| |k| (-772)) (|:| |c| |#1|))) $) 43)) (-1772 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1605 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4377 (((-3 $ "failed") $ $) NIL)) (-2307 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1747 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1577 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2009 (($ (-1156 (-2 (|:| |k| (-772)) (|:| |c| |#1|)))) 53) (($ (-1156 |#1|)) NIL)) (-1798 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1632 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4061 (($) NIL T CONST)) (-3232 (($ $) 137)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2388 (($ $) 143)) (-3825 (((-953 |#1|) $ (-772)) 64) (((-953 |#1|) $ (-772) (-772)) 66)) (-4222 (((-112) $) NIL)) (-4098 (($) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1909 (((-772) $) NIL) (((-772) $ (-772)) NIL)) (-3714 (((-112) $) NIL)) (-4310 (($ $) 120)) (-3287 (($ $ (-567)) NIL (|has| |#1| (-38 (-410 (-567)))))) (-4050 (($ (-567) (-567) $) 139)) (-1406 (($ $ (-922)) 142)) (-2440 (($ (-1 |#1| (-567)) $) 114)) (-3523 (((-112) $) NIL)) (-2422 (($ |#1| (-772)) 16) (($ $ (-1082) (-772)) NIL) (($ $ (-645 (-1082)) (-645 (-772))) NIL)) (-3494 (($ (-1 |#1| |#1|) $) 101)) (-2942 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2599 (($ $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3588 (($ $) 118)) (-2374 (($ $) 116)) (-2977 (($ (-567) (-567) $) 141)) (-2113 (($ $) 153 (|has| |#1| (-38 (-410 (-567))))) (($ $ (-1176)) 159 (-2909 (-12 (|has| |#1| (-15 -2113 (|#1| |#1| (-1176)))) (|has| |#1| (-15 -2449 ((-645 (-1176)) |#1|))) (|has| |#1| (-38 (-410 (-567))))) (-12 (|has| |#1| (-29 (-567))) (|has| |#1| (-38 (-410 (-567)))) (|has| |#1| (-960)) (|has| |#1| (-1201))))) (($ $ (-1262 |#2|)) 154 (|has| |#1| (-38 (-410 (-567)))))) (-3339 (((-1120) $) NIL)) (-3642 (($ $ (-567) (-567)) 124)) (-2436 (($ $ (-772)) 126)) (-2245 (((-3 $ "failed") $ $) NIL (|has| |#1| (-559)))) (-2910 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2625 (($ $) 122)) (-3140 (((-1156 |#1|) $ |#1|) 103 (|has| |#1| (-15 ** (|#1| |#1| (-772)))))) (-1552 ((|#1| $ (-772)) 98) (($ $ $) 135 (|has| (-772) (-1112)))) (-1930 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) 111 (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) 105 (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $ (-1262 |#2|)) 106)) (-3677 (((-772) $) NIL)) (-1810 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1647 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1784 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1618 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1757 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1592 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2448 (($ $) 128)) (-4101 (((-863) $) NIL) (($ (-567)) 26) (($ (-410 (-567))) 151 (|has| |#1| (-38 (-410 (-567))))) (($ $) NIL (|has| |#1| (-559))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1239 |#2| |#1|)) 84) (($ (-1262 |#2|)) 22)) (-2350 (((-1156 |#1|) $) NIL)) (-2339 ((|#1| $ (-772)) 97)) (-4242 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2686 (((-772)) NIL T CONST)) (-4113 ((|#1| $) 94)) (-3739 (((-112) $ $) NIL)) (-1847 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1690 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2469 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1823 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1660 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1869 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1719 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-2927 ((|#1| $ (-772)) 92 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-772)))) (|has| |#1| (-15 -4101 (|#1| (-1176))))))) (-1345 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1733 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1858 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1704 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1834 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1673 (($ $) NIL (|has| |#1| (-38 (-410 (-567)))))) (-1468 (($) 18 T CONST)) (-1484 (($) 13 T CONST)) (-2692 (($ $ (-645 (-1176)) (-645 (-772))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176) (-772)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-645 (-1176))) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-1176)) NIL (-12 (|has| |#1| (-15 * (|#1| (-772) |#1|))) (|has| |#1| (-901 (-1176))))) (($ $ (-772)) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-772) |#1|))))) (-3052 (((-112) $ $) NIL)) (-3168 (($ $ |#1|) NIL (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) 110)) (-3146 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL) (($ $ |#1|) 148 (|has| |#1| (-365))) (($ $ $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 109) (($ (-410 (-567)) $) NIL (|has| |#1| (-38 (-410 (-567))))) (($ $ (-410 (-567))) NIL (|has| |#1| (-38 (-410 (-567)))))))
+(((-1258 |#1| |#2| |#3|) (-13 (-1257 |#1|) (-10 -8 (-15 -4101 ($ (-1239 |#2| |#1|))) (-15 -2501 ((-1239 |#2| |#1|) $ (-772))) (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (-15 -2374 ($ $)) (-15 -3588 ($ $)) (-15 -4310 ($ $)) (-15 -2625 ($ $)) (-15 -3642 ($ $ (-567) (-567))) (-15 -3232 ($ $)) (-15 -4050 ($ (-567) (-567) $)) (-15 -2977 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|))) (-1050) (-1176) |#1|) (T -1258))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1176)) (-14 *5 *3) (-5 *1 (-1258 *3 *4 *5)))) (-2501 (*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1258 *4 *5 *6)) (-4 *4 (-1050)) (-14 *5 (-1176)) (-14 *6 *4))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-1930 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050)) (-14 *5 *3))) (-2374 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176)) (-14 *4 *2))) (-3588 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176)) (-14 *4 *2))) (-4310 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176)) (-14 *4 *2))) (-2625 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176)) (-14 *4 *2))) (-3642 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1176)) (-14 *5 *3))) (-3232 (*1 *1 *1) (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176)) (-14 *4 *2))) (-4050 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1176)) (-14 *5 *3))) (-2977 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1176)) (-14 *5 *3))) (-2113 (*1 *1 *1 *2) (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(-13 (-1257 |#1|) (-10 -8 (-15 -4101 ($ (-1239 |#2| |#1|))) (-15 -2501 ((-1239 |#2| |#1|) $ (-772))) (-15 -4101 ($ (-1262 |#2|))) (-15 -1930 ($ $ (-1262 |#2|))) (-15 -2374 ($ $)) (-15 -3588 ($ $)) (-15 -4310 ($ $)) (-15 -2625 ($ $)) (-15 -3642 ($ $ (-567) (-567))) (-15 -3232 ($ $)) (-15 -4050 ($ (-567) (-567) $)) (-15 -2977 ($ (-567) (-567) $)) (IF (|has| |#1| (-38 (-410 (-567)))) (-15 -2113 ($ $ (-1262 |#2|))) |%noBranch|)))
+((-3764 (((-1 (-1156 |#1|) (-645 (-1156 |#1|))) (-1 |#2| (-645 |#2|))) 24)) (-2689 (((-1 (-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2857 (((-1 (-1156 |#1|) (-1156 |#1|)) (-1 |#2| |#2|)) 13)) (-4350 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-1759 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2656 ((|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|)) 60)) (-4346 (((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))) 66)) (-3467 ((|#2| |#2| |#2|) 43)))
+(((-1259 |#1| |#2|) (-10 -7 (-15 -2857 ((-1 (-1156 |#1|) (-1156 |#1|)) (-1 |#2| |#2|))) (-15 -2689 ((-1 (-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3764 ((-1 (-1156 |#1|) (-645 (-1156 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -3467 (|#2| |#2| |#2|)) (-15 -1759 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4350 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2656 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -4346 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|)))))) (-38 (-410 (-567))) (-1257 |#1|)) (T -1259))
+((-4346 (*1 *2 *3 *4) (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6)))) (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1257 *5)) (-5 *2 (-645 *6)) (-5 *1 (-1259 *5 *6)))) (-2656 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5)) (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1257 *5)) (-5 *1 (-1259 *5 *2)))) (-4350 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-1259 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-1759 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-1259 *4 *2)) (-4 *4 (-38 (-410 (-567)))))) (-3467 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1257 *3)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1257 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1156 *4) (-645 (-1156 *4)))) (-5 *1 (-1259 *4 *5)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1156 *4) (-1156 *4) (-1156 *4))) (-5 *1 (-1259 *4 *5)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1257 *4)) (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1156 *4) (-1156 *4))) (-5 *1 (-1259 *4 *5)))))
+(-10 -7 (-15 -2857 ((-1 (-1156 |#1|) (-1156 |#1|)) (-1 |#2| |#2|))) (-15 -2689 ((-1 (-1156 |#1|) (-1156 |#1|) (-1156 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3764 ((-1 (-1156 |#1|) (-645 (-1156 |#1|))) (-1 |#2| (-645 |#2|)))) (-15 -3467 (|#2| |#2| |#2|)) (-15 -1759 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4350 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2656 (|#2| (-1 |#2| (-645 |#2|)) (-645 |#1|))) (-15 -4346 ((-645 |#2|) (-645 |#1|) (-645 (-1 |#2| (-645 |#2|))))))
+((-2883 ((|#2| |#4| (-772)) 34)) (-2072 ((|#4| |#2|) 29)) (-4097 ((|#4| (-410 |#2|)) 53 (|has| |#1| (-559)))) (-3769 (((-1 |#4| (-645 |#4|)) |#3|) 46)))
+(((-1260 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2072 (|#4| |#2|)) (-15 -2883 (|#2| |#4| (-772))) (-15 -3769 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -4097 (|#4| (-410 |#2|))) |%noBranch|)) (-1050) (-1242 |#1|) (-657 |#2|) (-1257 |#1|)) (T -1260))
+((-4097 (*1 *2 *3) (-12 (-5 *3 (-410 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-559)) (-4 *4 (-1050)) (-4 *2 (-1257 *4)) (-5 *1 (-1260 *4 *5 *6 *2)) (-4 *6 (-657 *5)))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *5 (-1242 *4)) (-5 *2 (-1 *6 (-645 *6))) (-5 *1 (-1260 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1257 *4)))) (-2883 (*1 *2 *3 *4) (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-4 *2 (-1242 *5)) (-5 *1 (-1260 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1257 *5)))) (-2072 (*1 *2 *3) (-12 (-4 *4 (-1050)) (-4 *3 (-1242 *4)) (-4 *2 (-1257 *4)) (-5 *1 (-1260 *4 *3 *5 *2)) (-4 *5 (-657 *3)))))
+(-10 -7 (-15 -2072 (|#4| |#2|)) (-15 -2883 (|#2| |#4| (-772))) (-15 -3769 ((-1 |#4| (-645 |#4|)) |#3|)) (IF (|has| |#1| (-559)) (-15 -4097 (|#4| (-410 |#2|))) |%noBranch|))
+NIL
+(((-1261) (-140)) (T -1261))
+NIL
+(-13 (-10 -7 (-6 -2890)))
+((-2257 (((-112) $ $) NIL)) (-4295 (((-1176)) 12)) (-2451 (((-1158) $) 18)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 11) (((-1176) $) 8)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) 15)))
+(((-1262 |#1|) (-13 (-1100) (-614 (-1176)) (-10 -8 (-15 -4101 ((-1176) $)) (-15 -4295 ((-1176))))) (-1176)) (T -1262))
+((-4101 (*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1262 *3)) (-14 *3 *2))) (-4295 (*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1262 *3)) (-14 *3 *2))))
+(-13 (-1100) (-614 (-1176)) (-10 -8 (-15 -4101 ((-1176) $)) (-15 -4295 ((-1176)))))
+((-2019 (($ (-772)) 19)) (-3543 (((-690 |#2|) $ $) 41)) (-1674 ((|#2| $) 51)) (-3036 ((|#2| $) 50)) (-2945 ((|#2| $ $) 36)) (-2673 (($ $ $) 47)) (-3156 (($ $) 23) (($ $ $) 29)) (-3146 (($ $ $) 15)) (* (($ (-567) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31)))
+(((-1263 |#1| |#2|) (-10 -8 (-15 -1674 (|#2| |#1|)) (-15 -3036 (|#2| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -3543 ((-690 |#2|) |#1| |#1|)) (-15 -2945 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -2019 (|#1| (-772))) (-15 -3146 (|#1| |#1| |#1|))) (-1264 |#2|) (-1216)) (T -1263))
+NIL
+(-10 -8 (-15 -1674 (|#2| |#1|)) (-15 -3036 (|#2| |#1|)) (-15 -2673 (|#1| |#1| |#1|)) (-15 -3543 ((-690 |#2|) |#1| |#1|)) (-15 -2945 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-567) |#1|)) (-15 -3156 (|#1| |#1| |#1|)) (-15 -3156 (|#1| |#1|)) (-15 -2019 (|#1| (-772))) (-15 -3146 (|#1| |#1| |#1|)))
+((-2257 (((-112) $ $) 19 (|has| |#1| (-1100)))) (-2019 (($ (-772)) 113 (|has| |#1| (-23)))) (-2275 (((-1271) $ (-567) (-567)) 41 (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) 99) (((-112) $) 93 (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) 90 (|has| $ (-6 -4417))) (($ $) 89 (-12 (|has| |#1| (-851)) (|has| $ (-6 -4417))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) 100) (($ $) 94 (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) 8)) (-4230 ((|#1| $ (-567) |#1|) 53 (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) 59 (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) 76 (|has| $ (-6 -4416)))) (-4061 (($) 7 T CONST)) (-1695 (($ $) 91 (|has| $ (-6 -4417)))) (-3315 (($ $) 101)) (-2084 (($ $) 79 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3138 (($ |#1| $) 78 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 77 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 74 (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) 73 (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) 54 (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) 52)) (-3771 (((-567) (-1 (-112) |#1|) $) 98) (((-567) |#1| $) 97 (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) 96 (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) 31 (|has| $ (-6 -4416)))) (-3543 (((-690 |#1|) $ $) 106 (|has| |#1| (-1050)))) (-4012 (($ (-772) |#1|) 70)) (-2805 (((-112) $ (-772)) 9)) (-1321 (((-567) $) 44 (|has| (-567) (-851)))) (-2056 (($ $ $) 88 (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) 102) (($ $ $) 95 (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) 30 (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) 28 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-1979 (((-567) $) 45 (|has| (-567) (-851)))) (-1802 (($ $ $) 87 (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) 36) (($ (-1 |#1| |#1| |#1|) $ $) 65)) (-1674 ((|#1| $) 103 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-3230 (((-112) $ (-772)) 10)) (-3036 ((|#1| $) 104 (-12 (|has| |#1| (-1050)) (|has| |#1| (-1003))))) (-2451 (((-1158) $) 22 (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) 61) (($ $ $ (-567)) 60)) (-3940 (((-645 (-567)) $) 47)) (-1664 (((-112) (-567) $) 48)) (-3339 (((-1120) $) 21 (|has| |#1| (-1100)))) (-2048 ((|#1| $) 43 (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 72)) (-2092 (($ $ |#1|) 42 (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) 27 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) 26 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) 24 (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) 14)) (-1728 (((-112) |#1| $) 46 (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) 49)) (-3353 (((-112) $) 11)) (-3164 (($) 12)) (-1552 ((|#1| $ (-567) |#1|) 51) ((|#1| $ (-567)) 50) (($ $ (-1233 (-567))) 64)) (-2945 ((|#1| $ $) 107 (|has| |#1| (-1050)))) (-2675 (($ $ (-567)) 63) (($ $ (-1233 (-567))) 62)) (-2673 (($ $ $) 105 (|has| |#1| (-1050)))) (-3349 (((-772) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4416))) (((-772) |#1| $) 29 (-12 (|has| |#1| (-1100)) (|has| $ (-6 -4416))))) (-3732 (($ $ $ (-567)) 92 (|has| $ (-6 -4417)))) (-4247 (($ $) 13)) (-3542 (((-539) $) 80 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 71)) (-2285 (($ $ |#1|) 69) (($ |#1| $) 68) (($ $ $) 67) (($ (-645 $)) 66)) (-4101 (((-863) $) 18 (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) 23 (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) 34 (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) 85 (|has| |#1| (-851)))) (-3085 (((-112) $ $) 84 (|has| |#1| (-851)))) (-3052 (((-112) $ $) 20 (|has| |#1| (-1100)))) (-3098 (((-112) $ $) 86 (|has| |#1| (-851)))) (-3075 (((-112) $ $) 83 (|has| |#1| (-851)))) (-3156 (($ $) 112 (|has| |#1| (-21))) (($ $ $) 111 (|has| |#1| (-21)))) (-3146 (($ $ $) 114 (|has| |#1| (-25)))) (* (($ (-567) $) 110 (|has| |#1| (-21))) (($ |#1| $) 109 (|has| |#1| (-727))) (($ $ |#1|) 108 (|has| |#1| (-727)))) (-2268 (((-772) $) 6 (|has| $ (-6 -4416)))))
+(((-1264 |#1|) (-140) (-1216)) (T -1264))
+((-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-25)))) (-2019 (*1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1264 *3)) (-4 *3 (-23)) (-4 *3 (-1216)))) (-3156 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-21)))) (-3156 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-4 *1 (-1264 *3)) (-4 *3 (-1216)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-727)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-727)))) (-2945 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1050)))) (-3543 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1216)) (-4 *3 (-1050)) (-5 *2 (-690 *3)))) (-2673 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1050)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1003)) (-4 *2 (-1050)))) (-1674 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1003)) (-4 *2 (-1050)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3146 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2019 ($ (-772))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3156 ($ $)) (-15 -3156 ($ $ $)) (-15 * ($ (-567) $))) |%noBranch|) (IF (|has| |t#1| (-727)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1050)) (PROGN (-15 -2945 (|t#1| $ $)) (-15 -3543 ((-690 |t#1|) $ $)) (-15 -2673 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1003)) (IF (|has| |t#1| (-1050)) (PROGN (-15 -3036 (|t#1| $)) (-15 -1674 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-614 (-863)) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851)) (|has| |#1| (-614 (-863)))) ((-151 |#1|) . T) ((-615 (-539)) |has| |#1| (-615 (-539))) ((-287 #0=(-567) |#1|) . T) ((-289 #0# |#1|) . T) ((-310 |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-375 |#1|) . T) ((-492 |#1|) . T) ((-605 #0# |#1|) . T) ((-517 |#1| |#1|) -12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))) ((-652 |#1|) . T) ((-19 |#1|) . T) ((-851) |has| |#1| (-851)) ((-1100) -2909 (|has| |#1| (-1100)) (|has| |#1| (-851))) ((-1216) . T))
+((-3391 (((-1266 |#2|) (-1 |#2| |#1| |#2|) (-1266 |#1|) |#2|) 13)) (-3402 ((|#2| (-1 |#2| |#1| |#2|) (-1266 |#1|) |#2|) 15)) (-3494 (((-3 (-1266 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1266 |#1|)) 30) (((-1266 |#2|) (-1 |#2| |#1|) (-1266 |#1|)) 18)))
+(((-1265 |#1| |#2|) (-10 -7 (-15 -3391 ((-1266 |#2|) (-1 |#2| |#1| |#2|) (-1266 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-1266 |#1|) |#2|)) (-15 -3494 ((-1266 |#2|) (-1 |#2| |#1|) (-1266 |#1|))) (-15 -3494 ((-3 (-1266 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1266 |#1|)))) (-1216) (-1216)) (T -1265))
+((-3494 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1266 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1266 *6)) (-5 *1 (-1265 *5 *6)))) (-3494 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1266 *6)) (-5 *1 (-1265 *5 *6)))) (-3402 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1266 *5)) (-4 *5 (-1216)) (-4 *2 (-1216)) (-5 *1 (-1265 *5 *2)))) (-3391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1266 *6)) (-4 *6 (-1216)) (-4 *5 (-1216)) (-5 *2 (-1266 *5)) (-5 *1 (-1265 *6 *5)))))
+(-10 -7 (-15 -3391 ((-1266 |#2|) (-1 |#2| |#1| |#2|) (-1266 |#1|) |#2|)) (-15 -3402 (|#2| (-1 |#2| |#1| |#2|) (-1266 |#1|) |#2|)) (-15 -3494 ((-1266 |#2|) (-1 |#2| |#1|) (-1266 |#1|))) (-15 -3494 ((-3 (-1266 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1266 |#1|))))
+((-2257 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2019 (($ (-772)) NIL (|has| |#1| (-23)))) (-1918 (($ (-645 |#1|)) 11)) (-2275 (((-1271) $ (-567) (-567)) NIL (|has| $ (-6 -4417)))) (-2530 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-851)))) (-3655 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4417))) (($ $) NIL (-12 (|has| $ (-6 -4417)) (|has| |#1| (-851))))) (-1594 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-851)))) (-1580 (((-112) $ (-772)) NIL)) (-4230 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417))) ((|#1| $ (-1233 (-567)) |#1|) NIL (|has| $ (-6 -4417)))) (-1551 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-4061 (($) NIL T CONST)) (-1695 (($ $) NIL (|has| $ (-6 -4417)))) (-3315 (($ $) NIL)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3138 (($ |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3402 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4416))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4416)))) (-1303 ((|#1| $ (-567) |#1|) NIL (|has| $ (-6 -4417)))) (-4344 ((|#1| $ (-567)) NIL)) (-3771 (((-567) (-1 (-112) |#1|) $) NIL) (((-567) |#1| $) NIL (|has| |#1| (-1100))) (((-567) |#1| $ (-567)) NIL (|has| |#1| (-1100)))) (-2896 (((-645 |#1|) $) 15 (|has| $ (-6 -4416)))) (-3543 (((-690 |#1|) $ $) NIL (|has| |#1| (-1050)))) (-4012 (($ (-772) |#1|) NIL)) (-2805 (((-112) $ (-772)) NIL)) (-1321 (((-567) $) NIL (|has| (-567) (-851)))) (-2056 (($ $ $) NIL (|has| |#1| (-851)))) (-3768 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-851)))) (-1542 (((-645 |#1|) $) NIL (|has| $ (-6 -4416)))) (-2176 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1979 (((-567) $) NIL (|has| (-567) (-851)))) (-1802 (($ $ $) NIL (|has| |#1| (-851)))) (-4392 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1674 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-3230 (((-112) $ (-772)) NIL)) (-3036 ((|#1| $) NIL (-12 (|has| |#1| (-1003)) (|has| |#1| (-1050))))) (-2451 (((-1158) $) NIL (|has| |#1| (-1100)))) (-2884 (($ |#1| $ (-567)) NIL) (($ $ $ (-567)) NIL)) (-3940 (((-645 (-567)) $) NIL)) (-1664 (((-112) (-567) $) NIL)) (-3339 (((-1120) $) NIL (|has| |#1| (-1100)))) (-2048 ((|#1| $) NIL (|has| (-567) (-851)))) (-3050 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-2092 (($ $ |#1|) NIL (|has| $ (-6 -4417)))) (-2297 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 (-295 |#1|))) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-295 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100)))) (($ $ (-645 |#1|) (-645 |#1|)) NIL (-12 (|has| |#1| (-310 |#1|)) (|has| |#1| (-1100))))) (-3748 (((-112) $ $) NIL)) (-1728 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-1412 (((-645 |#1|) $) NIL)) (-3353 (((-112) $) NIL)) (-3164 (($) NIL)) (-1552 ((|#1| $ (-567) |#1|) NIL) ((|#1| $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2945 ((|#1| $ $) NIL (|has| |#1| (-1050)))) (-2675 (($ $ (-567)) NIL) (($ $ (-1233 (-567))) NIL)) (-2673 (($ $ $) NIL (|has| |#1| (-1050)))) (-3349 (((-772) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416))) (((-772) |#1| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#1| (-1100))))) (-3732 (($ $ $ (-567)) NIL (|has| $ (-6 -4417)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) 19 (|has| |#1| (-615 (-539))))) (-4114 (($ (-645 |#1|)) 10)) (-2285 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-645 $)) NIL)) (-4101 (((-863) $) NIL (|has| |#1| (-614 (-863))))) (-3739 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-2012 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4416)))) (-3109 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3085 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3052 (((-112) $ $) NIL (|has| |#1| (-1100)))) (-3098 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3075 (((-112) $ $) NIL (|has| |#1| (-851)))) (-3156 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3146 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-567) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-727))) (($ $ |#1|) NIL (|has| |#1| (-727)))) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1266 |#1|) (-13 (-1264 |#1|) (-10 -8 (-15 -1918 ($ (-645 |#1|))))) (-1216)) (T -1266))
+((-1918 (*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-1266 *3)))))
+(-13 (-1264 |#1|) (-10 -8 (-15 -1918 ($ (-645 |#1|)))))
+((-2257 (((-112) $ $) NIL)) (-3377 (((-1158) $ (-1158)) 110) (((-1158) $ (-1158) (-1158)) 108) (((-1158) $ (-1158) (-645 (-1158))) 107)) (-3971 (($) 70)) (-3726 (((-1271) $ (-471) (-922)) 55)) (-1700 (((-1271) $ (-922) (-1158)) 92) (((-1271) $ (-922) (-875)) 93)) (-1353 (((-1271) $ (-922) (-381) (-381)) 58)) (-3160 (((-1271) $ (-1158)) 87)) (-4073 (((-1271) $ (-922) (-1158)) 97)) (-4371 (((-1271) $ (-922) (-381) (-381)) 59)) (-2792 (((-1271) $ (-922) (-922)) 56)) (-3359 (((-1271) $) 88)) (-3582 (((-1271) $ (-922) (-1158)) 96)) (-4091 (((-1271) $ (-471) (-922)) 41)) (-4229 (((-1271) $ (-922) (-1158)) 95)) (-2439 (((-645 (-264)) $) 29) (($ $ (-645 (-264))) 30)) (-3320 (((-1271) $ (-772) (-772)) 53)) (-1569 (($ $) 72) (($ (-471) (-645 (-264))) 73)) (-2451 (((-1158) $) NIL)) (-1762 (((-567) $) 48)) (-3339 (((-1120) $) NIL)) (-2562 (((-1266 (-3 (-471) "undefined")) $) 47)) (-1864 (((-1266 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4229 (-567)) (|:| -4303 (-567)) (|:| |spline| (-567)) (|:| -3277 (-567)) (|:| |axesColor| (-875)) (|:| -1700 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $) 46)) (-1357 (((-1271) $ (-922) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567)) 86)) (-3169 (((-645 (-944 (-225))) $) NIL)) (-3141 (((-471) $ (-922)) 43)) (-3839 (((-1271) $ (-772) (-772) (-922) (-922)) 51)) (-3613 (((-1271) $ (-1158)) 98)) (-4303 (((-1271) $ (-922) (-1158)) 94)) (-4101 (((-863) $) 105)) (-3858 (((-1271) $) 99)) (-3739 (((-112) $ $) NIL)) (-3277 (((-1271) $ (-922) (-1158)) 90) (((-1271) $ (-922) (-875)) 91)) (-3052 (((-112) $ $) NIL)))
+(((-1267) (-13 (-1100) (-10 -8 (-15 -3169 ((-645 (-944 (-225))) $)) (-15 -3971 ($)) (-15 -1569 ($ $)) (-15 -2439 ((-645 (-264)) $)) (-15 -2439 ($ $ (-645 (-264)))) (-15 -1569 ($ (-471) (-645 (-264)))) (-15 -1357 ((-1271) $ (-922) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -1864 ((-1266 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4229 (-567)) (|:| -4303 (-567)) (|:| |spline| (-567)) (|:| -3277 (-567)) (|:| |axesColor| (-875)) (|:| -1700 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -2562 ((-1266 (-3 (-471) "undefined")) $)) (-15 -3160 ((-1271) $ (-1158))) (-15 -4091 ((-1271) $ (-471) (-922))) (-15 -3141 ((-471) $ (-922))) (-15 -3277 ((-1271) $ (-922) (-1158))) (-15 -3277 ((-1271) $ (-922) (-875))) (-15 -1700 ((-1271) $ (-922) (-1158))) (-15 -1700 ((-1271) $ (-922) (-875))) (-15 -4229 ((-1271) $ (-922) (-1158))) (-15 -3582 ((-1271) $ (-922) (-1158))) (-15 -4303 ((-1271) $ (-922) (-1158))) (-15 -3613 ((-1271) $ (-1158))) (-15 -3858 ((-1271) $)) (-15 -3839 ((-1271) $ (-772) (-772) (-922) (-922))) (-15 -4371 ((-1271) $ (-922) (-381) (-381))) (-15 -1353 ((-1271) $ (-922) (-381) (-381))) (-15 -4073 ((-1271) $ (-922) (-1158))) (-15 -3320 ((-1271) $ (-772) (-772))) (-15 -3726 ((-1271) $ (-471) (-922))) (-15 -2792 ((-1271) $ (-922) (-922))) (-15 -3377 ((-1158) $ (-1158))) (-15 -3377 ((-1158) $ (-1158) (-1158))) (-15 -3377 ((-1158) $ (-1158) (-645 (-1158)))) (-15 -3359 ((-1271) $)) (-15 -1762 ((-567) $)) (-15 -4101 ((-863) $))))) (T -1267))
+((-4101 (*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1267)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-645 (-944 (-225)))) (-5 *1 (-1267)))) (-3971 (*1 *1) (-5 *1 (-1267))) (-1569 (*1 *1 *1) (-5 *1 (-1267))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1267)))) (-2439 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1267)))) (-1569 (*1 *1 *2 *3) (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1267)))) (-1357 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-1266 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4229 (-567)) (|:| -4303 (-567)) (|:| |spline| (-567)) (|:| -3277 (-567)) (|:| |axesColor| (-875)) (|:| -1700 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567))))) (-5 *1 (-1267)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1266 (-3 (-471) "undefined"))) (-5 *1 (-1267)))) (-3160 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-4091 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3141 (*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1267)))) (-3277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-1700 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-1700 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-4229 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3582 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-4303 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3839 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-4371 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-1353 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-4073 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3320 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3726 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-2792 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267)))) (-3377 (*1 *2 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1267)))) (-3377 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1267)))) (-3377 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1158)) (-5 *1 (-1267)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1267)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1267)))))
+(-13 (-1100) (-10 -8 (-15 -3169 ((-645 (-944 (-225))) $)) (-15 -3971 ($)) (-15 -1569 ($ $)) (-15 -2439 ((-645 (-264)) $)) (-15 -2439 ($ $ (-645 (-264)))) (-15 -1569 ($ (-471) (-645 (-264)))) (-15 -1357 ((-1271) $ (-922) (-225) (-225) (-225) (-225) (-567) (-567) (-567) (-567) (-875) (-567) (-875) (-567))) (-15 -1864 ((-1266 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4229 (-567)) (|:| -4303 (-567)) (|:| |spline| (-567)) (|:| -3277 (-567)) (|:| |axesColor| (-875)) (|:| -1700 (-567)) (|:| |unitsColor| (-875)) (|:| |showing| (-567)))) $)) (-15 -2562 ((-1266 (-3 (-471) "undefined")) $)) (-15 -3160 ((-1271) $ (-1158))) (-15 -4091 ((-1271) $ (-471) (-922))) (-15 -3141 ((-471) $ (-922))) (-15 -3277 ((-1271) $ (-922) (-1158))) (-15 -3277 ((-1271) $ (-922) (-875))) (-15 -1700 ((-1271) $ (-922) (-1158))) (-15 -1700 ((-1271) $ (-922) (-875))) (-15 -4229 ((-1271) $ (-922) (-1158))) (-15 -3582 ((-1271) $ (-922) (-1158))) (-15 -4303 ((-1271) $ (-922) (-1158))) (-15 -3613 ((-1271) $ (-1158))) (-15 -3858 ((-1271) $)) (-15 -3839 ((-1271) $ (-772) (-772) (-922) (-922))) (-15 -4371 ((-1271) $ (-922) (-381) (-381))) (-15 -1353 ((-1271) $ (-922) (-381) (-381))) (-15 -4073 ((-1271) $ (-922) (-1158))) (-15 -3320 ((-1271) $ (-772) (-772))) (-15 -3726 ((-1271) $ (-471) (-922))) (-15 -2792 ((-1271) $ (-922) (-922))) (-15 -3377 ((-1158) $ (-1158))) (-15 -3377 ((-1158) $ (-1158) (-1158))) (-15 -3377 ((-1158) $ (-1158) (-645 (-1158)))) (-15 -3359 ((-1271) $)) (-15 -1762 ((-567) $)) (-15 -4101 ((-863) $))))
+((-2257 (((-112) $ $) NIL)) (-3724 (((-1271) $ (-381)) 172) (((-1271) $ (-381) (-381) (-381)) 173)) (-3377 (((-1158) $ (-1158)) 182) (((-1158) $ (-1158) (-1158)) 180) (((-1158) $ (-1158) (-645 (-1158))) 179)) (-2396 (($) 67)) (-2734 (((-1271) $ (-381) (-381) (-381) (-381) (-381)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1271) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1271) $ (-567) (-567) (-381) (-381) (-381)) 147) (((-1271) $ (-381) (-381)) 148) (((-1271) $ (-381) (-381) (-381)) 155)) (-3597 (((-381)) 125) (((-381) (-381)) 126)) (-3186 (((-381)) 120) (((-381) (-381)) 122)) (-2545 (((-381)) 123) (((-381) (-381)) 124)) (-3261 (((-381)) 129) (((-381) (-381)) 130)) (-3310 (((-381)) 127) (((-381) (-381)) 128)) (-1353 (((-1271) $ (-381) (-381)) 174)) (-3160 (((-1271) $ (-1158)) 156)) (-1900 (((-1133 (-225)) $) 68) (($ $ (-1133 (-225))) 69)) (-4284 (((-1271) $ (-1158)) 190)) (-1645 (((-1271) $ (-1158)) 191)) (-1620 (((-1271) $ (-381) (-381)) 154) (((-1271) $ (-567) (-567)) 171)) (-2792 (((-1271) $ (-922) (-922)) 163)) (-3359 (((-1271) $) 140)) (-1524 (((-1271) $ (-1158)) 189)) (-3423 (((-1271) $ (-1158)) 137)) (-2439 (((-645 (-264)) $) 70) (($ $ (-645 (-264))) 71)) (-3320 (((-1271) $ (-772) (-772)) 162)) (-3342 (((-1271) $ (-772) (-944 (-225))) 196)) (-3378 (($ $) 73) (($ (-1133 (-225)) (-1158)) 74) (($ (-1133 (-225)) (-645 (-264))) 75)) (-2431 (((-1271) $ (-381) (-381) (-381)) 134)) (-2451 (((-1158) $) NIL)) (-1762 (((-567) $) 131)) (-1654 (((-1271) $ (-381)) 177)) (-1335 (((-1271) $ (-381)) 194)) (-3339 (((-1120) $) NIL)) (-3199 (((-1271) $ (-381)) 193)) (-2578 (((-1271) $ (-1158)) 139)) (-3839 (((-1271) $ (-772) (-772) (-922) (-922)) 161)) (-3958 (((-1271) $ (-1158)) 136)) (-3613 (((-1271) $ (-1158)) 138)) (-3939 (((-1271) $ (-157) (-157)) 160)) (-4101 (((-863) $) 169)) (-3858 (((-1271) $) 141)) (-2026 (((-1271) $ (-1158)) 192)) (-3739 (((-112) $ $) NIL)) (-3277 (((-1271) $ (-1158)) 135)) (-3052 (((-112) $ $) NIL)))
+(((-1268) (-13 (-1100) (-10 -8 (-15 -3186 ((-381))) (-15 -3186 ((-381) (-381))) (-15 -2545 ((-381))) (-15 -2545 ((-381) (-381))) (-15 -3597 ((-381))) (-15 -3597 ((-381) (-381))) (-15 -3310 ((-381))) (-15 -3310 ((-381) (-381))) (-15 -3261 ((-381))) (-15 -3261 ((-381) (-381))) (-15 -2396 ($)) (-15 -3378 ($ $)) (-15 -3378 ($ (-1133 (-225)) (-1158))) (-15 -3378 ($ (-1133 (-225)) (-645 (-264)))) (-15 -1900 ((-1133 (-225)) $)) (-15 -1900 ($ $ (-1133 (-225)))) (-15 -3342 ((-1271) $ (-772) (-944 (-225)))) (-15 -2439 ((-645 (-264)) $)) (-15 -2439 ($ $ (-645 (-264)))) (-15 -3320 ((-1271) $ (-772) (-772))) (-15 -2792 ((-1271) $ (-922) (-922))) (-15 -3160 ((-1271) $ (-1158))) (-15 -3839 ((-1271) $ (-772) (-772) (-922) (-922))) (-15 -2734 ((-1271) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2734 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2734 ((-1271) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2734 ((-1271) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2734 ((-1271) $ (-381) (-381))) (-15 -2734 ((-1271) $ (-381) (-381) (-381))) (-15 -3613 ((-1271) $ (-1158))) (-15 -3277 ((-1271) $ (-1158))) (-15 -3958 ((-1271) $ (-1158))) (-15 -3423 ((-1271) $ (-1158))) (-15 -2578 ((-1271) $ (-1158))) (-15 -1620 ((-1271) $ (-381) (-381))) (-15 -1620 ((-1271) $ (-567) (-567))) (-15 -3724 ((-1271) $ (-381))) (-15 -3724 ((-1271) $ (-381) (-381) (-381))) (-15 -1353 ((-1271) $ (-381) (-381))) (-15 -1524 ((-1271) $ (-1158))) (-15 -3199 ((-1271) $ (-381))) (-15 -1335 ((-1271) $ (-381))) (-15 -4284 ((-1271) $ (-1158))) (-15 -1645 ((-1271) $ (-1158))) (-15 -2026 ((-1271) $ (-1158))) (-15 -2431 ((-1271) $ (-381) (-381) (-381))) (-15 -1654 ((-1271) $ (-381))) (-15 -3359 ((-1271) $)) (-15 -3939 ((-1271) $ (-157) (-157))) (-15 -3377 ((-1158) $ (-1158))) (-15 -3377 ((-1158) $ (-1158) (-1158))) (-15 -3377 ((-1158) $ (-1158) (-645 (-1158)))) (-15 -3858 ((-1271) $)) (-15 -1762 ((-567) $))))) (T -1268))
+((-3186 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-2545 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-2545 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-3597 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-3597 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-3310 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-3310 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-3261 (*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-3261 (*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))) (-2396 (*1 *1) (-5 *1 (-1268))) (-3378 (*1 *1 *1) (-5 *1 (-1268))) (-3378 (*1 *1 *2 *3) (-12 (-5 *2 (-1133 (-225))) (-5 *3 (-1158)) (-5 *1 (-1268)))) (-3378 (*1 *1 *2 *3) (-12 (-5 *2 (-1133 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1268)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-1268)))) (-1900 (*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-1268)))) (-3342 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-944 (-225))) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268)))) (-2439 (*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268)))) (-3320 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2792 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3160 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3839 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2734 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1268)))) (-2734 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2734 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2734 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2734 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3613 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3277 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3958 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3423 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2578 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1620 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1620 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3724 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1353 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1524 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3199 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1335 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-4284 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1645 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2026 (*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-2431 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1654 (*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3939 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1271)) (-5 *1 (-1268)))) (-3377 (*1 *2 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1268)))) (-3377 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1268)))) (-3377 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1158)) (-5 *1 (-1268)))) (-3858 (*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1268)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1268)))))
+(-13 (-1100) (-10 -8 (-15 -3186 ((-381))) (-15 -3186 ((-381) (-381))) (-15 -2545 ((-381))) (-15 -2545 ((-381) (-381))) (-15 -3597 ((-381))) (-15 -3597 ((-381) (-381))) (-15 -3310 ((-381))) (-15 -3310 ((-381) (-381))) (-15 -3261 ((-381))) (-15 -3261 ((-381) (-381))) (-15 -2396 ($)) (-15 -3378 ($ $)) (-15 -3378 ($ (-1133 (-225)) (-1158))) (-15 -3378 ($ (-1133 (-225)) (-645 (-264)))) (-15 -1900 ((-1133 (-225)) $)) (-15 -1900 ($ $ (-1133 (-225)))) (-15 -3342 ((-1271) $ (-772) (-944 (-225)))) (-15 -2439 ((-645 (-264)) $)) (-15 -2439 ($ $ (-645 (-264)))) (-15 -3320 ((-1271) $ (-772) (-772))) (-15 -2792 ((-1271) $ (-922) (-922))) (-15 -3160 ((-1271) $ (-1158))) (-15 -3839 ((-1271) $ (-772) (-772) (-922) (-922))) (-15 -2734 ((-1271) $ (-381) (-381) (-381) (-381) (-381))) (-15 -2734 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2734 ((-1271) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2734 ((-1271) $ (-567) (-567) (-381) (-381) (-381))) (-15 -2734 ((-1271) $ (-381) (-381))) (-15 -2734 ((-1271) $ (-381) (-381) (-381))) (-15 -3613 ((-1271) $ (-1158))) (-15 -3277 ((-1271) $ (-1158))) (-15 -3958 ((-1271) $ (-1158))) (-15 -3423 ((-1271) $ (-1158))) (-15 -2578 ((-1271) $ (-1158))) (-15 -1620 ((-1271) $ (-381) (-381))) (-15 -1620 ((-1271) $ (-567) (-567))) (-15 -3724 ((-1271) $ (-381))) (-15 -3724 ((-1271) $ (-381) (-381) (-381))) (-15 -1353 ((-1271) $ (-381) (-381))) (-15 -1524 ((-1271) $ (-1158))) (-15 -3199 ((-1271) $ (-381))) (-15 -1335 ((-1271) $ (-381))) (-15 -4284 ((-1271) $ (-1158))) (-15 -1645 ((-1271) $ (-1158))) (-15 -2026 ((-1271) $ (-1158))) (-15 -2431 ((-1271) $ (-381) (-381) (-381))) (-15 -1654 ((-1271) $ (-381))) (-15 -3359 ((-1271) $)) (-15 -3939 ((-1271) $ (-157) (-157))) (-15 -3377 ((-1158) $ (-1158))) (-15 -3377 ((-1158) $ (-1158) (-1158))) (-15 -3377 ((-1158) $ (-1158) (-645 (-1158)))) (-15 -3858 ((-1271) $)) (-15 -1762 ((-567) $))))
+((-3628 (((-645 (-1158)) (-645 (-1158))) 104) (((-645 (-1158))) 96)) (-1354 (((-645 (-1158))) 94)) (-4071 (((-645 (-922)) (-645 (-922))) 69) (((-645 (-922))) 64)) (-3571 (((-645 (-772)) (-645 (-772))) 61) (((-645 (-772))) 55)) (-1872 (((-1271)) 71)) (-3646 (((-922) (-922)) 87) (((-922)) 86)) (-1751 (((-922) (-922)) 85) (((-922)) 84)) (-2377 (((-875) (-875)) 81) (((-875)) 80)) (-3590 (((-225)) 91) (((-225) (-381)) 93)) (-2515 (((-922)) 88) (((-922) (-922)) 89)) (-1625 (((-922) (-922)) 83) (((-922)) 82)) (-2289 (((-875) (-875)) 75) (((-875)) 73)) (-3035 (((-875) (-875)) 77) (((-875)) 76)) (-3757 (((-875) (-875)) 79) (((-875)) 78)))
+(((-1269) (-10 -7 (-15 -2289 ((-875))) (-15 -2289 ((-875) (-875))) (-15 -3035 ((-875))) (-15 -3035 ((-875) (-875))) (-15 -3757 ((-875))) (-15 -3757 ((-875) (-875))) (-15 -2377 ((-875))) (-15 -2377 ((-875) (-875))) (-15 -1625 ((-922))) (-15 -1625 ((-922) (-922))) (-15 -3571 ((-645 (-772)))) (-15 -3571 ((-645 (-772)) (-645 (-772)))) (-15 -4071 ((-645 (-922)))) (-15 -4071 ((-645 (-922)) (-645 (-922)))) (-15 -1872 ((-1271))) (-15 -3628 ((-645 (-1158)))) (-15 -3628 ((-645 (-1158)) (-645 (-1158)))) (-15 -1354 ((-645 (-1158)))) (-15 -1751 ((-922))) (-15 -3646 ((-922))) (-15 -1751 ((-922) (-922))) (-15 -3646 ((-922) (-922))) (-15 -2515 ((-922) (-922))) (-15 -2515 ((-922))) (-15 -3590 ((-225) (-381))) (-15 -3590 ((-225))))) (T -1269))
+((-3590 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1269)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1269)))) (-2515 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-2515 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-3646 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-1751 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-3646 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-1751 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-1354 (*1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1269)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1269)))) (-3628 (*1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1269)))) (-1872 (*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1269)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1269)))) (-4071 (*1 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1269)))) (-3571 (*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1269)))) (-3571 (*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1269)))) (-1625 (*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-1625 (*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))) (-2377 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))) (-2377 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))) (-3757 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))) (-3757 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))) (-3035 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))) (-3035 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))) (-2289 (*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))) (-2289 (*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))))
+(-10 -7 (-15 -2289 ((-875))) (-15 -2289 ((-875) (-875))) (-15 -3035 ((-875))) (-15 -3035 ((-875) (-875))) (-15 -3757 ((-875))) (-15 -3757 ((-875) (-875))) (-15 -2377 ((-875))) (-15 -2377 ((-875) (-875))) (-15 -1625 ((-922))) (-15 -1625 ((-922) (-922))) (-15 -3571 ((-645 (-772)))) (-15 -3571 ((-645 (-772)) (-645 (-772)))) (-15 -4071 ((-645 (-922)))) (-15 -4071 ((-645 (-922)) (-645 (-922)))) (-15 -1872 ((-1271))) (-15 -3628 ((-645 (-1158)))) (-15 -3628 ((-645 (-1158)) (-645 (-1158)))) (-15 -1354 ((-645 (-1158)))) (-15 -1751 ((-922))) (-15 -3646 ((-922))) (-15 -1751 ((-922) (-922))) (-15 -3646 ((-922) (-922))) (-15 -2515 ((-922) (-922))) (-15 -2515 ((-922))) (-15 -3590 ((-225) (-381))) (-15 -3590 ((-225))))
+((-4052 (((-471) (-645 (-645 (-944 (-225)))) (-645 (-264))) 22) (((-471) (-645 (-645 (-944 (-225))))) 21) (((-471) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264))) 20)) (-2181 (((-1267) (-645 (-645 (-944 (-225)))) (-645 (-264))) 33) (((-1267) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264))) 32)) (-4101 (((-1267) (-471)) 48)))
+(((-1270) (-10 -7 (-15 -4052 ((-471) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -4052 ((-471) (-645 (-645 (-944 (-225)))))) (-15 -4052 ((-471) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -2181 ((-1267) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -2181 ((-1267) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -4101 ((-1267) (-471))))) (T -1270))
+((-4101 (*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1267)) (-5 *1 (-1270)))) (-2181 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-1270)))) (-2181 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-1270)))) (-4052 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1270)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-471)) (-5 *1 (-1270)))) (-4052 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875)) (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1270)))))
+(-10 -7 (-15 -4052 ((-471) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -4052 ((-471) (-645 (-645 (-944 (-225)))))) (-15 -4052 ((-471) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -2181 ((-1267) (-645 (-645 (-944 (-225)))) (-875) (-875) (-922) (-645 (-264)))) (-15 -2181 ((-1267) (-645 (-645 (-944 (-225)))) (-645 (-264)))) (-15 -4101 ((-1267) (-471))))
+((-2387 (($) 7)) (-4101 (((-863) $) 10)))
+(((-1271) (-13 (-614 (-863)) (-10 -8 (-15 -2387 ($))))) (T -1271))
+((-2387 (*1 *1) (-5 *1 (-1271))))
+(-13 (-614 (-863)) (-10 -8 (-15 -2387 ($))))
+((-3168 (($ $ |#2|) 10)))
+(((-1272 |#1| |#2|) (-10 -8 (-15 -3168 (|#1| |#1| |#2|))) (-1273 |#2|) (-365)) (T -1272))
+NIL
+(-10 -8 (-15 -3168 (|#1| |#1| |#2|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-1948 (((-134)) 33)) (-4101 (((-863) $) 12)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-3052 (((-112) $ $) 6)) (-3168 (($ $ |#1|) 34)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ |#1| $) 27) (($ $ |#1|) 31)))
+(((-1273 |#1|) (-140) (-365)) (T -1273))
+((-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-365)))) (-1948 (*1 *2) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
+(-13 (-718 |t#1|) (-10 -8 (-15 -3168 ($ $ |t#1|)) (-15 -1948 ((-134)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-649 |#1|) . T) ((-641 |#1|) . T) ((-718 |#1|) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1100) . T))
+((-4076 (((-645 (-1210 |#1|)) (-1176) (-1210 |#1|)) 83)) (-3753 (((-1156 (-1156 (-953 |#1|))) (-1176) (-1156 (-953 |#1|))) 63)) (-2512 (((-1 (-1156 (-1210 |#1|)) (-1156 (-1210 |#1|))) (-772) (-1210 |#1|) (-1156 (-1210 |#1|))) 74)) (-4134 (((-1 (-1156 (-953 |#1|)) (-1156 (-953 |#1|))) (-772)) 65)) (-4116 (((-1 (-1172 (-953 |#1|)) (-953 |#1|)) (-1176)) 32)) (-1493 (((-1 (-1156 (-953 |#1|)) (-1156 (-953 |#1|))) (-772)) 64)))
+(((-1274 |#1|) (-10 -7 (-15 -4134 ((-1 (-1156 (-953 |#1|)) (-1156 (-953 |#1|))) (-772))) (-15 -1493 ((-1 (-1156 (-953 |#1|)) (-1156 (-953 |#1|))) (-772))) (-15 -3753 ((-1156 (-1156 (-953 |#1|))) (-1176) (-1156 (-953 |#1|)))) (-15 -4116 ((-1 (-1172 (-953 |#1|)) (-953 |#1|)) (-1176))) (-15 -4076 ((-645 (-1210 |#1|)) (-1176) (-1210 |#1|))) (-15 -2512 ((-1 (-1156 (-1210 |#1|)) (-1156 (-1210 |#1|))) (-772) (-1210 |#1|) (-1156 (-1210 |#1|))))) (-365)) (T -1274))
+((-2512 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1210 *6)) (-5 *2 (-1 (-1156 *4) (-1156 *4))) (-5 *1 (-1274 *6)) (-5 *5 (-1156 *4)))) (-4076 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-4 *5 (-365)) (-5 *2 (-645 (-1210 *5))) (-5 *1 (-1274 *5)) (-5 *4 (-1210 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1 (-1172 (-953 *4)) (-953 *4))) (-5 *1 (-1274 *4)) (-4 *4 (-365)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *3 (-1176)) (-4 *5 (-365)) (-5 *2 (-1156 (-1156 (-953 *5)))) (-5 *1 (-1274 *5)) (-5 *4 (-1156 (-953 *5))))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1156 (-953 *4)) (-1156 (-953 *4)))) (-5 *1 (-1274 *4)) (-4 *4 (-365)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1156 (-953 *4)) (-1156 (-953 *4)))) (-5 *1 (-1274 *4)) (-4 *4 (-365)))))
+(-10 -7 (-15 -4134 ((-1 (-1156 (-953 |#1|)) (-1156 (-953 |#1|))) (-772))) (-15 -1493 ((-1 (-1156 (-953 |#1|)) (-1156 (-953 |#1|))) (-772))) (-15 -3753 ((-1156 (-1156 (-953 |#1|))) (-1176) (-1156 (-953 |#1|)))) (-15 -4116 ((-1 (-1172 (-953 |#1|)) (-953 |#1|)) (-1176))) (-15 -4076 ((-645 (-1210 |#1|)) (-1176) (-1210 |#1|))) (-15 -2512 ((-1 (-1156 (-1210 |#1|)) (-1156 (-1210 |#1|))) (-772) (-1210 |#1|) (-1156 (-1210 |#1|)))))
+((-2627 (((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|) 82)) (-1835 (((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|)))) 81)))
+(((-1275 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1835 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2627 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|))) (-351) (-1242 |#1|) (-1242 |#2|) (-412 |#2| |#3|)) (T -1275))
+((-2627 (*1 *2 *3) (-12 (-4 *4 (-351)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 *3)) (-5 *2 (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-690 *3)))) (-5 *1 (-1275 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))) (-1835 (*1 *2) (-12 (-4 *3 (-351)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 *4)) (-5 *2 (-2 (|:| -2557 (-690 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-690 *4)))) (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5)))))
+(-10 -7 (-15 -1835 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))))) (-15 -2627 ((-2 (|:| -2557 (-690 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-690 |#2|))) |#2|)))
+((-2257 (((-112) $ $) NIL)) (-3532 (((-1135) $) 11)) (-2198 (((-1135) $) 9)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 17) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1276) (-13 (-1083) (-10 -8 (-15 -2198 ((-1135) $)) (-15 -3532 ((-1135) $))))) (T -1276))
+((-2198 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1276)))) (-3532 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1276)))))
+(-13 (-1083) (-10 -8 (-15 -2198 ((-1135) $)) (-15 -3532 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3989 (((-1135) $) 9)) (-4101 (((-863) $) 15) (($ (-1181)) NIL) (((-1181) $) NIL)) (-3739 (((-112) $ $) NIL)) (-3052 (((-112) $ $) NIL)))
+(((-1277) (-13 (-1083) (-10 -8 (-15 -3989 ((-1135) $))))) (T -1277))
+((-3989 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1277)))))
+(-13 (-1083) (-10 -8 (-15 -3989 ((-1135) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 58)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) NIL)) (-3714 (((-112) $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-4101 (((-863) $) 81) (($ (-567)) NIL) (($ |#4|) 65) ((|#4| $) 70) (($ |#1|) NIL (|has| |#1| (-172)))) (-2686 (((-772)) NIL T CONST)) (-3860 (((-1271) (-772)) 16)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 37 T CONST)) (-1484 (($) 84 T CONST)) (-3052 (((-112) $ $) 87)) (-3168 (((-3 $ "failed") $ $) NIL (|has| |#1| (-365)))) (-3156 (($ $) 89) (($ $ $) NIL)) (-3146 (($ $ $) 63)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 91) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172)))))
+(((-1278 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1050) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3168 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3860 ((-1271) (-772))))) (-1050) (-851) (-794) (-950 |#1| |#3| |#2|) (-645 |#2|) (-645 (-772)) (-772)) (T -1278))
+((-3168 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1050)) (-4 *3 (-851)) (-4 *4 (-794)) (-14 *6 (-645 *3)) (-5 *1 (-1278 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-950 *2 *4 *3)) (-14 *7 (-645 (-772))) (-14 *8 (-772)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-4 *5 (-851)) (-4 *6 (-794)) (-14 *8 (-645 *5)) (-5 *2 (-1271)) (-5 *1 (-1278 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-950 *4 *6 *5)) (-14 *9 (-645 *3)) (-14 *10 *3))))
+(-13 (-1050) (-493 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-365)) (-15 -3168 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3860 ((-1271) (-772)))))
+((-2257 (((-112) $ $) NIL)) (-3263 (((-645 (-2 (|:| -3858 $) (|:| -1367 (-645 |#4|)))) (-645 |#4|)) NIL)) (-2102 (((-645 $) (-645 |#4|)) 96)) (-2449 (((-645 |#3|) $) NIL)) (-1416 (((-112) $) NIL)) (-2739 (((-112) $) NIL (|has| |#1| (-559)))) (-4309 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1508 ((|#4| |#4| $) NIL)) (-1594 (((-2 (|:| |under| $) (|:| -3992 $) (|:| |upper| $)) $ |#3|) NIL)) (-1580 (((-112) $ (-772)) NIL)) (-1551 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4061 (($) NIL T CONST)) (-3289 (((-112) $) NIL (|has| |#1| (-559)))) (-3407 (((-112) $ $) NIL (|has| |#1| (-559)))) (-2595 (((-112) $ $) NIL (|has| |#1| (-559)))) (-1579 (((-112) $) NIL (|has| |#1| (-559)))) (-1825 (((-645 |#4|) (-645 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 31)) (-2786 (((-645 |#4|) (-645 |#4|) $) 28 (|has| |#1| (-559)))) (-1427 (((-645 |#4|) (-645 |#4|) $) NIL (|has| |#1| (-559)))) (-3417 (((-3 $ "failed") (-645 |#4|)) NIL)) (-1621 (($ (-645 |#4|)) NIL)) (-2061 (((-3 $ "failed") $) 78)) (-3816 ((|#4| |#4| $) 83)) (-2084 (($ $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-3138 (($ |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-1386 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1444 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-4155 ((|#4| |#4| $) NIL)) (-3402 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4416))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4416))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1818 (((-2 (|:| -3858 (-645 |#4|)) (|:| -1367 (-645 |#4|))) $) NIL)) (-2896 (((-645 |#4|) $) NIL (|has| $ (-6 -4416)))) (-3604 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4280 ((|#3| $) 84)) (-2805 (((-112) $ (-772)) NIL)) (-1542 (((-645 |#4|) $) 32 (|has| $ (-6 -4416)))) (-2176 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100))))) (-3366 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35) (((-3 $ "failed") (-645 |#4|)) 38)) (-4392 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4417)))) (-3494 (($ (-1 |#4| |#4|) $) NIL)) (-4360 (((-645 |#3|) $) NIL)) (-4023 (((-112) |#3| $) NIL)) (-3230 (((-112) $ (-772)) NIL)) (-2451 (((-1158) $) NIL)) (-3162 (((-3 |#4| "failed") $) NIL)) (-2331 (((-645 |#4|) $) 54)) (-2750 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1603 ((|#4| |#4| $) 82)) (-2137 (((-112) $ $) 93)) (-1914 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-559)))) (-1849 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2703 ((|#4| |#4| $) NIL)) (-3339 (((-1120) $) NIL)) (-2048 (((-3 |#4| "failed") $) 77)) (-3050 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3809 (((-3 $ "failed") $ |#4|) NIL)) (-2436 (($ $ |#4|) NIL)) (-2297 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3140 (($ $ (-645 |#4|) (-645 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-295 |#4|)) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100)))) (($ $ (-645 (-295 |#4|))) NIL (-12 (|has| |#4| (-310 |#4|)) (|has| |#4| (-1100))))) (-3748 (((-112) $ $) NIL)) (-3353 (((-112) $) 75)) (-3164 (($) 46)) (-3677 (((-772) $) NIL)) (-3349 (((-772) |#4| $) NIL (-12 (|has| $ (-6 -4416)) (|has| |#4| (-1100)))) (((-772) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-4247 (($ $) NIL)) (-3542 (((-539) $) NIL (|has| |#4| (-615 (-539))))) (-4114 (($ (-645 |#4|)) NIL)) (-2485 (($ $ |#3|) NIL)) (-4090 (($ $ |#3|) NIL)) (-4367 (($ $) NIL)) (-2716 (($ $ |#3|) NIL)) (-4101 (((-863) $) NIL) (((-645 |#4|) $) 63)) (-2718 (((-772) $) NIL (|has| |#3| (-370)))) (-3485 (((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44) (((-3 $ "failed") (-645 |#4|)) 45)) (-4123 (((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73) (((-645 $) (-645 |#4|)) 74)) (-3739 (((-112) $ $) NIL)) (-3381 (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4| |#4|)) 27) (((-3 (-2 (|:| |bas| $) (|:| -2207 (-645 |#4|))) "failed") (-645 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2041 (((-112) $ (-1 (-112) |#4| (-645 |#4|))) NIL)) (-2012 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4416)))) (-3283 (((-645 |#3|) $) NIL)) (-2447 (((-112) |#3| $) NIL)) (-3052 (((-112) $ $) NIL)) (-2268 (((-772) $) NIL (|has| $ (-6 -4416)))))
+(((-1279 |#1| |#2| |#3| |#4|) (-13 (-1209 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3366 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3366 ((-3 $ "failed") (-645 |#4|))) (-15 -3485 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3485 ((-3 $ "failed") (-645 |#4|))) (-15 -4123 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4123 ((-645 $) (-645 |#4|))))) (-559) (-794) (-851) (-1065 |#1| |#2| |#3|)) (T -1279))
+((-3366 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1279 *5 *6 *7 *8)))) (-3366 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1279 *3 *4 *5 *6)))) (-3485 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1279 *5 *6 *7 *8)))) (-3485 (*1 *1 *2) (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1279 *3 *4 *5 *6)))) (-4123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1065 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1279 *6 *7 *8 *9))) (-5 *1 (-1279 *6 *7 *8 *9)))) (-4123 (*1 *2 *3) (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1279 *4 *5 *6 *7))) (-5 *1 (-1279 *4 *5 *6 *7)))))
+(-13 (-1209 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3366 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3366 ((-3 $ "failed") (-645 |#4|))) (-15 -3485 ((-3 $ "failed") (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3485 ((-3 $ "failed") (-645 |#4|))) (-15 -4123 ((-645 $) (-645 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4123 ((-645 $) (-645 |#4|)))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-4377 (((-3 $ "failed") $ $) 20)) (-4061 (($) 18 T CONST)) (-4014 (((-3 $ "failed") $) 37)) (-3714 (((-112) $) 35)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#1|) 45)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ |#1|) 47) (($ |#1| $) 46)))
+(((-1280 |#1|) (-140) (-1050)) (T -1280))
+NIL
+(-13 (-1050) (-111 |t#1| |t#1|) (-617 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 |#1|) |has| |#1| (-172)) ((-718 |#1|) |has| |#1| (-172)) ((-727) . T) ((-1052 |#1|) . T) ((-1057 |#1|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T))
+((-2257 (((-112) $ $) 67)) (-2865 (((-112) $) NIL)) (-2881 (((-645 |#1|) $) 52)) (-4291 (($ $ (-772)) 46)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1668 (($ $ (-772)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-4061 (($) NIL T CONST)) (-2079 (($ $ $) 70) (($ $ (-820 |#1|)) 56) (($ $ |#1|) 60)) (-3417 (((-3 (-820 |#1|) "failed") $) NIL)) (-1621 (((-820 |#1|) $) NIL)) (-2637 (($ $) 39)) (-4014 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2709 (($ $) NIL)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-1845 (($ (-820 |#1|) |#2|) 38)) (-4020 (($ $) 40)) (-2762 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 12)) (-2748 (((-820 |#1|) $) NIL)) (-3593 (((-820 |#1|) $) 41)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-1430 (($ $ $) 69) (($ $ (-820 |#1|)) 58) (($ $ |#1|) 62)) (-2789 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2599 (((-820 |#1|) $) 35)) (-2613 ((|#2| $) 37)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3677 (((-772) $) 43)) (-3115 (((-112) $) 47)) (-2131 ((|#2| $) NIL)) (-4101 (((-863) $) NIL) (($ (-820 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-567)) NIL)) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-820 |#1|)) NIL)) (-3087 ((|#2| $ $) 76) ((|#2| $ (-820 |#1|)) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 13 T CONST)) (-1484 (($) 19 T CONST)) (-2250 (((-645 (-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3052 (((-112) $ $) 44)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 28)) (** (($ $ (-772)) NIL) (($ $ (-922)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 68) (($ |#2| (-820 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL)))
+(((-1281 |#1| |#2|) (-13 (-384 |#2| (-820 |#1|)) (-1287 |#1| |#2|)) (-851) (-1050)) (T -1281))
+NIL
+(-13 (-384 |#2| (-820 |#1|)) (-1287 |#1| |#2|))
+((-2942 ((|#3| |#3| (-772)) 30)) (-2910 ((|#3| |#3| (-772)) 36)) (-2536 ((|#3| |#3| |#3| (-772)) 37)))
+(((-1282 |#1| |#2| |#3|) (-10 -7 (-15 -2910 (|#3| |#3| (-772))) (-15 -2942 (|#3| |#3| (-772))) (-15 -2536 (|#3| |#3| |#3| (-772)))) (-13 (-1050) (-718 (-410 (-567)))) (-851) (-1287 |#2| |#1|)) (T -1282))
+((-2536 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1282 *4 *5 *2)) (-4 *2 (-1287 *5 *4)))) (-2942 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1282 *4 *5 *2)) (-4 *2 (-1287 *5 *4)))) (-2910 (*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567))))) (-4 *5 (-851)) (-5 *1 (-1282 *4 *5 *2)) (-4 *2 (-1287 *5 *4)))))
+(-10 -7 (-15 -2910 (|#3| |#3| (-772))) (-15 -2942 (|#3| |#3| (-772))) (-15 -2536 (|#3| |#3| |#3| (-772))))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2881 (((-645 |#1|) $) 47)) (-4377 (((-3 $ "failed") $ $) 20)) (-1668 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-4061 (($) 18 T CONST)) (-2079 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3417 (((-3 (-820 |#1|) "failed") $) 71)) (-1621 (((-820 |#1|) $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-2261 (((-112) $) 52)) (-2709 (($ $) 51)) (-3714 (((-112) $) 35)) (-3523 (((-112) $) 57)) (-1845 (($ (-820 |#1|) |#2|) 58)) (-4020 (($ $) 56)) (-2762 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-2748 (((-820 |#1|) $) 68)) (-3494 (($ (-1 |#2| |#2|) $) 48)) (-1430 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3115 (((-112) $) 54)) (-2131 ((|#2| $) 53)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3087 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1283 |#1| |#2|) (-140) (-851) (-1050)) (T -1283))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-820 *3)))) (-2762 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))) (-3087 (*1 *2 *1 *3) (-12 (-5 *3 (-820 *4)) (-4 *1 (-1283 *4 *2)) (-4 *4 (-851)) (-4 *2 (-1050)))) (-3087 (*1 *2 *1 *1) (-12 (-4 *1 (-1283 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) (-1430 (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-1430 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-1430 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-2079 (*1 *1 *1 *2) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-2079 (*1 *1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-2079 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-1845 (*1 *1 *2 *3) (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1283 *4 *3)) (-4 *3 (-1050)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-112)))) (-4020 (*1 *1 *1) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-4101 (*1 *1 *2) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-112)))) (-2131 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-112)))) (-2709 (*1 *1 *1) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))) (-1668 (*1 *1 *1 *1) (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)) (-4 *3 (-172)))) (-1668 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-4 *4 (-172)))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-2881 (*1 *2 *1) (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-645 *3)))))
+(-13 (-1050) (-1280 |t#2|) (-1039 (-820 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2748 ((-820 |t#1|) $)) (-15 -2762 ((-2 (|:| |k| (-820 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -3087 (|t#2| $ (-820 |t#1|))) (-15 -3087 (|t#2| $ $)) (-15 -1430 ($ $ |t#1|)) (-15 -1430 ($ $ (-820 |t#1|))) (-15 -1430 ($ $ $)) (-15 -2079 ($ $ |t#1|)) (-15 -2079 ($ $ (-820 |t#1|))) (-15 -2079 ($ $ $)) (-15 -1845 ($ (-820 |t#1|) |t#2|)) (-15 -3523 ((-112) $)) (-15 -4020 ($ $)) (-15 -4101 ($ |t#1|)) (-15 -3115 ((-112) $)) (-15 -2131 (|t#2| $)) (-15 -2261 ((-112) $)) (-15 -2709 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1668 ($ $ $)) (-15 -1668 ($ $ (-772)))) |%noBranch|) (-15 -3494 ($ (-1 |t#2| |t#2|) $)) (-15 -2881 ((-645 |t#1|) $)) (IF (|has| |t#2| (-6 -4409)) (-6 -4409) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1039 #0#) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1280 |#2|) . T))
+((-2513 (((-112) $) 15)) (-2447 (((-112) $) 14)) (-2202 (($ $) 19) (($ $ (-772)) 21)))
+(((-1284 |#1| |#2|) (-10 -8 (-15 -2202 (|#1| |#1| (-772))) (-15 -2202 (|#1| |#1|)) (-15 -2513 ((-112) |#1|)) (-15 -2447 ((-112) |#1|))) (-1285 |#2|) (-365)) (T -1284))
+NIL
+(-10 -8 (-15 -2202 (|#1| |#1| (-772))) (-15 -2202 (|#1| |#1|)) (-15 -2513 ((-112) |#1|)) (-15 -2447 ((-112) |#1|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-1785 (((-2 (|:| -4135 $) (|:| -4403 $) (|:| |associate| $)) $) 47)) (-3602 (($ $) 46)) (-2119 (((-112) $) 44)) (-2513 (((-112) $) 104)) (-2145 (((-772)) 100)) (-4377 (((-3 $ "failed") $ $) 20)) (-1396 (($ $) 81)) (-1401 (((-421 $) $) 80)) (-3405 (((-112) $ $) 65)) (-4061 (($) 18 T CONST)) (-3417 (((-3 |#1| "failed") $) 111)) (-1621 ((|#1| $) 112)) (-2197 (($ $ $) 61)) (-4014 (((-3 $ "failed") $) 37)) (-2210 (($ $ $) 62)) (-3516 (((-2 (|:| -3087 (-645 $)) (|:| -4099 $)) (-645 $)) 57)) (-2966 (($ $ (-772)) 97 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370)))) (($ $) 96 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1665 (((-112) $) 79)) (-1909 (((-834 (-922)) $) 94 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-3714 (((-112) $) 35)) (-3102 (((-3 (-645 $) "failed") (-645 $) $) 58)) (-3245 (($ $ $) 52) (($ (-645 $)) 51)) (-2451 (((-1158) $) 10)) (-2559 (($ $) 78)) (-2407 (((-112) $) 103)) (-3339 (((-1120) $) 11)) (-1819 (((-1172 $) (-1172 $) (-1172 $)) 50)) (-3276 (($ $ $) 54) (($ (-645 $)) 53)) (-2296 (((-421 $) $) 82)) (-2888 (((-834 (-922))) 101)) (-3930 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -4099 $)) $ $) 60) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59)) (-2245 (((-3 $ "failed") $ $) 48)) (-2649 (((-3 (-645 $) "failed") (-645 $) $) 56)) (-4369 (((-772) $) 64)) (-2679 (((-2 (|:| -3545 $) (|:| -1386 $)) $ $) 63)) (-2097 (((-3 (-772) "failed") $ $) 95 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-1948 (((-134)) 109)) (-3677 (((-834 (-922)) $) 102)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ $) 49) (($ (-410 (-567))) 74) (($ |#1|) 110)) (-4242 (((-3 $ "failed") $) 93 (-2909 (|has| |#1| (-145)) (|has| |#1| (-370))))) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-2469 (((-112) $ $) 45)) (-2447 (((-112) $) 105)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-2202 (($ $) 99 (|has| |#1| (-370))) (($ $ (-772)) 98 (|has| |#1| (-370)))) (-3052 (((-112) $ $) 6)) (-3168 (($ $ $) 73) (($ $ |#1|) 108)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36) (($ $ (-567)) 77)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ $ (-410 (-567))) 76) (($ (-410 (-567)) $) 75) (($ $ |#1|) 107) (($ |#1| $) 106)))
+(((-1285 |#1|) (-140) (-365)) (T -1285))
+((-2447 (*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-112)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-2888 (*1 *2) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))) (-2145 (*1 *2) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-772)))) (-2202 (*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-365)) (-4 *2 (-370)))) (-2202 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-4 *3 (-370)))))
+(-13 (-365) (-1039 |t#1|) (-1273 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-405)) |%noBranch|) (-15 -2447 ((-112) $)) (-15 -2513 ((-112) $)) (-15 -2407 ((-112) $)) (-15 -3677 ((-834 (-922)) $)) (-15 -2888 ((-834 (-922)))) (-15 -2145 ((-772))) (IF (|has| |t#1| (-370)) (PROGN (-6 (-405)) (-15 -2202 ($ $)) (-15 -2202 ($ $ (-772)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-410 (-567))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2909 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-617 #0#) . T) ((-617 (-567)) . T) ((-617 |#1|) . T) ((-617 $) . T) ((-614 (-863)) . T) ((-172) . T) ((-243) . T) ((-291) . T) ((-308) . T) ((-365) . T) ((-405) -2909 (|has| |#1| (-370)) (|has| |#1| (-145))) ((-455) . T) ((-559) . T) ((-647 #0#) . T) ((-647 (-567)) . T) ((-647 |#1|) . T) ((-647 $) . T) ((-649 #0#) . T) ((-649 |#1|) . T) ((-649 $) . T) ((-641 #0#) . T) ((-641 |#1|) . T) ((-641 $) . T) ((-718 #0#) . T) ((-718 |#1|) . T) ((-718 $) . T) ((-727) . T) ((-921) . T) ((-1039 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1057 #0#) . T) ((-1057 |#1|) . T) ((-1057 $) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1220) . T) ((-1273 |#1|) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2881 (((-645 |#1|) $) 99)) (-4291 (($ $ (-772)) 103)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1668 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-772)) NIL (|has| |#2| (-172)))) (-4061 (($) NIL T CONST)) (-2079 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-3417 (((-3 (-820 |#1|) "failed") $) NIL) (((-3 (-894 |#1|) "failed") $) NIL)) (-1621 (((-820 |#1|) $) NIL) (((-894 |#1|) $) NIL)) (-2637 (($ $) 102)) (-4014 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) 91)) (-2709 (($ $) 94)) (-3687 (($ $ $ (-772)) 104)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-1845 (($ (-820 |#1|) |#2|) NIL) (($ (-894 |#1|) |#2|) 29)) (-4020 (($ $) 121)) (-2762 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2748 (((-820 |#1|) $) NIL)) (-3593 (((-820 |#1|) $) NIL)) (-3494 (($ (-1 |#2| |#2|) $) NIL)) (-1430 (($ $ |#1|) NIL) (($ $ (-820 |#1|)) NIL) (($ $ $) NIL)) (-2942 (($ $ (-772)) 114 (|has| |#2| (-718 (-410 (-567)))))) (-2789 (((-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2599 (((-894 |#1|) $) 84)) (-2613 ((|#2| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-2910 (($ $ (-772)) 111 (|has| |#2| (-718 (-410 (-567)))))) (-3677 (((-772) $) 100)) (-3115 (((-112) $) 85)) (-2131 ((|#2| $) 89)) (-4101 (((-863) $) 70) (($ (-567)) NIL) (($ |#2|) 60) (($ (-820 |#1|)) NIL) (($ |#1|) 72) (($ (-894 |#1|)) NIL) (($ (-665 |#1| |#2|)) 48) (((-1281 |#1| |#2|) $) 77) (((-1290 |#1| |#2|) $) 82)) (-2350 (((-645 |#2|) $) NIL)) (-2339 ((|#2| $ (-894 |#1|)) NIL)) (-3087 ((|#2| $ (-820 |#1|)) NIL) ((|#2| $ $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 21 T CONST)) (-1484 (($) 28 T CONST)) (-2250 (((-645 (-2 (|:| |k| (-894 |#1|)) (|:| |c| |#2|))) $) NIL)) (-4062 (((-3 (-665 |#1| |#2|) "failed") $) 120)) (-3052 (((-112) $ $) 78)) (-3156 (($ $) 113) (($ $ $) 112)) (-3146 (($ $ $) 20)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 49) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-894 |#1|)) NIL)))
+(((-1286 |#1| |#2|) (-13 (-1287 |#1| |#2|) (-384 |#2| (-894 |#1|)) (-10 -8 (-15 -4101 ($ (-665 |#1| |#2|))) (-15 -4101 ((-1281 |#1| |#2|) $)) (-15 -4101 ((-1290 |#1| |#2|) $)) (-15 -4062 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -3687 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -2910 ($ $ (-772))) (-15 -2942 ($ $ (-772)))) |%noBranch|))) (-851) (-172)) (T -1286))
+((-4101 (*1 *1 *2) (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)) (-5 *1 (-1286 *3 *4)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-4062 (*1 *2 *1) (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-3687 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1286 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1286 *3 *4)) (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))))
+(-13 (-1287 |#1| |#2|) (-384 |#2| (-894 |#1|)) (-10 -8 (-15 -4101 ($ (-665 |#1| |#2|))) (-15 -4101 ((-1281 |#1| |#2|) $)) (-15 -4101 ((-1290 |#1| |#2|) $)) (-15 -4062 ((-3 (-665 |#1| |#2|) "failed") $)) (-15 -3687 ($ $ $ (-772))) (IF (|has| |#2| (-718 (-410 (-567)))) (PROGN (-15 -2910 ($ $ (-772))) (-15 -2942 ($ $ (-772)))) |%noBranch|)))
+((-2257 (((-112) $ $) 7)) (-2865 (((-112) $) 17)) (-2881 (((-645 |#1|) $) 47)) (-4291 (($ $ (-772)) 80)) (-4377 (((-3 $ "failed") $ $) 20)) (-1668 (($ $ $) 50 (|has| |#2| (-172))) (($ $ (-772)) 49 (|has| |#2| (-172)))) (-4061 (($) 18 T CONST)) (-2079 (($ $ |#1|) 61) (($ $ (-820 |#1|)) 60) (($ $ $) 59)) (-3417 (((-3 (-820 |#1|) "failed") $) 71)) (-1621 (((-820 |#1|) $) 72)) (-4014 (((-3 $ "failed") $) 37)) (-2261 (((-112) $) 52)) (-2709 (($ $) 51)) (-3714 (((-112) $) 35)) (-3523 (((-112) $) 57)) (-1845 (($ (-820 |#1|) |#2|) 58)) (-4020 (($ $) 56)) (-2762 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) 67)) (-2748 (((-820 |#1|) $) 68)) (-3593 (((-820 |#1|) $) 82)) (-3494 (($ (-1 |#2| |#2|) $) 48)) (-1430 (($ $ |#1|) 64) (($ $ (-820 |#1|)) 63) (($ $ $) 62)) (-2451 (((-1158) $) 10)) (-3339 (((-1120) $) 11)) (-3677 (((-772) $) 81)) (-3115 (((-112) $) 54)) (-2131 ((|#2| $) 53)) (-4101 (((-863) $) 12) (($ (-567)) 33) (($ |#2|) 75) (($ (-820 |#1|)) 70) (($ |#1|) 55)) (-3087 ((|#2| $ (-820 |#1|)) 66) ((|#2| $ $) 65)) (-2686 (((-772)) 32 T CONST)) (-3739 (((-112) $ $) 9)) (-1468 (($) 19 T CONST)) (-1484 (($) 34 T CONST)) (-3052 (((-112) $ $) 6)) (-3156 (($ $) 23) (($ $ $) 22)) (-3146 (($ $ $) 15)) (** (($ $ (-922)) 28) (($ $ (-772)) 36)) (* (($ (-922) $) 14) (($ (-772) $) 16) (($ (-567) $) 24) (($ $ $) 27) (($ |#2| $) 74) (($ $ |#2|) 73) (($ |#1| $) 69)))
+(((-1287 |#1| |#2|) (-140) (-851) (-1050)) (T -1287))
+((-3593 (*1 *2 *1) (-12 (-4 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-820 *3)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *2 (-772)))) (-4291 (*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))))
+(-13 (-1283 |t#1| |t#2|) (-10 -8 (-15 -3593 ((-820 |t#1|) $)) (-15 -3677 ((-772) $)) (-15 -4291 ($ $ (-772)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-617 (-567)) . T) ((-617 #0=(-820 |#1|)) . T) ((-617 |#2|) . T) ((-614 (-863)) . T) ((-647 (-567)) . T) ((-647 |#2|) . T) ((-647 $) . T) ((-649 |#2|) . T) ((-649 $) . T) ((-641 |#2|) |has| |#2| (-172)) ((-718 |#2|) |has| |#2| (-172)) ((-727) . T) ((-1039 #0#) . T) ((-1052 |#2|) . T) ((-1057 |#2|) . T) ((-1050) . T) ((-1058) . T) ((-1112) . T) ((-1100) . T) ((-1280 |#2|) . T) ((-1283 |#1| |#2|) . T))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-2881 (((-645 (-1176)) $) NIL)) (-3464 (($ (-1281 (-1176) |#1|)) NIL)) (-4291 (($ $ (-772)) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1668 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-772)) NIL (|has| |#1| (-172)))) (-4061 (($) NIL T CONST)) (-2079 (($ $ (-1176)) NIL) (($ $ (-820 (-1176))) NIL) (($ $ $) NIL)) (-3417 (((-3 (-820 (-1176)) "failed") $) NIL)) (-1621 (((-820 (-1176)) $) NIL)) (-4014 (((-3 $ "failed") $) NIL)) (-2261 (((-112) $) NIL)) (-2709 (($ $) NIL)) (-3714 (((-112) $) NIL)) (-3523 (((-112) $) NIL)) (-1845 (($ (-820 (-1176)) |#1|) NIL)) (-4020 (($ $) NIL)) (-2762 (((-2 (|:| |k| (-820 (-1176))) (|:| |c| |#1|)) $) NIL)) (-2748 (((-820 (-1176)) $) NIL)) (-3593 (((-820 (-1176)) $) NIL)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-1430 (($ $ (-1176)) NIL) (($ $ (-820 (-1176))) NIL) (($ $ $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1511 (((-1281 (-1176) |#1|) $) NIL)) (-3677 (((-772) $) NIL)) (-3115 (((-112) $) NIL)) (-2131 ((|#1| $) NIL)) (-4101 (((-863) $) NIL) (($ (-567)) NIL) (($ |#1|) NIL) (($ (-820 (-1176))) NIL) (($ (-1176)) NIL)) (-3087 ((|#1| $ (-820 (-1176))) NIL) ((|#1| $ $) NIL)) (-2686 (((-772)) NIL T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) NIL T CONST)) (-3871 (((-645 (-2 (|:| |k| (-1176)) (|:| |c| $))) $) NIL)) (-1484 (($) NIL T CONST)) (-3052 (((-112) $ $) NIL)) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) NIL)) (** (($ $ (-922)) NIL) (($ $ (-772)) NIL)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1176) $) NIL)))
+(((-1288 |#1|) (-13 (-1287 (-1176) |#1|) (-10 -8 (-15 -1511 ((-1281 (-1176) |#1|) $)) (-15 -3464 ($ (-1281 (-1176) |#1|))) (-15 -3871 ((-645 (-2 (|:| |k| (-1176)) (|:| |c| $))) $)))) (-1050)) (T -1288))
+((-1511 (*1 *2 *1) (-12 (-5 *2 (-1281 (-1176) *3)) (-5 *1 (-1288 *3)) (-4 *3 (-1050)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1281 (-1176) *3)) (-4 *3 (-1050)) (-5 *1 (-1288 *3)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| (-1176)) (|:| |c| (-1288 *3))))) (-5 *1 (-1288 *3)) (-4 *3 (-1050)))))
+(-13 (-1287 (-1176) |#1|) (-10 -8 (-15 -1511 ((-1281 (-1176) |#1|) $)) (-15 -3464 ($ (-1281 (-1176) |#1|))) (-15 -3871 ((-645 (-2 (|:| |k| (-1176)) (|:| |c| $))) $))))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) NIL)) (-4377 (((-3 $ "failed") $ $) NIL)) (-4061 (($) NIL T CONST)) (-3417 (((-3 |#2| "failed") $) NIL)) (-1621 ((|#2| $) NIL)) (-2637 (($ $) NIL)) (-4014 (((-3 $ "failed") $) 42)) (-2261 (((-112) $) 35)) (-2709 (($ $) 37)) (-3714 (((-112) $) NIL)) (-2864 (((-772) $) NIL)) (-2133 (((-645 $) $) NIL)) (-3523 (((-112) $) NIL)) (-1845 (($ |#2| |#1|) NIL)) (-2748 ((|#2| $) 24)) (-3593 ((|#2| $) 22)) (-3494 (($ (-1 |#1| |#1|) $) NIL)) (-2789 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2599 ((|#2| $) NIL)) (-2613 ((|#1| $) NIL)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-3115 (((-112) $) 32)) (-2131 ((|#1| $) 33)) (-4101 (((-863) $) 65) (($ (-567)) 46) (($ |#1|) 41) (($ |#2|) NIL)) (-2350 (((-645 |#1|) $) NIL)) (-2339 ((|#1| $ |#2|) NIL)) (-3087 ((|#1| $ |#2|) 28)) (-2686 (((-772)) 14 T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 29 T CONST)) (-1484 (($) 11 T CONST)) (-2250 (((-645 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3052 (((-112) $ $) 30)) (-3168 (($ $ |#1|) 67 (|has| |#1| (-365)))) (-3156 (($ $) NIL) (($ $ $) NIL)) (-3146 (($ $ $) 50)) (** (($ $ (-922)) NIL) (($ $ (-772)) 52)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) NIL) (($ $ $) 51) (($ |#1| $) 47) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2268 (((-772) $) 16)))
+(((-1289 |#1| |#2|) (-13 (-1050) (-1280 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2268 ((-772) $)) (-15 -3593 (|#2| $)) (-15 -2748 (|#2| $)) (-15 -2637 ($ $)) (-15 -3087 (|#1| $ |#2|)) (-15 -3115 ((-112) $)) (-15 -2131 (|#1| $)) (-15 -2261 ((-112) $)) (-15 -2709 ($ $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3168 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|))) (-1050) (-847)) (T -1289))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))) (-2637 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))) (-3494 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-1289 *3 *4)) (-4 *4 (-847)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-847)))) (-3593 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1289 *3 *2)) (-4 *3 (-1050)))) (-2748 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-1289 *3 *2)) (-4 *3 (-1050)))) (-3087 (*1 *2 *1 *3) (-12 (-4 *2 (-1050)) (-5 *1 (-1289 *2 *3)) (-4 *3 (-847)))) (-3115 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-847)))) (-2131 (*1 *2 *1) (-12 (-4 *2 (-1050)) (-5 *1 (-1289 *2 *3)) (-4 *3 (-847)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-847)))) (-2709 (*1 *1 *1) (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1050)) (-4 *3 (-847)))))
+(-13 (-1050) (-1280 |#1|) (-384 |#1| |#2|) (-617 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2268 ((-772) $)) (-15 -3593 (|#2| $)) (-15 -2748 (|#2| $)) (-15 -2637 ($ $)) (-15 -3087 (|#1| $ |#2|)) (-15 -3115 ((-112) $)) (-15 -2131 (|#1| $)) (-15 -2261 ((-112) $)) (-15 -2709 ($ $)) (-15 -3494 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-365)) (-15 -3168 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |#1| (-6 -4413)) (-6 -4413) |%noBranch|) (IF (|has| |#1| (-6 -4414)) (-6 -4414) |%noBranch|)))
+((-2257 (((-112) $ $) 27)) (-2865 (((-112) $) NIL)) (-2881 (((-645 |#1|) $) 132)) (-3464 (($ (-1281 |#1| |#2|)) 50)) (-4291 (($ $ (-772)) 38)) (-4377 (((-3 $ "failed") $ $) NIL)) (-1668 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-772)) 52 (|has| |#2| (-172)))) (-4061 (($) NIL T CONST)) (-2079 (($ $ |#1|) 114) (($ $ (-820 |#1|)) 115) (($ $ $) 26)) (-3417 (((-3 (-820 |#1|) "failed") $) NIL)) (-1621 (((-820 |#1|) $) NIL)) (-4014 (((-3 $ "failed") $) 122)) (-2261 (((-112) $) 117)) (-2709 (($ $) 118)) (-3714 (((-112) $) NIL)) (-3523 (((-112) $) NIL)) (-1845 (($ (-820 |#1|) |#2|) 20)) (-4020 (($ $) NIL)) (-2762 (((-2 (|:| |k| (-820 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2748 (((-820 |#1|) $) 123)) (-3593 (((-820 |#1|) $) 126)) (-3494 (($ (-1 |#2| |#2|) $) 131)) (-1430 (($ $ |#1|) 112) (($ $ (-820 |#1|)) 113) (($ $ $) 62)) (-2451 (((-1158) $) NIL)) (-3339 (((-1120) $) NIL)) (-1511 (((-1281 |#1| |#2|) $) 94)) (-3677 (((-772) $) 129)) (-3115 (((-112) $) 81)) (-2131 ((|#2| $) 32)) (-4101 (((-863) $) 73) (($ (-567)) 87) (($ |#2|) 85) (($ (-820 |#1|)) 18) (($ |#1|) 84)) (-3087 ((|#2| $ (-820 |#1|)) 116) ((|#2| $ $) 28)) (-2686 (((-772)) 120 T CONST)) (-3739 (((-112) $ $) NIL)) (-1468 (($) 15 T CONST)) (-3871 (((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-1484 (($) 33 T CONST)) (-3052 (((-112) $ $) 14)) (-3156 (($ $) 98) (($ $ $) 101)) (-3146 (($ $ $) 61)) (** (($ $ (-922)) NIL) (($ $ (-772)) 55)) (* (($ (-922) $) NIL) (($ (-772) $) 53) (($ (-567) $) 106) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 92)))
+(((-1290 |#1| |#2|) (-13 (-1287 |#1| |#2|) (-10 -8 (-15 -1511 ((-1281 |#1| |#2|) $)) (-15 -3464 ($ (-1281 |#1| |#2|))) (-15 -3871 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-851) (-1050)) (T -1290))
+((-1511 (*1 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1281 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)) (-5 *1 (-1290 *3 *4)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1290 *3 *4))))) (-5 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))))
+(-13 (-1287 |#1| |#2|) (-10 -8 (-15 -1511 ((-1281 |#1| |#2|) $)) (-15 -3464 ($ (-1281 |#1| |#2|))) (-15 -3871 ((-645 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-1691 (((-645 (-1156 |#1|)) (-1 (-645 (-1156 |#1|)) (-645 (-1156 |#1|))) (-567)) 20) (((-1156 |#1|) (-1 (-1156 |#1|) (-1156 |#1|))) 13)))
+(((-1291 |#1|) (-10 -7 (-15 -1691 ((-1156 |#1|) (-1 (-1156 |#1|) (-1156 |#1|)))) (-15 -1691 ((-645 (-1156 |#1|)) (-1 (-645 (-1156 |#1|)) (-645 (-1156 |#1|))) (-567)))) (-1216)) (T -1291))
+((-1691 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-645 (-1156 *5)) (-645 (-1156 *5)))) (-5 *4 (-567)) (-5 *2 (-645 (-1156 *5))) (-5 *1 (-1291 *5)) (-4 *5 (-1216)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1 (-1156 *4) (-1156 *4))) (-5 *2 (-1156 *4)) (-5 *1 (-1291 *4)) (-4 *4 (-1216)))))
+(-10 -7 (-15 -1691 ((-1156 |#1|) (-1 (-1156 |#1|) (-1156 |#1|)))) (-15 -1691 ((-645 (-1156 |#1|)) (-1 (-645 (-1156 |#1|)) (-645 (-1156 |#1|))) (-567))))
+((-1978 (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|))) 174) (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112)) 173) (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112)) 172) (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112) (-112)) 171) (((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-1047 |#1| |#2|)) 156)) (-3651 (((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|))) 85) (((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112)) 84) (((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112) (-112)) 83)) (-1401 (((-645 (-1146 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1047 |#1| |#2|)) 73)) (-4130 (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|))) 140) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112)) 139) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112)) 138) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112) (-112)) 137) (((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|)) 132)) (-2385 (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|))) 145) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112)) 144) (((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112)) 143) (((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|)) 142)) (-3542 (((-645 (-781 |#1| (-865 |#3|))) (-1146 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) 111) (((-1172 (-1025 (-410 |#1|))) (-1172 |#1|)) 102) (((-953 (-1025 (-410 |#1|))) (-781 |#1| (-865 |#3|))) 109) (((-953 (-1025 (-410 |#1|))) (-953 |#1|)) 107) (((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|))) 33)))
+(((-1292 |#1| |#2| |#3|) (-10 -7 (-15 -3651 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112) (-112))) (-15 -3651 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112))) (-15 -3651 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-1047 |#1| |#2|))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -1401 ((-645 (-1146 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1047 |#1| |#2|))) (-15 -3542 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3542 ((-953 (-1025 (-410 |#1|))) (-953 |#1|))) (-15 -3542 ((-953 (-1025 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3542 ((-1172 (-1025 (-410 |#1|))) (-1172 |#1|))) (-15 -3542 ((-645 (-781 |#1| (-865 |#3|))) (-1146 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))))) (-13 (-849) (-308) (-147) (-1023)) (-645 (-1176)) (-645 (-1176))) (T -1292))
+((-3542 (*1 *2 *3) (-12 (-5 *3 (-1146 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1292 *4 *5 *6)) (-14 *5 (-645 (-1176))))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-1172 (-1025 (-410 *4)))) (-5 *1 (-1292 *4 *5 *6)) (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *6))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1176))) (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1292 *4 *5 *6)) (-14 *5 (-645 (-1176))))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1292 *4 *5 *6)) (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))) (-3542 (*1 *2 *3) (-12 (-5 *3 (-781 *4 (-865 *5))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1176))) (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176))))) (-1401 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1176))) (-5 *2 (-645 (-1146 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))) (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176))))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1292 *4 *5 *6)) (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))) (-2385 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7)) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-2385 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7)) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1176))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176))))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1292 *4 *5 *6)) (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))) (-4130 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7)) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-4130 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7)) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-4130 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7)) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-4130 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1176))) (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176))))) (-1978 (*1 *2 *3) (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *4)) (|:| -3216 (-645 (-953 *4)))))) (-5 *1 (-1292 *4 *5 *6)) (-5 *3 (-645 (-953 *4))) (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))) (-1978 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5)))))) (-5 *1 (-1292 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-1978 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5)))))) (-5 *1 (-1292 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-1978 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5)))))) (-5 *1 (-1292 *5 *6 *7)) (-5 *3 (-645 (-953 *5))) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1176))) (-5 *2 (-645 (-2 (|:| -3894 (-1172 *4)) (|:| -3216 (-645 (-953 *4)))))) (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176))))) (-3651 (*1 *2 *3) (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-1047 *4 *5))) (-5 *1 (-1292 *4 *5 *6)) (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))) (-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1292 *5 *6 *7)) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))) (-3651 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023))) (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1292 *5 *6 *7)) (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176))))))
+(-10 -7 (-15 -3651 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112) (-112))) (-15 -3651 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)) (-112))) (-15 -3651 ((-645 (-1047 |#1| |#2|)) (-645 (-953 |#1|)))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-1047 |#1| |#2|))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)) (-112))) (-15 -1978 ((-645 (-2 (|:| -3894 (-1172 |#1|)) (|:| -3216 (-645 (-953 |#1|))))) (-645 (-953 |#1|)))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112) (-112))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -4130 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-1047 |#1| |#2|))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112) (-112))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)) (-112))) (-15 -2385 ((-645 (-645 (-1025 (-410 |#1|)))) (-645 (-953 |#1|)))) (-15 -1401 ((-645 (-1146 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|)))) (-1047 |#1| |#2|))) (-15 -3542 ((-781 |#1| (-865 |#3|)) (-781 |#1| (-865 |#2|)))) (-15 -3542 ((-953 (-1025 (-410 |#1|))) (-953 |#1|))) (-15 -3542 ((-953 (-1025 (-410 |#1|))) (-781 |#1| (-865 |#3|)))) (-15 -3542 ((-1172 (-1025 (-410 |#1|))) (-1172 |#1|))) (-15 -3542 ((-645 (-781 |#1| (-865 |#3|))) (-1146 |#1| (-534 (-865 |#3|)) (-865 |#3|) (-781 |#1| (-865 |#3|))))))
+((-3344 (((-3 (-1266 (-410 (-567))) "failed") (-1266 |#1|) |#1|) 21)) (-2426 (((-112) (-1266 |#1|)) 12)) (-3662 (((-3 (-1266 (-567)) "failed") (-1266 |#1|)) 16)))
+(((-1293 |#1|) (-10 -7 (-15 -2426 ((-112) (-1266 |#1|))) (-15 -3662 ((-3 (-1266 (-567)) "failed") (-1266 |#1|))) (-15 -3344 ((-3 (-1266 (-410 (-567))) "failed") (-1266 |#1|) |#1|))) (-640 (-567))) (T -1293))
+((-3344 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1266 (-410 (-567)))) (-5 *1 (-1293 *4)))) (-3662 (*1 *2 *3) (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-1266 (-567))) (-5 *1 (-1293 *4)))) (-2426 (*1 *2 *3) (-12 (-5 *3 (-1266 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112)) (-5 *1 (-1293 *4)))))
+(-10 -7 (-15 -2426 ((-112) (-1266 |#1|))) (-15 -3662 ((-3 (-1266 (-567)) "failed") (-1266 |#1|))) (-15 -3344 ((-3 (-1266 (-410 (-567))) "failed") (-1266 |#1|) |#1|)))
+((-2257 (((-112) $ $) NIL)) (-2865 (((-112) $) 11)) (-4377 (((-3 $ "failed") $ $) NIL)) (-2013 (((-772)) 8)) (-4061 (($) NIL T CONST)) (-4014 (((-3 $ "failed") $) 58)) (-1649 (($) 49)) (-3714 (((-112) $) 57)) (-2802 (((-3 $ "failed") $) 40)) (-3527 (((-922) $) 15)) (-2451 (((-1158) $) NIL)) (-2596 (($) 32 T CONST)) (-3811 (($ (-922)) 50)) (-3339 (((-1120) $) NIL)) (-3542 (((-567) $) 13)) (-4101 (((-863) $) 27) (($ (-567)) 24)) (-2686 (((-772)) 9 T CONST)) (-3739 (((-112) $ $) 60)) (-1468 (($) 29 T CONST)) (-1484 (($) 31 T CONST)) (-3052 (((-112) $ $) 38)) (-3156 (($ $) 52) (($ $ $) 47)) (-3146 (($ $ $) 35)) (** (($ $ (-922)) NIL) (($ $ (-772)) 54)) (* (($ (-922) $) NIL) (($ (-772) $) NIL) (($ (-567) $) 44) (($ $ $) 43)))
+(((-1294 |#1|) (-13 (-172) (-370) (-615 (-567)) (-1151)) (-922)) (T -1294))
+NIL
+(-13 (-172) (-370) (-615 (-567)) (-1151))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3224484 3224489 3224494 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3224469 3224474 3224479 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3224454 3224459 3224464 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3224439 3224444 3224449 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1294 3223582 3224314 3224391 "ZMOD" 3224396 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1293 3222692 3222856 3223065 "ZLINDEP" 3223414 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1292 3211992 3213760 3215732 "ZDSOLVE" 3220822 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1291 3211238 3211379 3211568 "YSTREAM" 3211838 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1290 3209012 3210539 3210743 "XRPOLY" 3211081 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1289 3205565 3206883 3207458 "XPR" 3208484 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1288 3203286 3204896 3205100 "XPOLY" 3205396 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1287 3200939 3202307 3202362 "XPOLYC" 3202650 NIL XPOLYC (NIL T T) -9 NIL 3202763 NIL) (-1286 3197314 3199456 3199844 "XPBWPOLY" 3200597 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1285 3193009 3195304 3195346 "XF" 3195967 NIL XF (NIL T) -9 NIL 3196367 NIL) (-1284 3192630 3192718 3192887 "XF-" 3192892 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1283 3187826 3189115 3189170 "XFALG" 3191342 NIL XFALG (NIL T T) -9 NIL 3192131 NIL) (-1282 3186959 3187063 3187268 "XEXPPKG" 3187718 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1281 3185068 3186809 3186905 "XDPOLY" 3186910 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1280 3183875 3184475 3184518 "XALG" 3184523 NIL XALG (NIL T) -9 NIL 3184634 NIL) (-1279 3177317 3181852 3182346 "WUTSET" 3183467 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1278 3175573 3176369 3176692 "WP" 3177128 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1277 3175175 3175395 3175465 "WHILEAST" 3175525 T WHILEAST (NIL) -8 NIL NIL NIL) (-1276 3174647 3174892 3174986 "WHEREAST" 3175103 T WHEREAST (NIL) -8 NIL NIL NIL) (-1275 3173533 3173731 3174026 "WFFINTBS" 3174444 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1274 3171437 3171864 3172326 "WEIER" 3173105 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1273 3170483 3170933 3170975 "VSPACE" 3171111 NIL VSPACE (NIL T) -9 NIL 3171185 NIL) (-1272 3170321 3170348 3170439 "VSPACE-" 3170444 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1271 3170129 3170172 3170240 "VOID" 3170275 T VOID (NIL) -8 NIL NIL NIL) (-1270 3168265 3168624 3169030 "VIEW" 3169745 T VIEW (NIL) -7 NIL NIL NIL) (-1269 3164689 3165328 3166065 "VIEWDEF" 3167550 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1268 3153993 3156237 3158410 "VIEW3D" 3162538 T VIEW3D (NIL) -8 NIL NIL NIL) (-1267 3146244 3147904 3149483 "VIEW2D" 3152436 T VIEW2D (NIL) -8 NIL NIL NIL) (-1266 3141596 3146014 3146106 "VECTOR" 3146187 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1265 3140173 3140432 3140750 "VECTOR2" 3141326 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1264 3133647 3137954 3137997 "VECTCAT" 3138992 NIL VECTCAT (NIL T) -9 NIL 3139579 NIL) (-1263 3132661 3132915 3133305 "VECTCAT-" 3133310 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1262 3132115 3132312 3132432 "VARIABLE" 3132576 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1261 3132048 3132053 3132083 "UTYPE" 3132088 T UTYPE (NIL) -9 NIL NIL NIL) (-1260 3130878 3131032 3131294 "UTSODETL" 3131874 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1259 3128318 3128778 3129302 "UTSODE" 3130419 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1258 3120155 3125944 3126433 "UTS" 3127887 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1257 3111029 3116396 3116439 "UTSCAT" 3117551 NIL UTSCAT (NIL T) -9 NIL 3118309 NIL) (-1256 3108376 3109099 3110088 "UTSCAT-" 3110093 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1255 3108003 3108046 3108179 "UTS2" 3108327 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1254 3102229 3104841 3104884 "URAGG" 3106954 NIL URAGG (NIL T) -9 NIL 3107677 NIL) (-1253 3099168 3100031 3101154 "URAGG-" 3101159 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1252 3094877 3097803 3098268 "UPXSSING" 3098832 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1251 3086943 3094124 3094397 "UPXS" 3094662 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3080016 3086847 3086919 "UPXSCONS" 3086924 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1249 3069761 3076554 3076616 "UPXSCCA" 3077190 NIL UPXSCCA (NIL T T) -9 NIL 3077423 NIL) (-1248 3069399 3069484 3069658 "UPXSCCA-" 3069663 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1247 3058996 3065562 3065605 "UPXSCAT" 3066253 NIL UPXSCAT (NIL T) -9 NIL 3066862 NIL) (-1246 3058426 3058505 3058684 "UPXS2" 3058911 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1245 3057080 3057333 3057684 "UPSQFREE" 3058169 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1244 3050501 3053558 3053613 "UPSCAT" 3054774 NIL UPSCAT (NIL T T) -9 NIL 3055548 NIL) (-1243 3049705 3049912 3050239 "UPSCAT-" 3050244 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1242 3035360 3043128 3043171 "UPOLYC" 3045272 NIL UPOLYC (NIL T) -9 NIL 3046493 NIL) (-1241 3026688 3029114 3032261 "UPOLYC-" 3032266 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1240 3026315 3026358 3026491 "UPOLYC2" 3026639 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1239 3018126 3025998 3026127 "UP" 3026234 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1238 3017465 3017572 3017736 "UPMP" 3018015 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1237 3017018 3017099 3017238 "UPDIVP" 3017378 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1236 3015586 3015835 3016151 "UPDECOMP" 3016767 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1235 3014821 3014933 3015118 "UPCDEN" 3015470 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1234 3014340 3014409 3014558 "UP2" 3014746 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1233 3012807 3013544 3013821 "UNISEG" 3014098 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1232 3012022 3012149 3012354 "UNISEG2" 3012650 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1231 3011082 3011262 3011488 "UNIFACT" 3011838 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1230 2995014 3010259 3010510 "ULS" 3010889 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1229 2983012 2994918 2994990 "ULSCONS" 2994995 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1228 2965031 2977016 2977078 "ULSCCAT" 2977716 NIL ULSCCAT (NIL T T) -9 NIL 2978004 NIL) (-1227 2964081 2964326 2964714 "ULSCCAT-" 2964719 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1226 2953455 2959935 2959978 "ULSCAT" 2960841 NIL ULSCAT (NIL T) -9 NIL 2961572 NIL) (-1225 2952885 2952964 2953143 "ULS2" 2953370 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1224 2952012 2952522 2952629 "UINT8" 2952740 T UINT8 (NIL) -8 NIL NIL 2952825) (-1223 2951138 2951648 2951755 "UINT64" 2951866 T UINT64 (NIL) -8 NIL NIL 2951951) (-1222 2950264 2950774 2950881 "UINT32" 2950992 T UINT32 (NIL) -8 NIL NIL 2951077) (-1221 2949390 2949900 2950007 "UINT16" 2950118 T UINT16 (NIL) -8 NIL NIL 2950203) (-1220 2947693 2948650 2948680 "UFD" 2948892 T UFD (NIL) -9 NIL 2949006 NIL) (-1219 2947487 2947533 2947628 "UFD-" 2947633 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1218 2946569 2946752 2946968 "UDVO" 2947293 T UDVO (NIL) -7 NIL NIL NIL) (-1217 2944385 2944794 2945265 "UDPO" 2946133 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1216 2944318 2944323 2944353 "TYPE" 2944358 T TYPE (NIL) -9 NIL NIL NIL) (-1215 2944078 2944273 2944304 "TYPEAST" 2944309 T TYPEAST (NIL) -8 NIL NIL NIL) (-1214 2943049 2943251 2943491 "TWOFACT" 2943872 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1213 2942072 2942458 2942693 "TUPLE" 2942849 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1212 2939763 2940282 2940821 "TUBETOOL" 2941555 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1211 2938612 2938817 2939058 "TUBE" 2939556 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1210 2933341 2937584 2937867 "TS" 2938364 NIL TS (NIL T) -8 NIL NIL NIL) (-1209 2921981 2926100 2926197 "TSETCAT" 2931466 NIL TSETCAT (NIL T T T T) -9 NIL 2932997 NIL) (-1208 2916713 2918313 2920204 "TSETCAT-" 2920209 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1207 2911352 2912199 2913128 "TRMANIP" 2915849 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1206 2910793 2910856 2911019 "TRIMAT" 2911284 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1205 2908659 2908896 2909253 "TRIGMNIP" 2910542 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1204 2908179 2908292 2908322 "TRIGCAT" 2908535 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1203 2907848 2907927 2908068 "TRIGCAT-" 2908073 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1202 2904693 2906706 2906987 "TREE" 2907602 NIL TREE (NIL T) -8 NIL NIL NIL) (-1201 2903967 2904495 2904525 "TRANFUN" 2904560 T TRANFUN (NIL) -9 NIL 2904626 NIL) (-1200 2903246 2903437 2903717 "TRANFUN-" 2903722 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1199 2903050 2903082 2903143 "TOPSP" 2903207 T TOPSP (NIL) -7 NIL NIL NIL) (-1198 2902398 2902513 2902667 "TOOLSIGN" 2902931 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1197 2901032 2901575 2901814 "TEXTFILE" 2902181 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1196 2898944 2899485 2899914 "TEX" 2900625 T TEX (NIL) -8 NIL NIL NIL) (-1195 2898725 2898756 2898828 "TEX1" 2898907 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1194 2898373 2898436 2898526 "TEMUTL" 2898657 T TEMUTL (NIL) -7 NIL NIL NIL) (-1193 2896527 2896807 2897132 "TBCMPPK" 2898096 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1192 2888304 2894687 2894743 "TBAGG" 2895143 NIL TBAGG (NIL T T) -9 NIL 2895354 NIL) (-1191 2883374 2884862 2886616 "TBAGG-" 2886621 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1190 2882758 2882865 2883010 "TANEXP" 2883263 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1189 2876148 2882615 2882708 "TABLE" 2882713 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1188 2875560 2875659 2875797 "TABLEAU" 2876045 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1187 2870168 2871388 2872636 "TABLBUMP" 2874346 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1186 2869390 2869537 2869718 "SYSTEM" 2870009 T SYSTEM (NIL) -8 NIL NIL NIL) (-1185 2865849 2866548 2867331 "SYSSOLP" 2868641 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1184 2865647 2865804 2865835 "SYSPTR" 2865840 T SYSPTR (NIL) -8 NIL NIL NIL) (-1183 2864691 2865196 2865315 "SYSNNI" 2865501 NIL SYSNNI (NIL NIL) -8 NIL NIL 2865586) (-1182 2863998 2864457 2864536 "SYSINT" 2864596 NIL SYSINT (NIL NIL) -8 NIL NIL 2864641) (-1181 2860330 2861276 2861986 "SYNTAX" 2863310 T SYNTAX (NIL) -8 NIL NIL NIL) (-1180 2857488 2858090 2858722 "SYMTAB" 2859720 T SYMTAB (NIL) -8 NIL NIL NIL) (-1179 2852737 2853639 2854622 "SYMS" 2856527 T SYMS (NIL) -8 NIL NIL NIL) (-1178 2849972 2852195 2852425 "SYMPOLY" 2852542 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1177 2849489 2849564 2849687 "SYMFUNC" 2849884 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1176 2845508 2846801 2847614 "SYMBOL" 2848698 T SYMBOL (NIL) -8 NIL NIL NIL) (-1175 2839047 2840736 2842456 "SWITCH" 2843810 T SWITCH (NIL) -8 NIL NIL NIL) (-1174 2832281 2837868 2838171 "SUTS" 2838802 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1173 2824347 2831528 2831801 "SUPXS" 2832066 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1172 2816106 2823965 2824091 "SUP" 2824256 NIL SUP (NIL T) -8 NIL NIL NIL) (-1171 2815265 2815392 2815609 "SUPFRACF" 2815974 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1170 2814886 2814945 2815058 "SUP2" 2815200 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1169 2813334 2813608 2813964 "SUMRF" 2814585 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1168 2812669 2812735 2812927 "SUMFS" 2813255 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1167 2796636 2811846 2812097 "SULS" 2812476 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2796238 2796458 2796528 "SUCHTAST" 2796588 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1165 2795533 2795763 2795903 "SUCH" 2796146 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1164 2789399 2790439 2791398 "SUBSPACE" 2794621 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1163 2788829 2788919 2789083 "SUBRESP" 2789287 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1162 2782194 2783494 2784805 "STTF" 2787565 NIL STTF (NIL T) -7 NIL NIL NIL) (-1161 2776367 2777487 2778634 "STTFNC" 2781094 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1160 2767677 2769549 2771343 "STTAYLOR" 2774608 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1159 2760807 2767541 2767624 "STRTBL" 2767629 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1158 2756171 2760762 2760793 "STRING" 2760798 T STRING (NIL) -8 NIL NIL NIL) (-1157 2751032 2755544 2755574 "STRICAT" 2755633 T STRICAT (NIL) -9 NIL 2755695 NIL) (-1156 2743785 2748651 2749262 "STREAM" 2750456 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1155 2743295 2743372 2743516 "STREAM3" 2743702 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1154 2742277 2742460 2742695 "STREAM2" 2743108 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1153 2741965 2742017 2742110 "STREAM1" 2742219 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1152 2740981 2741162 2741393 "STINPROD" 2741781 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1151 2740533 2740743 2740773 "STEP" 2740853 T STEP (NIL) -9 NIL 2740931 NIL) (-1150 2733965 2740432 2740509 "STBL" 2740514 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1149 2729091 2733186 2733229 "STAGG" 2733382 NIL STAGG (NIL T) -9 NIL 2733471 NIL) (-1148 2726793 2727395 2728267 "STAGG-" 2728272 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1147 2724940 2726563 2726655 "STACK" 2726736 NIL STACK (NIL T) -8 NIL NIL NIL) (-1146 2717635 2723081 2723537 "SREGSET" 2724570 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1145 2710060 2711429 2712942 "SRDCMPK" 2716241 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1144 2702977 2707500 2707530 "SRAGG" 2708833 T SRAGG (NIL) -9 NIL 2709441 NIL) (-1143 2701994 2702249 2702628 "SRAGG-" 2702633 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1142 2696454 2700941 2701362 "SQMATRIX" 2701620 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1141 2690139 2693172 2693899 "SPLTREE" 2695799 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1140 2686102 2686795 2687441 "SPLNODE" 2689565 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1139 2685149 2685382 2685412 "SPFCAT" 2685856 T SPFCAT (NIL) -9 NIL NIL NIL) (-1138 2683886 2684096 2684360 "SPECOUT" 2684907 T SPECOUT (NIL) -7 NIL NIL NIL) (-1137 2675512 2677282 2677312 "SPADXPT" 2681704 T SPADXPT (NIL) -9 NIL 2683738 NIL) (-1136 2675273 2675313 2675382 "SPADPRSR" 2675465 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1135 2673428 2675228 2675259 "SPADAST" 2675264 T SPADAST (NIL) -8 NIL NIL NIL) (-1134 2665373 2667146 2667189 "SPACEC" 2671562 NIL SPACEC (NIL T) -9 NIL 2673378 NIL) (-1133 2663503 2665305 2665354 "SPACE3" 2665359 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1132 2662255 2662426 2662717 "SORTPAK" 2663308 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1131 2660347 2660650 2661062 "SOLVETRA" 2661919 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1130 2659397 2659619 2659880 "SOLVESER" 2660120 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1129 2654701 2655589 2656584 "SOLVERAD" 2658449 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1128 2650516 2651125 2651854 "SOLVEFOR" 2654068 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1127 2644786 2649865 2649962 "SNTSCAT" 2649967 NIL SNTSCAT (NIL T T T T) -9 NIL 2650037 NIL) (-1126 2638892 2643109 2643500 "SMTS" 2644476 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1125 2633576 2638780 2638857 "SMP" 2638862 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1124 2631735 2632036 2632434 "SMITH" 2633273 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1123 2624448 2628644 2628747 "SMATCAT" 2630098 NIL SMATCAT (NIL NIL T T T) -9 NIL 2630648 NIL) (-1122 2621388 2622211 2623389 "SMATCAT-" 2623394 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1121 2619054 2620624 2620667 "SKAGG" 2620928 NIL SKAGG (NIL T) -9 NIL 2621063 NIL) (-1120 2615365 2618470 2618665 "SINT" 2618852 T SINT (NIL) -8 NIL NIL 2619025) (-1119 2615137 2615175 2615241 "SIMPAN" 2615321 T SIMPAN (NIL) -7 NIL NIL NIL) (-1118 2614416 2614672 2614812 "SIG" 2615019 T SIG (NIL) -8 NIL NIL NIL) (-1117 2613254 2613475 2613750 "SIGNRF" 2614175 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1116 2612087 2612238 2612522 "SIGNEF" 2613083 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1115 2611393 2611670 2611794 "SIGAST" 2611985 T SIGAST (NIL) -8 NIL NIL NIL) (-1114 2609082 2609537 2610043 "SHP" 2610934 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1113 2602934 2608983 2609059 "SHDP" 2609064 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1112 2602507 2602699 2602729 "SGROUP" 2602822 T SGROUP (NIL) -9 NIL 2602884 NIL) (-1111 2602365 2602391 2602464 "SGROUP-" 2602469 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1110 2599200 2599898 2600621 "SGCF" 2601664 T SGCF (NIL) -7 NIL NIL NIL) (-1109 2593568 2598647 2598744 "SFRTCAT" 2598749 NIL SFRTCAT (NIL T T T T) -9 NIL 2598788 NIL) (-1108 2586989 2588007 2589143 "SFRGCD" 2592551 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1107 2580115 2581188 2582374 "SFQCMPK" 2585922 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1106 2579735 2579824 2579935 "SFORT" 2580056 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1105 2578853 2579575 2579696 "SEXOF" 2579701 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1104 2577960 2578734 2578802 "SEX" 2578807 T SEX (NIL) -8 NIL NIL NIL) (-1103 2573473 2574188 2574283 "SEXCAT" 2577220 NIL SEXCAT (NIL T T T T T) -9 NIL 2577798 NIL) (-1102 2570626 2573407 2573455 "SET" 2573460 NIL SET (NIL T) -8 NIL NIL NIL) (-1101 2568850 2569339 2569644 "SETMN" 2570367 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1100 2568346 2568498 2568528 "SETCAT" 2568704 T SETCAT (NIL) -9 NIL 2568814 NIL) (-1099 2568038 2568116 2568246 "SETCAT-" 2568251 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1098 2564399 2566499 2566542 "SETAGG" 2567412 NIL SETAGG (NIL T) -9 NIL 2567752 NIL) (-1097 2563857 2563973 2564210 "SETAGG-" 2564215 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1096 2563300 2563553 2563654 "SEQAST" 2563778 T SEQAST (NIL) -8 NIL NIL NIL) (-1095 2562499 2562793 2562854 "SEGXCAT" 2563140 NIL SEGXCAT (NIL T T) -9 NIL 2563260 NIL) (-1094 2561505 2562165 2562347 "SEG" 2562352 NIL SEG (NIL T) -8 NIL NIL NIL) (-1093 2560484 2560698 2560741 "SEGCAT" 2561263 NIL SEGCAT (NIL T) -9 NIL 2561484 NIL) (-1092 2559485 2559863 2560063 "SEGBIND" 2560319 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1091 2559106 2559165 2559278 "SEGBIND2" 2559420 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1090 2558679 2558907 2558984 "SEGAST" 2559051 T SEGAST (NIL) -8 NIL NIL NIL) (-1089 2557898 2558024 2558228 "SEG2" 2558523 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1088 2557308 2557833 2557880 "SDVAR" 2557885 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1087 2549835 2557078 2557208 "SDPOL" 2557213 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1086 2548428 2548694 2549013 "SCPKG" 2549550 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1085 2547592 2547764 2547956 "SCOPE" 2548258 T SCOPE (NIL) -8 NIL NIL NIL) (-1084 2546812 2546946 2547125 "SCACHE" 2547447 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1083 2546458 2546644 2546674 "SASTCAT" 2546679 T SASTCAT (NIL) -9 NIL 2546692 NIL) (-1082 2545945 2546293 2546369 "SAOS" 2546404 T SAOS (NIL) -8 NIL NIL NIL) (-1081 2545510 2545545 2545718 "SAERFFC" 2545904 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1080 2539449 2545407 2545487 "SAE" 2545492 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1079 2539042 2539077 2539236 "SAEFACT" 2539408 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1078 2537363 2537677 2538078 "RURPK" 2538708 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1077 2536000 2536306 2536611 "RULESET" 2537197 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1076 2533223 2533753 2534211 "RULE" 2535681 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1075 2532835 2533017 2533100 "RULECOLD" 2533175 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1074 2532625 2532653 2532724 "RTVALUE" 2532786 T RTVALUE (NIL) -8 NIL NIL NIL) (-1073 2532096 2532342 2532436 "RSTRCAST" 2532553 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1072 2526944 2527739 2528659 "RSETGCD" 2531295 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1071 2516174 2521253 2521350 "RSETCAT" 2525469 NIL RSETCAT (NIL T T T T) -9 NIL 2526566 NIL) (-1070 2514101 2514640 2515464 "RSETCAT-" 2515469 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1069 2506486 2507863 2509383 "RSDCMPK" 2512700 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1068 2504465 2504932 2505006 "RRCC" 2506092 NIL RRCC (NIL T T) -9 NIL 2506436 NIL) (-1067 2503816 2503990 2504269 "RRCC-" 2504274 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1066 2503259 2503512 2503613 "RPTAST" 2503737 T RPTAST (NIL) -8 NIL NIL NIL) (-1065 2477110 2486467 2486534 "RPOLCAT" 2497198 NIL RPOLCAT (NIL T T T) -9 NIL 2500357 NIL) (-1064 2468608 2470948 2474070 "RPOLCAT-" 2474075 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1063 2459539 2466819 2467301 "ROUTINE" 2468148 T ROUTINE (NIL) -8 NIL NIL NIL) (-1062 2456337 2459165 2459305 "ROMAN" 2459421 T ROMAN (NIL) -8 NIL NIL NIL) (-1061 2454581 2455197 2455457 "ROIRC" 2456142 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1060 2450813 2453097 2453127 "RNS" 2453431 T RNS (NIL) -9 NIL 2453705 NIL) (-1059 2449322 2449705 2450239 "RNS-" 2450314 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1058 2448725 2449133 2449163 "RNG" 2449168 T RNG (NIL) -9 NIL 2449189 NIL) (-1057 2448124 2448512 2448555 "RMODULE" 2448560 NIL RMODULE (NIL T) -9 NIL 2448587 NIL) (-1056 2446960 2447054 2447390 "RMCAT2" 2448025 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1055 2443810 2446306 2446603 "RMATRIX" 2446722 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1054 2436637 2438897 2439012 "RMATCAT" 2442371 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2443353 NIL) (-1053 2436012 2436159 2436466 "RMATCAT-" 2436471 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1052 2435413 2435634 2435677 "RLINSET" 2435871 NIL RLINSET (NIL T) -9 NIL 2435962 NIL) (-1051 2434980 2435055 2435183 "RINTERP" 2435332 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1050 2434038 2434592 2434622 "RING" 2434678 T RING (NIL) -9 NIL 2434770 NIL) (-1049 2433830 2433874 2433971 "RING-" 2433976 NIL RING- (NIL T) -8 NIL NIL NIL) (-1048 2432671 2432908 2433166 "RIDIST" 2433594 T RIDIST (NIL) -7 NIL NIL NIL) (-1047 2423960 2432139 2432345 "RGCHAIN" 2432519 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1046 2423310 2423716 2423757 "RGBCSPC" 2423815 NIL RGBCSPC (NIL T) -9 NIL 2423867 NIL) (-1045 2422468 2422849 2422890 "RGBCMDL" 2423122 NIL RGBCMDL (NIL T) -9 NIL 2423236 NIL) (-1044 2419462 2420076 2420746 "RF" 2421832 NIL RF (NIL T) -7 NIL NIL NIL) (-1043 2419108 2419171 2419274 "RFFACTOR" 2419393 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1042 2418833 2418868 2418965 "RFFACT" 2419067 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1041 2416950 2417314 2417696 "RFDIST" 2418473 T RFDIST (NIL) -7 NIL NIL NIL) (-1040 2416403 2416495 2416658 "RETSOL" 2416852 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1039 2416039 2416119 2416162 "RETRACT" 2416295 NIL RETRACT (NIL T) -9 NIL 2416382 NIL) (-1038 2415888 2415913 2416000 "RETRACT-" 2416005 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1037 2415490 2415710 2415780 "RETAST" 2415840 T RETAST (NIL) -8 NIL NIL NIL) (-1036 2408228 2415143 2415270 "RESULT" 2415385 T RESULT (NIL) -8 NIL NIL NIL) (-1035 2406819 2407497 2407696 "RESRING" 2408131 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1034 2406455 2406504 2406602 "RESLATC" 2406756 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1033 2406160 2406195 2406302 "REPSQ" 2406414 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1032 2403582 2404162 2404764 "REP" 2405580 T REP (NIL) -7 NIL NIL NIL) (-1031 2403279 2403314 2403425 "REPDB" 2403541 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1030 2397179 2398568 2399791 "REP2" 2402091 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1029 2393556 2394237 2395045 "REP1" 2396406 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1028 2386252 2391697 2392153 "REGSET" 2393186 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1027 2385017 2385400 2385650 "REF" 2386037 NIL REF (NIL T) -8 NIL NIL NIL) (-1026 2384394 2384497 2384664 "REDORDER" 2384901 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1025 2380362 2383607 2383834 "RECLOS" 2384222 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1024 2379414 2379595 2379810 "REALSOLV" 2380169 T REALSOLV (NIL) -7 NIL NIL NIL) (-1023 2379260 2379301 2379331 "REAL" 2379336 T REAL (NIL) -9 NIL 2379371 NIL) (-1022 2375743 2376545 2377429 "REAL0Q" 2378425 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1021 2371344 2372332 2373393 "REAL0" 2374724 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1020 2370815 2371061 2371155 "RDUCEAST" 2371272 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1019 2370220 2370292 2370499 "RDIV" 2370737 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1018 2369288 2369462 2369675 "RDIST" 2370042 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1017 2367885 2368172 2368544 "RDETRS" 2368996 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1016 2365697 2366151 2366689 "RDETR" 2367427 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1015 2364322 2364600 2364997 "RDEEFS" 2365413 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1014 2362831 2363137 2363562 "RDEEF" 2364010 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1013 2356892 2359812 2359842 "RCFIELD" 2361137 T RCFIELD (NIL) -9 NIL 2361868 NIL) (-1012 2354956 2355460 2356156 "RCFIELD-" 2356231 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1011 2351225 2353057 2353100 "RCAGG" 2354184 NIL RCAGG (NIL T) -9 NIL 2354649 NIL) (-1010 2350853 2350947 2351110 "RCAGG-" 2351115 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1009 2350188 2350300 2350465 "RATRET" 2350737 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1008 2349741 2349808 2349929 "RATFACT" 2350116 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1007 2349049 2349169 2349321 "RANDSRC" 2349611 T RANDSRC (NIL) -7 NIL NIL NIL) (-1006 2348783 2348827 2348900 "RADUTIL" 2348998 T RADUTIL (NIL) -7 NIL NIL NIL) (-1005 2341899 2347616 2347926 "RADIX" 2348507 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1004 2333518 2341741 2341871 "RADFF" 2341876 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1003 2333165 2333240 2333270 "RADCAT" 2333430 T RADCAT (NIL) -9 NIL NIL NIL) (-1002 2332947 2332995 2333095 "RADCAT-" 2333100 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1001 2331047 2332719 2332810 "QUEUE" 2332891 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1000 2327586 2330982 2331029 "QUAT" 2331034 NIL QUAT (NIL T) -8 NIL NIL NIL) (-999 2327224 2327267 2327394 "QUATCT2" 2327537 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-998 2320686 2324031 2324071 "QUATCAT" 2324851 NIL QUATCAT (NIL T) -9 NIL 2325617 NIL) (-997 2316830 2317867 2319254 "QUATCAT-" 2319348 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-996 2314303 2315914 2315955 "QUAGG" 2316330 NIL QUAGG (NIL T) -9 NIL 2316505 NIL) (-995 2313908 2314128 2314196 "QQUTAST" 2314255 T QQUTAST (NIL) -8 NIL NIL NIL) (-994 2312806 2313306 2313478 "QFORM" 2313780 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-993 2303811 2309050 2309090 "QFCAT" 2309748 NIL QFCAT (NIL T) -9 NIL 2310749 NIL) (-992 2299383 2300584 2302175 "QFCAT-" 2302269 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-991 2299021 2299064 2299191 "QFCAT2" 2299334 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-990 2298481 2298591 2298721 "QEQUAT" 2298911 T QEQUAT (NIL) -8 NIL NIL NIL) (-989 2291627 2292700 2293884 "QCMPACK" 2297414 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-988 2289176 2289624 2290052 "QALGSET" 2291282 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-987 2288421 2288595 2288827 "QALGSET2" 2288996 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-986 2287111 2287335 2287652 "PWFFINTB" 2288194 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-985 2285293 2285461 2285815 "PUSHVAR" 2286925 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-984 2281211 2282265 2282306 "PTRANFN" 2284190 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-983 2279613 2279904 2280226 "PTPACK" 2280922 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-982 2279245 2279302 2279411 "PTFUNC2" 2279550 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-981 2273722 2278117 2278158 "PTCAT" 2278454 NIL PTCAT (NIL T) -9 NIL 2278607 NIL) (-980 2273380 2273415 2273539 "PSQFR" 2273681 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-979 2271975 2272273 2272607 "PSEUDLIN" 2273078 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-978 2258738 2261109 2263433 "PSETPK" 2269735 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-977 2251756 2254496 2254592 "PSETCAT" 2257613 NIL PSETCAT (NIL T T T T) -9 NIL 2258427 NIL) (-976 2249592 2250226 2251047 "PSETCAT-" 2251052 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-975 2248941 2249106 2249134 "PSCURVE" 2249402 T PSCURVE (NIL) -9 NIL 2249569 NIL) (-974 2244939 2246455 2246520 "PSCAT" 2247364 NIL PSCAT (NIL T T T) -9 NIL 2247604 NIL) (-973 2244002 2244218 2244618 "PSCAT-" 2244623 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-972 2242707 2243367 2243572 "PRTITION" 2243817 T PRTITION (NIL) -8 NIL NIL NIL) (-971 2242182 2242428 2242520 "PRTDAST" 2242635 T PRTDAST (NIL) -8 NIL NIL NIL) (-970 2231271 2233486 2235674 "PRS" 2240044 NIL PRS (NIL T T) -7 NIL NIL NIL) (-969 2229082 2230621 2230661 "PRQAGG" 2230844 NIL PRQAGG (NIL T) -9 NIL 2230946 NIL) (-968 2228286 2228591 2228619 "PROPLOG" 2228866 T PROPLOG (NIL) -9 NIL 2229032 NIL) (-967 2226716 2227237 2227494 "PROPFRML" 2228062 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-966 2226185 2226292 2226420 "PROPERTY" 2226608 T PROPERTY (NIL) -8 NIL NIL NIL) (-965 2220243 2224351 2225171 "PRODUCT" 2225411 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-964 2217521 2219701 2219935 "PR" 2220054 NIL PR (NIL T T) -8 NIL NIL NIL) (-963 2217317 2217349 2217408 "PRINT" 2217482 T PRINT (NIL) -7 NIL NIL NIL) (-962 2216657 2216774 2216926 "PRIMES" 2217197 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-961 2214722 2215123 2215589 "PRIMELT" 2216236 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-960 2214451 2214500 2214528 "PRIMCAT" 2214652 T PRIMCAT (NIL) -9 NIL NIL NIL) (-959 2210566 2214389 2214434 "PRIMARR" 2214439 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-958 2209573 2209751 2209979 "PRIMARR2" 2210384 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-957 2209216 2209272 2209383 "PREASSOC" 2209511 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-956 2208691 2208824 2208852 "PPCURVE" 2209057 T PPCURVE (NIL) -9 NIL 2209193 NIL) (-955 2208286 2208486 2208569 "PORTNUM" 2208628 T PORTNUM (NIL) -8 NIL NIL NIL) (-954 2205645 2206044 2206636 "POLYROOT" 2207867 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-953 2199827 2205249 2205409 "POLY" 2205518 NIL POLY (NIL T) -8 NIL NIL NIL) (-952 2199210 2199268 2199502 "POLYLIFT" 2199763 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-951 2195485 2195934 2196563 "POLYCATQ" 2198755 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-950 2182197 2187325 2187390 "POLYCAT" 2190904 NIL POLYCAT (NIL T T T) -9 NIL 2192782 NIL) (-949 2175646 2177508 2179892 "POLYCAT-" 2179897 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-948 2175233 2175301 2175421 "POLY2UP" 2175572 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-947 2174865 2174922 2175031 "POLY2" 2175170 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-946 2173550 2173789 2174065 "POLUTIL" 2174639 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-945 2171905 2172182 2172513 "POLTOPOL" 2173272 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-944 2167370 2171841 2171887 "POINT" 2171892 NIL POINT (NIL T) -8 NIL NIL NIL) (-943 2165557 2165914 2166289 "PNTHEORY" 2167015 T PNTHEORY (NIL) -7 NIL NIL NIL) (-942 2164015 2164312 2164711 "PMTOOLS" 2165255 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-941 2163608 2163686 2163803 "PMSYM" 2163931 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-940 2163118 2163187 2163361 "PMQFCAT" 2163533 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-939 2162473 2162583 2162739 "PMPRED" 2162995 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-938 2161866 2161952 2162114 "PMPREDFS" 2162374 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-937 2160530 2160738 2161116 "PMPLCAT" 2161628 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-936 2160062 2160141 2160293 "PMLSAGG" 2160445 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-935 2159535 2159611 2159793 "PMKERNEL" 2159980 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-934 2159152 2159227 2159340 "PMINS" 2159454 NIL PMINS (NIL T) -7 NIL NIL NIL) (-933 2158594 2158663 2158872 "PMFS" 2159077 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-932 2157822 2157940 2158145 "PMDOWN" 2158471 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-931 2156989 2157147 2157328 "PMASS" 2157661 T PMASS (NIL) -7 NIL NIL NIL) (-930 2156262 2156372 2156535 "PMASSFS" 2156876 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-929 2155917 2155985 2156079 "PLOTTOOL" 2156188 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-928 2150524 2151728 2152876 "PLOT" 2154789 T PLOT (NIL) -8 NIL NIL NIL) (-927 2146328 2147372 2148293 "PLOT3D" 2149623 T PLOT3D (NIL) -8 NIL NIL NIL) (-926 2145240 2145417 2145652 "PLOT1" 2146132 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-925 2120629 2125306 2130157 "PLEQN" 2140506 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-924 2119947 2120069 2120249 "PINTERP" 2120494 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-923 2119640 2119687 2119790 "PINTERPA" 2119894 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-922 2118861 2119409 2119496 "PI" 2119536 T PI (NIL) -8 NIL NIL 2119603) (-921 2117158 2118133 2118161 "PID" 2118343 T PID (NIL) -9 NIL 2118477 NIL) (-920 2116909 2116946 2117021 "PICOERCE" 2117115 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-919 2116229 2116368 2116544 "PGROEB" 2116765 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-918 2111816 2112630 2113535 "PGE" 2115344 T PGE (NIL) -7 NIL NIL NIL) (-917 2109939 2110186 2110552 "PGCD" 2111533 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-916 2109277 2109380 2109541 "PFRPAC" 2109823 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-915 2105917 2107825 2108178 "PFR" 2108956 NIL PFR (NIL T) -8 NIL NIL NIL) (-914 2104306 2104550 2104875 "PFOTOOLS" 2105664 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-913 2102839 2103078 2103429 "PFOQ" 2104063 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-912 2101340 2101552 2101908 "PFO" 2102623 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-911 2097893 2101229 2101298 "PF" 2101303 NIL PF (NIL NIL) -8 NIL NIL NIL) (-910 2095227 2096498 2096526 "PFECAT" 2097111 T PFECAT (NIL) -9 NIL 2097495 NIL) (-909 2094672 2094826 2095040 "PFECAT-" 2095045 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-908 2093275 2093527 2093828 "PFBRU" 2094421 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-907 2091141 2091493 2091925 "PFBR" 2092926 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-906 2087023 2088517 2089193 "PERM" 2090498 NIL PERM (NIL T) -8 NIL NIL NIL) (-905 2082257 2083230 2084100 "PERMGRP" 2086186 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-904 2080363 2081320 2081361 "PERMCAT" 2081807 NIL PERMCAT (NIL T) -9 NIL 2082112 NIL) (-903 2080016 2080057 2080181 "PERMAN" 2080316 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-902 2077504 2079681 2079803 "PENDTREE" 2079927 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-901 2075528 2076296 2076337 "PDRING" 2076994 NIL PDRING (NIL T) -9 NIL 2077280 NIL) (-900 2074631 2074849 2075211 "PDRING-" 2075216 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-899 2071846 2072624 2073292 "PDEPROB" 2073983 T PDEPROB (NIL) -8 NIL NIL NIL) (-898 2069391 2069895 2070450 "PDEPACK" 2071311 T PDEPACK (NIL) -7 NIL NIL NIL) (-897 2068303 2068493 2068744 "PDECOMP" 2069190 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-896 2065882 2066725 2066753 "PDECAT" 2067540 T PDECAT (NIL) -9 NIL 2068253 NIL) (-895 2065633 2065666 2065756 "PCOMP" 2065843 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-894 2063811 2064434 2064731 "PBWLB" 2065362 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-893 2056284 2057884 2059222 "PATTERN" 2062494 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-892 2055916 2055973 2056082 "PATTERN2" 2056221 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-891 2053673 2054061 2054518 "PATTERN1" 2055505 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-890 2051041 2051622 2052103 "PATRES" 2053238 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-889 2050605 2050672 2050804 "PATRES2" 2050968 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-888 2048488 2048893 2049300 "PATMATCH" 2050272 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-887 2047998 2048207 2048248 "PATMAB" 2048355 NIL PATMAB (NIL T) -9 NIL 2048438 NIL) (-886 2046516 2046852 2047110 "PATLRES" 2047803 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-885 2046062 2046185 2046226 "PATAB" 2046231 NIL PATAB (NIL T) -9 NIL 2046403 NIL) (-884 2043543 2044075 2044648 "PARTPERM" 2045509 T PARTPERM (NIL) -7 NIL NIL NIL) (-883 2043164 2043227 2043329 "PARSURF" 2043474 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-882 2042796 2042853 2042962 "PARSU2" 2043101 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-881 2042560 2042600 2042667 "PARSER" 2042749 T PARSER (NIL) -7 NIL NIL NIL) (-880 2042181 2042244 2042346 "PARSCURV" 2042491 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-879 2041813 2041870 2041979 "PARSC2" 2042118 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-878 2041452 2041510 2041607 "PARPCURV" 2041749 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-877 2041084 2041141 2041250 "PARPC2" 2041389 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-876 2040604 2040690 2040809 "PAN2EXPR" 2040985 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-875 2039381 2039725 2039953 "PALETTE" 2040396 T PALETTE (NIL) -8 NIL NIL NIL) (-874 2037774 2038386 2038746 "PAIR" 2039067 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-873 2031644 2037033 2037227 "PADICRC" 2037629 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-872 2024873 2030990 2031174 "PADICRAT" 2031492 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-871 2023188 2024810 2024855 "PADIC" 2024860 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-870 2020298 2021862 2021902 "PADICCT" 2022483 NIL PADICCT (NIL NIL) -9 NIL 2022765 NIL) (-869 2019255 2019455 2019723 "PADEPAC" 2020085 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-868 2018467 2018600 2018806 "PADE" 2019117 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-867 2016854 2017675 2017955 "OWP" 2018271 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-866 2016347 2016560 2016657 "OVERSET" 2016777 T OVERSET (NIL) -8 NIL NIL NIL) (-865 2015393 2015952 2016124 "OVAR" 2016215 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-864 2014657 2014778 2014939 "OUT" 2015252 T OUT (NIL) -7 NIL NIL NIL) (-863 2003529 2005766 2007966 "OUTFORM" 2012477 T OUTFORM (NIL) -8 NIL NIL NIL) (-862 2002865 2003126 2003253 "OUTBFILE" 2003422 T OUTBFILE (NIL) -8 NIL NIL NIL) (-861 2002172 2002337 2002365 "OUTBCON" 2002683 T OUTBCON (NIL) -9 NIL 2002849 NIL) (-860 2001773 2001885 2002042 "OUTBCON-" 2002047 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-859 2001153 2001502 2001591 "OSI" 2001704 T OSI (NIL) -8 NIL NIL NIL) (-858 2000683 2001021 2001049 "OSGROUP" 2001054 T OSGROUP (NIL) -9 NIL 2001076 NIL) (-857 1999428 1999655 1999940 "ORTHPOL" 2000430 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-856 1996979 1999263 1999384 "OREUP" 1999389 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-855 1994382 1996670 1996797 "ORESUP" 1996921 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-854 1991910 1992410 1992971 "OREPCTO" 1993871 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-853 1985596 1987797 1987838 "OREPCAT" 1990186 NIL OREPCAT (NIL T) -9 NIL 1991290 NIL) (-852 1982743 1983525 1984583 "OREPCAT-" 1984588 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-851 1981894 1982192 1982220 "ORDSET" 1982529 T ORDSET (NIL) -9 NIL 1982693 NIL) (-850 1981325 1981473 1981697 "ORDSET-" 1981702 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-849 1979890 1980681 1980709 "ORDRING" 1980911 T ORDRING (NIL) -9 NIL 1981036 NIL) (-848 1979535 1979629 1979773 "ORDRING-" 1979778 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-847 1978915 1979378 1979406 "ORDMON" 1979411 T ORDMON (NIL) -9 NIL 1979432 NIL) (-846 1978077 1978224 1978419 "ORDFUNS" 1978764 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-845 1977415 1977834 1977862 "ORDFIN" 1977927 T ORDFIN (NIL) -9 NIL 1978001 NIL) (-844 1973974 1976001 1976410 "ORDCOMP" 1977039 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-843 1973240 1973367 1973553 "ORDCOMP2" 1973834 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-842 1969821 1970731 1971545 "OPTPROB" 1972446 T OPTPROB (NIL) -8 NIL NIL NIL) (-841 1966623 1967262 1967966 "OPTPACK" 1969137 T OPTPACK (NIL) -7 NIL NIL NIL) (-840 1964310 1965076 1965104 "OPTCAT" 1965923 T OPTCAT (NIL) -9 NIL 1966573 NIL) (-839 1963694 1963987 1964092 "OPSIG" 1964225 T OPSIG (NIL) -8 NIL NIL NIL) (-838 1963462 1963501 1963567 "OPQUERY" 1963648 T OPQUERY (NIL) -7 NIL NIL NIL) (-837 1960593 1961773 1962277 "OP" 1962991 NIL OP (NIL T) -8 NIL NIL NIL) (-836 1959967 1960193 1960234 "OPERCAT" 1960446 NIL OPERCAT (NIL T) -9 NIL 1960543 NIL) (-835 1959722 1959778 1959895 "OPERCAT-" 1959900 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-834 1956535 1958519 1958888 "ONECOMP" 1959386 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-833 1955840 1955955 1956129 "ONECOMP2" 1956407 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-832 1955259 1955365 1955495 "OMSERVER" 1955730 T OMSERVER (NIL) -7 NIL NIL NIL) (-831 1952121 1954699 1954739 "OMSAGG" 1954800 NIL OMSAGG (NIL T) -9 NIL 1954864 NIL) (-830 1950744 1951007 1951289 "OMPKG" 1951859 T OMPKG (NIL) -7 NIL NIL NIL) (-829 1950174 1950277 1950305 "OM" 1950604 T OM (NIL) -9 NIL NIL NIL) (-828 1948721 1949723 1949892 "OMLO" 1950055 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-827 1947681 1947828 1948048 "OMEXPR" 1948547 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-826 1946972 1947227 1947363 "OMERR" 1947565 T OMERR (NIL) -8 NIL NIL NIL) (-825 1946123 1946393 1946553 "OMERRK" 1946832 T OMERRK (NIL) -8 NIL NIL NIL) (-824 1945574 1945800 1945908 "OMENC" 1946035 T OMENC (NIL) -8 NIL NIL NIL) (-823 1939469 1940654 1941825 "OMDEV" 1944423 T OMDEV (NIL) -8 NIL NIL NIL) (-822 1938538 1938709 1938903 "OMCONN" 1939295 T OMCONN (NIL) -8 NIL NIL NIL) (-821 1937059 1938035 1938063 "OINTDOM" 1938068 T OINTDOM (NIL) -9 NIL 1938089 NIL) (-820 1932838 1934049 1934765 "OFMONOID" 1936375 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-819 1932249 1932775 1932820 "ODVAR" 1932825 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-818 1929672 1931994 1932149 "ODR" 1932154 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-817 1922253 1929448 1929574 "ODPOL" 1929579 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-816 1916075 1922125 1922230 "ODP" 1922235 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-815 1914841 1915056 1915331 "ODETOOLS" 1915849 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-814 1911808 1912466 1913182 "ODESYS" 1914174 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-813 1906690 1907598 1908623 "ODERTRIC" 1910883 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-812 1906116 1906198 1906392 "ODERED" 1906602 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-811 1903004 1903552 1904229 "ODERAT" 1905539 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-810 1899961 1900428 1901025 "ODEPRRIC" 1902533 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-809 1897904 1898500 1898986 "ODEPROB" 1899495 T ODEPROB (NIL) -8 NIL NIL NIL) (-808 1894424 1894909 1895556 "ODEPRIM" 1897383 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-807 1893673 1893775 1894035 "ODEPAL" 1894316 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-806 1889835 1890626 1891490 "ODEPACK" 1892829 T ODEPACK (NIL) -7 NIL NIL NIL) (-805 1888896 1889003 1889225 "ODEINT" 1889724 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-804 1882997 1884422 1885869 "ODEIFTBL" 1887469 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-803 1878395 1879181 1880133 "ODEEF" 1882156 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-802 1877744 1877833 1878056 "ODECONST" 1878300 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-801 1875869 1876530 1876558 "ODECAT" 1877163 T ODECAT (NIL) -9 NIL 1877694 NIL) (-800 1872724 1875574 1875696 "OCT" 1875779 NIL OCT (NIL T) -8 NIL NIL NIL) (-799 1872362 1872405 1872532 "OCTCT2" 1872675 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-798 1867011 1869446 1869486 "OC" 1870583 NIL OC (NIL T) -9 NIL 1871441 NIL) (-797 1864238 1864986 1865976 "OC-" 1866070 NIL OC- (NIL T T) -8 NIL NIL NIL) (-796 1863590 1864058 1864086 "OCAMON" 1864091 T OCAMON (NIL) -9 NIL 1864112 NIL) (-795 1863121 1863462 1863490 "OASGP" 1863495 T OASGP (NIL) -9 NIL 1863515 NIL) (-794 1862382 1862871 1862899 "OAMONS" 1862939 T OAMONS (NIL) -9 NIL 1862982 NIL) (-793 1861796 1862229 1862257 "OAMON" 1862262 T OAMON (NIL) -9 NIL 1862282 NIL) (-792 1861054 1861572 1861600 "OAGROUP" 1861605 T OAGROUP (NIL) -9 NIL 1861625 NIL) (-791 1860744 1860794 1860882 "NUMTUBE" 1860998 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-790 1854317 1855835 1857371 "NUMQUAD" 1859228 T NUMQUAD (NIL) -7 NIL NIL NIL) (-789 1850073 1851061 1852086 "NUMODE" 1853312 T NUMODE (NIL) -7 NIL NIL NIL) (-788 1847428 1848308 1848336 "NUMINT" 1849259 T NUMINT (NIL) -9 NIL 1850023 NIL) (-787 1846376 1846573 1846791 "NUMFMT" 1847230 T NUMFMT (NIL) -7 NIL NIL NIL) (-786 1832735 1835680 1838212 "NUMERIC" 1843883 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-785 1827105 1832184 1832279 "NTSCAT" 1832284 NIL NTSCAT (NIL T T T T) -9 NIL 1832323 NIL) (-784 1826299 1826464 1826657 "NTPOLFN" 1826944 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-783 1814376 1823124 1823936 "NSUP" 1825520 NIL NSUP (NIL T) -8 NIL NIL NIL) (-782 1814008 1814065 1814174 "NSUP2" 1814313 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-781 1804236 1813782 1813915 "NSMP" 1813920 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-780 1802668 1802969 1803326 "NREP" 1803924 NIL NREP (NIL T) -7 NIL NIL NIL) (-779 1801259 1801511 1801869 "NPCOEF" 1802411 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-778 1800325 1800440 1800656 "NORMRETR" 1801140 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-777 1798366 1798656 1799065 "NORMPK" 1800033 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-776 1798051 1798079 1798203 "NORMMA" 1798332 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-775 1797851 1798008 1798037 "NONE" 1798042 T NONE (NIL) -8 NIL NIL NIL) (-774 1797640 1797669 1797738 "NONE1" 1797815 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-773 1797137 1797199 1797378 "NODE1" 1797572 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-772 1795422 1796273 1796528 "NNI" 1796875 T NNI (NIL) -8 NIL NIL 1797110) (-771 1793842 1794155 1794519 "NLINSOL" 1795090 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-770 1790083 1791078 1791977 "NIPROB" 1792963 T NIPROB (NIL) -8 NIL NIL NIL) (-769 1788840 1789074 1789376 "NFINTBAS" 1789845 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-768 1788014 1788490 1788531 "NETCLT" 1788703 NIL NETCLT (NIL T) -9 NIL 1788785 NIL) (-767 1786722 1786953 1787234 "NCODIV" 1787782 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-766 1786484 1786521 1786596 "NCNTFRAC" 1786679 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-765 1784664 1785028 1785448 "NCEP" 1786109 NIL NCEP (NIL T) -7 NIL NIL NIL) (-764 1783515 1784288 1784316 "NASRING" 1784426 T NASRING (NIL) -9 NIL 1784506 NIL) (-763 1783310 1783354 1783448 "NASRING-" 1783453 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-762 1782417 1782942 1782970 "NARNG" 1783087 T NARNG (NIL) -9 NIL 1783178 NIL) (-761 1782109 1782176 1782310 "NARNG-" 1782315 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-760 1780988 1781195 1781430 "NAGSP" 1781894 T NAGSP (NIL) -7 NIL NIL NIL) (-759 1772260 1773944 1775617 "NAGS" 1779335 T NAGS (NIL) -7 NIL NIL NIL) (-758 1770808 1771116 1771447 "NAGF07" 1771949 T NAGF07 (NIL) -7 NIL NIL NIL) (-757 1765346 1766637 1767944 "NAGF04" 1769521 T NAGF04 (NIL) -7 NIL NIL NIL) (-756 1758314 1759928 1761561 "NAGF02" 1763733 T NAGF02 (NIL) -7 NIL NIL NIL) (-755 1753538 1754638 1755755 "NAGF01" 1757217 T NAGF01 (NIL) -7 NIL NIL NIL) (-754 1747166 1748732 1750317 "NAGE04" 1751973 T NAGE04 (NIL) -7 NIL NIL NIL) (-753 1738335 1740456 1742586 "NAGE02" 1745056 T NAGE02 (NIL) -7 NIL NIL NIL) (-752 1734288 1735235 1736199 "NAGE01" 1737391 T NAGE01 (NIL) -7 NIL NIL NIL) (-751 1732083 1732617 1733175 "NAGD03" 1733750 T NAGD03 (NIL) -7 NIL NIL NIL) (-750 1723833 1725761 1727715 "NAGD02" 1730149 T NAGD02 (NIL) -7 NIL NIL NIL) (-749 1717644 1719069 1720509 "NAGD01" 1722413 T NAGD01 (NIL) -7 NIL NIL NIL) (-748 1713853 1714675 1715512 "NAGC06" 1716827 T NAGC06 (NIL) -7 NIL NIL NIL) (-747 1712318 1712650 1713006 "NAGC05" 1713517 T NAGC05 (NIL) -7 NIL NIL NIL) (-746 1711694 1711813 1711957 "NAGC02" 1712194 T NAGC02 (NIL) -7 NIL NIL NIL) (-745 1710653 1711236 1711276 "NAALG" 1711355 NIL NAALG (NIL T) -9 NIL 1711416 NIL) (-744 1710488 1710517 1710607 "NAALG-" 1710612 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-743 1704438 1705546 1706733 "MULTSQFR" 1709384 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-742 1703757 1703832 1704016 "MULTFACT" 1704350 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-741 1696481 1700394 1700447 "MTSCAT" 1701517 NIL MTSCAT (NIL T T) -9 NIL 1702032 NIL) (-740 1696193 1696247 1696339 "MTHING" 1696421 NIL MTHING (NIL T) -7 NIL NIL NIL) (-739 1695985 1696018 1696078 "MSYSCMD" 1696153 T MSYSCMD (NIL) -7 NIL NIL NIL) (-738 1692067 1694740 1695060 "MSET" 1695698 NIL MSET (NIL T) -8 NIL NIL NIL) (-737 1689136 1691628 1691669 "MSETAGG" 1691674 NIL MSETAGG (NIL T) -9 NIL 1691708 NIL) (-736 1684977 1686515 1687260 "MRING" 1688436 NIL MRING (NIL T T) -8 NIL NIL NIL) (-735 1684543 1684610 1684741 "MRF2" 1684904 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-734 1684161 1684196 1684340 "MRATFAC" 1684502 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-733 1681773 1682068 1682499 "MPRFF" 1683866 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-732 1676070 1681627 1681724 "MPOLY" 1681729 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-731 1675560 1675595 1675803 "MPCPF" 1676029 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-730 1675074 1675117 1675301 "MPC3" 1675511 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-729 1674269 1674350 1674571 "MPC2" 1674989 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-728 1672570 1672907 1673297 "MONOTOOL" 1673929 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-727 1671795 1672112 1672140 "MONOID" 1672359 T MONOID (NIL) -9 NIL 1672506 NIL) (-726 1671341 1671460 1671641 "MONOID-" 1671646 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-725 1661816 1667767 1667826 "MONOGEN" 1668500 NIL MONOGEN (NIL T T) -9 NIL 1668956 NIL) (-724 1659034 1659769 1660769 "MONOGEN-" 1660888 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-723 1657867 1658313 1658341 "MONADWU" 1658733 T MONADWU (NIL) -9 NIL 1658971 NIL) (-722 1657239 1657398 1657646 "MONADWU-" 1657651 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-721 1656598 1656842 1656870 "MONAD" 1657077 T MONAD (NIL) -9 NIL 1657189 NIL) (-720 1656283 1656361 1656493 "MONAD-" 1656498 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-719 1654572 1655196 1655475 "MOEBIUS" 1656036 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-718 1653850 1654254 1654294 "MODULE" 1654299 NIL MODULE (NIL T) -9 NIL 1654338 NIL) (-717 1653418 1653514 1653704 "MODULE-" 1653709 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-716 1651098 1651782 1652109 "MODRING" 1653242 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-715 1648042 1649203 1649724 "MODOP" 1650627 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-714 1646630 1647109 1647386 "MODMONOM" 1647905 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-713 1636671 1644921 1645335 "MODMON" 1646267 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-712 1633827 1635515 1635791 "MODFIELD" 1636546 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1632804 1633108 1633298 "MMLFORM" 1633657 T MMLFORM (NIL) -8 NIL NIL NIL) (-710 1632330 1632373 1632552 "MMAP" 1632755 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-709 1630409 1631176 1631217 "MLO" 1631640 NIL MLO (NIL T) -9 NIL 1631882 NIL) (-708 1627775 1628291 1628893 "MLIFT" 1629890 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-707 1627166 1627250 1627404 "MKUCFUNC" 1627686 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-706 1626765 1626835 1626958 "MKRECORD" 1627089 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-705 1625812 1625974 1626202 "MKFUNC" 1626576 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-704 1625200 1625304 1625460 "MKFLCFN" 1625695 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-703 1624477 1624579 1624764 "MKBCFUNC" 1625093 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-702 1621184 1624031 1624167 "MINT" 1624361 T MINT (NIL) -8 NIL NIL NIL) (-701 1619996 1620239 1620516 "MHROWRED" 1620939 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-700 1615375 1618531 1618936 "MFLOAT" 1619611 T MFLOAT (NIL) -8 NIL NIL NIL) (-699 1614732 1614808 1614979 "MFINFACT" 1615287 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-698 1611047 1611895 1612779 "MESH" 1613868 T MESH (NIL) -7 NIL NIL NIL) (-697 1609437 1609749 1610102 "MDDFACT" 1610734 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-696 1606232 1608596 1608637 "MDAGG" 1608892 NIL MDAGG (NIL T) -9 NIL 1609035 NIL) (-695 1595972 1605525 1605732 "MCMPLX" 1606045 T MCMPLX (NIL) -8 NIL NIL NIL) (-694 1595113 1595259 1595459 "MCDEN" 1595821 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-693 1593003 1593273 1593653 "MCALCFN" 1594843 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-692 1591928 1592168 1592401 "MAYBE" 1592809 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-691 1589540 1590063 1590625 "MATSTOR" 1591399 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-690 1585497 1588912 1589160 "MATRIX" 1589325 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-689 1581261 1581970 1582706 "MATLIN" 1584854 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-688 1571367 1574553 1574630 "MATCAT" 1579510 NIL MATCAT (NIL T T T) -9 NIL 1580927 NIL) (-687 1567723 1568744 1570100 "MATCAT-" 1570105 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-686 1566317 1566470 1566803 "MATCAT2" 1567558 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-685 1564429 1564753 1565137 "MAPPKG3" 1565992 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-684 1563410 1563583 1563805 "MAPPKG2" 1564253 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-683 1561909 1562193 1562520 "MAPPKG1" 1563116 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-682 1560988 1561315 1561492 "MAPPAST" 1561752 T MAPPAST (NIL) -8 NIL NIL NIL) (-681 1560599 1560657 1560780 "MAPHACK3" 1560924 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-680 1560191 1560252 1560366 "MAPHACK2" 1560531 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-679 1559628 1559732 1559874 "MAPHACK1" 1560082 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-678 1557707 1558328 1558632 "MAGMA" 1559356 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-677 1557186 1557431 1557522 "MACROAST" 1557636 T MACROAST (NIL) -8 NIL NIL NIL) (-676 1553604 1555425 1555886 "M3D" 1556758 NIL M3D (NIL T) -8 NIL NIL NIL) (-675 1547710 1551973 1552014 "LZSTAGG" 1552796 NIL LZSTAGG (NIL T) -9 NIL 1553091 NIL) (-674 1543667 1544841 1546298 "LZSTAGG-" 1546303 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-673 1540754 1541558 1542045 "LWORD" 1543212 NIL LWORD (NIL T) -8 NIL NIL NIL) (-672 1540330 1540558 1540633 "LSTAST" 1540699 T LSTAST (NIL) -8 NIL NIL NIL) (-671 1533496 1540101 1540235 "LSQM" 1540240 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-670 1532720 1532859 1533087 "LSPP" 1533351 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-669 1530532 1530833 1531289 "LSMP" 1532409 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-668 1527311 1527985 1528715 "LSMP1" 1529834 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-667 1521188 1526478 1526519 "LSAGG" 1526581 NIL LSAGG (NIL T) -9 NIL 1526659 NIL) (-666 1517883 1518807 1520020 "LSAGG-" 1520025 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-665 1515482 1517027 1517276 "LPOLY" 1517678 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-664 1515064 1515149 1515272 "LPEFRAC" 1515391 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-663 1513385 1514158 1514411 "LO" 1514896 NIL LO (NIL T T T) -8 NIL NIL NIL) (-662 1513037 1513149 1513177 "LOGIC" 1513288 T LOGIC (NIL) -9 NIL 1513369 NIL) (-661 1512899 1512922 1512993 "LOGIC-" 1512998 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-660 1512092 1512232 1512425 "LODOOPS" 1512755 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-659 1509515 1512008 1512074 "LODO" 1512079 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-658 1508053 1508288 1508641 "LODOF" 1509262 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-657 1504271 1506702 1506743 "LODOCAT" 1507181 NIL LODOCAT (NIL T) -9 NIL 1507392 NIL) (-656 1504004 1504062 1504189 "LODOCAT-" 1504194 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-655 1501324 1503845 1503963 "LODO2" 1503968 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-654 1498759 1501261 1501306 "LODO1" 1501311 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-653 1497640 1497805 1498110 "LODEEF" 1498582 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-652 1492879 1495770 1495811 "LNAGG" 1496758 NIL LNAGG (NIL T) -9 NIL 1497202 NIL) (-651 1492026 1492240 1492582 "LNAGG-" 1492587 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-650 1488162 1488951 1489590 "LMOPS" 1491441 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-649 1487565 1487953 1487994 "LMODULE" 1487999 NIL LMODULE (NIL T) -9 NIL 1488025 NIL) (-648 1484763 1487210 1487333 "LMDICT" 1487475 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-647 1484169 1484390 1484431 "LLINSET" 1484622 NIL LLINSET (NIL T) -9 NIL 1484713 NIL) (-646 1483868 1484077 1484137 "LITERAL" 1484142 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-645 1477031 1482802 1483106 "LIST" 1483597 NIL LIST (NIL T) -8 NIL NIL NIL) (-644 1476556 1476630 1476769 "LIST3" 1476951 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-643 1475563 1475741 1475969 "LIST2" 1476374 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-642 1473697 1474009 1474408 "LIST2MAP" 1475210 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-641 1473293 1473530 1473571 "LINSET" 1473576 NIL LINSET (NIL T) -9 NIL 1473610 NIL) (-640 1471954 1472624 1472665 "LINEXP" 1472920 NIL LINEXP (NIL T) -9 NIL 1473069 NIL) (-639 1470601 1470861 1471158 "LINDEP" 1471706 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-638 1467368 1468087 1468864 "LIMITRF" 1469856 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-637 1465671 1465967 1466376 "LIMITPS" 1467063 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-636 1460099 1465182 1465410 "LIE" 1465492 NIL LIE (NIL T T) -8 NIL NIL NIL) (-635 1459047 1459516 1459556 "LIECAT" 1459696 NIL LIECAT (NIL T) -9 NIL 1459847 NIL) (-634 1458888 1458915 1459003 "LIECAT-" 1459008 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-633 1451384 1458337 1458502 "LIB" 1458743 T LIB (NIL) -8 NIL NIL NIL) (-632 1447019 1447902 1448837 "LGROBP" 1450501 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-631 1445017 1445291 1445641 "LF" 1446740 NIL LF (NIL T T) -7 NIL NIL NIL) (-630 1443857 1444549 1444577 "LFCAT" 1444784 T LFCAT (NIL) -9 NIL 1444923 NIL) (-629 1440759 1441389 1442077 "LEXTRIPK" 1443221 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-628 1437503 1438329 1438832 "LEXP" 1440339 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-627 1436979 1437224 1437316 "LETAST" 1437431 T LETAST (NIL) -8 NIL NIL NIL) (-626 1435377 1435690 1436091 "LEADCDET" 1436661 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-625 1434567 1434641 1434870 "LAZM3PK" 1435298 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-624 1429484 1432644 1433182 "LAUPOL" 1434079 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-623 1429063 1429107 1429268 "LAPLACE" 1429434 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-622 1427002 1428164 1428415 "LA" 1428896 NIL LA (NIL T T T) -8 NIL NIL NIL) (-621 1425996 1426580 1426621 "LALG" 1426683 NIL LALG (NIL T) -9 NIL 1426742 NIL) (-620 1425710 1425769 1425905 "LALG-" 1425910 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-619 1425545 1425569 1425610 "KVTFROM" 1425672 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-618 1424468 1424912 1425097 "KTVLOGIC" 1425380 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-617 1424303 1424327 1424368 "KRCFROM" 1424430 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-616 1423207 1423394 1423693 "KOVACIC" 1424103 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-615 1423042 1423066 1423107 "KONVERT" 1423169 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-614 1422877 1422901 1422942 "KOERCE" 1423004 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-613 1420707 1421470 1421847 "KERNEL" 1422533 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-612 1420203 1420284 1420416 "KERNEL2" 1420621 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-611 1413973 1418742 1418796 "KDAGG" 1419173 NIL KDAGG (NIL T T) -9 NIL 1419379 NIL) (-610 1413502 1413626 1413831 "KDAGG-" 1413836 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-609 1406650 1413163 1413318 "KAFILE" 1413380 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-608 1401078 1406161 1406389 "JORDAN" 1406471 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-607 1400457 1400727 1400848 "JOINAST" 1400977 T JOINAST (NIL) -8 NIL NIL NIL) (-606 1400303 1400362 1400417 "JAVACODE" 1400422 T JAVACODE (NIL) -8 NIL NIL NIL) (-605 1396555 1398508 1398562 "IXAGG" 1399491 NIL IXAGG (NIL T T) -9 NIL 1399950 NIL) (-604 1395474 1395780 1396199 "IXAGG-" 1396204 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-603 1391004 1395396 1395455 "IVECTOR" 1395460 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-602 1389770 1390007 1390273 "ITUPLE" 1390771 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-601 1388272 1388449 1388744 "ITRIGMNP" 1389592 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-600 1387017 1387221 1387504 "ITFUN3" 1388048 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-599 1386649 1386706 1386815 "ITFUN2" 1386954 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-598 1384451 1385511 1385810 "ITAYLOR" 1386383 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-597 1373396 1378588 1379751 "ISUPS" 1383321 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-596 1372500 1372640 1372876 "ISUMP" 1373243 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-595 1367714 1372301 1372380 "ISTRING" 1372453 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-594 1367190 1367435 1367527 "ISAST" 1367642 T ISAST (NIL) -8 NIL NIL NIL) (-593 1366399 1366481 1366697 "IRURPK" 1367104 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-592 1365335 1365536 1365776 "IRSN" 1366179 T IRSN (NIL) -7 NIL NIL NIL) (-591 1363406 1363761 1364190 "IRRF2F" 1364973 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-590 1363153 1363191 1363267 "IRREDFFX" 1363362 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-589 1361768 1362027 1362326 "IROOT" 1362886 NIL IROOT (NIL T) -7 NIL NIL NIL) (-588 1358372 1359452 1360144 "IR" 1361108 NIL IR (NIL T) -8 NIL NIL NIL) (-587 1355985 1356480 1357046 "IR2" 1357850 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-586 1355085 1355198 1355412 "IR2F" 1355868 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-585 1354876 1354910 1354970 "IPRNTPK" 1355045 T IPRNTPK (NIL) -7 NIL NIL NIL) (-584 1351457 1354765 1354834 "IPF" 1354839 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-583 1349784 1351382 1351439 "IPADIC" 1351444 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-582 1349096 1349344 1349474 "IP4ADDR" 1349674 T IP4ADDR (NIL) -8 NIL NIL NIL) (-581 1348569 1348800 1348910 "IOMODE" 1349006 T IOMODE (NIL) -8 NIL NIL NIL) (-580 1347642 1348166 1348293 "IOBFILE" 1348462 T IOBFILE (NIL) -8 NIL NIL NIL) (-579 1347130 1347546 1347574 "IOBCON" 1347579 T IOBCON (NIL) -9 NIL 1347600 NIL) (-578 1346641 1346699 1346882 "INVLAPLA" 1347066 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-577 1336289 1338643 1341029 "INTTR" 1344305 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-576 1332624 1333366 1334231 "INTTOOLS" 1335474 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-575 1332210 1332301 1332418 "INTSLPE" 1332527 T INTSLPE (NIL) -7 NIL NIL NIL) (-574 1330163 1332133 1332192 "INTRVL" 1332197 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-573 1327765 1328277 1328852 "INTRF" 1329648 NIL INTRF (NIL T) -7 NIL NIL NIL) (-572 1327176 1327273 1327415 "INTRET" 1327663 NIL INTRET (NIL T) -7 NIL NIL NIL) (-571 1325173 1325562 1326032 "INTRAT" 1326784 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-570 1322436 1323019 1323638 "INTPM" 1324658 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-569 1319181 1319780 1320518 "INTPAF" 1321822 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-568 1314360 1315322 1316373 "INTPACK" 1318150 T INTPACK (NIL) -7 NIL NIL NIL) (-567 1311308 1314157 1314266 "INT" 1314271 T INT (NIL) -8 NIL NIL NIL) (-566 1310560 1310712 1310920 "INTHERTR" 1311150 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-565 1309999 1310079 1310267 "INTHERAL" 1310474 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-564 1307845 1308288 1308745 "INTHEORY" 1309562 T INTHEORY (NIL) -7 NIL NIL NIL) (-563 1299251 1300872 1302644 "INTG0" 1306197 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-562 1279824 1284614 1289424 "INTFTBL" 1294461 T INTFTBL (NIL) -8 NIL NIL NIL) (-561 1279073 1279211 1279384 "INTFACT" 1279683 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-560 1276500 1276946 1277503 "INTEF" 1278627 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-559 1274867 1275606 1275634 "INTDOM" 1275935 T INTDOM (NIL) -9 NIL 1276142 NIL) (-558 1274236 1274410 1274652 "INTDOM-" 1274657 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-557 1270624 1272552 1272606 "INTCAT" 1273405 NIL INTCAT (NIL T) -9 NIL 1273726 NIL) (-556 1270096 1270199 1270327 "INTBIT" 1270516 T INTBIT (NIL) -7 NIL NIL NIL) (-555 1268795 1268949 1269256 "INTALG" 1269941 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-554 1268278 1268368 1268525 "INTAF" 1268699 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-553 1261621 1268088 1268228 "INTABL" 1268233 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-552 1260962 1261428 1261493 "INT8" 1261527 T INT8 (NIL) -8 NIL NIL 1261572) (-551 1260302 1260768 1260833 "INT64" 1260867 T INT64 (NIL) -8 NIL NIL 1260912) (-550 1259642 1260108 1260173 "INT32" 1260207 T INT32 (NIL) -8 NIL NIL 1260252) (-549 1258982 1259448 1259513 "INT16" 1259547 T INT16 (NIL) -8 NIL NIL 1259592) (-548 1253892 1256605 1256633 "INS" 1257567 T INS (NIL) -9 NIL 1258232 NIL) (-547 1251132 1251903 1252877 "INS-" 1252950 NIL INS- (NIL T) -8 NIL NIL NIL) (-546 1249907 1250134 1250432 "INPSIGN" 1250885 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-545 1249025 1249142 1249339 "INPRODPF" 1249787 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-544 1247919 1248036 1248273 "INPRODFF" 1248905 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-543 1246919 1247071 1247331 "INNMFACT" 1247755 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-542 1246116 1246213 1246401 "INMODGCD" 1246818 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-541 1244624 1244869 1245193 "INFSP" 1245861 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-540 1243808 1243925 1244108 "INFPROD0" 1244504 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-539 1240663 1241873 1242388 "INFORM" 1243301 T INFORM (NIL) -8 NIL NIL NIL) (-538 1240273 1240333 1240431 "INFORM1" 1240598 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-537 1239796 1239885 1239999 "INFINITY" 1240179 T INFINITY (NIL) -7 NIL NIL NIL) (-536 1238972 1239516 1239617 "INETCLTS" 1239715 T INETCLTS (NIL) -8 NIL NIL NIL) (-535 1237588 1237838 1238159 "INEP" 1238720 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-534 1236837 1237485 1237550 "INDE" 1237555 NIL INDE (NIL T) -8 NIL NIL NIL) (-533 1236401 1236469 1236586 "INCRMAPS" 1236764 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-532 1235219 1235670 1235876 "INBFILE" 1236215 T INBFILE (NIL) -8 NIL NIL NIL) (-531 1230518 1231455 1232399 "INBFF" 1234307 NIL INBFF (NIL T) -7 NIL NIL NIL) (-530 1229426 1229695 1229723 "INBCON" 1230236 T INBCON (NIL) -9 NIL 1230502 NIL) (-529 1228678 1228901 1229177 "INBCON-" 1229182 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-528 1228157 1228402 1228493 "INAST" 1228607 T INAST (NIL) -8 NIL NIL NIL) (-527 1227584 1227836 1227942 "IMPTAST" 1228071 T IMPTAST (NIL) -8 NIL NIL NIL) (-526 1224030 1227428 1227532 "IMATRIX" 1227537 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-525 1222742 1222865 1223180 "IMATQF" 1223886 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-524 1220962 1221189 1221526 "IMATLIN" 1222498 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-523 1215540 1220886 1220944 "ILIST" 1220949 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-522 1213445 1215400 1215513 "IIARRAY2" 1215518 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-521 1208843 1213356 1213420 "IFF" 1213425 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-520 1208190 1208460 1208576 "IFAST" 1208747 T IFAST (NIL) -8 NIL NIL NIL) (-519 1203185 1207482 1207670 "IFARRAY" 1208047 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-518 1202365 1203089 1203162 "IFAMON" 1203167 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-517 1201949 1202014 1202068 "IEVALAB" 1202275 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-516 1201624 1201692 1201852 "IEVALAB-" 1201857 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-515 1201255 1201538 1201601 "IDPO" 1201606 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-514 1200505 1201144 1201219 "IDPOAMS" 1201224 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-513 1199812 1200394 1200469 "IDPOAM" 1200474 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-512 1198871 1199147 1199200 "IDPC" 1199613 NIL IDPC (NIL T T) -9 NIL 1199762 NIL) (-511 1198340 1198763 1198836 "IDPAM" 1198841 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-510 1197716 1198232 1198305 "IDPAG" 1198310 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-509 1197361 1197552 1197627 "IDENT" 1197661 T IDENT (NIL) -8 NIL NIL NIL) (-508 1193616 1194464 1195359 "IDECOMP" 1196518 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-507 1186454 1187539 1188586 "IDEAL" 1192652 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-506 1185618 1185730 1185929 "ICDEN" 1186338 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-505 1184689 1185098 1185245 "ICARD" 1185491 T ICARD (NIL) -8 NIL NIL NIL) (-504 1182749 1183062 1183467 "IBPTOOLS" 1184366 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-503 1178356 1182369 1182482 "IBITS" 1182668 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-502 1175079 1175655 1176350 "IBATOOL" 1177773 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-501 1172858 1173320 1173853 "IBACHIN" 1174614 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-500 1170687 1172704 1172807 "IARRAY2" 1172812 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-499 1166793 1170613 1170670 "IARRAY1" 1170675 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-498 1160902 1165205 1165686 "IAN" 1166332 T IAN (NIL) -8 NIL NIL NIL) (-497 1160413 1160470 1160643 "IALGFACT" 1160839 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-496 1159941 1160054 1160082 "HYPCAT" 1160289 T HYPCAT (NIL) -9 NIL NIL NIL) (-495 1159479 1159596 1159782 "HYPCAT-" 1159787 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-494 1159074 1159274 1159357 "HOSTNAME" 1159416 T HOSTNAME (NIL) -8 NIL NIL NIL) (-493 1158919 1158956 1158997 "HOMOTOP" 1159002 NIL HOMOTOP (NIL T) -9 NIL 1159035 NIL) (-492 1155551 1156929 1156970 "HOAGG" 1157951 NIL HOAGG (NIL T) -9 NIL 1158630 NIL) (-491 1154145 1154544 1155070 "HOAGG-" 1155075 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-490 1148149 1153740 1153889 "HEXADEC" 1154016 T HEXADEC (NIL) -8 NIL NIL NIL) (-489 1146896 1147119 1147382 "HEUGCD" 1147926 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-488 1145972 1146733 1146863 "HELLFDIV" 1146868 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-487 1144151 1145749 1145837 "HEAP" 1145916 NIL HEAP (NIL T) -8 NIL NIL NIL) (-486 1143414 1143703 1143837 "HEADAST" 1144037 T HEADAST (NIL) -8 NIL NIL NIL) (-485 1137280 1143329 1143391 "HDP" 1143396 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-484 1131268 1136915 1137067 "HDMP" 1137181 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-483 1130592 1130732 1130896 "HB" 1131124 T HB (NIL) -7 NIL NIL NIL) (-482 1123978 1130438 1130542 "HASHTBL" 1130547 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-481 1123454 1123699 1123791 "HASAST" 1123906 T HASAST (NIL) -8 NIL NIL NIL) (-480 1121232 1123076 1123258 "HACKPI" 1123292 T HACKPI (NIL) -8 NIL NIL NIL) (-479 1116900 1121085 1121198 "GTSET" 1121203 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-478 1110315 1116778 1116876 "GSTBL" 1116881 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-477 1102593 1109346 1109611 "GSERIES" 1110106 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-476 1101734 1102151 1102179 "GROUP" 1102382 T GROUP (NIL) -9 NIL 1102516 NIL) (-475 1101100 1101259 1101510 "GROUP-" 1101515 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-474 1099467 1099788 1100175 "GROEBSOL" 1100777 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-473 1098381 1098669 1098720 "GRMOD" 1099249 NIL GRMOD (NIL T T) -9 NIL 1099417 NIL) (-472 1098149 1098185 1098313 "GRMOD-" 1098318 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-471 1093439 1094503 1095503 "GRIMAGE" 1097169 T GRIMAGE (NIL) -8 NIL NIL NIL) (-470 1091905 1092166 1092490 "GRDEF" 1093135 T GRDEF (NIL) -7 NIL NIL NIL) (-469 1091349 1091465 1091606 "GRAY" 1091784 T GRAY (NIL) -7 NIL NIL NIL) (-468 1090536 1090942 1090993 "GRALG" 1091146 NIL GRALG (NIL T T) -9 NIL 1091239 NIL) (-467 1090197 1090270 1090433 "GRALG-" 1090438 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-466 1086974 1089782 1089960 "GPOLSET" 1090104 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-465 1086328 1086385 1086643 "GOSPER" 1086911 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-464 1082060 1082766 1083292 "GMODPOL" 1086027 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-463 1081065 1081249 1081487 "GHENSEL" 1081872 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-462 1075221 1076064 1077084 "GENUPS" 1080149 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-461 1074918 1074969 1075058 "GENUFACT" 1075164 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-460 1074330 1074407 1074572 "GENPGCD" 1074836 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-459 1073804 1073839 1074052 "GENMFACT" 1074289 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-458 1072370 1072627 1072934 "GENEEZ" 1073547 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-457 1066516 1071981 1072143 "GDMP" 1072293 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-456 1055858 1060287 1061393 "GCNAALG" 1065499 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-455 1054185 1055047 1055075 "GCDDOM" 1055330 T GCDDOM (NIL) -9 NIL 1055487 NIL) (-454 1053655 1053782 1053997 "GCDDOM-" 1054002 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-453 1052327 1052512 1052816 "GB" 1053434 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-452 1040943 1043273 1045665 "GBINTERN" 1050018 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-451 1038780 1039072 1039493 "GBF" 1040618 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-450 1037561 1037726 1037993 "GBEUCLID" 1038596 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-449 1036910 1037035 1037184 "GAUSSFAC" 1037432 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-448 1035277 1035579 1035893 "GALUTIL" 1036629 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-447 1033585 1033859 1034183 "GALPOLYU" 1035004 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-446 1030950 1031240 1031647 "GALFACTU" 1033282 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-445 1022755 1024255 1025863 "GALFACT" 1029382 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-444 1020143 1020801 1020829 "FVFUN" 1021985 T FVFUN (NIL) -9 NIL 1022705 NIL) (-443 1019409 1019591 1019619 "FVC" 1019910 T FVC (NIL) -9 NIL 1020093 NIL) (-442 1019052 1019234 1019302 "FUNDESC" 1019361 T FUNDESC (NIL) -8 NIL NIL NIL) (-441 1018667 1018849 1018930 "FUNCTION" 1019004 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-440 1016411 1016989 1017455 "FT" 1018221 T FT (NIL) -8 NIL NIL NIL) (-439 1015202 1015712 1015915 "FTEM" 1016228 T FTEM (NIL) -8 NIL NIL NIL) (-438 1013493 1013782 1014179 "FSUPFACT" 1014893 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-437 1011890 1012179 1012511 "FST" 1013181 T FST (NIL) -8 NIL NIL NIL) (-436 1011089 1011195 1011383 "FSRED" 1011772 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-435 1009788 1010044 1010391 "FSPRMELT" 1010804 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-434 1007094 1007532 1008018 "FSPECF" 1009351 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-433 988732 997063 997104 "FS" 1000988 NIL FS (NIL T) -9 NIL 1003277 NIL) (-432 977375 980368 984425 "FS-" 984725 NIL FS- (NIL T T) -8 NIL NIL NIL) (-431 976903 976957 977127 "FSINT" 977316 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-430 975195 975896 976199 "FSERIES" 976682 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-429 974237 974353 974577 "FSCINT" 975075 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-428 970445 973181 973222 "FSAGG" 973592 NIL FSAGG (NIL T) -9 NIL 973851 NIL) (-427 968207 968808 969604 "FSAGG-" 969699 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-426 967249 967392 967619 "FSAGG2" 968060 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-425 964931 965211 965758 "FS2UPS" 966967 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-424 964565 964608 964737 "FS2" 964882 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-423 963443 963614 963916 "FS2EXPXP" 964390 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-422 962869 962984 963136 "FRUTIL" 963323 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-421 954282 958364 959722 "FR" 961543 NIL FR (NIL T) -8 NIL NIL NIL) (-420 949251 951925 951965 "FRNAALG" 953361 NIL FRNAALG (NIL T) -9 NIL 953968 NIL) (-419 944924 946000 947275 "FRNAALG-" 948025 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-418 944562 944605 944732 "FRNAAF2" 944875 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-417 942942 943416 943711 "FRMOD" 944374 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-416 940693 941325 941642 "FRIDEAL" 942733 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-415 939888 939975 940264 "FRIDEAL2" 940600 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-414 939021 939435 939476 "FRETRCT" 939481 NIL FRETRCT (NIL T) -9 NIL 939657 NIL) (-413 938133 938364 938715 "FRETRCT-" 938720 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-412 935221 936431 936490 "FRAMALG" 937372 NIL FRAMALG (NIL T T) -9 NIL 937664 NIL) (-411 933355 933810 934440 "FRAMALG-" 934663 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-410 927276 932830 933106 "FRAC" 933111 NIL FRAC (NIL T) -8 NIL NIL NIL) (-409 926912 926969 927076 "FRAC2" 927213 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-408 926548 926605 926712 "FR2" 926849 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-407 921061 923954 923982 "FPS" 925101 T FPS (NIL) -9 NIL 925658 NIL) (-406 920510 920619 920783 "FPS-" 920929 NIL FPS- (NIL T) -8 NIL NIL NIL) (-405 917812 919481 919509 "FPC" 919734 T FPC (NIL) -9 NIL 919876 NIL) (-404 917605 917645 917742 "FPC-" 917747 NIL FPC- (NIL T) -8 NIL NIL NIL) (-403 916395 917093 917134 "FPATMAB" 917139 NIL FPATMAB (NIL T) -9 NIL 917291 NIL) (-402 914068 914571 914997 "FPARFRAC" 916032 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-401 909461 909960 910642 "FORTRAN" 913500 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-400 907177 907677 908216 "FORT" 908942 T FORT (NIL) -7 NIL NIL NIL) (-399 904853 905415 905443 "FORTFN" 906503 T FORTFN (NIL) -9 NIL 907127 NIL) (-398 904617 904667 904695 "FORTCAT" 904754 T FORTCAT (NIL) -9 NIL 904816 NIL) (-397 902723 903233 903623 "FORMULA" 904247 T FORMULA (NIL) -8 NIL NIL NIL) (-396 902511 902541 902610 "FORMULA1" 902687 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-395 902034 902086 902259 "FORDER" 902453 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-394 901130 901294 901487 "FOP" 901861 T FOP (NIL) -7 NIL NIL NIL) (-393 899711 900410 900584 "FNLA" 901012 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-392 898440 898855 898883 "FNCAT" 899343 T FNCAT (NIL) -9 NIL 899603 NIL) (-391 897979 898399 898427 "FNAME" 898432 T FNAME (NIL) -8 NIL NIL NIL) (-390 896542 897505 897533 "FMTC" 897538 T FMTC (NIL) -9 NIL 897574 NIL) (-389 892875 894065 894694 "FMONOID" 895946 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-388 889703 890871 890912 "FMONCAT" 892129 NIL FMONCAT (NIL T) -9 NIL 892734 NIL) (-387 888895 889445 889594 "FM" 889599 NIL FM (NIL T T) -8 NIL NIL NIL) (-386 886319 886965 886993 "FMFUN" 888137 T FMFUN (NIL) -9 NIL 888845 NIL) (-385 885588 885769 885797 "FMC" 886087 T FMC (NIL) -9 NIL 886269 NIL) (-384 882667 883527 883581 "FMCAT" 884776 NIL FMCAT (NIL T T) -9 NIL 885271 NIL) (-383 881533 882433 882533 "FM1" 882612 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-382 879307 879723 880217 "FLOATRP" 881084 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-381 872882 877036 877657 "FLOAT" 878706 T FLOAT (NIL) -8 NIL NIL NIL) (-380 870320 870820 871398 "FLOATCP" 872349 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-379 869060 869898 869939 "FLINEXP" 869944 NIL FLINEXP (NIL T) -9 NIL 870037 NIL) (-378 868214 868449 868777 "FLINEXP-" 868782 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-377 867290 867434 867658 "FLASORT" 868066 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-376 864406 865274 865326 "FLALG" 866553 NIL FLALG (NIL T T) -9 NIL 867020 NIL) (-375 858142 861892 861933 "FLAGG" 863195 NIL FLAGG (NIL T) -9 NIL 863847 NIL) (-374 856868 857207 857697 "FLAGG-" 857702 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-373 855910 856053 856280 "FLAGG2" 856721 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-372 852761 853769 853828 "FINRALG" 854956 NIL FINRALG (NIL T T) -9 NIL 855464 NIL) (-371 851921 852150 852489 "FINRALG-" 852494 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-370 851301 851540 851568 "FINITE" 851764 T FINITE (NIL) -9 NIL 851871 NIL) (-369 843658 845845 845885 "FINAALG" 849552 NIL FINAALG (NIL T) -9 NIL 851005 NIL) (-368 838990 840040 841184 "FINAALG-" 842563 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-367 838358 838745 838848 "FILE" 838920 NIL FILE (NIL T) -8 NIL NIL NIL) (-366 837016 837354 837408 "FILECAT" 838092 NIL FILECAT (NIL T T) -9 NIL 838308 NIL) (-365 834732 836260 836288 "FIELD" 836328 T FIELD (NIL) -9 NIL 836408 NIL) (-364 833352 833737 834248 "FIELD-" 834253 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-363 831202 831987 832334 "FGROUP" 833038 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-362 830292 830456 830676 "FGLMICPK" 831034 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-361 826124 830217 830274 "FFX" 830279 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-360 825725 825786 825921 "FFSLPE" 826057 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-359 821714 822497 823293 "FFPOLY" 824961 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-358 821218 821254 821463 "FFPOLY2" 821672 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-357 817061 821137 821200 "FFP" 821205 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-356 812459 816972 817036 "FF" 817041 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-355 807585 811802 811992 "FFNBX" 812313 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-354 802514 806720 806978 "FFNBP" 807439 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-353 797147 801798 802009 "FFNB" 802347 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-352 795979 796177 796492 "FFINTBAS" 796944 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-351 792048 794268 794296 "FFIELDC" 794916 T FFIELDC (NIL) -9 NIL 795292 NIL) (-350 790710 791081 791578 "FFIELDC-" 791583 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-349 790279 790325 790449 "FFHOM" 790652 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-348 787974 788461 788978 "FFF" 789794 NIL FFF (NIL T) -7 NIL NIL NIL) (-347 783592 787716 787817 "FFCGX" 787917 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-346 779213 783324 783431 "FFCGP" 783535 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-345 774396 778940 779048 "FFCG" 779149 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-344 755792 764873 764959 "FFCAT" 770124 NIL FFCAT (NIL T T T) -9 NIL 771575 NIL) (-343 750990 752037 753351 "FFCAT-" 754581 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-342 750401 750444 750679 "FFCAT2" 750941 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-341 739722 743373 744593 "FEXPR" 749253 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-340 738722 739157 739198 "FEVALAB" 739282 NIL FEVALAB (NIL T) -9 NIL 739543 NIL) (-339 737881 738091 738429 "FEVALAB-" 738434 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-338 736447 737264 737467 "FDIV" 737780 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-337 733467 734208 734323 "FDIVCAT" 735891 NIL FDIVCAT (NIL T T T T) -9 NIL 736328 NIL) (-336 733229 733256 733426 "FDIVCAT-" 733431 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-335 732449 732536 732813 "FDIV2" 733136 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-334 731423 731744 731946 "FCTRDATA" 732267 T FCTRDATA (NIL) -8 NIL NIL NIL) (-333 730109 730368 730657 "FCPAK1" 731154 T FCPAK1 (NIL) -7 NIL NIL NIL) (-332 729208 729609 729750 "FCOMP" 730000 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-331 712910 716358 719896 "FC" 725690 T FC (NIL) -8 NIL NIL NIL) (-330 705273 709301 709341 "FAXF" 711143 NIL FAXF (NIL T) -9 NIL 711835 NIL) (-329 702549 703207 704032 "FAXF-" 704497 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-328 697601 701925 702101 "FARRAY" 702406 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-327 692495 694562 694615 "FAMR" 695638 NIL FAMR (NIL T T) -9 NIL 696098 NIL) (-326 691385 691687 692122 "FAMR-" 692127 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-325 690554 691307 691360 "FAMONOID" 691365 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-324 688340 689050 689103 "FAMONC" 690044 NIL FAMONC (NIL T T) -9 NIL 690430 NIL) (-323 687004 688094 688231 "FAGROUP" 688236 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-322 684799 685118 685521 "FACUTIL" 686685 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-321 683898 684083 684305 "FACTFUNC" 684609 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-320 676320 683201 683400 "EXPUPXS" 683754 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-319 673803 674343 674929 "EXPRTUBE" 675754 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-318 670074 670666 671396 "EXPRODE" 673142 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-317 655559 668723 669152 "EXPR" 669678 NIL EXPR (NIL T) -8 NIL NIL NIL) (-316 650113 650700 651506 "EXPR2UPS" 654857 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-315 649745 649802 649911 "EXPR2" 650050 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-314 641135 648898 649188 "EXPEXPAN" 649582 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-313 640935 641092 641121 "EXIT" 641126 T EXIT (NIL) -8 NIL NIL NIL) (-312 640415 640659 640750 "EXITAST" 640864 T EXITAST (NIL) -8 NIL NIL NIL) (-311 640042 640104 640217 "EVALCYC" 640347 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-310 639583 639701 639742 "EVALAB" 639912 NIL EVALAB (NIL T) -9 NIL 640016 NIL) (-309 639064 639186 639407 "EVALAB-" 639412 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-308 636432 637734 637762 "EUCDOM" 638317 T EUCDOM (NIL) -9 NIL 638667 NIL) (-307 634837 635279 635869 "EUCDOM-" 635874 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-306 622375 625135 627885 "ESTOOLS" 632107 T ESTOOLS (NIL) -7 NIL NIL NIL) (-305 622007 622064 622173 "ESTOOLS2" 622312 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-304 621758 621800 621880 "ESTOOLS1" 621959 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-303 615795 617403 617431 "ES" 620199 T ES (NIL) -9 NIL 621609 NIL) (-302 610742 612029 613846 "ES-" 614010 NIL ES- (NIL T) -8 NIL NIL NIL) (-301 607116 607877 608657 "ESCONT" 609982 T ESCONT (NIL) -7 NIL NIL NIL) (-300 606861 606893 606975 "ESCONT1" 607078 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-299 606536 606586 606686 "ES2" 606805 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-298 606166 606224 606333 "ES1" 606472 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-297 605382 605511 605687 "ERROR" 606010 T ERROR (NIL) -7 NIL NIL NIL) (-296 598774 605241 605332 "EQTBL" 605337 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-295 591277 594088 595537 "EQ" 597358 NIL -2168 (NIL T) -8 NIL NIL NIL) (-294 590909 590966 591075 "EQ2" 591214 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-293 586198 587247 588340 "EP" 589848 NIL EP (NIL T) -7 NIL NIL NIL) (-292 584798 585089 585395 "ENV" 585912 T ENV (NIL) -8 NIL NIL NIL) (-291 583892 584446 584474 "ENTIRER" 584479 T ENTIRER (NIL) -9 NIL 584525 NIL) (-290 580359 581847 582217 "EMR" 583691 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-289 579503 579688 579742 "ELTAGG" 580122 NIL ELTAGG (NIL T T) -9 NIL 580333 NIL) (-288 579222 579284 579425 "ELTAGG-" 579430 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-287 579011 579040 579094 "ELTAB" 579178 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-286 578137 578283 578482 "ELFUTS" 578862 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-285 577879 577935 577963 "ELEMFUN" 578068 T ELEMFUN (NIL) -9 NIL NIL NIL) (-284 577749 577770 577838 "ELEMFUN-" 577843 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-283 572593 575849 575890 "ELAGG" 576830 NIL ELAGG (NIL T) -9 NIL 577293 NIL) (-282 570878 571312 571975 "ELAGG-" 571980 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-281 569539 569818 570112 "ELABEXPR" 570604 T ELABEXPR (NIL) -8 NIL NIL NIL) (-280 562403 564206 565033 "EFUPXS" 568815 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-279 555853 557654 558464 "EFULS" 561679 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-278 553338 553696 554168 "EFSTRUC" 555485 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-277 543129 544695 546243 "EF" 551853 NIL EF (NIL T T) -7 NIL NIL NIL) (-276 542203 542614 542763 "EAB" 543000 T EAB (NIL) -8 NIL NIL NIL) (-275 541385 542162 542190 "E04UCFA" 542195 T E04UCFA (NIL) -8 NIL NIL NIL) (-274 540567 541344 541372 "E04NAFA" 541377 T E04NAFA (NIL) -8 NIL NIL NIL) (-273 539749 540526 540554 "E04MBFA" 540559 T E04MBFA (NIL) -8 NIL NIL NIL) (-272 538931 539708 539736 "E04JAFA" 539741 T E04JAFA (NIL) -8 NIL NIL NIL) (-271 538115 538890 538918 "E04GCFA" 538923 T E04GCFA (NIL) -8 NIL NIL NIL) (-270 537299 538074 538102 "E04FDFA" 538107 T E04FDFA (NIL) -8 NIL NIL NIL) (-269 536481 537258 537286 "E04DGFA" 537291 T E04DGFA (NIL) -8 NIL NIL NIL) (-268 530654 532006 533370 "E04AGNT" 535137 T E04AGNT (NIL) -7 NIL NIL NIL) (-267 529334 529840 529880 "DVARCAT" 530355 NIL DVARCAT (NIL T) -9 NIL 530554 NIL) (-266 528538 528750 529064 "DVARCAT-" 529069 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-265 521675 528337 528466 "DSMP" 528471 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-264 516456 517620 518688 "DROPT" 520627 T DROPT (NIL) -8 NIL NIL NIL) (-263 516121 516180 516278 "DROPT1" 516391 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-262 511236 512362 513499 "DROPT0" 515004 T DROPT0 (NIL) -7 NIL NIL NIL) (-261 509581 509906 510292 "DRAWPT" 510870 T DRAWPT (NIL) -7 NIL NIL NIL) (-260 504168 505091 506170 "DRAW" 508555 NIL DRAW (NIL T) -7 NIL NIL NIL) (-259 503801 503854 503972 "DRAWHACK" 504109 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-258 502532 502801 503092 "DRAWCX" 503530 T DRAWCX (NIL) -7 NIL NIL NIL) (-257 502047 502116 502267 "DRAWCURV" 502458 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-256 492515 494477 496592 "DRAWCFUN" 499952 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-255 489281 491210 491251 "DQAGG" 491880 NIL DQAGG (NIL T) -9 NIL 492153 NIL) (-254 477405 483874 483957 "DPOLCAT" 485809 NIL DPOLCAT (NIL T T T T) -9 NIL 486354 NIL) (-253 472241 473590 475548 "DPOLCAT-" 475553 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-252 465363 472102 472200 "DPMO" 472205 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-251 458388 465143 465310 "DPMM" 465315 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-250 457866 458080 458178 "DOMTMPLT" 458310 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-249 457299 457668 457748 "DOMCTOR" 457806 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 456511 456779 456930 "DOMAIN" 457168 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 450499 456146 456298 "DMP" 456412 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 450099 450155 450299 "DLP" 450437 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 443921 449426 449616 "DLIST" 449941 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 440718 442774 442815 "DLAGG" 443365 NIL DLAGG (NIL T) -9 NIL 443595 NIL) (-243 439394 440058 440086 "DIVRING" 440178 T DIVRING (NIL) -9 NIL 440261 NIL) (-242 438631 438821 439121 "DIVRING-" 439126 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 436733 437090 437496 "DISPLAY" 438245 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 430621 436647 436710 "DIRPROD" 436715 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 429469 429672 429937 "DIRPROD2" 430414 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 418244 424250 424303 "DIRPCAT" 424713 NIL DIRPCAT (NIL NIL T) -9 NIL 425553 NIL) (-237 415570 416212 417093 "DIRPCAT-" 417430 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 414857 415017 415203 "DIOSP" 415404 T DIOSP (NIL) -7 NIL NIL NIL) (-235 411512 413769 413810 "DIOPS" 414244 NIL DIOPS (NIL T) -9 NIL 414473 NIL) (-234 411061 411175 411366 "DIOPS-" 411371 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 409884 410512 410540 "DIFRING" 410727 T DIFRING (NIL) -9 NIL 410837 NIL) (-232 409530 409607 409759 "DIFRING-" 409764 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 407266 408538 408579 "DIFEXT" 408942 NIL DIFEXT (NIL T) -9 NIL 409236 NIL) (-230 405551 405979 406645 "DIFEXT-" 406650 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 402826 405083 405124 "DIAGG" 405129 NIL DIAGG (NIL T) -9 NIL 405149 NIL) (-228 402210 402367 402619 "DIAGG-" 402624 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 397627 401169 401446 "DHMATRIX" 401979 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 393239 394148 395158 "DFSFUN" 396637 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 388317 392170 392482 "DFLOAT" 392947 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 386580 386861 387250 "DFINTTLS" 388025 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 383609 384601 385001 "DERHAM" 386246 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 381410 383384 383473 "DEQUEUE" 383553 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 380664 380797 380980 "DEGRED" 381272 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 377094 377839 378685 "DEFINTRF" 379892 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 374649 375118 375710 "DEFINTEF" 376613 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 373999 374269 374384 "DEFAST" 374554 T DEFAST (NIL) -8 NIL NIL NIL) (-217 368003 373594 373743 "DECIMAL" 373870 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 365515 365973 366479 "DDFACT" 367547 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 365111 365154 365305 "DBLRESP" 365466 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 362983 363344 363704 "DBASE" 364878 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 362225 362463 362609 "DATAARY" 362882 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 361331 362184 362212 "D03FAFA" 362217 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 360438 361290 361318 "D03EEFA" 361323 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 358388 358854 359343 "D03AGNT" 359969 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 357677 358347 358375 "D02EJFA" 358380 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 356966 357636 357664 "D02CJFA" 357669 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 356255 356925 356953 "D02BHFA" 356958 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 355544 356214 356242 "D02BBFA" 356247 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 348741 350330 351936 "D02AGNT" 353958 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 346509 347032 347578 "D01WGTS" 348215 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 345576 346468 346496 "D01TRNS" 346501 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 344644 345535 345563 "D01GBFA" 345568 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 343712 344603 344631 "D01FCFA" 344636 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 342780 343671 343699 "D01ASFA" 343704 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 341848 342739 342767 "D01AQFA" 342772 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 340916 341807 341835 "D01APFA" 341840 T D01APFA (NIL) -8 NIL NIL NIL) (-197 339984 340875 340903 "D01ANFA" 340908 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 339052 339943 339971 "D01AMFA" 339976 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 338120 339011 339039 "D01ALFA" 339044 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 337188 338079 338107 "D01AKFA" 338112 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 336256 337147 337175 "D01AJFA" 337180 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 329551 331104 332665 "D01AGNT" 334715 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 328888 329016 329168 "CYCLOTOM" 329419 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 325622 326336 327063 "CYCLES" 328181 T CYCLES (NIL) -7 NIL NIL NIL) (-189 324934 325068 325239 "CVMP" 325483 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 322775 323033 323402 "CTRIGMNP" 324662 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 322211 322569 322642 "CTOR" 322722 T CTOR (NIL) -8 NIL NIL NIL) (-186 321720 321942 322043 "CTORKIND" 322130 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 321011 321327 321355 "CTORCAT" 321537 T CTORCAT (NIL) -9 NIL 321650 NIL) (-184 320609 320720 320879 "CTORCAT-" 320884 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 320071 320283 320391 "CTORCALL" 320533 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-182 319445 319544 319697 "CSTTOOLS" 319968 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 315244 315901 316659 "CRFP" 318757 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 314719 314965 315057 "CRCEAST" 315172 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 313766 313951 314179 "CRAPACK" 314523 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 313150 313251 313455 "CPMATCH" 313642 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 312875 312903 313009 "CPIMA" 313116 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 309223 309895 310614 "COORDSYS" 312210 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 308635 308756 308898 "CONTOUR" 309101 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 304526 306638 307130 "CONTFRAC" 308175 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 304406 304427 304455 "CONDUIT" 304492 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 303494 304048 304076 "COMRING" 304081 T COMRING (NIL) -9 NIL 304133 NIL) (-171 302548 302852 303036 "COMPPROP" 303330 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 302209 302244 302372 "COMPLPAT" 302507 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 292500 302018 302127 "COMPLEX" 302132 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 292136 292193 292300 "COMPLEX2" 292437 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 291854 291889 291987 "COMPFACT" 292095 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 275934 285928 285968 "COMPCAT" 286972 NIL COMPCAT (NIL T) -9 NIL 288320 NIL) (-165 265446 268373 272000 "COMPCAT-" 272356 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 265175 265203 265306 "COMMUPC" 265412 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 264969 265003 265062 "COMMONOP" 265136 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 264525 264720 264807 "COMM" 264902 T COMM (NIL) -8 NIL NIL NIL) (-161 264101 264329 264404 "COMMAAST" 264470 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 263350 263544 263572 "COMBOPC" 263910 T COMBOPC (NIL) -9 NIL 264085 NIL) (-159 262246 262456 262698 "COMBINAT" 263140 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 258703 259277 259904 "COMBF" 261668 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 257461 257819 258054 "COLOR" 258488 T COLOR (NIL) -8 NIL NIL NIL) (-156 256937 257182 257274 "COLONAST" 257389 T COLONAST (NIL) -8 NIL NIL NIL) (-155 256577 256624 256749 "CMPLXRT" 256884 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 256025 256277 256376 "CLLCTAST" 256498 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 251523 252555 253635 "CLIP" 254965 T CLIP (NIL) -7 NIL NIL NIL) (-152 249869 250629 250868 "CLIF" 251350 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 246044 248015 248056 "CLAGG" 248985 NIL CLAGG (NIL T) -9 NIL 249521 NIL) (-150 244466 244923 245506 "CLAGG-" 245511 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 244010 244095 244235 "CINTSLPE" 244375 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 241511 241982 242530 "CHVAR" 243538 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 240685 241239 241267 "CHARZ" 241272 T CHARZ (NIL) -9 NIL 241287 NIL) (-146 240439 240479 240557 "CHARPOL" 240639 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 239497 240084 240112 "CHARNZ" 240159 T CHARNZ (NIL) -9 NIL 240215 NIL) (-144 237403 238151 238504 "CHAR" 239164 T CHAR (NIL) -8 NIL NIL NIL) (-143 237129 237190 237218 "CFCAT" 237329 T CFCAT (NIL) -9 NIL NIL NIL) (-142 236374 236485 236667 "CDEN" 237013 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 232339 235527 235807 "CCLASS" 236114 T CCLASS (NIL) -8 NIL NIL NIL) (-140 231590 231747 231924 "CATEGORY" 232182 T -10 (NIL) -8 NIL NIL NIL) (-139 231163 231509 231557 "CATCTOR" 231562 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 230614 230866 230964 "CATAST" 231085 T CATAST (NIL) -8 NIL NIL NIL) (-137 230090 230335 230427 "CASEAST" 230542 T CASEAST (NIL) -8 NIL NIL NIL) (-136 225099 226119 226872 "CARTEN" 229393 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 224207 224355 224576 "CARTEN2" 224946 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 222523 223357 223614 "CARD" 223970 T CARD (NIL) -8 NIL NIL NIL) (-133 222099 222327 222402 "CAPSLAST" 222468 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 221603 221811 221839 "CACHSET" 221971 T CACHSET (NIL) -9 NIL 222049 NIL) (-131 221073 221395 221423 "CABMON" 221473 T CABMON (NIL) -9 NIL 221529 NIL) (-130 220546 220777 220887 "BYTEORD" 220983 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 219529 220080 220222 "BYTE" 220385 T BYTE (NIL) -8 NIL NIL 220507) (-128 214879 219034 219206 "BYTEBUF" 219377 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 212388 214571 214678 "BTREE" 214805 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 209837 212036 212158 "BTOURN" 212298 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 207207 209307 209348 "BTCAT" 209416 NIL BTCAT (NIL T) -9 NIL 209493 NIL) (-124 206874 206954 207103 "BTCAT-" 207108 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 202139 206017 206045 "BTAGG" 206267 T BTAGG (NIL) -9 NIL 206428 NIL) (-122 201629 201754 201960 "BTAGG-" 201965 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 198624 200907 201122 "BSTREE" 201446 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 197762 197888 198072 "BRILL" 198480 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 194414 196488 196529 "BRAGG" 197178 NIL BRAGG (NIL T) -9 NIL 197436 NIL) (-118 192943 193349 193904 "BRAGG-" 193909 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 186172 192289 192473 "BPADICRT" 192791 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 184487 186109 186154 "BPADIC" 186159 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 184185 184215 184329 "BOUNDZRO" 184451 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 179413 180611 181523 "BOP" 183293 T BOP (NIL) -8 NIL NIL NIL) (-113 177194 177598 178073 "BOP1" 178971 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 176019 176768 176917 "BOOLEAN" 177065 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 175298 175702 175756 "BMODULE" 175761 NIL BMODULE (NIL T T) -9 NIL 175826 NIL) (-110 171099 175096 175169 "BITS" 175245 T BITS (NIL) -8 NIL NIL NIL) (-109 170520 170639 170779 "BINDING" 170979 T BINDING (NIL) -8 NIL NIL NIL) (-108 164527 170117 170265 "BINARY" 170392 T BINARY (NIL) -8 NIL NIL NIL) (-107 162307 163782 163823 "BGAGG" 164083 NIL BGAGG (NIL T) -9 NIL 164220 NIL) (-106 162138 162170 162261 "BGAGG-" 162266 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 161209 161522 161727 "BFUNCT" 161953 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159899 160077 160365 "BEZOUT" 161033 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 156368 158751 159081 "BBTREE" 159602 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 156102 156155 156183 "BASTYPE" 156302 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155954 155983 156056 "BASTYPE-" 156061 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 155388 155464 155616 "BALFACT" 155865 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 154244 154803 154989 "AUTOMOR" 155233 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153970 153975 154001 "ATTREG" 154006 T ATTREG (NIL) -9 NIL NIL NIL) (-97 152222 152667 153019 "ATTRBUT" 153636 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151830 152050 152116 "ATTRAST" 152174 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 151366 151479 151505 "ATRIG" 151706 T ATRIG (NIL) -9 NIL NIL NIL) (-94 151175 151216 151303 "ATRIG-" 151308 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150820 151006 151032 "ASTCAT" 151037 T ASTCAT (NIL) -9 NIL 151067 NIL) (-92 150547 150606 150725 "ASTCAT-" 150730 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148696 150323 150411 "ASTACK" 150490 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 147201 147498 147863 "ASSOCEQ" 148378 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 146233 146860 146984 "ASP9" 147108 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145996 146181 146220 "ASP8" 146225 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144864 145601 145743 "ASP80" 145885 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143762 144499 144631 "ASP7" 144763 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142716 143439 143557 "ASP78" 143675 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141685 142396 142513 "ASP77" 142630 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140597 141323 141454 "ASP74" 141585 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 139497 140232 140364 "ASP73" 140496 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138601 139323 139423 "ASP6" 139428 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137545 138278 138396 "ASP55" 138514 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 136494 137219 137338 "ASP50" 137457 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135582 136195 136305 "ASP4" 136415 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134670 135283 135393 "ASP49" 135503 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 133454 134209 134377 "ASP42" 134559 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 132230 132987 133157 "ASP41" 133341 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 131180 131907 132025 "ASP35" 132143 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130945 131128 131167 "ASP34" 131172 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130682 130749 130825 "ASP33" 130900 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129575 130317 130449 "ASP31" 130581 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 129340 129523 129562 "ASP30" 129567 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 129075 129144 129220 "ASP29" 129295 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128840 129023 129062 "ASP28" 129067 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128605 128788 128827 "ASP27" 128832 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127689 128303 128414 "ASP24" 128525 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126765 127491 127603 "ASP20" 127608 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125853 126466 126576 "ASP1" 126686 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124795 125527 125646 "ASP19" 125765 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124532 124599 124675 "ASP12" 124750 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 123384 124131 124275 "ASP10" 124419 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 121235 123228 123319 "ARRAY2" 123324 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 117000 120883 120997 "ARRAY1" 121152 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 116032 116205 116426 "ARRAY12" 116823 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 110344 112262 112337 "ARR2CAT" 114967 NIL ARR2CAT (NIL T T T) -9 NIL 115725 NIL) (-56 107778 108522 109476 "ARR2CAT-" 109481 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107095 107405 107530 "ARITY" 107671 T ARITY (NIL) -8 NIL NIL NIL) (-54 105871 106023 106322 "APPRULE" 106931 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105522 105570 105689 "APPLYORE" 105817 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104876 105115 105235 "ANY" 105420 T ANY (NIL) -8 NIL NIL NIL) (-51 104154 104277 104434 "ANY1" 104750 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101684 102591 102918 "ANTISYM" 103878 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 101176 101391 101487 "ANON" 101606 T ANON (NIL) -8 NIL NIL NIL) (-48 95425 99715 100169 "AN" 100740 T AN (NIL) -8 NIL NIL NIL) (-47 91323 92711 92762 "AMR" 93510 NIL AMR (NIL T T) -9 NIL 94110 NIL) (-46 90435 90656 91019 "AMR-" 91024 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74874 90352 90413 "ALIST" 90418 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71676 74468 74637 "ALGSC" 74792 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68231 68786 69393 "ALGPKG" 71116 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67508 67609 67793 "ALGMFACT" 68117 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63543 64122 64716 "ALGMANIP" 67092 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54913 63169 63319 "ALGFF" 63476 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 54109 54240 54419 "ALGFACT" 54771 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53050 53650 53688 "ALGEBRA" 53693 NIL ALGEBRA (NIL T) -9 NIL 53734 NIL) (-37 52768 52827 52959 "ALGEBRA-" 52964 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34861 50770 50822 "ALAGG" 50958 NIL ALAGG (NIL T T) -9 NIL 51119 NIL) (-35 34397 34510 34536 "AHYP" 34737 T AHYP (NIL) -9 NIL NIL NIL) (-34 33328 33576 33602 "AGG" 34101 T AGG (NIL) -9 NIL 34380 NIL) (-33 32762 32924 33138 "AGG-" 33143 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30568 30991 31396 "AF" 32404 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30048 30293 30383 "ADDAST" 30496 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29316 29575 29731 "ACPLOT" 29910 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18639 26443 26481 "ACFS" 27088 NIL ACFS (NIL T) -9 NIL 27327 NIL) (-28 16666 17156 17918 "ACFS-" 17923 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12784 14713 14739 "ACF" 15618 T ACF (NIL) -9 NIL 16031 NIL) (-26 11488 11822 12315 "ACF-" 12320 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 11060 11255 11281 "ABELSG" 11373 T ABELSG (NIL) -9 NIL 11438 NIL) (-24 10927 10952 11018 "ABELSG-" 11023 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10270 10557 10583 "ABELMON" 10753 T ABELMON (NIL) -9 NIL 10865 NIL) (-22 9934 10018 10156 "ABELMON-" 10161 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9282 9654 9680 "ABELGRP" 9752 T ABELGRP (NIL) -9 NIL 9827 NIL) (-20 8745 8874 9090 "ABELGRP-" 9095 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4334 8084 8123 "A1AGG" 8128 NIL A1AGG (NIL T) -9 NIL 8168 NIL) (-18 30 1252 2814 "A1AGG-" 2819 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index 90d717fe..d9aca9c5 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,9370 +1,1544 @@
-(732251 . 3462598956)
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1238 *5 *4)))
- (-5 *1 (-1113 *4 *5)) (-5 *3 (-1238 *5 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))))
+(733429 . 3462993426)
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-921))
- (-5 *2
- (-3 (-1171 *4)
- (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119)))))))
- (-5 *1 (-348 *4)) (-4 *4 (-351)))))
+ (-12 (-5 *3 (-645 (-922))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4417)) (-4 *1 (-492 *3))
+ (-4 *3 (-1216)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-59 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-59 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-5 *2 (-1270)) (-5 *1 (-1178))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175))
- (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *2 (-1270))
- (-5 *1 (-1178))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1175))
- (-5 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *2 (-1270))
- (-5 *1 (-1178)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-644 (-1175)))
- (-5 *2 (-644 (-644 (-381)))) (-5 *1 (-1023)) (-5 *5 (-381))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4)))))
- (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-952 *4)))
- (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547))
- (-5 *2 (-409 (-566)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547))
- (-4 *3 (-558))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-547)) (-5 *2 (-409 (-566)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547))
- (-5 *2 (-409 (-566)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547))
- (-4 *3 (-1099))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547))
- (-4 *3 (-1099))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547))
- (-5 *2 (-409 (-566)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3))
- (-4 *3 (-1038 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-971)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1280 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172))
- (-5 *1 (-664 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-664 *3 *4)) (-5 *1 (-1285 *3 *4))
- (-4 *3 (-850)) (-4 *4 (-172)))))
+ (-12
+ (-5 *3
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-508 *4 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-690 *2)) (-5 *4 (-772))
+ (-4 *2 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *5 (-1242 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-644 (-225))) (-5 *1 (-204)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))))
-(((*1 *1 *1) (-4 *1 (-173)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-843 (-381)))) (-5 *2 (-1093 (-843 (-225))))
- (-5 *1 (-306)))))
+ (-12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-5 *2 (-645 *5))
+ (-5 *1 (-891 *4 *5)) (-4 *5 (-1216)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1099)) (-4 *6 (-1099))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *5 (-1099)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))))
-(((*1 *1) (-5 *1 (-439))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-1123 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1084)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-848) (-365))) (-5 *2 (-112)) (-5 *1 (-1060 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454)) (-5 *1 (-362 *3 *4))
- (-14 *4 (-644 (-1175)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-452 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6))
- (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-452 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6))
- (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-452 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850))
- (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454))
- (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-171))))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-157))))
- ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-874))))
- ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *1) (-5 *1 (-823))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6))
- (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-4 *5 (-454)) (-5 *2 (-644 *6))
- (-5 *1 (-540 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-566)) (-5 *1 (-488 *4))
- (-4 *4 (-1241 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
- (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
- (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1099)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-245 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850)))
- (-14 *3 (-644 (-1175)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-644 (-1175))) (-4 *3 (-172))
- (-4 *5 (-238 (-3991 *2) (-771)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2430 *4) (|:| -3428 *5))
- (-2 (|:| -2430 *4) (|:| -3428 *5))))
- (-5 *1 (-463 *2 *3 *4 *5 *6 *7)) (-4 *4 (-850))
- (-4 *7 (-949 *3 *5 (-864 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1241 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-735 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1049))
- (-4 *3 (-726))))
- ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2723 *1)))
- (-4 *1 (-852 *3)))))
-(((*1 *2)
- (-12 (-14 *4 (-771)) (-4 *5 (-1215)) (-5 *2 (-134))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793))
- (-5 *2 (-566)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-980 *3)) (-4 *3 (-1049)) (-5 *2 (-921))))
- ((*1 *2) (-12 (-4 *1 (-1272 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
-(((*1 *1) (-5 *1 (-823))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-860)) (-5 *3 (-128)) (-5 *2 (-771)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3))
- (-5 *1 (-742 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-1163 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1267))))
- ((*1 *2 *1) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1267)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| |coef2| (-782 *3))))
- (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1))
- (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-399)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-126 *3)))))
+ (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
+ (-4 *3 (-1242 *4))
+ (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303))))
+ ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-949 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-454))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *5 (-909)) (-5 *1 (-459 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-909)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-538)) (-5 *1 (-537 *4))
- (-4 *4 (-1215)))))
-(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381)))
- ((*1 *1) (-5 *1 (-381))))
+ (-12 (-4 *2 (-950 *3 *5 *4)) (-5 *1 (-988 *3 *4 *5 *2))
+ (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *7)) (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1094 (-225))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1059)) (-4 *3 (-1200))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-752)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))))
-(((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-848)) (-5 *1 (-304 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-644 (-1175))) (-4 *5 (-238 (-3991 *3) (-771)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2430 *4) (|:| -3428 *5))
- (-2 (|:| -2430 *4) (|:| -3428 *5))))
- (-4 *2 (-172)) (-5 *1 (-463 *3 *2 *4 *5 *6 *7)) (-4 *4 (-850))
- (-4 *7 (-949 *2 *5 (-864 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-511 *2 *3)) (-4 *3 (-850)) (-4 *2 (-1099))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1241 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-708 *2)) (-4 *2 (-1049))))
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-850))
- (-4 *3 (-726))))
- ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-421 *3)) (-4 *3 (-548)) (-4 *3 (-559))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *3 (-792)) (-4 *4 (-850))
- (-4 *2 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1241 *2)) (-4 *2 (-1241 *4)) (-5 *1 (-985 *4 *2 *3 *5))
- (-4 *4 (-351)) (-4 *5 (-724 *2 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-1049)) (-4 *4 (-172))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))
- (-4 *3 (-172)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))
- (-4 *2 (-454))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-1241 (-566))) (-5 *2 (-644 (-566)))
- (-5 *1 (-488 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)) (-4 *3 (-454)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-4 *7 (-850))
- (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793)) (-4 *8 (-308))
- (-5 *2 (-644 (-771))) (-5 *1 (-742 *6 *7 *8 *9)) (-5 *5 (-771)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-656 *3)) (-4 *3 (-1049)) (-4 *3 (-365))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-771)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
- (-5 *1 (-659 *5 *2)) (-4 *2 (-656 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1024 *3))
- (-4 *3 (-13 (-848) (-365) (-1022)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3))
- (-4 *3 (-1241 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365)))
- (-4 *3 (-1241 *2)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1047)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))))
+ (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-548)) (-4 *3 (-1100))))
((*1 *2 *1)
- (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172))
- (-4 *6 (-238 (-3991 *3) (-771)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *6))
- (-2 (|:| -2430 *5) (|:| -3428 *6))))
- (-5 *2 (-713 *5 *6 *7)) (-5 *1 (-463 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-850)) (-4 *8 (-949 *4 *6 (-864 *3)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-548)) (-4 *3 (-1100))))
((*1 *2 *1)
- (-12 (-4 *2 (-726)) (-4 *2 (-850)) (-5 *1 (-735 *3 *2))
- (-4 *3 (-1049))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792))
- (-4 *4 (-850)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-819 *3)) (-4 *3 (-850)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049))
- (-4 *3 (-1099)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-612 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175)))
- (-4 *2 (-13 (-432 *5) (-27) (-1200)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *1 (-568 *5 *2 *6)) (-4 *6 (-1099)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $))
- (-15 -2702 ((-1124 *3 (-612 $)) $))
- (-15 -2725 ($ (-1124 *3 (-612 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $))
- (-15 -2702 ((-1124 *3 (-612 $)) $))
- (-15 -2725 ($ (-1124 *3 (-612 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *4 (-612 $)) $))
- (-15 -2702 ((-1124 *4 (-612 $)) $))
- (-15 -2725 ($ (-1124 *4 (-612 $)))))))
- (-4 *4 (-558)) (-5 *1 (-41 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-612 *2)))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *4 (-612 $)) $))
- (-15 -2702 ((-1124 *4 (-612 $)) $))
- (-15 -2725 ($ (-1124 *4 (-612 $)))))))
- (-4 *4 (-558)) (-5 *1 (-41 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *4 (-644 (-1175)))
- (-5 *2 (-689 (-317 (-225)))) (-5 *1 (-205))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-4 *6 (-900 *5)) (-5 *2 (-689 *6))
- (-5 *1 (-692 *5 *6 *3 *4)) (-4 *3 (-375 *6))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1208 *5 *6 *7 *3))
- (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-420 (-1171 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1171 *1))
- (-4 *4 (-454)) (-4 *4 (-558)) (-4 *4 (-1099))))
+ (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1197 *3)) (-4 *3 (-1049)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-547))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2))
- (-4 *2 (-1241 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175))
- (-4 *4 (-13 (-558) (-1038 (-566)) (-147))) (-5 *1 (-572 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))))
- ((*1 *2 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-689 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4))
- (-4 *3 (-419 *4))))
- ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225)))
- (|:| |lb| (-644 (-843 (-225))))
- (|:| |cf| (-644 (-317 (-225))))
- (|:| |ub| (-644 (-843 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-644 (-317 (-225))))
- (|:| -1342 (-644 (-225)))))))
- (-5 *2 (-644 (-1157))) (-5 *1 (-268)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1) (-4 *1 (-547))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-308))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-388 *3)) (|:| |rm| (-388 *3))))
- (-5 *1 (-388 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2383 (-771)) (|:| -3033 (-771))))
- (-5 *1 (-771))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1009 *3)) (-4 *3 (-1039 (-410 (-567)))))))
+(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-771)) (-5 *4 (-566)) (-5 *1 (-447 *2)) (-4 *2 (-1049)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-689 *4)) (-4 *4 (-1049)) (-5 *1 (-1141 *3 *4))
- (-14 *3 (-771)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-328 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-518 *3 *4))
- (-14 *4 (-566)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-508)) (-4 *4 (-1099)) (-5 *1 (-929 *4 *2))
- (-4 *2 (-432 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-508)) (-5 *2 (-317 (-566)))
- (-5 *1 (-930)))))
-(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-688 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3))
- (-4 *3 (-648 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3))
- (-4 *3 (-648 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049))))
- ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1217)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1138))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-351)) (-4 *6 (-1241 *5))
- (-5 *2
- (-644
- (-2 (|:| -2227 (-689 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-689 *6)))))
- (-5 *1 (-500 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2227 (-689 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-689 *6))))
- (-4 *7 (-1241 *6)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1179)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1) (-4 *1 (-243)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1241 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-2676 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1215)))
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1215)))))
- ((*1 *1 *1) (-4 *1 (-475)))
- ((*1 *2 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1157)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-566))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-313)) (-5 *1 (-297))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-297))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-1157))) (-5 *3 (-1157)) (-5 *2 (-313))
- (-5 *1 (-297)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1175)) (-5 *6 (-112))
- (-4 *7 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-4 *3 (-13 (-1200) (-959) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *7 *3)) (-5 *5 (-843 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |h| *6)
- (|:| |c1| (-409 *6)) (|:| |c2| (-409 *6)) (|:| -3638 *6)))
- (-5 *1 (-1016 *5 *6)) (-5 *3 (-409 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
- (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-5 *1 (-457 *3 *2)) (-4 *2 (-1241 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-5 *1 (-462 *3 *2)) (-4 *2 (-1241 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-771)))
- (-5 *1 (-541 *3 *2 *4 *5)) (-4 *2 (-1241 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3))
- (-4 *3 (-1099)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-558)) (-5 *1 (-969 *4 *2))
- (-4 *2 (-1241 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-365)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 (-409 *3)))
- (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-365)) (-4 *4 (-1241 *2))
- (-4 *5 (-1241 (-409 *4))) (-4 *1 (-337 *2 *4 *5 *6))
- (-4 *6 (-344 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-365)) (-4 *3 (-1241 *2)) (-4 *4 (-1241 (-409 *3)))
- (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4)))
- (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-415 *4 (-409 *4) *5 *6)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365))
- (-4 *1 (-337 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-1049)) (-5 *2 (-1265 *4))
- (-5 *1 (-1176 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-5 *2 (-1265 *3)) (-5 *1 (-1176 *3))
- (-4 *3 (-1049)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 *4) (-1002) (-1200)))
- (-5 *1 (-600 *4 *2 *3))
- (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1200))))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-331)))))
+(((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4407)) (-4 *1 (-407))))
+ ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922))))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700))))
+ ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-970 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
+(((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1094 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1094 (-225))))))
+(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1180)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 *8))
- (-4 *7 (-850)) (-4 *8 (-1049)) (-4 *9 (-949 *8 *6 *7))
- (-4 *6 (-793)) (-5 *2 (-1171 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-331))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-409 (-566)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566)))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8))
- (-5 *5 (-1232 (-409 (-566)))) (-5 *6 (-409 (-566)))
- (-4 *8 (-13 (-27) (-1200) (-432 *7)))
- (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-409 (-566))))
- (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *8)))
- (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-409 (-566))) (-4 *4 (-1049)) (-4 *1 (-1248 *4 *3))
- (-4 *3 (-1225 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
+ (-12 (-4 *1 (-1209 *2 *3 *4 *5)) (-4 *2 (-559)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *5 (-1065 *2 *3 *4)))))
+(((*1 *1) (-5 *1 (-440))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3))
- (-4 *3 (-13 (-432 *4) (-1002))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-112))
- (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-566)) (-4 *5 (-13 (-454) (-1038 *4) (-639 *4)))
- (-5 *2 (-52)) (-5 *1 (-316 *5 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3))))
+ (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *6 (-1242 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-454) (-1038 *5) (-639 *5))) (-5 *5 (-566))
- (-5 *2 (-52)) (-5 *1 (-316 *6 *3))))
+ (-12 (-5 *3 (-654 (-410 *7))) (-5 *4 (-1 (-645 *6) *7))
+ (-5 *5 (-1 (-421 *7) *7))
+ (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *7 (-1242 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *6 (-1242 *5)) (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1232 (-566)))
- (-4 *7 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-566)))
- (-4 *3 (-13 (-27) (-1200) (-432 *7)))
- (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-566)) (-4 *4 (-1049)) (-4 *1 (-1227 *4 *3))
- (-4 *3 (-1256 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1225 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-877 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-879 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *1 (-882 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-420 *4)) (-4 *4 (-558)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *5)) (-5 *1 (-885 *3 *4 *5))
- (-4 *3 (-1099)) (-4 *5 (-666 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-526)))))
-(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
+ (-12 (-5 *3 (-655 *7 (-410 *7))) (-5 *4 (-1 (-645 *6) *7))
+ (-5 *5 (-1 (-421 *7) *7))
+ (-4 *6 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *7 (-1242 *6)) (-5 *2 (-645 (-410 *7))) (-5 *1 (-813 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-654 (-410 *5))) (-4 *5 (-1242 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-1 (-421 *6) *6))
+ (-4 *6 (-1242 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-655 *5 (-410 *5))) (-4 *5 (-1242 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *5))) (-5 *1 (-813 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-1 (-421 *6) *6))
+ (-4 *6 (-1242 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-5 *2 (-645 (-410 *6))) (-5 *1 (-813 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-5 *2 (-566))
- (-5 *1 (-445 *5 *3 *6)) (-4 *3 (-1241 *5))
- (-4 *6 (-13 (-406) (-1038 *5) (-365) (-1200) (-285)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5))
- (-4 *3 (-1241 *4))
- (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7))))
- (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-689 *2)) (-5 *4 (-566))
- (-4 *2 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *5 (-1241 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7)))
- (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-909)) (-4 *5 (-1241 *4)) (-5 *2 (-420 (-1171 *5)))
- (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-824)) (-5 *3 (-644 (-1175))) (-5 *1 (-825)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4)))))
+ (-12 (-5 *4 (-922)) (-5 *2 (-1172 *3)) (-5 *1 (-1190 *3))
+ (-4 *3 (-365)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-1094 (-225)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-1094 (-225))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1158)) (-5 *1 (-306)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-567)) (-4 *6 (-365)) (-4 *6 (-370))
+ (-4 *6 (-1050)) (-5 *2 (-645 (-645 (-690 *6)))) (-5 *1 (-1030 *6))
+ (-5 *3 (-645 (-690 *6)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4)))))
+ (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1050))
+ (-5 *2 (-645 (-645 (-690 *4)))) (-5 *1 (-1030 *4))
+ (-5 *3 (-645 (-690 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-52)) (-5 *1 (-316 *5 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-295 *3)) (-5 *5 (-771))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *6 *3))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5))
+ (-5 *3 (-645 (-690 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6))
- (-4 *6 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1232 (-771)))
- (-4 *7 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-771)))
- (-4 *3 (-13 (-27) (-1200) (-432 *7)))
- (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1256 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-974)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1099)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-558)) (-5 *1 (-623 *2 *3)) (-4 *3 (-1241 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1185)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-771))
- (-4 *3 (-13 (-726) (-370) (-10 -7 (-15 ** (*3 *3 (-566))))))
- (-5 *1 (-246 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1175))
- (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-577 *4 *2))
- (-4 *2 (-13 (-1200) (-959) (-1138) (-29 *4))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558))))
- ((*1 *1 *1) (|partial| -4 *1 (-722))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-671))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921))
- (-14 *4 (-921)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225)))
- (-5 *1 (-697)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
+ (-12 (-5 *4 (-922)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5))
+ (-5 *3 (-645 (-690 *5))))))
(((*1 *2)
- (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4))
- (-4 *4 (-1241 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-483 *4 *5))
- (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-247 *5 *6))) (-4 *6 (-454))
- (-5 *2 (-247 *5 *6)) (-14 *5 (-644 (-1175))) (-5 *1 (-631 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1100) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1140 *4 *5)) (-4 *4 (-13 (-1100) (-34))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1094 (-225)))
+ (-5 *5 (-112)) (-5 *2 (-1268)) (-5 *1 (-258)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-421 *3)) (-4 *3 (-559)) (-5 *1 (-422 *3)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-213 *4 *2)) (-14 *4 (-922))
+ (-4 *2 (-1100)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-1259 *4 *2))
+ (-4 *4 (-38 (-410 (-567)))))))
+(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)) (-4 *2 (-1050))))
+ ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 *4))) (-5 *1 (-1186 *4))
- (-5 *3 (-644 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1175)) (-5 *6 (-644 (-612 *3)))
- (-5 *5 (-612 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *7)))
- (-4 *7 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3)))
- (-5 *1 (-559 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-4 *2 (-1099)) (-5 *1 (-680 *5 *6 *2)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *5 (-921))
- (-5 *2 (-1270)) (-5 *1 (-470))))
+ (|partial| -12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-479 *4 *5 *6 *7)) (|:| -2207 (-645 *7))))
+ (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 (-1 *6 (-645 *6))))
+ (-4 *5 (-38 (-410 (-567)))) (-4 *6 (-1257 *5)) (-5 *2 (-645 *6))
+ (-5 *1 (-1259 *5 *6)))))
+(((*1 *1) (-4 *1 (-968))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2))
+ (-4 *5 (-375 *2)) (-4 *2 (-1216))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1270)) (-5 *1 (-470))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-874)) (-5 *5 (-921))
- (-5 *2 (-1270)) (-5 *1 (-470)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-771))))
- ((*1 *1 *1) (-4 *1 (-404))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (|has| *1 (-6 -4416)) (-4 *1 (-1253 *3))
- (-4 *3 (-1215)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-612 *3))
- (-4 *3 (-13 (-432 *5) (-27) (-1200)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3)))
- (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1215)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4))
- (-14 *3 (-921)) (-4 *4 (-1049)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1027 *5 *6 *7 *3))) (-5 *1 (-1027 *5 *6 *7 *3))
- (-4 *3 (-1064 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-644 *6)) (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *2)) (-4 *3 (-454)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1145 *5 *6 *7 *3))) (-5 *1 (-1145 *5 *6 *7 *3))
- (-4 *3 (-1064 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099))))
- ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1156))))
- ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1175)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241)) (-5 *3 (-1157))))
- ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-241))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-486 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1256 *4))
- (-4 *4 (-38 (-409 (-566)))) (-5 *2 (-1 (-1155 *4) (-1155 *4)))
- (-5 *1 (-1258 *4 *5)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3145 (-644 (-1175))) (|:| -2424 (-644 (-1175)))))
- (-5 *1 (-1217)))))
-(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
- ((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308))))
- ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308))))
- ((*1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-566)))))
-(((*1 *2 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049))))
- ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-689 (-317 (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
- (-5 *1 (-205)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3))))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
+ (-12 (-5 *3 (-772)) (-4 *2 (-1100)) (-5 *1 (-213 *4 *2))
+ (-14 *4 (-922))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050)))))
+(((*1 *1 *1) (-5 *1 (-1063))))
(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))
- (-4 *3 (-558)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *1) (-4 *1 (-351)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-13 (-558) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-644 (-1171 *5)))
- (|:| |prim| (-1171 *5))))
- (-5 *1 (-434 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-558) (-147)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1171 *3))
- (|:| |pol2| (-1171 *3)) (|:| |prim| (-1171 *3))))
- (-5 *1 (-434 *4 *3)) (-4 *3 (-27)) (-4 *3 (-432 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-5 *4 (-1175)) (-4 *5 (-13 (-365) (-147)))
- (-5 *2
- (-2 (|:| |coef1| (-566)) (|:| |coef2| (-566))
- (|:| |prim| (-1171 *5))))
- (-5 *1 (-960 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175)))
- (-4 *5 (-13 (-365) (-147)))
- (-5 *2
- (-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 *5)))
- (|:| |prim| (-1171 *5))))
- (-5 *1 (-960 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-5 *5 (-1175))
- (-4 *6 (-13 (-365) (-147)))
- (-5 *2
- (-2 (|:| -1702 (-644 (-566))) (|:| |poly| (-644 (-1171 *6)))
- (|:| |prim| (-1171 *6))))
- (-5 *1 (-960 *6)))))
+ (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1242 (-169 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454))
- (-5 *2
- (-2 (|:| |dpolys| (-644 (-247 *5 *6)))
- (|:| |coords| (-644 (-566)))))
- (-5 *1 (-473 *5 *6 *7)) (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1241 *4)) (-5 *1 (-809 *4 *2 *3 *5))
- (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2))
- (-4 *5 (-656 (-409 *2))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-1101 (-771))) (-5 *6 (-771))
- (-5 *2
- (-2 (|:| |contp| (-566))
- (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566)))))))
- (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *1) (-5 *1 (-144)))
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5))
+ (-5 *2 (-645 (-2 (|:| -2131 *5) (|:| -2823 *3))))
+ (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6))
+ (-4 *7 (-657 (-410 *6))))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-264)))))
+ (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-76 G JACOBG JACGEP))))
+ (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1226 *4)) (-4 *4 (-1050)) (-4 *4 (-559))
+ (-5 *2 (-410 (-953 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1226 *4)) (-4 *4 (-1050)) (-4 *4 (-559))
+ (-5 *2 (-410 (-953 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-823)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-644 *6) "failed") (-566) *6 *6)) (-4 *6 (-365))
- (-4 *7 (-1241 *6))
- (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6)))
- (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-750)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-436))
- (-5 *2
- (-644
- (-3 (|:| -3534 (-1175))
- (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566)))))))))
- (-5 *1 (-1179)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *3 (-644 (-566)))
- (-5 *1 (-883)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-561)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))
- (-5 *2 (-644 (-1175))) (-5 *1 (-268))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-644 *5))
- (-5 *1 (-322 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-389))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-432 *3)) (-4 *3 (-1099)) (-5 *2 (-644 (-1175)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-644 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049))
- (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *5))
- (-5 *1 (-950 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-4 *5 (-850)) (-5 *2 (-644 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-5 *2 (-644 (-1175)))
- (-5 *1 (-1043 *4)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381)))
- (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270))
- (-5 *1 (-788)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1885 *3)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-365) (-147)))
- (-5 *2 (-644 (-2 (|:| -3428 (-771)) (|:| -2737 *4) (|:| |num| *4))))
- (-5 *1 (-401 *3 *4)) (-4 *4 (-1241 *3)))))
-(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-1 (-225) (-225) (-225) (-225)))
- (-5 *2 (-1 (-943 (-225)) (-225) (-225))) (-5 *1 (-697)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-771)) (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-921))
- (-5 *2 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119))))))
- (-5 *1 (-348 *4)) (-4 *4 (-351)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1266))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1267))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-264))) (-5 *1 (-1267)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1176))
+ (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1176))
+ (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3)))
- (-5 *1 (-766 *3 *4)) (-4 *3 (-708 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049))
- (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3))
- (-4 *3 (-852 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4)))
- (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1171 (-409 (-1171 *2)))) (-5 *4 (-612 *2))
- (-4 *2 (-13 (-432 *5) (-27) (-1200)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *1 (-562 *5 *2 *6)) (-4 *6 (-1099))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1171 *1)) (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *3 (-850))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1171 *4)) (-4 *4 (-1049)) (-4 *1 (-949 *4 *5 *3))
- (-4 *5 (-793)) (-4 *3 (-850))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-1171 *2))) (-4 *5 (-793)) (-4 *4 (-850))
- (-4 *6 (-1049))
- (-4 *2
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $)))))
- (-5 *1 (-950 *5 *4 *6 *7 *2)) (-4 *7 (-949 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-1171 (-409 (-952 *5))))) (-5 *4 (-1175))
- (-5 *2 (-409 (-952 *5))) (-5 *1 (-1043 *5)) (-4 *5 (-558)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-754)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1097 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
+ (|partial| -12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-1237 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566))
- (-14 *4 *2) (-4 *5 (-172))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-921)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-921))))
- ((*1 *2)
- (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3))
- (-5 *2 (-921))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-365))
- (-5 *2 (-771)) (-5 *1 (-667 *5))))
+ (-12 (-5 *2 (-171)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-748)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036)))))
+(((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416))))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-5 *2 (-771))
- (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3))
- (-4 *3 (-687 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558))
- (-5 *2 (-771)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1084))) (-5 *1 (-292)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4))
- (-5 *2 (-2 (|:| -1702 (-409 *5)) (|:| |poly| *3)))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1241 (-409 *5))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))
- ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))))
-(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1920 (-566)) (|:| -1502 (-644 *3))))
- (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-689 (-409 (-952 (-566)))))
- (-5 *2
- (-644
- (-2 (|:| |radval| (-317 (-566))) (|:| |radmult| (-566))
- (|:| |radvect| (-644 (-689 (-317 (-566))))))))
- (-5 *1 (-1031)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-644 (-921))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-921))
- (-4 *2 (-365)) (-14 *5 (-993 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-713 *5 *6 *7)) (-4 *5 (-850))
- (-4 *6 (-238 (-3991 *4) (-771)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *6))
- (-2 (|:| -2430 *5) (|:| -3428 *6))))
- (-14 *4 (-644 (-1175))) (-4 *2 (-172))
- (-5 *1 (-463 *4 *2 *5 *6 *7 *8)) (-4 *8 (-949 *2 *6 (-864 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-511 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-850))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4))
- (-4 *4 (-1241 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-735 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-726))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5))
- (-4 *4 (-1049)) (-4 *5 (-850))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049))
- (-4 *2 (-850))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6))
- (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *2 (-850))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 *5)) (-4 *1 (-973 *4 *5 *6))
- (-4 *4 (-1049)) (-4 *5 (-792)) (-4 *6 (-850))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-973 *4 *3 *2)) (-4 *4 (-1049)) (-4 *3 (-792))
- (-4 *2 (-850)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4))
- (-5 *1 (-530 *4)))))
+ (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381)))
+ (-5 *2 (-1036)) (-5 *1 (-841)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1171 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2))
- (-4 *2 (-687 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-4 *1 (-376 *3 *4))
- (-4 *4 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-419 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-921))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-921))
- (-5 *1 (-530 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1093 *3)) (-4 *3 (-949 *7 *6 *4)) (-4 *6 (-793))
- (-4 *4 (-850)) (-4 *7 (-558))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566))))
- (-5 *1 (-595 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-558))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-566))))
- (-5 *1 (-595 *5 *4 *6 *3)) (-4 *3 (-949 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1167 *4 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1200)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-160) (-27) (-1200)))
- (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1167 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566))))
- (-5 *2 (-409 (-952 *5))) (-5 *1 (-1168 *5)) (-5 *3 (-952 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566))))
- (-5 *2 (-3 (-409 (-952 *5)) (-317 *5))) (-5 *1 (-1168 *5))
- (-5 *3 (-409 (-952 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091 (-952 *5))) (-5 *3 (-952 *5))
- (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 *3))
- (-5 *1 (-1168 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5)))
- (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-3 *3 (-317 *5)))
- (-5 *1 (-1168 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-612 *4)) (-4 *4 (-1099)) (-4 *2 (-1099))
- (-5 *1 (-611 *2 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1157)) (-5 *1 (-97)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-644 (-566)))
- (|:| |cols| (-644 (-566)))))
- (-5 *4 (-689 *12)) (-5 *5 (-644 (-409 (-952 *9))))
- (-5 *6 (-644 (-644 *12))) (-5 *7 (-771)) (-5 *8 (-566))
- (-4 *9 (-13 (-308) (-147))) (-4 *12 (-949 *9 *11 *10))
- (-4 *10 (-13 (-850) (-614 (-1175)))) (-4 *11 (-793))
- (-5 *2
- (-2 (|:| |eqzro| (-644 *12)) (|:| |neqzro| (-644 *12))
- (|:| |wcond| (-644 (-952 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *9))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *9)))))))))
- (-5 *1 (-924 *9 *10 *11 *12)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1196))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1196)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1) (-5 *1 (-470))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1215))
- (-4 *5 (-1215)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-771))
- (-4 *7 (-1215)) (-4 *5 (-1215)) (-5 *2 (-240 *6 *5))
- (-5 *1 (-239 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1215)) (-4 *5 (-1215))
- (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1099)) (-4 *5 (-1099))
- (-4 *2 (-427 *5)) (-5 *1 (-425 *6 *4 *5 *2)) (-4 *4 (-427 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-644 *6)) (-4 *6 (-1215))
- (-4 *5 (-1215)) (-5 *2 (-644 *5)) (-5 *1 (-642 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-958 *6)) (-4 *6 (-1215))
- (-4 *5 (-1215)) (-5 *2 (-958 *5)) (-5 *1 (-957 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1155 *6)) (-4 *6 (-1215))
- (-4 *3 (-1215)) (-5 *2 (-1155 *3)) (-5 *1 (-1153 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1265 *6)) (-4 *6 (-1215))
- (-4 *5 (-1215)) (-5 *2 (-1265 *5)) (-5 *1 (-1264 *6 *5)))))
+ (-12 (-5 *3 (-1178 (-410 (-567)))) (-5 *2 (-410 (-567)))
+ (-5 *1 (-190)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-889 *4 *5)) (-5 *3 (-889 *4 *6)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-666 *5)) (-5 *1 (-885 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331))
- (-5 *1 (-333))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-1091 (-952 (-566)))) (-5 *2 (-331))
- (-5 *1 (-333))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-675 *3)) (-4 *3 (-1049))
- (-4 *3 (-1099)))))
-(((*1 *2)
- (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5)))
- (-5 *2 (-644 (-644 *4))) (-5 *1 (-343 *3 *4 *5 *6))
- (-4 *3 (-344 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-4 *3 (-370)) (-5 *2 (-644 (-644 *3))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049)))))
+ (-12 (-5 *2 (-645 (-1215))) (-5 *3 (-1215)) (-5 *1 (-682)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
- (-5 *1 (-205)))))
-(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1215)) (-5 *2 (-644 *1)) (-4 *1 (-1010 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002))))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-131))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-1258 *4 *2))
- (-4 *4 (-38 (-409 (-566)))))))
+ (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-645 (-225)))
+ (-5 *1 (-471)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-747)))))
-(((*1 *1) (-5 *1 (-1270))))
+ (-12 (-5 *3 (-645 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1217 *2))
+ (-4 *2 (-1100))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-851))
+ (-5 *1 (-1217 *2)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-169 (-225))))
+ (-5 *2 (-1036)) (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1270)) (-5 *1 (-1178))))
+ (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1271)) (-5 *1 (-1179))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1270))
- (-5 *1 (-1178))))
+ (-12 (-5 *4 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1271))
+ (-5 *1 (-1179))))
((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1270))
- (-5 *1 (-1178)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-566)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-755)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 *4))))
- (-5 *1 (-889 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))
- (-4 *7 (-1099)) (-5 *2 (-644 *1)) (-4 *1 (-1102 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *2 (-1035)) (-5 *1 (-751)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-493)) (-5 *4 (-954)) (-5 *2 (-691 (-535)))
- (-5 *1 (-535))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-954)) (-4 *3 (-1099)) (-5 *2 (-691 *1))
- (-4 *1 (-767 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558))
- (-5 *2 (-112)) (-5 *1 (-638 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112))
- (-5 *2 (-1035)) (-5 *1 (-753)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))
- (-5 *1 (-988 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))
- (-5 *1 (-1106 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))
- ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793))
- (-4 *3 (-850)) (-5 *2 (-771)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2) (-12 (-5 *1 (-901 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))
- ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3))))
- ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-566))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 *5)) (-4 *5 (-365))
- (-4 *5 (-558)) (-5 *2 (-1265 *5)) (-5 *1 (-638 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 *5))
- (-3129 (-4 *5 (-365))) (-4 *5 (-558)) (-5 *2 (-1265 (-409 *5)))
- (-5 *1 (-638 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-264))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-258)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1099)))))
+ (-12 (-5 *4 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1271))
+ (-5 *1 (-1179)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-409 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-558))
- (-4 *4 (-1049)) (-4 *2 (-1256 *4)) (-5 *1 (-1259 *4 *5 *6 *2))
- (-4 *6 (-656 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5))
- (-4 *5 (-166 *4)) (-4 *4 (-547)) (-5 *1 (-149 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 *3)) (-4 *3 (-1241 *5))
- (-4 *5 (-1241 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 (-1171 (-566)))) (-5 *3 (-1171 (-566)))
- (-5 *1 (-574))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 (-1171 *1))) (-5 *3 (-1171 *1))
- (-4 *1 (-909)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566))))
- (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566))))
- (-5 *4 (-317 (-381))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566))))
- (-5 *4 (-317 (-566))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-169 (-381)))))
- (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-566)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-169 (-381)))))
- (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-566)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-381))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-566))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566))))
- (-5 *4 (-317 (-694))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566))))
- (-5 *4 (-317 (-699))) (-5 *1 (-331))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-952 (-566))))
- (-5 *4 (-317 (-701))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-694)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-699)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-317 (-701)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-694)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-699)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-317 (-701)))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-694))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-699))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-701))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-694))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-699))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-689 (-701))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-694))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-699))) (-5 *1 (-331))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-317 (-701))) (-5 *1 (-331))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-331))))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
- (|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1215)) (-5 *1 (-873 *3 *2)) (-4 *3 (-1215))))
- ((*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
+ (-12 (-5 *3 (-1158)) (-5 *2 (-214 (-505))) (-5 *1 (-838)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049))
- (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566))))
- (-5 *2 (-2 (|:| -2516 *3) (|:| |nconst| *3))) (-5 *1 (-569 *5 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *5))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1265 (-1265 (-566)))) (-5 *3 (-921)) (-5 *1 (-468)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219))
- (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))))))
-(((*1 *1 *1) (-4 *1 (-1143))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1241 (-566))) (-5 *1 (-488 *3)))))
-(((*1 *1) (-5 *1 (-1266))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1215))
- (-5 *2 (-644 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1289 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-819 *3)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1265 *4)) (-4 *4 (-1215)) (-4 *1 (-238 *3 *4)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1627 *6) (|:| |sol?| (-112))) (-566)
- *6))
- (-4 *6 (-365)) (-4 *7 (-1241 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6))
- (-2 (|:| -2070 (-409 *7)) (|:| |coeff| (-409 *7))) "failed"))
- (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454)))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
(-5 *2
(-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1250 *4 *5 *6))
- (|:| |%expon| (-320 *4 *5 *6))
- (|:| |%expTerms|
- (-644 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4))))))
- (|:| |%type| (-1157))))
- (-5 *1 (-1251 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1200) (-432 *3)))
- (-14 *5 (-1175)) (-14 *6 *4))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-751)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1179)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1157)) (-5 *1 (-306)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 (-409 (-566))))
- (-5 *2
- (-644
- (-2 (|:| |outval| *4) (|:| |outmult| (-566))
- (|:| |outvect| (-644 (-689 *4))))))
- (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848))))))
-(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-4 *1 (-661))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175)))
- (-4 *5 (-454)) (-5 *2 (-644 (-247 *4 *5))) (-5 *1 (-631 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-112))
- (-5 *1 (-889 *4 *5)) (-4 *5 (-1099))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-892 *5)) (-4 *5 (-1099)) (-5 *2 (-112))
- (-5 *1 (-890 *5 *3)) (-4 *3 (-1215))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099))
- (-4 *6 (-1215)) (-5 *2 (-112)) (-5 *1 (-890 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-121 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-317 *4))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3)))
- (-5 *1 (-688 *3 *4 *5 *6)) (-4 *6 (-687 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-700 *3))
- (-4 *3 (-308)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-1197 *4))
- (-4 *4 (-1049)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1171 *6)) (-5 *3 (-566)) (-4 *6 (-308)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-661))))
-(((*1 *1) (-5 *1 (-508))))
-(((*1 *2)
- (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-345 *3 *4)) (-14 *3 (-921))
- (-14 *4 (-921))))
- ((*1 *2)
- (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-1171 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-958 (-1119))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-921)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-644
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-793)) (-4 *3 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850))
- (-5 *1 (-451 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566))))
- (-5 *1 (-190)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-117 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-566))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-871 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-871 *2)) (-14 *2 (-566))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-566)) (-14 *3 *2) (-5 *1 (-872 *3 *4))
- (-4 *4 (-869 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-566)) (-5 *1 (-872 *2 *3)) (-4 *3 (-869 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-566)) (-4 *1 (-1227 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-1256 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1227 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1256 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))
- ((*1 *1 *1) (-4 *1 (-1002)))
- ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-1012))))
- ((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1012))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-921))))
- ((*1 *1 *1) (-4 *1 (-1012))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-644
- (-2
- (|:| -3476
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -2484
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1155 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3192
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-561)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-644 (-317 (-225))))
- (|:| |constraints|
- (-644
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-771)) (|:| |boundaryType| (-566))
- (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225))))))
- (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157))
- (|:| |tol| (-225))))
- (-5 *2 (-112)) (-5 *1 (-210)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1200) (-959))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-1241 *4)) (-5 *1 (-541 *4 *2 *5 *6))
- (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-308))
- (-5 *2 (-771)) (-5 *1 (-457 *5 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-558))
- (-5 *2 (-2 (|:| -3444 (-689 *5)) (|:| |vec| (-1265 (-644 (-921))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-48))) (-5 *2 (-420 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1241 (-48)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1241 (-48)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793))
- (-5 *2 (-420 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-949 (-48) *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-48))) (-4 *5 (-850)) (-4 *6 (-793))
- (-4 *7 (-949 (-48) *6 *5)) (-5 *2 (-420 (-1171 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1171 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-167 *4 *3))
- (-4 *3 (-1241 (-169 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1241 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3))
- (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3))
- (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3))
- (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3))
- (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 (-169 (-566)))) (-5 *1 (-448))
- (-5 *3 (-169 (-566)))))
- ((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-850)
- (-10 -8 (-15 -2150 ((-1175) $))
- (-15 -2928 ((-3 $ "failed") (-1175))))))
- (-4 *5 (-793)) (-4 *7 (-558)) (-5 *2 (-420 *3))
- (-5 *1 (-458 *4 *5 *6 *7 *3)) (-4 *6 (-558))
- (-4 *3 (-949 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-308)) (-5 *2 (-420 (-1171 *4))) (-5 *1 (-460 *4))
- (-5 *3 (-1171 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365))
- (-4 *7 (-13 (-365) (-147) (-724 *5 *6))) (-5 *2 (-420 *3))
- (-5 *1 (-496 *5 *6 *7 *3)) (-4 *3 (-1241 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7)))
- (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793))
- (-5 *2 (-420 *3)) (-5 *1 (-542 *5 *6 *7 *3))
- (-4 *3 (-949 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-420 (-1171 *7)) (-1171 *7)))
- (-4 *7 (-13 (-308) (-147))) (-4 *5 (-850)) (-4 *6 (-793))
- (-4 *8 (-949 *7 *6 *5)) (-5 *2 (-420 (-1171 *8)))
- (-5 *1 (-542 *5 *6 *7 *8)) (-5 *3 (-1171 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-644 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *6 (-1241 *5)) (-5 *2 (-644 (-653 (-409 *6))))
- (-5 *1 (-657 *5 *6)) (-5 *3 (-653 (-409 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *5 (-1241 *4)) (-5 *2 (-644 (-653 (-409 *5))))
- (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-672 *4)))
- (-5 *1 (-672 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-566)) (-5 *2 (-644 *3)) (-5 *1 (-696 *3))
- (-4 *3 (-1241 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351)) (-5 *2 (-420 *3))
- (-5 *1 (-698 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-351))
- (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7)))
- (-5 *1 (-698 *4 *5 *6 *7)) (-5 *3 (-1171 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793))
- (-4 *5
- (-13 (-850)
- (-10 -8 (-15 -2150 ((-1175) $))
- (-15 -2928 ((-3 $ "failed") (-1175))))))
- (-4 *6 (-308)) (-5 *2 (-420 *3)) (-5 *1 (-730 *4 *5 *6 *3))
- (-4 *3 (-949 (-952 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793))
- (-4 *5 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *6 (-558))
- (-5 *2 (-420 *3)) (-5 *1 (-732 *4 *5 *6 *3))
- (-4 *3 (-949 (-409 (-952 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-13 (-308) (-147)))
- (-5 *2 (-420 *3)) (-5 *1 (-733 *4 *5 *6 *3))
- (-4 *3 (-949 (-409 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147)))
- (-5 *2 (-420 *3)) (-5 *1 (-741 *4 *5 *6 *3))
- (-4 *3 (-949 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-420 (-1171 *7)))
- (-5 *1 (-741 *4 *5 *6 *7)) (-5 *3 (-1171 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3))
- (-4 *3 (-1241 (-409 (-566))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-1041 *3))
- (-4 *3 (-1241 (-409 (-952 (-566)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1241 (-409 (-566))))
- (-4 *5 (-13 (-365) (-147) (-724 (-409 (-566)) *4)))
- (-5 *2 (-420 *3)) (-5 *1 (-1078 *4 *5 *3)) (-4 *3 (-1241 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1241 (-409 (-952 (-566)))))
- (-4 *5 (-13 (-365) (-147) (-724 (-409 (-952 (-566))) *4)))
- (-5 *2 (-420 *3)) (-5 *1 (-1080 *4 *5 *3)) (-4 *3 (-1241 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454))
- (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7))))
- (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1219))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-1230 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1267))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-192)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *5 (-1157))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-82 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1035))
- (-5 *1 (-750)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-103 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-689 *4))) (-4 *4 (-172))
- (-5 *2 (-1265 (-689 (-952 *4)))) (-5 *1 (-189 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454))
- (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-268)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-419 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1035)) (-5 *1 (-306))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1035))) (-5 *2 (-1035)) (-5 *1 (-306))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-651 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *1) (-5 *1 (-1062)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1152 *4))
- (-4 *4 (-1215))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1265 (-1175))) (-5 *3 (-1265 (-455 *4 *5 *6 *7)))
- (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921))
- (-14 *6 (-644 (-1175))) (-14 *7 (-1265 (-689 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1265 (-455 *4 *5 *6 *7)))
- (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-921))
- (-14 *6 (-644 *2)) (-14 *7 (-1265 (-689 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-455 *3 *4 *5 *6))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175)))
- (-14 *6 (-1265 (-689 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-1175))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-172)) (-14 *4 (-921)) (-14 *5 (-644 (-1175)))
- (-14 *6 (-1265 (-689 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1175)) (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-921)) (-14 *5 (-644 *2)) (-14 *6 (-1265 (-689 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-455 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-921))
- (-14 *4 (-644 (-1175))) (-14 *5 (-1265 (-689 *2))))))
-(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *1 (-688 *4 *5 *6 *2))
- (-4 *2 (-687 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-661))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)) (-5 *3 (-1157)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1141 *4 *2)) (-14 *4 (-921))
- (-4 *2 (-13 (-1049) (-10 -7 (-6 (-4417 "*")))))
- (-5 *1 (-902 *4 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1241 (-409 (-566))))
- (-5 *2 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566))))
- (-5 *1 (-913 *3 *4)) (-4 *4 (-1241 (-409 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1241 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3))
- (-4 *3 (-1241 (-409 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-566)) (-5 *1 (-942)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1241 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
- (-5 *1 (-121 *3)) (-4 *3 (-850))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-587 *4)) (-4 *4 (-13 (-29 *3) (-1200)))
- (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-585 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-587 (-409 (-952 *3))))
- (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *1 (-590 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -1741 *3) (|:| |special| *3))) (-5 *1 (-727 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1265 *5)) (-4 *5 (-365)) (-4 *5 (-1049))
- (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5))
- (-5 *3 (-644 (-689 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1265 (-1265 *5))) (-4 *5 (-365)) (-4 *5 (-1049))
- (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5))
- (-5 *3 (-644 (-689 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-644 *1)) (-4 *1 (-1143))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-644 *1)) (-4 *1 (-1143)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-703 *3))
- (-4 *3 (-614 (-538)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1175)) (-5 *2 (-1 (-225) (-225) (-225)))
- (-5 *1 (-703 *3)) (-4 *3 (-614 (-538))))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4415)) (-4 *1 (-34)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-250))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-566))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-846)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-793))
- (-4 *5 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *6 (-558))
- (-5 *2 (-2 (|:| -3288 (-952 *6)) (|:| -4335 (-952 *6))))
- (-5 *1 (-732 *4 *5 *6 *3)) (-4 *3 (-949 (-409 (-952 *6)) *4 *5)))))
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1156 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3674
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-562)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1256 *3)))))
+ (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1257 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-980 *2)) (-4 *2 (-1049))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1049)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-566)) (-4 *4 (-351))
- (-5 *1 (-530 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-644 *2))) (-5 *4 (-644 *5))
- (-4 *5 (-38 (-409 (-566)))) (-4 *2 (-1256 *5))
- (-5 *1 (-1258 *5 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-420 *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-1049)) (-5 *2 (-644 *6)) (-5 *1 (-446 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-612 *1)) (-4 *1 (-432 *4)) (-4 *4 (-1099))
- (-4 *4 (-558)) (-5 *2 (-409 (-1171 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-1171 (-409 (-1171 *3)))) (-5 *1 (-562 *6 *3 *7))
- (-5 *5 (-1171 *3)) (-4 *7 (-1099))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1261 *5)) (-14 *5 (-1175)) (-4 *6 (-1049))
- (-5 *2 (-1238 *5 (-952 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-952 *6))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-772))))
((*1 *2 *1)
- (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-1171 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850)) (-5 *2 (-1171 *1))
- (-4 *1 (-949 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-793)) (-4 *4 (-850)) (-4 *6 (-1049))
- (-4 *7 (-949 *6 *5 *4)) (-5 *2 (-409 (-1171 *3)))
- (-5 *1 (-950 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1171 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $)))))
- (-4 *7 (-949 *6 *5 *4)) (-4 *5 (-793)) (-4 *4 (-850))
- (-4 *6 (-1049)) (-5 *1 (-950 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-4 *5 (-558))
- (-5 *2 (-409 (-1171 (-409 (-952 *5))))) (-5 *1 (-1043 *5))
- (-5 *3 (-409 (-952 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3))
- (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5)))))
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175))
+ (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176))
(-14 *4 *2))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4)))
- (-5 *2 (-1265 *6)) (-5 *1 (-338 *3 *4 *5 *6))
- (-4 *6 (-344 *3 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-792)) (-4 *3 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-779 *4))
- (-4 *4 (-13 (-365) (-848))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 (-409 (-952 (-566))))) (-5 *4 (-644 (-1175)))
- (-5 *2 (-644 (-644 *5))) (-5 *1 (-382 *5))
- (-4 *5 (-13 (-848) (-365)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 *4)) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-848) (-365))))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566)))))
- (-4 *5 (-850)) (-5 *1 (-1281 *4 *5 *2)) (-4 *2 (-1286 *5 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-317 *5)))
- (-5 *1 (-1128 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175)))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-317 *5))))
- (-5 *1 (-1128 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1205 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566))
- (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-558))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))
- (-4 *2 (-558))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-558)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049))
- (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-558))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-771)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-558))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-558))
- (-5 *1 (-969 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049))
- (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-558))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))
- ((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1) (-4 *1 (-869 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-973 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-792))
- (-4 *4 (-850)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-174 *3)) (-4 *3 (-308))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-674 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-740 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-850))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *1 (-980 *3)) (-4 *3 (-1049))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7))
- (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6))))
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-644 (-409 *6))) (-5 *3 (-409 *6))
- (-4 *6 (-1241 *5)) (-4 *5 (-13 (-365) (-147) (-1038 (-566))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-570 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-281)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-32 *3 *4))
- (-4 *4 (-432 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-55)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *1 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-158 *3 *4))
- (-4 *4 (-432 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-114)) (-5 *1 (-163))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-277 *3 *4))
- (-4 *4 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303))))
- ((*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *4 (-1099)) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-433 *3 *4))
- (-4 *4 (-432 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-4 *3 (-558)) (-5 *1 (-630 *3 *4))
- (-4 *4 (-13 (-432 *3) (-1002) (-1200)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-1155 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175)))
- (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *4 (-644 (-1175)))
- (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-771))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *2 (-1270)) (-5 *1 (-451 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))))
+ (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-1066)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-819 *3)) (|:| |rm| (-819 *3))))
- (-5 *1 (-819 *3)) (-4 *3 (-850))))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *1) (-5 *1 (-157))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566))))
- (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-4 *4 (-558)) (-4 *5 (-1241 *4))
- (-5 *2 (-2 (|:| -1719 (-623 *4 *5)) (|:| -4167 (-409 *5))))
- (-5 *1 (-623 *4 *5)) (-5 *3 (-409 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4))
- (-14 *3 (-921)) (-4 *4 (-1049))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-454)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1241 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-313)) (-5 *1 (-829)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927))
- (-5 *1 (-925 *3)) (-4 *3 (-614 (-538)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-5 *2 (-927)) (-5 *1 (-925 *3))
- (-4 *3 (-614 (-538)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-927))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-927)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-822)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-419 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))
- (-5 *2 (-381)) (-5 *1 (-268))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1241 *4))
- (-5 *1 (-777 *3 *4 *5 *2 *6)) (-4 *2 (-1241 *5)) (-14 *6 (-921))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
- ((*1 *1 *1) (-12 (-4 *1 (-1284 *2)) (-4 *2 (-365)) (-4 *2 (-370)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-943 *5)) (-5 *3 (-771)) (-4 *5 (-1049))
- (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215))
- (-4 *3 (-1099)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-112))
- (-5 *1 (-904 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-921)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))))
-(((*1 *1)
- (-12 (-4 *1 (-406)) (-3129 (|has| *1 (-6 -4406)))
- (-3129 (|has| *1 (-6 -4398)))))
- ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850))))
- ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850)))
- ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))))
+ (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-567)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-566))) (-5 *4 (-566)) (-5 *2 (-52))
- (-5 *1 (-1005)))))
+ (-12 (-5 *3 (-645 (-225))) (-5 *4 (-772)) (-5 *2 (-690 (-225)))
+ (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-566))
- (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566)))))))
- (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112))
- (-5 *2
- (-2 (|:| |contp| (-566))
- (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566)))))))
- (-5 *1 (-1230 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-771)))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1155 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1049))
- (-5 *3 (-409 (-566))) (-5 *1 (-1159 *4)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-409 *6)) (|:| |c| (-409 *6))
- (|:| -3638 *6)))
- (-5 *1 (-1015 *5 *6)) (-5 *3 (-409 *6)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225))
- (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *3)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454))
- (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-451 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-169 (-381))) (-5 *1 (-785 *3)) (-4 *3 (-614 (-381)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-5 *2 (-169 (-381))) (-5 *1 (-785 *3))
- (-4 *3 (-614 (-381)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-614 (-381)))
- (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 *5)) (-5 *4 (-921)) (-4 *5 (-172))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-614 (-381)))
- (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 (-381)))
- (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 (-381)))
- (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381)))
- (-5 *1 (-785 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-689 *3))
- (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-737 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099))))
- ((*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-1099)))))
-(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-771)))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1215))
- (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-1171 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *4 (-612 $)) $))
- (-15 -2702 ((-1124 *4 (-612 $)) $))
- (-15 -2725 ($ (-1124 *4 (-612 $))))))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-559 *6 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-772))))
((*1 *2 *1)
- (-12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-771)))))
-(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-548))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1175)) (-5 *3 (-1157)) (-5 *1 (-989))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1093 *4)) (-4 *4 (-1215))
- (-5 *1 (-1091 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558))
- (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8))))
- (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292)))
- ((*1 *1) (-5 *1 (-862)))
- ((*1 *1)
- (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793))
- (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1084)))
- ((*1 *1)
- (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34)))))
- ((*1 *1) (-5 *1 (-1178))) ((*1 *1) (-5 *1 (-1179))))
-(((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-587 *3) *3 (-1175)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1175)))
- (-4 *3 (-285)) (-4 *3 (-629)) (-4 *3 (-1038 *4)) (-4 *3 (-432 *7))
- (-5 *4 (-1175)) (-4 *7 (-614 (-892 (-566)))) (-4 *7 (-454))
- (-4 *7 (-886 (-566))) (-4 *7 (-1099)) (-5 *2 (-587 *3))
- (-5 *1 (-575 *7 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-566) (-566))) (-5 *1 (-363 *3)) (-4 *3 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-771) (-771))) (-5 *1 (-388 *3)) (-4 *3 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-644 (-689 *6))) (-5 *4 (-112)) (-5 *5 (-566))
- (-5 *2 (-689 *6)) (-5 *1 (-1029 *6)) (-4 *6 (-365)) (-4 *6 (-1049))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-5 *1 (-1029 *4))
- (-4 *4 (-365)) (-4 *4 (-1049))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-5 *2 (-689 *5))
- (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-1049)))))
-(((*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536))))
- ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1232 *3)) (-4 *3 (-1215)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-772)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-381)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
-(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
-(((*1 *2) (-12 (-5 *2 (-843 (-566))) (-5 *1 (-536))))
- ((*1 *1) (-12 (-5 *1 (-843 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-622 *4 *2)) (-4 *2 (-13 (-1200) (-959) (-29 *4))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-644
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850))
- (-5 *1 (-451 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *3 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-451 *4 *3 *5 *6)) (-4 *6 (-949 *4 *3 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-4 *3 (-1099))
- (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1241 (-566))) (-5 *1 (-488 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
-(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-128)))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-365)) (-4 *3 (-1050))
+ (-5 *1 (-1160 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-689 (-409 (-952 (-566)))))
- (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031))
- (-5 *3 (-317 (-566))))))
-(((*1 *1 *1) (-5 *1 (-538))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-821)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-684 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1150))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-771) *2)) (-5 *4 (-771)) (-4 *2 (-1099))
- (-5 *1 (-678 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-771) *3)) (-4 *3 (-1099)) (-5 *1 (-682 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1049))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-105)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-612 *1))) (-4 *1 (-303)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-1146 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-1187 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-1038 (-566)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1099)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-683 *4 *5)) (-4 *4 (-1099))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1049)) (-5 *1 (-1288 *2 *3)) (-4 *3 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926))))
- ((*1 *2 *1) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1265 (-1265 (-566)))) (-5 *1 (-468)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1241 *4))
- (-5 *2 (-2 (|:| |ans| (-409 *5)) (|:| |nosol| (-112))))
- (-5 *1 (-1015 *4 *5)) (-5 *3 (-409 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1215)) (-4 *2 (-850))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
+ (|partial| -12 (-5 *4 (-1176)) (-4 *5 (-615 (-893 (-567))))
+ (-4 *5 (-887 (-567)))
+ (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-570 *5 *3)) (-4 *3 (-630))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1176)) (-5 *4 (-844 *2)) (-4 *2 (-1139))
+ (-4 *2 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-615 (-893 (-567)))) (-4 *5 (-887 (-567)))
+ (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567))))
+ (-5 *1 (-570 *5 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-1163 *3 *4))) (-5 *1 (-1163 *3 *4))
- (-14 *3 (-921)) (-4 *4 (-1049))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 (-943 *4))) (-4 *1 (-1133 *4)) (-4 *4 (-1049))
- (-5 *2 (-771)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-726)) (-5 *2 (-112)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
- (-14 *4 (-1175)) (-14 *5 *3))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-292)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771))
- (-4 *4 (-172))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-432 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-172)))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049))
- (-14 *4 (-644 (-1175)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-566)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850)))
- (-14 *4 (-644 (-1175)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850))
- (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-276))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 *8)) (-5 *4 (-644 *6)) (-4 *6 (-850))
- (-4 *8 (-949 *7 *5 *6)) (-4 *5 (-793)) (-4 *7 (-1049))
- (-5 *2 (-644 (-771))) (-5 *1 (-322 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172))
- (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-472 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4))
- (-4 *4 (-1241 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-708 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *6)) (-4 *1 (-949 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-771)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-949 *4 *5 *3)) (-4 *4 (-1049)) (-4 *5 (-793))
- (-4 *3 (-850)) (-5 *2 (-771))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *2 *4)) (-4 *3 (-1049)) (-4 *4 (-850))
- (-4 *2 (-792))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-771))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1256 *3))
- (-5 *2 (-566))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1225 *3))
- (-5 *2 (-409 (-566)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-771)))))
-(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))))
-(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-1157)) (-5 *1 (-786)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270))
- (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270))
- (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-848)) (-4 *4 (-365)) (-5 *2 (-771))
- (-5 *1 (-945 *4 *5)) (-4 *5 (-1241 *4)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172))
- (-4 *5 (-238 (-3991 *3) (-771)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *5))
- (-2 (|:| -2430 *2) (|:| -3428 *5))))
- (-4 *2 (-850)) (-5 *1 (-463 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-949 *4 *5 (-864 *3))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-1265 *4))
- (-5 *1 (-814 *4 *3)) (-4 *3 (-656 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-841)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-840))))
- ((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-644 (-381))) (-5 *5 (-644 (-843 (-381))))
- (-5 *6 (-644 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1035))
- (-5 *1 (-840))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381)))
- (-5 *5 (-644 (-843 (-381)))) (-5 *2 (-1035)) (-5 *1 (-840))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-381))) (-5 *2 (-1035))
- (-5 *1 (-840))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381)))
- (-5 *2 (-1035)) (-5 *1 (-840)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1268)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-558) (-147)))
- (-5 *2 (-2 (|:| -1616 *3) (|:| -1627 *3))) (-5 *1 (-1235 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1060 (-1024 *4) (-1171 (-1024 *4)))) (-5 *3 (-862))
- (-5 *1 (-1024 *4)) (-4 *4 (-13 (-848) (-365) (-1022))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-771)) (-5 *4 (-1265 *2)) (-4 *5 (-308))
- (-4 *6 (-992 *5)) (-4 *2 (-13 (-411 *6 *7) (-1038 *6)))
- (-5 *1 (-415 *5 *6 *7 *2)) (-4 *7 (-1241 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-759)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099))
- (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049))))
+ (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-865 *3)) (-14 *3 (-645 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-990))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1092 *3)) (-4 *3 (-1216))))
((*1 *2 *1)
- (-12 (-4 *3 (-558)) (-5 *2 (-112)) (-5 *1 (-623 *3 *4))
- (-4 *4 (-1241 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-726))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-112)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-415 *3 *4 *5 *6)) (-4 *6 (-1038 *4)) (-4 *3 (-308))
- (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-4 *6 (-411 *4 *5))
- (-14 *7 (-1265 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1265 *6)) (-4 *6 (-411 *4 *5)) (-4 *4 (-992 *3))
- (-4 *5 (-1241 *4)) (-4 *3 (-308)) (-5 *1 (-416 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454))
- (-5 *1 (-918 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035))
- (-5 *1 (-748)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-454)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793))
- (-5 *2
- (-2 (|:| |mval| (-689 *4)) (|:| |invmval| (-689 *4))
- (|:| |genIdeal| (-506 *4 *5 *6 *7))))
- (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049))
- (-4 *6 (-1241 *5)) (-5 *2 (-1171 (-1171 *7)))
- (-5 *1 (-503 *5 *6 *4 *7)) (-4 *4 (-1241 *6)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3))
- (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2))
- (-4 *2 (-687 *3 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-151 *2)) (-4 *2 (-1215))
- (-4 *2 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))
- (-5 *2 (-409 (-566))) (-5 *1 (-1020 *4)) (-4 *4 (-1241 (-566))))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-644 (-264))) (-5 *1 (-1267))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1157)) (-5 *1 (-1267))))
- ((*1 *1 *1) (-5 *1 (-1267))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-952 *6)) (-5 *4 (-1175))
- (-5 *5 (-843 *7))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-4 *7 (-13 (-1200) (-29 *6))) (-5 *1 (-224 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1171 *6)) (-5 *4 (-843 *6))
- (-4 *6 (-13 (-1200) (-29 *5)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-224 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
- ((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1241 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1241 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1049))
- (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285)))
- (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4))))
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-5 *2 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1262 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-756)))))
+(((*1 *1) (-5 *1 (-581)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-864))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-864))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-4 *5 (-1049))
- (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1200) (-285)))
- (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-771)) (-5 *2 (-1270)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9))))
- (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1270))
- (-5 *1 (-1068 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9))))
- (-5 *4 (-771)) (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-1270))
- (-5 *1 (-1144 *5 *6 *7 *8 *9)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-59 *3)) (-4 *3 (-1215))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-59 *3)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-647 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-689 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-308)) (-5 *2 (-771)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-5 *2 (-1171 *3)) (-5 *1 (-1189 *3))
- (-4 *3 (-365)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1099) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 (-1 *6 (-644 *6))))
- (-4 *5 (-38 (-409 (-566)))) (-4 *6 (-1256 *5)) (-5 *2 (-644 *6))
- (-5 *1 (-1258 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-1075 *3 *4 *5))) (-4 *3 (-1099))
- (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3))))
- (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))
- (-5 *1 (-1076 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566))))
- ((*1 *1 *1) (-5 *1 (-1119))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *2 (-644 (-169 *4)))
- (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1214))) (-5 *3 (-1214)) (-5 *1 (-681)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850))))
- ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1208 *2 *3 *4 *5)) (-4 *2 (-558))
- (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4))))
+ (-12 (-5 *3 (-1158)) (-5 *4 (-863)) (-5 *2 (-1271)) (-5 *1 (-864))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1156 *4))
+ (-4 *4 (-1100)) (-4 *4 (-1216)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-410 *6))
+ (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1257 *5)) (-4 *6 (-1242 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1258 *5 *6 *7)) (-4 *5 (-365))
+ (-14 *6 (-1176)) (-14 *7 *5) (-5 *2 (-410 (-1239 *6 *5)))
+ (-5 *1 (-869 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-772)) (-5 *4 (-1258 *5 *6 *7)) (-4 *5 (-365))
+ (-14 *6 (-1176)) (-14 *7 *5) (-5 *2 (-410 (-1239 *6 *5)))
+ (-5 *1 (-869 *5 *6 *7)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-172))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1253 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1287 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1050)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-248)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-175))))
+ (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-175))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-508)) (-5 *2 (-691 (-109))) (-5 *1 (-1084)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-1064 *3 *4 *2)) (-4 *2 (-850))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112))
- (-5 *1 (-359 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-112))
- (-5 *1 (-530 *4)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
- (-5 *2 (-1171 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
- (-5 *2 (-1171 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566))))
- ((*1 *1 *1 *1) (-5 *1 (-1119))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-756)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-848)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -1502 (-420 *3))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-604 *3 *2)) (-4 *3 (-1099)) (-4 *3 (-850))
- (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850))))
- ((*1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1215)) (-5 *1 (-873 *2 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1253 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-509)) (-5 *2 (-692 (-109))) (-5 *1 (-1085)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-645 (-1239 *5 *4)))
+ (-5 *1 (-1114 *4 *5)) (-5 *3 (-1239 *5 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-850))
- (-4 *5 (-793)) (-4 *2 (-267 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *8)) (-5 *4 (-771)) (-4 *8 (-949 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175))))
- (-4 *7 (-793))
- (-5 *2
- (-644
- (-2 (|:| |det| *8) (|:| |rows| (-644 (-566)))
- (|:| |cols| (-644 (-566))))))
- (-5 *1 (-924 *5 *6 *7 *8)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-502 *2)) (-14 *2 (-566))))
- ((*1 *1 *1 *1) (-5 *1 (-1119))))
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-439)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-644 (-771))) (-5 *1 (-969 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-839))
- (-5 *3
- (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225)))
- (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225))))
- (|:| |ub| (-644 (-843 (-225))))))
- (-5 *2 (-1035))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-839))
- (-5 *3
- (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))
- (-5 *2 (-1035)))))
+ (-12 (-4 *1 (-696 *3)) (-4 *3 (-1100))
+ (-5 *2 (-645 (-2 (|:| -3859 *3) (|:| -3349 (-772))))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771))
- (-14 *4 (-771)) (-4 *5 (-172)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200)))))
- ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1201 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1201 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-644 (-1201 *2))) (-5 *1 (-1201 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-864 *5))) (-14 *5 (-644 (-1175))) (-4 *6 (-454))
- (-5 *2 (-644 (-644 (-247 *5 *6)))) (-5 *1 (-473 *5 *6 *7))
- (-5 *3 (-644 (-247 *5 *6))) (-4 *7 (-454)))))
-(((*1 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1268)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 (-1171 *4))) (-5 *3 (-1171 *4))
- (-4 *4 (-909)) (-5 *1 (-663 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 *1)) (-4 *1 (-432 *4))
- (-4 *4 (-1099))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874))
- (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-470)) (-5 *1 (-1269))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-470))
- (-5 *1 (-1269))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264)))
- (-5 *2 (-470)) (-5 *1 (-1269)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225)))
- (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))))
-(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-627 *2 *3 *4)) (-4 *2 (-850))
- (-4 *3 (-13 (-172) (-717 (-409 (-566))))) (-14 *4 (-921))))
- ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850))))
- ((*1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-644 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-210)))))
-(((*1 *2 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1006)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099)))))
-(((*1 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270))
- (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270))
- (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-566)) (-4 *5 (-848)) (-4 *5 (-365))
- (-5 *2 (-771)) (-5 *1 (-945 *5 *6)) (-4 *6 (-1241 *5)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1263 *3)) (-4 *3 (-23)) (-4 *3 (-1215)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1099)) (-5 *1 (-929 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-317 (-566))) (-5 *1 (-930)))))
-(((*1 *2 *3) (-12 (-5 *3 (-644 (-52))) (-5 *2 (-1270)) (-5 *1 (-863)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7))
- (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1215)) (-5 *2 (-771))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-1065 *3 *4 *2)) (-4 *2 (-851))))
((*1 *2 *1)
- (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131))
- (-5 *2 (-771))))
- ((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-363 *3)) (-4 *3 (-1099))))
- ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-388 *3)) (-4 *3 (-1099))))
- ((*1 *2)
- (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-426 *3 *4))
- (-4 *3 (-427 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-771))
- (-5 *1 (-723 *3 *4 *5)) (-4 *3 (-724 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850))))
- ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3))
- (-4 *3 (-1241 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1185)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850))
- (-5 *2 (-644 (-672 *5))) (-5 *1 (-672 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140)))))
+ (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4)
- (-247 *4 (-409 (-566)))))
- (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112))
- (-5 *1 (-507 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771)))
- (-5 *1 (-904 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-689 (-409 (-952 (-566)))))
- (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035))
- (-5 *1 (-754)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035))
- (-5 *1 (-748)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *1)) (-5 *4 (-1265 *1)) (-4 *1 (-639 *5))
- (-4 *5 (-1049))
- (-5 *2 (-2 (|:| -3444 (-689 *5)) (|:| |vec| (-1265 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-689 *1)) (-4 *1 (-639 *4)) (-4 *4 (-1049))
- (-5 *2 (-689 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-317 (-225)))) (-5 *2 (-1265 (-317 (-381))))
- (-5 *1 (-306)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1049)) (-5 *1 (-1237 *3 *2)) (-4 *2 (-1241 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-241))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1270)) (-5 *1 (-241)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1265
- (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -1357 (-566))
- (|:| -2345 (-566)) (|:| |spline| (-566)) (|:| -2809 (-566))
- (|:| |axesColor| (-874)) (|:| -3418 (-566))
- (|:| |unitsColor| (-874)) (|:| |showing| (-566)))))
- (-5 *1 (-1266)))))
-(((*1 *2)
- (-12 (-5 *2 (-1265 (-1100 *3 *4))) (-5 *1 (-1100 *3 *4))
- (-14 *3 (-921)) (-14 *4 (-921)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-648 *5)) (-4 *5 (-1049))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-852 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-689 *3)) (-4 *1 (-419 *3)) (-4 *3 (-172))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1049))
- (-5 *1 (-853 *2 *3)) (-4 *3 (-852 *2)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1885 (-782 *3)) (|:| |coef1| (-782 *3))
- (|:| |coef2| (-782 *3))))
- (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-2 (|:| -1885 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-409 (-566)))
- (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))))
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-301)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1156 *3))) (-5 *1 (-1156 *3)) (-4 *3 (-1216)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1158))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-509))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-594))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-481))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-137))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1166))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-627))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1096))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1090))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1073))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-971))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-180))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1037))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-312))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-672))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-154))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-528))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1277))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1066))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-520))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-682))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1115))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-133))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1276))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-677))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-218))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-527))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1181)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))
- (-5 *2 (-2 (|:| -2482 (-644 *6)) (|:| -3099 (-644 *6)))))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-1038 (-409 *2)))) (-5 *2 (-566))
- (-5 *1 (-115 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-566))
- (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-476))) ((*1 *1 *1 *1) (-4 *1 (-762))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *2 (-1064 *4 *5 *6)) (-5 *1 (-776 *4 *5 *6 *2 *3))
- (-4 *3 (-1070 *4 *5 *6 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1215)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131))
- (-4 *3 (-792)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1179)) (-5 *1 (-1178)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-419 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))))
-(((*1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))))
+ (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1176))) (-4 *4 (-455))
+ (-5 *1 (-919 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1099)) (-5 *1 (-964 *3 *2)) (-4 *3 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1215)))))
-(((*1 *1 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-644 (-114))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-470)) (-5 *3 (-644 (-264))) (-5 *1 (-1266))))
- ((*1 *1 *1) (-5 *1 (-1266))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-1265 (-689 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1265 (-689 *4))) (-5 *1 (-418 *3 *4))
- (-4 *3 (-419 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1265 (-689 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365))
- (-5 *2 (-1265 (-689 (-409 (-952 *5))))) (-5 *1 (-1085 *5))
- (-5 *4 (-689 (-409 (-952 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-1175))) (-4 *5 (-365))
- (-5 *2 (-1265 (-689 (-952 *5)))) (-5 *1 (-1085 *5))
- (-5 *4 (-689 (-952 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365))
- (-5 *2 (-1265 (-689 *4))) (-5 *1 (-1085 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-1215)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1171 (-566))) (-5 *2 (-644 *1)) (-4 *1 (-1012))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1171 (-409 (-566)))) (-5 *2 (-644 *1)) (-4 *1 (-1012))))
+ (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370)) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-1171 *1)) (-4 *1 (-1012)) (-5 *2 (-644 *1))))
+ (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-5 *2 (-112))
+ (-5 *1 (-359 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-848) (-365))) (-4 *3 (-1241 *4)) (-5 *2 (-644 *1))
- (-4 *1 (-1067 *4 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-2 (|:| |den| (-566)) (|:| |gcdnum| (-566)))))
- (-4 *4 (-1241 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *5))
- (-4 *5 (-1241 (-409 *4))))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4417 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
- (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1241 *2))
- (-4 *4 (-687 *2 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-225)) (-5 *5 (-566)) (-5 *2 (-1210 *3))
- (-5 *1 (-790 *3)) (-4 *3 (-974))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-112))
- (-5 *1 (-1210 *2)) (-4 *2 (-974)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6))
- (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *1))))
- (-4 *1 (-1070 *4 *5 *6 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4))
- (-4 *3 (-419 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365))
- (-5 *2 (-1171 (-952 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 (-409 (-952 *6))))
- (-5 *3 (-409 (-952 *6)))
- (-4 *6 (-13 (-558) (-1038 (-566)) (-147)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-572 *6)))))
-(((*1 *1) (-5 *1 (-823))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-689 (-409 (-952 (-566)))))
- (-5 *2 (-644 (-689 (-317 (-566))))) (-5 *1 (-1031)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 *1)) (|has| *1 (-6 -4416)) (-4 *1 (-1010 *3))
- (-4 *3 (-1215)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-644 (-644 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-644 (-644 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-644 *3))) (-5 *1 (-1187 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099))
- (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1265 (-699))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1256 *4))
- (-4 *4 (-38 (-409 (-566))))
- (-5 *2 (-1 (-1155 *4) (-1155 *4) (-1155 *4))) (-5 *1 (-1258 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1) (-4 *1 (-495)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
+ (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-112))
+ (-5 *1 (-531 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1110)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1241 (-409 (-566)))) (-5 *1 (-913 *3 *2))
- (-4 *2 (-1241 (-409 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-920)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4))))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1102 *2 *3 *4 *5 *6)) (-4 *2 (-1099)) (-4 *3 (-1099))
- (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-334)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1103)) (-5 *1 (-281)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225)))
- (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225))))
- (|:| |ub| (-644 (-843 (-225))))))
- (-5 *1 (-268)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1) (-4 *1 (-495)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1175))
- (-4 *4 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-559 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *5)) (-4 *5 (-1241 *3)) (-4 *3 (-308))
- (-5 *2 (-112)) (-5 *1 (-457 *3 *5)))))
-(((*1 *2 *2)
+ (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-987 (-409 (-566)) (-864 *3) (-240 *4 (-771))
- (-247 *3 (-409 (-566)))))
- (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-986 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-644 (-952 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-644 (-952 *4))) (-5 *1 (-418 *3 *4))
- (-4 *3 (-419 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-644 (-952 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-644 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-455 *4 *5 *6 *7))) (-5 *2 (-644 (-952 *4)))
- (-5 *1 (-455 *4 *5 *6 *7)) (-4 *4 (-558)) (-4 *4 (-172))
- (-14 *5 (-921)) (-14 *6 (-644 (-1175))) (-14 *7 (-1265 (-689 *4))))))
+ (-645
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-772)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-794)) (-4 *6 (-950 *4 *3 *5)) (-4 *4 (-455)) (-4 *5 (-851))
+ (-5 *1 (-452 *4 *3 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-1210 *3))
- (-4 *3 (-974)))))
-(((*1 *1 *2) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1175)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850))
- (-5 *2 (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -3033 *1)))
- (-4 *1 (-1064 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -3033 *1)))
- (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175)))
- (-4 *6 (-13 (-558) (-1038 *5))) (-4 *5 (-558))
- (-5 *2 (-644 (-644 (-295 (-409 (-952 *6)))))) (-5 *1 (-1039 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-365)) (-5 *2 (-644 (-1155 *4))) (-5 *1 (-286 *4 *5))
- (-5 *3 (-1155 *4)) (-4 *5 (-1256 *4)))))
-(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1) (-4 *1 (-495)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112))
- (-5 *2 (-1035)) (-5 *1 (-745)))))
+ (-12 (-5 *2 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *3))))
+ (-5 *1 (-597 *3)) (-4 *3 (-1050)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1049))
- (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3))
- (-4 *3 (-852 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883))
- (-5 *3 (-644 (-566)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883))
- (-5 *3 (-644 (-566))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1215)) (-5 *2 (-771)) (-5 *1 (-182 *4 *3))
- (-4 *3 (-674 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1200)))
- (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1200)))
- (-5 *1 (-600 *4 *5 *2)))))
-(((*1 *1) (-5 *1 (-1267))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566))
- (-14 *4 (-771)) (-4 *5 (-172)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175))
- (-14 *4 *2))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-5 *2 (-644 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099))
- (-5 *2 (-644 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1155 *3)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 *3)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-726))))
- ((*1 *2 *1) (-12 (-4 *1 (-852 *3)) (-4 *3 (-1049)) (-5 *2 (-644 *3))))
+ (|partial| -12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
+ (-5 *2 (-1172 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1256 *3)) (-4 *3 (-1049)) (-5 *2 (-1155 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1049)) (-5 *1 (-50 *2 *3)) (-14 *3 (-644 (-1175)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 (-921))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5))
- (-14 *4 (-921)) (-14 *5 (-993 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4))
- (-4 *3 (-13 (-1049) (-850))) (-14 *4 (-644 (-1175)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1049))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-558)) (-5 *1 (-623 *2 *4))
- (-4 *4 (-1241 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-708 *2)) (-4 *2 (-1049))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1049)) (-5 *1 (-735 *2 *3)) (-4 *3 (-726))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *5)) (-5 *3 (-644 (-771))) (-4 *1 (-740 *4 *5))
- (-4 *4 (-1049)) (-4 *5 (-850))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *2)) (-4 *4 (-1049))
- (-4 *2 (-850))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-4 *1 (-852 *2)) (-4 *2 (-1049))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *6)) (-5 *3 (-644 (-771))) (-4 *1 (-949 *4 *5 *6))
- (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *6 (-850))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-949 *4 *5 *2)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *2 (-850))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-4 *2 (-949 *4 (-533 *5) *5))
- (-5 *1 (-1125 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-850))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-952 *4)) (-5 *1 (-1209 *4))
- (-4 *4 (-1049)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *1 *1) (-4 *1 (-495)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-596 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4))
- (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6)))
- (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566))))
- (-5 *2 (-2 (|:| -3077 (-771)) (|:| -1729 *8)))
- (-5 *1 (-911 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6))
- (-4 *4 (-1241 (-409 (-566)))) (-4 *5 (-1241 (-409 *4)))
- (-4 *6 (-344 (-409 (-566)) *4 *5))
- (-5 *2 (-2 (|:| -3077 (-771)) (|:| -1729 *6)))
- (-5 *1 (-912 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-4 *1 (-107 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8))
- (-4 *8 (-949 *5 *7 *6)) (-4 *5 (-13 (-308) (-147)))
- (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-112))
- (-5 *1 (-924 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-954)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *1 *1) (-4 *1 (-495)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1200) (-432 (-169 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-771))) (-5 *3 (-112)) (-5 *1 (-1163 *4 *5))
- (-14 *4 (-921)) (-4 *5 (-1049)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-644 (-171)))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1241 *3))
- (-4 *3 (-13 (-365) (-147) (-1038 (-566)))) (-5 *1 (-570 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1155 *3)) (-4 *3 (-1099))
- (-4 *3 (-1215)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-1232 (-566))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1265 (-771))) (-5 *1 (-675 *3)) (-4 *3 (-1099)))))
+ (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
+ (-5 *2 (-1172 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851))
+ (-4 *4 (-267 *3)) (-4 *5 (-794)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *1 *1) (-4 *1 (-495)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *10))
- (-5 *1 (-624 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1070 *5 *6 *7 *8))
- (-4 *10 (-1108 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454))
- (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6)))
- (-5 *1 (-628 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454))
- (-14 *6 (-644 (-1175)))
- (-5 *2
- (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6)))))
- (-5 *1 (-628 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454))
- (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6)))
- (-5 *1 (-1046 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1208 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1215)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-604 *3 *2)) (-4 *3 (-1099))
- (-4 *2 (-1215)))))
+ (-12 (-5 *2 (-421 (-1172 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1099)) (-5 *2 (-112)) (-5 *1 (-885 *3 *4 *5))
- (-4 *3 (-1099)) (-4 *5 (-666 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-247 *3 *4))
- (-14 *3 (-644 (-1175))) (-4 *4 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-566))) (-14 *3 (-644 (-1175)))
- (-5 *1 (-456 *3 *4 *5)) (-4 *4 (-1049))
- (-4 *5 (-238 (-3991 *3) (-771)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-483 *3 *4))
- (-14 *3 (-644 (-1175))) (-4 *4 (-1049)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-331)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-566))) (-5 *4 (-905 (-566)))
- (-5 *2 (-689 (-566))) (-5 *1 (-591))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566))))
- (-5 *1 (-591))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-566))) (-5 *4 (-644 (-905 (-566))))
- (-5 *2 (-644 (-689 (-566)))) (-5 *1 (-591)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1270))
- (-5 *1 (-435 *3 *4)) (-4 *4 (-432 *3)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -2606 (-114)) (|:| |arg| (-644 (-892 *3)))))
- (-5 *1 (-892 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-892 *4)))
- (-5 *1 (-892 *4)) (-4 *4 (-1099)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1256 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1171 *7))
- (-4 *5 (-1049)) (-4 *7 (-1049)) (-4 *2 (-1241 *5))
- (-5 *1 (-503 *5 *2 *6 *7)) (-4 *6 (-1241 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365))
- (-5 *1 (-523 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
- (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
- (-5 *1 (-688 *2 *4 *5 *3)) (-4 *3 (-687 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4417 "*"))) (-4 *2 (-1049)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175))
- (-14 *4 *2))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099))
- (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4))))
- (-5 *1 (-1075 *4 *5 *2))
- (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3))))
- (-5 *1 (-1075 *3 *4 *2))
- (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-109))) (-5 *1 (-175)))))
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *2)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2994 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049))))
- ((*1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *2 (-409 (-952 *4))) (-5 *1 (-924 *4 *5 *6 *3))
- (-4 *3 (-949 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *2 (-689 (-409 (-952 *4))))
- (-5 *1 (-924 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *2 (-644 (-409 (-952 *4))))
- (-5 *1 (-924 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-644 *11))
- (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3860 *11))))))
- (-5 *6 (-771))
- (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3860 *11))))
- (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9))
- (-4 *11 (-1070 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793))
- (-4 *9 (-850)) (-5 *1 (-1068 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-644 *11))
- (|:| |todo| (-644 (-2 (|:| |val| *3) (|:| -3860 *11))))))
- (-5 *6 (-771))
- (-5 *2 (-644 (-2 (|:| |val| (-644 *10)) (|:| -3860 *11))))
- (-5 *3 (-644 *10)) (-5 *4 (-644 *11)) (-4 *10 (-1064 *7 *8 *9))
- (-4 *11 (-1108 *7 *8 *9 *10)) (-4 *7 (-454)) (-4 *8 (-793))
- (-4 *9 (-850)) (-5 *1 (-1144 *7 *8 *9 *10 *11)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-689 *3)) (|:| |invmval| (-689 *3))
- (|:| |genIdeal| (-506 *3 *4 *5 *6))))
- (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-558)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5))
- (-4 *3 (-1241 *4))
- (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))))))
-(((*1 *2) (-12 (-5 *2 (-1132 (-225))) (-5 *1 (-1198)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1215))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1215))
- (-14 *4 (-566)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-558)) (-4 *2 (-454)) (-5 *1 (-969 *2 *3))
- (-4 *3 (-1241 *2)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
- (-4 *2 (-1215)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))
- (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))
- (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566)))
- (-5 *4 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))
- (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566))) (-5 *4 (-409 (-566)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-409 (-566)))
- (-5 *2 (-644 (-2 (|:| -1616 *5) (|:| -1627 *5)))) (-5 *1 (-1020 *3))
- (-4 *3 (-1241 (-566))) (-5 *4 (-2 (|:| -1616 *5) (|:| -1627 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))
- (-5 *1 (-1021 *3)) (-4 *3 (-1241 (-409 (-566))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))
- (-5 *1 (-1021 *3)) (-4 *3 (-1241 (-409 (-566))))
- (-5 *4 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-409 (-566)))
- (-5 *2 (-644 (-2 (|:| -1616 *4) (|:| -1627 *4)))) (-5 *1 (-1021 *3))
- (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-409 (-566)))
- (-5 *2 (-644 (-2 (|:| -1616 *5) (|:| -1627 *5)))) (-5 *1 (-1021 *3))
- (-4 *3 (-1241 *5)) (-5 *4 (-2 (|:| -1616 *5) (|:| -1627 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-131))
- (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| -1702 *3) (|:| -3562 *4))))
- (-5 *1 (-735 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-726))))
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-3 (-112) (-645 *1)))
+ (-4 *1 (-1071 *4 *5 *6 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1242 *4)) (-5 *2 (-690 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-5 *2 (-1155 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-1235 *3 *2))
- (-4 *2 (-1241 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1099))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-566)) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3))
- (-4 *3 (-1049))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-819 *4)) (-4 *4 (-850)) (-4 *1 (-1282 *4 *3))
- (-4 *3 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1241 *4)) (-5 *2 (-689 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-4 *5 (-1241 *4)) (-5 *2 (-689 *4))
- (-5 *1 (-410 *3 *4 *5)) (-4 *3 (-411 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3))
- (-5 *2 (-689 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-771)) (-5 *1 (-1100 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 *4))))
- (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-649 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1241 (-409 *2))) (-5 *2 (-566)) (-5 *1 (-913 *4 *3))
- (-4 *3 (-1241 (-409 *4))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *3 (-952 (-566)))
- (-5 *1 (-331))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1091 (-952 (-566)))) (-5 *1 (-331)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-1 (-112) *5 *5))
- (-5 *4 (-644 *5)) (-4 *5 (-850)) (-5 *1 (-1186 *5)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-566) "failed") *5)) (-4 *5 (-1049))
- (-5 *2 (-566)) (-5 *1 (-545 *5 *3)) (-4 *3 (-1241 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049))
- (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-566) "failed") *4)) (-4 *4 (-1049))
- (-5 *2 (-566)) (-5 *1 (-545 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *1 *1 *1) (-5 *1 (-381)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 *4))))
- (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-365))
- (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-452 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365))
- (-5 *2
- (-2 (|:| R (-689 *6)) (|:| A (-689 *6)) (|:| |Ainv| (-689 *6))))
- (-5 *1 (-978 *6)) (-5 *3 (-689 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-555)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-4 *7 (-949 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-112)) (|:| |z0| (-644 *7)) (|:| |n0| (-644 *7))))
- (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-644 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))))
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3))
+ (-5 *2 (-690 *3)))))
+(((*1 *1) (-5 *1 (-824))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-644 (-566))) (-5 *3 (-689 (-566))) (-5 *1 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-133))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-138))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-676))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1019))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1065))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1095)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-646 *3)) (-4 *3 (-1057)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-1057)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365)))
- (-4 *3 (-1241 *4)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))))
-(((*1 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270))
- (-5 *1 (-988 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270))
- (-5 *1 (-1106 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-644 (-1 *4 (-644 *4)))) (-4 *4 (-1099))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-644 (-1 *4 (-644 *4))))
- (-5 *1 (-113 *4)) (-4 *4 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1099)) (-4 *2 (-1099))))
- ((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-440 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-485))))
- ((*1 *2 *1) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-865))))
- ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-965))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1074 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1114))))
- ((*1 *1 *1) (-5 *1 (-1175))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-558)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112))
- (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1200) (-29 *4))))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
+ (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-690 (-567))) (-5 *3 (-645 (-567))) (-5 *1 (-1110)))))
+(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1) (-5 *1 (-633))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
+ ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-548)))
+ ((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4))
- (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *5 (-370))
- (-5 *2 (-771)))))
-(((*1 *1 *1) (-4 *1 (-869 *2))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1 *1 *1) (-4 *1 (-547))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2227 (-644 *1))))
- (-4 *1 (-369 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-455 *3 *4 *5 *6))
- (|:| -2227 (-644 (-455 *3 *4 *5 *6)))))
- (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1171 *7)) (-5 *3 (-566)) (-4 *7 (-949 *6 *4 *5))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049))
- (-5 *1 (-322 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1049)) (-5 *2 (-112)) (-5 *1 (-446 *4 *3))
- (-4 *3 (-1241 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-4 *1 (-547))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1099))
- (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))
- (-5 *1 (-1075 *3 *4 *2))
- (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *3 *2)) (-4 *3 (-1099)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3))))
- ((*1 *1 *1) (-4 *1 (-1203))))
+ (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34))))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-752)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-409 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-13 (-365) (-147)))
- (-5 *1 (-401 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-644 *5))) (-4 *5 (-1256 *4))
- (-4 *4 (-38 (-409 (-566))))
- (-5 *2 (-1 (-1155 *4) (-644 (-1155 *4)))) (-5 *1 (-1258 *4 *5)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1049))
- (-5 *1 (-853 *5 *2)) (-4 *2 (-852 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-5 *2 (-1187 (-644 *4))) (-5 *1 (-1186 *4))
- (-5 *3 (-644 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771)))))
-(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1241 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331))
- (-5 *1 (-333)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-169 *5)) (-5 *1 (-600 *4 *5 *3))
- (-4 *5 (-13 (-432 *4) (-1002) (-1200)))
- (-4 *3 (-13 (-432 (-169 *4)) (-1002) (-1200))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-301))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1155 (-225))) (-5 *2 (-644 (-1157))) (-5 *1 (-306)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-137))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-480))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-593))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-626))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1099))
- (-4 *2 (-13 (-432 *4) (-886 *3) (-614 (-892 *3))))
- (-5 *1 (-1075 *3 *4 *2))
- (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1099)) (-5 *1 (-1164 *2 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-822)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3))))
- ((*1 *1 *1) (-4 *1 (-1203))))
-(((*1 *2)
- (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909))
- (-5 *1 (-459 *3 *4 *2 *5)) (-4 *5 (-949 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *2 (-909))
- (-5 *1 (-906 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-909)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1241 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34))))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-566)) (-5 *5 (-112)) (-5 *6 (-689 (-225)))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))
- (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))))
-(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381))))
- ((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-381)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-508)) (-5 *2 (-112)) (-5 *1 (-114)))))
-(((*1 *1) (-5 *1 (-1178))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3))))
- ((*1 *1 *1) (-4 *1 (-1203))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1175))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-644 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2070 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1200) (-27) (-432 *8)))
- (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566))
- (-5 *2 (-644 *4)) (-5 *1 (-1014 *8 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-117 *3)) (-14 *3 (-566))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-409 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-174 (-566))) (-5 *1 (-765 *3)) (-4 *3 (-406))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-174 (-409 (-566)))) (-5 *1 (-871 *3)) (-14 *3 (-566))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-566)) (-5 *2 (-174 (-409 (-566))))
- (-5 *1 (-872 *3 *4)) (-4 *4 (-869 *3)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1175))
- (|:| |arrayIndex| (-644 (-952 (-566))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1175)) (|:| |rand| (-862))
- (|:| |ints2Floats?| (-112))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1174)) (|:| |thenClause| (-331))
- (|:| |elseClause| (-331))))
- (|:| |returnBranch|
- (-2 (|:| -4246 (-112))
- (|:| -2465
- (-2 (|:| |ints2Floats?| (-112)) (|:| -2888 (-862))))))
- (|:| |blockBranch| (-644 (-331)))
- (|:| |commentBranch| (-644 (-1157))) (|:| |callBranch| (-1157))
- (|:| |forBranch|
- (-2 (|:| -3192 (-1091 (-952 (-566))))
- (|:| |span| (-952 (-566))) (|:| -3546 (-331))))
- (|:| |labelBranch| (-1119))
- (|:| |loopBranch| (-2 (|:| |switch| (-1174)) (|:| -3546 (-331))))
- (|:| |commonBranch|
- (-2 (|:| -3534 (-1175)) (|:| |contents| (-644 (-1175)))))
- (|:| |printBranch| (-644 (-862)))))
- (-5 *1 (-331)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-920)) (-5 *2 (-2 (|:| -1702 (-644 *1)) (|:| -2723 *1)))
- (-5 *3 (-644 *1)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *2 (-558)) (-5 *1 (-969 *2 *4))
- (-4 *4 (-1241 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002))))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-470))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1266))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1267)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-5 *1 (-1258 *3 *2))
- (-4 *2 (-1256 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3))))
- ((*1 *1 *1) (-4 *1 (-1203))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-905 *4)) (-4 *4 (-1099)) (-5 *2 (-644 (-771)))
- (-5 *1 (-904 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-689 *3))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566))
- (-5 *2 (-1035)) (-5 *1 (-756)))))
-(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1265 *1)) (-4 *1 (-369 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-823)) (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *3 (-644 (-264)))
- (-5 *1 (-262))))
+ (-12 (-5 *2 (-922)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1050))
+ (-4 *4 (-1216))))
((*1 *1 *2)
- (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-483 *5 *6))) (-5 *3 (-483 *5 *6))
- (-14 *5 (-644 (-1175))) (-4 *6 (-454)) (-5 *2 (-1265 *6))
- (-5 *1 (-631 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175))
- (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
- (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793))
- (-4 *8 (-850)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3929 (-644 *9))))
- (-5 *3 (-644 *9)) (-4 *1 (-1208 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -3929 (-644 *8))))
- (-5 *3 (-644 *8)) (-4 *1 (-1208 *5 *6 *7 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-821)) (-5 *2 (-52)) (-5 *1 (-831)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-890 *4 *5)) (-4 *5 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1165)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1200) (-432 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1204 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3))))
- ((*1 *1 *1) (-4 *1 (-1203))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-771)) (-5 *3 (-943 *4)) (-4 *1 (-1133 *4))
- (-4 *4 (-1049))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-771)) (-5 *4 (-943 (-225))) (-5 *2 (-1270))
- (-5 *1 (-1267)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-675 *2)) (-4 *2 (-1049)) (-4 *2 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-612 *4)) (-5 *1 (-611 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
+ (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2268 *3) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *5))
+ (-2 (|:| -3811 *2) (|:| -4164 *5))))
+ (-5 *1 (-464 *3 *4 *2 *5 *6 *7)) (-4 *2 (-851))
+ (-4 *7 (-950 *4 *5 (-865 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1242 *4)) (-4 *4 (-1220))
+ (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1242 (-410 *3))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-454)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1049)) (-5 *2 (-566)) (-5 *1 (-445 *4 *3 *5))
- (-4 *3 (-1241 *4))
- (-4 *5 (-13 (-406) (-1038 *4) (-365) (-1200) (-285))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1) (-5 *1 (-439))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-566)) (-4 *6 (-365)) (-4 *6 (-370))
- (-4 *6 (-1049)) (-5 *2 (-644 (-644 (-689 *6)))) (-5 *1 (-1029 *6))
- (-5 *3 (-644 (-689 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-4 *4 (-370)) (-4 *4 (-1049))
- (-5 *2 (-644 (-644 (-689 *4)))) (-5 *1 (-1029 *4))
- (-5 *3 (-644 (-689 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049))
- (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5))
- (-5 *3 (-644 (-689 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049))
- (-5 *2 (-644 (-644 (-689 *5)))) (-5 *1 (-1029 *5))
- (-5 *3 (-644 (-689 *5))))))
-(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-1049))))
- ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3))))
- ((*1 *1 *1) (-4 *1 (-1203))))
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-910)))))
+(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-225))
+ (-5 *2
+ (-2 (|:| |brans| (-645 (-645 (-944 *4))))
+ (|:| |xValues| (-1094 *4)) (|:| |yValues| (-1094 *4))))
+ (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 *4)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-644 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5))
- (-5 *2 (-644 (-2 (|:| -3854 *5) (|:| -1451 *3))))
- (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6))
- (-4 *7 (-656 (-409 *6))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-1225 *4)) (-4 *4 (-1049)) (-4 *4 (-558))
- (-5 *2 (-409 (-952 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-1225 *4)) (-4 *4 (-1049)) (-4 *4 (-558))
- (-5 *2 (-409 (-952 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-1035)) (-5 *1 (-840))))
+ (-12 (-5 *3 (-494)) (-5 *4 (-955)) (-5 *2 (-692 (-536)))
+ (-5 *1 (-536))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-317 (-381)))) (-5 *4 (-644 (-381)))
- (-5 *2 (-1035)) (-5 *1 (-840)))))
-(((*1 *1) (-5 *1 (-439))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-225))) (-5 *4 (-771)) (-5 *2 (-689 (-225)))
- (-5 *1 (-306)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-409 *6))
- (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1256 *5)) (-4 *6 (-1241 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1257 *5 *6 *7)) (-4 *5 (-365))
- (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1238 *6 *5)))
- (-5 *1 (-868 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-771)) (-5 *4 (-1257 *5 *6 *7)) (-4 *5 (-365))
- (-14 *6 (-1175)) (-14 *7 *5) (-5 *2 (-409 (-1238 *6 *5)))
- (-5 *1 (-868 *5 *6 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-820)) (-14 *5 (-1175)) (-5 *2 (-644 (-1238 *5 *4)))
- (-5 *1 (-1113 *4 *5)) (-5 *3 (-1238 *5 *4)))))
-(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 (-112) (-644 *1)))
- (-4 *1 (-1070 *4 *5 *6 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1241 *4)) (-4 *4 (-1219))
- (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1241 (-409 *3))))))
+ (-12 (-5 *4 (-955)) (-4 *3 (-1100)) (-5 *2 (-692 *1))
+ (-4 *1 (-768 *3)))))
(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-782 *3)) (-4 *3 (-1049))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-783 *3)) (-4 *3 (-1050))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-963 *3 *2)) (-4 *2 (-131)) (-4 *3 (-558))
- (-4 *3 (-1049)) (-4 *2 (-792))))
+ (-12 (-5 *1 (-964 *3 *2)) (-4 *2 (-131)) (-4 *3 (-559))
+ (-4 *3 (-1050)) (-4 *2 (-793))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-1171 *3)) (-4 *3 (-1049))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1172 *3)) (-4 *3 (-1050))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-971)) (-4 *2 (-131)) (-5 *1 (-1177 *3)) (-4 *3 (-558))
- (-4 *3 (-1049))))
+ (-12 (-5 *2 (-972)) (-4 *2 (-131)) (-5 *1 (-1178 *3)) (-4 *3 (-559))
+ (-4 *3 (-1050))))
((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-1238 *4 *3)) (-14 *4 (-1175))
- (-4 *3 (-1049)))))
-(((*1 *1 *1) (-4 *1 (-629)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002) (-1200))))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558)))))
-(((*1 *1) (-5 *1 (-580))))
-(((*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-454) (-147))) (-5 *2 (-420 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-13 (-454) (-147)))
- (-5 *2 (-420 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-810 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-653 (-409 *6))) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2 (-2 (|:| -2227 (-644 (-409 *6))) (|:| -3444 (-689 *5))))
- (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-409 *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-810 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6 (-409 *6))) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2 (-2 (|:| -2227 (-644 (-409 *6))) (|:| -3444 (-689 *5))))
- (-5 *1 (-810 *5 *6)) (-5 *4 (-644 (-409 *6))))))
-(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1265 *5)) (-4 *5 (-792)) (-5 *2 (-112))
- (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1250 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
- (-14 *4 (-1175)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1099)) (-5 *1 (-713 *3 *2 *4)) (-4 *3 (-850))
- (-14 *4
- (-1 (-112) (-2 (|:| -2430 *3) (|:| -3428 *2))
- (-2 (|:| -2430 *3) (|:| -3428 *2)))))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1241 *6))
- (-4 *6 (-13 (-365) (-147) (-1038 *4))) (-5 *4 (-566))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
- (|:| -1451
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1015 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793))
- (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793))
- (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351))))
- ((*1 *1) (-4 *1 (-370)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1265 *4)) (-5 *1 (-530 *4))
- (-4 *4 (-351))))
- ((*1 *1 *1) (-4 *1 (-547))) ((*1 *1) (-4 *1 (-547)))
- ((*1 *1 *1) (-5 *1 (-771)))
- ((*1 *2 *1) (-12 (-5 *2 (-905 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4))
- (-4 *4 (-1099))))
- ((*1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-547)) (-4 *2 (-558)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 (-1278 *4 *5 *6 *7)))
- (-5 *1 (-1278 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 *9)) (-5 *4 (-1 (-112) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558))
- (-4 *7 (-793)) (-4 *8 (-850)) (-5 *2 (-644 (-1278 *6 *7 *8 *9)))
- (-5 *1 (-1278 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-558)) (-4 *2 (-949 *3 *5 *4))
- (-5 *1 (-732 *5 *4 *6 *2)) (-5 *3 (-409 (-952 *6))) (-4 *5 (-793))
- (-4 *4 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1200))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365)))
- (-4 *3 (-1241 *4)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-292))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-644 (-1209 *5)))
- (-5 *1 (-1273 *5)) (-5 *4 (-1209 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 (-381))) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-381))) (-5 *1 (-470))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-112)) (|:| -1474 (-771)) (|:| |period| (-771))))
- (-5 *1 (-1155 *4)) (-4 *4 (-1215)) (-5 *3 (-771)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225)))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2)
- (-12 (-4 *1 (-351))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-566) (-225) (-508) (-1157) (-1180)))
- (-5 *1 (-1180)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-91 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1139 *3 *2)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *2 (-13 (-1099) (-34))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1155 *4) (-1155 *4))) (-5 *2 (-1155 *4))
- (-5 *1 (-1290 *4)) (-4 *4 (-1215))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-644 (-1155 *5)) (-644 (-1155 *5)))) (-5 *4 (-566))
- (-5 *2 (-644 (-1155 *5))) (-5 *1 (-1290 *5)) (-4 *5 (-1215)))))
-(((*1 *2 *2) (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219))
- (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-308))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2723 *1)))
- (-4 *1 (-308)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-644 (-112))) (-5 *7 (-689 (-225)))
- (-5 *8 (-689 (-566))) (-5 *3 (-566)) (-5 *4 (-225)) (-5 *5 (-112))
- (-5 *2 (-1035)) (-5 *1 (-754)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |k| (-1175)) (|:| |c| (-1287 *3)))))
- (-5 *1 (-1287 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |k| *3) (|:| |c| (-1289 *3 *4)))))
- (-5 *1 (-1289 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049)))))
-(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1138))))
-(((*1 *1 *1) (-4 *1 (-629)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002) (-1200))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-558)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1196)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-644
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-771)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-793)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454)) (-4 *5 (-850))
- (-5 *1 (-451 *3 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5)))
- (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-292)))))
-(((*1 *1) (-5 *1 (-292))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-308) (-147)))
- (-4 *2 (-949 *4 *6 *5)) (-5 *1 (-924 *4 *5 *6 *2))
- (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-895))
- (-5 *3
- (-2 (|:| |pde| (-644 (-317 (-225))))
- (|:| |constraints|
- (-644
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-771)) (|:| |boundaryType| (-566))
- (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225))))))
- (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157))
- (|:| |tol| (-225))))
- (-5 *2 (-1035)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-4 *6 (-886 *5)) (-5 *2 (-885 *5 *6 (-644 *6)))
- (-5 *1 (-887 *5 *6 *4)) (-5 *3 (-644 *6)) (-4 *4 (-614 (-892 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 *3))) (-5 *1 (-887 *5 *3 *4))
- (-4 *3 (-1038 (-1175))) (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-5 *2 (-644 (-295 (-952 *3))))
- (-5 *1 (-887 *5 *3 *4)) (-4 *3 (-1049))
- (-3129 (-4 *3 (-1038 (-1175)))) (-4 *3 (-886 *5))
- (-4 *4 (-614 (-892 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-5 *2 (-889 *5 *3)) (-5 *1 (-887 *5 *3 *4))
- (-3129 (-4 *3 (-1038 (-1175)))) (-3129 (-4 *3 (-1049)))
- (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1239 *4 *3)) (-14 *4 (-1176))
+ (-4 *3 (-1050)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1094 (-225)))
+ (-5 *2 (-1268)) (-5 *1 (-258)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-508)) (-5 *2 (-691 (-774))) (-5 *1 (-114))))
+ (-12 (-5 *3 (-567)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131))
+ (-4 *2 (-1100))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-774)) (-5 *1 (-114))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1103)) (-5 *1 (-965)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *2 *1) (-12 (-5 *2 (-958 (-771))) (-5 *1 (-334)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-351)) (-5 *3 (-566)) (-5 *2 (-1188 (-921) (-771))))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-1201 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-689 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-689 *4)) (-5 *1 (-418 *3 *4))
- (-4 *3 (-419 *4))))
- ((*1 *2) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1215)) (-4 *2 (-850))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1215))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850))
- (-4 *6 (-1064 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2311 *1) (|:| |upper| *1)))
- (-4 *1 (-976 *4 *5 *3 *6)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178))))
- ((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1178)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3860 *7))))
- (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-988 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-644 (-2 (|:| |val| (-644 *6)) (|:| -3860 *7))))
- (-4 *6 (-1064 *3 *4 *5)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-1106 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035))
- (-5 *1 (-748)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793))
- (-5 *2 (-112)) (-5 *1 (-987 *3 *4 *5 *6))
- (-4 *6 (-949 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-454))
- (-5 *2
- (-644
- (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))
- (|:| |geneigvec| (-644 (-689 (-409 (-952 *4))))))))
- (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1196)))))
-(((*1 *1) (-5 *1 (-1084))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-747)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-112))
- (-5 *1 (-264)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-705 *3 *4)) (-4 *3 (-1215)) (-4 *4 (-1215)))))
-(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1241 *9)) (-4 *7 (-793)) (-4 *8 (-850)) (-4 *9 (-308))
- (-4 *10 (-949 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-644 (-1171 *10)))
- (|:| |dterm|
- (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-644 *6)) (|:| |nlead| (-644 *10))))
- (-5 *1 (-778 *6 *7 *8 *9 *10)) (-5 *3 (-1171 *10)) (-5 *4 (-644 *6))
- (-5 *5 (-644 *10)))))
-(((*1 *1) (-5 *1 (-1062))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-691 (-966 *3))) (-5 *1 (-966 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-644 (-1075 *4 *5 *2))) (-4 *4 (-1099))
- (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4))))
- (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-644 (-1075 *5 *6 *2))) (-5 *4 (-921)) (-4 *5 (-1099))
- (-4 *6 (-13 (-1049) (-886 *5) (-614 (-892 *5))))
- (-4 *2 (-13 (-432 *6) (-886 *5) (-614 (-892 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-952 *5)) (-4 *5 (-1049)) (-5 *2 (-247 *4 *5))
- (-5 *1 (-944 *4 *5)) (-14 *4 (-644 (-1175))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *5 (-1241 *4)) (-5 *2 (-1171 (-409 *5))) (-5 *1 (-615 *4 *5))
- (-5 *3 (-409 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-147) (-27) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2 (-1171 (-409 *6))) (-5 *1 (-615 *5 *6)) (-5 *3 (-409 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-451 *3 *4 *5 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))))
-(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 *2))
- (-14 *4 (-644 *2)) (-4 *5 (-389))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-317 *5)) (-4 *5 (-389)) (-5 *1 (-341 *3 *4 *5))
- (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175)))))
- ((*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386))))
- ((*1 *1 *2) (-12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386))))
- ((*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386))))
- ((*1 *1 *2) (-12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386))))
- ((*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386))))
- ((*1 *1 *2) (-12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386))))
- ((*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 (-566))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 (-381))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 (-409 (-952 (-566))))) (-4 *1 (-443))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 (-409 (-952 (-381))))) (-4 *1 (-443))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 (-952 (-566)))) (-4 *1 (-443))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 (-952 (-381)))) (-4 *1 (-443))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 (-317 (-566)))) (-4 *1 (-443))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 (-317 (-381)))) (-4 *1 (-443))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-317 (-225)))
- (|:| -3192 (-644 (-1093 (-843 (-225)))))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-769))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-808))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225)))
- (|:| |lb| (-644 (-843 (-225))))
- (|:| |cf| (-644 (-317 (-225))))
- (|:| |ub| (-644 (-843 (-225))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-644 (-317 (-225))))
- (|:| -1342 (-644 (-225)))))))
- (-5 *1 (-841))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-644 (-317 (-225))))
- (|:| |constraints|
- (-644
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-771)) (|:| |boundaryType| (-566))
- (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225))))))
- (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157))
- (|:| |tol| (-225))))
- (-5 *1 (-898))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *1 (-976 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2)
- (-2676
- (-12 (-5 *2 (-952 *3))
- (-12 (-3129 (-4 *3 (-38 (-409 (-566)))))
- (-3129 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3129 (-4 *3 (-547))) (-3129 (-4 *3 (-38 (-409 (-566)))))
- (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3129 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566))))
- (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)))))
- ((*1 *1 *2)
- (-2676
- (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5))
- (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566)))
- (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))
- (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5))
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)))))
-(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-157))))
- ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1125 *4 *3 *5))) (-4 *4 (-38 (-409 (-566))))
- (-4 *4 (-1049)) (-4 *3 (-850)) (-5 *1 (-1125 *4 *3 *5))
- (-4 *5 (-949 *4 (-533 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1209 *4))) (-5 *3 (-1175)) (-5 *1 (-1209 *4))
- (-4 *4 (-38 (-409 (-566)))) (-4 *4 (-1049)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-921)) (-5 *4 (-225)) (-5 *5 (-566)) (-5 *6 (-874))
- (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-689 (-1171 *8))) (-4 *5 (-1049)) (-4 *8 (-1049))
- (-4 *6 (-1241 *5)) (-5 *2 (-689 *6)) (-5 *1 (-503 *5 *6 *7 *8))
- (-4 *7 (-1241 *6)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *3 (-1064 *6 *7 *8))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1071 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9))))
- (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8))
- (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850))
- (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3860 *9))))
- (-5 *1 (-1071 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-949 *4 *6 *5)) (-4 *4 (-454))
- (-4 *5 (-850)) (-4 *6 (-793)) (-5 *1 (-987 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-958 (-1171 *4))) (-5 *1 (-359 *4))
- (-5 *3 (-1171 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-5 *2 (-644 (-644 (-644 *4))))
- (-5 *1 (-1186 *4)) (-5 *3 (-644 (-644 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1093 (-843 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
- (-5 *1 (-306))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1265 (-644 *3))) (-4 *4 (-308))
- (-5 *2 (-644 *3)) (-5 *1 (-457 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1241 (-409 *2)))
- (-4 *2 (-1241 *5)) (-5 *1 (-215 *5 *2 *6 *3))
- (-4 *3 (-344 *5 *2 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1) (-12 (-4 *1 (-511 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-850)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (|:| |%expansion| (-314 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))))
- (-5 *1 (-422 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1200) (-432 *5)))
- (-14 *6 (-1175)) (-14 *7 *3))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-644 (-644 (-566)))) (-5 *1 (-971))
- (-5 *3 (-644 (-566))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1241 *5))
- (-5 *2 (-644 *3)) (-5 *1 (-777 *4 *5 *6 *3 *7)) (-4 *3 (-1241 *6))
- (-14 *7 (-921)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1208 *4 *5 *3 *6)) (-4 *4 (-558)) (-4 *5 (-793))
- (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4)) (-4 *6 (-1241 *5))
- (-4 *7 (-1241 (-409 *6))) (-4 *8 (-344 *5 *6 *7))
- (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112))
- (-5 *1 (-911 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6))
- (-4 *4 (-1241 (-409 (-566)))) (-4 *5 (-1241 (-409 *4)))
- (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-112))
- (-5 *1 (-912 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7))))
- (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2070 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1241 *7))
- (-5 *3 (-409 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-576 *7 *8)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-497)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-612 *1)) (-4 *1 (-303)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-774)) (-5 *1 (-114))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-774)) (-5 *1 (-114)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-771)) (-4 *4 (-308)) (-4 *6 (-1241 *4))
- (-5 *2 (-1265 (-644 *6))) (-5 *1 (-457 *4 *6)) (-5 *5 (-644 *6)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1038 (-48)))
- (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4))
- (-5 *2 (-420 (-1171 (-48)))) (-5 *1 (-437 *4 *5 *3))
- (-4 *3 (-1241 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *6)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))
- (-5 *2 (-644 (-409 (-566)))) (-5 *1 (-1020 *4))
- (-4 *4 (-1241 (-566))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4)))
- (-5 *2 (-1265 *6)) (-5 *1 (-338 *3 *4 *5 *6))
- (-4 *6 (-344 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-754)))))
-(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381))))
- ((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-381)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1179)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-581)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454)))
- (-5 *2 (-843 *4)) (-5 *1 (-314 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1200) (-432 *3))) (-14 *5 (-1175))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454)))
- (-5 *2 (-843 *4)) (-5 *1 (-1251 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1200) (-432 *3))) (-14 *5 (-1175))
- (-14 *6 *4))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-558))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454))
- (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-977 *3 *4 *5 *6)))))
+ (-12 (-5 *3 (-567)) (-4 *2 (-1100)) (-5 *1 (-650 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *1 (-820 *2)) (-4 *2 (-851)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-757)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1155 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3192
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1035)) (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200)))))
- ((*1 *1 *1 *1) (-4 *1 (-793))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547)))))
-(((*1 *2 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-482)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-644
- (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *3))
- (|:| |logand| (-1171 *3)))))
- (-5 *1 (-587 *3)) (-4 *3 (-365)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-771)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
- (-4 *2 (-1241 *4)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1100)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-114)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1215))
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1216))
(-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2))
- (-4 *5 (-375 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 (-566))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 (-566)) (-14 *5 (-771))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-771))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-771))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-771))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-771))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-566))
- (-14 *4 (-771))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-245 (-1157))) (-5 *1 (-214 *4))
- (-4 *4
- (-13 (-850)
- (-10 -8 (-15 -3282 ((-1157) $ *3)) (-15 -2498 ((-1270) $))
- (-15 -1397 ((-1270) $)))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-989)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-850)
- (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $))
- (-15 -1397 ((-1270) $)))))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-771)) (-5 *1 (-245 *4)) (-4 *4 (-850))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-850))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-850))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1180)) (-5 *1 (-250))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4417)) (-4 *1 (-119 *3))
+ (-4 *3 (-1216))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4417)) (-4 *1 (-119 *3))
+ (-4 *3 (-1216))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215))))
- ((*1 *2 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1241 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-1241 *2))
- (-4 *4 (-1241 (-409 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-4 *1 (-419 *2)) (-4 *2 (-172))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1157)) (-5 *1 (-504))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-52)) (-5 *1 (-632))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1232 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *1 (-675 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1100))
+ (-4 *2 (-1216))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1176)) (-5 *1 (-633))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1233 (-567))) (|has| *1 (-6 -4417)) (-4 *1 (-652 *2))
+ (-4 *2 (-1216))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-644 (-892 *4))) (-5 *1 (-892 *4))
- (-4 *4 (-1099))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-905 *4)) (-5 *1 (-904 *4))
- (-4 *4 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-921)) (-4 *2 (-365))
- (-5 *1 (-993 *4 *2))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1010 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7)) (-4 *2 (-1049))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-921)) (-4 *4 (-1099))
- (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4))))
- (-5 *1 (-1075 *4 *5 *2))
- (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-921)) (-4 *4 (-1099))
- (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4))))
- (-5 *1 (-1076 *4 *5 *2))
- (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-566))) (-4 *1 (-1102 *3 *4 *5 *6 *7))
- (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099))
- (-4 *7 (-1099))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099))
- (-4 *4 (-1099)) (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099))))
- ((*1 *1 *1 *1) (-4 *1 (-1143)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-409 *1)) (-4 *1 (-1241 *2)) (-4 *2 (-1049))
- (-4 *2 (-365))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-409 *1)) (-4 *1 (-1241 *3)) (-4 *3 (-1049))
- (-4 *3 (-558))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1243 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1253 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1253 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *3))
- (-4 *3 (-1215))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1208 *4 *5 *3 *2)) (-4 *4 (-558))
- (-4 *5 (-793)) (-4 *3 (-850)) (-4 *2 (-1064 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-5 *1 (-1212 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558))
- (-4 *3 (-949 *7 *5 *6))
- (-5 *2
- (-2 (|:| -3428 (-771)) (|:| -1702 *3) (|:| |radicand| (-644 *3))))
- (-5 *1 (-953 *5 *6 *7 *3 *8)) (-5 *4 (-771))
- (-4 *8
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *3)) (-15 -2691 (*3 $)) (-15 -2702 (*3 $))))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7))))
- (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566))))
- (-4 *5 (-1241 *4))
- (-5 *2 (-2 (|:| -2070 (-409 *5)) (|:| |coeff| (-409 *5))))
- (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351))
- (-5 *2 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119))))))
- (-5 *1 (-348 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2))
- (-4 *2 (-1256 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1241 *3))
- (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1256 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2))
- (-4 *2 (-1256 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147)))
- (-5 *1 (-1151 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049))
- (-5 *2 (-247 *4 *5)) (-5 *1 (-944 *4 *5)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1193)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1175))
- (-4 *5 (-13 (-558) (-1038 (-566)) (-147)))
- (-5 *2
- (-2 (|:| -2070 (-409 (-952 *5))) (|:| |coeff| (-409 (-952 *5)))))
- (-5 *1 (-572 *5)) (-5 *3 (-409 (-952 *5))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))
- (-5 *2 (-1035)) (-5 *1 (-748)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-531))))
- ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-531)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270))
- (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270))
- (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-771)) (-4 *5 (-172))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-771)) (-4 *5 (-172))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4)
- (-247 *4 (-409 (-566)))))
- (-5 *3 (-644 (-864 *4))) (-14 *4 (-644 (-1175))) (-14 *5 (-771))
- (-5 *1 (-507 *4 *5)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4416)) (-4 *4 (-365)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-523 *4 *5 *6 *3))
- (-4 *3 (-687 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4416)) (-4 *4 (-558)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-4 *7 (-992 *4)) (-4 *8 (-375 *7))
- (-4 *9 (-375 *7)) (-5 *2 (-644 *6))
- (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-687 *4 *5 *6))
- (-4 *10 (-687 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-644 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-644 *6)) (-5 *1 (-688 *4 *5 *6 *3))
- (-4 *3 (-687 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558))
- (-5 *2 (-644 *7)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-846)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2))
- (-4 *2 (-1256 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1241 *3))
- (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1256 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2))
- (-4 *2 (-1256 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147)))
- (-5 *1 (-1151 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
- (|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-689 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
- (-5 *7 (-689 (-566)))
- (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-77 OBJFUN))))
- (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-753)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-943 *4))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-112)) (-5 *1 (-829)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-5 *1 (-896 *2 *3))
- (-4 *2 (-1241 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *3 (-1241 *4)) (-5 *1 (-809 *4 *3 *2 *5)) (-4 *2 (-656 *3))
- (-4 *5 (-656 (-409 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-409 *5))
- (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-1241 *4))
- (-5 *1 (-809 *4 *5 *2 *6)) (-4 *2 (-656 *5)) (-4 *6 (-656 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-538))) (-5 *1 (-538)))))
-(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365)))))
-(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4))
- (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-41 *3 *2))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $))
- (-15 -2702 ((-1124 *3 (-612 $)) $))
- (-15 -2725 ($ (-1124 *3 (-612 $))))))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1093 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-1215))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2) (-12 (-5 *1 (-1232 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-566) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1083 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 *5)) (-4 *5 (-365)) (-5 *2 (-644 *6))
- (-5 *1 (-534 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-848))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-4 *6 (-558)) (-5 *2 (-644 (-317 *6)))
- (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1049))))
- ((*1 *2 *1) (-12 (-5 *1 (-420 *2)) (-4 *2 (-558))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 *5)) (-4 *5 (-13 (-29 *4) (-1200)))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-644 *5))
- (-5 *1 (-585 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-409 (-952 *4))))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-644 (-317 *4))) (-5 *1 (-590 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1094 *3 *2)) (-4 *3 (-848)) (-4 *2 (-1148 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *1)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848))
- (-4 *2 (-1148 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1280 (-1175) *3)) (-5 *1 (-1287 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-1049)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5))))
- (-5 *1 (-1128 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-13 (-308) (-147)))
- (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-295 (-317 *5))))
- (-5 *1 (-1128 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147)))
- (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1128 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175)))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5)))))
- (-5 *1 (-1128 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-13 (-308) (-147)))
- (-5 *2 (-644 (-644 (-295 (-317 *4))))) (-5 *1 (-1128 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-295 (-409 (-952 *5))))) (-5 *4 (-644 (-1175)))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *5)))))
- (-5 *1 (-1128 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-295 (-409 (-952 *4)))))
- (-4 *4 (-13 (-308) (-147))) (-5 *2 (-644 (-644 (-295 (-317 *4)))))
- (-5 *1 (-1128 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147))) (-5 *1 (-539 *4 *2))
- (-4 *2 (-1256 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3)))
- (-4 *5 (-1241 *4)) (-4 *6 (-724 *4 *5)) (-5 *1 (-543 *4 *5 *6 *2))
- (-4 *2 (-1256 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-13 (-365) (-370) (-614 *3)))
- (-5 *1 (-544 *4 *2)) (-4 *2 (-1256 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-13 (-558) (-147)))
- (-5 *1 (-1151 *4)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-752)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850)))
- (-14 *3 (-644 (-1175))))))
-(((*1 *1 *1) (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-558))))
- ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7)))
- (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793))
- (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8)))
- (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7)))
- (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793))
- (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8)))
- (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-926)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381))))
- (-5 *1 (-803)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3))
- (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-644 *7) (-644 *7))) (-5 *2 (-644 *7))
- (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-558)) (-4 *5 (-793))
- (-4 *6 (-850)) (-5 *1 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-532 *3)) (-4 *3 (-13 (-726) (-25))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3))
- (-4 *3 (-1099)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1171 (-952 *4))) (-5 *1 (-418 *3 *4))
- (-4 *3 (-419 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-4 *3 (-365))
- (-5 *2 (-1171 (-952 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1171 (-409 (-952 *3)))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-4 *3 (-13 (-27) (-1200) (-432 *6) (-10 -8 (-15 -2725 ($ *7)))))
- (-4 *7 (-848))
- (-4 *8
- (-13 (-1243 *3 *7) (-365) (-1200)
- (-10 -8 (-15 -3009 ($ $)) (-15 -1879 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))))
- (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8))
- (-14 *10 (-1175)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-244 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921))))
- ((*1 *1 *1 *1) (-5 *1 (-1220))) ((*1 *1 *1 *1) (-5 *1 (-1221)))
- ((*1 *1 *1 *1) (-5 *1 (-1222))) ((*1 *1 *1 *1) (-5 *1 (-1223))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566))
- (-5 *2 (-1035)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-850)) (-5 *1 (-1186 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-644
- (-2 (|:| |scalar| (-409 (-566))) (|:| |coeff| (-1171 *2))
- (|:| |logand| (-1171 *2)))))
- (-5 *4 (-644 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-365)) (-5 *1 (-587 *2)))))
-(((*1 *1) (-12 (-4 *1 (-467 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-538))) ((*1 *1) (-4 *1 (-722)))
- ((*1 *1) (-4 *1 (-726)))
- ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))
- ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850)))))
-(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-393)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1265 *5)) (-4 *5 (-792)) (-5 *2 (-112))
- (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-756)))))
-(((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-787)) (-5 *2 (-1035))
- (-5 *3
- (-2 (|:| |fn| (-317 (-225)))
- (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-787)) (-5 *2 (-1035))
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))))
-(((*1 *1) (-5 *1 (-439))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1155 (-409 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303))))
- ((*1 *1 *1) (-4 *1 (-303)))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))
- ((*1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1241 *4)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-129)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921))))
- ((*1 *1 *1 *1) (-5 *1 (-1220))) ((*1 *1 *1 *1) (-5 *1 (-1221)))
- ((*1 *1 *1 *1) (-5 *1 (-1222))) ((*1 *1 *1 *1) (-5 *1 (-1223))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1139 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1140 *5 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-644 (-612 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1171 (-48))) (-5 *3 (-612 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1241 (-169 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
- ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1241 *2)) (-4 *2 (-172))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1241 *2)) (-4 *2 (-992 *3)) (-5 *1 (-415 *3 *2 *4 *5))
- (-4 *3 (-308)) (-4 *5 (-13 (-411 *2 *4) (-1038 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1241 *2)) (-4 *2 (-992 *3))
- (-5 *1 (-416 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-411 *2 *4))
- (-14 *6 (-1265 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-4 *5 (-1049))
- (-4 *2 (-13 (-406) (-1038 *5) (-365) (-1200) (-285)))
- (-5 *1 (-445 *5 *3 *2)) (-4 *3 (-1241 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-612 (-497)))) (-5 *1 (-497))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-612 (-497))) (-5 *1 (-497))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-644 (-612 (-497))))
- (-5 *1 (-497))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1171 (-497))) (-5 *3 (-612 (-497))) (-5 *1 (-497))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-921)) (-4 *4 (-351))
- (-5 *1 (-530 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-724 *4 *2)) (-4 *2 (-1241 *4))
- (-5 *1 (-775 *4 *2 *5 *3)) (-4 *3 (-1241 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172))))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-644 (-1171 *11))) (-5 *3 (-1171 *11))
- (-5 *4 (-644 *10)) (-5 *5 (-644 *8)) (-5 *6 (-644 (-771)))
- (-5 *7 (-1265 (-644 (-1171 *8)))) (-4 *10 (-850))
- (-4 *8 (-308)) (-4 *11 (-949 *8 *9 *10)) (-4 *9 (-793))
- (-5 *1 (-707 *9 *10 *8 *11)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-538)))
- ((*1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057))))
- ((*1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))
- ((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (|has| *1 (-6 -4416)) (-4 *1 (-375 *3))
- (-4 *3 (-1215)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1265 (-644 (-566)))) (-5 *1 (-482))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1215)) (-5 *1 (-1155 *3)))))
-(((*1 *1) (-5 *1 (-803))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-793))
- (-4 *3 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *5 (-558))
- (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-793))
- (-4 *3
- (-13 (-850)
- (-10 -8 (-15 -2150 ((-1175) $))
- (-15 -2928 ((-3 $ "failed") (-1175))))))
- (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *6))
- (-4 *6
- (-13 (-850)
- (-10 -8 (-15 -2150 ((-1175) $))
- (-15 -2928 ((-3 $ "failed") (-1175))))))
- (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2))
- (-4 *2 (-949 (-952 *4) *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-5 *3 (-112)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4406)) (-4 *1 (-406))))
- ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1101 (-1101 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-409 (-566))))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175))
- (-5 *2 (-644 *4)) (-5 *1 (-1113 *4 *5)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-375 *2)) (-4 *2 (-1215))
- (-4 *2 (-850))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4416))
- (-4 *1 (-375 *3)) (-4 *3 (-1215)))))
-(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1268)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-820)) (-14 *5 (-1175))
- (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2977)) (-5 *2 (-112)) (-5 *1 (-617))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1876)) (-5 *2 (-112)) (-5 *1 (-617))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -1894)) (-5 *2 (-112)) (-5 *1 (-617))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3690)) (-5 *2 (-112)) (-5 *1 (-691 *4))
- (-4 *4 (-613 (-862)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-613 (-862))) (-5 *2 (-112))
- (-5 *1 (-691 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-593))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-480))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1165))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-626))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1095))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1072))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-970))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1036))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1276))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1065))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-519))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-681))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1114))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-1275))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1136)) (-5 *3 (|[\|\|]| (-526))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1157))) (-5 *2 (-112)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-508))) (-5 *2 (-112)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1180))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-566))) (-5 *2 (-112)) (-5 *1 (-1180)))))
-(((*1 *1 *1) (-5 *1 (-225)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1265 *6)) (-5 *4 (-1265 (-566))) (-5 *5 (-566))
- (-4 *6 (-1099)) (-5 *2 (-1 *6)) (-5 *1 (-1017 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-644 (-782 *3))) (-5 *1 (-782 *3)) (-4 *3 (-558))
- (-4 *3 (-1049)))))
-(((*1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1) (-4 *1 (-1138))) ((*1 *1 *1 *1) (-4 *1 (-1138))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4417)) (-4 *1 (-1011 *2))
+ (-4 *2 (-1216))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1192 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2))
+ (-4 *2 (-1216))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4417)) (-4 *1 (-1254 *3))
+ (-4 *3 (-1216))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2))
+ (-4 *2 (-1216)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-558))
- (-4 *7 (-949 *3 *5 *6))
- (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *8) (|:| |radicand| *8)))
- (-5 *1 (-953 *5 *6 *3 *7 *8)) (-5 *4 (-771))
- (-4 *8
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $)) (-15 -2702 (*7 $))))))))
+ (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-558)))))
-(((*1 *2 *3) (-12 (-5 *3 (-538)) (-5 *1 (-537 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-538)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-644 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *5 *6))
- (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-451 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))))
-(((*1 *2)
- (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5)))
- (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-771)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-4 *1 (-903 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
- ((*1 *1 *1 *1) (-5 *1 (-1119))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-843 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)) (-4 *2 (-850))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-850)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-752)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2))
- (-4 *2 (-687 *3 *4 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-623 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -1627 *4) (|:| |sol?| (-112)))
- (-566) *4))
- (-4 *4 (-365)) (-4 *5 (-1241 *4)) (-5 *1 (-576 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-771))) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-644 *1)) (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *1 *1) (-4 *1 (-629)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002) (-1200))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2))))
- ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *1) (-4 *1 (-967))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1265 *5)) (-5 *3 (-771)) (-5 *4 (-1119)) (-4 *5 (-351))
- (-5 *1 (-530 *5)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5))
- (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-1278 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558))
- (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1278 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-644 (-943 (-225)))))
- (-5 *2 (-644 (-1093 (-225)))) (-5 *1 (-928)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5))
- (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6))
- (-4 *6 (-454))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-483 *5 *6))) (-5 *4 (-864 *5))
- (-14 *5 (-644 (-1175))) (-5 *2 (-483 *5 *6)) (-5 *1 (-631 *5 *6))
- (-4 *6 (-454)))))
+ (-12 (-5 *3 (-1266 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559))
+ (-5 *2 (-112)) (-5 *1 (-639 *4 *5)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-587 *3)) (-4 *3 (-365)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -1627 *6) (|:| |sol?| (-112))) (-566)
- *6))
- (-4 *6 (-365)) (-4 *7 (-1241 *6))
- (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6)))
- (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *4 (-1175))
- (-5 *1 (-1178))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1178))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-439)) (-5 *3 (-1175)) (-5 *1 (-1179))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-439)) (-5 *3 (-644 (-1175))) (-5 *1 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *1) (-4 *1 (-967))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-865))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-420 *3)) (-4 *3 (-558)) (-5 *1 (-421 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1241 (-169 *3))))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-75 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-76 G JACOBG JACGEP))))
- (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-747)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1216 *2))
- (-4 *2 (-1099))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-1099)) (-4 *2 (-850))
- (-5 *1 (-1216 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049))
- (-5 *1 (-1159 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1155 *3))) (-5 *1 (-1155 *3)) (-4 *3 (-1215)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-420 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-689 (-566))) (-5 *3 (-644 (-566))) (-5 *1 (-1109)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1) (-4 *1 (-967))) ((*1 *1 *1) (-5 *1 (-1119))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1099)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *4 *5 *6)))))
+ (-12 (-5 *2 (-1102 *3)) (-5 *1 (-906 *3)) (-4 *3 (-370))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1094 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1133 (-225)))
+ (-5 *1 (-698)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-849)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2807 (-421 *3))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-598 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-612 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175))) (-5 *5 (-1171 *2))
- (-4 *2 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099))))
+ (|partial| -12 (-5 *3 (-613 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1176))) (-5 *5 (-1172 *2))
+ (-4 *2 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1100))))
((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-612 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1175)))
- (-5 *5 (-409 (-1171 *2))) (-4 *2 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *1 (-562 *6 *2 *7)) (-4 *7 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1101 *4)) (-4 *4 (-1099)) (-5 *2 (-1 *4))
- (-5 *1 (-1017 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1093 (-566))) (-5 *2 (-1 (-566))) (-5 *1 (-1047)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-308))
- (-5 *2 (-409 (-420 (-952 *4)))) (-5 *1 (-1042 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-771)) (-4 *4 (-351))
- (-5 *1 (-530 *4)))))
-(((*1 *1) (-5 *1 (-439))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1103)) (-5 *3 (-774)) (-5 *1 (-52)))))
+ (|partial| -12 (-5 *3 (-613 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1176)))
+ (-5 *5 (-410 (-1172 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *1 (-563 *6 *2 *7)) (-4 *7 (-1100)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1158)) (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567)))
+ (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-758)))))
(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-914 *3)) (-4 *3 (-308)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
+(((*1 *1) (-5 *1 (-581))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-1241 *4)) (-5 *1 (-541 *4 *2 *5 *6))
- (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-771))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3)) (-4 *3 (-1215)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-566))) (-5 *5 (-1 (-1155 *4))) (-4 *4 (-365))
- (-4 *4 (-1049)) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4)))))
+ (-12 (-5 *3 (-645 (-613 *5))) (-4 *4 (-1100)) (-5 *2 (-613 *5))
+ (-5 *1 (-576 *4 *5)) (-4 *5 (-433 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4))
- (-5 *2
- (-3 (|:| |overq| (-1171 (-409 (-566))))
- (|:| |overan| (-1171 (-48))) (|:| -2188 (-112))))
- (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381)))
- (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270))
- (-5 *1 (-788))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381)))
- (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270))
- (-5 *1 (-788)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850))
- (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-949 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1049)) (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1)))
- (-4 *1 (-1241 *3)))))
+ (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050))
+ (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1172 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002))))))
-(((*1 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270))
- (-5 *1 (-1071 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-1270))
- (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1070 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-566)) (-14 *4 (-771)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-566)) (-4 *5 (-351)) (-5 *2 (-420 (-1171 (-1171 *5))))
- (-5 *1 (-1213 *5)) (-5 *3 (-1171 (-1171 *5))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-566)) (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-308))
- (-4 *9 (-949 *8 *6 *7))
- (-5 *2 (-2 (|:| -4144 (-1171 *9)) (|:| |polval| (-1171 *8))))
- (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)) (-5 *4 (-1171 *8)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *3 (-1064 *6 *7 *8))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1107 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 (-2 (|:| |val| (-644 *8)) (|:| -3860 *9))))
- (-5 *5 (-112)) (-4 *8 (-1064 *6 *7 *4)) (-4 *9 (-1070 *6 *7 *4 *8))
- (-4 *6 (-454)) (-4 *7 (-793)) (-4 *4 (-850))
- (-5 *2 (-644 (-2 (|:| |val| *8) (|:| -3860 *9))))
- (-5 *1 (-1107 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1219)) (-4 *5 (-1241 *3)) (-4 *6 (-1241 (-409 *5)))
- (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6))))
+ (-12 (-5 *3 (-1102 *4)) (-4 *4 (-1100)) (-5 *2 (-1 *4))
+ (-5 *1 (-1018 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4))))
- (-5 *1 (-1213 *4)) (-5 *3 (-1171 (-1171 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-531))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-579))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-861)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-419 *4)))))
-(((*1 *2) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-689 (-952 *4))) (-5 *1 (-1028 *4))
- (-4 *4 (-1049)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1157)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1099))
- (-4 *4 (-1099))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))))
-(((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-218))))
- ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-485)) (-5 *1 (-676))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850))
- (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850))
- (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-409 (-952 *5)))) (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147)))
- (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5)))))
- (-5 *1 (-1128 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147)))
- (-5 *2 (-1164 (-644 (-317 *5)) (-644 (-295 (-317 *5)))))
- (-5 *1 (-1128 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-191)) (-5 *3 (-566))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1270))
- (-5 *1 (-1216 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-5 *2 (-1270))
- (-5 *1 (-1216 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-2 (|:| -4018 *4) (|:| -3838 (-566)))))
- (-4 *4 (-1241 (-566))) (-5 *2 (-737 (-771))) (-5 *1 (-444 *4))))
+ (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381))))
((*1 *2 *3)
- (-12 (-5 *3 (-420 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-1049))
- (-5 *2 (-737 (-771))) (-5 *1 (-446 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793))
- (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-949 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002)))
- (-5 *1 (-176 *3)))))
+ (-12 (-5 *3 (-1094 (-567))) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-771)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850))
- (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-409 (-566))) (-5 *1 (-306)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1219)) (-4 *5 (-1241 (-409 *2)))
- (-4 *2 (-1241 *4)) (-5 *1 (-343 *3 *4 *2 *5))
- (-4 *3 (-344 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1219))
- (-4 *4 (-1241 (-409 *2))) (-4 *2 (-1241 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850))
- (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-771))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850))
- (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-850)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-921))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365)))
- (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-4 *7 (-344 *4 *5 *6))
- (-5 *2 (-771)) (-5 *1 (-394 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-833 (-921)))))
- ((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-558)) (-5 *2 (-566)) (-5 *1 (-623 *3 *4))
- (-4 *4 (-1241 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-740 *4 *3)) (-4 *4 (-1049))
- (-4 *3 (-850))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-740 *4 *3)) (-4 *4 (-1049)) (-4 *3 (-850))
- (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-904 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-432 *4))
- (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6)))
- (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-558) (-1038 (-566))))
- (-5 *2 (-771)) (-5 *1 (-911 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-338 (-409 (-566)) *4 *5 *6))
- (-4 *4 (-1241 (-409 (-566)))) (-4 *5 (-1241 (-409 *4)))
- (-4 *6 (-344 (-409 (-566)) *4 *5)) (-5 *2 (-771))
- (-5 *1 (-912 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365))
- (-4 *7 (-1241 *6)) (-4 *4 (-1241 (-409 *7))) (-4 *8 (-344 *6 *7 *4))
- (-4 *9 (-13 (-370) (-365))) (-5 *2 (-771))
- (-5 *1 (-1018 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1241 *3)) (-4 *3 (-1049)) (-4 *3 (-558))
- (-5 *2 (-771))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1161 *3)))))
-(((*1 *1)
- (-12 (-4 *1 (-406)) (-3129 (|has| *1 (-6 -4406)))
- (-3129 (|has| *1 (-6 -4398)))))
- ((*1 *2 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-850))))
- ((*1 *2 *1) (-12 (-4 *1 (-830 *2)) (-4 *2 (-850))))
- ((*1 *1) (-4 *1 (-844))) ((*1 *1 *1 *1) (-4 *1 (-850))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-409 (-1171 (-317 *3)))) (-4 *3 (-558))
- (-5 *1 (-1129 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-921)) (-5 *1 (-1030 *2))
- (-4 *2 (-13 (-1099) (-10 -8 (-15 -2897 ($ $ $))))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7))
- (-4 *7 (-949 *5 *6 *4)) (-4 *5 (-909)) (-4 *6 (-793))
- (-4 *4 (-850)) (-5 *1 (-906 *5 *6 *4 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (-4 *4 (-1049))
- (-5 *1 (-1028 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921)) (-4 *4 (-1049))
- (-5 *1 (-1028 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-566))) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-558)) (-4 *8 (-949 *7 *5 *6))
- (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *9) (|:| |radicand| *9)))
- (-5 *1 (-953 *5 *6 *7 *8 *9)) (-5 *4 (-771))
- (-4 *9
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *8)) (-15 -2691 (*8 $)) (-15 -2702 (*8 $))))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-644
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-566)))))
- (-4 *2 (-558)) (-5 *1 (-420 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-566))
- (|:| -1502 (-644 (-2 (|:| |irr| *4) (|:| -1737 (-566)))))))
- (-4 *4 (-1241 (-566))) (-5 *2 (-420 *4)) (-5 *1 (-444 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454))
- (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-977 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6))
- (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-644 (-952 *6))) (-5 *4 (-644 (-1175))) (-4 *6 (-454))
- (-5 *2 (-644 (-644 *7))) (-5 *1 (-540 *6 *7 *5)) (-4 *7 (-365))
- (-4 *5 (-13 (-365) (-848))))))
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-144)))))
+(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3))
- (-4 *3 (-13 (-1200) (-29 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049))
- (-5 *3 (-566)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-843 (-225)))) (-5 *4 (-225)) (-5 *2 (-644 *4))
- (-5 *1 (-268)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1099)) (-4 *4 (-1099))
- (-4 *6 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-684 *5 *4 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1215))
- (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-927))
- (-5 *2
- (-2 (|:| |brans| (-644 (-644 (-943 (-225)))))
- (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566)))
- (-5 *2
- (-2 (|:| |brans| (-644 (-644 (-943 (-225)))))
- (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))))
- (-5 *1 (-153)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1099))
- (-4 *2 (-131)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))
- (-5 *2 (-1035)) (-5 *1 (-748)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-420 *3))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-328 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1215)) (-14 *4 *2))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1175)) (-5 *2 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-112)) (-5 *1 (-612 *4))
- (-4 *4 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-612 *4)) (-4 *4 (-1099))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3 *4))
- (-4 *3 (-886 *5)) (-4 *4 (-614 (-892 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6)) (-4 *6 (-886 *5)) (-4 *5 (-1099))
- (-5 *2 (-112)) (-5 *1 (-887 *5 *6 *4)) (-4 *4 (-614 (-892 *5))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-649 *3 *4 *5)) (-4 *3 (-1099))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1 *1) (-4 *1 (-547))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-438)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1200) (-432 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-409 (-566)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-295 *3)) (-5 *5 (-409 (-566)))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-316 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-566))) (-5 *4 (-295 *6))
- (-4 *6 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-566))) (-5 *4 (-295 *7)) (-5 *5 (-1232 (-566)))
- (-4 *7 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-566)))
- (-4 *3 (-13 (-27) (-1200) (-432 *7)))
- (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-409 (-566)))) (-5 *4 (-295 *8))
- (-5 *5 (-1232 (-409 (-566)))) (-5 *6 (-409 (-566)))
- (-4 *8 (-13 (-27) (-1200) (-432 *7)))
- (-4 *7 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1175)) (-5 *5 (-295 *3)) (-5 *6 (-1232 (-409 (-566))))
- (-5 *7 (-409 (-566))) (-4 *3 (-13 (-27) (-1200) (-432 *8)))
- (-4 *8 (-13 (-558) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-52))
- (-5 *1 (-461 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3))))
- (-4 *3 (-1049)) (-5 *1 (-596 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-597 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3))))
- (-4 *3 (-1049)) (-4 *1 (-1225 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-771))
- (-5 *3 (-1155 (-2 (|:| |k| (-409 (-566))) (|:| |c| *4))))
- (-4 *4 (-1049)) (-4 *1 (-1246 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-4 *1 (-1256 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1155 (-2 (|:| |k| (-771)) (|:| |c| *3))))
- (-4 *3 (-1049)) (-4 *1 (-1256 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-351)) (-5 *2 (-1265 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-689 *1)) (-4 *1 (-145)) (-4 *1 (-909))
- (-5 *2 (-1265 *1)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1200))) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2))
- (-4 *3 (-558)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))
- ((*1 *1 *1) (-5 *1 (-862))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558))
- (-5 *2 (-1171 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1215))
- (-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099))
- (-4 *2 (-1215)))))
-(((*1 *2 *3) (-12 (-5 *3 (-644 (-566))) (-5 *2 (-771)) (-5 *1 (-591)))))
-(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1265 *4)) (-5 *1 (-530 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-5 *1 (-1237 *4 *2))
- (-4 *2 (-1241 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1256 *3)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1265 (-644 (-2 (|:| -2465 (-910 *3)) (|:| -2430 (-1119))))))
- (-5 *1 (-353 *3 *4)) (-14 *3 (-921)) (-14 *4 (-921))))
- ((*1 *2)
- (-12 (-5 *2 (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119))))))
- (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1171 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119))))))
- (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-921)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1) (-5 *1 (-1062))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4416)) (-4 *1 (-491 *3))
- (-4 *3 (-1215)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-308))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-449 *4 *5 *6 *2)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-689 *2)) (-5 *4 (-771))
- (-4 *2 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *5 (-1241 *2)) (-5 *1 (-501 *2 *5 *6)) (-4 *6 (-411 *2 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *4 (-1241 *3))
- (-5 *2
- (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-689 *3))))
- (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-1241 *3))
- (-5 *2
- (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-689 *3))))
- (-5 *1 (-768 *4 *5)) (-4 *5 (-411 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 *3))
- (-5 *2
- (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-689 *3))))
- (-5 *1 (-985 *4 *3 *5 *6)) (-4 *6 (-724 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-4 *3 (-1241 *4)) (-4 *5 (-1241 *3))
- (-5 *2
- (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-689 *3))))
- (-5 *1 (-1274 *4 *3 *5 *6)) (-4 *6 (-411 *3 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-303))))
- ((*1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3))
- (-4 *3 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3)))
- (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3)))
- (-4 *3 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3)))
- (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))))
+ (-12 (-4 *2 (-1242 *3)) (-5 *1 (-402 *3 *2))
+ (-4 *3 (-13 (-365) (-147))))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558))
- (-5 *2 (-1171 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-943 (-225))) (-5 *4 (-874)) (-5 *2 (-1270))
- (-5 *1 (-470))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-980 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-943 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211)) (-5 *3 (-225)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1265 (-3 (-470) "undefined"))) (-5 *1 (-1266)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4))
- (-4 *4 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771))))
- ((*1 *1 *1) (-4 *1 (-233)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-4 *1 (-267 *3)) (-4 *3 (-850))))
- ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219))
- (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4))
- (-4 *4 (-1241 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3))
- (-4 *3 (-1241 *2))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-365)) (-4 *2 (-900 *3)) (-5 *1 (-587 *2))
- (-5 *3 (-1175))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-587 *2)) (-4 *2 (-365))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4))
- (-4 *4 (-1099))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1229 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1241 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1250 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1257 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793))
- (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1068 *7 *8 *9 *3 *4)) (-4 *4 (-1070 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *3 (-1064 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-771)) (-5 *6 (-112)) (-4 *7 (-454)) (-4 *8 (-793))
- (-4 *9 (-850)) (-4 *3 (-1064 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1144 *7 *8 *9 *3 *4)) (-4 *4 (-1108 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *3 (-1064 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4406)) (-4 *1 (-406))))
- ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921))))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699))))
- ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699)))))
-(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1173 *4 *5 *6))
- (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1238 *5 *4)) (-5 *1 (-1257 *4 *5 *6))
- (-4 *4 (-1049)) (-14 *5 (-1175)) (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-5 *1 (-1265 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *4 (-1175))
- (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-1189 *2)) (-4 *2 (-365)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))))
+ (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *4)) (-4 *4 (-639 (-566))) (-5 *2 (-112))
- (-5 *1 (-1292 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)) (-4 *3 (-172))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1241 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
- (|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
-(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-1093 (-225)))))
- ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1093 (-225))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-644 (-771)))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-363 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-388 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-649 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1010 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
+ (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-308))
+ (-5 *2 (-410 (-421 (-953 *4)))) (-5 *1 (-1043 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *4 (-558))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3568 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
+ (-12 (-5 *2 (-645 *3)) (-5 *1 (-962 *3)) (-4 *3 (-548)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-409 (-566))))
- (-5 *1 (-306)))))
+ (-12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-891 *4 *5)) (-4 *5 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1166)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112))
+ (-5 *2 (-1036)) (-5 *1 (-754)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-612 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4)))
- (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-278 *4 *2)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34))))))
+ (|partial| -12 (-5 *2 (-645 (-1172 *7))) (-5 *3 (-1172 *7))
+ (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-910)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-5 *1 (-907 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1172 *5))) (-5 *3 (-1172 *5))
+ (-4 *5 (-1242 *4)) (-4 *4 (-910)) (-5 *1 (-908 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820))
- (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-771)) (-5 *1 (-213 *4 *2)) (-14 *4 (-921))
- (-4 *2 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-420 *3)) (-4 *3 (-558))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-2 (|:| -4018 *4) (|:| -3838 (-566)))))
- (-4 *4 (-1241 (-566))) (-5 *2 (-771)) (-5 *1 (-444 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147)))
- (-5 *1 (-1235 *4 *2)) (-4 *2 (-1241 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *1 (-1032 *2))
- (-4 *2 (-13 (-1099) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1) (-4 *1 (-967))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365))
- (-5 *2
- (-2 (|:| A (-689 *5))
- (|:| |eqs|
- (-644
- (-2 (|:| C (-689 *5)) (|:| |g| (-1265 *5)) (|:| -1451 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *5)) (-5 *4 (-1265 *5))
- (-4 *6 (-656 *5))))
+ (-12 (-4 *4 (-13 (-455) (-147))) (-5 *2 (-421 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1242 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-656 *5))
- (-5 *2 (-2 (|:| -3444 (-689 *6)) (|:| |vec| (-1265 *5))))
- (-5 *1 (-813 *5 *6)) (-5 *3 (-689 *6)) (-5 *4 (-1265 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2))
- (-4 *5 (-375 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-4 *2 (-1099)) (-5 *1 (-213 *4 *2))
- (-14 *4 (-921))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1215))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *2 *6 *7))
- (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1035)) (-5 *1 (-748)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1241 *6))
- (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566))))
- (-4 *8 (-1241 (-409 *7))) (-5 *2 (-587 *3))
- (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771))
- (-4 *4 (-172)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-739 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-558)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1205 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-13 (-455) (-147)))
+ (-5 *2 (-421 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-771)) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2) (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-771)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-1099)) (-5 *2 (-644 *1))
- (-4 *1 (-384 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-735 *3 *4))) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-726))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-949 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-587 *3)) (-5 *1 (-559 *5 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *5))))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1224))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-772)) (-4 *4 (-351))
+ (-5 *1 (-531 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
(-5 *1 (-192)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-419 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2070 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-365)) (-4 *7 (-1241 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-409 *7)) (|:| |a0| *6))
- (-2 (|:| -2070 (-409 *7)) (|:| |coeff| (-409 *7))) "failed"))
- (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-644
- (-2 (|:| -4153 (-771))
- (|:| |eqns|
- (-644
- (-2 (|:| |det| *7) (|:| |rows| (-644 (-566)))
- (|:| |cols| (-644 (-566))))))
- (|:| |fgb| (-644 *7)))))
- (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771))
- (-5 *1 (-924 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1146 (-1157))) (-5 *1 (-393)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-244 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-566))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1265 *5)) (-4 *5 (-792)) (-5 *2 (-112))
- (-5 *1 (-845 *4 *5)) (-14 *4 (-771)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172))
- (-14 *6
- (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *2))
- (-2 (|:| -2430 *5) (|:| -3428 *2))))
- (-4 *2 (-238 (-3991 *3) (-771))) (-5 *1 (-463 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-850)) (-4 *7 (-949 *4 *2 (-864 *3))))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1155 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3192
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-561)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1256 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-217))))
- ((*1 *2 *1) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489))))
- ((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-308))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566))))
- ((*1 *1 *1) (-4 *1 (-1059))))
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))
+ (-5 *1 (-989 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))
+ (-5 *1 (-1107 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1110)) (-5 *3 (-567)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566))))
+ (-12 (-5 *3 (-654 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-644 (-612 *3)))
- (|:| |vals| (-644 *3))))
- (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *5))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-566))
- (-5 *6
- (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))))
- (-5 *7 (-1 (-1270) (-1265 *5) (-1265 *5) (-381)))
- (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270))
- (-5 *1 (-788))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-566))
- (-5 *6
- (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -2322 (-381))))
- (-5 *7 (-1 (-1270) (-1265 *5) (-1265 *5) (-381)))
- (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270))
- (-5 *1 (-788)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-154))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1065)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-644 (-644 *4))) (-5 *2 (-644 *4)) (-4 *4 (-308))
- (-5 *1 (-179 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 *8))
- (-5 *4
- (-644
- (-2 (|:| -2227 (-689 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-689 *7)))))
- (-5 *5 (-771)) (-4 *8 (-1241 *7)) (-4 *7 (-1241 *6)) (-4 *6 (-351))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-811 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 (-410 *6))) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-5 *2 (-2 (|:| -2557 (-645 (-410 *6))) (|:| -4302 (-690 *5))))
+ (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-5 *4 (-410 *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
(-5 *2
- (-2 (|:| -2227 (-689 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-689 *7))))
- (-5 *1 (-500 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049))
- (-14 *4 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1215))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-811 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-655 *6 (-410 *6))) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-5 *2 (-2 (|:| -2557 (-645 (-410 *6))) (|:| -4302 (-690 *5))))
+ (-5 *1 (-811 *5 *6)) (-5 *4 (-645 (-410 *6))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-351)) (-4 *2 (-1050)) (-5 *1 (-713 *2 *3))
+ (-4 *3 (-1242 *2)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-880 *2)) (-4 *2 (-1216))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850)))
- (-14 *4 (-644 (-1175)))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-677 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-850)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-112)) (-5 *1 (-892 *4))
- (-4 *4 (-1099)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *4 *5 *6 *3)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))
- ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1268)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-99 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850))))
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-864 *3)) (-14 *3 (-644 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-989))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1091 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-5 *2 (-1175))))
- ((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1261 *3)) (-14 *3 *2))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1) (-5 *1 (-580)))
- ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-863))))
- ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-863))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1270)) (-5 *1 (-863))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1155 *4))
- (-4 *4 (-1099)) (-4 *4 (-1215)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-1000 *3)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1208 *5 *6 *7 *8)) (-4 *5 (-558))
- (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-563)) (-5 *3 (-566)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-248)))))
-(((*1 *2 *2) (-12 (-5 *2 (-689 (-317 (-566)))) (-5 *1 (-1031)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -4082 *1) (|:| -4402 *1) (|:| |associate| *1)))
- (-4 *1 (-558)))))
-(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-829)))))
-(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-276)))))
-(((*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-966 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))
- (-4 *2 (-365))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-225))))
- ((*1 *1 *1 *1)
- (-2676 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1215)))
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-475)) (-4 *2 (-1215)))))
- ((*1 *1 *1 *1) (-4 *1 (-365)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-558)) (-4 *3 (-1099))
- (-4 *1 (-432 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-475)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-538)))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-621 *2 *4 *3)) (-4 *2 (-38 *4))
- (-4 *3 (|SubsetCategory| (-726) *4))))
+ (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1134 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-172)) (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4))
- (-4 *2 (|SubsetCategory| (-726) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172)) (-4 *2 (-365))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-662 *2 *4 *3)) (-4 *2 (-717 *4))
- (-4 *3 (|SubsetCategory| (-726) *4))))
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-172)) (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4))
- (-4 *2 (|SubsetCategory| (-726) *4))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)) (-4 *2 (-365))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-866 *2 *3 *4 *5)) (-4 *2 (-365))
- (-4 *2 (-1049)) (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-771)))
- (-14 *5 (-771))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1053 *3 *4 *2 *5 *6)) (-4 *2 (-1049))
- (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1272 *2)) (-4 *2 (-365))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1049)) (-4 *3 (-850))
- (-4 *4 (-793)) (-14 *6 (-644 *3))
- (-5 *1 (-1277 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-949 *2 *4 *3))
- (-14 *7 (-644 (-771))) (-14 *8 (-771))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1049))
- (-4 *3 (-846)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-558))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *4 (-771))
- (-5 *2 (-689 (-225))) (-5 *1 (-268)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-112))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-112))
- (-5 *1 (-1204 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1241 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-438)))))
-(((*1 *2 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-566))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1157))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-508))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-593))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-480))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-137))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1165))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-626))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1095))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1089))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1072))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-970))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-180))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1036))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-312))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-671))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-154))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-527))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1276))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1065))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-519))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-681))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1114))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-133))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-138))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-1275))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-676))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-218))))
- ((*1 *2 *1) (-12 (-4 *1 (-1136)) (-5 *2 (-526))))
- ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 (-952 *6))) (-4 *6 (-558))
- (-4 *2 (-949 (-409 (-952 *6)) *5 *4)) (-5 *1 (-732 *5 *4 *6 *2))
- (-4 *5 (-793))
- (-4 *4 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-214 *2))
- (-4 *2
- (-13 (-850)
- (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $))
- (-15 -1397 ((-1270) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1) (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-21)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *3))
- (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
+ (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $))
- (-15 -2702 ((-1124 *3 (-612 $)) $))
- (-15 -2725 ($ (-1124 *3 (-612 $))))))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8))))
- (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))))
-(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-214 *2))
- (-4 *2
- (-13 (-850)
- (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 ((-1270) $))
- (-15 -1397 ((-1270) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1215))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1215))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-131))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *2))
- (-4 *2 (-1241 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850))
- (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-538)))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-25)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-409 (-566))) (-4 *1 (-556 *3))
- (-4 *3 (-13 (-406) (-1200)))))
- ((*1 *1 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-556 *2)) (-4 *2 (-13 (-406) (-1200))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))))
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1049)) (-5 *1 (-712 *3 *4))
- (-4 *4 (-1241 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-388 *3)) (|:| |mm| (-388 *3)) (|:| |rm| (-388 *3))))
- (-5 *1 (-388 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-819 *3)) (|:| |mm| (-819 *3)) (|:| |rm| (-819 *3))))
- (-5 *1 (-819 *3)) (-4 *3 (-850)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850))
- (-4 *4 (-267 *3)) (-4 *5 (-793)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *2)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-62 *3)) (-14 *3 (-1175))))
- ((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-69 *3)) (-14 *3 (-1175))))
- ((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-72 *3)) (-14 *3 (-1175))))
- ((*1 *2 *1) (-12 (-4 *1 (-397)) (-5 *2 (-1270))))
- ((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1270)) (-5 *1 (-399))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137))))
- ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1270)) (-5 *1 (-1137)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-454))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *1))))
- (-4 *1 (-1070 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1219)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-1244 *3 *2))
- (-4 *2 (-13 (-1241 *3) (-558) (-10 -8 (-15 -1885 ($ $ $))))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-5 *2 (-771)) (-5 *1 (-523 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-4 *3 (-558)) (-5 *2 (-771))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *4 (-172)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)) (-5 *2 (-771)) (-5 *1 (-688 *4 *5 *6 *3))
- (-4 *3 (-687 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-558))
- (-5 *2 (-771)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-264))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-566)) (-5 *4 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267))))
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-410 *1)) (-4 *1 (-1242 *3)) (-4 *3 (-1050))
+ (-4 *3 (-559))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *1) (-12 (-4 *1 (-327 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772))))
((*1 *2 *1 *3)
- (-12
- (-5 *3
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *2 (-1270)) (-5 *1 (-1267))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2673 (-225))
- (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
- (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
- (-5 *1 (-1267))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1038 (-566))) (-4 *3 (-558)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-432 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-1171 *4)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1049)) (-4 *1 (-303))))
- ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3))))
- ((*1 *2) (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1241 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365)))
- (-4 *2 (-1241 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157)) (-5 *2 (-644 (-1180))) (-5 *1 (-880)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114)))
- ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-547)))
- ((*1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-4 *3 (-13 (-27) (-1200) (-432 *6) (-10 -8 (-15 -2725 ($ *7)))))
- (-4 *7 (-848))
- (-4 *8
- (-13 (-1243 *3 *7) (-365) (-1200)
- (-10 -8 (-15 -3009 ($ $)) (-15 -1879 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1157)) (|:| |prob| (-1157))))))
- (-5 *1 (-424 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1157)) (-4 *9 (-983 *8))
- (-14 *10 (-1175)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-393)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-165 *3 *4))
- (-4 *3 (-166 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1215)) (-5 *2 (-771))
- (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1099)) (-5 *2 (-771)) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
- ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-546 *3)) (-4 *3 (-547))))
- ((*1 *2) (-12 (-4 *1 (-763)) (-5 *2 (-771))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-796 *3 *4))
- (-4 *3 (-797 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-558)) (-5 *2 (-771)) (-5 *1 (-991 *3 *4))
- (-4 *3 (-992 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-771)) (-5 *1 (-996 *3 *4))
- (-4 *3 (-997 *4))))
- ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1011 *3)) (-4 *3 (-1012))))
- ((*1 *2) (-12 (-4 *1 (-1049)) (-5 *2 (-771))))
- ((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-1058 *3)) (-4 *3 (-1059)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-27) (-432 *4))) (-4 *4 (-13 (-558) (-1038 (-566))))
- (-4 *7 (-1241 (-409 *6))) (-5 *1 (-554 *4 *5 *6 *7 *2))
- (-4 *2 (-344 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *2 *3) (-12 (-5 *3 (-390)) (-5 *2 (-1270)) (-5 *1 (-393))))
- ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-393)))))
-(((*1 *2)
- (-12 (-4 *1 (-351))
- (-5 *2 (-644 (-2 (|:| -4018 (-566)) (|:| -3428 (-566))))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3)))))
-(((*1 *1) (-5 *1 (-130))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4)))
- (-5 *1 (-1186 *4)) (-4 *4 (-850)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-558)) (-4 *3 (-172))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2227 (-644 *1))))
- (-4 *1 (-369 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-455 *3 *4 *5 *6))
- (|:| -2227 (-644 (-455 *3 *4 *5 *6)))))
- (-5 *1 (-455 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
+ (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794))
+ (-4 *3 (-851)) (-5 *2 (-772)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-420 (-1171 (-1171 *4))))
- (-5 *1 (-1213 *4)) (-5 *3 (-1171 (-1171 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-644 (-952 *3))) (-4 *3 (-454))
- (-5 *1 (-362 *3 *4)) (-14 *4 (-644 (-1175)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-644 (-780 *3 (-864 *4)))) (-4 *3 (-454))
- (-14 *4 (-644 (-1175))) (-5 *1 (-628 *3 *4)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-566)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1215))
- (-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4416)) (-4 *1 (-119 *3))
- (-4 *3 (-1215))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4416)) (-4 *1 (-119 *3))
- (-4 *3 (-1215))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1099))
- (-4 *2 (-1215))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1175)) (-5 *1 (-632))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1232 (-566))) (|has| *1 (-6 -4416)) (-4 *1 (-651 *2))
- (-4 *2 (-1215))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-644 (-566))) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4416)) (-4 *1 (-1010 *2))
- (-4 *2 (-1215))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1191 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2))
- (-4 *2 (-1215))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4416)) (-4 *1 (-1253 *3))
- (-4 *3 (-1215))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2))
- (-4 *2 (-1215)))))
-(((*1 *1) (-5 *1 (-439))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-771))) (-5 *3 (-171)) (-5 *1 (-1163 *4 *5))
- (-14 *4 (-921)) (-4 *5 (-1049)))))
-(((*1 *1) (-5 *1 (-1081))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1) (-4 *1 (-1138))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-921)) (-5 *1 (-444 *2))
- (-4 *2 (-1241 (-566)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-921)) (-5 *4 (-771)) (-5 *1 (-444 *2))
- (-4 *2 (-1241 (-566)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *1 (-444 *2))
- (-4 *2 (-1241 (-566)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771))
- (-5 *1 (-444 *2)) (-4 *2 (-1241 (-566)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-921)) (-5 *4 (-644 (-771))) (-5 *5 (-771))
- (-5 *6 (-112)) (-5 *1 (-444 *2)) (-4 *2 (-1241 (-566)))))
+ (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-829) (-1050))) (-5 *2 (-1158))
+ (-5 *1 (-827 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-420 *2)) (-4 *2 (-1241 *5))
- (-5 *1 (-446 *5 *2)) (-4 *5 (-1049)))))
+ (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-829) (-1050)))
+ (-5 *2 (-1158)) (-5 *1 (-827 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-823)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-829) (-1050)))
+ (-5 *2 (-1271)) (-5 *1 (-827 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-823)) (-5 *4 (-317 *6)) (-5 *5 (-112))
+ (-4 *6 (-13 (-829) (-1050))) (-5 *2 (-1271)) (-5 *1 (-827 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-829)) (-5 *2 (-1158))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-829)) (-5 *3 (-112)) (-5 *2 (-1158))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *2 (-1271))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-829)) (-5 *3 (-823)) (-5 *4 (-112)) (-5 *2 (-1271)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-760)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1172 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
+ (-5 *1 (-32 *4 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-147))) (-5 *2 (-644 *3))
- (-5 *1 (-1235 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1049)) (-5 *1 (-894 *2 *3)) (-4 *2 (-1241 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 (-439)))))
- (-5 *1 (-1179)))))
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 *6)) (-4 *5 (-1220)) (-4 *6 (-1242 *5))
+ (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *3) (|:| |radicand| *6)))
+ (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-772)) (-4 *7 (-1242 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-975)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-644 (-1265 *4))) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-558))
- (-5 *2 (-644 (-1265 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1241 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-967))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006))))
- ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-971)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1143))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1219)) (-4 *5 (-1241 *4))
- (-5 *2 (-2 (|:| |radicand| (-409 *5)) (|:| |deg| (-771))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1241 (-409 *5))))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-644
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225)))))
- (-5 *1 (-561))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-610 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-5 *2 (-644 *3))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-644
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225)))))
- (-5 *1 (-803)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-689 (-409 (-952 (-566))))) (-5 *2 (-644 (-317 (-566))))
- (-5 *1 (-1031)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1171 *6)) (-4 *6 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-1171 *7)) (-5 *1 (-322 *4 *5 *6 *7))
- (-4 *7 (-949 *6 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3))
- (-4 *3 (-1099)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-850)) (-5 *2 (-112))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-112))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-112))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1288 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-846)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-800))
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-1035)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *8 (-1064 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-644 *8))
- (|:| |towers| (-644 (-1027 *5 *6 *7 *8)))))
- (-5 *1 (-1027 *5 *6 *7 *8)) (-5 *3 (-644 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *8 (-1064 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-644 *8))
- (|:| |towers| (-644 (-1145 *5 *6 *7 *8)))))
- (-5 *1 (-1145 *5 *6 *7 *8)) (-5 *3 (-644 *8)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-432 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112))
- (-5 *1 (-158 *4 *5)) (-4 *5 (-432 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112))
- (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))
- ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *5 (-1099)) (-5 *2 (-112))
- (-5 *1 (-431 *4 *5)) (-4 *4 (-432 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112))
- (-5 *1 (-433 *4 *5)) (-4 *5 (-432 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-114)) (-4 *4 (-558)) (-5 *2 (-112))
- (-5 *1 (-630 *4 *5)) (-4 *5 (-13 (-432 *4) (-1002) (-1200))))))
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1266 *5)) (-4 *5 (-793)) (-5 *2 (-112))
+ (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-1099)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1093 (-843 (-225)))) (-5 *1 (-306)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-5 *1 (-699))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-689 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-365)) (-5 *1 (-978 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
- ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-418 *3 *2)) (-4 *3 (-419 *2))))
- ((*1 *2) (-12 (-4 *1 (-419 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-566)) (-5 *4 (-420 *2)) (-4 *2 (-949 *7 *5 *6))
- (-5 *1 (-742 *5 *6 *7 *2)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-308)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1026 *3)) (-4 *3 (-1215)))))
-(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-771))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-404)) (-5 *2 (-771)))))
-(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1049)) (-5 *1 (-714 *2 *4))
- (-4 *4 (-648 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-363 (-114))) (-5 *1 (-836 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-754)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-850)) (-5 *3 (-644 *6)) (-5 *5 (-644 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-644 *5)) (|:| |f3| *5)
- (|:| |f4| (-644 *5))))
- (-5 *1 (-1186 *6)) (-5 *4 (-644 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1178))))
- ((*1 *2 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-1270)) (-5 *1 (-1178)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-821)) (-14 *5 (-1176)) (-5 *2 (-645 (-1239 *5 *4)))
+ (-5 *1 (-1114 *4 *5)) (-5 *3 (-1239 *5 *4)))))
+(((*1 *1) (-5 *1 (-292))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-420 *5)) (-4 *5 (-558))
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-772)) (-4 *8 (-950 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176))))
+ (-4 *7 (-794))
(-5 *2
- (-2 (|:| -3428 (-771)) (|:| -1702 *5) (|:| |radicand| (-644 *5))))
- (-5 *1 (-321 *5)) (-5 *4 (-771))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-566)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-874)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-2 (|:| |deg| (-771)) (|:| -1609 *5))))
- (-4 *5 (-1241 *4)) (-4 *4 (-351)) (-5 *2 (-644 *5))
- (-5 *1 (-216 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-2 (|:| -4018 *5) (|:| -3838 (-566)))))
- (-5 *4 (-566)) (-4 *5 (-1241 *4)) (-5 *2 (-644 *5))
- (-5 *1 (-696 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-4 *7 (-558))
- (-4 *8 (-949 *7 *5 *6))
- (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *3) (|:| |radicand| *3)))
- (-5 *1 (-953 *5 *6 *7 *8 *3)) (-5 *4 (-771))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *8)) (-15 -2691 (*8 $)) (-15 -2702 (*8 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-829)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))))
-(((*1 *2)
- (-12 (-5 *2 (-689 (-910 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-921))
- (-14 *4 (-921))))
- ((*1 *2)
- (-12 (-5 *2 (-689 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
- (-14 *4
- (-3 (-1171 *3)
- (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-689 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-921)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-943 (-225)) (-943 (-225)))) (-5 *1 (-264))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365))
- (-5 *2 (-689 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1265 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-689 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-1265 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1241 *4)) (-5 *2 (-689 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1241 *4)) (-5 *2 (-1265 *4))))
+ (-645
+ (-2 (|:| |det| *8) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (-5 *1 (-925 *5 *6 *7 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-433 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1176))))
+ ((*1 *1 *1) (-4 *1 (-160))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3276 *3)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-411 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1241 *4)) (-5 *2 (-689 *4))))
+ (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1251 *3 *4 *5)) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
+ (-14 *4 (-1176)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
((*1 *2 *1)
- (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3))
- (-5 *2 (-1265 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-419 *4)) (-4 *4 (-172))
- (-5 *2 (-689 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1265 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-689 *5))) (-5 *3 (-689 *5)) (-4 *5 (-365))
- (-5 *2 (-1265 *5)) (-5 *1 (-1085 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-409 *5))
- (|:| |c2| (-409 *5)) (|:| |deg| (-771))))
- (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1241 (-409 *5))))))
+ (-12 (-4 *2 (-1100)) (-5 *1 (-714 *3 *2 *4)) (-4 *3 (-851))
+ (-14 *4
+ (-1 (-112) (-2 (|:| -3811 *3) (|:| -4164 *2))
+ (-2 (|:| -3811 *3) (|:| -4164 *2)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-851)) (-5 *4 (-645 *6))
+ (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-645 *4))))
+ (-5 *1 (-1187 *6)) (-5 *5 (-645 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2))
+ (-4 *2 (-657 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-644 *3)))))
+ (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-613 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-409 *2)) (-4 *2 (-1241 *5))
- (-5 *1 (-807 *5 *2 *3 *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *3 (-656 *2)) (-4 *6 (-656 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-409 *2))) (-4 *2 (-1241 *5))
- (-5 *1 (-807 *5 *2 *3 *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2))
- (-4 *6 (-656 (-409 *2))))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-862) (-862) (-862))) (-5 *4 (-566)) (-5 *2 (-862))
- (-5 *1 (-649 *5 *6 *7)) (-4 *5 (-1099)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-854 *3 *4 *5)) (-4 *3 (-1049))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-862))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-862))))
- ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-1171 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))))
-(((*1 *2)
- (-12 (-4 *4 (-1219)) (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5)))
- (-5 *2 (-771)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 (-169 (-409 (-566)))))
- (-5 *2
- (-644
- (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-566))
- (|:| |outvect| (-644 (-689 (-169 *4)))))))
- (-5 *1 (-764 *4)) (-4 *4 (-13 (-365) (-848))))))
-(((*1 *1) (-5 *1 (-292))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-921)) (-5 *2 (-470)) (-5 *1 (-1266)))))
-(((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |partsol| (-1265 (-409 (-952 *4))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *4)))))))
- (-5 *3 (-644 *7)) (-4 *4 (-13 (-308) (-147)))
- (-4 *7 (-949 *4 *6 *5)) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175))))
- (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *2)) (-4 *2 (-949 *3 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3)) (-5 *6 (-1171 *3))
- (-4 *3 (-13 (-432 *7) (-27) (-1200)))
- (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3))
- (-5 *6 (-409 (-1171 *3))) (-4 *3 (-13 (-432 *7) (-27) (-1200)))
- (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-562 *7 *3 *8)) (-4 *8 (-1099)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-771))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-921))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771))
- (-4 *4 (-172))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-157))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200)))
- (-5 *1 (-227 *3))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1215)) (-4 *2 (-726))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1215)) (-4 *2 (-726))))
- ((*1 *1 *2 *1)
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1215))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-295 *2)) (-4 *2 (-1111)) (-4 *2 (-1215))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-131))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-1099))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172))
- (-4 *6 (-238 (-3991 *3) (-771)))
- (-14 *7
- (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *6))
- (-2 (|:| -2430 *5) (|:| -3428 *6))))
- (-5 *1 (-463 *3 *4 *5 *6 *7 *2)) (-4 *5 (-850))
- (-4 *2 (-949 *4 *6 (-864 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-472 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850))
- (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-351)) (-5 *1 (-530 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-538)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1049))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1057))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-684 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-687 *3 *2 *4)) (-4 *3 (-1049)) (-4 *2 (-375 *3))
- (-4 *4 (-375 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-687 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *2 (-375 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-720)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1265 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-558))
- (-5 *1 (-969 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1057))))
- ((*1 *1 *1 *1) (-4 *1 (-1111)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *2 (-238 *3 *4))
- (-4 *5 (-238 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1122 *3 *4 *5 *2)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4))
- (-4 *2 (-238 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2))
- (-4 *2 (-949 *3 (-533 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-943 (-225))) (-5 *3 (-225)) (-5 *1 (-1211))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-726))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-726))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-566)) (-4 *1 (-1263 *3)) (-4 *3 (-1215)) (-4 *3 (-21))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))
- (-5 *2 (-1035)) (-5 *1 (-749))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-61 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-87 BDYVAL))))
- (-5 *8 (-390)) (-5 *2 (-1035)) (-5 *1 (-749)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558))))
- ((*1 *1 *1) (|partial| -4 *1 (-722))))
-(((*1 *2 *1) (-12 (-4 *1 (-674 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-848)))
- (-5 *2 (-644 (-2 (|:| -1502 (-644 *3)) (|:| -4277 *5))))
- (-5 *1 (-181 *5 *3)) (-4 *3 (-1241 (-169 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-365) (-848)))
- (-5 *2 (-644 (-2 (|:| -1502 (-644 *3)) (|:| -4277 *4))))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-612 *3)) (-4 *3 (-13 (-432 *5) (-27) (-1200)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-587 *3)) (-5 *1 (-568 *5 *3 *6)) (-4 *6 (-1099)))))
+ (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 *5)) (-4 *5 (-365))
+ (-4 *5 (-559)) (-5 *2 (-1266 *5)) (-5 *1 (-639 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 *5))
+ (-1397 (-4 *5 (-365))) (-4 *5 (-559)) (-5 *2 (-1266 (-410 *5)))
+ (-5 *1 (-639 *5 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-256))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1266)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1267)) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1266)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1267)) (-5 *1 (-256))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-877 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1266)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-878 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1267)) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1267)) (-5 *1 (-256))))
+ (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1268)) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-295 *7)) (-5 *4 (-1175)) (-5 *5 (-644 (-264)))
- (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-850) (-1038 (-566))))
- (-5 *2 (-1266)) (-5 *1 (-257 *6 *7))))
+ (-12 (-5 *3 (-295 *7)) (-5 *4 (-1176)) (-5 *5 (-645 (-264)))
+ (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-851) (-1039 (-567))))
+ (-5 *2 (-1267)) (-5 *1 (-257 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1266))
- (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099)))))
+ (-12 (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1267))
+ (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1266)) (-5 *1 (-260 *3))
- (-4 *3 (-13 (-614 (-538)) (-1099)))))
+ (-12 (-5 *4 (-1092 (-381))) (-5 *2 (-1267)) (-5 *1 (-260 *3))
+ (-4 *3 (-13 (-615 (-539)) (-1100)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-877 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264)))
- (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266))
+ (-12 (-5 *3 (-878 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264)))
+ (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1267))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-877 *5)) (-5 *4 (-1091 (-381)))
- (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1266))
+ (-12 (-5 *3 (-878 *5)) (-5 *4 (-1092 (-381)))
+ (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1267))
(-5 *1 (-260 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264)))
- (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267))
+ (-12 (-5 *3 (-880 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264)))
+ (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381)))
- (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267))
+ (-12 (-5 *3 (-880 *5)) (-5 *4 (-1092 (-381)))
+ (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268))
(-5 *1 (-260 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264))) (-5 *2 (-1267))
- (-5 *1 (-260 *3)) (-4 *3 (-13 (-614 (-538)) (-1099)))))
+ (-12 (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264))) (-5 *2 (-1268))
+ (-5 *1 (-260 *3)) (-4 *3 (-13 (-615 (-539)) (-1100)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1267)) (-5 *1 (-260 *3))
- (-4 *3 (-13 (-614 (-538)) (-1099)))))
+ (-12 (-5 *4 (-1092 (-381))) (-5 *2 (-1268)) (-5 *1 (-260 *3))
+ (-4 *3 (-13 (-615 (-539)) (-1100)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264)))
- (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267))
+ (-12 (-5 *3 (-883 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264)))
+ (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381)))
- (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1267))
+ (-12 (-5 *3 (-883 *5)) (-5 *4 (-1092 (-381)))
+ (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1268))
(-5 *1 (-260 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1266)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1267)) (-5 *1 (-261))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1266))
+ (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1267))
(-5 *1 (-261))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *2 (-1266)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *2 (-1267)) (-5 *1 (-261))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-943 (-225)))) (-5 *4 (-644 (-264)))
- (-5 *2 (-1266)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-645 (-264)))
+ (-5 *2 (-1267)) (-5 *1 (-261))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-644 (-225))) (-5 *2 (-1267)) (-5 *1 (-261))))
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1268)) (-5 *1 (-261))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-644 (-225))) (-5 *4 (-644 (-264))) (-5 *2 (-1267))
+ (-12 (-5 *3 (-645 (-225))) (-5 *4 (-645 (-264))) (-5 *2 (-1268))
(-5 *1 (-261)))))
-(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1215)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1157)) (|:| -3534 (-1157))))
- (-5 *1 (-822)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *6)) (-5 *5 (-1 (-421 (-1172 *6)) (-1172 *6)))
+ (-4 *6 (-365))
+ (-5 *2
+ (-645
+ (-2 (|:| |outval| *7) (|:| |outmult| (-567))
+ (|:| |outvect| (-645 (-690 *7))))))
+ (-5 *1 (-535 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-849))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-566)) (|has| *1 (-6 -4406)) (-4 *1 (-406))
- (-5 *2 (-921)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558))
- (-5 *2 (-2 (|:| -1702 *4) (|:| -2383 *3) (|:| -3033 *3)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1064 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| -1702 *3) (|:| -2383 *1) (|:| -3033 *1)))
- (-4 *1 (-1241 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1099)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-644 *1)) (-4 *1 (-303))))
+ (-12 (-5 *3 (-922))
+ (-5 *2
+ (-3 (-1172 *4)
+ (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120)))))))
+ (-5 *1 (-348 *4)) (-4 *4 (-351)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1176)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4099 *1)))
+ (-4 *1 (-853 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1242 *4)) (-5 *1 (-542 *4 *2 *5 *6))
+ (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303))))
((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-613 *3)) (-4 *3 (-1100))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-114)) (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-1099))
- (-5 *1 (-612 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-558)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-1049)) (-4 *2 (-1241 *5))
- (-5 *1 (-1259 *5 *2 *6 *3)) (-4 *6 (-656 *2)) (-4 *3 (-1256 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-644 *7)) (-5 *3 (-112)) (-4 *7 (-1064 *4 *5 *6))
- (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-977 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-1100))
+ (-5 *1 (-613 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1242 *6))
+ (-4 *6 (-13 (-365) (-147) (-1039 *4))) (-5 *4 (-567))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112))))
+ (|:| -2823
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1016 *6 *3)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| |totdeg| (-772)) (|:| -3586 *3))))
+ (-5 *4 (-772)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *1 (-452 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-5 *2 (-1271)) (-5 *1 (-1179))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176))
+ (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *2 (-1271))
+ (-5 *1 (-1179))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1176))
+ (-5 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *2 (-1271))
+ (-5 *1 (-1179)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $))
- (-15 -2702 ((-1124 *3 (-612 $)) $))
- (-15 -2725 ($ (-1124 *3 (-612 $))))))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1157)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *4 (-1064 *6 *7 *8)) (-5 *2 (-1270))
- (-5 *1 (-776 *6 *7 *8 *4 *5)) (-4 *5 (-1070 *6 *7 *8 *4)))))
+ (-12 (-5 *2 (-645 (-645 *6))) (-4 *6 (-950 *3 *5 *4))
+ (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1176))))
+ (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-644 (-538))) (-5 *1 (-538)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-579))))
- ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-579)))))
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-539))) (-5 *1 (-539)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-567))) (-5 *5 (-1 (-1156 *4))) (-4 *4 (-365))
+ (-4 *4 (-1050)) (-5 *2 (-1156 *4)) (-5 *1 (-1160 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-440)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-264))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1156 (-953 *4)) (-1156 (-953 *4))))
+ (-5 *1 (-1274 *4)) (-4 *4 (-365)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1171 *7)) (-4 *5 (-1049))
- (-4 *7 (-1049)) (-4 *2 (-1241 *5)) (-5 *1 (-503 *5 *2 *6 *7))
- (-4 *6 (-1241 *2))))
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1069 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1049)) (-4 *7 (-1049))
- (-4 *4 (-1241 *5)) (-5 *2 (-1171 *7)) (-5 *1 (-503 *5 *4 *6 *7))
- (-4 *6 (-1241 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *1 (-804 *4 *2)) (-4 *2 (-13 (-29 *4) (-1200) (-959)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-144)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-4 *5 (-1241 *4)) (-5 *2 (-1270))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1241 (-409 *5))) (-14 *7 *6))))
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))))
(((*1 *2 *1)
- (-12
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1093 *3)) (-4 *3 (-1216)) (-5 *2 (-567)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-645 (-1176)))
+ (-5 *2 (-645 (-645 (-381)))) (-5 *1 (-1024)) (-5 *5 (-381))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-14 *5 (-645 (-1176))) (-5 *2 (-645 (-645 (-1025 (-410 *4)))))
+ (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-953 *4)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))))
+(((*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-772))) (-5 *1 (-970 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1242 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4))
(-5 *2
- (-644
- (-644
- (-3 (|:| -3534 (-1175))
- (|:| -1675 (-644 (-3 (|:| S (-1175)) (|:| P (-952 (-566))))))))))
- (-5 *1 (-1179)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1215)) (-5 *2 (-566)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-905 (-566))) (-5 *4 (-566)) (-5 *2 (-689 *4))
- (-5 *1 (-1028 *5)) (-4 *5 (-1049))))
+ (-3 (|:| |overq| (-1172 (-410 (-567))))
+ (|:| |overan| (-1172 (-48))) (|:| -3577 (-112))))
+ (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1242 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-1279 *4 *5 *6 *7)))
+ (-5 *1 (-1279 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 *9)) (-5 *4 (-1 (-112) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1065 *6 *7 *8)) (-4 *6 (-559))
+ (-4 *7 (-794)) (-4 *8 (-851)) (-5 *2 (-645 (-1279 *6 *7 *8 *9)))
+ (-5 *1 (-1279 *6 *7 *8 *9)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1158)) (-5 *3 (-567)) (-5 *1 (-1063)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-690 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1028 *4))
- (-4 *4 (-1049))))
+ (-12 (-4 *4 (-172)) (-4 *2 (-1242 *4)) (-5 *1 (-177 *4 *2 *3))
+ (-4 *3 (-725 *4 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-905 (-566)))) (-5 *4 (-566))
- (-5 *2 (-644 (-689 *4))) (-5 *1 (-1028 *5)) (-4 *5 (-1049))))
+ (-12 (-5 *3 (-690 (-410 (-953 *5)))) (-5 *4 (-1176))
+ (-5 *2 (-953 *5)) (-5 *1 (-293 *5)) (-4 *5 (-455))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-644 (-566)))) (-5 *2 (-644 (-689 (-566))))
- (-5 *1 (-1028 *4)) (-4 *4 (-1049)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *1)) (-4 *1 (-1064 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112))))
+ (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-5 *2 (-953 *4))
+ (-5 *1 (-293 *4)) (-4 *4 (-455))))
((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))))
+ (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1242 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-169 (-410 (-567)))))
+ (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-169 (-410 (-567))))) (-5 *4 (-1176))
+ (-5 *2 (-953 (-169 (-410 (-567))))) (-5 *1 (-765 *5))
+ (-4 *5 (-13 (-365) (-849)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-953 (-410 (-567))))
+ (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *4 (-1176))
+ (-5 *2 (-953 (-410 (-567)))) (-5 *1 (-780 *5))
+ (-4 *5 (-13 (-365) (-849))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-645 *3)) (|:| |image| (-645 *3))))
+ (-5 *1 (-906 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1050))
+ (-4 *2 (-1226 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-409 (-566))))
- (-5 *2 (-2 (|:| -3601 (-1155 *4)) (|:| -3612 (-1155 *4))))
- (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1139 *4 *5)) (-4 *4 (-13 (-1099) (-34)))
- (-4 *5 (-13 (-1099) (-34))) (-5 *2 (-112)) (-5 *1 (-1140 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))))
-(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1049)) (-4 *2 (-687 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1241 *4)) (-4 *5 (-375 *4))
- (-4 *6 (-375 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-351))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -1502 (-644 (-2 (|:| |irr| *3) (|:| -1737 (-566)))))))
- (-5 *1 (-216 *5 *3)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-848))) (-5 *1 (-181 *3 *2))
- (-4 *2 (-1241 (-169 *3))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-921)) (-4 *5 (-558)) (-5 *2 (-689 *5))
- (-5 *1 (-956 *5 *3)) (-4 *3 (-656 *5)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-84 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
- (-5 *2 (-1035)) (-5 *1 (-749)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-4 *1 (-151 *3))))
+ (-12 (-4 *1 (-840))
+ (-5 *3
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (-5 *2 (-1036))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-840))
+ (-5 *3
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))
+ (-5 *2 (-1036)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-1 (-1172 (-953 *4)) (-953 *4)))
+ (-5 *1 (-1274 *4)) (-4 *4 (-365)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381)))
+ (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271))
+ (-5 *1 (-789))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381)))
+ (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271))
+ (-5 *1 (-789)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-4 *1 (-151 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-644 (-2 (|:| -3428 (-771)) (|:| -2737 *4) (|:| |num| *4))))
- (-4 *4 (-1241 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4))))
+ (-5 *2 (-645 (-2 (|:| -4164 (-772)) (|:| -4113 *4) (|:| |num| *4))))
+ (-4 *4 (-1242 *3)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-5 *3 (-644 (-952 (-566)))) (-5 *4 (-112)) (-5 *1 (-439))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-5 *3 (-645 (-953 (-567)))) (-5 *4 (-112)) (-5 *1 (-440))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-5 *3 (-644 (-1175))) (-5 *4 (-112)) (-5 *1 (-439))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-5 *3 (-645 (-1176))) (-5 *4 (-112)) (-5 *1 (-440))))
((*1 *2 *1)
- (-12 (-5 *2 (-1155 *3)) (-5 *1 (-601 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-634 *2)) (-4 *2 (-172))))
+ (-12 (-5 *2 (-1156 *3)) (-5 *1 (-602 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4))
+ (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4))
(-4 *4 (-172))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4))
+ (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4))
(-4 *4 (-172))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-672 *3)) (-4 *3 (-850)) (-5 *1 (-664 *3 *4))
+ (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-5 *1 (-665 *3 *4))
(-4 *4 (-172))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 (-644 *3)))) (-4 *3 (-1099))
- (-5 *1 (-675 *3))))
+ (-12 (-5 *2 (-645 (-645 (-645 *3)))) (-4 *3 (-1100))
+ (-5 *1 (-676 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-713 *2 *3 *4)) (-4 *2 (-850)) (-4 *3 (-1099))
+ (-12 (-5 *1 (-714 *2 *3 *4)) (-4 *2 (-851)) (-4 *3 (-1100))
(-14 *4
- (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *3))
- (-2 (|:| -2430 *2) (|:| -3428 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-838))))
+ (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *3))
+ (-2 (|:| -3811 *2) (|:| -4164 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-839))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1215)) (-4 *3 (-1215))))
+ (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1216)) (-4 *3 (-1216))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-2 (|:| -3476 (-1175)) (|:| -2484 *4))))
- (-4 *4 (-1099)) (-5 *1 (-889 *3 *4)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 *4))))
+ (-4 *4 (-1100)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1100))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *5)) (-4 *5 (-13 (-1099) (-34)))
- (-5 *2 (-644 (-1139 *3 *5))) (-5 *1 (-1139 *3 *5))
- (-4 *3 (-13 (-1099) (-34)))))
+ (-12 (-5 *4 (-645 *5)) (-4 *5 (-13 (-1100) (-34)))
+ (-5 *2 (-645 (-1140 *3 *5))) (-5 *1 (-1140 *3 *5))
+ (-4 *3 (-13 (-1100) (-34)))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-2 (|:| |val| *4) (|:| -3860 *5))))
- (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34)))
- (-5 *2 (-644 (-1139 *4 *5))) (-5 *1 (-1139 *4 *5))))
+ (-12 (-5 *3 (-645 (-2 (|:| |val| *4) (|:| -2138 *5))))
+ (-4 *4 (-13 (-1100) (-34))) (-4 *5 (-13 (-1100) (-34)))
+ (-5 *2 (-645 (-1140 *4 *5))) (-5 *1 (-1140 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3860 *4)))
- (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34)))
- (-5 *1 (-1139 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2138 *4)))
+ (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34)))
+ (-5 *1 (-1140 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34)))))
+ (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-5 *1 (-1139 *2 *3)) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34)))))
+ (-12 (-5 *4 (-112)) (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-644 *3)) (-4 *3 (-13 (-1099) (-34)))
- (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1099) (-34)))))
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-13 (-1100) (-34)))
+ (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1100) (-34)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-1139 *2 *3))) (-4 *2 (-13 (-1099) (-34)))
- (-4 *3 (-13 (-1099) (-34))) (-5 *1 (-1140 *2 *3))))
+ (-12 (-5 *4 (-645 (-1140 *2 *3))) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34))) (-5 *1 (-1141 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-1140 *2 *3))) (-5 *1 (-1140 *2 *3))
- (-4 *2 (-13 (-1099) (-34))) (-4 *3 (-13 (-1099) (-34)))))
+ (-12 (-5 *4 (-645 (-1141 *2 *3))) (-5 *1 (-1141 *2 *3))
+ (-4 *2 (-13 (-1100) (-34))) (-4 *3 (-13 (-1100) (-34)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4))))
+ (-12 (-5 *2 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1164 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241))))
+ (-12 (-5 *1 (-1165 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *3 (-567)) (-5 *1 (-241))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-644 (-1157))) (-5 *3 (-566)) (-5 *4 (-1157))
+ (-12 (-5 *2 (-645 (-1158))) (-5 *3 (-567)) (-5 *4 (-1158))
(-5 *1 (-241))))
- ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
((*1 *2 *1)
- (-12 (-4 *1 (-1243 *2 *3)) (-4 *3 (-792)) (-4 *2 (-1049)))))
-(((*1 *2) (-12 (-5 *2 (-833 (-566))) (-5 *1 (-536))))
- ((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-1241 *4)) (-5 *2 (-1 *6 (-644 *6)))
- (-5 *1 (-1259 *4 *5 *3 *6)) (-4 *3 (-656 *5)) (-4 *6 (-1256 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-225))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-409 (-566))) (-5 *1 (-381)))))
+ (-12 (-4 *1 (-1244 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050)))))
+(((*1 *2) (-12 (-5 *2 (-834 (-567))) (-5 *1 (-537))))
+ ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-1100)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-4 *5 (-365)) (-5 *2 (-1155 (-1155 (-952 *5))))
- (-5 *1 (-1273 *5)) (-5 *4 (-1155 (-952 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1099)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-829)))))
+ (-12 (-4 *6 (-559)) (-4 *2 (-950 *3 *5 *4))
+ (-5 *1 (-733 *5 *4 *6 *2)) (-5 *3 (-410 (-953 *6))) (-4 *5 (-794))
+ (-4 *4 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-1241 *4)) (-4 *4 (-1049))
- (-5 *2 (-1265 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2994 *3) (|:| |coef1| (-782 *3))))
- (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365))
- (-5 *2 (-644 (-2 (|:| C (-689 *5)) (|:| |g| (-1265 *5)))))
- (-5 *1 (-978 *5)) (-5 *3 (-689 *5)) (-5 *4 (-1265 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-644 (-169 *4))) (-5 *1 (-155 *3 *4))
- (-4 *3 (-1241 (-169 (-566)))) (-4 *4 (-13 (-365) (-848)))))
+ (-12 (-5 *3 (-922)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1172 *1))
+ (-4 *1 (-330 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1172 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365))
+ (-4 *2 (-1242 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-365) (-848))) (-5 *2 (-644 (-169 *4)))
- (-5 *1 (-181 *4 *3)) (-4 *3 (-1241 (-169 *4))))))
+ (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-1172 *4))
+ (-5 *1 (-531 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *1 (-113 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-258)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-645
+ (-2 (|:| -2432 (-772))
+ (|:| |eqns|
+ (-645
+ (-2 (|:| |det| *7) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (|:| |fgb| (-645 *7)))))
+ (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-772))
+ (-5 *1 (-925 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120))))))
+ (-4 *4 (-351)) (-5 *2 (-772)) (-5 *1 (-348 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-353 *3 *4)) (-14 *3 (-922))
+ (-14 *4 (-922))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
+ (-14 *4
+ (-3 (-1172 *3)
+ (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-922)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-365)) (-14 *6 (-1265 (-689 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-921)) (-14 *5 (-644 (-1175)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1215))))
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-365)) (-14 *6 (-1266 (-690 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-922)) (-14 *5 (-645 (-1176)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125 (-567) (-613 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1216))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738 'JINT 'X 'ELAM) (-2738) (-699))))
- (-5 *1 (-61 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114 'JINT 'X 'ELAM) (-4114) (-700))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 'XC) (-699))))
- (-5 *1 (-63 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 'XC) (-700))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-2738 'X) (-2738) (-699))) (-5 *1 (-64 *3))
- (-14 *3 (-1175))))
+ (-12 (-5 *2 (-341 (-4114 'X) (-4114) (-700))) (-5 *1 (-64 *3))
+ (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-2738) (-2738 'XC) (-699))) (-5 *1 (-66 *3))
- (-14 *3 (-1175))))
+ (-12 (-5 *2 (-341 (-4114) (-4114 'XC) (-700))) (-5 *1 (-66 *3))
+ (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738 'X) (-2738 '-3408) (-699))))
- (-5 *1 (-71 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114 'X) (-4114 '-1691) (-700))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 'X) (-699))))
- (-5 *1 (-74 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 'X) (-700))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738 'X 'EPS) (-2738 '-3408) (-699))))
- (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175))
- (-14 *5 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114 'X 'EPS) (-4114 '-1691) (-700))))
+ (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1176)) (-14 *4 (-1176))
+ (-14 *5 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738 'EPS) (-2738 'YA 'YB) (-699))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1175)) (-14 *4 (-1175))
- (-14 *5 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114 'EPS) (-4114 'YA 'YB) (-700))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1176)) (-14 *4 (-1176))
+ (-14 *5 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-2738) (-2738 'X) (-699))) (-5 *1 (-77 *3))
- (-14 *3 (-1175))))
+ (-12 (-5 *2 (-341 (-4114) (-4114 'X) (-700))) (-5 *1 (-77 *3))
+ (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-2738) (-2738 'X) (-699))) (-5 *1 (-78 *3))
- (-14 *3 (-1175))))
+ (-12 (-5 *2 (-341 (-4114) (-4114 'X) (-700))) (-5 *1 (-78 *3))
+ (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 'XC) (-699))))
- (-5 *1 (-79 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 'XC) (-700))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738) (-2738 'X) (-699))))
- (-5 *1 (-80 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114) (-4114 'X) (-700))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738 'X '-3408) (-2738) (-699))))
- (-5 *1 (-82 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114 'X '-1691) (-4114) (-700))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-689 (-341 (-2738 'X '-3408) (-2738) (-699))))
- (-5 *1 (-83 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-690 (-341 (-4114 'X '-1691) (-4114) (-700))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-689 (-341 (-2738 'X) (-2738) (-699)))) (-5 *1 (-84 *3))
- (-14 *3 (-1175))))
+ (-12 (-5 *2 (-690 (-341 (-4114 'X) (-4114) (-700)))) (-5 *1 (-84 *3))
+ (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738 'X) (-2738) (-699))))
- (-5 *1 (-85 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114 'X) (-4114) (-700))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-341 (-2738 'X) (-2738 '-3408) (-699))))
- (-5 *1 (-86 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-1266 (-341 (-4114 'X) (-4114 '-1691) (-700))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-689 (-341 (-2738 'XL 'XR 'ELAM) (-2738) (-699))))
- (-5 *1 (-87 *3)) (-14 *3 (-1175))))
+ (-12 (-5 *2 (-690 (-341 (-4114 'XL 'XR 'ELAM) (-4114) (-700))))
+ (-5 *1 (-87 *3)) (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-341 (-2738 'X) (-2738 '-3408) (-699))) (-5 *1 (-89 *3))
- (-14 *3 (-1175))))
+ (-12 (-5 *2 (-341 (-4114 'X) (-4114 '-1691) (-700))) (-5 *1 (-89 *3))
+ (-14 *3 (-1176))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-566)) (-14 *4 (-771)) (-4 *5 (-172))))
+ (-12 (-5 *2 (-645 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-567)) (-14 *4 (-772)) (-4 *5 (-172))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
- (-14 *3 (-566)) (-14 *4 (-771))))
+ (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-567)) (-14 *4 (-772))))
((*1 *1 *2)
- (-12 (-5 *2 (-1141 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172))
- (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566))))
+ (-12 (-5 *2 (-1142 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172))
+ (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))))
((*1 *1 *2)
- (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-771)) (-4 *5 (-172))
- (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566))))
+ (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-772)) (-4 *5 (-172))
+ (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))))
((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-689 *4))) (-4 *4 (-172))
- (-5 *2 (-1265 (-689 (-409 (-952 *4))))) (-5 *1 (-189 *4))))
+ (-12 (-5 *3 (-1266 (-690 *4))) (-4 *4 (-172))
+ (-5 *2 (-1266 (-690 (-410 (-953 *4))))) (-5 *1 (-189 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1091 (-317 *4)))
- (-4 *4 (-13 (-850) (-558) (-614 (-381)))) (-5 *2 (-1091 (-381)))
+ (-12 (-5 *3 (-1092 (-317 *4)))
+ (-4 *4 (-13 (-851) (-559) (-615 (-381)))) (-5 *2 (-1092 (-381)))
(-5 *1 (-259 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-850))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276))))
+ ((*1 *1 *2) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276))))
((*1 *2 *1)
- (-12 (-4 *2 (-1241 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1242 *3)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7))
(-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1250 *4 *5 *6)) (-4 *4 (-13 (-27) (-1200) (-432 *3)))
- (-14 *5 (-1175)) (-14 *6 *4)
- (-4 *3 (-13 (-1038 (-566)) (-639 (-566)) (-454)))
+ (-12 (-5 *2 (-1251 *4 *5 *6)) (-4 *4 (-13 (-27) (-1201) (-433 *3)))
+ (-14 *5 (-1176)) (-14 *6 *4)
+ (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455)))
(-5 *1 (-314 *3 *4 *5 *6))))
((*1 *2 *1)
(-12 (-5 *2 (-317 *5)) (-5 *1 (-341 *3 *4 *5))
- (-14 *3 (-644 (-1175))) (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
+ (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
((*1 *2 *3)
(-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *3 *4 *2))
(-4 *3 (-330 *4))))
@@ -9372,1596 +1546,1561 @@
(-12 (-4 *4 (-351)) (-4 *2 (-330 *4)) (-5 *1 (-349 *2 *4 *3))
(-4 *3 (-330 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172))
- (-5 *2 (-1289 *3 *4))))
+ (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
+ (-5 *2 (-1290 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172))
- (-5 *2 (-1280 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172))))
+ (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
+ (-5 *2 (-1281 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))
(-4 *1 (-385))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-385))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-385))))
- ((*1 *1 *2) (-12 (-5 *2 (-689 (-699))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-385))))
+ ((*1 *1 *2) (-12 (-5 *2 (-690 (-700))) (-4 *1 (-385))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))
(-4 *1 (-386))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-386))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-386))))
- ((*1 *2 *3) (-12 (-5 *2 (-396)) (-5 *1 (-395 *3)) (-4 *3 (-1099))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-386))))
+ ((*1 *2 *3) (-12 (-5 *2 (-397)) (-5 *1 (-396 *3)) (-4 *3 (-1100))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))
- (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-398))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))
+ (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-399))))
((*1 *1 *2)
- (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-295 (-317 (-169 (-381))))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-295 (-317 (-381)))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-295 (-317 (-566)))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-295 (-317 (-567)))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-381))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-317 (-381))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-566))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-317 (-567))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-295 (-317 (-694)))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-295 (-317 (-695)))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-295 (-317 (-699)))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-295 (-317 (-700)))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-295 (-317 (-701)))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-295 (-317 (-702)))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-694))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-317 (-695))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-699))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-317 (-700))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-701))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-317 (-702))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))
- (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175))
- (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))
+ (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176))
+ (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-331))) (-5 *1 (-400 *3 *4 *5 *6))
- (-14 *3 (-1175)) (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-645 (-331))) (-5 *1 (-401 *3 *4 *5 *6))
+ (-14 *3 (-1176)) (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-331)) (-5 *1 (-400 *3 *4 *5 *6)) (-14 *3 (-1175))
- (-14 *4 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1179))))
+ (-12 (-5 *2 (-331)) (-5 *1 (-401 *3 *4 *5 *6)) (-14 *3 (-1176))
+ (-14 *4 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1180))))
((*1 *1 *2)
- (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-850) (-21)))
- (-5 *1 (-429 *3 *4)) (-4 *3 (-13 (-172) (-38 (-409 (-566)))))))
+ (-12 (-5 *2 (-332 *4)) (-4 *4 (-13 (-851) (-21)))
+ (-5 *1 (-430 *3 *4)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-429 *2 *3)) (-4 *2 (-13 (-172) (-38 (-409 (-566)))))
- (-4 *3 (-13 (-850) (-21)))))
+ (-12 (-5 *1 (-430 *2 *3)) (-4 *2 (-13 (-172) (-38 (-410 (-567)))))
+ (-4 *3 (-13 (-851) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-409 (-952 (-409 *3)))) (-4 *3 (-558)) (-4 *3 (-1099))
- (-4 *1 (-432 *3))))
+ (-12 (-5 *2 (-410 (-953 (-410 *3)))) (-4 *3 (-559)) (-4 *3 (-1100))
+ (-4 *1 (-433 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-952 (-409 *3))) (-4 *3 (-558)) (-4 *3 (-1099))
- (-4 *1 (-432 *3))))
+ (-12 (-5 *2 (-953 (-410 *3))) (-4 *3 (-559)) (-4 *3 (-1100))
+ (-4 *1 (-433 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-409 *3)) (-4 *3 (-558)) (-4 *3 (-1099))
- (-4 *1 (-432 *3))))
+ (-12 (-5 *2 (-410 *3)) (-4 *3 (-559)) (-4 *3 (-1100))
+ (-4 *1 (-433 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1124 *3 (-612 *1))) (-4 *3 (-1049)) (-4 *3 (-1099))
- (-4 *1 (-432 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-436))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-436))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-436))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-436))))
- ((*1 *1 *2) (-12 (-5 *2 (-436)) (-5 *1 (-439))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))
- (-4 *1 (-442))))
- ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-442))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-442))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 (-699))) (-4 *1 (-442))))
+ (-12 (-5 *2 (-1125 *3 (-613 *1))) (-4 *3 (-1050)) (-4 *3 (-1100))
+ (-4 *1 (-433 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-437))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-437))))
+ ((*1 *1 *2) (-12 (-5 *2 (-437)) (-5 *1 (-440))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1179)) (|:| -3482 (-644 (-331)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))
(-4 *1 (-443))))
((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-443))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-4 *1 (-443))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-443))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 (-700))) (-4 *1 (-443))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 (-409 (-952 *3)))) (-4 *3 (-172))
- (-14 *6 (-1265 (-689 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-14 *4 (-921)) (-14 *5 (-644 (-1175)))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470))))
- ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-470))))
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1180)) (|:| -1769 (-645 (-331)))))
+ (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-331)) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-4 *1 (-444))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 (-410 (-953 *3)))) (-4 *3 (-172))
+ (-14 *6 (-1266 (-690 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-14 *4 (-922)) (-14 *5 (-645 (-1176)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471))))
+ ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-471))))
((*1 *1 *2)
- (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-1049)) (-14 *4 (-1175))
- (-14 *5 *3) (-5 *1 (-476 *3 *4 *5))))
+ (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-1050)) (-14 *4 (-1176))
+ (-14 *5 *3) (-5 *1 (-477 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-504))))
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-477 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1125 (-567) (-613 (-498)))) (-5 *1 (-498))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-505))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-526))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-606))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-527))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-607))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-607 *3 *2)) (-4 *2 (-744 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2) (-12 (-4 *1 (-620 *2)) (-4 *2 (-1049))))
+ (-12 (-4 *3 (-172)) (-5 *1 (-608 *3 *2)) (-4 *2 (-745 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2) (-12 (-4 *1 (-621 *2)) (-4 *2 (-1050))))
((*1 *2 *1)
- (-12 (-5 *2 (-1285 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))
+ (-12 (-5 *2 (-1286 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))
((*1 *2 *1)
- (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))
+ (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-5 *1 (-635 *3 *2)) (-4 *2 (-744 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-677 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850))))
+ (-12 (-4 *3 (-172)) (-5 *1 (-636 *3 *2)) (-4 *2 (-745 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-678 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
((*1 *2 *1)
- (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-5 *1 (-675 *3))
- (-4 *3 (-1099))))
+ (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-5 *1 (-676 *3))
+ (-4 *3 (-1100))))
((*1 *1 *2)
- (-12 (-5 *2 (-958 (-958 (-958 *3)))) (-4 *3 (-1099))
- (-5 *1 (-675 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850))))
- ((*1 *1 *2) (-12 (-5 *2 (-1117)) (-5 *1 (-681))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-682 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-959 (-959 (-959 *3)))) (-4 *3 (-1100))
+ (-5 *1 (-676 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1118)) (-5 *1 (-682))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1100))))
((*1 *1 *2)
- (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *2)) (-4 *4 (-375 *3))
+ (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *2)) (-4 *4 (-375 *3))
(-4 *2 (-375 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-701))) (-5 *1 (-694))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-699))) (-5 *1 (-694))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-566))) (-5 *1 (-694))))
- ((*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-694))))
- ((*1 *1 *2) (-12 (-5 *2 (-701)) (-5 *1 (-699))))
- ((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-699))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 (-566))) (-5 *2 (-317 (-701))) (-5 *1 (-701))))
- ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710))))
+ ((*1 *2 *1) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-702))) (-5 *1 (-695))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-700))) (-5 *1 (-695))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-567))) (-5 *1 (-695))))
+ ((*1 *1 *2) (-12 (-5 *2 (-169 (-381))) (-5 *1 (-695))))
+ ((*1 *1 *2) (-12 (-5 *2 (-702)) (-5 *1 (-700))))
+ ((*1 *2 *1) (-12 (-5 *2 (-381)) (-5 *1 (-700))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-567))) (-5 *2 (-317 (-702))) (-5 *1 (-702))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711))))
((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-172)) (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-172)) (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-2 (|:| -1702 *3) (|:| -3562 *4))))
- (-4 *3 (-1049)) (-4 *4 (-726)) (-5 *1 (-735 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-763))))
+ (-12 (-5 *2 (-645 (-2 (|:| -3087 *3) (|:| -1845 *4))))
+ (-4 *3 (-1050)) (-4 *4 (-727)) (-5 *1 (-736 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-764))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(|:| |mdnia|
(-2 (|:| |fn| (-317 (-225)))
- (|:| -3192 (-644 (-1093 (-843 (-225)))))
+ (|:| -3674 (-645 (-1094 (-844 (-225)))))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))))
- (-5 *1 (-769))))
+ (-5 *1 (-770))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-317 (-225)))
- (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225))
+ (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (-5 *1 (-769))))
+ (-5 *1 (-770))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (-5 *1 (-769))))
- ((*1 *2 *3) (-12 (-5 *2 (-774)) (-5 *1 (-773 *3)) (-4 *3 (-1215))))
+ (-5 *1 (-770))))
+ ((*1 *2 *3) (-12 (-5 *2 (-775)) (-5 *1 (-774 *3)) (-4 *3 (-1216))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
(|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *1 (-808))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-824))))
+ (-5 *1 (-809))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-825))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225)))
- (|:| |lb| (-644 (-843 (-225))))
- (|:| |cf| (-644 (-317 (-225))))
- (|:| |ub| (-644 (-843 (-225))))))
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225))))
+ (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-644 (-317 (-225))))
- (|:| -1342 (-644 (-225)))))))
- (-5 *1 (-841))))
+ (-2 (|:| |lfn| (-645 (-317 (-225))))
+ (|:| -2596 (-645 (-225)))))))
+ (-5 *1 (-842))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))
- (-5 *1 (-841))))
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))
+ (-5 *1 (-842))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225)))
- (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225))))
- (|:| |ub| (-644 (-843 (-225))))))
- (-5 *1 (-841))))
- ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-858))))
- ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-874))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-952 (-48))) (-5 *2 (-317 (-566))) (-5 *1 (-875))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-409 (-952 (-48)))) (-5 *2 (-317 (-566)))
- (-5 *1 (-875))))
- ((*1 *1 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-819 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850))))
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (-5 *1 (-842))))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-859))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-953 (-48))) (-5 *2 (-317 (-567))) (-5 *1 (-876))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-410 (-953 (-48)))) (-5 *2 (-317 (-567)))
+ (-5 *1 (-876))))
+ ((*1 *1 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-820 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-644 (-317 (-225))))
+ (-2 (|:| |pde| (-645 (-317 (-225))))
(|:| |constraints|
- (-644
+ (-645
(-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-771)) (|:| |boundaryType| (-566))
- (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225))))))
- (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158))
(|:| |tol| (-225))))
- (-5 *1 (-898))))
+ (-5 *1 (-899))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-905 *3))) (-4 *3 (-1099)) (-5 *1 (-904 *3))))
+ (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1100)) (-5 *1 (-905 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-905 *3))))
+ (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-906 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3))))
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-906 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-409 (-420 *3))) (-4 *3 (-308)) (-5 *1 (-914 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-409 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308))))
+ (-12 (-5 *2 (-410 (-421 *3))) (-4 *3 (-308)) (-5 *1 (-915 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-410 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308))))
((*1 *2 *3)
- (-12 (-5 *3 (-479)) (-5 *2 (-317 *4)) (-5 *1 (-919 *4))
- (-4 *4 (-558))))
- ((*1 *2 *3) (-12 (-5 *2 (-1270)) (-5 *1 (-1033 *3)) (-4 *3 (-1215))))
- ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1033 *2)) (-4 *2 (-1215))))
+ (-12 (-5 *3 (-480)) (-5 *2 (-317 *4)) (-5 *1 (-920 *4))
+ (-4 *4 (-559))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1271)) (-5 *1 (-1034 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *3) (-12 (-5 *3 (-313)) (-5 *1 (-1034 *2)) (-4 *2 (-1216))))
((*1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5))
- (-14 *6 (-644 *2))))
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5))
+ (-14 *6 (-645 *2))))
((*1 *2 *3)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-1043 *3)) (-4 *3 (-558))))
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-1044 *3)) (-4 *3 (-559))))
((*1 *1 *2)
- (-12 (-4 *3 (-1049)) (-4 *4 (-850)) (-5 *1 (-1125 *3 *4 *2))
- (-4 *2 (-949 *3 (-533 *4) *4))))
+ (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1126 *3 *4 *2))
+ (-4 *2 (-950 *3 (-534 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-1049)) (-4 *2 (-850)) (-5 *1 (-1125 *3 *2 *4))
- (-4 *4 (-949 *3 (-533 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-862))))
- ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1143))))
+ (-12 (-4 *3 (-1050)) (-4 *2 (-851)) (-5 *1 (-1126 *3 *2 *4))
+ (-4 *4 (-950 *3 (-534 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1144))))
((*1 *2 *3)
- (-12 (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3)) (-4 *3 (-1049))))
+ (-12 (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-1050))))
((*1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1167 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1174 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175))
- (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1188 (-1175) (-439))) (-5 *1 (-1179))))
- ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1187 *3)) (-4 *3 (-1099))))
- ((*1 *2 *3) (-12 (-5 *2 (-1195)) (-5 *1 (-1194 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1176))
+ (-14 *5 *3) (-5 *1 (-1174 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189 (-1176) (-440))) (-5 *1 (-1180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1188 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1196)) (-5 *1 (-1195 *3)) (-4 *3 (-1100))))
((*1 *1 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-5 *1 (-1209 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1209 *3)) (-4 *3 (-1049))))
+ (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-5 *1 (-1210 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1210 *3)) (-4 *3 (-1050))))
((*1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1229 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1230 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1093 *3)) (-4 *3 (-1215)) (-5 *1 (-1232 *3))))
+ (-12 (-5 *2 (-1094 *3)) (-4 *3 (-1216)) (-5 *1 (-1233 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1257 *3 *4 *5))
- (-4 *3 (-1049)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1258 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1238 *4 *3)) (-4 *3 (-1049)) (-14 *4 (-1175))
- (-14 *5 *3) (-5 *1 (-1257 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1261 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-1266))))
- ((*1 *2 *3) (-12 (-5 *3 (-470)) (-5 *2 (-1266)) (-5 *1 (-1269))))
+ (-12 (-5 *2 (-1239 *4 *3)) (-4 *3 (-1050)) (-14 *4 (-1176))
+ (-14 *5 *3) (-5 *1 (-1258 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1262 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-863)) (-5 *1 (-1267))))
+ ((*1 *2 *3) (-12 (-5 *3 (-471)) (-5 *2 (-1267)) (-5 *1 (-1270))))
((*1 *1 *2)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))
((*1 *2 *1)
- (-12 (-5 *2 (-1289 *3 *4)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-850))
+ (-12 (-5 *2 (-1290 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-851))
(-4 *4 (-172))))
((*1 *2 *1)
- (-12 (-5 *2 (-1280 *3 *4)) (-5 *1 (-1285 *3 *4)) (-4 *3 (-850))
+ (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-851))
(-4 *4 (-172))))
((*1 *1 *2)
- (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172))
- (-5 *1 (-1285 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-381))))
- ((*1 *1 *1 *1) (-4 *1 (-547)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))
- ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-771)))))
+ (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
+ (-5 *1 (-1286 *3 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381))))
+ ((*1 *1 *1 *1) (-4 *1 (-548)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-772)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049))
- (-14 *4 (-644 (-1175)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050))
+ (-14 *4 (-645 (-1176)))))
((*1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850)))
- (-14 *4 (-644 (-1175)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851)))
+ (-14 *4 (-645 (-1176)))))
((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))
((*1 *2 *1)
(|partial| -12 (-4 *1 (-337 *3 *4 *5 *2)) (-4 *3 (-365))
- (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4)))
+ (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4)))
(-4 *2 (-344 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-172))))
- ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-724 *2 *3)) (-4 *3 (-1241 *2)))))
+ ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-725 *2 *3)) (-4 *3 (-1242 *2)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2))
- (-4 *3 (-558))))
+ (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2))
+ (-4 *3 (-559))))
((*1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
- ((*1 *1) (-5 *1 (-479))) ((*1 *1) (-4 *1 (-1200))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-1265 *5))) (-5 *4 (-566)) (-5 *2 (-1265 *5))
- (-5 *1 (-1029 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1049)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-892 *6)))
- (-5 *5 (-1 (-889 *6 *8) *8 (-892 *6) (-889 *6 *8))) (-4 *6 (-1099))
- (-4 *8 (-13 (-1049) (-614 (-892 *6)) (-1038 *7)))
- (-5 *2 (-889 *6 *8)) (-4 *7 (-1049)) (-5 *1 (-941 *6 *7 *8)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-377 *4 *2))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-409 (-566))) (-5 *2 (-225)) (-5 *1 (-306)))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *1) (-5 *1 (-480))) ((*1 *1) (-4 *1 (-1201))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-410 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-559))
+ (-4 *4 (-1050)) (-4 *2 (-1257 *4)) (-5 *1 (-1260 *4 *5 *6 *2))
+ (-4 *6 (-657 *5)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1110)) (-5 *3 (-567)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1201))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *3 (-1242 *4)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1271))
+ (-5 *1 (-452 *4 *5 *6 *7)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-921)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
+ (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365))))
((*1 *2 *1)
- (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1241 *2)) (-4 *2 (-172))))
+ (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1242 *2)) (-4 *2 (-172))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-921)) (-4 *4 (-351))
- (-5 *1 (-530 *4))))
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-922)) (-4 *4 (-351))
+ (-5 *1 (-531 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-943 (-225))) (-5 *2 (-1270)) (-5 *1 (-470)))))
+ (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (-4 *2 (-1050)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-921)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-264)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1175)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1200))))
- ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1220))))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-1265 (-689 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-689 *4)) (-4 *5 (-656 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3444 (-689 (-409 (-952 *4))))
- (|:| |vec| (-644 (-409 (-952 *4)))) (|:| -4153 (-771))
- (|:| |rows| (-644 (-566))) (|:| |cols| (-644 (-566)))))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793))
- (-5 *2
- (-2 (|:| |partsol| (-1265 (-409 (-952 *4))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *4)))))))
- (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4))))
- (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48))))
+ (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-4 *3 (-992 *2)) (-4 *4 (-1241 *3)) (-4 *2 (-308))
- (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3)))))
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548))
+ (-4 *3 (-559))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-548)) (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1)))
- (-4 *1 (-432 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497))))
+ (|partial| -12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4))
- (-5 *1 (-621 *3 *4 *2)) (-4 *3 (-38 *4))))
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548))
+ (-4 *3 (-1100))))
((*1 *2 *1)
- (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-726) *4))
- (-5 *1 (-662 *3 *4 *2)) (-4 *3 (-717 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))))
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548))
+ (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3))
+ (-4 *3 (-1039 *2)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975)))) (-5 *3 (-225))
- (-5 *2 (-1035)) (-5 *1 (-748)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1280 (-1175) *3)) (-4 *3 (-1049)) (-5 *1 (-1287 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1280 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *1 (-1289 *3 *4)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-753)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))))
+ (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *5 (-1065 *3 *4 *2)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-950 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1050)) (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1)))
+ (-4 *1 (-1242 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1172 *5))) (-5 *3 (-1172 *5))
+ (-4 *5 (-166 *4)) (-4 *4 (-548)) (-5 *1 (-149 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 *3)) (-4 *3 (-1242 *5))
+ (-4 *5 (-1242 *4)) (-4 *4 (-351)) (-5 *1 (-360 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1172 (-567)))) (-5 *3 (-1172 (-567)))
+ (-5 *1 (-575))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-1172 *1))) (-5 *3 (-1172 *1))
+ (-4 *1 (-910)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-365)) (-5 *1 (-1026 *3 *2)) (-4 *2 (-657 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -2823 *3) (|:| -3986 (-645 *5))))
+ (-5 *1 (-1026 *5 *3)) (-5 *4 (-645 *5)) (-4 *3 (-657 *5)))))
+(((*1 *1) (-5 *1 (-292))))
+(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1102 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1102 *3)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1176))) (-4 *6 (-455))
+ (-5 *2 (-645 (-645 (-247 *5 *6)))) (-5 *1 (-474 *5 *6 *7))
+ (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003)))
+ (-5 *1 (-176 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-909)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-420 (-1171 *7)))
- (-5 *1 (-906 *4 *5 *6 *7)) (-5 *3 (-1171 *7))))
+ (-12 (-5 *3 (-588 *2)) (-4 *2 (-13 (-29 *4) (-1201)))
+ (-5 *1 (-586 *4 *2))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567))))))
((*1 *2 *3)
- (-12 (-4 *4 (-909)) (-4 *5 (-1241 *4)) (-5 *2 (-420 (-1171 *5)))
- (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-48)))) (-5 *1 (-48))))
+ (-12 (-5 *3 (-588 (-410 (-953 *4))))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *4))
+ (-5 *1 (-591 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4))
- (-5 *2 (-1265 *6)) (-5 *1 (-415 *3 *4 *5 *6))
- (-4 *6 (-13 (-411 *4 *5) (-1038 *4)))))
+ (-12 (-4 *3 (-993 *2)) (-4 *4 (-1242 *3)) (-4 *2 (-308))
+ (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3)))))
((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-4 *3 (-1099)) (-5 *2 (-1124 *3 (-612 *1)))
- (-4 *1 (-432 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1124 (-566) (-612 (-497)))) (-5 *1 (-497))))
+ (-12 (-4 *3 (-559)) (-4 *3 (-1100)) (-5 *2 (-1125 *3 (-613 *1)))
+ (-4 *1 (-433 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-498)))) (-5 *1 (-498))))
((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-621 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-726) *3))))
+ (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4))
+ (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4))))
((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-717 *3)) (-5 *1 (-662 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-726) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-644 *7)) (|:| |badPols| (-644 *7))))
- (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))))
+ (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-727) *4))
+ (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567))))
+ (-5 *4 (-317 (-169 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567))))
+ (-5 *4 (-317 (-381))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567))))
+ (-5 *4 (-317 (-567))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-169 (-381)))))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-567)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-169 (-381)))))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-567)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-169 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-381))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-567))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567))))
+ (-5 *4 (-317 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567))))
+ (-5 *4 (-317 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 (-953 (-567))))
+ (-5 *4 (-317 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-695)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-700)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-317 (-702)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-695)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-700)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-317 (-702)))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-690 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-700))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-317 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1158)) (-5 *1 (-331))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-4 *5 (-365)) (-5 *2 (-645 (-1210 *5)))
+ (-5 *1 (-1274 *5)) (-5 *4 (-1210 *5)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1216))
+ (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *2 *7)) (-4 *6 (-1050))
+ (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
+(((*1 *2 *1) (-12 (-5 *2 (-972)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1269)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-5 *2 (-645 (-2 (|:| -2296 *3) (|:| -3677 *4))))
+ (-5 *1 (-697 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271))
+ (-5 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271))
+ (-5 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1241 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4)))
+ (-5 *2 (-2 (|:| |num| (-1266 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-48)))) (-5 *1 (-48))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1241 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049))))
+ (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4))
+ (-5 *2 (-1266 *6)) (-5 *1 (-416 *3 *4 *5 *6))
+ (-4 *6 (-13 (-412 *4 *5) (-1039 *4)))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-715 *3 *2 *4 *5 *6)) (-4 *3 (-172))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-689 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-432 *3) (-1002))) (-5 *1 (-277 *3 *2))
- (-4 *3 (-558)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099)) (-5 *2 (-644 *1))
- (-4 *1 (-432 *3))))
+ (-12 (-4 *3 (-1050)) (-4 *3 (-1100)) (-5 *2 (-1125 *3 (-613 *1)))
+ (-4 *1 (-433 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1125 (-567) (-613 (-498)))) (-5 *1 (-498))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-1099))))
+ (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-622 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-727) *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049))
- (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3))
- (-5 *1 (-950 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $))
- (-15 -2702 (*7 $))))))))
+ (-12 (-4 *3 (-172)) (-4 *2 (-718 *3)) (-5 *1 (-663 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-727) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
(|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-644 (-281))) (-5 *1 (-281))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-409 (-566)))
- (-5 *1 (-435 *4 *3)) (-4 *3 (-432 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-612 *3)) (-4 *3 (-432 *5))
- (-4 *5 (-13 (-558) (-1038 (-566)))) (-5 *2 (-1171 (-409 (-566))))
- (-5 *1 (-435 *5 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-129)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-558))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *7 (-1241 *5)) (-4 *4 (-724 *5 *7))
- (-5 *2 (-2 (|:| -3444 (-689 *6)) (|:| |vec| (-1265 *5))))
- (-5 *1 (-811 *5 *6 *7 *4 *3)) (-4 *6 (-656 *5)) (-4 *3 (-656 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-691 *2)) (-4 *2 (-613 (-862))))))
-(((*1 *1 *2 *2)
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *1)
(-12
(-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
+ (-2 (|:| |cycle?| (-112)) (|:| -2847 (-772)) (|:| |period| (-772))))
+ (-5 *1 (-1156 *4)) (-4 *4 (-1216)) (-5 *3 (-772)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1281 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
+ (-5 *1 (-665 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-665 *3 *4)) (-5 *1 (-1286 *3 *4))
+ (-4 *3 (-851)) (-4 *4 (-172)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-129)))
+ ((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172))))
+ ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-5 *1 (-550)))
+ ((*1 *1) (-5 *1 (-551))) ((*1 *1) (-5 *1 (-552)))
+ ((*1 *1) (-4 *1 (-727))) ((*1 *1) (-5 *1 (-1176)))
+ ((*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-922))))
+ ((*1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922))))
+ ((*1 *1) (-5 *1 (-1221))) ((*1 *1) (-5 *1 (-1222)))
+ ((*1 *1) (-5 *1 (-1223))) ((*1 *1) (-5 *1 (-1224))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-689 *7)) (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *1 (-924 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))
- ((*1 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-381)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 (-612 *4))) (-4 *4 (-432 *3)) (-4 *3 (-1099))
- (-5 *1 (-575 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))))
-(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225)))
- (-5 *5 (-112)) (-5 *2 (-1267)) (-5 *1 (-258)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-558))
- (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-1236 *4 *3))
- (-4 *3 (-1241 *4)))))
+ (|partial| -12 (-5 *2 (-645 (-1172 *4))) (-5 *3 (-1172 *4))
+ (-4 *4 (-910)) (-5 *1 (-664 *4)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5))
+ (-14 *3 (-567)) (-14 *4 (-772)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *2 (-644 (-225)))
- (-5 *1 (-470)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1208 *4 *5 *6 *3)) (-4 *4 (-558)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1) (-5 *1 (-1174)))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *1) (-5 *1 (-157)))
- ((*1 *2 *1) (-12 (-4 *1 (-1044 *2)) (-4 *2 (-23)))))
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050))
+ (-5 *2 (-953 *5)) (-5 *1 (-945 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-567)) (-5 *5 (-1158)) (-5 *6 (-690 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1063)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-112)) (-5 *1 (-301)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 (-952 *4))) (-5 *3 (-644 (-1175))) (-4 *4 (-454))
- (-5 *1 (-918 *4)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-645 (-225))) (-5 *1 (-204)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875))
+ (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-471)) (-5 *1 (-1270))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *2 (-471))
+ (-5 *1 (-1270))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264)))
+ (-5 *2 (-471)) (-5 *1 (-1270)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 (-613 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1100))
+ (-5 *1 (-576 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-1050))
+ (-5 *1 (-1160 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050))
+ (-14 *4 (-1176)) (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-4 *5 (-351)) (-5 *2 (-421 (-1172 (-1172 *5))))
+ (-5 *1 (-1214 *5)) (-5 *3 (-1172 (-1172 *5))))))
+(((*1 *1 *1 *1) (-5 *1 (-162)))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-162)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567))))
+ (-5 *2 (-2 (|:| -2395 *3) (|:| |nconst| *3))) (-5 *1 (-570 *5 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *3))))
- (-5 *1 (-596 *3)) (-4 *3 (-1049)))))
+ (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-567)) (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-308))
+ (-4 *9 (-950 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3586 (-1172 *9)) (|:| |polval| (-1172 *8))))
+ (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1172 *9)) (-5 *4 (-1172 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1241 *3)))))
+ (-12 (-5 *2 (-1266 (-1266 (-567)))) (-5 *3 (-922)) (-5 *1 (-469)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5))
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-862))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-863))))
((*1 *2 *1)
- (-12 (-5 *2 (-1141 *3 *4)) (-5 *1 (-993 *3 *4)) (-14 *3 (-921))
+ (-12 (-5 *2 (-1142 *3 *4)) (-5 *1 (-994 *3 *4)) (-14 *3 (-922))
(-4 *4 (-365))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *5))) (-4 *5 (-1049))
- (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
+ (-12 (-5 *2 (-645 (-645 *5))) (-4 *5 (-1050))
+ (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5))
(-4 *7 (-238 *3 *5)))))
-(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-351)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-909)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-324 *2 *4)) (-4 *4 (-131))
- (-4 *2 (-1099))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-388 *2)) (-4 *2 (-1099))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-1099)) (-5 *1 (-649 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *1 (-819 *2)) (-4 *2 (-850)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-218))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-441))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-838))))
- ((*1 *2 *1) (-12 (-5 *2 (-1117)) (-5 *1 (-1114))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-455)) (-4 *4 (-851))
+ (-4 *5 (-794)) (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-442))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-839))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1118)) (-5 *1 (-1115))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1180))) (-5 *3 (-1180)) (-5 *1 (-1117)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225)))
- (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-483 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049))
- (-5 *2 (-952 *5)) (-5 *1 (-944 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))))
-(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1223))))))
-(((*1 *2) (-12 (-5 *2 (-644 *3)) (-5 *1 (-1083 *3)) (-4 *3 (-132)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-877 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1215))))
+ (-12 (-5 *2 (-645 (-1181))) (-5 *3 (-1181)) (-5 *1 (-1118)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))
+ ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *1 (-351))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-210)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225)))
+ (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-752)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1065 *6 *7 *8))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1108 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1065 *6 *7 *4)) (-4 *9 (-1071 *6 *7 *4 *8))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851))
+ (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2138 *9))))
+ (-5 *1 (-1108 *6 *7 *4 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-645 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-132)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281))))
((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 *6)) (-4 *5 (-1219)) (-4 *6 (-1241 *5))
- (-5 *2 (-2 (|:| -3428 (-771)) (|:| -1702 *3) (|:| |radicand| *6)))
- (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-771)) (-4 *7 (-1241 *3)))))
+ (-12 (-5 *2 (-3 (-567) (-225) (-509) (-1158) (-1181)))
+ (-5 *1 (-1181)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-977 *4 *5 *3 *6)) (-4 *4 (-1050)) (-4 *5 (-794))
+ (-4 *3 (-851)) (-4 *6 (-1065 *4 *5 *3)) (-5 *2 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-432 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175))))
- ((*1 *1 *1) (-4 *1 (-160))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2))
- (-4 *2 (-656 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1 *1) (-4 *1 (-173)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
+(((*1 *1 *1) (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-628 *2 *3 *4)) (-4 *2 (-851))
+ (-4 *3 (-13 (-172) (-718 (-410 (-567))))) (-14 *4 (-922))))
+ ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1242 *6))
+ (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567))))
+ (-4 *8 (-1242 (-410 *7))) (-5 *2 (-588 *3))
+ (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407))))
+ ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-406 *3)) (-4 *3 (-407))))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4407)) (-4 *1 (-407))))
+ ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922))))
+ ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-1156 (-567))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1220)) (-4 *5 (-1242 *3)) (-4 *6 (-1242 (-410 *5)))
+ (-5 *2 (-112)) (-5 *1 (-343 *4 *3 *5 *6)) (-4 *4 (-344 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-775)) (-5 *1 (-52)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-644 (-644 *6))) (-4 *6 (-949 *3 *5 *4))
- (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-850) (-614 (-1175))))
- (-4 *5 (-793)) (-5 *1 (-924 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1)
+ (-12 (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220))
+ (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-922)) (-4 *3 (-365))
+ (-14 *4 (-994 *2 *3))))
+ ((*1 *1 *1)
(|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1241 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1242 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172))
(-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
(-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+ ((*1 *1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *1 *1) (|partial| -4 *1 (-723)))
+ ((*1 *1 *1) (|partial| -4 *1 (-727)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-13 (-849) (-365)))
+ (-4 *2 (-1242 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1049))
- (-4 *2 (-1225 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-644
- (-2 (|:| -4153 (-771))
- (|:| |eqns|
- (-644
- (-2 (|:| |det| *7) (|:| |rows| (-644 (-566)))
- (|:| |cols| (-644 (-566))))))
- (|:| |fgb| (-644 *7)))))
- (-4 *7 (-949 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-771))
- (-5 *1 (-924 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862)))
- (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862)))
- (|:| |args| (-644 (-862)))))
- (-5 *1 (-1175))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-644 (-862)))) (-5 *1 (-1175)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-566)) (-5 *2 (-644 (-2 (|:| -4018 *3) (|:| -3838 *4))))
- (-5 *1 (-696 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-129)))
- ((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771))
- (-4 *4 (-172))))
- ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549)))
- ((*1 *1) (-5 *1 (-550))) ((*1 *1) (-5 *1 (-551)))
- ((*1 *1) (-4 *1 (-726))) ((*1 *1) (-5 *1 (-1175)))
- ((*1 *1) (-12 (-5 *1 (-1181 *2)) (-14 *2 (-921))))
- ((*1 *1) (-12 (-5 *1 (-1182 *2)) (-14 *2 (-921))))
- ((*1 *1) (-5 *1 (-1220))) ((*1 *1) (-5 *1 (-1221)))
- ((*1 *1) (-5 *1 (-1222))) ((*1 *1) (-5 *1 (-1223))))
-(((*1 *1 *1 *1) (-5 *1 (-162)))
- ((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-162)))))
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1065 *3 *4 *5)))))
(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-771)) (-4 *3 (-1215)) (-4 *1 (-57 *3 *4 *5))
+ (-12 (-5 *2 (-772)) (-4 *3 (-1216)) (-4 *1 (-57 *3 *4 *5))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1) (-5 *1 (-171)))
- ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1099))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1157)) (-4 *1 (-391))))
- ((*1 *1) (-5 *1 (-396)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-771)) (-4 *1 (-651 *3)) (-4 *3 (-1215))))
+ ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-392))))
+ ((*1 *1) (-5 *1 (-397)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-4 *1 (-652 *3)) (-4 *3 (-1216))))
((*1 *1)
- (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099))
- (-4 *4 (-666 *3))))
- ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099))))
+ (-12 (-4 *3 (-1100)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1100))
+ (-4 *4 (-667 *3))))
+ ((*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100))))
((*1 *1 *2)
- (-12 (-5 *1 (-1141 *3 *2)) (-14 *3 (-771)) (-4 *2 (-1049))))
- ((*1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049))))
- ((*1 *1 *1) (-5 *1 (-1175))) ((*1 *1) (-5 *1 (-1175)))
- ((*1 *1) (-5 *1 (-1195))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
+ (-12 (-5 *1 (-1142 *3 *2)) (-14 *3 (-772)) (-4 *2 (-1050))))
+ ((*1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050))))
+ ((*1 *1 *1) (-5 *1 (-1176))) ((*1 *1) (-5 *1 (-1176)))
+ ((*1 *1) (-5 *1 (-1196))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-883 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1241 *6))
- (-4 *6 (-13 (-27) (-432 *5))) (-4 *5 (-13 (-558) (-1038 (-566))))
- (-4 *8 (-1241 (-409 *7))) (-5 *2 (-587 *3))
- (-5 *1 (-554 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+ (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1094 (-844 (-381)))) (-5 *2 (-1094 (-844 (-225))))
+ (-5 *1 (-306)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-644 *1)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5))
+ (-12 (-5 *2 (-645 *1)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5))
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1049)) (-5 *1 (-689 *3))))
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1050)) (-5 *1 (-690 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 *4)) (-4 *4 (-1049)) (-4 *1 (-1122 *3 *4 *5 *6))
+ (-12 (-5 *2 (-645 *4)) (-4 *4 (-1050)) (-4 *1 (-1123 *3 *4 *5 *6))
(-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))))
-(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-653 (-409 *2))) (-4 *2 (-1241 *4)) (-5 *1 (-810 *4 *2))
- (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *2 (-409 *2))) (-4 *2 (-1241 *4))
- (-5 *1 (-810 *4 *2))
- (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566))))))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1035))
- (-5 *1 (-746)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-409 (-566))))
- (-5 *2 (-2 (|:| -3449 (-1155 *4)) (|:| -3461 (-1155 *4))))
- (-5 *1 (-1161 *4)) (-5 *3 (-1155 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-755)))))
+ (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1172 (-1172 *4))))
+ (-5 *1 (-1214 *4)) (-5 *3 (-1172 (-1172 *4))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-5 *2
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *1 *1) (-4 *1 (-1144))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-91 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-2 (|:| -3476 *3) (|:| -2484 *4))))
- (-4 *3 (-1099)) (-4 *4 (-1099)) (-4 *1 (-1191 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1191 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
+ (-12 (-5 *2 (-645 (-2 (|:| -1762 *3) (|:| -3859 *4))))
+ (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *1 (-1192 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1192 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-558)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *4 *2 *5)) (-4 *4 (-1049)) (-4 *5 (-238 *3 *4))
- (-4 *2 (-238 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225)))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-63 LSFUN2))))
- (-5 *2 (-1035)) (-5 *1 (-753)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049))
- (-5 *2 (-644 (-644 (-943 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112)) (-4 *4 (-1049))
- (-4 *1 (-1133 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 (-943 *3)))) (-4 *3 (-1049))
- (-4 *1 (-1133 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-112))
- (-4 *1 (-1133 *4)) (-4 *4 (-1049))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-644 (-644 (-943 *4)))) (-5 *3 (-112))
- (-4 *1 (-1133 *4)) (-4 *4 (-1049))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-644 (-644 (-644 *5)))) (-5 *3 (-644 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-644 (-644 (-943 *5)))) (-5 *3 (-644 (-171)))
- (-5 *4 (-171)) (-4 *1 (-1133 *5)) (-4 *5 (-1049)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-538)))))
-(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-328 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-518 *3 *4)) (-4 *3 (-1215))
- (-14 *4 (-566)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-1131 *4 *2))
- (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4415) (-6 -4416))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-850)) (-4 *3 (-1215)) (-5 *1 (-1131 *3 *2))
- (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4415) (-6 -4416)))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *4))
- (-4 *4 (-1215)) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519))))
+ (|partial| -12 (-5 *3 (-1266 *5)) (-4 *5 (-640 *4)) (-4 *4 (-559))
+ (-5 *2 (-1266 *4)) (-5 *1 (-639 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1100)) (-4 *6 (-1100))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *5 (-1100)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-645 (-317 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-210)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-580))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))))
+(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1140 *3 *2)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *2 (-13 (-1100) (-34))))))
+(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548))))
+ ((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-509)) (-5 *2 (-692 (-1104))) (-5 *1 (-292)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-520))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *3 *2))
- (-4 *3 (-13 (-1099) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1276)))))
+ (-12 (-4 *2 (-13 (-1100) (-34))) (-5 *1 (-1140 *3 *2))
+ (-4 *3 (-13 (-1100) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1277)))))
+(((*1 *2 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1007)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1271)) (-5 *1 (-1138)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-1049)) (-5 *1 (-827 *2 *3)) (-4 *2 (-708 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1215)) (-4 *2 (-1099))
- (-4 *2 (-850)))))
-(((*1 *1) (-5 *1 (-561))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5))
- (-5 *2 (-415 *4 (-409 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1265 *6)) (-4 *6 (-13 (-411 *4 *5) (-1038 *4)))
- (-4 *4 (-992 *3)) (-4 *5 (-1241 *4)) (-4 *3 (-308))
- (-5 *1 (-415 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-1050)) (-5 *1 (-828 *2 *3)) (-4 *2 (-709 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-454))
- (-5 *2
- (-644
- (-2 (|:| |eigval| (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4))))
- (|:| |eigmult| (-771))
- (|:| |eigvec| (-644 (-689 (-409 (-952 *4))))))))
- (-5 *1 (-293 *4)) (-5 *3 (-689 (-409 (-952 *4)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
+ (-12 (-5 *3 (-654 (-410 *2))) (-4 *2 (-1242 *4)) (-5 *1 (-811 *4 *2))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-655 *2 (-410 *2))) (-4 *2 (-1242 *4))
+ (-5 *1 (-811 *4 *2))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-506 (-409 (-566)) (-240 *4 (-771)) (-864 *3)
- (-247 *3 (-409 (-566)))))
- (-14 *3 (-644 (-1175))) (-14 *4 (-771)) (-5 *1 (-507 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-850)) (-4 *5 (-909)) (-4 *6 (-793))
- (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-420 (-1171 *8)))
- (-5 *1 (-906 *5 *6 *7 *8)) (-5 *4 (-1171 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-909)) (-4 *5 (-1241 *4)) (-5 *2 (-420 (-1171 *5)))
- (-5 *1 (-907 *4 *5)) (-5 *3 (-1171 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-5 *1 (-317 *3)) (-4 *3 (-558)) (-4 *3 (-1099)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-454)) (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *2 (-644 *3)) (-5 *1 (-977 *4 *5 *6 *3))
- (-4 *3 (-1064 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *1 (-682 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1885 (-782 *3)) (|:| |coef2| (-782 *3))))
- (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-2 (|:| -1885 *1) (|:| |coef2| *1)))
- (-4 *1 (-1064 *3 *4 *5)))))
+ (-507 (-410 (-567)) (-240 *4 (-772)) (-865 *3)
+ (-247 *3 (-410 (-567)))))
+ (-14 *3 (-645 (-1176))) (-14 *4 (-772)) (-5 *1 (-508 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9))
- (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6))
- (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)) (-4 *2 (-308))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2))
- (-4 *2 (-687 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1053 *2 *3 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-850)))))
-(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1242 (-567))) (-5 *1 (-489 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))))
+(((*1 *2 *2) (-12 (-5 *1 (-683 *2)) (-4 *2 (-1100)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1036))
+ (-5 *1 (-747)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1100)))))
+(((*1 *2) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-645 (-1172 (-567)))) (-5 *1 (-191)) (-5 *3 (-567)))))
(((*1 *2 *1) (-12 (-5 *2 (-186)) (-5 *1 (-138))))
((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-1092 *3)) (-4 *3 (-1215)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002))))))
-(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-785 *3)) (-4 *3 (-614 *2))))
+(((*1 *1) (-5 *1 (-1267))))
+(((*1 *2 *3) (-12 (-5 *2 (-381)) (-5 *1 (-786 *3)) (-4 *3 (-615 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-921)) (-5 *2 (-381)) (-5 *1 (-785 *3))
- (-4 *3 (-614 *2))))
+ (-12 (-5 *4 (-922)) (-5 *2 (-381)) (-5 *1 (-786 *3))
+ (-4 *3 (-615 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2))
- (-5 *2 (-381)) (-5 *1 (-785 *4))))
+ (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2))
+ (-5 *2 (-381)) (-5 *1 (-786 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049))
- (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5))))
+ (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050))
+ (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558)) (-4 *4 (-614 *2))
- (-5 *2 (-381)) (-5 *1 (-785 *4))))
+ (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 *2))
+ (-5 *2 (-381)) (-5 *1 (-786 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5))))
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850))
- (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4))))
+ (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558)) (-4 *5 (-850))
- (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))))
-(((*1 *1 *1 *1) (-4 *1 (-761))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *2 (-1035)) (-5 *1 (-751)))))
+ (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851))
+ (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *1 (-1236 *4 *2)) (-4 *2 (-1242 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1211 *2)) (-4 *2 (-975)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-1097 *3))))
- ((*1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-971)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-926)))))
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-1098 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-308)) (-4 *6 (-375 *5)) (-4 *4 (-375 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-1124 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271))
+ (-5 *1 (-1072 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271))
+ (-5 *1 (-1108 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-5 *1 (-1063))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-244 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-381)) (-5 *1 (-205)))))
+ (-12 (-5 *3 (-772)) (-5 *2 (-690 (-953 *4))) (-5 *1 (-1029 *4))
+ (-4 *4 (-1050)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-906 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-175))) (-5 *1 (-1085)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1270)) (-5 *1 (-1217))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 (-1175))) (-5 *2 (-1270)) (-5 *1 (-1217)))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))))
+ (-12 (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-2 (|:| -1577 (-1156 *4)) (|:| -1592 (-1156 *4))))
+ (-5 *1 (-1162 *4)) (-5 *3 (-1156 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-567)) (-4 *5 (-849)) (-4 *5 (-365))
+ (-5 *2 (-772)) (-5 *1 (-946 *5 *6)) (-4 *6 (-1242 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-613 *3)) (-5 *5 (-1172 *3))
+ (-4 *3 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1172 *3)))
+ (-4 *3 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-494)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1201))) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *3 (-1242 *4)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220))
+ (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-589 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-482)))))
-(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1185)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1163 3 *3)) (-4 *3 (-1049)) (-4 *1 (-1133 *3))))
- ((*1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))))
+ (-12
+ (-5 *3
+ (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))
+ (-5 *2 (-645 (-225))) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-112)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-756)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-1194)))))
+(((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-218))))
+ ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-486)) (-5 *1 (-677))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *1) (-5 *1 (-331))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1216))
+ (-5 *2 (-645 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-157)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1071 *4 *5 *6 *7))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308))
- (-5 *2 (-644 (-771))) (-5 *1 (-778 *3 *4 *5 *6 *7))
- (-4 *3 (-1241 *6)) (-4 *7 (-949 *6 *4 *5)))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-4 *2 (-1100))
+ (-5 *1 (-890 *4 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851))
+ (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-308))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4099 *1)))
+ (-4 *1 (-308)))))
+(((*1 *2 *1) (-12 (-4 *1 (-428 *3)) (-4 *3 (-1100)) (-5 *2 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-633)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1123 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4))
+ (-4 *2 (-238 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-644 *4))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
- (|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-653 *4)) (-4 *4 (-344 *5 *6 *7))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-806 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147)))
+ (-5 *2 (-1165 (-645 (-317 *5)) (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1129 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147)))
+ (-5 *2 (-1165 (-645 (-317 *5)) (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1129 *5)))))
+(((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-114)) (-4 *4 (-1050)) (-5 *1 (-715 *4 *2))
+ (-4 *2 (-649 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-837 *2)) (-4 *2 (-1050)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-539) (-645 (-539)))) (-5 *1 (-114))))
+ ((*1 *1) (-5 *1 (-581))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-689 *5))) (-4 *5 (-308)) (-4 *5 (-1049))
- (-5 *2 (-1265 (-1265 *5))) (-5 *1 (-1029 *5)) (-5 *4 (-1265 *5)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-191)) (-5 *3 (-567))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365))
+ (-4 *7 (-1242 (-410 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2096 *3)))
+ (-5 *1 (-565 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365))
+ (-5 *2
+ (-2 (|:| |answer| (-410 *6)) (|:| -2096 (-410 *6))
+ (|:| |specpart| (-410 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-566 *5 *6)) (-5 *3 (-410 *6)))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215))
- (-5 *2 (-644 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-737 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-441))) (-5 *1 (-865)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1171 *1)) (-5 *3 (-1175)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1171 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-952 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-4 *1 (-29 *3)) (-4 *3 (-558))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-558))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 *2)) (-5 *4 (-1175)) (-4 *2 (-432 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-558))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-4 *1 (-1012))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1171 *1)) (-5 *3 (-921)) (-5 *4 (-862))
- (-4 *1 (-1012))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-921)) (-4 *4 (-13 (-848) (-365)))
- (-4 *1 (-1067 *4 *2)) (-4 *2 (-1241 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-752)))))
+ (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-183 *3)) (-4 *3 (-185)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3276 (-783 *3)) (|:| |coef1| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -3276 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1065 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-532)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1050)) (-4 *3 (-851))
+ (-4 *4 (-267 *3)) (-4 *5 (-794)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-63 LSFUN2))))
+ (-5 *2 (-1036)) (-5 *1 (-754)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-861)) (-5 *2 (-692 (-1224))) (-5 *3 (-1224)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
- ((*1 *1 *1 *1) (-4 *1 (-475)))
- ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))
- ((*1 *2 *2) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-883))))
- ((*1 *1 *1) (-5 *1 (-971)))
- ((*1 *1 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-644 *6)) (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))
- (-4 *3 (-558)))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1036)) (-5 *1 (-749)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219))
- (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4))))))
-(((*1 *2 *3) (-12 (-5 *2 (-420 *3)) (-5 *1 (-560 *3)) (-4 *3 (-547))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308)) (-5 *2 (-420 *3))
- (-5 *1 (-742 *4 *5 *6 *3)) (-4 *3 (-949 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-308))
- (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 *7)))
- (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1171 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-454)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-420 *1)) (-4 *1 (-949 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-793)) (-4 *6 (-454)) (-5 *2 (-420 *3))
- (-5 *1 (-979 *4 *5 *6 *3)) (-4 *3 (-949 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-454))
- (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-420 (-1171 (-409 *7))))
- (-5 *1 (-1170 *4 *5 *6 *7)) (-5 *3 (-1171 (-409 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-420 *1)) (-4 *1 (-1219))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-420 *3)) (-5 *1 (-1244 *4 *3))
- (-4 *3 (-13 (-1241 *4) (-558) (-10 -8 (-15 -1885 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-14 *5 (-644 (-1175)))
- (-5 *2
- (-644 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6)))))
- (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175))))))
-(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1215))
- (-4 *2 (-1215)) (-5 *1 (-58 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (|has| *1 (-6 -4415))
- (-4 *1 (-151 *2)) (-4 *2 (-1215))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *2))
- (-4 *2 (-1215))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *2))
- (-4 *2 (-1215))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1049))
- (-5 *2 (-2 (|:| -4144 (-1171 *4)) (|:| |deg| (-921))))
- (-5 *1 (-221 *4 *5)) (-5 *3 (-1171 *4)) (-4 *5 (-558))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771))
- (-4 *6 (-1215)) (-4 *2 (-1215)) (-5 *1 (-239 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1241 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-558)) (-4 *2 (-1099))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1241 *2))
- (-4 *4 (-1241 (-409 *3))) (-4 *5 (-344 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1215)) (-4 *2 (-1215))
- (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1099)) (-4 *2 (-1099))
- (-5 *1 (-425 *5 *4 *2 *6)) (-4 *4 (-427 *5)) (-4 *6 (-427 *2))))
- ((*1 *1 *1) (-5 *1 (-497)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-644 *5)) (-4 *5 (-1215))
- (-4 *2 (-1215)) (-5 *1 (-642 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1049)) (-4 *2 (-1049))
- (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2))
- (-4 *9 (-375 *2)) (-5 *1 (-685 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-687 *5 *6 *7)) (-4 *10 (-687 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1241 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-409 *4)) (-4 *4 (-1241 *3)) (-4 *3 (-365))
- (-4 *3 (-172)) (-4 *1 (-724 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1241 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-958 *5)) (-4 *5 (-1215))
- (-4 *2 (-1215)) (-5 *1 (-957 *5 *2))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1144)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050))
+ (-5 *2 (-645 (-645 (-944 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112)) (-4 *4 (-1050))
+ (-4 *1 (-1134 *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-1034 *3 *4 *5 *2 *6)) (-4 *2 (-949 *3 *4 *5))
- (-14 *6 (-644 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1049)) (-4 *2 (-1049))
- (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7))
- (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2))
- (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *12 (-1053 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1155 *5)) (-4 *5 (-1215))
- (-4 *2 (-1215)) (-5 *1 (-1153 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
- (-4 *1 (-1208 *5 *6 *7 *2)) (-4 *5 (-558)) (-4 *6 (-793))
- (-4 *7 (-850)) (-4 *2 (-1064 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1265 *5)) (-4 *5 (-1215))
- (-4 *2 (-1215)) (-5 *1 (-1264 *5 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-892 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1099))
- (-4 *5 (-1215)) (-5 *1 (-890 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-892 *4)) (-5 *3 (-644 (-1 (-112) *5))) (-4 *4 (-1099))
- (-4 *5 (-1215)) (-5 *1 (-890 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-892 *5)) (-5 *3 (-644 (-1175)))
- (-5 *4 (-1 (-112) (-644 *6))) (-4 *5 (-1099)) (-4 *6 (-1215))
- (-5 *1 (-890 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1215)) (-4 *4 (-1099))
- (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-1 (-112) *5))) (-4 *5 (-1215)) (-4 *4 (-1099))
- (-5 *1 (-937 *4 *2 *5)) (-4 *2 (-432 *4))))
+ (-12 (-5 *2 (-645 (-645 (-944 *3)))) (-4 *3 (-1050))
+ (-4 *1 (-1134 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1134 *4)) (-4 *4 (-1050))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-645 (-944 *4)))) (-5 *3 (-112))
+ (-4 *1 (-1134 *4)) (-4 *4 (-1050))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-645 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1134 *5)) (-4 *5 (-1050))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-645 (-645 (-944 *5)))) (-5 *3 (-645 (-171)))
+ (-5 *4 (-171)) (-4 *1 (-1134 *5)) (-4 *5 (-1050)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1100)) (-5 *2 (-1271))
+ (-5 *1 (-1217 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1100)) (-5 *2 (-1271))
+ (-5 *1 (-1217 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176))))
+ (-4 *7 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-953 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *5))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *5))))))))))
+ (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-645 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1215))
- (-5 *2 (-317 (-566))) (-5 *1 (-938 *5))))
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-645 (-1176))) (-4 *8 (-950 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176))))
+ (-4 *7 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-953 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *5))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *5))))))))))
+ (-5 *1 (-925 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7))
+ (|:| |wcond| (-645 (-953 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *4))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *4))))))))))
+ (-5 *1 (-925 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *5 (-922)) (-4 *9 (-950 *6 *8 *7))
+ (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-851) (-615 (-1176))))
+ (-4 *8 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9))
+ (|:| |wcond| (-645 (-953 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *6))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *6))))))))))
+ (-5 *1 (-925 *6 *7 *8 *9)) (-5 *4 (-645 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1176))) (-5 *5 (-922))
+ (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *9)) (|:| |neqzro| (-645 *9))
+ (|:| |wcond| (-645 (-953 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *6))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *6))))))))))
+ (-5 *1 (-925 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-644 (-1 (-112) *5))) (-4 *5 (-1215))
- (-5 *2 (-317 (-566))) (-5 *1 (-938 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1 (-112) (-644 *6)))
- (-4 *6 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))) (-4 *4 (-1099))
- (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4))))
- (-5 *1 (-1075 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-331))) (-5 *1 (-331)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-1265 *4))) (-4 *4 (-1049)) (-5 *2 (-689 *4))
- (-5 *1 (-1029 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-454)) (-4 *4 (-1099))
- (-5 *1 (-575 *4 *2)) (-4 *2 (-285)) (-4 *2 (-432 *4)))))
-(((*1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1268)))))
-(((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-632)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-903 *3)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1175)) (-4 *4 (-1049)) (-4 *4 (-1099))
- (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3428 (-566))))
- (-4 *1 (-432 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1049)) (-4 *4 (-1099))
- (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3428 (-566))))
- (-4 *1 (-432 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1111)) (-4 *3 (-1099))
- (-5 *2 (-2 (|:| |var| (-612 *1)) (|:| -3428 (-566))))
- (-4 *1 (-432 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3428 (-771))))
- (-5 *1 (-892 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-949 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-2 (|:| |var| *5) (|:| -3428 (-771))))))
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-922)) (-4 *8 (-950 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176))))
+ (-4 *7 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-953 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *5))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *5))))))))))
+ (-5 *1 (-925 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 *9)) (-5 *5 (-1158))
+ (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-567))
+ (-5 *1 (-925 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-645 (-1176))) (-5 *5 (-1158))
+ (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-567))
+ (-5 *1 (-925 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-5 *4 (-1158)) (-4 *8 (-950 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176))))
+ (-4 *7 (-794)) (-5 *2 (-567)) (-5 *1 (-925 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 *10)) (-5 *5 (-922))
+ (-5 *6 (-1158)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
+ (-4 *8 (-13 (-851) (-615 (-1176)))) (-4 *9 (-794)) (-5 *2 (-567))
+ (-5 *1 (-925 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-690 *10)) (-5 *4 (-645 (-1176))) (-5 *5 (-922))
+ (-5 *6 (-1158)) (-4 *10 (-950 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
+ (-4 *8 (-13 (-851) (-615 (-1176)))) (-4 *9 (-794)) (-5 *2 (-567))
+ (-5 *1 (-925 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *9)) (-5 *4 (-922)) (-5 *5 (-1158))
+ (-4 *9 (-950 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-13 (-851) (-615 (-1176)))) (-4 *8 (-794)) (-5 *2 (-567))
+ (-5 *1 (-925 *6 *7 *8 *9)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *1) (-4 *1 (-351)))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049))
- (-4 *7 (-949 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3428 (-566))))
- (-5 *1 (-950 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $))
- (-15 -2702 (*7 $))))))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225))) (-5 *6 (-675 (-225)))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-750)))))
+ (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-645 (-1172 *5)))
+ (|:| |prim| (-1172 *5))))
+ (-5 *1 (-435 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-559) (-147)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1172 *3))
+ (|:| |pol2| (-1172 *3)) (|:| |prim| (-1172 *3))))
+ (-5 *1 (-435 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-953 *5)) (-5 *4 (-1176)) (-4 *5 (-13 (-365) (-147)))
+ (-5 *2
+ (-2 (|:| |coef1| (-567)) (|:| |coef2| (-567))
+ (|:| |prim| (-1172 *5))))
+ (-5 *1 (-961 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1176)))
+ (-4 *5 (-13 (-365) (-147)))
+ (-5 *2
+ (-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 *5)))
+ (|:| |prim| (-1172 *5))))
+ (-5 *1 (-961 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1176))) (-5 *5 (-1176))
+ (-4 *6 (-13 (-365) (-147)))
+ (-5 *2
+ (-2 (|:| -3087 (-645 (-567))) (|:| |poly| (-645 (-1172 *6)))
+ (|:| |prim| (-1172 *6))))
+ (-5 *1 (-961 *6)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-612 *6)) (-4 *6 (-13 (-432 *5) (-27) (-1200)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-1171 (-409 (-1171 *6)))) (-5 *1 (-562 *5 *6 *7))
- (-5 *3 (-1171 *6)) (-4 *7 (-1099))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1241 *3)) (-5 *1 (-712 *3 *2)) (-4 *3 (-1049))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-724 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1241 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1171 *11)) (-5 *6 (-644 *10))
- (-5 *7 (-644 (-771))) (-5 *8 (-644 *11)) (-4 *10 (-850))
- (-4 *11 (-308)) (-4 *9 (-793)) (-4 *5 (-949 *11 *9 *10))
- (-5 *2 (-644 (-1171 *5))) (-5 *1 (-742 *9 *10 *11 *5))
- (-5 *3 (-1171 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-949 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *2 *6))
- (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-14 *6 (-644 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308))
- (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5))
- (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-308)))))
+ (-12 (-5 *3 (-410 (-953 (-169 (-567))))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567))))))
+ (-5 *4 (-645 (-1176))) (-5 *2 (-645 (-645 (-169 *5))))
+ (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-849))))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-844 *4)) (-5 *3 (-613 *4)) (-5 *5 (-112))
+ (-4 *4 (-13 (-1201) (-29 *6)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-224 *6 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-419 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-538) (-644 (-538)))) (-5 *1 (-114))))
- ((*1 *1) (-5 *1 (-580))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-771)) (-5 *3 (-943 *5)) (-4 *5 (-1049))
- (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5))
- (-14 *4 (-921)) (-4 *5 (-1049))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049))
- (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-539)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
- (-5 *2 (-1171 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-241)))))
-(((*1 *1) (-5 *1 (-1084))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-1100)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175))))
- (-4 *7 (-793))
+ (-12 (-5 *4 (-645 (-865 *5))) (-14 *5 (-645 (-1176))) (-4 *6 (-455))
(-5 *2
- (-644
- (-2 (|:| -4153 (-771))
- (|:| |eqns|
- (-644
- (-2 (|:| |det| *8) (|:| |rows| (-644 (-566)))
- (|:| |cols| (-644 (-566))))))
- (|:| |fgb| (-644 *8)))))
- (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-771)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268))))
- ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-1268)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469))))
- ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469))))
- ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-860)) (-5 *2 (-691 (-551))) (-5 *3 (-551)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-420 *3)) (-4 *3 (-558)))))
-(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-566)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-420 *2)) (-4 *2 (-558)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-420 *4) *4)) (-4 *4 (-558)) (-5 *2 (-420 *4))
- (-5 *1 (-421 *4))))
- ((*1 *1 *1) (-5 *1 (-926)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926))))
- ((*1 *1 *1) (-5 *1 (-927)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))
- (-5 *4 (-409 (-566))) (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))
- (-5 *1 (-1020 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))
- (-5 *4 (-409 (-566))) (-5 *1 (-1021 *3)) (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566)))))
- (-5 *1 (-1021 *3)) (-4 *3 (-1241 (-409 (-566))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3))
- (-4 *3 (-1241 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1026 (-843 (-566))))
- (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *4)))) (-4 *4 (-1049))
- (-5 *1 (-596 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-2 (|:| -2465 *4) (|:| -3095 (-566)))))
- (-4 *4 (-1099)) (-5 *2 (-1 *4)) (-5 *1 (-1017 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-436)) (-4 *5 (-1099))
- (-5 *1 (-1105 *5 *4)) (-4 *4 (-432 *5)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-850)) (-4 *5 (-793))
- (-4 *6 (-558)) (-4 *7 (-949 *6 *5 *3))
- (-5 *1 (-464 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1038 (-409 (-566))) (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $))
- (-15 -2702 (*7 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-683 *4 *3)) (-4 *4 (-1099))
- (-4 *3 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-14 *5 (-644 (-1175))) (-5 *2 (-644 (-644 (-1024 (-409 *4)))))
- (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-644 (-1024 (-409 *5))))) (-5 *1 (-1291 *5 *6 *7))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-952 *4)))
- (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-644 (-1024 (-409 *4))))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-158 *4 *2))
- (-4 *2 (-432 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558))
- (-5 *1 (-158 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-160))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1175)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
+ (-2 (|:| |dpolys| (-645 (-247 *5 *6)))
+ (|:| |coords| (-645 (-567)))))
+ (-5 *1 (-474 *5 *6 *7)) (-5 *3 (-645 (-247 *5 *6))) (-4 *7 (-455)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-645 (-112))) (-5 *7 (-690 (-225)))
+ (-5 *8 (-690 (-567))) (-5 *3 (-567)) (-5 *4 (-225)) (-5 *5 (-112))
+ (-5 *2 (-1036)) (-5 *1 (-755)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-363 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-388 *4)) (-4 *4 (-1100)) (-5 *2 (-772))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-772)) (-5 *1 (-389 *4)) (-4 *4 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-23)) (-5 *1 (-650 *4 *2 *5))
+ (-4 *4 (-1100)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-772)) (-5 *1 (-820 *4)) (-4 *4 (-851)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1144)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-956)) (-5 *2 (-645 (-645 (-944 (-225)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-975)) (-5 *2 (-645 (-645 (-944 (-225))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -2296 *4) (|:| -3677 (-567)))))
+ (-4 *4 (-1242 (-567))) (-5 *2 (-738 (-772))) (-5 *1 (-445 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-421 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-1050))
+ (-5 *2 (-738 (-772))) (-5 *1 (-447 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1242 *4)) (-5 *1 (-810 *4 *2 *3 *5))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2))
+ (-4 *5 (-657 (-410 *2))))))
+(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1186)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-331)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1070 *3 *4 *5 *6)) (-4 *3 (-454)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-644 (-295 *4))) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))))
-(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-604 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1215)) (-5 *2 (-1270)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-1038 (-566)))) (-5 *1 (-188 *3 *2))
- (-4 *2 (-13 (-27) (-1200) (-432 (-169 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-13 (-558) (-1038 (-566))))
- (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 (-169 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1204 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-1204 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558))
- (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-977 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-1028 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-644 (-689 *3))) (-4 *3 (-1049)) (-5 *1 (-1028 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-644 (-1171 *13))) (-5 *3 (-1171 *13))
- (-5 *4 (-644 *12)) (-5 *5 (-644 *10)) (-5 *6 (-644 *13))
- (-5 *7 (-644 (-644 (-2 (|:| -2978 (-771)) (|:| |pcoef| *13)))))
- (-5 *8 (-644 (-771))) (-5 *9 (-1265 (-644 (-1171 *10))))
- (-4 *12 (-850)) (-4 *10 (-308)) (-4 *13 (-949 *10 *11 *12))
- (-4 *11 (-793)) (-5 *1 (-707 *11 *12 *10 *13)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-862))) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114))))
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-772)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-863))) (-5 *1 (-114))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-862) (-644 (-862)))) (-5 *1 (-114))))
+ (|partial| -12 (-5 *2 (-1 (-863) (-645 (-863)))) (-5 *1 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1270)) (-5 *1 (-214 *3))
+ (-12 (-5 *2 (-1271)) (-5 *1 (-214 *3))
(-4 *3
- (-13 (-850)
- (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 (*2 $))
- (-15 -1397 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-396))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-396))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-504))))
- ((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-710))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1195))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-1195)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-874))
- (-5 *5 (-921)) (-5 *6 (-644 (-264))) (-5 *2 (-1266))
- (-5 *1 (-1269))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-644 (-943 (-225))))) (-5 *4 (-644 (-264)))
- (-5 *2 (-1266)) (-5 *1 (-1269)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4))
- (-5 *2 (-420 (-1171 (-409 (-566))))) (-5 *1 (-437 *4 *5 *3))
- (-4 *3 (-1241 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-4 *2 (-1241 *4))
- (-5 *1 (-922 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
- (|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
-(((*1 *2 *2)
- (-12
+ (-13 (-851)
+ (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 (*2 $))
+ (-15 -1450 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-397))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-397))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-505))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-711))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1196))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1196)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3005 *7) (|:| |sol?| (-112)))
+ (-567) *7))
+ (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1242 *7))
+ (-5 *3 (-410 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-577 *7 *8)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *1 (-507 *4 *5 *6 *2)) (-4 *2 (-950 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1102 (-772))) (-5 *6 (-772))
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-566))))
- (-4 *4 (-13 (-1241 *3) (-558) (-10 -8 (-15 -1885 ($ $ $)))))
- (-4 *3 (-558)) (-5 *1 (-1244 *3 *4)))))
+ (-2 (|:| |contp| (-567))
+ (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567)))))))
+ (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |k| (-1176)) (|:| |c| (-1288 *3)))))
+ (-5 *1 (-1288 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |k| *3) (|:| |c| (-1290 *3 *4)))))
+ (-5 *1 (-1290 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-752)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1144)) (-5 *3 (-567)) (-5 *2 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-192))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1241 *4)) (-5 *1 (-807 *4 *2 *3 *5))
- (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *3 (-656 *2))
- (-4 *5 (-656 (-409 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1241 *4)) (-5 *1 (-807 *4 *2 *5 *3))
- (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *5 (-656 *2))
- (-4 *3 (-656 (-409 *2))))))
+ (-12 (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-2 (|:| -1747 (-1156 *4)) (|:| -1757 (-1156 *4))))
+ (-5 *1 (-1162 *4)) (-5 *3 (-1156 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1100)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-4 *4 (-454))
- (-5 *2 (-644 (-3 (-409 (-952 *4)) (-1164 (-1175) (-952 *4)))))
- (-5 *1 (-293 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1049) (-850)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175))))))
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
+ (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))))
+(((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1049)) (-4 *3 (-1241 *4)) (-4 *2 (-1256 *4))
- (-5 *1 (-1259 *4 *3 *5 *2)) (-4 *5 (-656 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-547))))
+ (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-867 *4 *5 *6 *7))
+ (-4 *4 (-1050)) (-14 *5 (-645 (-1176))) (-14 *6 (-645 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-4 *5 (-851)) (-4 *6 (-794))
+ (-14 *8 (-645 *5)) (-5 *2 (-1271))
+ (-5 *1 (-1278 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-950 *4 *6 *5))
+ (-14 *9 (-645 *3)) (-14 *10 *3))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
(-5 *2
(-2
@@ -10976,7335 +3115,15221 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1155 (-225)))
+ (-3 (|:| |str| (-1156 (-225)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -3192
+ (|:| -3674
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-561)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1155 (-2 (|:| |k| (-566)) (|:| |c| *6))))
- (-5 *4 (-1026 (-843 (-566)))) (-5 *5 (-1175)) (-5 *7 (-409 (-566)))
- (-4 *6 (-1049)) (-5 *2 (-862)) (-5 *1 (-596 *6)))))
+ (-5 *1 (-562)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-761))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1099)) (-4 *2 (-900 *4)) (-5 *1 (-692 *4 *2 *5 *3))
- (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4415)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-566))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850))
- (-5 *1 (-451 *5 *6 *7 *4)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1140 *4 *5)) (-4 *4 (-13 (-1100) (-34)))
+ (-4 *5 (-13 (-1100) (-34))) (-5 *2 (-112)) (-5 *1 (-1141 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3087 *3) (|:| |gap| (-772)) (|:| -3545 (-783 *3))
+ (|:| -1386 (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-5 *2
+ (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -3545 *1)
+ (|:| -1386 *1)))
+ (-4 *1 (-1065 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2
+ (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -3545 *1)
+ (|:| -1386 *1)))
+ (-4 *1 (-1065 *3 *4 *5)))))
(((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
(-4 *3 (-369 *4))))
((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-644 (-689 *4))) (-5 *2 (-689 *4)) (-4 *4 (-1049))
- (-5 *1 (-1029 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-873 (-1180) (-771)))) (-5 *1 (-334)))))
+(((*1 *1) (-5 *1 (-144)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-264)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-819 *4)) (-4 *4 (-850)) (-5 *2 (-112))
- (-5 *1 (-672 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566))
- (-5 *2 (-1035)) (-5 *1 (-756)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-689 (-566))) (-5 *5 (-112)) (-5 *7 (-689 (-225)))
- (-5 *3 (-566)) (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-754)))))
-(((*1 *1 *1) (-4 *1 (-629)))
+ (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *1 *1) (-4 *1 (-630)))
((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002) (-1200))))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-858))))
- ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-965))))
- ((*1 *2 *1) (-12 (-5 *2 (-1157)) (-5 *1 (-989))))
- ((*1 *2 *1) (-12 (-4 *1 (-1010 *2)) (-4 *2 (-1215))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003) (-1201))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-645 *6) "failed") (-567) *6 *6)) (-4 *6 (-365))
+ (-4 *7 (-1242 *6))
+ (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *1) (-4 *1 (-870 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-859))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-966))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-990))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1216))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1099) (-34))) (-5 *1 (-1139 *2 *3))
- (-4 *3 (-13 (-1099) (-34))))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-999 *3)) (-4 *3 (-172)) (-5 *1 (-799 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1061))))
- ((*1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1061)))))
+ (-12 (-4 *2 (-13 (-1100) (-34))) (-5 *1 (-1140 *2 *3))
+ (-4 *3 (-13 (-1100) (-34))))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-550))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1156 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4))
- (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))
- (-5 *2 (-1035)) (-5 *1 (-748)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-428 *4 *2)) (-4 *2 (-13 (-1200) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *5))
- (-5 *1 (-590 *5)))))
+ (|partial| -12 (-4 *2 (-1100)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-1100)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-873 *2 *3)) (-4 *2 (-1215)) (-4 *3 (-1215)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469))))
- ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469))))
- ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-644 (-689 (-566))))
- (-5 *1 (-1109)))))
-(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-843 *3))) (-4 *3 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (-843 *3)
- (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-843 *3) "failed")))
- "failed"))
- (-5 *1 (-636 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1157))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-843 *3)) (-5 *1 (-636 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-843 (-952 *5)))) (-4 *5 (-454))
- (-5 *2
- (-3 (-843 (-409 (-952 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-843 (-409 (-952 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-843 (-409 (-952 *5))) "failed")))
- "failed"))
- (-5 *1 (-637 *5)) (-5 *3 (-409 (-952 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5)))
- (-4 *5 (-454))
- (-5 *2
- (-3 (-843 *3)
- (-2 (|:| |leftHandLimit| (-3 (-843 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-843 *3) "failed")))
- "failed"))
- (-5 *1 (-637 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-295 (-409 (-952 *6)))) (-5 *5 (-1157))
- (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-843 *3))
- (-5 *1 (-637 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225))
- (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-566)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-771)) (-4 *5 (-172))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771))
- (-4 *4 (-172))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1049)) (-4 *1 (-687 *3 *2 *4)) (-4 *2 (-375 *3))
- (-4 *4 (-375 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1141 *2 *3)) (-14 *2 (-771)) (-4 *3 (-1049)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *5 (-1241 *4)) (-5 *2 (-644 (-653 (-409 *5))))
- (-5 *1 (-657 *4 *5)) (-5 *3 (-653 (-409 *5))))))
+ (-12 (-5 *1 (-874 *2 *3)) (-4 *2 (-1216)) (-4 *3 (-1216)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-751)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-1090)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-1188 *3)))))
+(((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1266 (-567))) (-5 *3 (-567)) (-5 *1 (-1110))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1266 (-567))) (-5 *3 (-645 (-567))) (-5 *4 (-567))
+ (-5 *1 (-1110)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
+ (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *6)) (-4 *5 (-1099))
- (-4 *6 (-1215)) (-5 *2 (-1 *6 *5)) (-5 *1 (-641 *5 *6))))
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *6)) (-4 *5 (-1100))
+ (-4 *6 (-1216)) (-5 *2 (-1 *6 *5)) (-5 *1 (-642 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099))
- (-4 *2 (-1215)) (-5 *1 (-641 *5 *2))))
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1100))
+ (-4 *2 (-1216)) (-5 *1 (-642 *5 *2))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 *5)) (-4 *6 (-1099))
- (-4 *5 (-1215)) (-5 *2 (-1 *5 *6)) (-5 *1 (-641 *6 *5))))
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 *5)) (-4 *6 (-1100))
+ (-4 *5 (-1216)) (-5 *2 (-1 *5 *6)) (-5 *1 (-642 *6 *5))))
((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-4 *5 (-1099))
- (-4 *2 (-1215)) (-5 *1 (-641 *5 *2))))
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-4 *5 (-1100))
+ (-4 *2 (-1216)) (-5 *1 (-642 *5 *2))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-644 *5)) (-5 *4 (-644 *6))
- (-4 *5 (-1099)) (-4 *6 (-1215)) (-5 *1 (-641 *5 *6))))
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-645 *5)) (-5 *4 (-645 *6))
+ (-4 *5 (-1100)) (-4 *6 (-1216)) (-5 *1 (-642 *5 *6))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-644 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1099)) (-4 *2 (-1215)) (-5 *1 (-641 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-144)) (-5 *2 (-771)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-388 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-819 *2)) (-4 *2 (-850)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1885 *3)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-645 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1100)) (-4 *2 (-1216)) (-5 *1 (-642 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1144)) (-5 *3 (-144)) (-5 *2 (-772)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-437))
+ (-5 *2
+ (-645
+ (-3 (|:| -1817 (-1176))
+ (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567)))))))))
+ (-5 *1 (-1180)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-978 *3 *4 *5 *6)))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049))
- (-4 *5 (-850)) (-5 *2 (-952 *4))))
+ (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050))
+ (-4 *5 (-851)) (-5 *2 (-953 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-740 *4 *5)) (-4 *4 (-1049))
- (-4 *5 (-850)) (-5 *2 (-952 *4))))
+ (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *5)) (-4 *4 (-1050))
+ (-4 *5 (-851)) (-5 *2 (-953 *4))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-1256 *4)) (-4 *4 (-1049))
- (-5 *2 (-952 *4))))
+ (-12 (-5 *3 (-772)) (-4 *1 (-1257 *4)) (-4 *4 (-1050))
+ (-5 *2 (-953 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-1256 *4)) (-4 *4 (-1049))
- (-5 *2 (-952 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-689 *11)) (-5 *4 (-644 (-409 (-952 *8))))
- (-5 *5 (-771)) (-5 *6 (-1157)) (-4 *8 (-13 (-308) (-147)))
- (-4 *11 (-949 *8 *10 *9)) (-4 *9 (-13 (-850) (-614 (-1175))))
- (-4 *10 (-793))
- (-5 *2
- (-2
- (|:| |rgl|
- (-644
- (-2 (|:| |eqzro| (-644 *11)) (|:| |neqzro| (-644 *11))
- (|:| |wcond| (-644 (-952 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *8))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *8))))))))))
- (|:| |rgsz| (-566))))
- (-5 *1 (-924 *8 *9 *10 *11)) (-5 *7 (-566)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-644 (-612 *6))) (-5 *4 (-1175)) (-5 *2 (-612 *6))
- (-4 *6 (-432 *5)) (-4 *5 (-1099)) (-5 *1 (-575 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 (-2 (|:| -4018 (-1171 *6)) (|:| -3428 (-566)))))
- (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-4 *6 (-344 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2596 (-415 *4 (-409 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -1741 (-409 *6))
- (|:| |special| (-409 *6))))
- (-5 *1 (-727 *5 *6)) (-5 *3 (-409 *6))))
+ (-12 (-5 *3 (-772)) (-4 *1 (-1257 *4)) (-4 *4 (-1050))
+ (-5 *2 (-953 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -2296 (-1172 *6)) (|:| -4164 (-567)))))
+ (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567))
+ (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-896 *3 *4))
- (-4 *3 (-1241 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-771)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -1616 *3) (|:| -1627 *3))) (-5 *1 (-896 *3 *5))
- (-4 *3 (-1241 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112))
- (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454))
- (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112))
- (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454))
- (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112))
- (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454))
- (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-644 *9)) (-5 *3 (-644 *8)) (-5 *4 (-112))
- (-4 *8 (-1064 *5 *6 *7)) (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454))
- (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-965))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-572 *3)) (-4 *3 (-1039 (-567)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 *4)) (-5 *1 (-1140 *3 *4))
- (-4 *3 (-13 (-1099) (-34))) (-4 *4 (-13 (-1099) (-34))))))
+ (-12 (-5 *2 (-645 *4)) (-5 *1 (-1141 *3 *4))
+ (-4 *3 (-13 (-1100) (-34))) (-4 *4 (-13 (-1100) (-34))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *3 (-645 (-567)))
+ (-5 *1 (-884)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3347 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
(((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-921)) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-365)) (-5 *2 (-833 (-921))) (-5 *1 (-329 *3 *4))
- (-4 *3 (-330 *4))))
- ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-921))))
+ (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2557 (-645 *1))))
+ (-4 *1 (-369 *3))))
((*1 *2)
- (-12 (-4 *1 (-1284 *3)) (-4 *3 (-365)) (-5 *2 (-833 (-921))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1171 *3)) (-4 *3 (-1049)) (-4 *1 (-1241 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-5 *2 (-771))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099))
- (-5 *2 (-771))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-735 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-726)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1175))) (-4 *6 (-365))
- (-5 *2 (-644 (-295 (-952 *6)))) (-5 *1 (-540 *5 *6 *7))
- (-4 *5 (-454)) (-4 *7 (-13 (-365) (-848))))))
-(((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040))))
- ((*1 *1 *1 *1) (-4 *1 (-1138))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-454)) (-4 *3 (-850)) (-4 *4 (-793))
- (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1099)) (-5 *2 (-889 *3 *4)) (-5 *1 (-885 *3 *4 *5))
- (-4 *3 (-1099)) (-4 *5 (-666 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-804 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1200) (-959))))))
-(((*1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-370))))
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-456 *3 *4 *5 *6))
+ (|:| -2557 (-645 (-456 *3 *4 *5 *6)))))
+ (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1242 *4)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 *5 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1100))
+ (-4 *3 (-166 *6)) (-4 (-953 *6) (-887 *5))
+ (-4 *6 (-13 (-887 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-890 *4 *1)) (-5 *3 (-893 *4)) (-4 *1 (-887 *4))
+ (-4 *4 (-1100))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 *5 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1100))
+ (-4 *6 (-13 (-1100) (-1039 *3))) (-4 *3 (-887 *5))
+ (-5 *1 (-932 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1100))
+ (-4 *3 (-13 (-433 *6) (-615 *4) (-887 *5) (-1039 (-613 $))))
+ (-5 *4 (-893 *5)) (-4 *6 (-13 (-559) (-887 *5)))
+ (-5 *1 (-933 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 (-567) *3)) (-5 *4 (-893 (-567))) (-4 *3 (-548))
+ (-5 *1 (-934 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 *5 *6)) (-5 *3 (-613 *6)) (-4 *5 (-1100))
+ (-4 *6 (-13 (-1100) (-1039 (-613 $)) (-615 *4) (-887 *5)))
+ (-5 *4 (-893 *5)) (-5 *1 (-935 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-886 *5 *6 *3)) (-5 *4 (-893 *5)) (-4 *5 (-1100))
+ (-4 *6 (-887 *5)) (-4 *3 (-667 *6)) (-5 *1 (-936 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-890 *6 *3) *8 (-893 *6) (-890 *6 *3)))
+ (-4 *8 (-851)) (-5 *2 (-890 *6 *3)) (-5 *4 (-893 *6))
+ (-4 *6 (-1100)) (-4 *3 (-13 (-950 *9 *7 *8) (-615 *4)))
+ (-4 *7 (-794)) (-4 *9 (-13 (-1050) (-887 *6)))
+ (-5 *1 (-937 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1100))
+ (-4 *3 (-13 (-950 *8 *6 *7) (-615 *4))) (-5 *4 (-893 *5))
+ (-4 *7 (-887 *5)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-13 (-1050) (-887 *5))) (-5 *1 (-937 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 *5 *3)) (-4 *5 (-1100)) (-4 *3 (-993 *6))
+ (-4 *6 (-13 (-559) (-887 *5) (-615 *4))) (-5 *4 (-893 *5))
+ (-5 *1 (-940 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-890 *5 (-1176))) (-5 *3 (-1176)) (-5 *4 (-893 *5))
+ (-4 *5 (-1100)) (-5 *1 (-941 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-645 (-893 *7))) (-5 *5 (-1 *9 (-645 *9)))
+ (-5 *6 (-1 (-890 *7 *9) *9 (-893 *7) (-890 *7 *9))) (-4 *7 (-1100))
+ (-4 *9 (-13 (-1050) (-615 (-893 *7)) (-1039 *8)))
+ (-5 *2 (-890 *7 *9)) (-5 *3 (-645 *9)) (-4 *8 (-1050))
+ (-5 *1 (-942 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))))
+(((*1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-370))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1265 *4)) (-5 *1 (-530 *4))
+ (-12 (-5 *3 (-922)) (-5 *2 (-1266 *4)) (-5 *1 (-531 *4))
(-4 *4 (-351))))
((*1 *2 *1)
- (-12 (-4 *2 (-850)) (-5 *1 (-713 *2 *3 *4)) (-4 *3 (-1099))
+ (-12 (-4 *2 (-851)) (-5 *1 (-714 *2 *3 *4)) (-4 *3 (-1100))
(-14 *4
- (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *3))
- (-2 (|:| -2430 *2) (|:| -3428 *3)))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112))))
+ (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *3))
+ (-2 (|:| -3811 *2) (|:| -4164 *3)))))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-850))
- (-4 *3 (-1099)))))
+ (|partial| -12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4))))
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *3)) (-5 *1 (-1127 *4 *3)) (-4 *4 (-1241 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1241 (-48))))))
-(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-689 *4)) (-5 *3 (-921)) (|has| *4 (-6 (-4417 "*")))
- (-4 *4 (-1049)) (-5 *1 (-1028 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 (-689 *4))) (-5 *3 (-921))
- (|has| *4 (-6 (-4417 "*"))) (-4 *4 (-1049)) (-5 *1 (-1028 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))))
+ (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048))
+ (-5 *3 (-567)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-432 *4)) (-5 *1 (-158 *4 *2))
- (-4 *4 (-558)))))
+ (-12 (-5 *3 (-922)) (-5 *2 (-1266 (-1266 (-567)))) (-5 *1 (-469)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-351))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567)))))))
+ (-5 *1 (-216 *5 *3)) (-4 *3 (-1242 *5)))))
(((*1 *2 *3 *2)
- (-12 (-5 *1 (-679 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 -1975))))
- (-5 *2 (-1035)) (-5 *1 (-746)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-381))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-454))
- (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2061 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
+ (-12 (-4 *1 (-788)) (-5 *2 (-1036))
+ (-5 *3
+ (-2 (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-788)) (-5 *2 (-1036))
+ (-5 *3
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
+ (-12 (-5 *3 (-169 (-225))) (-5 *4 (-567)) (-5 *2 (-1036))
+ (-5 *1 (-759)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-680 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1172 *7)) (-5 *3 (-567)) (-4 *7 (-950 *6 *4 *5))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050))
+ (-5 *1 (-322 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5))))
- (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5)))))
- (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))))
+ (-12 (-5 *3 (-3 (-410 (-953 *5)) (-1165 (-1176) (-953 *5))))
+ (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5)))))
+ (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *1 (-679 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-548)) (-5 *1 (-159 *2)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-375 *2))
- (-4 *4 (-375 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1049))
- (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-949 *2 *4 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-644 (-566))) (-5 *3 (-112)) (-5 *1 (-1109)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))))
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-849))) (-5 *1 (-181 *3 *2))
+ (-4 *2 (-1242 (-169 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-958 (-1119)))
- (-5 *1 (-348 *4)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-1270)) (-5 *1 (-831)))))
+ (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1242 (-567))))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-680 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-562)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *9 (-1070 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793))
- (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1068 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *9)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *9 (-1108 *5 *6 *7 *8)) (-4 *5 (-454)) (-4 *6 (-793))
- (-4 *7 (-850)) (-5 *2 (-771)) (-5 *1 (-1144 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-4 *1 (-674 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9))
- (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *9 (-1064 *6 *7 *8))
- (-5 *2
- (-644
- (-2 (|:| -1451 (-644 *9)) (|:| -3860 *10) (|:| |ineq| (-644 *9)))))
- (-5 *1 (-988 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-644 *10)) (-5 *5 (-112)) (-4 *10 (-1070 *6 *7 *8 *9))
- (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *9 (-1064 *6 *7 *8))
- (-5 *2
- (-644
- (-2 (|:| -1451 (-644 *9)) (|:| -3860 *10) (|:| |ineq| (-644 *9)))))
- (-5 *1 (-1106 *6 *7 *8 *9 *10)) (-5 *3 (-644 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2994 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2994 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
- ((*1 *1 *1) (-4 *1 (-1143))))
+ (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1242 *4))
+ (-5 *2 (-2 (|:| |ans| (-410 *5)) (|:| |nosol| (-112))))
+ (-5 *1 (-1016 *4 *5)) (-5 *3 (-410 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-922)) (-4 *5 (-559)) (-5 *2 (-690 *5))
+ (-5 *1 (-957 *5 *3)) (-4 *3 (-657 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1156 (-410 *3))) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381)))
+ (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271))
+ (-5 *1 (-789)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1050)) (-5 *2 (-112)) (-5 *1 (-447 *4 *3))
+ (-4 *3 (-1242 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1291 *5 *6 *7))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-112))
- (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-1046 *5 *6))) (-5 *1 (-1291 *5 *6 *7))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-952 *4)))
- (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-644 (-1046 *4 *5))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049))
- (-5 *1 (-1159 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-566)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049))
- (-14 *4 (-1175)) (-14 *5 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-381))))
- ((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-381)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
+ (-12 (-5 *4 (-1176)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *3 *5 *6 *7))
+ (-4 *3 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216))
+ (-4 *7 (-1216))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *3 *5 *6))
+ (-4 *3 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-612 *5)) (-4 *5 (-432 *4)) (-4 *4 (-1038 (-566)))
- (-4 *4 (-558)) (-5 *2 (-1171 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-612 *1)) (-4 *1 (-1049)) (-4 *1 (-303))
- (-5 *2 (-1171 *1)))))
-(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1185)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
- (-5 *2 (-1035)) (-5 *1 (-749)))))
-(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-771))))
+ (-12 (-5 *3 (-567)) (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1050))
+ (-5 *1 (-322 *4 *5 *2 *6)) (-4 *6 (-950 *2 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-84 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-750)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-303))))
+ ((*1 *1 *1) (-4 *1 (-303)))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3276 *3)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *3 (-112)) (-5 *1 (-1110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-410 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-13 (-365) (-147)))
+ (-5 *1 (-402 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-772))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-375 *3)) (-4 *3 (-1215))
- (-4 *3 (-1099))))
+ (-12 (-5 *2 (-567)) (-4 *1 (-375 *3)) (-4 *3 (-1216))
+ (-4 *3 (-1100))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-375 *3)) (-4 *3 (-1215)) (-4 *3 (-1099))
- (-5 *2 (-566))))
+ (-12 (-4 *1 (-375 *3)) (-4 *3 (-1216)) (-4 *3 (-1100))
+ (-5 *2 (-567))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1215))
- (-5 *2 (-566))))
- ((*1 *2 *1) (-12 (-5 *2 (-1119)) (-5 *1 (-531))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)) (-5 *3 (-141))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-566)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-576 *5 *3)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792)))))
+ (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-375 *4)) (-4 *4 (-1216))
+ (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-532))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-567)) (-5 *3 (-141))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-567)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-559))
+ (-4 *3 (-1216)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1155 (-566))) (-5 *1 (-1159 *4)) (-4 *4 (-1049))
- (-5 *3 (-566)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5))))
+ (-12 (-4 *4 (-1050)) (-4 *5 (-1242 *4)) (-5 *2 (-1 *6 (-645 *6)))
+ (-5 *1 (-1260 *4 *5 *3 *6)) (-4 *3 (-657 *5)) (-4 *6 (-1257 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1216)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-1164 *3 *4))) (-5 *1 (-1164 *3 *4))
+ (-14 *3 (-922)) (-4 *4 (-1050))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850))
- (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-1099)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1241 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -1741 (-420 *3)) (|:| |special| (-420 *3))))
- (-5 *1 (-727 *5 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-587 *3)) (-5 *1 (-428 *5 *3))
- (-4 *3 (-13 (-1200) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-4 *5 (-13 (-558) (-1038 (-566)) (-147)))
- (-5 *2 (-587 (-409 (-952 *5)))) (-5 *1 (-572 *5))
- (-5 *3 (-409 (-952 *5))))))
+ (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1050)) (-4 *2 (-688 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1242 *4)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-771))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
- ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-508)) (-5 *2 (-644 (-965))) (-5 *1 (-292)))))
+ (-12 (-4 *3 (-13 (-365) (-147)))
+ (-5 *2 (-645 (-2 (|:| -4164 (-772)) (|:| -4113 *4) (|:| |num| *4))))
+ (-5 *1 (-402 *3 *4)) (-4 *4 (-1242 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *5 (-1219)) (-4 *6 (-1241 *5))
- (-4 *7 (-1241 (-409 *6))) (-5 *2 (-644 (-952 *5)))
- (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1219))
- (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5))) (-4 *4 (-365))
- (-5 *2 (-644 (-952 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-644 (-112))))))
-(((*1 *1)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1026 (-843 (-566)))) (-5 *1 (-596 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-864 *4))
- (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-631 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-771))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-771)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-235 *3))
- (-4 *3 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-235 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)) (-4 *2 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1215))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-610 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099))
- (-5 *1 (-737 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850))
- (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))))
+ (-12 (-5 *3 (-1 *5 (-645 *5))) (-4 *5 (-1257 *4))
+ (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-1 (-1156 *4) (-645 (-1156 *4)))) (-5 *1 (-1259 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-927))
+ (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1065 *6 *7 *8))
(-5 *2
- (-2 (|:| |brans| (-644 (-644 (-943 (-225)))))
- (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-927)) (-5 *4 (-409 (-566)))
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
(-5 *2
- (-2 (|:| |brans| (-644 (-644 (-943 (-225)))))
- (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))))
- (-5 *1 (-153))))
- ((*1 *2 *3)
- (-12
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1065 *6 *7 *8))
(-5 *2
- (-2 (|:| |brans| (-644 (-644 (-943 (-225)))))
- (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-644 (-943 (-225))))))
- ((*1 *2 *3)
- (-12
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1145 *6 *7 *8 *3 *4)) (-4 *4 (-1109 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
(-5 *2
- (-2 (|:| |brans| (-644 (-644 (-943 (-225)))))
- (|:| |xValues| (-1093 (-225))) (|:| |yValues| (-1093 (-225)))))
- (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 (-225)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-566)) (-5 *1 (-1155 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *2 (-112)) (-5 *1 (-924 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793)) (-5 *2 (-112))
- (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-508))) (-5 *1 (-485)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-771)) (-5 *1 (-563)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049))
- (-5 *1 (-714 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-538))) (-5 *2 (-1175)) (-5 *1 (-538)))))
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1145 *5 *6 *7 *3 *4)) (-4 *4 (-1109 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-1266))))
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-225))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-921))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-410 (-567))) (-5 *1 (-381)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1140 *5 *6)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1100) (-34))) (-4 *6 (-13 (-1100) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1141 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-5 *2 (-644 *5))
- (-5 *1 (-890 *4 *5)) (-4 *5 (-1215)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-331)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1208 *2 *3 *4 *5)) (-4 *2 (-558)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *5 (-1064 *2 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-97)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035)))))
+ (-12 (-4 *4 (-851)) (-5 *2 (-1188 (-645 *4))) (-5 *1 (-1187 *4))
+ (-5 *3 (-645 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157)) (-5 *2 (-214 (-504))) (-5 *1 (-837)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
+ (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-5 *2 (-959 (-1120)))
+ (-5 *1 (-348 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-507 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1071 *4 *5 *6 *7))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1176)) (-4 *5 (-365)) (-5 *2 (-1156 (-1156 (-953 *5))))
+ (-5 *1 (-1274 *5)) (-5 *4 (-1156 (-953 *5))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-921)) (-4 *3 (-1049)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
- (-4 *5 (-1241 *4)) (-5 *2 (-689 *4))))
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1172 (-48))) (-5 *3 (-645 (-613 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1172 (-48))) (-5 *3 (-613 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1242 (-169 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-922)) (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-365))))
((*1 *2 *1)
- (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3))
- (-5 *2 (-689 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-470)) (-5 *4 (-921)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-921)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1049))
- (-4 *4 (-1215))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-644 (-1175))) (-4 *4 (-172))
- (-4 *5 (-238 (-3991 *3) (-771)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2430 *2) (|:| -3428 *5))
- (-2 (|:| -2430 *2) (|:| -3428 *5))))
- (-5 *1 (-463 *3 *4 *2 *5 *6 *7)) (-4 *2 (-850))
- (-4 *7 (-949 *4 *5 (-864 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-943 (-225))) (-5 *1 (-1211)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-612 *5))) (-4 *4 (-1099)) (-5 *2 (-612 *5))
- (-5 *1 (-575 *4 *5)) (-4 *5 (-432 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 (-1171 *7))) (-5 *3 (-1171 *7))
- (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-909)) (-4 *5 (-793))
- (-4 *6 (-850)) (-5 *1 (-906 *4 *5 *6 *7))))
+ (-12 (-4 *1 (-372 *2 *3)) (-4 *3 (-1242 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1242 *2)) (-4 *2 (-993 *3)) (-5 *1 (-416 *3 *2 *4 *5))
+ (-4 *3 (-308)) (-4 *5 (-13 (-412 *2 *4) (-1039 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1242 *2)) (-4 *2 (-993 *3))
+ (-5 *1 (-417 *3 *2 *4 *5 *6)) (-4 *3 (-308)) (-4 *5 (-412 *2 *4))
+ (-14 *6 (-1266 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-922)) (-4 *5 (-1050))
+ (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1201) (-285)))
+ (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1242 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-613 (-498)))) (-5 *1 (-498))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-613 (-498))) (-5 *1 (-498))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 (-1171 *5))) (-5 *3 (-1171 *5))
- (-4 *5 (-1241 *4)) (-4 *4 (-909)) (-5 *1 (-907 *4 *5)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))))
+ (-12 (-5 *2 (-1172 (-498))) (-5 *3 (-645 (-613 (-498))))
+ (-5 *1 (-498))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1172 (-498))) (-5 *3 (-613 (-498))) (-5 *1 (-498))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-922)) (-4 *4 (-351))
+ (-5 *1 (-531 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-725 *4 *2)) (-4 *2 (-1242 *4))
+ (-5 *1 (-776 *4 *2 *5 *3)) (-4 *3 (-1242 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-645 *5))
+ (|:| |maps| (-645 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1128 *3 *5)) (-4 *3 (-1242 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-539))) (-5 *2 (-1176)) (-5 *1 (-539)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 (-944 *4))) (-4 *1 (-1134 *4)) (-4 *4 (-1050))
+ (-5 *2 (-772)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-645 (-1172 *11))) (-5 *3 (-1172 *11))
+ (-5 *4 (-645 *10)) (-5 *5 (-645 *8)) (-5 *6 (-645 (-772)))
+ (-5 *7 (-1266 (-645 (-1172 *8)))) (-4 *10 (-851))
+ (-4 *8 (-308)) (-4 *11 (-950 *8 *9 *10)) (-4 *9 (-794))
+ (-5 *1 (-708 *9 *10 *8 *11)))))
+(((*1 *1 *1) (-4 *1 (-630)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003) (-1201))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-1 (-225) (-225) (-225) (-225)))
+ (-5 *2 (-1 (-944 (-225)) (-225) (-225))) (-5 *1 (-698)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1120)) (-5 *2 (-1271)) (-5 *1 (-832)))))
+(((*1 *2) (-12 (-5 *2 (-1147 (-1158))) (-5 *1 (-394)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-317 *4)) (-4 *4 (-13 (-828) (-1049))) (-5 *2 (-1157))
- (-5 *1 (-826 *4))))
+ (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 *2))
+ (-5 *2 (-381)) (-5 *1 (-786 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-828) (-1049)))
- (-5 *2 (-1157)) (-5 *1 (-826 *5))))
+ (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050))
+ (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559))
+ (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-822)) (-5 *4 (-317 *5)) (-4 *5 (-13 (-828) (-1049)))
- (-5 *2 (-1270)) (-5 *1 (-826 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-822)) (-5 *4 (-317 *6)) (-5 *5 (-112))
- (-4 *6 (-13 (-828) (-1049))) (-5 *2 (-1270)) (-5 *1 (-826 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-828)) (-5 *2 (-1157))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-828)) (-5 *3 (-112)) (-5 *2 (-1157))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *2 (-1270))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-828)) (-5 *3 (-822)) (-5 *4 (-112)) (-5 *2 (-1270)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-172))))
+ (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-566))) (-5 *1 (-942)) (-5 *3 (-566)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-644 (-2 (|:| |totdeg| (-771)) (|:| -4144 *3))))
- (-5 *4 (-771)) (-4 *3 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *6 (-793))
- (-4 *7 (-850)) (-5 *1 (-451 *5 *6 *7 *3)))))
+ (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 *2)) (-5 *2 (-381)) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-851)) (-4 *5 (-615 *2)) (-5 *2 (-381))
+ (-5 *1 (-786 *5)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-830)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-823)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (|has| *1 (-6 -4417)) (-4 *1 (-375 *3))
+ (-4 *3 (-1216)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4))))
- (-5 *1 (-1273 *4)) (-4 *4 (-365)))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1157)) (-5 *3 (-566)) (-5 *1 (-1062)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-921)) (-4 *4 (-370)) (-4 *4 (-365)) (-5 *2 (-1171 *1))
- (-4 *1 (-330 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1171 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *3 (-365))
- (-4 *2 (-1241 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 *4)) (-4 *4 (-351)) (-5 *2 (-1171 *4))
- (-5 *1 (-530 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1109)) (-5 *3 (-566)))))
+ (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351))
+ (-4 *2
+ (-13 (-405)
+ (-10 -7 (-15 -4101 (*2 *4)) (-15 -3527 ((-922) *2))
+ (-15 -2557 ((-1266 *2) (-922))) (-15 -2202 (*2 *2)))))
+ (-5 *1 (-358 *2 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-331)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-365)) (-5 *1 (-1025 *3 *2)) (-4 *2 (-656 *3))))
+ (|partial| -12 (-5 *3 (-772)) (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1242 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-471)) (-5 *4 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-1242 *4)) (-4 *4 (-1050))
+ (-5 *2 (-1266 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -3063 *4))) (-5 *1 (-970 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *1) (-5 *1 (-804))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-922))
+ (-5 *2 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120))))))
+ (-5 *1 (-348 *4)) (-4 *4 (-351)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1069 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-5 *2 (-2 (|:| -1451 *3) (|:| -2606 (-644 *5))))
- (-5 *1 (-1025 *5 *3)) (-5 *4 (-644 *5)) (-4 *3 (-656 *5)))))
-(((*1 *1) (-5 *1 (-439))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-436)))))
-(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-454)) (-4 *4 (-850))
- (-4 *5 (-793)) (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-976 *4 *5 *3 *6)) (-4 *4 (-1049)) (-4 *5 (-793))
- (-4 *3 (-850)) (-4 *6 (-1064 *4 *5 *3)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *9)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-772)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-645 *3)) (-5 *5 (-922)) (-4 *3 (-1242 *4))
+ (-4 *4 (-308)) (-5 *1 (-463 *4 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2414 *3) (|:| |coef1| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-727)) (-5 *2 (-112)))))
(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-921)) (-4 *3 (-365))
- (-14 *4 (-993 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1241 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-558))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-715 *2 *3 *4 *5 *6)) (-4 *2 (-172))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))
- ((*1 *1) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))
- ((*1 *1 *1) (|partial| -4 *1 (-722)))
- ((*1 *1 *1) (|partial| -4 *1 (-726)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1067 *3 *2)) (-4 *3 (-13 (-848) (-365)))
- (-4 *2 (-1241 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547))))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-771)) (-4 *4 (-13 (-558) (-147)))
- (-5 *1 (-1235 *4 *2)) (-4 *2 (-1241 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4))
+ (-5 *2 (-421 *3)) (-5 *1 (-438 *4 *5 *3)) (-4 *3 (-1242 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365))
+ (-5 *2 (-645 (-2 (|:| C (-690 *5)) (|:| |g| (-1266 *5)))))
+ (-5 *1 (-979 *5)) (-5 *3 (-690 *5)) (-5 *4 (-1266 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-556 *3)) (-4 *3 (-13 (-406) (-1200))) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365)))
- (-4 *3 (-1241 *4)) (-5 *2 (-112)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-447 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-114)) (-4 *4 (-1049)) (-5 *1 (-714 *4 *2))
- (-4 *2 (-648 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-836 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1885 (-782 *3)) (|:| |coef1| (-782 *3))))
- (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-2 (|:| -1885 *1) (|:| |coef1| *1)))
- (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-78 FUNCTN))))
- (-5 *2 (-1035)) (-5 *1 (-748)))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-320 *3 *4 *5)) (-4 *3 (-365))
+ (-14 *4 (-1176)) (-14 *5 *3))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-794))
+ (-4 *3 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *5 (-559))
+ (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1050)) (-4 *5 (-794))
+ (-4 *3
+ (-13 (-851)
+ (-10 -8 (-15 -3542 ((-1176) $))
+ (-15 -4295 ((-3 $ "failed") (-1176))))))
+ (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *6))
+ (-4 *6
+ (-13 (-851)
+ (-10 -8 (-15 -3542 ((-1176) $))
+ (-15 -4295 ((-3 $ "failed") (-1176))))))
+ (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2))
+ (-4 *2 (-950 (-953 *4) *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 (-169 (-566))))) (-5 *2 (-644 (-169 *4)))
- (-5 *1 (-380 *4)) (-4 *4 (-13 (-365) (-848)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566))))))
- (-5 *4 (-644 (-1175))) (-5 *2 (-644 (-644 (-169 *5))))
- (-5 *1 (-380 *5)) (-4 *5 (-13 (-365) (-848))))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1185)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-409 (-952 *6)) (-1164 (-1175) (-952 *6))))
- (-5 *5 (-771)) (-4 *6 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *6)))))
- (-5 *1 (-293 *6)) (-5 *4 (-689 (-409 (-952 *6))))))
- ((*1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |eigval| (-3 (-409 (-952 *5)) (-1164 (-1175) (-952 *5))))
- (|:| |eigmult| (-771)) (|:| |eigvec| (-644 *4))))
- (-4 *5 (-454)) (-5 *2 (-644 (-689 (-409 (-952 *5)))))
- (-5 *1 (-293 *5)) (-5 *4 (-689 (-409 (-952 *5)))))))
+ (-645
+ (-2 (|:| |eqzro| (-645 *8)) (|:| |neqzro| (-645 *8))
+ (|:| |wcond| (-645 (-953 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *5))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *5))))))))))
+ (-5 *4 (-1158)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-950 *5 *7 *6))
+ (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-567))
+ (-5 *1 (-925 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-365)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3)))
+ (-5 *1 (-767 *3 *4)) (-4 *3 (-709 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050))
+ (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-169 *5)) (-5 *1 (-601 *4 *5 *3))
+ (-4 *5 (-13 (-433 *4) (-1003) (-1201)))
+ (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1201))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3))))
+ (-5 *2 (-645 (-1176))) (-5 *1 (-1076 *3 *4 *5))
+ (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-509)) (-5 *3 (-1104)) (-5 *1 (-292)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-645 (-169 *4))) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-1242 (-169 (-567)))) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-645 (-169 *4)))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-112)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (|has| *1 (-6 -4407)) (-4 *1 (-407))))
+ ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1176))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1201) (-960)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2557 (-645 *4))))
+ (-5 *1 (-802 *6 *4 *3)) (-4 *3 (-657 *4)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4)))
+ (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1071 *6 *7 *8 *9))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *9 (-1065 *6 *7 *8))
+ (-5 *2
+ (-645
+ (-2 (|:| -2823 (-645 *9)) (|:| -2138 *10) (|:| |ineq| (-645 *9)))))
+ (-5 *1 (-989 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-645 *10)) (-5 *5 (-112)) (-4 *10 (-1071 *6 *7 *8 *9))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *9 (-1065 *6 *7 *8))
+ (-5 *2
+ (-645
+ (-2 (|:| -2823 (-645 *9)) (|:| -2138 *10) (|:| |ineq| (-645 *9)))))
+ (-5 *1 (-1107 *6 *7 *8 *9 *10)) (-5 *3 (-645 *9)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-952 (-169 *4))) (-4 *4 (-172))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-952 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-172))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *5))))
+ (-12 (-5 *3 (-1156 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-192))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-409 (-952 (-169 *4)))) (-4 *4 (-558))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-409 (-952 (-169 *5)))) (-5 *4 (-921))
- (-4 *5 (-558)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381)))
- (-5 *1 (-785 *5))))
+ (-12 (-5 *3 (-1156 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-301))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381)))
- (-5 *1 (-785 *5))))
+ (-12 (-5 *3 (-1156 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-306)))))
+(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-433 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1176))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1286 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-172)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1266 *5))) (-5 *4 (-567)) (-5 *2 (-1266 *5))
+ (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-370)) (-4 *5 (-1050)))))
+(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-558)) (-4 *4 (-850))
- (-4 *4 (-614 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-850)) (-4 *5 (-614 (-381))) (-5 *2 (-169 (-381)))
- (-5 *1 (-785 *5)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049))
- (-5 *2 (-644 (-644 (-644 (-943 *3))))))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-225) (-225) (-225)))
- (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
- (-5 *5 (-1093 (-225))) (-5 *6 (-644 (-264))) (-5 *2 (-1132 (-225)))
- (-5 *1 (-697))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-225)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-697))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1132 (-225))) (-5 *3 (-1 (-943 (-225)) (-225) (-225)))
- (-5 *4 (-1093 (-225))) (-5 *5 (-644 (-264))) (-5 *1 (-697)))))
+ (-12 (-5 *2 (-1102 (-1102 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-944 *4)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-755)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2414 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-823)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566))
- (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172))
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567))
+ (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172))
(-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *9)) (-4 *9 (-1049)) (-4 *5 (-850)) (-4 *6 (-793))
- (-4 *8 (-1049)) (-4 *2 (-949 *9 *7 *5))
- (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793))
- (-4 *4 (-949 *8 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1219))
- (-4 *5 (-1241 *4)) (-4 *6 (-1241 (-409 *5)))
- (-5 *2 (-2 (|:| |num| (-689 *5)) (|:| |den| *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *3 (-645 *9)) (-4 *9 (-1050)) (-4 *5 (-851)) (-4 *6 (-794))
+ (-4 *8 (-1050)) (-4 *2 (-950 *9 *7 *5))
+ (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794))
+ (-4 *4 (-950 *8 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793))))
((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *6 (-614 (-1175)))
- (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *2 (-1164 (-644 (-952 *4)) (-644 (-295 (-952 *4)))))
- (-5 *1 (-506 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-566)) (-5 *5 (-169 (-225))) (-5 *6 (-1157))
- (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050))
+ (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-567)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851)))
+ (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851))
+ (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-276))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1172 *8)) (-5 *4 (-645 *6)) (-4 *6 (-851))
+ (-4 *8 (-950 *7 *5 *6)) (-4 *5 (-794)) (-4 *7 (-1050))
+ (-5 *2 (-645 (-772))) (-5 *1 (-322 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
+ (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-473 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4))
+ (-4 *4 (-1242 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-709 *3)) (-4 *3 (-1050)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 (-772)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050)) (-4 *5 (-794))
+ (-4 *3 (-851)) (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *2 *4)) (-4 *3 (-1050)) (-4 *4 (-851))
+ (-4 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1228 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1257 *3))
+ (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1226 *3))
+ (-5 *2 (-410 (-567)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-772)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-893 *6)))
+ (-5 *5 (-1 (-890 *6 *8) *8 (-893 *6) (-890 *6 *8))) (-4 *6 (-1100))
+ (-4 *8 (-13 (-1050) (-615 (-893 *6)) (-1039 *7)))
+ (-5 *2 (-890 *6 *8)) (-4 *7 (-1050)) (-5 *1 (-942 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-295 (-834 *3)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-834 *3)) (-5 *1 (-637 *5 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-834 (-953 *5)))) (-4 *5 (-455))
+ (-5 *2 (-834 (-410 (-953 *5)))) (-5 *1 (-638 *5))
+ (-5 *3 (-410 (-953 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5)))
+ (-4 *5 (-455)) (-5 *2 (-834 *3)) (-5 *1 (-638 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-410 (-567))))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-264)))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-953 (-567))) (-5 *3 (-1176))
+ (-5 *4 (-1094 (-410 (-567)))) (-5 *1 (-30)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1098 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454))
- (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-988 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *3)) (-4 *3 (-1070 *5 *6 *7 *8)) (-4 *5 (-454))
- (-4 *6 (-793)) (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7))
- (-5 *2 (-112)) (-5 *1 (-1106 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-4 *1 (-744 *3)) (-4 *3 (-172)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *1 (-587 *2)) (-4 *2 (-1038 *3))
- (-4 *2 (-365))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *1 (-630 *4 *2))
- (-4 *2 (-13 (-432 *4) (-1002) (-1200)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1091 *2)) (-4 *2 (-13 (-432 *4) (-1002) (-1200)))
- (-4 *4 (-558)) (-5 *1 (-630 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-959)) (-5 *2 (-1175))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1091 *1)) (-4 *1 (-959)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2414 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
(((*1 *2)
- (-12 (-4 *3 (-1219)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 (-409 *4)))
- (-5 *2 (-1265 *1)) (-4 *1 (-344 *3 *4 *5))))
+ (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910))
+ (-5 *1 (-460 *3 *4 *2 *5)) (-4 *5 (-950 *2 *3 *4))))
((*1 *2)
- (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *4 (-1241 *3))
- (-5 *2
- (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-689 *3))))
- (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-411 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1241 (-566)))
- (-5 *2
- (-2 (|:| -2227 (-689 (-566))) (|:| |basisDen| (-566))
- (|:| |basisInv| (-689 (-566)))))
- (-5 *1 (-768 *3 *4)) (-4 *4 (-411 (-566) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-351)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 *4))
- (-5 *2
- (-2 (|:| -2227 (-689 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-689 *4))))
- (-5 *1 (-985 *3 *4 *5 *6)) (-4 *6 (-724 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-351)) (-4 *4 (-1241 *3)) (-4 *5 (-1241 *4))
- (-5 *2
- (-2 (|:| -2227 (-689 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-689 *4))))
- (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *6 (-411 *4 *5)))))
+ (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *2 (-910))
+ (-5 *1 (-907 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-910)) (-5 *1 (-908 *2 *3)) (-4 *3 (-1242 *2)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-530)) (-5 *3 (-128)) (-5 *2 (-772)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-566))
- (-14 *4 (-771)) (-4 *5 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-822)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-566)) (-4 *2 (-432 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1038 *4)) (-4 *3 (-558)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850))
- (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
-(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1059))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
+ (-12 (-5 *2 (-645 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-377 *4 *2))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417)))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1176))
+ (-5 *2 (-645 *4)) (-5 *1 (-1114 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-630)))
((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)) (-4 *2 (-1059))))
- ((*1 *1 *1) (-4 *1 (-848)))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)) (-4 *2 (-1059))))
- ((*1 *1 *1) (-4 *1 (-1059))) ((*1 *1 *1) (-4 *1 (-1138))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003) (-1201))))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-645 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
+ (-4 *2 (-13 (-433 *4) (-1003))) (-4 *4 (-559))
+ (-5 *1 (-277 *4 *2)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 (-567)))
+ (-5 *2 (-1266 (-567))) (-5 *1 (-1293 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1256 *4)) (-5 *1 (-1258 *4 *2))
- (-4 *4 (-38 (-409 (-566)))))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-566))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-771)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-793)) (-4 *4 (-949 *5 *6 *7)) (-4 *5 (-454)) (-4 *7 (-850))
- (-5 *1 (-451 *5 *6 *7 *4)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1144))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1158)) (-5 *1 (-787)))))
+(((*1 *2 *3) (-12 (-5 *3 (-410 (-567))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-375 *2)) (-4 *2 (-1216))
+ (-4 *2 (-851))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4417))
+ (-4 *1 (-375 *3)) (-4 *3 (-1216)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099))
- (-5 *2 (-2 (|:| -1702 (-566)) (|:| |var| (-612 *1))))
- (-4 *1 (-432 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1035)) (-5 *3 (-1175)) (-5 *1 (-192)))))
+ (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1085))) (-5 *1 (-292)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1292 *5 *6 *7))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-1047 *5 *6))) (-5 *1 (-1292 *5 *6 *7))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-953 *4)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-1047 *4 *5))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1271)) (-5 *1 (-471)))))
+(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))))
+(((*1 *1 *1) (-5 *1 (-1063))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-644 (-644 (-225)))) (-5 *1 (-1211)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-112))
- (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1035)) (-5 *1 (-756)))))
+ (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4))
+ (-5 *2 (-2 (|:| -3087 (-410 *5)) (|:| |poly| *3)))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1242 (-410 *5))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-1050))
+ (-5 *1 (-1160 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050))
+ (-14 *4 (-1176)) (-14 *5 *3))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-567)) (-5 *5 (-112)) (-5 *6 (-690 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-52)) (-5 *1 (-893 *4))
+ (-4 *4 (-1100)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271))
+ (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271))
+ (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1002))
- (-4 *2 (-1049)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-128)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264))))
+ ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381))))
+ ((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-381)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381))))
+ ((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-381)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-1132 *4 *2))
+ (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4416) (-6 -4417))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-851)) (-4 *3 (-1216)) (-5 *1 (-1132 *3 *2))
+ (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4416) (-6 -4417)))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-112))
- (-5 *1 (-362 *4 *5)) (-14 *5 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-780 *4 (-864 *5)))) (-4 *4 (-454))
- (-14 *5 (-644 (-1175))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-849)) (-4 *4 (-365)) (-5 *2 (-772))
+ (-5 *1 (-946 *4 *5)) (-4 *5 (-1242 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1269)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-758)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-909)) (-5 *2 (-420 (-1171 *1))) (-5 *3 (-1171 *1)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566)))))
- (-4 *2 (-13 (-850) (-21))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1253 *3)) (-4 *3 (-1215)) (-5 *2 (-771)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-1265 *5)) (-4 *5 (-308))
- (-4 *5 (-1049)) (-5 *2 (-689 *5)) (-5 *1 (-1029 *5)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-645 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-921)) (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-792))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-409 (-566))) (-4 *1 (-1246 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1241 *2)) (-4 *2 (-1219)) (-5 *1 (-148 *2 *4 *3))
- (-4 *3 (-1241 (-409 *4))))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-3 *3 (-644 *1)))
- (-4 *1 (-1070 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-786)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-597 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1050)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-682))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-971))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1176)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172))
+ (-4 *5 (-238 (-2268 *3) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3811 *2) (|:| -4164 *5))
+ (-2 (|:| -3811 *2) (|:| -4164 *5))))
+ (-4 *2 (-851)) (-5 *1 (-464 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-950 *4 *5 (-865 *3))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-508)) (-5 *3 (-644 (-965))) (-5 *1 (-109)))))
+ (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1050)) (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1176))
+ (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-119 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2537 (-567)) (|:| -2807 (-645 *3))))
+ (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-613 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1039 (-567)))
+ (-4 *4 (-559)) (-5 *2 (-1172 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-613 *1)) (-4 *1 (-1050)) (-4 *1 (-303))
+ (-5 *2 (-1172 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *5)) (-4 *5 (-433 *4)) (-4 *4 (-559))
+ (-5 *2 (-863)) (-5 *1 (-32 *4 *5)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))))
(((*1 *2)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-689 (-409 *4))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1266 *6)) (-5 *4 (-1266 (-567))) (-5 *5 (-567))
+ (-4 *6 (-1100)) (-5 *2 (-1 *6)) (-5 *1 (-1018 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-604 *2 *3)) (-4 *3 (-1215)) (-4 *2 (-1099))
- (-4 *2 (-850)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-587 *3)) (-4 *3 (-365)))))
-(((*1 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-390)) (-5 *1 (-438)))))
+ (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-645 *6))
+ (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-953 (-567)))))
+ (-5 *2
+ (-645
+ (-2 (|:| |radval| (-317 (-567))) (|:| |radmult| (-567))
+ (|:| |radvect| (-645 (-690 (-317 (-567))))))))
+ (-5 *1 (-1032)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1186)))))
+(((*1 *1 *1) (-4 *1 (-559))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2070 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-365)) (-4 *7 (-1241 *6))
- (-5 *2 (-2 (|:| |answer| (-587 (-409 *7))) (|:| |a0| *6)))
- (-5 *1 (-576 *6 *7)) (-5 *3 (-409 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-699)) (-5 *1 (-306)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1171 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *2 (-1210 (-926)))
- (-5 *1 (-319))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1093 (-225))) (-5 *6 (-566)) (-5 *7 (-1157))
- (-5 *2 (-1210 (-926))) (-5 *1 (-319))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566))
- (-5 *2 (-1210 (-926))) (-5 *1 (-319))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-317 (-566))) (-5 *4 (-1 (-225) (-225)))
- (-5 *5 (-1093 (-225))) (-5 *6 (-225)) (-5 *7 (-566)) (-5 *8 (-1157))
- (-5 *2 (-1210 (-926))) (-5 *1 (-319)))))
+ (|partial| -12 (-5 *5 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-1266 *4))
+ (-5 *1 (-815 *4 *3)) (-4 *3 (-657 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1201))))
+ ((*1 *2 *1) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-645 (-783 *3))) (-5 *1 (-783 *3)) (-4 *3 (-559))
+ (-4 *3 (-1050)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-681))))
- ((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-970))))
- ((*1 *2 *1) (-12 (-5 *2 (-1214)) (-5 *1 (-1072))))
- ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1117)))))
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-750)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-644 (-1175)))
- (-4 *2 (-13 (-432 (-169 *5)) (-1002) (-1200))) (-4 *5 (-558))
- (-5 *1 (-600 *5 *6 *2)) (-4 *6 (-13 (-432 *5) (-1002) (-1200))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1196)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1265 *4)) (-4 *4 (-419 *3)) (-4 *3 (-308))
- (-4 *3 (-558)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-4 *4 (-365)) (-5 *2 (-1265 *1))
- (-4 *1 (-330 *4))))
- ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1265 *1)) (-4 *1 (-330 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-172)) (-4 *4 (-1241 *3)) (-5 *2 (-1265 *1))
- (-4 *1 (-411 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4))
- (-5 *2 (-1265 *6)) (-5 *1 (-415 *3 *4 *5 *6))
- (-4 *6 (-13 (-411 *4 *5) (-1038 *4)))))
+ (-12 (-4 *1 (-1287 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-820 *3))))
((*1 *2 *1)
- (-12 (-4 *3 (-308)) (-4 *4 (-992 *3)) (-4 *5 (-1241 *4))
- (-5 *2 (-1265 *6)) (-5 *1 (-416 *3 *4 *5 *6 *7))
- (-4 *6 (-411 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1265 *1)) (-4 *1 (-419 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1265 (-1265 *4))) (-5 *1 (-530 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1035))
- (-5 *1 (-749)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1062)) (-5 *3 (-1157)))))
+ (-12 (-4 *2 (-847)) (-5 *1 (-1289 *3 *2)) (-4 *3 (-1050)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-830)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1269))))
+ ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1269)))))
+(((*1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1) (-4 *1 (-1139))) ((*1 *1 *1 *1) (-4 *1 (-1139))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)))) (-4 *3 (-558))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-432 *3))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *3 (-612 $)) $))
- (-15 -2702 ((-1124 *3 (-612 $)) $))
- (-15 -2725 ($ (-1124 *3 (-612 $))))))))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1265 *4)) (-5 *3 (-689 *4)) (-4 *4 (-365))
- (-5 *1 (-667 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-365))
- (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4416))))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416))))
- (-5 *1 (-668 *4 *5 *2 *3)) (-4 *3 (-687 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-644 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365))
- (-5 *1 (-814 *2 *3)) (-4 *3 (-656 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-644 *6)) (-4 *6 (-850)) (-4 *4 (-365)) (-4 *5 (-793))
- (-5 *2 (-112)) (-5 *1 (-506 *4 *5 *6 *7)) (-4 *7 (-949 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035))
- (-5 *1 (-755)))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176))
+ (-14 *4 *2))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1201) (-960)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-1172 *4))
+ (-5 *1 (-531 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-509)) (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-552))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1221))))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-1120)) (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-953 (-567)))) (-5 *1 (-440))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-690 (-225))) (-5 *2 (-1104))
+ (-5 *1 (-760))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-690 (-567))) (-5 *2 (-1104))
+ (-5 *1 (-760)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1100)) (-5 *1 (-886 *2 *3 *4)) (-4 *2 (-1100))
+ (-4 *4 (-667 *3))))
+ ((*1 *1) (-12 (-5 *1 (-890 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1172 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))))
+(((*1 *1) (-5 *1 (-1179))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-577 *5 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *6 (-1242 *5))
+ (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -2823 *3))))
+ (-5 *1 (-810 *5 *6 *3 *7)) (-4 *3 (-657 *6))
+ (-4 *7 (-657 (-410 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *6 (-1242 *5))
+ (-5 *2 (-645 (-2 (|:| |poly| *6) (|:| -2823 (-655 *6 (-410 *6))))))
+ (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-682))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-1118)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1269)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-559))
+ (-4 *7 (-950 *3 *5 *6))
+ (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *8) (|:| |radicand| *8)))
+ (-5 *1 (-954 *5 *6 *3 *7 *8)) (-5 *4 (-772))
+ (-4 *8
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $))))))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -2606 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-757)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-225)) (-5 *4 (-566))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-64 G)))) (-5 *2 (-1035))
- (-5 *1 (-748)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-566)) (-5 *6 (-1 (-1270) (-1265 *5) (-1265 *5) (-381)))
- (-5 *3 (-1265 (-381))) (-5 *5 (-381)) (-5 *2 (-1270))
- (-5 *1 (-788)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-377 *4 *2))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8))) (-4 *7 (-850))
- (-4 *8 (-308)) (-4 *6 (-793)) (-4 *9 (-949 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-644 (-2 (|:| -4018 (-1171 *9)) (|:| -3428 (-566)))))))
- (-5 *1 (-742 *6 *7 *8 *9)) (-5 *3 (-1171 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-614 (-892 *3))) (-4 *3 (-886 *3)) (-4 *3 (-454))
- (-5 *1 (-1206 *3 *2)) (-4 *2 (-614 (-892 *3))) (-4 *2 (-886 *3))
- (-4 *2 (-13 (-432 *3) (-1200))))))
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-665 *4 *5)))
+ (-5 *1 (-628 *4 *5 *6)) (-4 *5 (-13 (-172) (-718 (-410 (-567)))))
+ (-14 *6 (-922)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-295 (-952 (-566))))
- (-5 *2
- (-2 (|:| |varOrder| (-644 (-1175)))
- (|:| |inhom| (-3 (-644 (-1265 (-771))) "failed"))
- (|:| |hom| (-644 (-1265 (-771))))))
- (-5 *1 (-236)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-921))) (-5 *1 (-1100 *3 *4)) (-14 *3 (-921))
- (-14 *4 (-921)))))
-(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-926))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-926))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-927))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-943 (-225)) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-927)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1171 *9)) (-5 *4 (-644 *7)) (-5 *5 (-644 (-644 *8)))
- (-4 *7 (-850)) (-4 *8 (-308)) (-4 *9 (-949 *8 *6 *7)) (-4 *6 (-793))
- (-5 *2
- (-2 (|:| |upol| (-1171 *8)) (|:| |Lval| (-644 *8))
- (|:| |Lfact|
- (-644 (-2 (|:| -4018 (-1171 *8)) (|:| -3428 (-566)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-742 *6 *7 *8 *9)))))
-(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-566))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-694))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-701))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-317 (-699))) (-5 *1 (-331))))
- ((*1 *1) (-5 *1 (-331))))
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *2 (-645 *3)) (-5 *1 (-925 *4 *5 *6 *3))
+ (-4 *3 (-950 *4 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1176))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-645 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -3424 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1201) (-27) (-433 *8)))
+ (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567))
+ (-5 *2 (-645 *4)) (-5 *1 (-1015 *8 *4)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-381)) (-5 *1 (-1041)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-682 *2)) (-4 *2 (-1099))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-644 *5) (-644 *5))) (-5 *4 (-566))
- (-5 *2 (-644 *5)) (-5 *1 (-682 *5)) (-4 *5 (-1099)))))
-(((*1 *2 *1) (-12 (-4 *1 (-767 *3)) (-4 *3 (-1099)) (-5 *2 (-112)))))
+ (|partial| -12 (-4 *4 (-13 (-559) (-147)))
+ (-5 *2 (-2 (|:| -2993 *3) (|:| -3005 *3))) (-5 *1 (-1236 *4 *3))
+ (-4 *3 (-1242 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-771))
- (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-1266 (-690 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-690 *4)) (-4 *5 (-657 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1219)) (-4 *5 (-1241 (-409 *2)))
- (-4 *2 (-1241 *4)) (-5 *1 (-343 *3 *4 *2 *5))
- (-4 *3 (-344 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1219))
- (-4 *4 (-1241 (-409 *2))) (-4 *2 (-1241 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))))
+ (-12 (-5 *3 (-410 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1242 *5))
+ (-5 *1 (-728 *5 *2)) (-4 *5 (-365)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1099)) (-4 *5 (-1099))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-683 *4 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-469)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1171 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3))
- (-4 *3 (-365)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-365))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2424 (-644 *3)) (|:| -3145 (-644 *3))))
- (-5 *1 (-1216 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-644 *8))) (-5 *3 (-644 *8))
- (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793))
- (-4 *7 (-850)) (-5 *2 (-112)) (-5 *1 (-977 *5 *6 *7 *8)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874)))
- (-5 *4 (-644 (-921))) (-5 *5 (-644 (-264))) (-5 *1 (-470))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874)))
- (-5 *4 (-644 (-921))) (-5 *1 (-470))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *1 (-470))))
- ((*1 *1 *1) (-5 *1 (-470))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
-(((*1 *1)
- (-12 (-4 *3 (-1099)) (-5 *1 (-885 *2 *3 *4)) (-4 *2 (-1099))
- (-4 *4 (-666 *3))))
- ((*1 *1) (-12 (-5 *1 (-889 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-995 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-681))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1117)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1215)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-112) *7 (-644 *7))) (-4 *1 (-1208 *4 *5 *6 *7))
- (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566))) (-5 *3 (-566))
- (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270))
- (-5 *1 (-1071 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1157)) (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-1270))
- (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1215)) (-5 *1 (-182 *3 *2))
- (-4 *2 (-674 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-381)) (-5 *1 (-1062)))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-566)) (-4 *4 (-1241 (-409 *3))) (-5 *2 (-921))
- (-5 *1 (-913 *4 *5)) (-4 *5 (-1241 (-409 *4))))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1038 (-566))))
- (-4 *5 (-1241 *4)) (-5 *2 (-644 (-409 *5))) (-5 *1 (-1016 *4 *5))
- (-5 *3 (-409 *5)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1100)) (-4 *6 (-1100))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-685 *4 *5 *6)) (-4 *4 (-1100)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175))
- (-4 *4 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1200) (-432 *4)))))
- ((*1 *1 *1) (-5 *1 (-381)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-776 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1155 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-647 *3)) (-4 *3 (-1099)))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-978 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |k| (-672 *3)) (|:| |c| *4))))
- (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1156 (-567))) (-5 *1 (-1160 *4)) (-4 *4 (-1050))
+ (-5 *3 (-567)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112))
+ (-5 *2 (-1036)) (-5 *1 (-746)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1061 (-1025 *4) (-1172 (-1025 *4)))) (-5 *3 (-863))
+ (-5 *1 (-1025 *4)) (-4 *4 (-13 (-849) (-365) (-1023))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-527)))))
-(((*1 *2)
- (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-921)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-4 *3 (-900 *5)) (-5 *2 (-1265 *3))
- (-5 *1 (-692 *5 *3 *6 *4)) (-4 *6 (-375 *3))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-958 (-183 (-139)))) (-5 *1 (-334))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1214))) (-5 *1 (-606)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-508)) (-5 *1 (-281)))))
-(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))))
-(((*1 *2 *2 *2)
(-12
+ (-5 *3
+ (-2 (|:| -4302 (-690 (-410 (-953 *4))))
+ (|:| |vec| (-645 (-410 (-953 *4)))) (|:| -2432 (-772))
+ (|:| |rows| (-645 (-567))) (|:| |cols| (-645 (-567)))))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794))
(-5 *2
- (-2 (|:| -2227 (-689 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-689 *3))))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-142 *3 *4 *2))
- (-4 *2 (-375 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-992 *4)) (-4 *2 (-375 *4))
- (-5 *1 (-505 *4 *5 *2 *3)) (-4 *3 (-375 *5))))
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *4))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *4)))))))
+ (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-891 *4 *3))
+ (-4 *3 (-1216))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-959 (-183 (-139)))) (-5 *1 (-334))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-607)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1251 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1176))
+ (-14 *5 *3) (-5 *1 (-320 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-452 *4 *5 *6 *7)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-673 *3)) (-4 *3 (-851)) (-4 *1 (-376 *3 *4))
+ (-4 *4 (-172)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-117 *3)) (-14 *3 (-567))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1156 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-410 *3)) (-4 *3 (-308)) (-5 *1 (-174 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558))
- (-5 *2 (-689 *4)) (-5 *1 (-693 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-4 *4 (-992 *3)) (-5 *1 (-1234 *3 *4 *2))
- (-4 *2 (-1241 *4)))))
+ (-12 (-5 *2 (-174 (-567))) (-5 *1 (-766 *3)) (-4 *3 (-407))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-174 (-410 (-567)))) (-5 *1 (-872 *3)) (-14 *3 (-567))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-567)) (-5 *2 (-174 (-410 (-567))))
+ (-5 *1 (-873 *3 *4)) (-4 *4 (-870 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-507 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1176))) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794))
+ (-5 *2 (-645 (-410 (-953 *4)))) (-5 *1 (-925 *4 *5 *6 *7))
+ (-4 *7 (-950 *4 *6 *5)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1215)) (-4 *3 (-1049))
- (-5 *2 (-689 *3)))))
-(((*1 *1) (-5 *1 (-186))))
+ (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1216)) (-4 *3 (-1050))
+ (-5 *2 (-690 *3)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-614 *2) (-172))) (-5 *2 (-892 *4))
- (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1099)) (-4 *3 (-166 *5))))
+ (-12 (-4 *5 (-13 (-615 *2) (-172))) (-5 *2 (-893 *4))
+ (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1100)) (-4 *3 (-166 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1093 (-843 (-381)))))
- (-5 *2 (-644 (-1093 (-843 (-225))))) (-5 *1 (-306))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-396))))
+ (-12 (-5 *3 (-645 (-1094 (-844 (-381)))))
+ (-5 *2 (-645 (-1094 (-844 (-225))))) (-5 *1 (-306))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-397))))
((*1 *1 *2)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4))
- (-4 *4 (-1241 *3))))
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4))
+ (-4 *4 (-1242 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-411 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1241 *3))
- (-5 *2 (-1265 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-1265 *3))))
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3))
+ (-5 *2 (-1266 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1266 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-420 *1)) (-4 *1 (-432 *3)) (-4 *3 (-558))
- (-4 *3 (-1099))))
+ (-12 (-5 *2 (-421 *1)) (-4 *1 (-433 *3)) (-4 *3 (-559))
+ (-4 *3 (-1100))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-465 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-538))))
- ((*1 *2 *1) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1215))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-466 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1104)) (-5 *1 (-539))))
+ ((*1 *2 *1) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1216))))
((*1 *1 *2)
- (-12 (-4 *3 (-172)) (-4 *1 (-724 *3 *2)) (-4 *2 (-1241 *3))))
+ (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1242 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100))))
((*1 *1 *2)
- (-12 (-5 *2 (-952 *3)) (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5))
- (-4 *5 (-614 (-1175))) (-4 *4 (-793)) (-4 *5 (-850))))
+ (-12 (-5 *2 (-953 *3)) (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5))
+ (-4 *5 (-615 (-1176))) (-4 *4 (-794)) (-4 *5 (-851))))
((*1 *1 *2)
- (-2676
- (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5))
- (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566)))
- (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))
- (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5))
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))))
+ (-2909
+ (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5))
+ (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
+ (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))
+ (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))))
((*1 *1 *2)
- (-12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8)))
- (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157))
- (-5 *1 (-1068 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8)))
- (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1108 *4 *5 *6 *7)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1157))
- (-5 *1 (-1144 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1103)) (-5 *1 (-1180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-1180))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1195))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-862)) (-5 *3 (-566)) (-5 *1 (-1195))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-780 *4 (-864 *5)))
- (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *5 (-644 (-1175)))
- (-5 *2 (-780 *4 (-864 *6))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *6 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-952 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-780 *4 (-864 *6)))
- (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175)))
- (-5 *2 (-952 (-1024 (-409 *4)))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *5 (-644 (-1175)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1171 *4)) (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2 (-1171 (-1024 (-409 *4)))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175)))))
+ (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1065 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8)))
+ (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1071 *4 *5 *6 *7)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1158))
+ (-5 *1 (-1069 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8)))
+ (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1109 *4 *5 *6 *7)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1158))
+ (-5 *1 (-1145 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1104)) (-5 *1 (-1181))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1181))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1196))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-863)) (-5 *3 (-567)) (-5 *1 (-1196))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-781 *4 (-865 *5)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *5 (-645 (-1176)))
+ (-5 *2 (-781 *4 (-865 *6))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *6 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-781 *4 (-865 *6)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1176)))
+ (-5 *2 (-953 (-1025 (-410 *4)))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *5 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1172 *4)) (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-1172 (-1025 (-410 *4)))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1145 *4 (-533 (-864 *6)) (-864 *6) (-780 *4 (-864 *6))))
- (-4 *4 (-13 (-848) (-308) (-147) (-1022))) (-14 *6 (-644 (-1175)))
- (-5 *2 (-644 (-780 *4 (-864 *6)))) (-5 *1 (-1291 *4 *5 *6))
- (-14 *5 (-644 (-1175))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-644 (-943 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-644 (-943 *3))) (-4 *3 (-1049)) (-4 *1 (-1133 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-943 *3))) (-4 *1 (-1133 *3)) (-4 *3 (-1049)))))
-(((*1 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))))
+ (-5 *3 (-1146 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6))))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1023))) (-14 *6 (-645 (-1176)))
+ (-5 *2 (-645 (-781 *4 (-865 *6)))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *5 (-645 (-1176))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6)) (-5 *4 (-1175)) (-4 *6 (-432 *5))
- (-4 *5 (-1099)) (-5 *2 (-644 (-612 *6))) (-5 *1 (-575 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-5 *2 (-169 (-317 *4)))
- (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1200) (-432 (-169 *4))))))
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4))))
+ (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308)))))
+(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-449)) (-5 *3 (-567)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))
+ (-4 *2 (-13 (-851) (-21))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-1266 *2)) (-4 *5 (-308))
+ (-4 *6 (-993 *5)) (-4 *2 (-13 (-412 *6 *7) (-1039 *6)))
+ (-5 *1 (-416 *5 *6 *7 *2)) (-4 *7 (-1242 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-834 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-844 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-757)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-5 *2 (-1266 *3)) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1242 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1276)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5)))
+ (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-772)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-922))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-169 *3)) (-5 *1 (-1204 *4 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *4))))))
+ (-12 (-5 *3 (-1266 *4)) (-4 *4 (-351)) (-5 *2 (-922))
+ (-5 *1 (-531 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-644 *6))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))
+ (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-5 *2 (-112))))
((*1 *2 *1)
- (-12 (-5 *2 (-644 (-905 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-559)) (-5 *2 (-112)) (-5 *1 (-624 *3 *4))
+ (-4 *4 (-1242 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-727))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-922)) (-5 *1 (-787)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558))
- (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558))
- (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4))))
+ (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1176)) (-4 *1 (-27))
+ (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *2 (-645 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-689 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2227 (-644 *6)))
- *7 *6))
- (-4 *6 (-365)) (-4 *7 (-656 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1265 *6) "failed"))
- (|:| -2227 (-644 (-1265 *6)))))
- (-5 *1 (-813 *6 *7)) (-5 *4 (-1265 *6)))))
-(((*1 *1) (-5 *1 (-186))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-943 (-225)) (-225) (-225)))
- (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-821)) (-5 *4 (-52)) (-5 *2 (-1270)) (-5 *1 (-831)))))
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1176)))
+ (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-1156 (-225))) (-5 *1 (-301)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-129)))))
+(((*1 *2)
+ (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2 *3) (-12 (-5 *3 (-971)) (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
+ (-12 (-4 *1 (-921)) (-5 *2 (-2 (|:| -3087 (-645 *1)) (|:| -4099 *1)))
+ (-5 *3 (-645 *1)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-644 *2)) (-5 *1 (-113 *2))
- (-4 *2 (-1099))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-644 *4))) (-4 *4 (-1099))
- (-5 *1 (-113 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1099))
- (-5 *1 (-113 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-644 *4)))
- (-5 *1 (-113 *4)) (-4 *4 (-1099))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-648 *3)) (-4 *3 (-1049))
- (-5 *1 (-714 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-836 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void")))
- (-5 *1 (-439)))))
-(((*1 *2 *1) (-12 (-5 *2 (-420 *3)) (-5 *1 (-914 *3)) (-4 *3 (-308)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)) (-5 *3 (-566)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-850))
- (-5 *2
- (-2 (|:| |f1| (-644 *4)) (|:| |f2| (-644 (-644 (-644 *4))))
- (|:| |f3| (-644 (-644 *4))) (|:| |f4| (-644 (-644 (-644 *4))))))
- (-5 *1 (-1186 *4)) (-5 *3 (-644 (-644 (-644 *4)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-276)))))
-(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-819 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-846)) (-5 *1 (-1288 *3 *2)) (-4 *3 (-1049)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225)))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1035)) (-5 *1 (-753)))))
-(((*1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1178)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1155 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-558)) (-4 *2 (-547))))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *1) (-12 (-5 *2 (-824)) (-5 *1 (-825)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -3129 (-421 *3)) (|:| |special| (-421 *3))))
+ (-5 *1 (-728 *5 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1156 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-416 *3 *4 *5 *6)) (-4 *6 (-1039 *4)) (-4 *3 (-308))
+ (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-4 *6 (-412 *4 *5))
+ (-14 *7 (-1266 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *6)) (-4 *6 (-412 *4 *5)) (-4 *4 (-993 *3))
+ (-4 *5 (-1242 *4)) (-4 *3 (-308)) (-5 *1 (-417 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-4 *1 (-904 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-645 (-112))) (-5 *5 (-690 (-225)))
+ (-5 *6 (-690 (-567))) (-5 *7 (-225)) (-5 *3 (-567)) (-5 *2 (-1036))
+ (-5 *1 (-755)))))
+(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-863))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331))
- (-5 *1 (-333)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-566)) (-4 *3 (-172)) (-4 *5 (-375 *3))
- (-4 *6 (-375 *3)) (-5 *1 (-688 *3 *5 *6 *2))
- (-4 *2 (-687 *3 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 *5 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099))
- (-4 *3 (-166 *6)) (-4 (-952 *6) (-886 *5))
- (-4 *6 (-13 (-886 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-889 *4 *1)) (-5 *3 (-892 *4)) (-4 *1 (-886 *4))
- (-4 *4 (-1099))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 *5 *6)) (-5 *4 (-892 *5)) (-4 *5 (-1099))
- (-4 *6 (-13 (-1099) (-1038 *3))) (-4 *3 (-886 *5))
- (-5 *1 (-931 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099))
- (-4 *3 (-13 (-432 *6) (-614 *4) (-886 *5) (-1038 (-612 $))))
- (-5 *4 (-892 *5)) (-4 *6 (-13 (-558) (-886 *5)))
- (-5 *1 (-932 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 (-566) *3)) (-5 *4 (-892 (-566))) (-4 *3 (-547))
- (-5 *1 (-933 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 *5 *6)) (-5 *3 (-612 *6)) (-4 *5 (-1099))
- (-4 *6 (-13 (-1099) (-1038 (-612 $)) (-614 *4) (-886 *5)))
- (-5 *4 (-892 *5)) (-5 *1 (-934 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-885 *5 *6 *3)) (-5 *4 (-892 *5)) (-4 *5 (-1099))
- (-4 *6 (-886 *5)) (-4 *3 (-666 *6)) (-5 *1 (-935 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-889 *6 *3) *8 (-892 *6) (-889 *6 *3)))
- (-4 *8 (-850)) (-5 *2 (-889 *6 *3)) (-5 *4 (-892 *6))
- (-4 *6 (-1099)) (-4 *3 (-13 (-949 *9 *7 *8) (-614 *4)))
- (-4 *7 (-793)) (-4 *9 (-13 (-1049) (-886 *6)))
- (-5 *1 (-936 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099))
- (-4 *3 (-13 (-949 *8 *6 *7) (-614 *4))) (-5 *4 (-892 *5))
- (-4 *7 (-886 *5)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *8 (-13 (-1049) (-886 *5))) (-5 *1 (-936 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 *5 *3)) (-4 *5 (-1099)) (-4 *3 (-992 *6))
- (-4 *6 (-13 (-558) (-886 *5) (-614 *4))) (-5 *4 (-892 *5))
- (-5 *1 (-939 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-889 *5 (-1175))) (-5 *3 (-1175)) (-5 *4 (-892 *5))
- (-4 *5 (-1099)) (-5 *1 (-940 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-644 (-892 *7))) (-5 *5 (-1 *9 (-644 *9)))
- (-5 *6 (-1 (-889 *7 *9) *9 (-892 *7) (-889 *7 *9))) (-4 *7 (-1099))
- (-4 *9 (-13 (-1049) (-614 (-892 *7)) (-1038 *8)))
- (-5 *2 (-889 *7 *9)) (-5 *3 (-644 *9)) (-4 *8 (-1049))
- (-5 *1 (-941 *7 *8 *9)))))
+ (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *2 (-559)) (-5 *1 (-970 *2 *4))
+ (-4 *4 (-1242 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-169 (-225))) (-5 *4 (-566)) (-5 *2 (-1035))
- (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1241 (-566))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-566))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1053 *3 *4 *5 *6 *7)) (-4 *5 (-1049))
- (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-566)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))))
-(((*1 *1 *1) (-4 *1 (-629)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002) (-1200))))))
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3))
+ (-4 *3 (-13 (-1201) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567)) (-147)))
+ (-5 *2 (-588 (-410 (-953 *5)))) (-5 *1 (-573 *5))
+ (-5 *3 (-410 (-953 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567))))
+ (-4 *2 (-172)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-953 *4))) (-5 *3 (-645 (-1176))) (-4 *4 (-455))
+ (-5 *1 (-919 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1176))
+ (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void"))) (-5 *1 (-1179)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351))
- (-4 *2
- (-13 (-404)
- (-10 -7 (-15 -2725 (*2 *4)) (-15 -4138 ((-921) *2))
- (-15 -2227 ((-1265 *2) (-921))) (-15 -3940 (*2 *2)))))
- (-5 *1 (-358 *2 *4)))))
+ (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1242 *4)) (-4 *4 (-1220))
+ (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1242 (-410 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-1266 *1)) (-4 *4 (-172))
+ (-4 *1 (-369 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-1266 *1)) (-4 *4 (-172))
+ (-4 *1 (-372 *4 *5)) (-4 *5 (-1242 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-412 *3 *4))
+ (-4 *4 (-1242 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-172)) (-4 *1 (-420 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-752)))))
+(((*1 *1 *1) (-5 *1 (-1063))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *4 (-558))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3568 *4))) (-5 *1 (-969 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-792))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-793))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-644 (-1175)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-645 (-1176)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216))
(-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-566))
- (-14 *6 (-771)) (-4 *7 (-172)) (-4 *8 (-172))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-567))
+ (-14 *6 (-772)) (-4 *7 (-172)) (-4 *8 (-172))
(-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172))
(-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1049) (-850)))
- (-5 *1 (-223 *3 *4)) (-14 *4 (-644 (-1175)))))
+ (-12 (-5 *2 (-1 (-317 *3) (-317 *3))) (-4 *3 (-13 (-1050) (-851)))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1176)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-771))
- (-4 *6 (-1215)) (-4 *7 (-1215)) (-5 *2 (-240 *5 *7))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772))
+ (-4 *6 (-1216)) (-4 *7 (-1216)) (-5 *2 (-240 *5 *7))
(-5 *1 (-239 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-295 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-295 *6)) (-5 *1 (-294 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-295 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-295 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1157)) (-5 *5 (-612 *6))
- (-4 *6 (-303)) (-4 *2 (-1215)) (-5 *1 (-298 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1158)) (-5 *5 (-613 *6))
+ (-4 *6 (-303)) (-4 *2 (-1216)) (-5 *1 (-298 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-612 *5)) (-4 *5 (-303))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-613 *5)) (-4 *5 (-303))
(-4 *2 (-303)) (-5 *1 (-299 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-612 *1)) (-4 *1 (-303))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-613 *1)) (-4 *1 (-303))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-689 *5)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-5 *2 (-689 *6)) (-5 *1 (-305 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-690 *5)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-5 *2 (-690 *6)) (-5 *1 (-305 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-317 *5)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-5 *2 (-317 *6)) (-5 *1 (-315 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-338 *5 *6 *7 *8)) (-4 *5 (-365))
- (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-4 *8 (-344 *5 *6 *7))
- (-4 *9 (-365)) (-4 *10 (-1241 *9)) (-4 *11 (-1241 (-409 *10)))
+ (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-4 *8 (-344 *5 *6 *7))
+ (-4 *9 (-365)) (-4 *10 (-1242 *9)) (-4 *11 (-1242 (-410 *10)))
(-5 *2 (-338 *9 *10 *11 *12))
(-5 *1 (-335 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-344 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-340 *3)) (-4 *3 (-1100))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1219)) (-4 *8 (-1219))
- (-4 *6 (-1241 *5)) (-4 *7 (-1241 (-409 *6))) (-4 *9 (-1241 *8))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1220)) (-4 *8 (-1220))
+ (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6))) (-4 *9 (-1242 *8))
(-4 *2 (-344 *8 *9 *10)) (-5 *1 (-342 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1241 (-409 *9)))))
+ (-4 *4 (-344 *5 *6 *7)) (-4 *10 (-1242 (-410 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1215)) (-4 *6 (-1215))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1216)) (-4 *6 (-1216))
(-4 *2 (-375 *6)) (-5 *1 (-373 *5 *4 *6 *2)) (-4 *4 (-375 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-1099))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-384 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-1100))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-420 *5)) (-4 *5 (-558))
- (-4 *6 (-558)) (-5 *2 (-420 *6)) (-5 *1 (-407 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-559))
+ (-4 *6 (-559)) (-5 *2 (-421 *6)) (-5 *1 (-408 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-409 *5)) (-4 *5 (-558))
- (-4 *6 (-558)) (-5 *2 (-409 *6)) (-5 *1 (-408 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-410 *5)) (-4 *5 (-559))
+ (-4 *6 (-559)) (-5 *2 (-410 *6)) (-5 *1 (-409 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-415 *5 *6 *7 *8)) (-4 *5 (-308))
- (-4 *6 (-992 *5)) (-4 *7 (-1241 *6))
- (-4 *8 (-13 (-411 *6 *7) (-1038 *6))) (-4 *9 (-308))
- (-4 *10 (-992 *9)) (-4 *11 (-1241 *10))
- (-5 *2 (-415 *9 *10 *11 *12))
- (-5 *1 (-414 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-411 *10 *11) (-1038 *10)))))
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-416 *5 *6 *7 *8)) (-4 *5 (-308))
+ (-4 *6 (-993 *5)) (-4 *7 (-1242 *6))
+ (-4 *8 (-13 (-412 *6 *7) (-1039 *6))) (-4 *9 (-308))
+ (-4 *10 (-993 *9)) (-4 *11 (-1242 *10))
+ (-5 *2 (-416 *9 *10 *11 *12))
+ (-5 *1 (-415 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-412 *10 *11) (-1039 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-419 *6)) (-5 *1 (-417 *4 *5 *2 *6)) (-4 *4 (-419 *5))))
+ (-4 *2 (-420 *6)) (-5 *1 (-418 *4 *5 *2 *6)) (-4 *4 (-420 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-558)) (-5 *1 (-420 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-559)) (-5 *1 (-421 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049))
- (-4 *2 (-432 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-432 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050))
+ (-4 *2 (-433 *6)) (-5 *1 (-424 *5 *4 *6 *2)) (-4 *4 (-433 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099))
- (-4 *2 (-427 *6)) (-5 *1 (-425 *5 *4 *6 *2)) (-4 *4 (-427 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1100)) (-4 *6 (-1100))
+ (-4 *2 (-428 *6)) (-5 *1 (-426 *5 *4 *6 *2)) (-4 *4 (-428 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-491 *3)) (-4 *3 (-1215))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-492 *3)) (-4 *3 (-1216))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-511 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-850))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-512 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-851))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-587 *5)) (-4 *5 (-365))
- (-4 *6 (-365)) (-5 *2 (-587 *6)) (-5 *1 (-586 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-588 *5)) (-4 *5 (-365))
+ (-4 *6 (-365)) (-5 *2 (-588 *6)) (-5 *1 (-587 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2070 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -3424 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-365)) (-4 *6 (-365))
- (-5 *2 (-2 (|:| -2070 *6) (|:| |coeff| *6)))
- (-5 *1 (-586 *5 *6))))
+ (-5 *2 (-2 (|:| -3424 *6) (|:| |coeff| *6)))
+ (-5 *1 (-587 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-586 *5 *2))))
+ (-4 *5 (-365)) (-4 *2 (-365)) (-5 *1 (-587 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-645 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
(-4 *5 (-365)) (-4 *6 (-365))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-586 *5 *6))))
+ (-645 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-587 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-601 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-601 *6)) (-5 *1 (-598 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-602 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-602 *6)) (-5 *1 (-599 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-601 *7))
- (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-601 *8))
- (-5 *1 (-599 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-602 *7))
+ (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-602 *8))
+ (-5 *1 (-600 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-601 *7))
- (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-1155 *8))
- (-5 *1 (-599 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1156 *6)) (-5 *5 (-602 *7))
+ (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-1156 *8))
+ (-5 *1 (-600 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-601 *6)) (-5 *5 (-1155 *7))
- (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-1155 *8))
- (-5 *1 (-599 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-602 *6)) (-5 *5 (-1156 *7))
+ (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-1156 *8))
+ (-5 *1 (-600 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1215)) (-5 *1 (-601 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-644 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-644 *6)) (-5 *1 (-642 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-645 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-645 *6)) (-5 *1 (-643 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-644 *6)) (-5 *5 (-644 *7))
- (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-644 *8))
- (-5 *1 (-643 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-645 *6)) (-5 *5 (-645 *7))
+ (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-645 *8))
+ (-5 *1 (-644 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-651 *3)) (-4 *3 (-1215))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-652 *3)) (-4 *3 (-1216))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1049)) (-4 *8 (-1049))
- (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-687 *8 *9 *10))
- (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-687 *5 *6 *7))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1050)) (-4 *8 (-1050))
+ (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *2 (-688 *8 *9 *10))
+ (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-688 *5 *6 *7))
(-4 *9 (-375 *8)) (-4 *10 (-375 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1049))
- (-4 *8 (-1049)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5))
- (-4 *2 (-687 *8 *9 *10)) (-5 *1 (-685 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-687 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-558)) (-4 *7 (-558))
- (-4 *6 (-1241 *5)) (-4 *2 (-1241 (-409 *8)))
- (-5 *1 (-709 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1241 (-409 *6)))
- (-4 *8 (-1241 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1049)) (-4 *9 (-1049))
- (-4 *5 (-850)) (-4 *6 (-793)) (-4 *2 (-949 *9 *7 *5))
- (-5 *1 (-728 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-793))
- (-4 *4 (-949 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-850)) (-4 *6 (-850)) (-4 *7 (-793))
- (-4 *9 (-1049)) (-4 *2 (-949 *9 *8 *6))
- (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-793))
- (-4 *4 (-949 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-735 *5 *7)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-4 *7 (-726)) (-5 *2 (-735 *6 *7))
- (-5 *1 (-734 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1050))
+ (-4 *8 (-1050)) (-4 *6 (-375 *5)) (-4 *7 (-375 *5))
+ (-4 *2 (-688 *8 *9 *10)) (-5 *1 (-686 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-688 *5 *6 *7)) (-4 *9 (-375 *8)) (-4 *10 (-375 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-559)) (-4 *7 (-559))
+ (-4 *6 (-1242 *5)) (-4 *2 (-1242 (-410 *8)))
+ (-5 *1 (-710 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1242 (-410 *6)))
+ (-4 *8 (-1242 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1050)) (-4 *9 (-1050))
+ (-4 *5 (-851)) (-4 *6 (-794)) (-4 *2 (-950 *9 *7 *5))
+ (-5 *1 (-729 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-794))
+ (-4 *4 (-950 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-851)) (-4 *6 (-851)) (-4 *7 (-794))
+ (-4 *9 (-1050)) (-4 *2 (-950 *9 *8 *6))
+ (-5 *1 (-730 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-794))
+ (-4 *4 (-950 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-736 *5 *7)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-4 *7 (-727)) (-5 *2 (-736 *6 *7))
+ (-5 *1 (-735 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-735 *3 *4))
- (-4 *4 (-726))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-736 *3 *4))
+ (-4 *4 (-727))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-797 *6)) (-5 *1 (-798 *4 *5 *2 *6)) (-4 *4 (-797 *5))))
+ (-4 *2 (-798 *6)) (-5 *1 (-799 *4 *5 *2 *6)) (-4 *4 (-798 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-5 *2 (-834 *6)) (-5 *1 (-833 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-833 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-832 *5 *6))))
+ (-12 (-5 *2 (-834 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-834 *5))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *1 (-833 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-5 *2 (-843 *6)) (-5 *1 (-842 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-5 *2 (-844 *6)) (-5 *1 (-843 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-843 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-843 *5))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-5 *1 (-842 *5 *6))))
+ (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-5 *1 (-843 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-877 *6)) (-5 *1 (-876 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-880 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-880 *6)) (-5 *1 (-879 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-882 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-882 *6)) (-5 *1 (-881 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-883 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-883 *6)) (-5 *1 (-882 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-889 *5 *6)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-889 *5 *7))
- (-5 *1 (-888 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-890 *5 *6)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-890 *5 *7))
+ (-5 *1 (-889 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1099))
- (-4 *6 (-1099)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-952 *5)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-5 *2 (-952 *6)) (-5 *1 (-946 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-953 *5)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-5 *2 (-953 *6)) (-5 *1 (-947 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-850))
- (-4 *8 (-1049)) (-4 *6 (-793))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-851))
+ (-4 *8 (-1050)) (-4 *6 (-794))
(-4 *2
- (-13 (-1099)
- (-10 -8 (-15 -2897 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-771))))))
- (-5 *1 (-951 *6 *7 *8 *5 *2)) (-4 *5 (-949 *8 *6 *7))))
+ (-13 (-1100)
+ (-10 -8 (-15 -3146 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-772))))))
+ (-5 *1 (-952 *6 *7 *8 *5 *2)) (-4 *5 (-950 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-958 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-958 *6)) (-5 *1 (-957 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-959 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-959 *6)) (-5 *1 (-958 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-943 *5)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-5 *2 (-943 *6)) (-5 *1 (-981 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-944 *5)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-5 *2 (-944 *6)) (-5 *1 (-982 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-952 *4))) (-4 *4 (-1049))
- (-4 *2 (-949 (-952 *4) *5 *6)) (-4 *5 (-793))
+ (-12 (-5 *3 (-1 *2 (-953 *4))) (-4 *4 (-1050))
+ (-4 *2 (-950 (-953 *4) *5 *6)) (-4 *5 (-794))
(-4 *6
- (-13 (-850)
- (-10 -8 (-15 -2150 ((-1175) $))
- (-15 -2928 ((-3 $ "failed") (-1175))))))
- (-5 *1 (-984 *4 *5 *6 *2))))
+ (-13 (-851)
+ (-10 -8 (-15 -3542 ((-1176) $))
+ (-15 -4295 ((-3 $ "failed") (-1176))))))
+ (-5 *1 (-985 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-558)) (-4 *6 (-558))
- (-4 *2 (-992 *6)) (-5 *1 (-990 *5 *6 *4 *2)) (-4 *4 (-992 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-559)) (-4 *6 (-559))
+ (-4 *2 (-993 *6)) (-5 *1 (-991 *5 *6 *4 *2)) (-4 *4 (-993 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172))
- (-4 *2 (-997 *6)) (-5 *1 (-998 *4 *5 *2 *6)) (-4 *4 (-997 *5))))
+ (-4 *2 (-998 *6)) (-5 *1 (-999 *4 *5 *2 *6)) (-4 *4 (-998 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7))
- (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7))
+ (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1053 *3 *4 *5 *6 *7))
- (-4 *5 (-1049)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1049)) (-4 *10 (-1049))
- (-14 *5 (-771)) (-14 *6 (-771)) (-4 *8 (-238 *6 *7))
- (-4 *9 (-238 *5 *7)) (-4 *2 (-1053 *5 *6 *10 *11 *12))
- (-5 *1 (-1055 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1053 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1054 *3 *4 *5 *6 *7))
+ (-4 *5 (-1050)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1050)) (-4 *10 (-1050))
+ (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7))
+ (-4 *9 (-238 *5 *7)) (-4 *2 (-1054 *5 *6 *10 *11 *12))
+ (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10))
(-4 *12 (-238 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-1093 *6)) (-5 *1 (-1088 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-1094 *6)) (-5 *1 (-1089 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1093 *5)) (-4 *5 (-848))
- (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-644 *6))
- (-5 *1 (-1088 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1094 *5)) (-4 *5 (-849))
+ (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-645 *6))
+ (-5 *1 (-1089 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1091 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-1091 *6)) (-5 *1 (-1090 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1092 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-1092 *6)) (-5 *1 (-1091 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1094 *4 *2)) (-4 *4 (-848))
- (-4 *2 (-1148 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1095 *4 *2)) (-4 *4 (-849))
+ (-4 *2 (-1149 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1155 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-1155 *6)) (-5 *1 (-1153 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1156 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-1156 *6)) (-5 *1 (-1154 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1155 *6)) (-5 *5 (-1155 *7))
- (-4 *6 (-1215)) (-4 *7 (-1215)) (-4 *8 (-1215)) (-5 *2 (-1155 *8))
- (-5 *1 (-1154 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1156 *6)) (-5 *5 (-1156 *7))
+ (-4 *6 (-1216)) (-4 *7 (-1216)) (-4 *8 (-1216)) (-5 *2 (-1156 *8))
+ (-5 *1 (-1155 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1171 *5)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-5 *2 (-1171 *6)) (-5 *1 (-1169 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-5 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1229 *5 *7 *9)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1229 *6 *8 *10)) (-5 *1 (-1224 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1175))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1230 *5 *7 *9)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-14 *7 (-1176)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1230 *6 *8 *10)) (-5 *1 (-1225 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1176))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-1232 *6)) (-5 *1 (-1231 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-1233 *6)) (-5 *1 (-1232 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1232 *5)) (-4 *5 (-848))
- (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1155 *6))
- (-5 *1 (-1231 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1233 *5)) (-4 *5 (-849))
+ (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1156 *6))
+ (-5 *1 (-1232 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1238 *5 *6)) (-14 *5 (-1175))
- (-4 *6 (-1049)) (-4 *8 (-1049)) (-5 *2 (-1238 *7 *8))
- (-5 *1 (-1233 *5 *6 *7 *8)) (-14 *7 (-1175))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1239 *5 *6)) (-14 *5 (-1176))
+ (-4 *6 (-1050)) (-4 *8 (-1050)) (-5 *2 (-1239 *7 *8))
+ (-5 *1 (-1234 *5 *6 *7 *8)) (-14 *7 (-1176))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049))
- (-4 *2 (-1241 *6)) (-5 *1 (-1239 *5 *4 *6 *2)) (-4 *4 (-1241 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050))
+ (-4 *2 (-1242 *6)) (-5 *1 (-1240 *5 *4 *6 *2)) (-4 *4 (-1242 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1250 *5 *7 *9)) (-4 *5 (-1049))
- (-4 *6 (-1049)) (-14 *7 (-1175)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1250 *6 *8 *10)) (-5 *1 (-1245 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1175))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1251 *5 *7 *9)) (-4 *5 (-1050))
+ (-4 *6 (-1050)) (-14 *7 (-1176)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1251 *6 *8 *10)) (-5 *1 (-1246 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1176))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1049)) (-4 *6 (-1049))
- (-4 *2 (-1256 *6)) (-5 *1 (-1254 *5 *6 *4 *2)) (-4 *4 (-1256 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1050)) (-4 *6 (-1050))
+ (-4 *2 (-1257 *6)) (-5 *1 (-1255 *5 *6 *4 *2)) (-4 *4 (-1257 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-1215))
- (-4 *6 (-1215)) (-5 *2 (-1265 *6)) (-5 *1 (-1264 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-1216))
+ (-4 *6 (-1216)) (-5 *2 (-1266 *6)) (-5 *1 (-1265 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1265 *5))
- (-4 *5 (-1215)) (-4 *6 (-1215)) (-5 *2 (-1265 *6))
- (-5 *1 (-1264 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1266 *5))
+ (-4 *5 (-1216)) (-4 *6 (-1216)) (-5 *2 (-1266 *6))
+ (-5 *1 (-1265 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-1049))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1050))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1049)) (-5 *1 (-1288 *3 *4))
- (-4 *4 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))))
-(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-1289 *3 *4))
+ (-4 *4 (-847)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-283 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-826)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-613 *4)) (-4 *4 (-1100)) (-4 *2 (-1100))
+ (-5 *1 (-612 *2 *4)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-1279 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1279 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036))
+ (-5 *1 (-749)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-433 *5))
+ (-4 *5 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-645 *7))
+ (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7))
+ (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-645 (-295 *8))) (-5 *4 (-645 (-114))) (-5 *5 (-295 *8))
+ (-5 *6 (-645 *8)) (-4 *8 (-433 *7))
+ (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114))) (-5 *5 (-295 *7))
+ (-4 *7 (-433 *6)) (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 (-114))) (-5 *6 (-645 (-295 *8)))
+ (-4 *8 (-433 *7)) (-5 *5 (-295 *8))
+ (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-433 *6))
+ (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6))
+ (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-433 *6))
+ (-4 *6 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-645 *3))
+ (-4 *3 (-433 *7)) (-4 *7 (-13 (-559) (-615 (-539)))) (-5 *2 (-52))
+ (-5 *1 (-318 *7 *3)))))
+(((*1 *1 *1) (-4 *1 (-548))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1120)) (-5 *1 (-844 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-295 (-833 *3)))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-833 *3)) (-5 *1 (-636 *5 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-833 (-952 *5)))) (-4 *5 (-454))
- (-5 *2 (-833 (-409 (-952 *5)))) (-5 *1 (-637 *5))
- (-5 *3 (-409 (-952 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-295 (-409 (-952 *5)))) (-5 *3 (-409 (-952 *5)))
- (-4 *5 (-454)) (-5 *2 (-833 *3)) (-5 *1 (-637 *5)))))
-(((*1 *1 *1) (-4 *1 (-629)))
+ (|partial| -12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9))
+ (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6))
+ (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050))
+ (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365))))
((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-630 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002) (-1200))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-757)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-771)) (-4 *3 (-1049)) (-4 *1 (-687 *3 *4 *5))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-690 *2)) (-4 *2 (-365)) (-4 *2 (-1050))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1123 *2 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-1187 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111)))) (-5 *3 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-749)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-1094 (-225))) (-5 *2 (-928))
+ (-5 *1 (-926 *3)) (-4 *3 (-615 (-539)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-1094 (-225))) (-5 *2 (-928))
+ (-5 *1 (-926 *3)) (-4 *3 (-615 (-539)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-927))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-927))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1 (-225) (-225)))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-863)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-5 *1 (-1259 *3 *2))
+ (-4 *2 (-1257 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-509)) (-5 *2 (-645 (-966))) (-5 *1 (-292)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1281 (-1176) *3)) (-4 *3 (-1050)) (-5 *1 (-1288 *3))))
((*1 *1 *2)
- (-12 (-4 *2 (-1049)) (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)) (-5 *2 (-644 *6))
- (-5 *1 (-987 *3 *4 *5 *6)) (-4 *6 (-949 *3 *5 *4)))))
+ (-12 (-5 *2 (-1281 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *1 (-1290 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-1268))))
- ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1268)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))))
+ (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-863)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-906 *4)) (-4 *4 (-1100)) (-5 *2 (-645 (-772)))
+ (-5 *1 (-905 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-850)) (-5 *2 (-644 (-664 *4 *5)))
- (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-13 (-172) (-717 (-409 (-566)))))
- (-14 *6 (-921)))))
-(((*1 *1 *1) (-4 *1 (-547))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1241 *5))
- (-5 *1 (-727 *5 *2)) (-4 *5 (-365)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-890 *4 *3))
- (-4 *3 (-1215))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *3) (-12 (-5 *2 (-644 (-566))) (-5 *1 (-448)) (-5 *3 (-566)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-921)) (-5 *1 (-786)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-644 (-112))) (-5 *5 (-689 (-225)))
- (-5 *6 (-689 (-566))) (-5 *7 (-225)) (-5 *3 (-566)) (-5 *2 (-1035))
- (-5 *1 (-754)))))
+ (-12 (-5 *3 (-1176)) (-4 *5 (-1220)) (-4 *6 (-1242 *5))
+ (-4 *7 (-1242 (-410 *6))) (-5 *2 (-645 (-953 *5)))
+ (-5 *1 (-343 *4 *5 *6 *7)) (-4 *4 (-344 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1220))
+ (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-4 *4 (-365))
+ (-5 *2 (-645 (-953 *4))))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1175))
- (-5 *2 (-3 (|:| |fst| (-436)) (|:| -4106 "void"))) (-5 *1 (-1178)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-825)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-1099)))))
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1100)) (-4 *4 (-1216)) (-5 *2 (-112))
+ (-5 *1 (-1156 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-754)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-624 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3005 *4) (|:| |sol?| (-112)))
+ (-567) *4))
+ (-4 *4 (-365)) (-4 *5 (-1242 *4)) (-5 *1 (-577 *4 *5)))))
(((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
(-4 *3 (-369 *4))))
((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-566)) (-5 *1 (-241))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1158)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-381)) (-5 *3 (-1158)) (-5 *1 (-97)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-112))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *2
+ (-2 (|:| |mval| (-690 *4)) (|:| |invmval| (-690 *4))
+ (|:| |genIdeal| (-507 *4 *5 *6 *7))))
+ (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-567)) (-5 *1 (-241))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-567)) (-5 *1 (-241)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 (-317 (-225))))
+ (-5 *2
+ (-2 (|:| |additions| (-567)) (|:| |multiplications| (-567))
+ (|:| |exponentiations| (-567)) (|:| |functionCalls| (-567))))
+ (-5 *1 (-306)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567)))))
+ (-5 *4 (-690 *12)) (-5 *5 (-645 (-410 (-953 *9))))
+ (-5 *6 (-645 (-645 *12))) (-5 *7 (-772)) (-5 *8 (-567))
+ (-4 *9 (-13 (-308) (-147))) (-4 *12 (-950 *9 *11 *10))
+ (-4 *10 (-13 (-851) (-615 (-1176)))) (-4 *11 (-794))
+ (-5 *2
+ (-2 (|:| |eqzro| (-645 *12)) (|:| |neqzro| (-645 *12))
+ (|:| |wcond| (-645 (-953 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *9))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *9)))))))))
+ (-5 *1 (-925 *9 *10 *11 *12)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1036)) (-5 *1 (-757)))))
+(((*1 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-645 (-509))) (-5 *2 (-509)) (-5 *1 (-486)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1172 *7)))
+ (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1172 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-566)) (-5 *1 (-241)))))
+ (-12 (-4 *4 (-910)) (-4 *5 (-1242 *4)) (-5 *2 (-421 (-1172 *5)))
+ (-5 *1 (-908 *4 *5)) (-5 *3 (-1172 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793))
- (-4 *7 (-850)) (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-644 *3))
- (-5 *1 (-592 *5 *6 *7 *8 *3)) (-4 *3 (-1108 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-645 *3))
+ (-5 *1 (-593 *5 *6 *7 *8 *3)) (-4 *3 (-1109 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147)))
(-5 *2
- (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5))))))
- (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5)))
- (-14 *6 (-644 (-1175)))))
+ (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5))))))
+ (-5 *1 (-1078 *5 *6)) (-5 *3 (-645 (-953 *5)))
+ (-14 *6 (-645 (-1176)))))
((*1 *2 *3)
(-12 (-4 *4 (-13 (-308) (-147)))
(-5 *2
- (-644 (-2 (|:| -2301 (-1171 *4)) (|:| -2803 (-644 (-952 *4))))))
- (-5 *1 (-1077 *4 *5)) (-5 *3 (-644 (-952 *4)))
- (-14 *5 (-644 (-1175)))))
+ (-645 (-2 (|:| -3894 (-1172 *4)) (|:| -3216 (-645 (-953 *4))))))
+ (-5 *1 (-1078 *4 *5)) (-5 *3 (-645 (-953 *4)))
+ (-14 *5 (-645 (-1176)))))
((*1 *2 *3 *4 *4)
(-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147)))
(-5 *2
- (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5))))))
- (-5 *1 (-1077 *5 *6)) (-5 *3 (-644 (-952 *5)))
- (-14 *6 (-644 (-1175))))))
-(((*1 *2 *1) (-12 (-5 *1 (-587 *2)) (-4 *2 (-365)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))))
+ (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5))))))
+ (-5 *1 (-1078 *5 *6)) (-5 *3 (-645 (-953 *5)))
+ (-14 *6 (-645 (-1176))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-862)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454))
- (-14 *6 (-644 (-1175))) (-5 *2 (-644 (-1046 *5 *6)))
- (-5 *1 (-628 *5 *6)))))
-(((*1 *1 *1 *1) (-4 *1 (-547))))
-(((*1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))))
-(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1241 *2))
- (-4 *2 (-172))))
- ((*1 *2)
- (-12 (-4 *4 (-1241 *2)) (-4 *2 (-172)) (-5 *1 (-410 *3 *2 *4))
- (-4 *3 (-411 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-411 *2 *3)) (-4 *3 (-1241 *2)) (-4 *2 (-172))))
- ((*1 *2)
- (-12 (-4 *3 (-1241 *2)) (-5 *2 (-566)) (-5 *1 (-768 *3 *4))
- (-4 *4 (-411 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)) (-4 *3 (-172))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-558)) (-5 *1 (-969 *2 *3)) (-4 *3 (-1241 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-172)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-1049)) (-5 *1 (-690 *3)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049))
- (-5 *1 (-690 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1049)) (-4 *3 (-850))
- (-4 *5 (-267 *3)) (-4 *6 (-793)) (-5 *2 (-644 (-771)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850))
- (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 (-771))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175))
- (-5 *2
- (-2 (|:| |zeros| (-1155 (-225))) (|:| |ones| (-1155 (-225)))
- (|:| |singularities| (-1155 (-225)))))
- (-5 *1 (-105)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1099) (-1038 *5)))
- (-4 *5 (-886 *4)) (-4 *4 (-1099)) (-5 *2 (-1 (-112) *5))
- (-5 *1 (-931 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4))))
- (-5 *1 (-1071 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1180)))))
-(((*1 *1 *1) (-5 *1 (-1062))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (|partial| -12 (-4 *1 (-1228 *3 *2)) (-4 *3 (-1050))
+ (-4 *2 (-1257 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1197))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1197)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-171)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-112)) (-5 *5 (-689 (-169 (-225))))
- (-5 *2 (-1035)) (-5 *1 (-755)))))
+ (-12 (-5 *2 (-1027 (-844 (-567)))) (-5 *1 (-597 *3)) (-4 *3 (-1050)))))
+(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1266 *1)) (-4 *1 (-369 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *1 (-451 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566))))
- (-4 *5 (-886 (-566)))
- (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-569 *5 *3)) (-4 *3 (-629))
- (-4 *3 (-13 (-27) (-1200) (-432 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1175)) (-5 *4 (-843 *2)) (-4 *2 (-1138))
- (-4 *2 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-614 (-892 (-566)))) (-4 *5 (-886 (-566)))
- (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566))))
- (-5 *1 (-569 *5 *2)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-748)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))))
-(((*1 *1 *1) (-12 (-5 *1 (-608 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1) (-5 *1 (-632))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-225))
- (-5 *2
- (-2 (|:| |brans| (-644 (-644 (-943 *4))))
- (|:| |xValues| (-1093 *4)) (|:| |yValues| (-1093 *4))))
- (-5 *1 (-153)) (-5 *3 (-644 (-644 (-943 *4)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-508)) (-5 *1 (-114))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-973 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-792))
- (-4 *5 (-850)) (-5 *2 (-112)))))
-(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 (-689 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-644 *3)) (-5 *1 (-961 *3)) (-4 *3 (-547)))))
+ (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-5 *1 (-897 *2 *4))
+ (-4 *2 (-1242 *4)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-192)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-644 *1)) (-4 *1 (-1133 *3)) (-4 *3 (-1049))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-409 *1)) (-4 *1 (-1241 *3)) (-4 *3 (-1049))
- (-4 *3 (-558))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-558)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-974)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1885 *3)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-365)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2723 *1)))
- (-4 *1 (-852 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050))
+ (-4 *6 (-1242 *5)) (-5 *2 (-1172 (-1172 *7)))
+ (-5 *1 (-504 *5 *6 *4 *7)) (-4 *4 (-1242 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-772))) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *1) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 *2)))
- (-5 *2 (-892 *3)) (-5 *1 (-1075 *3 *4 *5))
- (-4 *5 (-13 (-432 *4) (-886 *3) (-614 *2))))))
-(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1040)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-1 (-1171 (-952 *4)) (-952 *4)))
- (-5 *1 (-1273 *4)) (-4 *4 (-365)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119))))))
- (-4 *4 (-351)) (-5 *2 (-771)) (-5 *1 (-348 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-353 *3 *4)) (-14 *3 (-921))
- (-14 *4 (-921))))
- ((*1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
- (-14 *4
- (-3 (-1171 *3)
- (-1265 (-644 (-2 (|:| -2465 *3) (|:| -2430 (-1119)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
- (-14 *4 (-921)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-771)))))
+ (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 *2)))
+ (-5 *2 (-893 *3)) (-5 *1 (-1076 *3 *4 *5))
+ (-4 *5 (-13 (-433 *4) (-887 *3) (-615 *2))))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-752)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-824)) (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-865 *4))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1176)) (-4 *5 (-615 (-893 (-567))))
+ (-4 *5 (-887 (-567)))
+ (-4 *5 (-13 (-1039 (-567)) (-455) (-640 (-567))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-570 *5 *3)) (-4 *3 (-630))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1215))))
+ (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1216))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-952 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
+ (|partial| -12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
+ (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-381))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
+ (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-952 (-566))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
+ (|partial| -12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
+ (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-317 (-566))) (-5 *1 (-341 *3 *4 *5))
- (-4 *5 (-1038 (-566))) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-389))))
+ (|partial| -12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1175)) (-5 *1 (-341 *3 *4 *5))
- (-14 *3 (-644 *2)) (-14 *4 (-644 *2)) (-4 *5 (-389))))
+ (|partial| -12 (-5 *2 (-1176)) (-5 *1 (-341 *3 *4 *5))
+ (-14 *3 (-645 *2)) (-14 *4 (-645 *2)) (-4 *5 (-390))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-389))
- (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-644 (-1175)))
- (-14 *4 (-644 (-1175)))))
+ (|partial| -12 (-5 *2 (-317 *5)) (-4 *5 (-390))
+ (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-689 (-409 (-952 (-566))))) (-4 *1 (-386))))
+ (|partial| -12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-689 (-409 (-952 (-381))))) (-4 *1 (-386))))
+ (|partial| -12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-689 (-952 (-566)))) (-4 *1 (-386))))
+ (|partial| -12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-689 (-952 (-381)))) (-4 *1 (-386))))
+ (|partial| -12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-689 (-317 (-566)))) (-4 *1 (-386))))
+ (|partial| -12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-689 (-317 (-381)))) (-4 *1 (-386))))
+ (|partial| -12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-409 (-952 (-566)))) (-4 *1 (-398))))
+ (|partial| -12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-409 (-952 (-381)))) (-4 *1 (-398))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-566))) (-4 *1 (-398))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-952 (-381))) (-4 *1 (-398))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-566))) (-4 *1 (-398))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-398))))
+ (|partial| -12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-567))) (-4 *1 (-399))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-953 (-381))) (-4 *1 (-399))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-567))) (-4 *1 (-399))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-317 (-381))) (-4 *1 (-399))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1265 (-409 (-952 (-566))))) (-4 *1 (-443))))
+ (|partial| -12 (-5 *2 (-1266 (-410 (-953 (-567))))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1265 (-409 (-952 (-381))))) (-4 *1 (-443))))
+ (|partial| -12 (-5 *2 (-1266 (-410 (-953 (-381))))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1265 (-952 (-566)))) (-4 *1 (-443))))
+ (|partial| -12 (-5 *2 (-1266 (-953 (-567)))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1265 (-952 (-381)))) (-4 *1 (-443))))
+ (|partial| -12 (-5 *2 (-1266 (-953 (-381)))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1265 (-317 (-566)))) (-4 *1 (-443))))
+ (|partial| -12 (-5 *2 (-1266 (-317 (-567)))) (-4 *1 (-444))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1265 (-317 (-381)))) (-4 *1 (-443))))
+ (|partial| -12 (-5 *2 (-1266 (-317 (-381)))) (-4 *1 (-444))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1241 *5))
- (-5 *2 (-1171 (-1171 *4))) (-5 *1 (-777 *4 *5 *6 *3 *7))
- (-4 *3 (-1241 *6)) (-14 *7 (-921))))
+ (|partial| -12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1242 *5))
+ (-5 *2 (-1172 (-1172 *4))) (-5 *1 (-778 *4 *5 *6 *3 *7))
+ (-4 *3 (-1242 *6)) (-14 *7 (-922))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *1 (-976 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1038 *2)) (-4 *2 (-1215))))
+ (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *1 (-977 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1039 *2)) (-4 *2 (-1216))))
((*1 *1 *2)
- (|partial| -2676
- (-12 (-5 *2 (-952 *3))
- (-12 (-3129 (-4 *3 (-38 (-409 (-566)))))
- (-3129 (-4 *3 (-38 (-566)))) (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3129 (-4 *3 (-547))) (-3129 (-4 *3 (-38 (-409 (-566)))))
- (-4 *3 (-38 (-566))) (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)))
- (-12 (-5 *2 (-952 *3))
- (-12 (-3129 (-4 *3 (-992 (-566)))) (-4 *3 (-38 (-409 (-566))))
- (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *1 (-1064 *3 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)))))
+ (|partial| -2909
+ (-12 (-5 *2 (-953 *3))
+ (-12 (-1397 (-4 *3 (-38 (-410 (-567)))))
+ (-1397 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)))
+ (-12 (-5 *2 (-953 *3))
+ (-12 (-1397 (-4 *3 (-548))) (-1397 (-4 *3 (-38 (-410 (-567)))))
+ (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)))
+ (-12 (-5 *2 (-953 *3))
+ (-12 (-1397 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567))))
+ (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)))))
((*1 *1 *2)
- (|partial| -2676
- (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5))
- (-12 (-3129 (-4 *3 (-38 (-409 (-566))))) (-4 *3 (-38 (-566)))
- (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))
- (-12 (-5 *2 (-952 (-566))) (-4 *1 (-1064 *3 *4 *5))
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175))))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))))
+ (|partial| -2909
+ (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5))
+ (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
+ (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))
+ (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-952 (-409 (-566)))) (-4 *1 (-1064 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *5 (-614 (-1175)))
- (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-587 *2)) (-4 *2 (-13 (-29 *4) (-1200)))
- (-5 *1 (-585 *4 *2))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-587 (-409 (-952 *4))))
- (-4 *4 (-13 (-454) (-1038 (-566)) (-639 (-566)))) (-5 *2 (-317 *4))
- (-5 *1 (-590 *4)))))
+ (|partial| -12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1065 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176)))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4)))
- (-5 *2 (-2 (|:| |num| (-1265 *4)) (|:| |den| *4))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049))
- (-5 *1 (-1159 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-566)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049))
- (-14 *4 (-1175)) (-14 *5 *3))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
-(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406))))
- ((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-405 *3)) (-4 *3 (-406))))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (|has| *1 (-6 -4406)) (-4 *1 (-406))))
- ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921))))
- ((*1 *2 *1) (-12 (-4 *1 (-869 *3)) (-5 *2 (-1155 (-566))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
- (-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
- (|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
-(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1270)) (-5 *1 (-1137)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-644 (-1171 (-566)))) (-5 *1 (-191)) (-5 *3 (-566)))))
+ (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-290 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1242 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1242 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-716 *3 *2 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567)))))
(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-244 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215))))
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-612 *3)) (-5 *5 (-1171 *3))
- (-4 *3 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-612 *3)) (-5 *5 (-409 (-1171 *3)))
- (-4 *3 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2 (-587 *3)) (-5 *1 (-562 *6 *3 *7)) (-4 *7 (-1099)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-52)) (-5 *1 (-1193)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-892 *4)) (-4 *4 (-1099)) (-4 *2 (-1099))
- (-5 *1 (-889 *4 *2)))))
-(((*1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365))
- (-4 *7 (-1241 (-409 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3284 *3)))
- (-5 *1 (-564 *5 *6 *7 *3)) (-4 *3 (-344 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365))
- (-5 *2
- (-2 (|:| |answer| (-409 *6)) (|:| -3284 (-409 *6))
- (|:| |specpart| (-409 *6)) (|:| |polypart| *6)))
- (-5 *1 (-565 *5 *6)) (-5 *3 (-409 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-860)) (-5 *2 (-691 (-1223))) (-5 *3 (-1223)))))
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-645 *1)) (-4 *1 (-1065 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *8)) (-4 *8 (-949 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175))))
- (-4 *7 (-793))
- (-5 *2
- (-644
- (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8))
- (|:| |wcond| (-644 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *5))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *5))))))))))
- (-5 *1 (-924 *5 *6 *7 *8)) (-5 *4 (-644 *8))))
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1156 *7))) (-4 *6 (-851))
+ (-4 *7 (-950 *5 (-534 *6) *6)) (-4 *5 (-1050))
+ (-5 *2 (-1 (-1156 *7) *7)) (-5 *1 (-1126 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3))
+ (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2))
+ (-4 *2 (-688 *3 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-235 *3))
+ (-4 *3 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-235 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-611 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1100))
+ (-5 *1 (-738 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *3 (-645 (-264)))
+ (-5 *1 (-262))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *8)) (-5 *4 (-644 (-1175))) (-4 *8 (-949 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175))))
- (-4 *7 (-793))
- (-5 *2
- (-644
- (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8))
- (|:| |wcond| (-644 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *5))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *5))))))))))
- (-5 *1 (-924 *5 *6 *7 *8))))
+ (-12 (-5 *4 (-645 (-484 *5 *6))) (-5 *3 (-484 *5 *6))
+ (-14 *5 (-645 (-1176))) (-4 *6 (-455)) (-5 *2 (-1266 *6))
+ (-5 *1 (-632 *5 *6)))))
+(((*1 *1) (-5 *1 (-144))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-308)) (-5 *2 (-112)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-975)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1216))
+ (-4 *2 (-1216)) (-5 *1 (-58 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1100)) (|has| *1 (-6 -4416))
+ (-4 *1 (-151 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *2))
+ (-4 *2 (-1216))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *2))
+ (-4 *2 (-1216))))
((*1 *2 *3)
- (-12 (-5 *3 (-689 *7)) (-4 *7 (-949 *4 *6 *5))
- (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793))
- (-5 *2
- (-644
- (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7))
- (|:| |wcond| (-644 (-952 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *4))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *4))))))))))
- (-5 *1 (-924 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-1050))
+ (-5 *2 (-2 (|:| -3586 (-1172 *4)) (|:| |deg| (-922))))
+ (-5 *1 (-221 *4 *5)) (-5 *3 (-1172 *4)) (-4 *5 (-559))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-772))
+ (-4 *6 (-1216)) (-4 *2 (-1216)) (-5 *1 (-239 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-172)) (-5 *1 (-290 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1242 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-317 *2)) (-4 *2 (-559)) (-4 *2 (-1100))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-337 *2 *3 *4 *5)) (-4 *2 (-365)) (-4 *3 (-1242 *2))
+ (-4 *4 (-1242 (-410 *3))) (-4 *5 (-344 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1216)) (-4 *2 (-1216))
+ (-5 *1 (-373 *5 *4 *2 *6)) (-4 *4 (-375 *5)) (-4 *6 (-375 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1100)) (-4 *2 (-1100))
+ (-5 *1 (-426 *5 *4 *2 *6)) (-4 *4 (-428 *5)) (-4 *6 (-428 *2))))
+ ((*1 *1 *1) (-5 *1 (-498)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-645 *5)) (-4 *5 (-1216))
+ (-4 *2 (-1216)) (-5 *1 (-643 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1050)) (-4 *2 (-1050))
+ (-4 *6 (-375 *5)) (-4 *7 (-375 *5)) (-4 *8 (-375 *2))
+ (-4 *9 (-375 *2)) (-5 *1 (-686 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-688 *5 *6 *7)) (-4 *10 (-688 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1050)) (-5 *1 (-713 *3 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-365))
+ (-4 *3 (-172)) (-4 *1 (-725 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-172)) (-4 *1 (-725 *3 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-959 *5)) (-4 *5 (-1216))
+ (-4 *2 (-1216)) (-5 *1 (-958 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-1035 *3 *4 *5 *2 *6)) (-4 *2 (-950 *3 *4 *5))
+ (-14 *6 (-645 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1050)) (-4 *2 (-1050))
+ (-14 *5 (-772)) (-14 *6 (-772)) (-4 *8 (-238 *6 *7))
+ (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2))
+ (-5 *1 (-1056 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1054 *5 *6 *7 *8 *9)) (-4 *12 (-1054 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1156 *5)) (-4 *5 (-1216))
+ (-4 *2 (-1216)) (-5 *1 (-1154 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2))
+ (-4 *1 (-1209 *5 *6 *7 *2)) (-4 *5 (-559)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *2 (-1065 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1266 *5)) (-4 *5 (-1216))
+ (-4 *2 (-1216)) (-5 *1 (-1265 *5 *2)))))
+(((*1 *1) (-5 *1 (-471))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-821)) (-14 *5 (-1176))
+ (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1179)) (-5 *3 (-1176)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))
+ (-5 *2 (-410 (-567))) (-5 *1 (-1021 *4)) (-4 *4 (-1242 (-567))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *1) (-4 *1 (-630)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003) (-1201))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-613 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1201)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-1172 (-410 (-1172 *6)))) (-5 *1 (-563 *5 *6 *7))
+ (-5 *3 (-1172 *6)) (-4 *7 (-1100))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1242 *3)) (-5 *1 (-713 *3 *2)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1242 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1172 *11)) (-5 *6 (-645 *10))
+ (-5 *7 (-645 (-772))) (-5 *8 (-645 *11)) (-4 *10 (-851))
+ (-4 *11 (-308)) (-4 *9 (-794)) (-4 *5 (-950 *11 *9 *10))
+ (-5 *2 (-645 (-1172 *5))) (-5 *1 (-743 *9 *10 *11 *5))
+ (-5 *3 (-1172 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-950 *3 *4 *5)) (-5 *1 (-1035 *3 *4 *5 *2 *6))
+ (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-14 *6 (-645 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1216))
+ (-4 *5 (-1216)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-689 *9)) (-5 *5 (-921)) (-4 *9 (-949 *6 *8 *7))
- (-4 *6 (-13 (-308) (-147))) (-4 *7 (-13 (-850) (-614 (-1175))))
- (-4 *8 (-793))
- (-5 *2
- (-644
- (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9))
- (|:| |wcond| (-644 (-952 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *6))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *6))))))))))
- (-5 *1 (-924 *6 *7 *8 *9)) (-5 *4 (-644 *9))))
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-772))
+ (-4 *7 (-1216)) (-4 *5 (-1216)) (-5 *2 (-240 *6 *5))
+ (-5 *1 (-239 *6 *7 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-921))
- (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793))
- (-5 *2
- (-644
- (-2 (|:| |eqzro| (-644 *9)) (|:| |neqzro| (-644 *9))
- (|:| |wcond| (-644 (-952 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *6))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *6))))))))))
- (-5 *1 (-924 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *8)) (-5 *4 (-921)) (-4 *8 (-949 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175))))
- (-4 *7 (-793))
- (-5 *2
- (-644
- (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8))
- (|:| |wcond| (-644 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *5))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *5))))))))))
- (-5 *1 (-924 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1216)) (-4 *5 (-1216))
+ (-4 *2 (-375 *5)) (-5 *1 (-373 *6 *4 *5 *2)) (-4 *4 (-375 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 *9)) (-5 *5 (-1157))
- (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566))
- (-5 *1 (-924 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1100)) (-4 *5 (-1100))
+ (-4 *2 (-428 *5)) (-5 *1 (-426 *6 *4 *5 *2)) (-4 *4 (-428 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-689 *9)) (-5 *4 (-644 (-1175))) (-5 *5 (-1157))
- (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566))
- (-5 *1 (-924 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *8)) (-5 *4 (-1157)) (-4 *8 (-949 *5 *7 *6))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-850) (-614 (-1175))))
- (-4 *7 (-793)) (-5 *2 (-566)) (-5 *1 (-924 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 *10)) (-5 *5 (-921))
- (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
- (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566))
- (-5 *1 (-924 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-689 *10)) (-5 *4 (-644 (-1175))) (-5 *5 (-921))
- (-5 *6 (-1157)) (-4 *10 (-949 *7 *9 *8)) (-4 *7 (-13 (-308) (-147)))
- (-4 *8 (-13 (-850) (-614 (-1175)))) (-4 *9 (-793)) (-5 *2 (-566))
- (-5 *1 (-924 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-645 *6)) (-4 *6 (-1216))
+ (-4 *5 (-1216)) (-5 *2 (-645 *5)) (-5 *1 (-643 *6 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-689 *9)) (-5 *4 (-921)) (-5 *5 (-1157))
- (-4 *9 (-949 *6 *8 *7)) (-4 *6 (-13 (-308) (-147)))
- (-4 *7 (-13 (-850) (-614 (-1175)))) (-4 *8 (-793)) (-5 *2 (-566))
- (-5 *1 (-924 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-112))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-955)) (-5 *2 (-644 (-644 (-943 (-225)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-644 (-644 (-943 (-225))))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -1627 *7) (|:| |sol?| (-112)))
- (-566) *7))
- (-5 *6 (-644 (-409 *8))) (-4 *7 (-365)) (-4 *8 (-1241 *7))
- (-5 *3 (-409 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-576 *7 *8)))))
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-959 *6)) (-4 *6 (-1216))
+ (-4 *5 (-1216)) (-5 *2 (-959 *5)) (-5 *1 (-958 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1156 *6)) (-4 *6 (-1216))
+ (-4 *3 (-1216)) (-5 *2 (-1156 *3)) (-5 *1 (-1154 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1266 *6)) (-4 *6 (-1216))
+ (-4 *5 (-1216)) (-5 *2 (-1266 *5)) (-5 *1 (-1265 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-906 *3))) (-4 *3 (-1100)) (-5 *1 (-905 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-331))))
+(((*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2))))
+ ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2))
+ (-4 *3 (-559)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-949 *4 *5 *6)) (-5 *2 (-644 (-644 *7)))
- (-5 *1 (-450 *4 *5 *6 *7)) (-5 *3 (-644 *7))))
+ (-12 (-5 *3 (-1188 (-645 *4))) (-4 *4 (-851))
+ (-5 *2 (-645 (-645 *4))) (-5 *1 (-1187 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9))
+ (-4 *9 (-1065 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2207 (-645 *9))))
+ (-5 *3 (-645 *9)) (-4 *1 (-1209 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793))
- (-4 *7 (-850)) (-4 *8 (-949 *5 *6 *7)) (-5 *2 (-644 (-644 *8)))
- (-5 *1 (-450 *5 *6 *7 *8)) (-5 *3 (-644 *8)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -1702 *3) (|:| |gap| (-771)) (|:| -2383 (-782 *3))
- (|:| -3033 (-782 *3))))
- (-5 *1 (-782 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-793)) (-4 *3 (-850))
+ (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2207 (-645 *8))))
+ (-5 *3 (-645 *8)) (-4 *1 (-1209 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-928))
(-5 *2
- (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -2383 *1)
- (|:| -3033 *1)))
- (-4 *1 (-1064 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
+ (-2 (|:| |brans| (-645 (-645 (-944 (-225)))))
+ (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567)))
(-5 *2
- (-2 (|:| -1702 *1) (|:| |gap| (-771)) (|:| -2383 *1)
- (|:| -3033 *1)))
- (-4 *1 (-1064 *3 *4 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1099)) (-5 *1 (-1192 *3 *2)) (-4 *3 (-1099)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1265 (-566))) (-5 *3 (-566)) (-5 *1 (-1109))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1265 (-566))) (-5 *3 (-644 (-566))) (-5 *4 (-566))
- (-5 *1 (-1109)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-771)) (|:| -4144 *4))) (-5 *5 (-771))
- (-4 *4 (-949 *6 *7 *8)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
+ (-2 (|:| |brans| (-645 (-645 (-944 (-225)))))
+ (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3)
+ (-12
(-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-451 *6 *7 *8 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-862)))))
-(((*1 *1) (-5 *1 (-331))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *2 *3)
+ (-2 (|:| |brans| (-645 (-645 (-944 (-225)))))
+ (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-645 (-944 (-225))))))
+ ((*1 *2 *3)
(-12
- (-5 *3
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381))))
- (-5 *2 (-1035)) (-5 *1 (-306)))))
-(((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1141 *3 *4)) (-14 *3 (-921)) (-4 *4 (-365))
- (-5 *1 (-993 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1049)) (-14 *3 (-644 (-1175)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1049) (-850)))
- (-14 *3 (-644 (-1175))))))
+ (-5 *2
+ (-2 (|:| |brans| (-645 (-645 (-944 (-225)))))
+ (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))))
+ (-5 *1 (-153)) (-5 *3 (-645 (-645 (-944 (-225)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-172)) (-4 *2 (-1049)) (-5 *1 (-714 *2 *3))
- (-4 *3 (-648 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-172)) (-4 *2 (-1049)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1133 (-225))) (-5 *3 (-645 (-264))) (-5 *1 (-1268))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1133 (-225))) (-5 *3 (-1158)) (-5 *1 (-1268))))
+ ((*1 *1 *1) (-5 *1 (-1268))))
(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1266))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1266))))
+ (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1158)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1267))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-644 (-1157))) (-5 *2 (-1157)) (-5 *1 (-1267))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1267))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-1267)))))
-(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1215)) (-4 *2 (-1099))))
- ((*1 *1 *1) (-12 (-4 *1 (-695 *2)) (-4 *2 (-1099)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-793))
- (-4 *3 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $))))) (-4 *5 (-558))
- (-5 *1 (-732 *4 *3 *5 *2)) (-4 *2 (-949 (-409 (-952 *5)) *4 *3))))
+ (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1158)) (-5 *1 (-1268))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1268))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1268)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1112)) (-4 *3 (-1100)) (-5 *2 (-645 *1))
+ (-4 *1 (-433 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050))
+ (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3))
+ (-5 *1 (-951 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $))
+ (-15 -4078 (*7 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1047 *5 *6)))
+ (-5 *1 (-629 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1266 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
+ (-4 *1 (-725 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1242 *5))
+ (-5 *2 (-690 *5)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1266 *5)) (-5 *3 (-772)) (-5 *4 (-1120)) (-4 *5 (-351))
+ (-5 *1 (-531 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1156 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3) (-12 (-5 *3 (-822)) (-5 *2 (-52)) (-5 *1 (-832)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-613 *3)) (-5 *5 (-1 (-1172 *3) (-1172 *3)))
+ (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-559)) (-5 *2 (-588 *3))
+ (-5 *1 (-554 *6 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-5 *2
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-953 *6)) (-5 *4 (-1176))
+ (-5 *5 (-844 *7))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-4 *7 (-13 (-1201) (-29 *6))) (-5 *1 (-224 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1172 *6)) (-5 *4 (-844 *6))
+ (-4 *6 (-13 (-1201) (-29 *5)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-224 *5 *6)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-1279 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1279 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)))))
+(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1201) (-433 (-169 *3))))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-1049)) (-4 *5 (-793))
- (-4 *3
- (-13 (-850)
- (-10 -8 (-15 -2150 ((-1175) $))
- (-15 -2928 ((-3 $ "failed") (-1175))))))
- (-5 *1 (-984 *4 *5 *3 *2)) (-4 *2 (-949 (-952 *4) *5 *3))))
+ (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *6))
- (-4 *6
- (-13 (-850)
- (-10 -8 (-15 -2150 ((-1175) $))
- (-15 -2928 ((-3 $ "failed") (-1175))))))
- (-4 *4 (-1049)) (-4 *5 (-793)) (-5 *1 (-984 *4 *5 *6 *2))
- (-4 *2 (-949 (-952 *4) *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-751)))))
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1205 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *2 (-112)) (-5 *1 (-925 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-112))
+ (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-645 (-281))) (-5 *1 (-281))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-1181)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-944 (-225)))))
+ (-5 *2 (-645 (-1094 (-225)))) (-5 *1 (-929)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *1 *1) (-4 *1 (-143)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794)) (-5 *2 (-112))
+ (-5 *1 (-988 *3 *4 *5 *6)) (-4 *6 (-950 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))))))
(((*1 *2)
(-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
(-4 *3 (-369 *4))))
((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-793)) (-4 *2 (-949 *4 *5 *6)) (-5 *1 (-451 *4 *5 *6 *2))
- (-4 *4 (-454)) (-4 *6 (-850)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172))))
- ((*1 *2 *1) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *2 (-13 (-432 (-169 *4)) (-1002) (-1200)))
- (-5 *1 (-600 *4 *3 *2)) (-4 *3 (-13 (-432 *4) (-1002) (-1200))))))
-(((*1 *2 *3) (-12 (-5 *3 (-921)) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1 (-381))) (-5 *1 (-1040)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-772)) (-5 *1 (-564)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216))
+ (-4 *3 (-1100)) (-5 *2 (-772))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4416)) (-4 *1 (-492 *4))
+ (-4 *4 (-1216)) (-5 *2 (-772)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-689 *5))) (-5 *4 (-566)) (-4 *5 (-365))
- (-4 *5 (-1049)) (-5 *2 (-112)) (-5 *1 (-1029 *5))))
+ (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1176)) (-4 *1 (-27))
+ (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-27)) (-5 *2 (-645 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *2 (-645 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-559)) (-5 *2 (-645 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-689 *4))) (-4 *4 (-365)) (-4 *4 (-1049))
- (-5 *2 (-112)) (-5 *1 (-1029 *4)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-644 (-1175))) (-4 *2 (-172))
- (-4 *3 (-238 (-3991 *4) (-771)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2430 *5) (|:| -3428 *3))
- (-2 (|:| -2430 *5) (|:| -3428 *3))))
- (-5 *1 (-463 *4 *2 *5 *3 *6 *7)) (-4 *5 (-850))
- (-4 *7 (-949 *2 *3 (-864 *4))))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *3 (-566))
- (-5 *2 (-1035)) (-5 *1 (-756)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-689 (-225))) (-5 *5 (-689 (-566))) (-5 *6 (-225))
- (-5 *3 (-566)) (-5 *2 (-1035)) (-5 *1 (-751)))))
-(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-375 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-169 (-566))) (-5 *2 (-112)) (-5 *1 (-448))))
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *2 *4)) (-4 *4 (-1242 *2))
+ (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1242 *2)) (-4 *2 (-172)) (-5 *1 (-411 *3 *2 *4))
+ (-4 *3 (-412 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-412 *2 *3)) (-4 *3 (-1242 *2)) (-4 *2 (-172))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1242 *2)) (-5 *2 (-567)) (-5 *1 (-769 *3 *4))
+ (-4 *4 (-412 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-172))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4)
- (-247 *4 (-409 (-566)))))
- (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112))
- (-5 *1 (-507 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-961 *3)) (-4 *3 (-547))))
- ((*1 *2 *1) (-12 (-4 *1 (-1219)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-508)) (-5 *3 (-1117)) (-5 *1 (-1114)))))
+ (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1242 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1266 *4)) (-4 *4 (-640 (-567)))
+ (-5 *2 (-1266 (-410 (-567)))) (-5 *1 (-1293 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-772)) (-5 *3 (-944 *4)) (-4 *1 (-1134 *4))
+ (-4 *4 (-1050))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-944 (-225))) (-5 *2 (-1271))
+ (-5 *1 (-1268)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-144)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-595 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1100)) (-5 *2 (-1120)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-890 *4 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1156 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1050))
+ (-5 *3 (-410 (-567))) (-5 *1 (-1160 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5))
+ (-14 *5 (-645 (-1176))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6))
+ (-4 *6 (-455))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-484 *5 *6))) (-5 *4 (-865 *5))
+ (-14 *5 (-645 (-1176))) (-5 *2 (-484 *5 *6)) (-5 *1 (-632 *5 *6))
+ (-4 *6 (-455)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-757)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050))
+ (-5 *1 (-715 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-1197)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-141))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1144)) (-5 *2 (-144)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |c| (-410 *6))
+ (|:| -1923 *6)))
+ (-5 *1 (-1016 *5 *6)) (-5 *3 (-410 *6)))))
(((*1 *1 *2 *3)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
+ (-12 (-5 *3 (-363 (-114))) (-4 *2 (-1050)) (-5 *1 (-715 *2 *4))
+ (-4 *4 (-649 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-363 (-114))) (-5 *1 (-837 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1141 *3 *4)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050))
+ (-5 *1 (-691 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-588 *3)) (-4 *3 (-365)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-878 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-880 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *1 (-883 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-613 *4)) (-5 *1 (-612 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-131)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-755)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1158)) (-5 *5 (-690 (-225))) (-5 *6 (-225))
+ (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
(-14 *4 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1171 *4)) (-4 *4 (-351)) (-5 *2 (-112))
- (-5 *1 (-359 *4)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-644 (-409 *7)))
- (-4 *7 (-1241 *6)) (-5 *3 (-409 *7)) (-4 *6 (-365))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-576 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-192))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-301))))
- ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1157)) (-5 *1 (-306)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3005 *6) (|:| |sol?| (-112))) (-567)
+ *6))
+ (-4 *6 (-365)) (-4 *7 (-1242 *6))
+ (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851))
+ (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-645 (-772)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 (-772))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-421 *4)) (-4 *4 (-559)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-851)) (-5 *3 (-645 *6)) (-5 *5 (-645 *3))
(-5 *2
- (-2 (|:| |polnum| (-782 *3)) (|:| |polden| *3) (|:| -3136 (-771))))
- (-5 *1 (-782 *3)) (-4 *3 (-1049))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3136 (-771))))
- (-4 *1 (-1064 *3 *4 *5)))))
+ (-2 (|:| |f1| *3) (|:| |f2| (-645 *5)) (|:| |f3| *5)
+ (|:| |f4| (-645 *5))))
+ (-5 *1 (-1187 *6)) (-5 *4 (-645 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-950 *5 *6 *7)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-452 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-904 (-566))) (-5 *1 (-917))))
- ((*1 *2) (-12 (-5 *2 (-904 (-566))) (-5 *1 (-917)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215))
- (-4 *3 (-1099)) (-5 *2 (-771))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *4))
- (-4 *4 (-1215)) (-5 *2 (-771)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-1177 (-409 (-566))))
- (-5 *1 (-190)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1143)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1176))
+ (-5 *2
+ (-2 (|:| |zeros| (-1156 (-225))) (|:| |ones| (-1156 (-225)))
+ (|:| |singularities| (-1156 (-225)))))
+ (-5 *1 (-105)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1065 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1145 *5 *6 *7 *3 *4)) (-4 *4 (-1109 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1215))) (-5 *1 (-527)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049))
- (-5 *2 (-644 (-644 (-644 (-771))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *4 *5 *6 *7))
- (-4 *4 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215))
- (-4 *7 (-1215)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-588 *2)) (-4 *2 (-547)))))
-(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-581)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-755))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-390))
- (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-755)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-861))))
- ((*1 *1 *2) (-12 (-5 *2 (-390)) (-5 *1 (-861)))))
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1065 *3 *4 *5)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
(((*1 *2 *1)
(-12
(-5 *2
- (-644
- (-2
- (|:| -3476
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -2484
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1155 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3192
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-561))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-604 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1215))
- (-5 *2 (-644 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1180))) (-5 *1 (-1180))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-508)) (-5 *3 (-644 (-1180))) (-5 *1 (-1180)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-594 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1119)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883))
- (-5 *3 (-644 (-566))))))
-(((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-134)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-644 (-644 *4)))) (-5 *2 (-644 (-644 *4)))
- (-4 *4 (-850)) (-5 *1 (-1186 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1049))
- (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285)))
- (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-752)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-141))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-144)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-759)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1143)) (-5 *3 (-566)) (-5 *2 (-112)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4)
- (-247 *4 (-409 (-566)))))
- (-14 *4 (-644 (-1175))) (-14 *5 (-771)) (-5 *2 (-112))
- (-5 *1 (-507 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))))))
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-331)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-420 *3)) (-4 *3 (-547)) (-4 *3 (-558))))
- ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-833 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-843 *3)) (-4 *3 (-547)) (-4 *3 (-1099))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547)) (-5 *2 (-112))))
+ (|partial| -12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851))))
((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-1008 *3)) (-4 *3 (-1038 (-409 (-566)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 (-644 (-943 (-225))))) (-5 *3 (-644 (-874)))
- (-5 *1 (-470)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-644 *2) *2 *2 *2)) (-4 *2 (-1099))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1099)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1099)) (-4 *5 (-1099))
- (-5 *2 (-1 *5)) (-5 *1 (-683 *4 *5)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *1 (-1127 *3 *2)) (-4 *3 (-1241 *2)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-819 *3)) (-4 *3 (-850)) (-5 *1 (-672 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1215))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1241 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-649 *2 *3 *4)) (-4 *2 (-1099)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862))))
- ((*1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -1502 (-644 (-2 (|:| |irr| *10) (|:| -1737 (-566)))))))
- (-5 *6 (-644 *3)) (-5 *7 (-644 *8)) (-4 *8 (-850)) (-4 *3 (-308))
- (-4 *10 (-949 *3 *9 *8)) (-4 *9 (-793))
- (-5 *2
- (-2 (|:| |polfac| (-644 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-644 (-1171 *3)))))
- (-5 *1 (-625 *8 *9 *3 *10)) (-5 *4 (-644 (-1171 *3))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-771)) (-4 *6 (-365)) (-5 *4 (-1209 *6))
- (-5 *2 (-1 (-1155 *4) (-1155 *4))) (-5 *1 (-1273 *6))
- (-5 *5 (-1155 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-1099)) (-4 *2 (-370)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4))))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-1050)) (-4 *6 (-950 *5 *4 *2))
+ (-4 *2 (-851)) (-5 *1 (-951 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *6)) (-15 -4067 (*6 $))
+ (-15 -4078 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559))
+ (-5 *2 (-1176)) (-5 *1 (-1044 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1179))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-780 *5 (-864 *6)))) (-5 *4 (-112)) (-4 *5 (-454))
- (-14 *6 (-644 (-1175)))
- (-5 *2
- (-644 (-1145 *5 (-533 (-864 *6)) (-864 *6) (-780 *5 (-864 *6)))))
- (-5 *1 (-628 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-566))) (-4 *3 (-1049)) (-5 *1 (-596 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1225 *3)) (-4 *3 (-1049))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-566))) (-4 *1 (-1256 *3)) (-4 *3 (-1049)))))
+ (-12 (-4 *5 (-1100)) (-4 *3 (-901 *5)) (-5 *2 (-690 *3))
+ (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-566)) (-5 *1 (-447 *3)) (-4 *3 (-406)) (-4 *3 (-1049)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *1) (-12 (-5 *2 (-508)) (-5 *1 (-527)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))))
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-843 (-381))) (-5 *2 (-843 (-225))) (-5 *1 (-306)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-169 (-225))) (-5 *5 (-566)) (-5 *6 (-1157))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225))))
- (-5 *2 (-1035)) (-5 *1 (-754)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-862)) (-5 *1 (-1155 *3)) (-4 *3 (-1099))
- (-4 *3 (-1215)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4415)) (-4 *1 (-491 *4))
- (-4 *4 (-1215)) (-5 *2 (-112)))))
+ (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1100) (-1039 *5)))
+ (-4 *5 (-887 *4)) (-4 *4 (-1100)) (-5 *2 (-1 (-112) *5))
+ (-5 *1 (-932 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1216))
+ (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *6 *7 *2)) (-4 *6 (-1050))
+ (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175))
- (-5 *1 (-263 *2)) (-4 *2 (-1215))))
+ (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1176))
+ (-5 *1 (-263 *2)) (-4 *2 (-1216))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-644 (-264))) (-5 *4 (-1175)) (-5 *2 (-52))
+ (|partial| -12 (-5 *3 (-645 (-264))) (-5 *4 (-1176)) (-5 *2 (-52))
(-5 *1 (-264)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-1006)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035))
- (-5 *1 (-755)))))
-(((*1 *1) (-4 *1 (-967))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *6))))
+ (-5 *4 (-1027 (-844 (-567)))) (-5 *5 (-1176)) (-5 *7 (-410 (-567)))
+ (-4 *6 (-1050)) (-5 *2 (-863)) (-5 *1 (-597 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1271))
+ (-5 *1 (-436 *3 *4)) (-4 *4 (-433 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1099))
- (-5 *2 (-644 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |k| (-893 *3)) (|:| |c| *4))))
- (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-644 (-672 *3))) (-5 *1 (-893 *3)) (-4 *3 (-850)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-559)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 *5)) (-4 *5 (-559))
(-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
- (|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
+ (-2 (|:| -4164 (-772)) (|:| -3087 *5) (|:| |radicand| (-645 *5))))
+ (-5 *1 (-321 *5)) (-5 *4 (-772))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-567)))))
+(((*1 *1) (-4 *1 (-968))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-952 (-566))) (-5 *2 (-331))
- (-5 *1 (-333)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-1215)) (-5 *2 (-112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6))
- (-4 *4 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 (-612 *5))) (-5 *3 (-1175)) (-4 *5 (-432 *4))
- (-4 *4 (-1099)) (-5 *1 (-575 *4 *5)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793))
- (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1451 (-644 *9)) (|:| -3860 *4) (|:| |ineq| (-644 *9))))
- (-5 *1 (-988 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9))
- (-4 *4 (-1070 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793))
- (-4 *8 (-850)) (-4 *9 (-1064 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1451 (-644 *9)) (|:| -3860 *4) (|:| |ineq| (-644 *9))))
- (-5 *1 (-1106 *6 *7 *8 *9 *4)) (-5 *3 (-644 *9))
- (-4 *4 (-1070 *6 *7 *8 *9)))))
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-5 *1 (-1063))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3986 (-114)) (|:| |arg| (-645 (-893 *3)))))
+ (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-893 *4)))
+ (-5 *1 (-893 *4)) (-4 *4 (-1100)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-762))))
+(((*1 *2 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-548)))))
(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140))))
((*1 *2 *1) (-12 (-5 *1 (-183 *2)) (-4 *2 (-185))))
((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454))))
- ((*1 *1 *1 *1) (-4 *1 (-454)))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455))))
+ ((*1 *1 *1 *1) (-4 *1 (-455)))
((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-5 *1 (-488 *2)) (-4 *2 (-1241 (-566)))))
+ (-12 (-5 *3 (-645 *2)) (-5 *1 (-489 *2)) (-4 *2 (-1242 (-567)))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-566)) (-5 *1 (-696 *2)) (-4 *2 (-1241 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-771)))
+ (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-772)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-793)) (-4 *4 (-850)) (-4 *5 (-308))
- (-5 *1 (-916 *3 *4 *5 *2)) (-4 *2 (-949 *5 *3 *4))))
+ (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308))
+ (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-949 *6 *4 *5))
- (-5 *1 (-916 *4 *5 *6 *2)) (-4 *4 (-793)) (-4 *5 (-850))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5))
+ (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851))
(-4 *6 (-308))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1171 *6)) (-4 *6 (-949 *5 *3 *4)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *5 (-308)) (-5 *1 (-916 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1172 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1171 *7))) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-308)) (-5 *2 (-1171 *7)) (-5 *1 (-916 *4 *5 *6 *7))
- (-4 *7 (-949 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-921)))
+ (-12 (-5 *3 (-645 (-1172 *7))) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-308)) (-5 *2 (-1172 *7)) (-5 *1 (-917 *4 *5 *6 *7))
+ (-4 *7 (-950 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-922)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-454)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2))
- (-4 *2 (-1241 *3))))
+ (-12 (-4 *3 (-455)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2))
+ (-4 *2 (-1242 *3))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-454)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1171 (-566))) (-5 *3 (-566)) (-4 *1 (-869 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-454)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1099)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-1119)) (-4 *4 (-351))
- (-5 *1 (-530 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
- (-4 *4 (-13 (-365) (-848))) (-4 *3 (-1241 *2)))))
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-738 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1100))))
+ ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-1100)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091 (-843 *3))) (-4 *3 (-13 (-1200) (-959) (-29 *5)))
- (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1091 (-843 *3))) (-5 *5 (-1157))
- (-4 *3 (-13 (-1200) (-959) (-29 *6)))
- (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (|:| |f1| (-843 *3)) (|:| |f2| (-644 (-843 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-219 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1091 (-843 (-317 *5))))
- (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1091 (-843 (-317 *6))))
- (-5 *5 (-1157))
- (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1091 (-843 (-409 (-952 *5))))) (-5 *3 (-409 (-952 *5)))
- (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (|:| |f1| (-843 (-317 *5))) (|:| |f2| (-644 (-843 (-317 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1091 (-843 (-409 (-952 *6))))) (-5 *5 (-1157))
- (-5 *3 (-409 (-952 *6)))
- (-4 *6 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2
- (-3 (|:| |f1| (-843 (-317 *6))) (|:| |f2| (-644 (-843 (-317 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-220 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-3 *3 (-644 *3))) (-5 *1 (-430 *5 *3))
- (-4 *3 (-13 (-1200) (-959) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-476 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381))))
- (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381))))
- (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381))))
- (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1093 (-843 (-381))))
- (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381)))))
- (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381)))))
- (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381)))))
- (-5 *5 (-381)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-317 (-381))) (-5 *4 (-644 (-1093 (-843 (-381)))))
- (-5 *5 (-381)) (-5 *6 (-1062)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381))))
- (-5 *5 (-1157)) (-5 *2 (-1035)) (-5 *1 (-567))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1091 (-843 (-381))))
- (-5 *5 (-1175)) (-5 *2 (-1035)) (-5 *1 (-567))))
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4))))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-5 *2 (-567))
+ (-5 *1 (-446 *5 *3 *6)) (-4 *3 (-1242 *5))
+ (-4 *6 (-13 (-407) (-1039 *5) (-365) (-1201) (-285)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-566)))) (-4 *5 (-1241 *4))
- (-5 *2 (-587 (-409 *5))) (-5 *1 (-570 *4 *5)) (-5 *3 (-409 *5))))
+ (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
+ (-4 *3 (-1242 *4))
+ (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1100)) (-4 *2 (-901 *4)) (-5 *1 (-693 *4 *2 *5 *3))
+ (-4 *5 (-375 *2)) (-4 *3 (-13 (-375 *4) (-10 -7 (-6 -4416)))))))
+(((*1 *1) (-5 *1 (-618))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-5 *2 (-690 *4))
+ (-5 *1 (-815 *4 *5)) (-4 *5 (-657 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175)) (-4 *5 (-147))
- (-4 *5 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-3 (-317 *5) (-644 (-317 *5)))) (-5 *1 (-590 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-740 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-850))
- (-4 *3 (-38 (-409 (-566))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175)) (-5 *1 (-952 *3)) (-4 *3 (-38 (-409 (-566))))
- (-4 *3 (-1049))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-4 *2 (-850))
- (-5 *1 (-1125 *3 *2 *4)) (-4 *4 (-949 *3 (-533 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049))
- (-5 *1 (-1159 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1172 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1173 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *1 (-1209 *3)) (-4 *3 (-38 (-409 (-566))))
- (-4 *3 (-1049))))
- ((*1 *1 *1 *2)
- (-2676
- (-12 (-5 *2 (-1175)) (-4 *1 (-1225 *3)) (-4 *3 (-1049))
- (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1200))
- (-4 *3 (-38 (-409 (-566))))))
- (-12 (-5 *2 (-1175)) (-4 *1 (-1225 *3)) (-4 *3 (-1049))
- (-12 (|has| *3 (-15 -4170 ((-644 *2) *3)))
- (|has| *3 (-15 -1879 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1225 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1229 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566))))))
- ((*1 *1 *1 *2)
- (-2676
- (-12 (-5 *2 (-1175)) (-4 *1 (-1246 *3)) (-4 *3 (-1049))
- (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1200))
- (-4 *3 (-38 (-409 (-566))))))
- (-12 (-5 *2 (-1175)) (-4 *1 (-1246 *3)) (-4 *3 (-1049))
- (-12 (|has| *3 (-15 -4170 ((-644 *2) *3)))
- (|has| *3 (-15 -1879 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1246 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1250 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-2676
- (-12 (-5 *2 (-1175)) (-4 *1 (-1256 *3)) (-4 *3 (-1049))
- (-12 (-4 *3 (-29 (-566))) (-4 *3 (-959)) (-4 *3 (-1200))
- (-4 *3 (-38 (-409 (-566))))))
- (-12 (-5 *2 (-1175)) (-4 *1 (-1256 *3)) (-4 *3 (-1049))
- (-12 (|has| *3 (-15 -4170 ((-644 *2) *3)))
- (|has| *3 (-15 -1879 (*3 *3 *2))) (-4 *3 (-38 (-409 (-566))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1049)) (-4 *2 (-38 (-409 (-566))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1261 *4)) (-14 *4 (-1175)) (-5 *1 (-1257 *3 *4 *5))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)) (-14 *5 *3))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *3 (-558)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1) (-5 *1 (-617))))
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-772)) (-4 *5 (-365))
+ (-5 *2 (-690 *5)) (-5 *1 (-815 *5 *6)) (-4 *6 (-657 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| |deg| (-772)) (|:| -4356 *5))))
+ (-4 *5 (-1242 *4)) (-4 *4 (-351)) (-5 *2 (-645 *5))
+ (-5 *1 (-216 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-2 (|:| -2296 *5) (|:| -3677 (-567)))))
+ (-5 *4 (-567)) (-4 *5 (-1242 *4)) (-5 *2 (-645 *5))
+ (-5 *1 (-697 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1216)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1215)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-4 *1 (-235 *3))))
- ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1099)))))
+ (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1257 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1242 *3))
+ (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1257 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1257 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-13 (-559) (-147)))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1216)) (-5 *1 (-182 *3 *2))
+ (-4 *2 (-675 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1216))
+ (-4 *5 (-375 *4)) (-4 *3 (-375 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| -3858 *1) (|:| -1367 (-645 *7)))))
+ (-5 *3 (-645 *7)) (-4 *1 (-1209 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1172 *7))
+ (-4 *5 (-1050)) (-4 *7 (-1050)) (-4 *2 (-1242 *5))
+ (-5 *1 (-504 *5 *2 *6 *7)) (-4 *6 (-1242 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1242 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559))
+ (-4 *8 (-950 *7 *5 *6))
+ (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *3) (|:| |radicand| *3)))
+ (-5 *1 (-954 *5 *6 *7 *8 *3)) (-5 *4 (-772))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *8)) (-15 -4067 (*8 $)) (-15 -4078 (*8 $))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-1172 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *4 (-613 $)) $))
+ (-15 -4078 ((-1125 *4 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *4 (-613 $))))))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-381)) (-5 *1 (-1063)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-771)) (-5 *1 (-856 *2)) (-4 *2 (-38 (-409 (-566))))
- (-4 *2 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-381)) (-5 *1 (-97)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-365)) (-4 *3 (-1049))
- (-5 *1 (-1159 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1241 *3)) (-4 *3 (-1049)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-420 *2)) (-4 *2 (-558)))))
+ (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3))
+ (-4 *3 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-569 *6 *3 *7)) (-4 *7 (-1100)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1176)) (-5 *2 (-440)) (-5 *1 (-1180)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-690 *2)) (-5 *4 (-567))
+ (-4 *2 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *5 (-1242 *2)) (-5 *1 (-502 *2 *5 *6)) (-4 *6 (-412 *2 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-567))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851))
+ (-5 *1 (-452 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1046 *4 *5)) (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-14 *5 (-644 (-1175)))
- (-5 *2
- (-644 (-2 (|:| -2301 (-1171 *4)) (|:| -2803 (-644 (-952 *4))))))
- (-5 *1 (-1291 *4 *5 *6)) (-14 *6 (-644 (-1175)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2
- (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5))))))
- (-5 *1 (-1291 *5 *6 *7)) (-5 *3 (-644 (-952 *5)))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2
- (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5))))))
- (-5 *1 (-1291 *5 *6 *7)) (-5 *3 (-644 (-952 *5)))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-112)) (-4 *5 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2
- (-644 (-2 (|:| -2301 (-1171 *5)) (|:| -2803 (-644 (-952 *5))))))
- (-5 *1 (-1291 *5 *6 *7)) (-5 *3 (-644 (-952 *5)))
- (-14 *6 (-644 (-1175))) (-14 *7 (-644 (-1175)))))
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)) (-5 *3 (-567)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-52)) (-5 *1 (-830)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-645 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-560 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-1242 (-410 *3))) (-5 *2 (-922))
+ (-5 *1 (-914 *4 *5)) (-4 *5 (-1242 (-410 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-455))))
+ ((*1 *1 *1 *1) (-4 *1 (-455))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-556)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-910)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-421 (-1172 *7)))
+ (-5 *1 (-907 *4 *5 *6 *7)) (-5 *3 (-1172 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-848) (-308) (-147) (-1022)))
- (-5 *2
- (-644 (-2 (|:| -2301 (-1171 *4)) (|:| -2803 (-644 (-952 *4))))))
- (-5 *1 (-1291 *4 *5 *6)) (-5 *3 (-644 (-952 *4)))
- (-14 *5 (-644 (-1175))) (-14 *6 (-644 (-1175))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-771)) (-5 *2 (-112))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1216 *3)) (-4 *3 (-1099))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1099)) (-5 *2 (-112))
- (-5 *1 (-1216 *3)))))
+ (-12 (-4 *4 (-910)) (-4 *5 (-1242 *4)) (-5 *2 (-421 (-1172 *5)))
+ (-5 *1 (-908 *4 *5)) (-5 *3 (-1172 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1192 *4 *5))
- (-4 *4 (-1099)) (-4 *5 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-1 (-112) *8))) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-558)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-2 (|:| |goodPols| (-644 *8)) (|:| |badPols| (-644 *8))))
- (-5 *1 (-977 *5 *6 *7 *8)) (-5 *4 (-644 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *7 (-900 *6))
- (-5 *2 (-689 *7)) (-5 *1 (-692 *6 *7 *3 *4)) (-4 *3 (-375 *7))
- (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4415)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-848)) (-5 *2 (-566))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-905 *3)) (-4 *3 (-1099))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1067 *4 *3)) (-4 *4 (-13 (-848) (-365)))
- (-4 *3 (-1241 *4)) (-5 *2 (-566))))
+ (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1242 *4))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-558) (-1038 *2) (-639 *2) (-454)))
- (-5 *2 (-566)) (-5 *1 (-1115 *4 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *4)))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1242 (-567)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *6)))
- (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566))
- (-5 *1 (-1115 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-1157))
- (-4 *6 (-13 (-558) (-1038 *2) (-639 *2) (-454))) (-5 *2 (-566))
- (-5 *1 (-1115 *6 *3)) (-4 *3 (-13 (-27) (-1200) (-432 *6)))))
+ (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3))
+ (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1242 (-567)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-454)) (-5 *2 (-566))
- (-5 *1 (-1116 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-843 (-409 (-952 *6))))
- (-5 *3 (-409 (-952 *6))) (-4 *6 (-454)) (-5 *2 (-566))
- (-5 *1 (-1116 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-409 (-952 *6))) (-5 *4 (-1175))
- (-5 *5 (-1157)) (-4 *6 (-454)) (-5 *2 (-566)) (-5 *1 (-1116 *6))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3))
+ (-4 *3 (-1242 (-410 (-567))))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-566)) (-5 *1 (-1197 *3)) (-4 *3 (-1049)))))
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1231 *3)) (-4 *3 (-1242 (-567))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-689 *2)) (-4 *4 (-1241 *2))
- (-4 *2 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-5 *1 (-501 *2 *4 *5)) (-4 *5 (-411 *2 *4))))
+ (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-365))
+ (-5 *1 (-524 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1122 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
- (-4 *5 (-238 *3 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-771)) (-5 *1 (-588 *2)) (-4 *2 (-547))))
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
+ (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050))))
((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| -3428 (-771)))) (-5 *1 (-588 *3))
- (-4 *3 (-547)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-644 (-566))) (-5 *2 (-689 (-566))) (-5 *1 (-1109)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-771)) (-4 *6 (-1099)) (-4 *3 (-900 *6))
- (-5 *2 (-689 *3)) (-5 *1 (-692 *6 *3 *7 *4)) (-4 *7 (-375 *3))
- (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4415)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *1)) (-4 *1 (-454))))
- ((*1 *1 *1 *1) (-4 *1 (-454))))
-(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-1157)))))
-(((*1 *2 *3) (-12 (-5 *3 (-952 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-949 *3 *4 *5)) (-4 *3 (-308))
- (-4 *4 (-793)) (-4 *5 (-850)) (-5 *1 (-449 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6))
- (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-449 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-644 *7)) (-5 *3 (-1157)) (-4 *7 (-949 *4 *5 *6))
- (-4 *4 (-308)) (-4 *5 (-793)) (-4 *6 (-850))
- (-5 *1 (-449 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1123 *4 *5 *6 *3)) (-4 *3 (-687 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-547))
- (-5 *2 (-409 (-566)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-420 *3)) (-4 *3 (-547))
- (-4 *3 (-558))))
- ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-409 (-566)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-797 *3)) (-4 *3 (-172)) (-4 *3 (-547))
- (-5 *2 (-409 (-566)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-833 *3)) (-4 *3 (-547))
- (-4 *3 (-1099))))
+ (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
+ (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-843 *3)) (-4 *3 (-547))
- (-4 *3 (-1099))))
+ (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *1 (-950 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772))))
((*1 *2 *1)
- (-12 (-4 *1 (-997 *3)) (-4 *3 (-172)) (-4 *3 (-547))
- (-5 *2 (-409 (-566)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-1008 *3)) (-4 *3 (-1038 *2)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-689 (-225))) (-5 *6 (-112)) (-5 *7 (-689 (-566)))
- (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-566)) (-5 *4 (-225)) (-5 *2 (-1035)) (-5 *1 (-753)))))
+ (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-772)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567))))
+ (-4 *5 (-1242 *4)) (-5 *2 (-645 (-410 *5))) (-5 *1 (-1017 *4 *5))
+ (-5 *3 (-410 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-825)) (-5 *3 (-645 (-1176))) (-5 *1 (-826)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176))
+ (-14 *4 *2))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *3 (-644 (-264)))
- (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-264))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1093 (-381)))) (-5 *1 (-470)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-862)) (-5 *1 (-392 *3 *4 *5)) (-14 *3 (-771))
- (-14 *4 (-771)) (-4 *5 (-172)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1027 *5 *6 *7 *8))) (-5 *1 (-1027 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-112)) (-4 *8 (-1064 *5 *6 *7))
- (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-5 *2 (-644 (-1145 *5 *6 *7 *8))) (-5 *1 (-1145 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-874))))
- ((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-644 (-483 *4 *5))) (-5 *3 (-644 (-864 *4)))
- (-14 *4 (-644 (-1175))) (-4 *5 (-454)) (-5 *1 (-473 *4 *5 *6))
- (-4 *6 (-454)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1175))
- (-4 *5 (-13 (-454) (-147) (-1038 (-566)) (-639 (-566))))
- (-5 *2 (-2 (|:| -2070 *3) (|:| |coeff| *3))) (-5 *1 (-559 *5 *3))
- (-4 *3 (-13 (-27) (-1200) (-432 *5))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1215)) (-4 *2 (-1049))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-862))))
- ((*1 *1 *1) (-5 *1 (-862)))
+ (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-4 *4 (-1050))
+ (-5 *1 (-1030 *4)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-943 (-225))) (-5 *2 (-225)) (-5 *1 (-1211))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1049)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-644 *9)) (-5 *3 (-1 (-112) *9))
- (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1064 *6 *7 *8)) (-4 *6 (-558)) (-4 *7 (-793))
- (-4 *8 (-850)) (-5 *1 (-977 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-566)) (|has| *1 (-6 -4406)) (-4 *1 (-406))
- (-5 *2 (-921)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-351))
- (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -1609 *3))))
- (-5 *1 (-216 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-183 (-139)))) (-5 *1 (-140)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 *3)) (-4 *3 (-1108 *5 *6 *7 *8))
- (-4 *5 (-13 (-308) (-147))) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *8 (-1064 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-592 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-454)) (-4 *3 (-850))
- (-4 *4 (-793)) (-5 *1 (-987 *2 *3 *4 *5)) (-4 *5 (-949 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-566))) (-5 *1 (-1118))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850))))
- ((*1 *1 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1100)) (-5 *2 (-112))
+ (-5 *1 (-1217 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3))))
+ (-5 *2 (-645 (-1076 *3 *4 *5))) (-5 *1 (-1077 *3 *4 *5))
+ (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-549))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-803)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-547))))
-(((*1 *1 *1 *1) (-4 *1 (-967))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-903 *3)) (-4 *3 (-1099)) (-5 *2 (-1101 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-644 *4))) (-5 *1 (-904 *4))
- (-5 *3 (-644 *4))))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *1 *1) (-5 *1 (-381)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-777 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-690 (-911 *3))) (-5 *1 (-353 *3 *4)) (-14 *3 (-922))
+ (-14 *4 (-922))))
+ ((*1 *2)
+ (-12 (-5 *2 (-690 *3)) (-5 *1 (-354 *3 *4)) (-4 *3 (-351))
+ (-14 *4
+ (-3 (-1172 *3)
+ (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-690 *3)) (-5 *1 (-355 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-922)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1158)) (-5 *5 (-690 (-225))) (-5 *6 (-225))
+ (-5 *7 (-690 (-567))) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1211 *3)) (-4 *3 (-975)))))
+(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-874 (-1181) (-772)))) (-5 *1 (-334)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1193 *4 *5))
+ (-4 *4 (-1100)) (-4 *5 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-109))) (-5 *1 (-175)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-944 (-225)) (-944 (-225)))) (-5 *1 (-264))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-330 *4)) (-4 *4 (-365))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1266 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-1099)) (-5 *2 (-1101 (-1101 *4))) (-5 *1 (-904 *4))
- (-5 *3 (-1101 *4))))
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-1266 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1242 *4)) (-5 *2 (-690 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-1101 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1242 *4)) (-5 *2 (-1266 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-412 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1242 *4)) (-5 *2 (-690 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3))
+ (-5 *2 (-1266 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-420 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1266 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-690 *5))) (-5 *3 (-690 *5)) (-4 *5 (-365))
+ (-5 *2 (-1266 *5)) (-5 *1 (-1086 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-484 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050))
+ (-5 *2 (-247 *4 *5)) (-5 *1 (-945 *4 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1156 *2)) (-4 *2 (-308)) (-5 *1 (-174 *2)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035))
- (-5 *1 (-748)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-452 *3 *4 *5 *2)) (-4 *2 (-950 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1100)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175)))
- (-4 *5 (-558)) (-5 *2 (-644 (-644 (-952 *5)))) (-5 *1 (-1184 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1060 (-1024 *3) (-1171 (-1024 *3))))
- (-5 *1 (-1024 *3)) (-4 *3 (-13 (-848) (-365) (-1022))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1241 *4)) (-4 *4 (-1219))
- (-4 *6 (-1241 (-409 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-344 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-2 (|:| |k| (-819 *3)) (|:| |c| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-519)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699))))
- ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-699)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1270))
- (-5 *1 (-451 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-964 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1099)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-976 *3 *4 *2 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)) (-4 *5 (-1064 *3 *4 *2)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-644
- (-2
- (|:| -3476
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225))))
- (|:| |yinit| (-644 (-225))) (|:| |intvals| (-644 (-225)))
- (|:| |g| (-317 (-225))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -2484
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381)))))))
- (-5 *1 (-803)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
+ (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4))
(-5 *2
- (-2 (|:| -2994 *3) (|:| |coef1| (-782 *3)) (|:| |coef2| (-782 *3))))
- (-5 *1 (-782 *3)) (-4 *3 (-558)) (-4 *3 (-1049)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-691 (-873 (-966 *3) (-966 *3)))) (-5 *1 (-966 *3))
- (-4 *3 (-1099)))))
-(((*1 *1 *1) (-4 *1 (-1059)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1243 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-792)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))
- ((*1 *1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-5 *2 (-1265 *3)) (-5 *1 (-712 *3 *4))
- (-4 *4 (-1241 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-547))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-52))) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-921)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-365)) (-14 *5 (-993 *3 *4)))))
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-410 *5))
+ (|:| |c2| (-410 *5)) (|:| |deg| (-772))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1242 (-410 *5))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1194)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-648 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2414 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-112))
+ (-5 *1 (-673 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-760)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-410 *2)) (-4 *2 (-1242 *5))
+ (-5 *1 (-808 *5 *2 *3 *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *3 (-657 *2)) (-4 *6 (-657 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-410 *2))) (-4 *2 (-1242 *5))
+ (-5 *1 (-808 *5 *2 *3 *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2))
+ (-4 *6 (-657 (-410 *2))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-295 *3))) (-5 *1 (-295 *3)) (-4 *3 (-558))
- (-4 *3 (-1215)))))
+ (-12 (-5 *2 (-645 (-2 (|:| |k| (-673 *3)) (|:| |c| *4))))
+ (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-559) (-1039 (-567)) (-147)))
+ (-5 *2
+ (-2 (|:| -3424 (-410 (-953 *5))) (|:| |coeff| (-410 (-953 *5)))))
+ (-5 *1 (-573 *5)) (-5 *3 (-410 (-953 *5))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *3 (-1064 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1068 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-771)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *3 (-1064 *6 *7 *8))
+ (-12 (-5 *4 (-1 (-645 *7) *7 (-1172 *7))) (-5 *5 (-1 (-421 *7) *7))
+ (-4 *7 (-1242 *6)) (-4 *6 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-5 *2 (-645 (-2 (|:| |frac| (-410 *7)) (|:| -2823 *3))))
+ (-5 *1 (-810 *6 *7 *3 *8)) (-4 *3 (-657 *7))
+ (-4 *8 (-657 (-410 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
(-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1144 *6 *7 *8 *3 *4)) (-4 *4 (-1108 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))))
+ (-645 (-2 (|:| |frac| (-410 *6)) (|:| -2823 (-655 *6 (-410 *6))))))
+ (-5 *1 (-813 *5 *6)) (-5 *3 (-655 *6 (-410 *6))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-506 *3 *4 *5 *6))) (-4 *3 (-365)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-365)) (-4 *3 (-793)) (-4 *4 (-850))
- (-5 *1 (-506 *2 *3 *4 *5)) (-4 *5 (-949 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 *1)) (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 *1)) (-5 *3 (-644 *7)) (-4 *1 (-1070 *4 *5 *6 *7))
- (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-644 *1))
- (-4 *1 (-1070 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1097 *2)) (-4 *2 (-1099)))))
+ (-12 (-5 *2 (-922)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-365)) (-14 *5 (-994 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1242 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-509))) (-5 *1 (-486)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-1100)) (-4 *7 (-901 *6))
+ (-5 *2 (-690 *7)) (-5 *1 (-693 *6 *7 *3 *4)) (-4 *3 (-375 *7))
+ (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4416)))))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-863) (-863) (-863))) (-5 *4 (-567)) (-5 *2 (-863))
+ (-5 *1 (-650 *5 *6 *7)) (-4 *5 (-1100)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-863)) (-5 *1 (-855 *3 *4 *5)) (-4 *3 (-1050))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-863)) (-5 *1 (-1172 *3)) (-4 *3 (-1050)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2
- (-2 (|:| |solns| (-644 *5))
- (|:| |maps| (-644 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1127 *3 *5)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-952 *4)) (-4 *4 (-1049)) (-4 *4 (-614 *2))
- (-5 *2 (-381)) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-952 *5)) (-5 *4 (-921)) (-4 *5 (-1049))
- (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5))))
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))
+ (-5 *2 (-1036)) (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821))
+ (-14 *5 (-1176)) (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-407)) (-5 *2 (-922)))) ((*1 *1) (-4 *1 (-548)))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-700))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *2 (-410 (-953 *4))) (-5 *1 (-925 *4 *5 *6 *3))
+ (-4 *3 (-950 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *7)) (-4 *7 (-950 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *2 (-690 (-410 (-953 *4))))
+ (-5 *1 (-925 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *6 *5))
+ (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *2 (-645 (-410 (-953 *4))))
+ (-5 *1 (-925 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1036)) (-5 *1 (-757)))))
+(((*1 *2 *1) (-12 (-4 *1 (-849)) (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-906 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *3 (-1242 *4)) (-5 *2 (-567))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558))
- (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *5))))
+ (|partial| -12 (-4 *4 (-13 (-559) (-1039 *2) (-640 *2) (-455)))
+ (-5 *2 (-567)) (-5 *1 (-1116 *4 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-844 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567))
+ (-5 *1 (-1116 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-1158))
+ (-4 *6 (-13 (-559) (-1039 *2) (-640 *2) (-455))) (-5 *2 (-567))
+ (-5 *1 (-1116 *6 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6)))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-558)) (-4 *4 (-850))
- (-4 *4 (-614 *2)) (-5 *2 (-381)) (-5 *1 (-785 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-921)) (-4 *5 (-558))
- (-4 *5 (-850)) (-4 *5 (-614 *2)) (-5 *2 (-381))
- (-5 *1 (-785 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-644 *3)) (-5 *5 (-921)) (-4 *3 (-1241 *4))
- (-4 *4 (-308)) (-5 *1 (-462 *4 *3)))))
+ (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-567))
+ (-5 *1 (-1117 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-844 (-410 (-953 *6))))
+ (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-567))
+ (-5 *1 (-1117 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1176))
+ (-5 *5 (-1158)) (-4 *6 (-455)) (-5 *2 (-567)) (-5 *1 (-1117 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1198 *3)) (-4 *3 (-1050)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-558) (-1038 (-566)))) (-4 *5 (-432 *4))
- (-5 *2 (-420 *3)) (-5 *1 (-437 *4 *5 *3)) (-4 *3 (-1241 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3))))
- (-5 *2 (-644 (-1175))) (-5 *1 (-1075 *3 *4 *5))
- (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-406)) (-5 *2 (-921)))) ((*1 *1) (-4 *1 (-547)))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-699))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
-(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1200))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1049)) (-5 *1 (-712 *3 *2)) (-4 *2 (-1241 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-529)) (-5 *3 (-128)) (-5 *2 (-771)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-52)) (-5 *1 (-892 *4))
- (-4 *4 (-1099)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-1131 *4 *2))
- (-4 *2 (-13 (-604 (-566) *4) (-10 -7 (-6 -4415) (-6 -4416))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-850)) (-4 *3 (-1215)) (-5 *1 (-1131 *3 *2))
- (-4 *2 (-13 (-604 (-566) *3) (-10 -7 (-6 -4415) (-6 -4416)))))))
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
+ (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-258)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-532))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-532)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-645 *11)) (-5 *5 (-645 (-1172 *9)))
+ (-5 *6 (-645 *9)) (-5 *7 (-645 *12)) (-5 *8 (-645 (-772)))
+ (-4 *11 (-851)) (-4 *9 (-308)) (-4 *12 (-950 *9 *10 *11))
+ (-4 *10 (-794)) (-5 *2 (-645 (-1172 *12)))
+ (-5 *1 (-708 *10 *11 *9 *12)) (-5 *3 (-1172 *12)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-5 *2 (-2 (|:| -3476 *3) (|:| -2484 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-596 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *5)) (-4 *5 (-432 *4)) (-4 *4 (-558))
- (-5 *2 (-862)) (-5 *1 (-32 *4 *5)))))
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-5 *2 (-2 (|:| -1762 *3) (|:| -3859 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049))
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050))
(-5 *2
- (-2 (|:| -1357 (-771)) (|:| |curves| (-771))
- (|:| |polygons| (-771)) (|:| |constructs| (-771)))))))
-(((*1 *1 *1) (-4 *1 (-558))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1286 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-819 *3))))
+ (-2 (|:| -4229 (-772)) (|:| |curves| (-772))
+ (|:| |polygons| (-772)) (|:| |constructs| (-772)))))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-772))
+ (-4 *3 (-13 (-727) (-370) (-10 -7 (-15 ** (*3 *3 (-567))))))
+ (-5 *1 (-246 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-944 (-225)))) (-5 *1 (-1267)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793))
+ (-4 *2 (-365))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-225))))
+ ((*1 *1 *1 *1)
+ (-2909 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1216)))
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1216)))))
+ ((*1 *1 *1 *1) (-4 *1 (-365)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-381))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1125 *3 (-613 *1))) (-4 *3 (-559)) (-4 *3 (-1100))
+ (-4 *1 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-476)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-539)))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-172)) (-5 *1 (-622 *2 *4 *3)) (-4 *2 (-38 *4))
+ (-4 *3 (|SubsetCategory| (-727) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-172)) (-5 *1 (-622 *3 *4 *2)) (-4 *3 (-38 *4))
+ (-4 *2 (|SubsetCategory| (-727) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-172)) (-4 *2 (-365))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-172)) (-5 *1 (-663 *2 *4 *3)) (-4 *2 (-718 *4))
+ (-4 *3 (|SubsetCategory| (-727) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *4 (-172)) (-5 *1 (-663 *3 *4 *2)) (-4 *3 (-718 *4))
+ (-4 *2 (|SubsetCategory| (-727) *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)) (-4 *2 (-365))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-867 *2 *3 *4 *5)) (-4 *2 (-365))
+ (-4 *2 (-1050)) (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-772)))
+ (-14 *5 (-772))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050))
+ (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-365))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-365))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-365)) (-4 *2 (-1050)) (-4 *3 (-851))
+ (-4 *4 (-794)) (-14 *6 (-645 *3))
+ (-5 *1 (-1278 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-950 *2 *4 *3))
+ (-14 *7 (-645 (-772))) (-14 *8 (-772))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-365)) (-4 *2 (-1050))
+ (-4 *3 (-847)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 *2)) (-4 *4 (-1242 *2))
+ (-4 *2 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-5 *1 (-502 *2 *4 *5)) (-4 *5 (-412 *2 *4))))
((*1 *2 *1)
- (-12 (-4 *2 (-846)) (-5 *1 (-1288 *3 *2)) (-4 *3 (-1049)))))
-(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-551))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-644 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566))))) (-4 *6 (-1241 *5))
- (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -1451 *3))))
- (-5 *1 (-809 *5 *6 *3 *7)) (-4 *3 (-656 *6))
- (-4 *7 (-656 (-409 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-644 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *6 (-1241 *5))
- (-5 *2 (-644 (-2 (|:| |poly| *6) (|:| -1451 (-654 *6 (-409 *6))))))
- (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))))
-(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-381)) (-5 *1 (-1040)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *5 (-112))
- (-5 *2 (-1035)) (-5 *1 (-745)))))
-(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1215))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1095))))
+ (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-292)))
+ ((*1 *1) (-5 *1 (-863)))
+ ((*1 *1)
+ (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794))
+ (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1085)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34)))))
+ ((*1 *1) (-5 *1 (-1179))) ((*1 *1) (-5 *1 (-1180))))
+(((*1 *2)
+ (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5)))
+ (-5 *2 (-772)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-772)))))
+(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1096))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5))))
+ (|partial| -12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1253 *3)) (-4 *3 (-1215))))
- ((*1 *2 *1) (-12 (-4 *1 (-1253 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793))
- (-5 *2 (-644 (-409 (-952 *4)))) (-5 *1 (-924 *4 *5 *6 *7))
- (-4 *7 (-949 *4 *6 *5)))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1254 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1179)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1157)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-264))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1049)) (-5 *2 (-1265 *3)) (-5 *1 (-712 *3 *4))
- (-4 *4 (-1241 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-771)) (-5 *1 (-783 *2)) (-4 *2 (-38 (-409 (-566))))
- (-4 *2 (-172)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-644 *3)) (-4 *3 (-308)) (-5 *1 (-179 *3)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5))
- (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-1278 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-644 *8)) (-5 *3 (-1 (-112) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1064 *5 *6 *7)) (-4 *5 (-558))
- (-4 *6 (-793)) (-4 *7 (-850)) (-5 *1 (-1278 *5 *6 *7 *8)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-523 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-558)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
- (-4 *7 (-992 *4)) (-4 *2 (-687 *7 *8 *9))
- (-5 *1 (-524 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-687 *4 *5 *6))
- (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
+ (-12 (-5 *2 (-1158)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-264))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271))
+ (-5 *1 (-1072 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271))
+ (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-613 *4)) (-5 *6 (-1176))
+ (-4 *4 (-13 (-433 *7) (-27) (-1201)))
+ (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-569 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1100)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-134)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-214 *2))
+ (-4 *2
+ (-13 (-851)
+ (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $))
+ (-15 -1450 ((-1271) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-687 *2 *3 *4)) (-4 *2 (-1049))
- (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-365))))
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-4 *3 (-172)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *1 (-688 *3 *4 *5 *2))
- (-4 *2 (-687 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-689 *2)) (-4 *2 (-365)) (-4 *2 (-1049))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1122 *2 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-365))))
- ((*1 *2 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-850)) (-5 *1 (-1186 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1133 *3)) (-4 *3 (-1049)) (-5 *2 (-112)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-1099)) (-4 *4 (-1215)) (-5 *2 (-112))
- (-5 *1 (-1155 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-644 (-508))) (-5 *2 (-508)) (-5 *1 (-485)))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-21)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-645 *11))
+ (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2138 *11))))))
+ (-5 *6 (-772))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2138 *11))))
+ (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1065 *7 *8 *9))
+ (-4 *11 (-1071 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-5 *1 (-1069 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-645 *11))
+ (|:| |todo| (-645 (-2 (|:| |val| *3) (|:| -2138 *11))))))
+ (-5 *6 (-772))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *10)) (|:| -2138 *11))))
+ (-5 *3 (-645 *10)) (-5 *4 (-645 *11)) (-4 *10 (-1065 *7 *8 *9))
+ (-4 *11 (-1109 *7 *8 *9 *10)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-5 *1 (-1145 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-690 (-567))) (-5 *5 (-112)) (-5 *7 (-690 (-225)))
+ (-5 *3 (-567)) (-5 *6 (-225)) (-5 *2 (-1036)) (-5 *1 (-755)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-365)) (-5 *1 (-896 *2 *4))
- (-4 *2 (-1241 *4)))))
+ (|partial| -12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3183 *3) (|:| -4164 (-772)))) (-5 *1 (-589 *3))
+ (-4 *3 (-548)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1175)) (-4 *5 (-614 (-892 (-566))))
- (-4 *5 (-886 (-566)))
- (-4 *5 (-13 (-1038 (-566)) (-454) (-639 (-566))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-569 *5 *3)) (-4 *3 (-629))
- (-4 *3 (-13 (-27) (-1200) (-432 *5))))))
-(((*1 *1) (-5 *1 (-144))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-1178)) (-5 *3 (-1175)))))
-(((*1 *2 *3) (-12 (-5 *2 (-566)) (-5 *1 (-571 *3)) (-4 *3 (-1038 *2))))
+ (-12 (-5 *3 (-690 (-169 (-410 (-567)))))
+ (-5 *2
+ (-645
+ (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-567))
+ (|:| |outvect| (-645 (-690 (-169 *4)))))))
+ (-5 *1 (-765 *4)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-588 *3) *3 (-1176)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1176)))
+ (-4 *3 (-285)) (-4 *3 (-630)) (-4 *3 (-1039 *4)) (-4 *3 (-433 *7))
+ (-5 *4 (-1176)) (-4 *7 (-615 (-893 (-567)))) (-4 *7 (-455))
+ (-4 *7 (-887 (-567))) (-4 *7 (-1100)) (-5 *2 (-588 *3))
+ (-5 *1 (-576 *7 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-772)) (-4 *5 (-172))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-772)) (-4 *5 (-172))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-5 *3 (-645 (-865 *4))) (-14 *4 (-645 (-1176))) (-14 *5 (-772))
+ (-5 *1 (-508 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-381))) (-5 *2 (-317 (-225))) (-5 *1 (-306)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-645 (-1176))) (|:| |pred| (-52))))
+ (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-578 *4 *2))
+ (-4 *2 (-13 (-1201) (-960) (-1139) (-29 *4))))))
+(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-214 *2))
+ (-4 *2
+ (-13 (-851)
+ (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $))
+ (-15 -1450 ((-1271) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-25)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *2))
+ (-4 *2 (-1242 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-539)))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-25)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2))))
((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *2 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))))
+ (-12 (-4 *1 (-1103 *3 *4 *2 *5 *6)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-922)) (-5 *2 (-471)) (-5 *1 (-1267)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-409 *5)) (-4 *4 (-1219)) (-4 *5 (-1241 *4))
- (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1241 *3))))
+ (-12 (-5 *3 (-410 *5)) (-4 *4 (-1220)) (-4 *5 (-1242 *4))
+ (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1242 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566)))
+ (-12 (-5 *3 (-1178 (-410 (-567)))) (-5 *2 (-410 (-567)))
(-5 *1 (-190))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-689 (-317 (-225)))) (-5 *3 (-644 (-1175)))
- (-5 *4 (-1265 (-317 (-225)))) (-5 *1 (-205))))
+ (-12 (-5 *2 (-690 (-317 (-225)))) (-5 *3 (-645 (-1176)))
+ (-5 *4 (-1266 (-317 (-225)))) (-5 *1 (-205))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1099))
- (-4 *3 (-1215)) (-5 *1 (-295 *3))))
+ (-12 (-5 *2 (-645 (-295 *3))) (-4 *3 (-310 *3)) (-4 *3 (-1100))
+ (-4 *3 (-1216)) (-5 *1 (-295 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-310 *2)) (-4 *2 (-1099)) (-4 *2 (-1215))
+ (-12 (-4 *2 (-310 *2)) (-4 *2 (-1100)) (-4 *2 (-1216))
(-5 *1 (-295 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 (-644 *1))))
+ (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 (-645 *1))))
(-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303))))
+ (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303))))
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1 *1 *1)) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1175)) (-5 *3 (-1 *1 (-644 *1))) (-4 *1 (-303))))
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1 *1 (-645 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 (-644 *1))))
+ (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-1 *1 (-645 *1))))
(-4 *1 (-303))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-1 *1 *1))) (-4 *1 (-303))))
+ (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-1 *1 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-645 (-295 *3))) (-4 *1 (-310 *3)) (-4 *3 (-1100))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-295 *3)) (-4 *1 (-310 *3)) (-4 *3 (-1100))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-566))) (-5 *4 (-1177 (-409 (-566))))
- (-5 *1 (-311 *2)) (-4 *2 (-38 (-409 (-566))))))
+ (-12 (-5 *3 (-1 *2 (-567))) (-5 *4 (-1178 (-410 (-567))))
+ (-5 *1 (-311 *2)) (-4 *2 (-38 (-410 (-567))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *1)) (-4 *1 (-376 *4 *5))
- (-4 *4 (-850)) (-4 *5 (-172))))
+ (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *1)) (-4 *1 (-376 *4 *5))
+ (-4 *4 (-851)) (-4 *5 (-172))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-850)) (-4 *3 (-172))))
+ (-12 (-4 *1 (-376 *2 *3)) (-4 *2 (-851)) (-4 *3 (-172))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049))))
+ (-12 (-5 *2 (-1176)) (-5 *3 (-772)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-1050))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1175)) (-5 *3 (-771)) (-5 *4 (-1 *1 (-644 *1)))
- (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-1049))))
+ (-12 (-5 *2 (-1176)) (-5 *3 (-772)) (-5 *4 (-1 *1 (-645 *1)))
+ (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-1050))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771)))
- (-5 *4 (-644 (-1 *1 (-644 *1)))) (-4 *1 (-432 *5)) (-4 *5 (-1099))
- (-4 *5 (-1049))))
+ (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-772)))
+ (-5 *4 (-645 (-1 *1 (-645 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1100))
+ (-4 *5 (-1050))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-644 (-771)))
- (-5 *4 (-644 (-1 *1 *1))) (-4 *1 (-432 *5)) (-4 *5 (-1099))
- (-4 *5 (-1049))))
+ (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-645 (-772)))
+ (-5 *4 (-645 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1100))
+ (-4 *5 (-1050))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-644 (-114))) (-5 *3 (-644 *1)) (-5 *4 (-1175))
- (-4 *1 (-432 *5)) (-4 *5 (-1099)) (-4 *5 (-614 (-538)))))
+ (-12 (-5 *2 (-645 (-114))) (-5 *3 (-645 *1)) (-5 *4 (-1176))
+ (-4 *1 (-433 *5)) (-4 *5 (-1100)) (-4 *5 (-615 (-539)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-1175)) (-4 *1 (-432 *4)) (-4 *4 (-1099))
- (-4 *4 (-614 (-538)))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-1176)) (-4 *1 (-433 *4)) (-4 *4 (-1100))
+ (-4 *4 (-615 (-539)))))
((*1 *1 *1)
- (-12 (-4 *1 (-432 *2)) (-4 *2 (-1099)) (-4 *2 (-614 (-538)))))
+ (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)) (-4 *2 (-615 (-539)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-1175))) (-4 *1 (-432 *3)) (-4 *3 (-1099))
- (-4 *3 (-614 (-538)))))
+ (-12 (-5 *2 (-645 (-1176))) (-4 *1 (-433 *3)) (-4 *3 (-1100))
+ (-4 *3 (-615 (-539)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1175)) (-4 *1 (-432 *3)) (-4 *3 (-1099))
- (-4 *3 (-614 (-538)))))
+ (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100))
+ (-4 *3 (-615 (-539)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-516 *2 *3)) (-4 *2 (-1099)) (-4 *3 (-1215))))
+ (-12 (-4 *1 (-517 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1216))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 *5)) (-4 *1 (-516 *4 *5))
- (-4 *4 (-1099)) (-4 *5 (-1215))))
+ (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 *5)) (-4 *1 (-517 *4 *5))
+ (-4 *4 (-1100)) (-4 *5 (-1216))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-833 *3)) (-4 *3 (-365)) (-5 *1 (-718 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-718 *2)) (-4 *2 (-365))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-903 *2)) (-4 *2 (-1099))))
+ (-12 (-5 *2 (-834 *3)) (-4 *3 (-365)) (-5 *1 (-719 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1100))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-409 (-952 *4))) (-5 *3 (-1175)) (-4 *4 (-558))
- (-5 *1 (-1043 *4))))
+ (-12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1176)) (-4 *4 (-559))
+ (-5 *1 (-1044 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-644 (-1175))) (-5 *4 (-644 (-409 (-952 *5))))
- (-5 *2 (-409 (-952 *5))) (-4 *5 (-558)) (-5 *1 (-1043 *5))))
+ (-12 (-5 *3 (-645 (-1176))) (-5 *4 (-645 (-410 (-953 *5))))
+ (-5 *2 (-410 (-953 *5))) (-4 *5 (-559)) (-5 *1 (-1044 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-295 (-409 (-952 *4)))) (-5 *2 (-409 (-952 *4)))
- (-4 *4 (-558)) (-5 *1 (-1043 *4))))
+ (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-5 *2 (-410 (-953 *4)))
+ (-4 *4 (-559)) (-5 *1 (-1044 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-295 (-409 (-952 *4))))) (-5 *2 (-409 (-952 *4)))
- (-4 *4 (-558)) (-5 *1 (-1043 *4))))
+ (-12 (-5 *3 (-645 (-295 (-410 (-953 *4))))) (-5 *2 (-410 (-953 *4)))
+ (-4 *4 (-559)) (-5 *1 (-1044 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1243 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-792))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1155 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-862))))
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1156 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-151 *2)) (-4 *2 (-1215))
- (-4 *2 (-1099))))
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-151 *2)) (-4 *2 (-1216))
+ (-4 *2 (-1100))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-151 *3))
- (-4 *3 (-1215))))
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *3))
+ (-4 *3 (-1216))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-674 *3)) (-4 *3 (-1215))))
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1216))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-566)) (-4 *4 (-1099))
- (-5 *1 (-737 *4))))
+ (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-567)) (-4 *4 (-1100))
+ (-5 *1 (-738 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-5 *1 (-737 *2)) (-4 *2 (-1099))))
+ (-12 (-5 *3 (-567)) (-5 *1 (-738 *2)) (-4 *2 (-1100))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1139 *3 *4)) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-612 *3)) (-5 *5 (-1 (-1171 *3) (-1171 *3)))
- (-4 *3 (-13 (-27) (-432 *6))) (-4 *6 (-558)) (-5 *2 (-587 *3))
- (-5 *1 (-553 *6 *3)))))
-(((*1 *1) (-5 *1 (-141))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27))
- (-5 *2 (-644 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-892 *4)) (-4 *4 (-1099)) (-5 *1 (-889 *4 *3))
- (-4 *3 (-1099)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1099))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1157)) (-5 *1 (-1196)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-131)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-180))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-312))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-970))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1036))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1072)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-793)) (-4 *5 (-1049)) (-4 *6 (-949 *5 *4 *2))
- (-4 *2 (-850)) (-5 *1 (-950 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *6)) (-15 -2691 (*6 $))
- (-15 -2702 (*6 $)))))))
+ (-12 (-5 *2 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4417)) (-4 *4 (-365)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-524 *4 *5 *6 *3))
+ (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4417)) (-4 *4 (-559)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-4 *7 (-993 *4)) (-4 *8 (-375 *7))
+ (-4 *9 (-375 *7)) (-5 *2 (-645 *6))
+ (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-688 *4 *5 *6))
+ (-4 *10 (-688 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-645 *5))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-409 (-952 *4))) (-4 *4 (-558))
- (-5 *2 (-1175)) (-5 *1 (-1043 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-5 *2 (-112)))))
-(((*1 *2 *2) (-12 (-5 *1 (-961 *2)) (-4 *2 (-547)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 *4)) (-4 *4 (-365)) (-5 *2 (-689 *4))
- (-5 *1 (-814 *4 *5)) (-4 *5 (-656 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-771)) (-4 *5 (-365))
- (-5 *2 (-689 *5)) (-5 *1 (-814 *5 *6)) (-4 *6 (-656 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-1049)) (-5 *2 (-958 (-712 *3 *4))) (-5 *1 (-712 *3 *4))
- (-4 *4 (-1241 *3)))))
+ (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-645 *6)) (-5 *1 (-689 *4 *5 *6 *3))
+ (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
+ (-5 *2 (-645 *7)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-567) (-567))) (-5 *1 (-363 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-772) (-772))) (-4 *1 (-388 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-772) (-772))) (-5 *1 (-389 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-222 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-4 *1 (-255 *3))))
+ ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1155 (-644 (-566)))) (-5 *1 (-883)) (-5 *3 (-566)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175))
- (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-192))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-1175))
- (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-644 (-225))) (-5 *1 (-301)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-690 *3)) (|:| |invmval| (-690 *3))
+ (|:| |genIdeal| (-507 *3 *4 *5 *6))))
+ (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-180))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-312))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-971))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-995))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1037))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1073)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1177 (-409 (-566)))) (-5 *2 (-409 (-566)))
- (-5 *1 (-190)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1070 *4 *5 *6 *3)) (-4 *4 (-454)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-5 *2 (-112)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1099)))))
+ (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1041)) (-5 *3 (-381)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-690 *6))) (-5 *4 (-112)) (-5 *5 (-567))
+ (-5 *2 (-690 *6)) (-5 *1 (-1030 *6)) (-4 *6 (-365)) (-4 *6 (-1050))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-690 *4))) (-5 *2 (-690 *4)) (-5 *1 (-1030 *4))
+ (-4 *4 (-365)) (-4 *4 (-1050))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-5 *2 (-690 *5))
+ (-5 *1 (-1030 *5)) (-4 *5 (-365)) (-4 *5 (-1050)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *4))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *4)))))))
+ (-5 *3 (-645 *7)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *7 (-950 *4 *6 *5)) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *1 (-925 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-613 *4)) (-5 *6 (-1172 *4))
+ (-4 *4 (-13 (-433 *7) (-27) (-1201)))
+ (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1100))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-613 *4)) (-5 *6 (-410 (-1172 *4)))
+ (-4 *4 (-13 (-433 *7) (-27) (-1201)))
+ (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-563 *7 *4 *3)) (-4 *3 (-657 *4)) (-4 *3 (-1100)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
+ ((*1 *1 *1) (|partial| -4 *1 (-723))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *2)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1000 *3)) (-4 *3 (-172)) (-5 *1 (-800 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-1100)) (-4 *3 (-901 *6))
+ (-5 *2 (-690 *3)) (-5 *1 (-693 *6 *3 *7 *4)) (-4 *7 (-375 *3))
+ (-4 *4 (-13 (-375 *6) (-10 -7 (-6 -4416)))))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1100)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *2 *4 *5 *6)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))))
+ (-12 (-4 *1 (-1103 *3 *2 *4 *5 *6)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-308) (-147))) (-4 *4 (-13 (-851) (-615 (-1176))))
+ (-4 *5 (-794)) (-5 *1 (-925 *3 *4 *5 *2)) (-4 *2 (-950 *3 *5 *4)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1175))) (-5 *3 (-1175)) (-5 *1 (-538))))
+ (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-1176)) (-5 *1 (-539))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538)))))
+ (-12 (-5 *2 (-1176)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538)))))
+ (-12 (-5 *2 (-1176)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1175)) (-5 *1 (-704 *3)) (-4 *3 (-614 (-538)))))
+ (-12 (-5 *2 (-1176)) (-5 *1 (-705 *3)) (-4 *3 (-615 (-539)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-644 (-1175))) (-5 *2 (-1175)) (-5 *1 (-704 *3))
- (-4 *3 (-614 (-538))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-172))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-1286 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-1049)))))
+ (-12 (-5 *4 (-645 (-1176))) (-5 *2 (-1176)) (-5 *1 (-705 *3))
+ (-4 *3 (-615 (-539))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-847)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-695 *3)) (-4 *3 (-1099))
- (-5 *2 (-644 (-2 (|:| -2484 *3) (|:| -1958 (-771))))))))
-(((*1 *1 *1 *1) (-4 *1 (-475))) ((*1 *1 *1 *1) (-4 *1 (-761))))
-(((*1 *2 *3 *2)
(-12
(-5 *2
- (-644
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-771)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-793)) (-4 *6 (-949 *4 *3 *5)) (-4 *4 (-454)) (-4 *5 (-850))
- (-5 *1 (-451 *4 *3 *5 *6)))))
-(((*1 *1) (-5 *1 (-823))))
+ (-645
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-567)))))
+ (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-772)) (-4 *3 (-351)) (-4 *5 (-1242 *3))
+ (-5 *2 (-645 (-1172 *3))) (-5 *1 (-501 *3 *5 *6))
+ (-4 *6 (-1242 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1062))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1062)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3) (-12 (-5 *3 (-953 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1093 (-225)))
- (-5 *2 (-1267)) (-5 *1 (-258)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1101 *3)) (-5 *1 (-905 *3)) (-4 *3 (-370))
- (-4 *3 (-1099)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-396))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-1195)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1241 *3)) (-5 *1 (-401 *3 *2))
- (-4 *3 (-13 (-365) (-147))))))
-(((*1 *2 *1) (-12 (-5 *1 (-1026 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2 *2) (-12 (-5 *2 (-644 (-317 (-225)))) (-5 *1 (-268)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-52)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1215))))
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-205))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-381))) (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1257 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1242 *3))
+ (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1257 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1257 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-13 (-559) (-147)))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-528)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-308)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-52)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-672))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1101 *3 *4)) (-14 *3 (-922))
+ (-14 *4 (-922)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-303)) (-4 *2 (-1216))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-612 *1))) (-5 *3 (-644 *1)) (-4 *1 (-303))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-295 *1))) (-4 *1 (-303))))
+ (-12 (-5 *2 (-645 (-613 *1))) (-5 *3 (-645 *1)) (-4 *1 (-303))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-295 *1))) (-4 *1 (-303))))
((*1 *1 *1 *2) (-12 (-5 *2 (-295 *1)) (-4 *1 (-303)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-850)) (-5 *4 (-644 *6))
- (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-644 *4))))
- (-5 *1 (-1186 *6)) (-5 *5 (-644 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-689 *6)) (-5 *5 (-1 (-420 (-1171 *6)) (-1171 *6)))
- (-4 *6 (-365))
- (-5 *2
- (-644
- (-2 (|:| |outval| *7) (|:| |outmult| (-566))
- (|:| |outvect| (-644 (-689 *7))))))
- (-5 *1 (-534 *6 *7 *4)) (-4 *7 (-365)) (-4 *4 (-13 (-365) (-848))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-738)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-689 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-172)) (-4 *2 (-1241 *4)) (-5 *1 (-177 *4 *2 *3))
- (-4 *3 (-724 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 (-409 (-952 *5)))) (-5 *4 (-1175))
- (-5 *2 (-952 *5)) (-5 *1 (-293 *5)) (-4 *5 (-454))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-689 (-409 (-952 *4)))) (-5 *2 (-952 *4))
- (-5 *1 (-293 *4)) (-4 *4 (-454))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-372 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1241 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-689 (-169 (-409 (-566)))))
- (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *4))
- (-4 *4 (-13 (-365) (-848)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 (-169 (-409 (-566))))) (-5 *4 (-1175))
- (-5 *2 (-952 (-169 (-409 (-566))))) (-5 *1 (-764 *5))
- (-4 *5 (-13 (-365) (-848)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *2 (-952 (-409 (-566))))
- (-5 *1 (-779 *4)) (-4 *4 (-13 (-365) (-848)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 (-409 (-566)))) (-5 *4 (-1175))
- (-5 *2 (-952 (-409 (-566)))) (-5 *1 (-779 *5))
- (-4 *5 (-13 (-365) (-848))))))
-(((*1 *1 *1) (-12 (-5 *1 (-596 *2)) (-4 *2 (-1049)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-1270))
- (-5 *1 (-451 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-250)) (-5 *1 (-334)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1215))
- (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *2 *7)) (-4 *6 (-1049))
- (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))))
+ (-12 (-4 *4 (-1050)) (-5 *2 (-567)) (-5 *1 (-446 *4 *3 *5))
+ (-4 *3 (-1242 *4))
+ (-4 *5 (-13 (-407) (-1039 *4) (-365) (-1201) (-285))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-308))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-450 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6))
+ (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-450 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6))
+ (-4 *4 (-308)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-450 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4))
+ (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-739)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-5 *2
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2)
+ (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-922)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1094 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1133 (-225)))
+ (-5 *1 (-698)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1289 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-850))
+ (-12 (-5 *3 (-1290 *4 *2)) (-4 *1 (-376 *4 *2)) (-4 *4 (-851))
(-4 *2 (-172))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-850)) (-4 *2 (-1049))))
+ (-12 (-4 *1 (-1283 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-819 *4)) (-4 *1 (-1282 *4 *2)) (-4 *4 (-850))
- (-4 *2 (-1049))))
+ (-12 (-5 *3 (-820 *4)) (-4 *1 (-1283 *4 *2)) (-4 *4 (-851))
+ (-4 *2 (-1050))))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-1049)) (-5 *1 (-1288 *2 *3)) (-4 *3 (-846)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1175)) (-5 *1 (-1062)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+ (-12 (-4 *2 (-1050)) (-5 *1 (-1289 *2 *3)) (-4 *3 (-847)))))
+(((*1 *2) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-1199)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))
+ (-5 *2 (-1036)) (-5 *1 (-749)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-317 (-225)))) (-5 *2 (-112)) (-5 *1 (-268))))
- ((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-977 *4 *5 *6 *3)) (-4 *3 (-1064 *4 *5 *6)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2)
+ (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1216)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-772))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1050))
+ (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-613 *3)) (-4 *3 (-1100))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-882 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1) (-12 (-4 *1 (-255 *3)) (-4 *3 (-1215)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-771))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1049))
- (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285)))
- (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-612 *3)) (-4 *3 (-1099))))
- ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-862)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1265 *5)) (-4 *5 (-639 *4)) (-4 *4 (-558))
- (-5 *2 (-1265 *4)) (-5 *1 (-638 *4 *5)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-508)) (-5 *2 (-691 (-1103))) (-5 *1 (-292)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-1004 *3)) (-14 *3 (-566)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1210 *2)) (-4 *2 (-974)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-175))) (-5 *1 (-1084)))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-112)) (-5 *6 (-225))
+ (-5 *7 (-690 (-567)))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-77 OBJFUN))))
+ (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-754)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-851)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-904 *3)) (-4 *3 (-1100)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-429 *4 *2)) (-4 *2 (-13 (-1201) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-147))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-317 *5))
+ (-5 *1 (-591 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-644 (-2 (|:| -1616 (-409 (-566))) (|:| -1627 (-409 (-566))))))
- (-5 *2 (-644 (-225))) (-5 *1 (-306)))))
+ (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1124 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-328 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1216))
+ (-14 *4 (-567)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-879 (-1 (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-880 (-1 (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-943 (-225)) (-225) (-225))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *5 (-644 (-264))) (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-882 (-1 (-225) (-225) (-225)))) (-5 *4 (-1093 (-381)))
- (-5 *2 (-1132 (-225))) (-5 *1 (-256))))
+ (-12 (-5 *3 (-883 (-1 (-225) (-225) (-225)))) (-5 *4 (-1094 (-381)))
+ (-5 *2 (-1133 (-225))) (-5 *1 (-256))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-879 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264)))
- (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225)))
+ (-12 (-5 *3 (-880 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264)))
+ (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225)))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-879 *5)) (-5 *4 (-1091 (-381)))
- (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225)))
+ (-12 (-5 *3 (-880 *5)) (-5 *4 (-1092 (-381)))
+ (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225)))
(-5 *1 (-260 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264)))
- (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3))
- (-4 *3 (-13 (-614 (-538)) (-1099)))))
+ (-12 (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264)))
+ (-5 *2 (-1133 (-225))) (-5 *1 (-260 *3))
+ (-4 *3 (-13 (-615 (-539)) (-1100)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1091 (-381))) (-5 *2 (-1132 (-225))) (-5 *1 (-260 *3))
- (-4 *3 (-13 (-614 (-538)) (-1099)))))
+ (-12 (-5 *4 (-1092 (-381))) (-5 *2 (-1133 (-225))) (-5 *1 (-260 *3))
+ (-4 *3 (-13 (-615 (-539)) (-1100)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-882 *6)) (-5 *4 (-1091 (-381))) (-5 *5 (-644 (-264)))
- (-4 *6 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225)))
+ (-12 (-5 *3 (-883 *6)) (-5 *4 (-1092 (-381))) (-5 *5 (-645 (-264)))
+ (-4 *6 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225)))
(-5 *1 (-260 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-882 *5)) (-5 *4 (-1091 (-381)))
- (-4 *5 (-13 (-614 (-538)) (-1099))) (-5 *2 (-1132 (-225)))
+ (-12 (-5 *3 (-883 *5)) (-5 *4 (-1092 (-381)))
+ (-4 *5 (-13 (-615 (-539)) (-1100))) (-5 *2 (-1133 (-225)))
(-5 *1 (-260 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-890 *4 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3)) (-5 *6 (-1172 *3))
+ (-4 *3 (-13 (-433 *7) (-27) (-1201)))
+ (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1100))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-645 *3))
+ (-5 *6 (-410 (-1172 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1201)))
+ (-4 *7 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-563 *7 *3 *8)) (-4 *8 (-1100)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1038 (-566))) (-4 *1 (-303)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-4 *1 (-547)) (-5 *2 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-905 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *1) (-12 (-4 *1 (-427 *3)) (-4 *3 (-1099)) (-5 *2 (-771)))))
+ (-12 (-5 *2 (-645 (-944 *4))) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1013)) (-5 *2 (-863)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-561 *2)) (-4 *2 (-548)))))
(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-254 *2 *3 *4 *5)) (-4 *2 (-1049)) (-4 *3 (-850))
- (-4 *4 (-267 *3)) (-4 *5 (-793)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-843 *4)) (-5 *3 (-612 *4)) (-5 *5 (-112))
- (-4 *4 (-13 (-1200) (-29 *6)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-224 *6 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-363 *3)) (-4 *3 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-388 *4)) (-4 *4 (-1099))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *2 (-23)) (-5 *1 (-649 *4 *2 *5))
- (-4 *4 (-1099)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-771)) (-5 *1 (-819 *4)) (-4 *4 (-850)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-771)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-751)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1270)) (-5 *1 (-866 *4 *5 *6 *7))
- (-4 *4 (-1049)) (-14 *5 (-644 (-1175))) (-14 *6 (-644 *3))
- (-14 *7 *3)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-1049)) (-4 *5 (-850)) (-4 *6 (-793))
- (-14 *8 (-644 *5)) (-5 *2 (-1270))
- (-5 *1 (-1277 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-949 *4 *6 *5))
- (-14 *9 (-644 *3)) (-14 *10 *3))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-549))))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-1134))) (-5 *1 (-1089)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-2 (|:| -4018 (-1171 *6)) (|:| -3428 (-566)))))
- (-4 *6 (-308)) (-4 *4 (-793)) (-4 *5 (-850)) (-5 *2 (-566))
- (-5 *1 (-742 *4 *5 *6 *7)) (-4 *7 (-949 *6 *4 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-566))) (-5 *1 (-1047))
- (-5 *3 (-566)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 *2)) (-4 *2 (-547)) (-5 *1 (-159 *2)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-976 *4 *5 *6 *3)) (-4 *4 (-1049)) (-4 *5 (-793))
- (-4 *6 (-850)) (-4 *3 (-1064 *4 *5 *6)) (-4 *4 (-558))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-225))) (-5 *2 (-409 (-566))) (-5 *1 (-306)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-4 *6 (-1064 *3 *4 *5)) (-5 *1 (-624 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *2 (-1108 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-1143))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-771)) (-5 *1 (-226))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-169 (-225))) (-5 *3 (-771)) (-5 *1 (-226))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-433 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1138))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-558)) (-4 *2 (-1049))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-969 *3 *2)) (-4 *2 (-1241 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *3 (-1064 *4 *5 *6))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *1))))
- (-4 *1 (-1070 *4 *5 *6 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| -4187 (-644 (-862))) (|:| -3288 (-644 (-862)))
- (|:| |presup| (-644 (-862))) (|:| -2969 (-644 (-862)))
- (|:| |args| (-644 (-862)))))
- (-5 *1 (-1175)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-119 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-233)) (-4 *3 (-1049)) (-4 *4 (-850)) (-4 *5 (-267 *4))
- (-4 *6 (-793)) (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1049)) (-4 *3 (-850)) (-4 *5 (-267 *3)) (-4 *6 (-793))
- (-5 *2 (-1 *1 (-771))) (-4 *1 (-254 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-4 *1 (-267 *2)) (-4 *2 (-850)))))
+ (-12 (-4 *3 (-1050)) (-5 *2 (-959 (-713 *3 *4))) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1242 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-559)) (-4 *2 (-455)) (-5 *1 (-970 *2 *3))
+ (-4 *3 (-1242 *2)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1099)) (-5 *2 (-644 *1))
- (-4 *1 (-432 *3))))
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-644 (-892 *3))) (-5 *1 (-892 *3))
- (-4 *3 (-1099))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-421 *3)) (-4 *3 (-548))
+ (-4 *3 (-559))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1049)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *2 (-644 *1)) (-4 *1 (-949 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049))
- (-4 *7 (-949 *6 *4 *5)) (-5 *2 (-644 *3))
- (-5 *1 (-950 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $))
- (-15 -2702 (*7 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-489)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1171 *7)) (-4 *7 (-949 *6 *4 *5)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1049)) (-5 *2 (-1171 *6))
- (-5 *1 (-322 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365))
- (-5 *2 (-2 (|:| -2070 (-409 *6)) (|:| |coeff| (-409 *6))))
- (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-921)) (-4 *5 (-308)) (-4 *3 (-1241 *5))
- (-5 *2 (-2 (|:| |plist| (-644 *3)) (|:| |modulo| *5)))
- (-5 *1 (-462 *5 *3)) (-5 *4 (-644 *3)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1049))
- (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285)))
- (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4))))
- ((*1 *1 *1) (-4 *1 (-547)))
- ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-672 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-921)) (-5 *1 (-677 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-819 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-893 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-4 *1 (-995 *3)) (-4 *3 (-1215)) (-5 *2 (-771))))
- ((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-1212 *3)) (-4 *3 (-1215))))
+ (-12 (-4 *1 (-798 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1215)) (-4 *2 (-1002))
- (-4 *2 (-1049)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1049)) (-5 *1 (-446 *3 *2)) (-4 *2 (-1241 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1155 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-860)) (-5 *2 (-691 (-129))) (-5 *3 (-129)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1241 *3)) (-4 *3 (-1049)) (-5 *2 (-1171 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-644 (-644 (-644 *4)))) (-5 *3 (-644 *4)) (-4 *4 (-850))
- (-5 *1 (-1186 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-5 *2 (-1157)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1139 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
- (-4 *4 (-13 (-1099) (-34))) (-4 *5 (-13 (-1099) (-34)))
- (-5 *1 (-1140 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-644 (-1139 *3 *4))) (-4 *3 (-13 (-1099) (-34)))
- (-4 *4 (-13 (-1099) (-34))) (-5 *1 (-1140 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-454)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *3)) (-4 *3 (-1070 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-834 *3)) (-4 *3 (-548))
+ (-4 *3 (-1100))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-892 *3)) (|:| |den| (-892 *3))))
- (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *2)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *2 (-1064 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049))
- (-14 *4 (-644 (-1175)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1049) (-850)))
- (-14 *4 (-644 (-1175))))))
-(((*1 *1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1175)) (-5 *2 (-381)) (-5 *1 (-1062)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-689 *4)) (-4 *4 (-365)) (-5 *2 (-1171 *4))
- (-5 *1 (-534 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-848))))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1241 (-169 *2))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *5 (-1241 *4))
- (-5 *2 (-644 (-2 (|:| |deg| (-771)) (|:| -1451 *5))))
- (-5 *1 (-809 *4 *5 *3 *6)) (-4 *3 (-656 *5))
- (-4 *6 (-656 (-409 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-584)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1 (-1155 (-952 *4)) (-1155 (-952 *4))))
- (-5 *1 (-1273 *4)) (-4 *4 (-365)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1248 *3 *2)) (-4 *3 (-1049)) (-4 *2 (-1225 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-531)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-821)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4)))
- (-5 *2 (-2 (|:| |num| (-1265 *4)) (|:| |den| *4))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-566)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1215))
- (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1171 *1)) (-4 *1 (-1012)))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850))))
- ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850))))
- ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-844 *3)) (-4 *3 (-548))
+ (-4 *3 (-1100))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3))
- (-4 *3 (-1241 *2)))))
-(((*1 *2 *3) (-12 (-5 *2 (-409 (-566))) (-5 *1 (-563)) (-5 *3 (-566))))
+ (-12 (-4 *1 (-998 *3)) (-4 *3 (-172)) (-4 *3 (-548))
+ (-5 *2 (-410 (-567)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1171 (-409 (-566)))) (-5 *1 (-942)) (-5 *3 (-566)))))
-(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1009 *3)) (-4 *3 (-1039 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1233 *3)) (-4 *3 (-1216)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *2 (-1036)) (-5 *1 (-750))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-61 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-87 BDYVAL))))
+ (-5 *8 (-391)) (-5 *2 (-1036)) (-5 *1 (-750)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-830)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1100)) (-4 *3 (-901 *5)) (-5 *2 (-1266 *3))
+ (-5 *1 (-693 *5 *3 *6 *4)) (-4 *6 (-375 *3))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-992 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
- (-4 *3 (-375 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-992 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-505 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5))))
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4))
+ (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112))))
((*1 *2 *3)
- (-12 (-5 *3 (-689 *5)) (-4 *5 (-992 *4)) (-4 *4 (-558))
- (-5 *2 (-2 (|:| |num| (-689 *4)) (|:| |den| *4)))
- (-5 *1 (-693 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *6 (-1241 *5))
- (-5 *2 (-2 (|:| -1451 *7) (|:| |rh| (-644 (-409 *6)))))
- (-5 *1 (-807 *5 *6 *7 *3)) (-5 *4 (-644 (-409 *6)))
- (-4 *7 (-656 *6)) (-4 *3 (-656 (-409 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-992 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1234 *4 *5 *3))
- (-4 *3 (-1241 *5)))))
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-484 *4 *5))
+ (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1176))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567))))
+ (-5 *1 (-1110)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1027 *3)) (-4 *3 (-1216)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-690 (-225))) (-5 *6 (-112)) (-5 *7 (-690 (-567)))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-567)) (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-754)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2))
+ (-4 *2 (-1216)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157)))))
- (-5 *2 (-1035)) (-5 *1 (-306))))
- ((*1 *2 *3)
+ (-5 *2
+ (-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863)))
+ (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863)))
+ (|:| |args| (-645 (-863)))))
+ (-5 *1 (-1176)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-365)) (-5 *1 (-897 *2 *3))
+ (-4 *2 (-1242 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-509)) (-5 *1 (-281)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-247 *5 *6))) (-4 *6 (-455))
+ (-5 *2 (-247 *5 *6)) (-14 *5 (-645 (-1176))) (-5 *1 (-632 *5 *6)))))
+(((*1 *2 *3)
(-12
- (-5 *3
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))
- (-5 *2 (-1035)) (-5 *1 (-306)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469))))
- ((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-469))))
- ((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-927)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1119)) (-5 *1 (-331)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1157) (-774))) (-5 *1 (-114)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-850))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1215))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-283 *2)) (-4 *2 (-1215))))
- ((*1 *1 *2)
+ (-5 *2
+ (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))
+ (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4)
(-12
(-5 *2
- (-2
- (|:| -3476
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (|:| -2484
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1155 (-225)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3192
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-561))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-695 *2)) (-4 *2 (-1099))))
- ((*1 *1 *2)
+ (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))
+ (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567)))
+ (-5 *4 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))))
+ ((*1 *2 *3 *4)
(-12
(-5 *2
- (-2
- (|:| -3476
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (|:| -2484
- (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
- (|:| |expense| (-381)) (|:| |accuracy| (-381))
- (|:| |intermediateResults| (-381))))))
- (-5 *1 (-803))))
+ (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))
+ (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567))) (-5 *4 (-410 (-567)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-410 (-567)))
+ (-5 *2 (-645 (-2 (|:| -2993 *5) (|:| -3005 *5)))) (-5 *1 (-1021 *3))
+ (-4 *3 (-1242 (-567))) (-5 *4 (-2 (|:| -2993 *5) (|:| -3005 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-1242 (-410 (-567))))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-1270)) (-5 *1 (-1192 *3 *4)) (-4 *3 (-1099))
- (-4 *4 (-1099)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1175)) (-5 *1 (-675 *3)) (-4 *3 (-1099)))))
+ (-12
+ (-5 *2
+ (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-1242 (-410 (-567))))
+ (-5 *4 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-410 (-567)))
+ (-5 *2 (-645 (-2 (|:| -2993 *4) (|:| -3005 *4)))) (-5 *1 (-1022 *3))
+ (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-410 (-567)))
+ (-5 *2 (-645 (-2 (|:| -2993 *5) (|:| -3005 *5)))) (-5 *1 (-1022 *3))
+ (-4 *3 (-1242 *5)) (-5 *4 (-2 (|:| -2993 *5) (|:| -3005 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-112)) (-5 *1 (-268)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *3 (-645 (-264)))
+ (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-264))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-471))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1094 (-381)))) (-5 *1 (-471)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-308)) (-4 *3 (-992 *2)) (-4 *4 (-1241 *3))
- (-5 *1 (-415 *2 *3 *4 *5)) (-4 *5 (-13 (-411 *3 *4) (-1038 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1215))))
- ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-850))))
- ((*1 *1 *1) (-12 (-5 *1 (-677 *2)) (-4 *2 (-850))))
- ((*1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-862))))
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
+ ((*1 *1 *1) (|partial| -4 *1 (-723))))
+(((*1 *2 *2) (-12 (-5 *1 (-589 *2)) (-4 *2 (-548)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1050))
+ (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4))))
+ ((*1 *1 *1) (-4 *1 (-548)))
+ ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-894 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-4 *1 (-996 *3)) (-4 *3 (-1216)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-1213 *3)) (-4 *3 (-1216))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3))
- (-4 *3 (-1241 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701))))
- ((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-701)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1215)))))
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1003))
+ (-4 *2 (-1050)))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *3 (-1242 *4)) (-5 *1 (-810 *4 *3 *2 *5)) (-4 *2 (-657 *3))
+ (-4 *5 (-657 (-410 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-410 *5))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-1242 *4))
+ (-5 *1 (-810 *4 *5 *2 *6)) (-4 *2 (-657 *5)) (-4 *6 (-657 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-381)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1216)) (-5 *1 (-182 *3 *2)) (-4 *2 (-675 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
+ (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-131))
+ (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| -3087 *3) (|:| -1845 *4))))
+ (-5 *1 (-736 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-727))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-5 *2 (-1156 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-644 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *6 (-1241 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))
+ (-12 (-5 *4 (-295 (-844 *3))) (-4 *3 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (-844 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-844 *3) "failed")))
+ "failed"))
+ (-5 *1 (-637 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-653 (-409 *7))) (-5 *4 (-1 (-644 *6) *7))
- (-5 *5 (-1 (-420 *7) *7))
- (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *7 (-1241 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-644 *5) *6))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *6 (-1241 *5)) (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))
+ (|partial| -12 (-5 *4 (-295 *3)) (-5 *5 (-1158))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-844 *3)) (-5 *1 (-637 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-844 (-953 *5)))) (-4 *5 (-455))
+ (-5 *2
+ (-3 (-844 (-410 (-953 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-844 (-410 (-953 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-844 (-410 (-953 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-638 *5)) (-5 *3 (-410 (-953 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5)))
+ (-4 *5 (-455))
+ (-5 *2
+ (-3 (-844 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-844 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-844 *3) "failed")))
+ "failed"))
+ (-5 *1 (-638 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-654 *7 (-409 *7))) (-5 *4 (-1 (-644 *6) *7))
- (-5 *5 (-1 (-420 *7) *7))
- (-4 *6 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-4 *7 (-1241 *6)) (-5 *2 (-644 (-409 *7))) (-5 *1 (-812 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-653 (-409 *5))) (-4 *5 (-1241 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-653 (-409 *6))) (-5 *4 (-1 (-420 *6) *6))
- (-4 *6 (-1241 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-654 *5 (-409 *5))) (-4 *5 (-1241 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2 (-644 (-409 *5))) (-5 *1 (-812 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-654 *6 (-409 *6))) (-5 *4 (-1 (-420 *6) *6))
- (-4 *6 (-1241 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
- (-5 *2 (-644 (-409 *6))) (-5 *1 (-812 *5 *6)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-862))) ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1) (-5 *1 (-862))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-478 *4 *5 *6 *7)) (|:| -3929 (-644 *7))))
- (-5 *1 (-977 *4 *5 *6 *7)) (-5 *3 (-644 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4415)) (-4 *1 (-235 *3))
- (-4 *3 (-1099))))
+ (|partial| -12 (-5 *4 (-295 (-410 (-953 *6)))) (-5 *5 (-1158))
+ (-5 *3 (-410 (-953 *6))) (-4 *6 (-455)) (-5 *2 (-844 *3))
+ (-5 *1 (-638 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-863)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 (-772))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216)))))
+(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-306))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-893 *3)) (|:| |den| (-893 *3))))
+ (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-539))) (-5 *1 (-539)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1176)))))
+ (-5 *6 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1104))
+ (-5 *1 (-400))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-645 (-645 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-645 (-3 (|:| |array| (-645 *3)) (|:| |scalar| (-1176)))))
+ (-5 *6 (-645 (-1176))) (-5 *3 (-1176)) (-5 *2 (-1104))
+ (-5 *1 (-400))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-645 (-1176))) (-5 *5 (-1179)) (-5 *3 (-1176))
+ (-5 *2 (-1104)) (-5 *1 (-400)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 *4))) (-5 *1 (-1187 *4))
+ (-5 *3 (-645 *4)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-1236 *3 *2))
+ (-4 *2 (-1242 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225))
+ (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-772))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-922))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-922)) (-5 *1 (-157))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201)))
+ (-5 *1 (-227 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1216)) (-4 *2 (-727))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1216)) (-4 *2 (-727))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-1112)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-1112)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-131))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-363 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-383 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1100))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2268 *3) (-772)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *6))
+ (-2 (|:| -3811 *5) (|:| -4164 *6))))
+ (-5 *1 (-464 *3 *4 *5 *6 *7 *2)) (-4 *5 (-851))
+ (-4 *2 (-950 *4 *6 (-865 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-539)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-598 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1058))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-685 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-688 *3 *2 *4)) (-4 *3 (-1050)) (-4 *2 (-375 *3))
+ (-4 *4 (-375 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-688 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *2 (-375 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-721)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1266 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-559))
+ (-5 *1 (-970 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1058))))
+ ((*1 *1 *1 *1) (-4 *1 (-1112)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1123 *3 *4 *2 *5)) (-4 *4 (-1050)) (-4 *2 (-238 *3 *4))
+ (-4 *5 (-238 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1123 *3 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-238 *3 *4))
+ (-4 *2 (-238 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-851)) (-5 *1 (-1126 *3 *4 *2))
+ (-4 *2 (-950 *3 (-534 *4) *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-944 (-225))) (-5 *3 (-225)) (-5 *1 (-1212))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-727))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1215)))))
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-727))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-4 *1 (-1264 *3)) (-4 *3 (-1216)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1283 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-623 *4 *2)) (-4 *2 (-13 (-1201) (-960) (-29 *4))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-558) (-147))) (-5 *1 (-539 *3 *2))
- (-4 *2 (-1256 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-4 *4 (-1241 *3))
- (-4 *5 (-724 *3 *4)) (-5 *1 (-543 *3 *4 *5 *2)) (-4 *2 (-1256 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-365) (-370) (-614 (-566)))) (-5 *1 (-544 *3 *2))
- (-4 *2 (-1256 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-13 (-558) (-147)))
- (-5 *1 (-1151 *3)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))
- (-5 *1 (-988 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-644 *7)) (-4 *7 (-1070 *3 *4 *5 *6)) (-4 *3 (-454))
- (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5))
- (-5 *1 (-1106 *3 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1270)) (-5 *1 (-1083 *3)) (-4 *3 (-132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *5)) (-5 *4 (-1265 *5)) (-4 *5 (-365))
- (-5 *2 (-112)) (-5 *1 (-667 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416))))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))) (-5 *2 (-112))
- (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-142 *2 *4 *3))
- (-4 *3 (-375 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-505 *2 *4 *5 *3))
- (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))
+ (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-142 *3 *4 *2))
+ (-4 *2 (-375 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-689 *4)) (-4 *4 (-992 *2)) (-4 *2 (-558))
- (-5 *1 (-693 *2 *4))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-993 *4)) (-4 *2 (-375 *4))
+ (-5 *1 (-506 *4 *5 *2 *3)) (-4 *3 (-375 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-992 *2)) (-4 *2 (-558)) (-5 *1 (-1234 *2 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-129))))))
-(((*1 *2 *1) (-12 (-4 *1 (-529)) (-5 *2 (-691 (-1221))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-409 (-952 (-169 (-566))))))
- (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-848)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-295 (-409 (-952 (-169 (-566)))))))
- (-5 *2 (-644 (-644 (-295 (-952 (-169 *4)))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-848)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 (-169 (-566)))))
- (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-848)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-409 (-952 (-169 (-566))))))
- (-5 *2 (-644 (-295 (-952 (-169 *4))))) (-5 *1 (-380 *4))
- (-4 *4 (-13 (-365) (-848))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 *2)) (-4 *2 (-949 (-409 (-952 *6)) *5 *4))
- (-5 *1 (-732 *5 *4 *6 *2)) (-4 *5 (-793))
- (-4 *4 (-13 (-850) (-10 -8 (-15 -2150 ((-1175) $)))))
- (-4 *6 (-558)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-558)) (-5 *2 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-241)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1103)) (-5 *1 (-331)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049))
- (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3))
- (-4 *3 (-852 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1241 *5)) (-4 *5 (-365))
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559))
+ (-5 *2 (-690 *4)) (-5 *1 (-694 *4 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-4 *4 (-993 *3)) (-5 *1 (-1235 *3 *4 *2))
+ (-4 *2 (-1242 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-851))
(-5 *2
- (-2 (|:| |ir| (-587 (-409 *6))) (|:| |specpart| (-409 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-576 *5 *6)) (-5 *3 (-409 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1049)))))
-(((*1 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268))))
- ((*1 *2 *2) (-12 (-5 *2 (-874)) (-5 *1 (-1268)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1064 *3 *4 *5)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *2 (-1035)) (-5 *1 (-751)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *5)) (-5 *4 (-921)) (-4 *5 (-850))
- (-5 *2 (-59 (-644 (-672 *5)))) (-5 *1 (-672 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-172)))))
+ (-2 (|:| |f1| (-645 *4)) (|:| |f2| (-645 (-645 (-645 *4))))
+ (|:| |f3| (-645 (-645 *4))) (|:| |f4| (-645 (-645 (-645 *4))))))
+ (-5 *1 (-1187 *4)) (-5 *3 (-645 (-645 (-645 *4)))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1176)) (-5 *6 (-645 (-613 *3)))
+ (-5 *5 (-613 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *7)))
+ (-4 *7 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3)))
+ (-5 *1 (-560 *7 *3)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-772)) (-4 *5 (-172))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1050)) (-4 *1 (-688 *3 *2 *4)) (-4 *2 (-375 *3))
+ (-4 *4 (-375 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1142 *2 *3)) (-14 *2 (-772)) (-4 *3 (-1050)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-372 *4 *5)) (-4 *4 (-172))
+ (-4 *5 (-1242 *4)) (-5 *2 (-690 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-690 *4))
+ (-5 *1 (-411 *3 *4 *5)) (-4 *3 (-412 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-412 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3))
+ (-5 *2 (-690 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3))
+ (-4 *3 (-1242 *2)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-771)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-793)) (-4 *7 (-949 *4 *5 *6)) (-4 *4 (-454)) (-4 *6 (-850))
- (-5 *2 (-112)) (-5 *1 (-451 *4 *5 *6 *7)))))
+ (-5 *2
+ (-645
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225)))))
+ (-5 *1 (-562))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-645
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225)))))
+ (-5 *1 (-804)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-365) (-849)))
+ (-5 *2 (-645 (-2 (|:| -2807 (-645 *3)) (|:| -2553 *5))))
+ (-5 *1 (-181 *5 *3)) (-4 *3 (-1242 (-169 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-365) (-849)))
+ (-5 *2 (-645 (-2 (|:| -2807 (-645 *3)) (|:| -2553 *4))))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1134 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-719 *2)) (-4 *2 (-365)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1242 (-169 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1242 (-169 *2))))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-331)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *5 (-1242 *4)) (-5 *2 (-645 (-654 (-410 *5))))
+ (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1158)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-264)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1146 *5 *6 *7 *8))) (-5 *1 (-1146 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3))
+ (-4 *3 (-1242 *2)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1171 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *5 (-558))
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1201)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1100)))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |minor| (-644 (-921))) (|:| -1451 *3)
- (|:| |minors| (-644 (-644 (-921)))) (|:| |ops| (-644 *3))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-921)) (-4 *3 (-656 *5)))))
+ (-645
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851))
+ (-5 *1 (-452 *3 *4 *5 *6)))))
+(((*1 *1) (-12 (-4 *1 (-1046 *2)) (-4 *2 (-23)))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036))
+ (-5 *1 (-757)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-689 *5)) (-4 *5 (-1049)) (-5 *1 (-1054 *3 *4 *5))
- (-14 *3 (-771)) (-14 *4 (-771)))))
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 *4))))
+ (-4 *3 (-1100)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-650 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-875))))
+ ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-689 *3))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-689 *3))
- (-4 *3 (-13 (-308) (-10 -8 (-15 -2555 ((-420 $) $)))))
- (-4 *4 (-1241 *3)) (-5 *1 (-501 *3 *4 *5)) (-4 *5 (-411 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-225)) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-758)))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-978 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1084 *3)) (-4 *3 (-132)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *3 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-452 *4 *3 *5 *6)) (-4 *6 (-950 *4 *3 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1049))
- (-4 *2 (-13 (-406) (-1038 *4) (-365) (-1200) (-285)))
- (-5 *1 (-445 *4 *3 *2)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-755)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
- (-4 *5 (-13 (-1099) (-34))) (-4 *6 (-13 (-1099) (-34)))
- (-5 *2 (-112)) (-5 *1 (-1139 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-508)) (-5 *2 (-691 (-187))) (-5 *1 (-187)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1275)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1157)) (-5 *3 (-823)) (-5 *1 (-822)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1099)) (-4 *2 (-1099)))))
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4))
+ (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-1050))
+ (-5 *1 (-1160 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-567)) (-5 *1 (-1258 *3 *4 *5)) (-4 *3 (-1050))
+ (-14 *4 (-1176)) (-14 *5 *3))))
+(((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-21)) (-4 *2 (-1216)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *5 (-922))
+ (-5 *2 (-1271)) (-5 *1 (-471))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-944 (-225))) (-5 *2 (-1271)) (-5 *1 (-471))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-645 (-944 (-225)))) (-5 *4 (-875)) (-5 *5 (-922))
+ (-5 *2 (-1271)) (-5 *1 (-471)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *2 (-644 (-644 (-566))))
- (-5 *1 (-924 *4 *5 *6 *7)) (-5 *3 (-566)) (-4 *7 (-949 *4 *6 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3276 *3)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-771)) (-5 *2 (-1171 *4)) (-5 *1 (-530 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225)))
- (-5 *5 (-3 (|:| |fn| (-390)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1035)) (-5 *1 (-753)))))
+ (-12 (-4 *4 (-1242 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3))
+ (-4 *3 (-1242 (-410 *4))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-645 (-484 *4 *5))) (-5 *3 (-645 (-865 *4)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *1 (-474 *4 *5 *6))
+ (-4 *6 (-455)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-4 *3 (-1100))
+ (-5 *2 (-112)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $))
+ (-15 -4078 ((-1125 *3 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *3 (-613 $))))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1202 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-405)) (-5 *2 (-772))))
+ ((*1 *1 *1) (-4 *1 (-405))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1092 (-953 (-567)))) (-5 *3 (-953 (-567)))
+ (-5 *1 (-331))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1092 (-953 (-567)))) (-5 *1 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-319)) (-5 *3 (-225)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-5 *2 (-645 *1)) (-4 *1 (-1134 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1242 (-567))) (-5 *1 (-489 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1084 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-567) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1084 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-1176)) (-4 *6 (-433 *5))
+ (-4 *5 (-1100)) (-5 *2 (-645 (-613 *6))) (-5 *1 (-576 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793))
+ (-4 *2 (-455))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1220)) (-4 *3 (-1242 *2))
+ (-4 *4 (-1242 (-410 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-455))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-308)) (-4 *3 (-559)) (-5 *1 (-1163 *3 *2))
+ (-4 *2 (-1242 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (|has| *1 (-6 -4417)) (-4 *1 (-1254 *3))
+ (-4 *3 (-1216)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-645 (-645 (-645 *5)))) (-5 *3 (-1 (-112) *5 *5))
+ (-5 *4 (-645 *5)) (-4 *5 (-851)) (-5 *1 (-1187 *5)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-690 *11)) (-5 *4 (-645 (-410 (-953 *8))))
+ (-5 *5 (-772)) (-5 *6 (-1158)) (-4 *8 (-13 (-308) (-147)))
+ (-4 *11 (-950 *8 *10 *9)) (-4 *9 (-13 (-851) (-615 (-1176))))
+ (-4 *10 (-794))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-645
+ (-2 (|:| |eqzro| (-645 *11)) (|:| |neqzro| (-645 *11))
+ (|:| |wcond| (-645 (-953 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *8))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *8))))))))))
+ (|:| |rgsz| (-567))))
+ (-5 *1 (-925 *8 *9 *10 *11)) (-5 *7 (-567)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3))) (-5 *1 (-560 *5 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1158)) (|:| -1817 (-1158))))
+ (-5 *1 (-823)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1172 *5)) (-4 *5 (-365)) (-5 *2 (-645 *6))
+ (-5 *1 (-535 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4418 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
+ (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1242 *2))
+ (-4 *4 (-688 *2 *5 *6)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-613 *3))
+ (-4 *3 (-13 (-433 *5) (-27) (-1201)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3)))
+ (-5 *1 (-569 *5 *3 *6)) (-4 *6 (-1100)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-613 *6))) (-5 *4 (-1176)) (-5 *2 (-613 *6))
+ (-4 *6 (-433 *5)) (-4 *5 (-1100)) (-5 *1 (-576 *5 *6)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-567) "failed") *5)) (-4 *5 (-1050))
+ (-5 *2 (-567)) (-5 *1 (-546 *5 *3)) (-4 *3 (-1242 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050))
+ (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-567) "failed") *4)) (-4 *4 (-1050))
+ (-5 *2 (-567)) (-5 *1 (-546 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1216)) (-4 *2 (-1050))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-944 (-225))) (-5 *2 (-225)) (-5 *1 (-1212))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1050)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-566)) (-5 *5 (-1157)) (-5 *6 (-689 (-225)))
- (-5 *7 (-3 (|:| |fn| (-390)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-390)) (|:| |fp| (-86 FCN))))
- (-5 *9 (-3 (|:| |fn| (-390)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-390)) (|:| |fp| (-88 OUTPUT))))
- (-5 *3 (-225)) (-5 *2 (-1035)) (-5 *1 (-749)))))
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
((*1 *1 *1) (-4 *1 (-285)))
((*1 *2 *3)
- (-12 (-5 *3 (-420 *4)) (-4 *4 (-558))
- (-5 *2 (-644 (-2 (|:| -1702 (-771)) (|:| |logand| *4))))
+ (-12 (-5 *3 (-421 *4)) (-4 *4 (-559))
+ (-5 *2 (-645 (-2 (|:| -3087 (-772)) (|:| |logand| *4))))
(-5 *1 (-321 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
((*1 *2 *1)
- (-12 (-5 *2 (-664 *3 *4)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))
+ (-12 (-5 *2 (-665 *3 *4)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))
((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566)))))
- (-4 *5 (-850)) (-5 *1 (-1281 *4 *5 *2)) (-4 *2 (-1286 *5 *4))))
+ (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567)))))
+ (-4 *5 (-851)) (-5 *1 (-1282 *4 *5 *2)) (-4 *2 (-1287 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-1285 *3 *4))
- (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-726)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *3 (-644 (-264))) (-5 *1 (-262))))
- ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
-(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-114)) (-5 *4 (-771))
- (-4 *5 (-13 (-454) (-1038 (-566)))) (-4 *5 (-558))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-432 *5))
- (-4 *2
- (-13 (-365) (-303)
- (-10 -8 (-15 -2691 ((-1124 *5 (-612 $)) $))
- (-15 -2702 ((-1124 *5 (-612 $)) $))
- (-15 -2725 ($ (-1124 *5 (-612 $))))))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1049)) (-4 *3 (-1099))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3428 (-566)))) (-4 *1 (-432 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-892 *3)) (|:| -3428 (-892 *3))))
- (-5 *1 (-892 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1286 *3 *4))
+ (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-169 (-317 *4)))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4))))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-793)) (-4 *5 (-850)) (-4 *6 (-1049))
- (-4 *7 (-949 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3428 (-566))))
- (-5 *1 (-950 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-365)
- (-10 -8 (-15 -2725 ($ *7)) (-15 -2691 (*7 $))
- (-15 -2702 (*7 $))))))))
+ (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-169 *3)) (-5 *1 (-1205 *4 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 *7)) (-4 *7 (-850))
- (-4 *8 (-949 *5 *6 *7)) (-4 *5 (-558)) (-4 *6 (-793))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1265 (-409 *8)) "failed"))
- (|:| -2227 (-644 (-1265 (-409 *8))))))
- (-5 *1 (-669 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5))))
+ (-5 *1 (-1129 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-13 (-308) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1129 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-410 (-953 *5)))) (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-295 (-317 *5))))
+ (-5 *1 (-1129 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-295 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1129 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176)))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1129 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-13 (-308) (-147)))
+ (-5 *2 (-645 (-645 (-295 (-317 *4))))) (-5 *1 (-1129 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-295 (-410 (-953 *5))))) (-5 *4 (-645 (-1176)))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *5)))))
+ (-5 *1 (-1129 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-295 (-410 (-953 *4)))))
+ (-4 *4 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-295 (-317 *4)))))
+ (-5 *1 (-1129 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119))))))
- (-4 *4 (-351)) (-5 *2 (-689 *4)) (-5 *1 (-348 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1155 *4)) (-5 *3 (-1 *4 (-566))) (-4 *4 (-1049))
- (-5 *1 (-1159 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1049)) (-5 *1 (-1237 *3 *2)) (-4 *2 (-1241 *3)))))
+ (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1176)))
+ (-4 *5 (-455))
+ (-5 *2
+ (-2 (|:| |gblist| (-645 (-247 *4 *5)))
+ (|:| |gvlist| (-645 (-567)))))
+ (-5 *1 (-632 *4 *5)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1216)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1164 *3 *4))) (-5 *1 (-1164 *3 *4))
+ (-14 *3 (-922)) (-4 *4 (-1050)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -2296 (-1172 *6)) (|:| -4164 (-567)))))
+ (-4 *6 (-308)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 *4))))
+ (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-1 (-112) *9))
+ (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1065 *6 *7 *8)) (-4 *6 (-559)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-5 *1 (-978 *6 *7 *8 *9)))))
+(((*1 *1 *1) (-4 *1 (-548))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2994 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-365)) (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-506 *4 *5 *6 *3)) (-4 *3 (-949 *4 *5 *6)))))
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-690 (-410 (-953 (-567)))))
+ (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032))
+ (-5 *3 (-317 (-567))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *6))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
(((*1 *2 *1 *3)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-117 *4)) (-14 *4 *3)
- (-5 *3 (-566))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-869 *3)) (-5 *2 (-566))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-117 *4)) (-14 *4 *3)
+ (-5 *3 (-567))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-409 (-566))) (-5 *1 (-871 *4)) (-14 *4 *3)
- (-5 *3 (-566))))
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-872 *4)) (-14 *4 *3)
+ (-5 *3 (-567))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-409 (-566))) (-5 *1 (-872 *4 *5))
- (-5 *3 (-566)) (-4 *5 (-869 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1012)) (-5 *2 (-409 (-566)))))
+ (-12 (-14 *4 *3) (-5 *2 (-410 (-567))) (-5 *1 (-873 *4 *5))
+ (-5 *3 (-567)) (-4 *5 (-870 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1013)) (-5 *2 (-410 (-567)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1067 *2 *3)) (-4 *2 (-13 (-848) (-365)))
- (-4 *3 (-1241 *2))))
+ (-12 (-4 *1 (-1068 *2 *3)) (-4 *2 (-13 (-849) (-365)))
+ (-4 *3 (-1242 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1243 *2 *3)) (-4 *3 (-792))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2725 (*2 (-1175))))
- (-4 *2 (-1049)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-848) (-365))) (-5 *1 (-1060 *2 *3))
- (-4 *3 (-1241 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-143)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-547)))))
+ (-12 (-4 *1 (-1244 *2 *3)) (-4 *3 (-793))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4101 (*2 (-1176))))
+ (-4 *2 (-1050)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-644 (-1175))) (-14 *5 (-771))
- (-5 *2
- (-644
- (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4)
- (-247 *4 (-409 (-566))))))
- (-5 *1 (-507 *4 *5))
- (-5 *3
- (-506 (-409 (-566)) (-240 *5 (-771)) (-864 *4)
- (-247 *4 (-409 (-566))))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-644 *7) *7 (-1171 *7))) (-5 *5 (-1 (-420 *7) *7))
- (-4 *7 (-1241 *6)) (-4 *6 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-5 *2 (-644 (-2 (|:| |frac| (-409 *7)) (|:| -1451 *3))))
- (-5 *1 (-809 *6 *7 *3 *8)) (-4 *3 (-656 *7))
- (-4 *8 (-656 (-409 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-420 *6) *6)) (-4 *6 (-1241 *5))
- (-4 *5 (-13 (-365) (-147) (-1038 (-566)) (-1038 (-409 (-566)))))
+ (-12 (-5 *3 (-567)) (|has| *1 (-6 -4407)) (-4 *1 (-407))
+ (-5 *2 (-922)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-365))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-453 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-365))
(-5 *2
- (-644 (-2 (|:| |frac| (-409 *6)) (|:| -1451 (-654 *6 (-409 *6))))))
- (-5 *1 (-812 *5 *6)) (-5 *3 (-654 *6 (-409 *6))))))
+ (-2 (|:| R (-690 *6)) (|:| A (-690 *6)) (|:| |Ainv| (-690 *6))))
+ (-5 *1 (-979 *6)) (-5 *3 (-690 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1238 *5 *4)) (-4 *4 (-454)) (-4 *4 (-820))
- (-14 *5 (-1175)) (-5 *2 (-566)) (-5 *1 (-1113 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-644 *11)) (-5 *5 (-644 (-1171 *9)))
- (-5 *6 (-644 *9)) (-5 *7 (-644 *12)) (-5 *8 (-644 (-771)))
- (-4 *11 (-850)) (-4 *9 (-308)) (-4 *12 (-949 *9 *10 *11))
- (-4 *10 (-793)) (-5 *2 (-644 (-1171 *12)))
- (-5 *1 (-707 *10 *11 *9 *12)) (-5 *3 (-1171 *12)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-612 *4)) (-5 *6 (-1175))
- (-4 *4 (-13 (-432 *7) (-27) (-1200)))
- (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-568 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-644 (-1175))) (|:| |pred| (-52))))
- (-5 *1 (-892 *3)) (-4 *3 (-1099)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1099)) (-5 *1 (-222 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-644 *3)) (-4 *3 (-1215)) (-4 *1 (-255 *3))))
- ((*1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-612 *4)) (-5 *6 (-1171 *4))
- (-4 *4 (-13 (-432 *7) (-27) (-1200)))
- (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
+ (-12 (-5 *3 (-567)) (|has| *1 (-6 -4407)) (-4 *1 (-407))
+ (-5 *2 (-922)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| -3087 *4) (|:| -3545 *3) (|:| -1386 *3)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1065 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| -3087 *3) (|:| -3545 *1) (|:| -1386 *1)))
+ (-4 *1 (-1242 *3)))))
+(((*1 *1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-612 *4)) (-5 *6 (-409 (-1171 *4)))
- (-4 *4 (-13 (-432 *7) (-27) (-1200)))
- (-4 *7 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147))) (-5 *1 (-540 *4 *2))
+ (-4 *2 (-1257 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3)))
+ (-4 *5 (-1242 *4)) (-4 *6 (-725 *4 *5)) (-5 *1 (-544 *4 *5 *6 *2))
+ (-4 *2 (-1257 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-13 (-365) (-370) (-615 *3)))
+ (-5 *1 (-545 *4 *2)) (-4 *2 (-1257 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-567)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *1 (-1152 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1176))) (-4 *5 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-690 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2557 (-645 *6)))
+ *7 *6))
+ (-4 *6 (-365)) (-4 *7 (-657 *6))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-562 *7 *4 *3)) (-4 *3 (-656 *4)) (-4 *3 (-1099)))))
+ (-2 (|:| |particular| (-3 (-1266 *6) "failed"))
+ (|:| -2557 (-645 (-1266 *6)))))
+ (-5 *1 (-814 *6 *7)) (-5 *4 (-1266 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2414 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1028 *5 *6 *7 *3))) (-5 *1 (-1028 *5 *6 *7 *3))
+ (-4 *3 (-1065 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-645 *6)) (-4 *1 (-1071 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *2)) (-4 *3 (-455)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1146 *5 *6 *7 *3))) (-5 *1 (-1146 *5 *6 *7 *3))
+ (-4 *3 (-1065 *5 *6 *7)))))
(((*1 *2 *1)
- (-12
+ (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5))
(-5 *2
- (-644
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-566)))))
- (-5 *1 (-420 *3)) (-4 *3 (-558))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-771)) (-4 *3 (-351)) (-4 *5 (-1241 *3))
- (-5 *2 (-644 (-1171 *3))) (-5 *1 (-500 *3 *5 *6))
- (-4 *6 (-1241 *5)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-644 *1)) (-4 *1 (-308)))))
+ (-2 (|:| -3978 (-416 *4 (-410 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -3129 (-410 *6))
+ (|:| |special| (-410 *6))))
+ (-5 *1 (-728 *5 *6)) (-5 *3 (-410 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-897 *3 *4))
+ (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-772)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -2993 *3) (|:| -3005 *3))) (-5 *1 (-897 *3 *5))
+ (-4 *3 (-1242 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1069 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1069 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1145 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-645 *9)) (-5 *3 (-645 *8)) (-5 *4 (-112))
+ (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-1145 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-566))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1049))
- (-14 *4 (-644 (-1175)))))
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050))
+ (-14 *4 (-645 (-1176)))))
((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1256 *3))
- (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1227 *3 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-409 (-566)))) (-4 *4 (-1225 *3))
- (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1248 *3 *4)) (-4 *5 (-983 *4))))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
((*1 *1 *1) (-4 *1 (-285)))
((*1 *1 *1)
- (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-644 (-1175)))
- (-14 *3 (-644 (-1175))) (-4 *4 (-389))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
((*1 *1 *2)
- (-12 (-5 *2 (-664 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-5 *1 (-627 *3 *4 *5))
- (-14 *5 (-921))))
+ (-12 (-5 *2 (-665 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-5 *1 (-628 *3 *4 *5))
+ (-14 *5 (-922))))
((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-13 (-1049) (-717 (-409 (-566)))))
- (-4 *5 (-850)) (-5 *1 (-1281 *4 *5 *2)) (-4 *2 (-1286 *5 *4))))
+ (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567)))))
+ (-4 *5 (-851)) (-5 *1 (-1282 *4 *5 *2)) (-4 *2 (-1287 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-1285 *3 *4))
- (-4 *4 (-717 (-409 (-566)))) (-4 *3 (-850)) (-4 *4 (-172)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
+ (-12 (-5 *2 (-772)) (-5 *1 (-1286 *3 *4))
+ (-4 *4 (-718 (-410 (-567)))) (-4 *3 (-851)) (-4 *4 (-172)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-317 (-566))) (|:| -1975 (-317 (-381)))
- (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1174))))
- (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-560 *2)) (-4 *2 (-547)))))
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4))
- (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1215)) (-5 *1 (-182 *3 *2)) (-4 *2 (-674 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175)))))
- (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103))
- (-5 *1 (-399))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-644 (-644 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-644 (-3 (|:| |array| (-644 *3)) (|:| |scalar| (-1175)))))
- (-5 *6 (-644 (-1175))) (-5 *3 (-1175)) (-5 *2 (-1103))
- (-5 *1 (-399))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-644 (-1175))) (-5 *5 (-1178)) (-5 *3 (-1175))
- (-5 *2 (-1103)) (-5 *1 (-399)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-689 *3)) (-4 *3 (-308)) (-5 *1 (-700 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1241 (-169 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-365) (-848))) (-5 *1 (-181 *2 *3))
- (-4 *3 (-1241 (-169 *2))))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-689 (-225))) (-5 *4 (-566)) (-5 *2 (-1035))
- (-5 *1 (-756)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1215)) (-4 *4 (-375 *3))
- (-4 *5 (-375 *3)) (-5 *2 (-644 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-491 *3)) (-4 *3 (-1215))
- (-5 *2 (-644 *3)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1155 *4)) (-5 *3 (-566)) (-4 *4 (-1049))
- (-5 *1 (-1159 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-566)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1049))
- (-14 *4 (-1175)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-1201 *3))) (-5 *1 (-1201 *3)) (-4 *3 (-1099)))))
+ (-12 (-4 *4 (-351))
+ (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -4356 *3))))
+ (-5 *1 (-216 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-792))
- (-4 *2 (-454))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1219)) (-4 *3 (-1241 *2))
- (-4 *4 (-1241 (-409 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-454))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-949 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850)) (-4 *3 (-454))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-949 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-454))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-308)) (-4 *3 (-558)) (-5 *1 (-1162 *3 *2))
- (-4 *2 (-1241 *3)))))
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-758)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-645 (-1176))) (-4 *2 (-172))
+ (-4 *4 (-238 (-2268 *5) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3811 *3) (|:| -4164 *4))
+ (-2 (|:| -3811 *3) (|:| -4164 *4))))
+ (-5 *1 (-464 *5 *2 *3 *4 *6 *7)) (-4 *3 (-851))
+ (-4 *7 (-950 *2 *4 (-865 *5))))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1098 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4417 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
- (-4 *2 (-1049)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1241 *2))
- (-4 *4 (-687 *2 *5 *6)))))
-(((*1 *1) (-12 (-5 *1 (-644 *2)) (-4 *2 (-1215)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-644 (-483 *4 *5))) (-14 *4 (-644 (-1175)))
- (-4 *5 (-454))
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-4 *7 (-950 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-112)) (|:| |z0| (-645 *7)) (|:| |n0| (-645 *7))))
+ (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *1 *1) (-5 *1 (-1175)))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| |gblist| (-644 (-247 *4 *5)))
- (|:| |gvlist| (-644 (-566)))))
- (-5 *1 (-631 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-1157))) (-5 *1 (-331))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))))
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1109 *5 *6 *7 *8))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-1065 *5 *6 *7)) (-5 *2 (-112))
+ (-5 *1 (-593 *5 *6 *7 *8 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216))
+ (-5 *2 (-645 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-331)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2994 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-644 (-1175))) (-4 *2 (-172))
- (-4 *4 (-238 (-3991 *5) (-771)))
- (-14 *6
- (-1 (-112) (-2 (|:| -2430 *3) (|:| -3428 *4))
- (-2 (|:| -2430 *3) (|:| -3428 *4))))
- (-5 *1 (-463 *5 *2 *3 *4 *6 *7)) (-4 *3 (-850))
- (-4 *7 (-949 *2 *4 (-864 *5))))))
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-753)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-944 (-225)) (-225) (-225)))
+ (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-256)))))
(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1175))
+ (-12 (-5 *5 (-1176))
(-5 *6
(-1
(-3
(-2 (|:| |mainpart| *4)
(|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ (-645 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
"failed")
- *4 (-644 *4)))
+ *4 (-645 *4)))
(-5 *7
- (-1 (-3 (-2 (|:| -2070 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1200) (-27) (-432 *8)))
- (-4 *8 (-13 (-454) (-147) (-1038 *3) (-639 *3))) (-5 *3 (-566))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -1627 *4) (|:| |sol?| (-112))))
- (-5 *1 (-1013 *8 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-644 (-1175))) (-4 *4 (-1099))
- (-4 *5 (-13 (-1049) (-886 *4) (-614 (-892 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-432 *5) (-886 *4) (-614 (-892 *4)))))))
+ (-1 (-3 (-2 (|:| -3424 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1201) (-27) (-433 *8)))
+ (-4 *8 (-13 (-455) (-147) (-1039 *3) (-640 *3))) (-5 *3 (-567))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3005 *4) (|:| |sol?| (-112))))
+ (-5 *1 (-1014 *8 *4)))))
+(((*1 *1) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-922)) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-834 (-922))) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-922))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-834 (-922))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-439)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-147)) (-4 *2 (-308)) (-4 *2 (-455)) (-4 *3 (-851))
+ (-4 *4 (-794)) (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-317 (-567))) (-5 *1 (-1119))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1158)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1215))))
+ (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1216))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-651 *2)) (-4 *2 (-1215)))))
+ (-12 (-5 *3 (-567)) (-4 *1 (-652 *2)) (-4 *2 (-1216)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-771)) (-5 *2 (-644 (-1175))) (-5 *1 (-210))
- (-5 *3 (-1175))))
+ (-12 (-5 *4 (-772)) (-4 *5 (-1050)) (-4 *2 (-1242 *5))
+ (-5 *1 (-1260 *5 *2 *6 *3)) (-4 *6 (-657 *2)) (-4 *3 (-1257 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1140 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-645 (-1176))) (-5 *1 (-210))
+ (-5 *3 (-1176))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-771)) (-5 *2 (-644 (-1175)))
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-772)) (-5 *2 (-645 (-1176)))
(-5 *1 (-268))))
((*1 *2 *1)
- (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-850)) (-4 *4 (-172))
- (-5 *2 (-644 *3))))
+ (-12 (-4 *1 (-376 *3 *4)) (-4 *3 (-851)) (-4 *4 (-172))
+ (-5 *2 (-645 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-644 *3)) (-5 *1 (-627 *3 *4 *5)) (-4 *3 (-850))
- (-4 *4 (-13 (-172) (-717 (-409 (-566))))) (-14 *5 (-921))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-672 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-677 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-819 *3)) (-4 *3 (-850))))
- ((*1 *2 *1) (-12 (-5 *2 (-644 *3)) (-5 *1 (-893 *3)) (-4 *3 (-850))))
+ (-12 (-5 *2 (-645 *3)) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-820 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851))))
((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-850)) (-4 *4 (-1049))
- (-5 *2 (-644 *3)))))
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-645 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851)))
+ (-14 *3 (-645 (-1176))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-1176))) (-4 *4 (-1100))
+ (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-487 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1050)) (-4 *1 (-1242 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *3 (-690 (-567))) (-5 *1 (-1110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1193 *4 *5))
+ (-4 *4 (-1100)) (-4 *5 (-1100)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1065 *4 *5 *6))
+ (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-978 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-823)))))
+(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)) (-4 *2 (-559))))
+ ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)))))
+(((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *3 (-558)) (-5 *1 (-969 *3 *2))
- (-4 *2 (-1241 *3)))))
+ (-12 (-5 *4 (-772)) (-4 *3 (-559)) (-5 *1 (-970 *3 *2))
+ (-4 *2 (-1242 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-647 *3)) (-4 *3 (-1058)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-1058)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1068 *4 *3)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *3 (-1242 *4)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100))
+ (-5 *2 (-772))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-727)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-804)))))
+(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-822)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-822)) (-5 *4 (-52)) (-5 *2 (-1271)) (-5 *1 (-832)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
+ (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-950 *4 *5 *6)) (-5 *2 (-645 (-645 *7)))
+ (-5 *1 (-451 *4 *5 *6 *7)) (-5 *3 (-645 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-308) (-147))) (-4 *6 (-794))
+ (-4 *7 (-851)) (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-645 (-645 *8)))
+ (-5 *1 (-451 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-644 (-644 (-225)))) (-5 *4 (-225))
- (-5 *2 (-644 (-943 *4))) (-5 *1 (-1211)) (-5 *3 (-943 *4)))))
+ (-12 (-5 *5 (-645 (-645 (-225)))) (-5 *4 (-225))
+ (-5 *2 (-645 (-944 *4))) (-5 *1 (-1212)) (-5 *3 (-944 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1257 *4))
+ (-4 *4 (-38 (-410 (-567)))) (-5 *2 (-1 (-1156 *4) (-1156 *4)))
+ (-5 *1 (-1259 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-645 (-1176))) (-4 *6 (-365))
+ (-5 *2 (-645 (-295 (-953 *6)))) (-5 *1 (-541 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *7 (-13 (-365) (-849))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $))
+ (-15 -4078 ((-1125 *3 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *3 (-613 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-927)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2 *3) (-12 (-5 *3 (-972)) (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-1156 *4))) (-5 *2 (-1156 *4)) (-5 *1 (-1160 *4))
+ (-4 *4 (-1050)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -4361 (-645 (-1176))) (|:| -2764 (-645 (-1176)))))
+ (-5 *1 (-1218)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041))))
+ ((*1 *1 *1 *1) (-4 *1 (-1139))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *1 *1 *1) (-4 *1 (-968))))
+(((*1 *2)
+ (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1158)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *4 (-1065 *6 *7 *8)) (-5 *2 (-1271))
+ (-5 *1 (-777 *6 *7 *8 *4 *5)) (-4 *5 (-1071 *6 *7 *8 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-645 *2)) (-5 *1 (-113 *2))
+ (-4 *2 (-1100))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-645 *4))) (-4 *4 (-1100))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1100))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-645 *4)))
+ (-5 *1 (-113 *4)) (-4 *4 (-1100))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-649 *3)) (-4 *3 (-1050))
+ (-5 *1 (-715 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-837 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1155 (-1155 *4))) (-5 *2 (-1155 *4)) (-5 *1 (-1159 *4))
- (-4 *4 (-1049)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381))))
+ (-5 *1 (-804)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3347 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
+ ((*1 *2 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-308))))
+ ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-567)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-455)) (-4 *3 (-851)) (-4 *4 (-794))
+ (-5 *1 (-988 *2 *3 *4 *5)) (-4 *5 (-950 *2 *4 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1172 *1)) (-5 *3 (-1176)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-29 *3)) (-4 *3 (-559))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-904 *3)) (-4 *3 (-1100)) (-5 *2 (-1102 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1100)) (-5 *2 (-1102 (-645 *4))) (-5 *1 (-905 *4))
+ (-5 *3 (-645 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1100)) (-5 *2 (-1102 (-1102 *4))) (-5 *1 (-905 *4))
+ (-5 *3 (-1102 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1102 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-772)) (-4 *2 (-1100))
+ (-5 *1 (-679 *2)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-558))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2061 *4)))
- (-5 *1 (-969 *4 *3)) (-4 *3 (-1241 *4)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1100)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-685 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-580))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-580)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3))
+ (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-978 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-645 *7) (-645 *7))) (-5 *2 (-645 *7))
+ (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-5 *1 (-978 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-437)) (|:| -2387 "void")))
+ (-5 *1 (-440)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-1093 *3)) (-4 *3 (-1216)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1100)) (-4 *2 (-901 *5)) (-5 *1 (-693 *5 *2 *3 *4))
+ (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1100)) (-5 *2 (-890 *3 *4)) (-5 *1 (-886 *3 *4 *5))
+ (-4 *3 (-1100)) (-4 *5 (-667 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1074))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-4 *1 (-407))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-567)) (-4 *1 (-407))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *2 *6)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1099)) (-4 *2 (-900 *5)) (-5 *1 (-692 *5 *2 *3 *4))
- (-4 *3 (-375 *2)) (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4415)))))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1172 *7)) (-4 *5 (-1050))
+ (-4 *7 (-1050)) (-4 *2 (-1242 *5)) (-5 *1 (-504 *5 *2 *6 *7))
+ (-4 *6 (-1242 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1050)) (-4 *7 (-1050))
+ (-4 *4 (-1242 *5)) (-5 *2 (-1172 *7)) (-5 *1 (-504 *5 *4 *6 *7))
+ (-4 *6 (-1242 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-915 *3)) (-4 *3 (-308)))))
+(((*1 *2)
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-312))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1232 (-566))) (-4 *1 (-283 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-283 *3)) (-4 *3 (-1215)))))
+ (-12 (-5 *2 (-1233 (-567))) (-4 *1 (-283 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-317 (-225))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
+ (-5 *1 (-205)))))
+(((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271))
+ (-5 *1 (-989 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-1271))
+ (-5 *1 (-1107 *3 *4 *5 *6 *7)) (-4 *7 (-1071 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-805 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1201) (-960))))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036))
+ (-5 *1 (-749)))))
+(((*1 *2 *3) (-12 (-5 *3 (-317 (-225))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 (-566)))))
- (-5 *1 (-363 *3)) (-4 *3 (-1099))))
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-567)))))
+ (-5 *1 (-363 *3)) (-4 *3 (-1100))))
((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 (-771)))))
- (-5 *1 (-388 *3)) (-4 *3 (-1099))))
+ (-12 (-4 *1 (-388 *3)) (-4 *3 (-1100))
+ (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-772)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| -4018 *3) (|:| -3428 (-566)))))
- (-5 *1 (-420 *3)) (-4 *3 (-558))))
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-772)))))
+ (-5 *1 (-389 *3)) (-4 *3 (-1100))))
((*1 *2 *1)
- (-12 (-5 *2 (-644 (-2 (|:| |gen| *3) (|:| -1535 (-771)))))
- (-5 *1 (-819 *3)) (-4 *3 (-850)))))
+ (-12 (-5 *2 (-645 (-2 (|:| -2296 *3) (|:| -4164 (-567)))))
+ (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |gen| *3) (|:| -2910 (-772)))))
+ (-5 *1 (-820 *3)) (-4 *3 (-851)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-851))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *1 *1) (|partial| -4 *1 (-1151))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-144)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *1 *1) (-5 *1 (-112))))
(((*1 *2 *2)
- (-12 (-5 *2 (-644 (-483 *3 *4))) (-14 *3 (-644 (-1175)))
- (-4 *4 (-454)) (-5 *1 (-631 *3 *4)))))
+ (-12 (-5 *2 (-645 (-484 *3 *4))) (-14 *3 (-645 (-1176)))
+ (-4 *4 (-455)) (-5 *1 (-632 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176)))
+ (-4 *5 (-559)) (-5 *2 (-645 (-645 (-953 *5)))) (-5 *1 (-1185 *5)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-772) *2)) (-5 *4 (-772)) (-4 *2 (-1100))
+ (-5 *1 (-679 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-772) *3)) (-4 *3 (-1100)) (-5 *1 (-683 *3)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-709 *3)) (-5 *1 (-828 *2 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *3) (-12 (-5 *3 (-494)) (-5 *2 (-692 (-582))) (-5 *1 (-582)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))
+ (-4 *3 (-559)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-645 (-1 *4 (-645 *4)))) (-4 *4 (-1100))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1100))
+ (-5 *1 (-113 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-114)) (-5 *2 (-645 (-1 *4 (-645 *4))))
+ (-5 *1 (-113 *4)) (-4 *4 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1242 (-48))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-708 *3)) (-5 *1 (-827 *2 *3)) (-4 *3 (-1049)))))
+ (|partial| -12 (-5 *2 (-1061 (-1025 *3) (-1172 (-1025 *3))))
+ (-5 *1 (-1025 *3)) (-4 *3 (-13 (-849) (-365) (-1023))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-365)) (-4 *5 (-1242 *4)) (-5 *2 (-1271))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1242 (-410 *5))) (-14 *7 *6))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1181)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1172 (-953 *4))) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365))
+ (-5 *2 (-1172 (-953 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-863))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-963)))))
(((*1 *2 *2 *3 *4)
(|partial| -12
(-5 *3
- (-1 (-3 (-2 (|:| -2070 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-365)) (-5 *1 (-576 *4 *2)) (-4 *2 (-1241 *4)))))
+ (-1 (-3 (-2 (|:| -3424 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-365)) (-5 *1 (-577 *4 *2)) (-4 *2 (-1242 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-331)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1242 *4)) (-4 *4 (-1220))
+ (-4 *6 (-1242 (-410 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-344 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-317 (-225))) (-5 *1 (-268)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225))))
+ (-5 *2 (-1036)) (-5 *1 (-755)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-645
+ (-645
+ (-3 (|:| -1817 (-1176))
+ (|:| -3833 (-645 (-3 (|:| S (-1176)) (|:| P (-953 (-567))))))))))
+ (-5 *1 (-1180)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-105)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6) (-10 -8 (-15 -4101 ($ *7)))))
+ (-4 *7 (-849))
+ (-4 *8
+ (-13 (-1244 *3 *7) (-365) (-1201)
+ (-10 -8 (-15 -1930 ($ $)) (-15 -2113 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))))
+ (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1158)) (-4 *9 (-984 *8))
+ (-14 *10 (-1176)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-276)))))
(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
- (-5 *1 (-747)))))
-(((*1 *2 *1) (-12 (-4 *1 (-406)) (-5 *2 (-566))))
- ((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-699)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-1137))))
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *1) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-2 (|:| |k| (-820 *3)) (|:| |c| *4))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1139))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-906 (-567))) (-5 *4 (-567)) (-5 *2 (-690 *4))
+ (-5 *1 (-1029 *5)) (-4 *5 (-1050))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-862))) (-5 *2 (-1270)) (-5 *1 (-1137)))))
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1029 *4))
+ (-4 *4 (-1050))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-906 (-567)))) (-5 *4 (-567))
+ (-5 *2 (-645 (-690 *4))) (-5 *1 (-1029 *5)) (-4 *5 (-1050))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-567)))) (-5 *2 (-645 (-690 (-567))))
+ (-5 *1 (-1029 *4)) (-4 *4 (-1050)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1217 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1271)) (-5 *1 (-1138)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-331)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-144))))
+ ((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-144)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (|has| *4 (-6 (-4418 "*")))
+ (-4 *4 (-1050)) (-5 *1 (-1029 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922))
+ (|has| *4 (-6 (-4418 "*"))) (-4 *4 (-1050)) (-5 *1 (-1029 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-520)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-820 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-847)) (-5 *1 (-1289 *3 *2)) (-4 *3 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-944 *3))) (-4 *3 (-1050)) (-4 *1 (-1134 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-944 *3))) (-4 *1 (-1134 *3)) (-4 *3 (-1050)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-644 (-644 *3))) (-4 *3 (-1099)) (-5 *1 (-905 *3)))))
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-1100)) (-5 *1 (-906 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-369 *2)) (-4 *2 (-559)) (-4 *2 (-172)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1036)) (-5 *1 (-754)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-244 *2)) (-4 *2 (-1216)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
(-5 *2 (-112)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2))
+ (-4 *2 (-1242 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1201) (-29 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-1271))
+ (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-264))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-567)) (-5 *4 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *2 (-1271)) (-5 *1 (-1268))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4371 (-225))
+ (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))
+ (-5 *1 (-1268))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-1179)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1036)) (-5 *1 (-755)))))
(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-410 (-953 *4))) (-5 *3 (-1176))
+ (-4 *4 (-13 (-559) (-1039 (-567)) (-147))) (-5 *1 (-573 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-1156 *4))) (-5 *2 (-1156 *4)) (-5 *1 (-1160 *4))
+ (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))
+ (-5 *2 (-1036)) (-5 *1 (-747)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-965 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172 (-567))) (-5 *2 (-567)) (-5 *1 (-943)))))
+(((*1 *2 *3) (-12 (-5 *3 (-645 *2)) (-5 *1 (-1190 *2)) (-4 *2 (-365)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-645 *3))) (-4 *3 (-851)) (-5 *1 (-1187 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-548))))
+ ((*1 *1 *1) (-4 *1 (-1060))))
(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
- (-5 *2 (-1035)) (-5 *1 (-756)))))
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-757)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *5 (-370))
+ (-5 *2 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *5 (-1065 *3 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1242 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3))))
+ (-5 *1 (-121 *3)) (-4 *3 (-851))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 *4)) (-4 *4 (-13 (-29 *3) (-1201)))
+ (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-586 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-588 (-410 (-953 *3))))
+ (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *1 (-591 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -3129 *3) (|:| |special| *3))) (-5 *1 (-728 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1266 *5)) (-4 *5 (-365)) (-4 *5 (-1050))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5))
+ (-5 *3 (-645 (-690 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1266 (-1266 *5))) (-4 *5 (-365)) (-4 *5 (-1050))
+ (-5 *2 (-645 (-645 (-690 *5)))) (-5 *1 (-1030 *5))
+ (-5 *3 (-645 (-690 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-645 *1)) (-4 *1 (-1144))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-645 *1)) (-4 *1 (-1144)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1039 (-567))) (-4 *3 (-559)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-433 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1172 *4)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1050)) (-4 *1 (-303))))
+ ((*1 *2) (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-5 *2 (-1172 *3))))
+ ((*1 *2) (-12 (-4 *1 (-725 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1242 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1068 *3 *2)) (-4 *3 (-13 (-849) (-365)))
+ (-4 *2 (-1242 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-1242 *3)) (-5 *1 (-164 *3 *4 *2))
+ (-4 *2 (-1242 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-825)) (-5 *1 (-826)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-645
+ (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 *2))
+ (|:| |logand| (-1172 *2)))))
+ (-5 *4 (-645 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-365)) (-5 *1 (-588 *2)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))
((*1 *1 *1)
- (-12 (-5 *1 (-1288 *2 *3)) (-4 *2 (-1049)) (-4 *3 (-846)))))
+ (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225))))
+ (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-645 (-317 (-225))))
+ (|:| -2596 (-645 (-225)))))))
+ (-5 *2 (-645 (-1158))) (-5 *1 (-268)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-645
+ (-2
+ (|:| -1762
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225))))
+ (|:| |yinit| (-645 (-225))) (|:| |intvals| (-645 (-225)))
+ (|:| |g| (-317 (-225))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -3859
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381)))))))
+ (-5 *1 (-804)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-748)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158)) (-5 *2 (-645 (-1181))) (-5 *1 (-881)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-704 *3))
+ (-4 *3 (-615 (-539)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1176)) (-5 *2 (-1 (-225) (-225) (-225)))
+ (-5 *1 (-704 *3)) (-4 *3 (-615 (-539))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-394)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-943 *5)) (-4 *5 (-1049)) (-5 *2 (-771))
- (-5 *1 (-1163 *4 *5)) (-14 *4 (-921))))
+ (-12 (-5 *3 (-944 *5)) (-4 *5 (-1050)) (-5 *2 (-772))
+ (-5 *1 (-1164 *4 *5)) (-14 *4 (-922))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-771))) (-5 *3 (-771)) (-5 *1 (-1163 *4 *5))
- (-14 *4 (-921)) (-4 *5 (-1049))))
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1164 *4 *5))
+ (-14 *4 (-922)) (-4 *5 (-1050))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-771))) (-5 *3 (-943 *5)) (-4 *5 (-1049))
- (-5 *1 (-1163 *4 *5)) (-14 *4 (-921)))))
-(((*1 *2 *2) (-12 (-5 *2 (-566)) (-5 *1 (-563)))))
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050))
+ (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-904 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-1266 (-700))) (-5 *1 (-306)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2414 *3) (|:| |coef1| (-783 *3)) (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1265 *4)) (-4 *4 (-1049)) (-4 *2 (-1241 *4))
- (-5 *1 (-446 *4 *2))))
+ (-12 (-4 *4 (-794))
+ (-4 *5 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *6 (-559))
+ (-5 *2 (-2 (|:| -2140 (-953 *6)) (|:| -1699 (-953 *6))))
+ (-5 *1 (-733 *4 *5 *6 *3)) (-4 *3 (-950 (-410 (-953 *6)) *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6) (-10 -8 (-15 -4101 ($ *7)))))
+ (-4 *7 (-849))
+ (-4 *8
+ (-13 (-1244 *3 *7) (-365) (-1201)
+ (-10 -8 (-15 -1930 ($ $)) (-15 -2113 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))))
+ (-5 *1 (-425 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1158)) (-4 *9 (-984 *8))
+ (-14 *10 (-1176)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1266 *5)) (-4 *5 (-793)) (-5 *2 (-112))
+ (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4))
+ (-4 *4 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772))))
+ ((*1 *1 *1) (-4 *1 (-233)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4))
+ (-4 *4 (-1242 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3))
+ (-4 *3 (-1242 *2))))
+ ((*1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4))
+ (-4 *4 (-1100))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1257 *4))
+ (-4 *4 (-38 (-410 (-567))))
+ (-5 *2 (-1 (-1156 *4) (-1156 *4) (-1156 *4))) (-5 *1 (-1259 *4 *5)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1176)) (-4 *4 (-1050)) (-4 *4 (-1100))
+ (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4164 (-567))))
+ (-4 *1 (-433 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1050)) (-4 *4 (-1100))
+ (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4164 (-567))))
+ (-4 *1 (-433 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1112)) (-4 *3 (-1100))
+ (-5 *2 (-2 (|:| |var| (-613 *1)) (|:| -4164 (-567))))
+ (-4 *1 (-433 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4164 (-772))))
+ (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-2 (|:| |var| *5) (|:| -4164 (-772))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050))
+ (-4 *7 (-950 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -4164 (-567))))
+ (-5 *1 (-951 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $))
+ (-15 -4078 (*7 $))))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1216)) (-5 *2 (-772))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1100)) (-5 *2 (-772)) (-5 *1 (-432 *3 *4))
+ (-4 *3 (-433 *4))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-547 *3)) (-4 *3 (-548))))
+ ((*1 *2) (-12 (-4 *1 (-764)) (-5 *2 (-772))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-797 *3 *4))
+ (-4 *3 (-798 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-992 *3 *4))
+ (-4 *3 (-993 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-772)) (-5 *1 (-997 *3 *4))
+ (-4 *3 (-998 *4))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1012 *3)) (-4 *3 (-1013))))
+ ((*1 *2) (-12 (-4 *1 (-1050)) (-5 *2 (-772))))
+ ((*1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-1059 *3)) (-4 *3 (-1060)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-4 *3 (-1100))
+ (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-757)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-567)) (-4 *3 (-172)) (-4 *5 (-375 *3))
+ (-4 *6 (-375 *3)) (-5 *1 (-689 *3 *5 *6 *2))
+ (-4 *2 (-688 *3 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *4)) (-4 *4 (-1050)) (-4 *2 (-1242 *4))
+ (-5 *1 (-447 *4 *2))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-409 (-1171 (-317 *5)))) (-5 *3 (-1265 (-317 *5)))
- (-5 *4 (-566)) (-4 *5 (-558)) (-5 *1 (-1129 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1157)) (-5 *1 (-710)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-1049))
- (-5 *2 (-483 *4 *5)) (-5 *1 (-944 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *5 (-1241 *4)) (-5 *2 (-644 (-2 (|:| -2737 *5) (|:| -3911 *5))))
- (-5 *1 (-807 *4 *5 *3 *6)) (-4 *3 (-656 *5))
- (-4 *6 (-656 (-409 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *4 (-1241 *5)) (-5 *2 (-644 (-2 (|:| -2737 *4) (|:| -3911 *4))))
- (-5 *1 (-807 *5 *4 *3 *6)) (-4 *3 (-656 *4))
- (-4 *6 (-656 (-409 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *5 (-1241 *4)) (-5 *2 (-644 (-2 (|:| -2737 *5) (|:| -3911 *5))))
- (-5 *1 (-807 *4 *5 *6 *3)) (-4 *6 (-656 *5))
- (-4 *3 (-656 (-409 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-365) (-147) (-1038 (-409 (-566)))))
- (-4 *4 (-1241 *5)) (-5 *2 (-644 (-2 (|:| -2737 *4) (|:| -3911 *4))))
- (-5 *1 (-807 *5 *4 *6 *3)) (-4 *6 (-656 *4))
- (-4 *3 (-656 (-409 *4))))))
+ (-12 (-5 *2 (-410 (-1172 (-317 *5)))) (-5 *3 (-1266 (-317 *5)))
+ (-5 *4 (-567)) (-4 *5 (-559)) (-5 *1 (-1130 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-308))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1100))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-388 *3))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-389 *3)) (|:| |rm| (-389 *3))))
+ (-5 *1 (-389 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3545 (-772)) (|:| -1386 (-772))))
+ (-5 *1 (-772))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-539)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-567)) (-5 *5 (-690 (-225))) (-5 *6 (-676 (-225)))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-751)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1233 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-652 *3)) (-4 *3 (-1216)))))
+(((*1 *1 *1) (-4 *1 (-1060)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-981 *2)) (-4 *2 (-1050))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1050)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-169 (-225))) (-5 *5 (-567))
+ (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1158)) (-5 *1 (-711)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-567)) (-5 *1 (-448 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-308))
+ (-5 *1 (-917 *3 *4 *5 *2)) (-4 *2 (-950 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1172 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *5 (-308)) (-5 *1 (-917 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *6 *4 *5))
+ (-5 *1 (-917 *4 *5 *6 *2)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-308)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1242 (-410 (-567)))) (-5 *1 (-914 *3 *2))
+ (-4 *2 (-1242 (-410 *3))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-559) (-1039 (-567))))
+ (-4 *7 (-1242 (-410 *6))) (-5 *1 (-555 *4 *5 *6 *7 *2))
+ (-4 *2 (-344 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-567)) (-4 *4 (-351))
+ (-5 *1 (-531 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-439)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-1050))
+ (-5 *2 (-484 *4 *5)) (-5 *1 (-945 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-690 *4)) (-4 *4 (-1050)) (-5 *1 (-1142 *3 *4))
+ (-14 *3 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1094 (-844 (-225)))) (-5 *2 (-225)) (-5 *1 (-306)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-5 *2 (-1266 *3)) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1242 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-645 *2))) (-5 *4 (-645 *5))
+ (-4 *5 (-38 (-410 (-567)))) (-4 *2 (-1257 *5))
+ (-5 *1 (-1259 *5 *2)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3424 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-365)) (-4 *7 (-1242 *6))
+ (-5 *2 (-2 (|:| |answer| (-588 (-410 *7))) (|:| |a0| *6)))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *5 (-1242 *4)) (-5 *2 (-645 (-2 (|:| -4113 *5) (|:| -2190 *5))))
+ (-5 *1 (-808 *4 *5 *3 *6)) (-4 *3 (-657 *5))
+ (-4 *6 (-657 (-410 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *4 (-1242 *5)) (-5 *2 (-645 (-2 (|:| -4113 *4) (|:| -2190 *4))))
+ (-5 *1 (-808 *5 *4 *3 *6)) (-4 *3 (-657 *4))
+ (-4 *6 (-657 (-410 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *5 (-1242 *4)) (-5 *2 (-645 (-2 (|:| -4113 *5) (|:| -2190 *5))))
+ (-5 *1 (-808 *4 *5 *6 *3)) (-4 *6 (-657 *5))
+ (-4 *3 (-657 (-410 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *4 (-1242 *5)) (-5 *2 (-645 (-2 (|:| -4113 *4) (|:| -2190 *4))))
+ (-5 *1 (-808 *5 *4 *6 *3)) (-4 *6 (-657 *4))
+ (-4 *3 (-657 (-410 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-328 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-519 *3 *4))
+ (-14 *4 (-567)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-645 *1)) (-4 *1 (-921)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-421 *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-1050)) (-5 *2 (-645 *6)) (-5 *1 (-447 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-5 *2 (-645 (-645 (-645 *4))))
+ (-5 *1 (-1187 *4)) (-5 *3 (-645 (-645 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-700)) (-5 *1 (-306)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1215)) (-5 *1 (-377 *4 *2))
- (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4416)))))))
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-377 *4 *2))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417)))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-772)) (-5 *3 (-944 *5)) (-4 *5 (-1050))
+ (-5 *1 (-1164 *4 *5)) (-14 *4 (-922))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-772)) (-5 *1 (-1164 *4 *5))
+ (-14 *4 (-922)) (-4 *5 (-1050))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-944 *5)) (-4 *5 (-1050))
+ (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4))))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1144)) (-5 *3 (-144)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-245 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1176)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851)))
+ (-14 *3 (-645 (-1176)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-384 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1100))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-645 (-1176))) (-4 *3 (-172))
+ (-4 *5 (-238 (-2268 *2) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3811 *4) (|:| -4164 *5))
+ (-2 (|:| -3811 *4) (|:| -4164 *5))))
+ (-5 *1 (-464 *2 *3 *4 *5 *6 *7)) (-4 *4 (-851))
+ (-4 *7 (-950 *3 *5 (-865 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-851))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1242 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-736 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1050))
+ (-4 *3 (-727))))
+ ((*1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1289 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-847)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
+ (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-300 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1094 (-844 (-225)))) (-5 *3 (-225)) (-5 *2 (-112))
+ (-5 *1 (-306))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-1172 *3)))))
(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-689 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3))
+ (-4 *3 (-649 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3))
+ (-4 *3 (-649 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050))))
+ ((*1 *1 *1) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-334)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *4 (-1242 *3))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-1242 *3))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-769 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 *3))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-986 *4 *3 *5 *6)) (-4 *6 (-725 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 *3))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-1275 *4 *3 *5 *6)) (-4 *6 (-412 *3 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875)))
+ (-5 *1 (-471)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176))
+ (-14 *4 *2))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-950 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1) (-4 *1 (-1139))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-423 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1201) (-433 *3)))
+ (-14 *4 (-1176)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-4 *2 (-13 (-27) (-1201) (-433 *3) (-10 -8 (-15 -4101 ($ *4)))))
+ (-4 *4 (-849))
+ (-4 *5
+ (-13 (-1244 *2 *4) (-365) (-1201)
+ (-10 -8 (-15 -1930 ($ $)) (-15 -2113 ($ $)))))
+ (-5 *1 (-425 *3 *2 *4 *5 *6 *7)) (-4 *6 (-984 *5)) (-14 *7 (-1176)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1094 (-225))) (-5 *6 (-567)) (-5 *2 (-1211 (-927)))
+ (-5 *1 (-319))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1094 (-225))) (-5 *6 (-567)) (-5 *7 (-1158))
+ (-5 *2 (-1211 (-927))) (-5 *1 (-319))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1094 (-225))) (-5 *6 (-225)) (-5 *7 (-567))
+ (-5 *2 (-1211 (-927))) (-5 *1 (-319))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-317 (-567))) (-5 *4 (-1 (-225) (-225)))
+ (-5 *5 (-1094 (-225))) (-5 *6 (-225)) (-5 *7 (-567)) (-5 *8 (-1158))
+ (-5 *2 (-1211 (-927))) (-5 *1 (-319)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1226 *3))
+ (-5 *2 (-410 (-567))))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1218)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-330 *3)) (-4 *3 (-365)) (-4 *3 (-370))
+ (-5 *2 (-1172 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1104)) (-5 *1 (-281)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-645 *2) *2 *2 *2)) (-4 *2 (-1100))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1100)) (-5 *1 (-103 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1176)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4))
+ (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1100)) (-4 *2 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-645 (-1176))) (-4 *5 (-238 (-2268 *3) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3811 *4) (|:| -4164 *5))
+ (-2 (|:| -3811 *4) (|:| -4164 *5))))
+ (-4 *2 (-172)) (-5 *1 (-464 *3 *2 *4 *5 *6 *7)) (-4 *4 (-851))
+ (-4 *7 (-950 *2 *5 (-865 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-512 *2 *3)) (-4 *3 (-851)) (-4 *2 (-1100))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-559)) (-5 *1 (-624 *2 *3)) (-4 *3 (-1242 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-709 *2)) (-4 *2 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-851))
+ (-4 *3 (-727))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *3 (-793)) (-4 *4 (-851))
+ (-4 *2 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-823)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1248 *3 *4)) (-4 *3 (-1049)) (-4 *4 (-1225 *3))
- (-5 *2 (-409 (-566))))))
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1156 *3))) (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1266 (-645 *3))) (-4 *4 (-308))
+ (-5 *2 (-645 *3)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2)
+ (-12 (-4 *1 (-351))
+ (-5 *2 (-645 (-2 (|:| -2296 (-567)) (|:| -4164 (-567))))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-771)) (-4 *4 (-1049))
- (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-1241 *4)))))
+ (-12 (-5 *3 (-772)) (-4 *4 (-1050))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-1242 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1215)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-481))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-594))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-627))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1100))
+ (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3))))
+ (-5 *1 (-1076 *3 *4 *2))
+ (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1100)) (-5 *1 (-1165 *3 *2)) (-4 *3 (-1100)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-772)) (-5 *1 (-1101 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1139))))
(((*1 *2 *2)
- (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
- (-5 *1 (-1123 *3 *4 *5 *2)) (-4 *2 (-687 *3 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-331)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-331)))))
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (-5 *1 (-268)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1158)) (-5 *3 (-567)) (-5 *1 (-241)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-753)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1100)) (-4 *5 (-1100))
+ (-5 *2 (-1 *5)) (-5 *1 (-684 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1100))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172))
+ (-4 *6 (-238 (-2268 *3) (-772)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *6))
+ (-2 (|:| -3811 *5) (|:| -4164 *6))))
+ (-5 *2 (-714 *5 *6 *7)) (-5 *1 (-464 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-851)) (-4 *8 (-950 *4 *6 (-865 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-727)) (-4 *2 (-851)) (-5 *1 (-736 *3 *2))
+ (-4 *3 (-1050))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793))
+ (-4 *4 (-851)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-863)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851))))
+ ((*1 *1) (-4 *1 (-1151))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4)))
+ (-5 *2 (-1266 *6)) (-5 *1 (-338 *3 *4 *5 *6))
+ (-4 *6 (-344 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)))))
+(((*1 *1) (-5 *1 (-1085))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-560 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-1172 *3))
+ (-4 *3 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3)))
+ (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-613 *3)) (-5 *5 (-410 (-1172 *3)))
+ (-4 *3 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-2 (|:| -3424 *3) (|:| |coeff| *3)))
+ (-5 *1 (-563 *6 *3 *7)) (-4 *7 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 *3)) (-5 *1 (-946 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-645 (-1176)))
+ (-4 *2 (-13 (-433 (-169 *5)) (-1003) (-1201))) (-4 *5 (-559))
+ (-5 *1 (-601 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1003) (-1201))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050))))
+ ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1100)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-793)) (-4 *3 (-172)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-235 *3))
+ (-4 *3 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-283 *3)) (-4 *3 (-1216)))))
(((*1 *2 *3 *4)
- (-12
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-365)) (-4 *6 (-1242 (-410 *2)))
+ (-4 *2 (-1242 *5)) (-5 *1 (-215 *5 *2 *6 *3))
+ (-4 *3 (-344 *5 *2 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
+ (-5 *2 (-1172 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1036)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-509)) (-5 *1 (-114))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-509)) (-4 *4 (-1100)) (-5 *1 (-930 *4 *2))
+ (-4 *2 (-433 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-509)) (-5 *2 (-317 (-567)))
+ (-5 *1 (-931)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1197)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-959 *3)) (-5 *1 (-1163 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-147))) (-5 *1 (-540 *3 *2))
+ (-4 *2 (-1257 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-4 *4 (-1242 *3))
+ (-4 *5 (-725 *3 *4)) (-5 *1 (-544 *3 *4 *5 *2)) (-4 *2 (-1257 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-365) (-370) (-615 (-567)))) (-5 *1 (-545 *3 *2))
+ (-4 *2 (-1257 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-13 (-559) (-147)))
+ (-5 *1 (-1152 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-410 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-780 *4))
+ (-4 *4 (-13 (-365) (-849))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-351)) (-4 *6 (-1242 *5))
+ (-5 *2
+ (-645
+ (-2 (|:| -2557 (-690 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-690 *6)))))
+ (-5 *1 (-501 *5 *6 *7))
(-5 *3
- (-644
- (-2 (|:| |eqzro| (-644 *8)) (|:| |neqzro| (-644 *8))
- (|:| |wcond| (-644 (-952 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *5))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *5))))))))))
- (-5 *4 (-1157)) (-4 *5 (-13 (-308) (-147))) (-4 *8 (-949 *5 *7 *6))
- (-4 *6 (-13 (-850) (-614 (-1175)))) (-4 *7 (-793)) (-5 *2 (-566))
- (-5 *1 (-924 *5 *6 *7 *8)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-862)))))
+ (-2 (|:| -2557 (-690 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-690 *6))))
+ (-4 *7 (-1242 *6)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *5)) (-4 *5 (-1242 *3)) (-4 *3 (-308))
+ (-5 *2 (-112)) (-5 *1 (-458 *3 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1266 (-3 (-471) "undefined"))) (-5 *1 (-1267)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4)))
+ (-5 *1 (-1187 *4)) (-4 *4 (-851)))))
+(((*1 *1 *1) (-4 *1 (-243)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-290 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1242 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-2909 (-12 (-5 *1 (-295 *2)) (-4 *2 (-365)) (-4 *2 (-1216)))
+ (-12 (-5 *1 (-295 *2)) (-4 *2 (-476)) (-4 *2 (-1216)))))
+ ((*1 *1 *1) (-4 *1 (-476)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1266 *3)) (-4 *3 (-351)) (-5 *1 (-531 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-716 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-365)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1266 *4)) (-4 *4 (-420 *3)) (-4 *3 (-308))
+ (-4 *3 (-559)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-4 *4 (-365)) (-5 *2 (-1266 *1))
+ (-4 *1 (-330 *4))))
+ ((*1 *2) (-12 (-4 *3 (-365)) (-5 *2 (-1266 *1)) (-4 *1 (-330 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-172)) (-4 *4 (-1242 *3)) (-5 *2 (-1266 *1))
+ (-4 *1 (-412 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4))
+ (-5 *2 (-1266 *6)) (-5 *1 (-416 *3 *4 *5 *6))
+ (-4 *6 (-13 (-412 *4 *5) (-1039 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-308)) (-4 *4 (-993 *3)) (-4 *5 (-1242 *4))
+ (-5 *2 (-1266 *6)) (-5 *1 (-417 *3 *4 *5 *6 *7))
+ (-4 *6 (-412 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1266 *1)) (-4 *1 (-420 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1266 (-1266 *4))) (-5 *1 (-531 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))
+ (-5 *1 (-989 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 *7)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))
+ (-5 *1 (-1107 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-512 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-851)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1175))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1200) (-959)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2227 (-644 *4))))
- (-5 *1 (-801 *6 *4 *3)) (-4 *3 (-656 *4)))))
+ (-12 (-5 *3 (-645 (-410 (-953 (-567))))) (-5 *4 (-645 (-1176)))
+ (-5 *2 (-645 (-645 *5))) (-5 *1 (-382 *5))
+ (-4 *5 (-13 (-849) (-365)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 *4)) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-313)) (-5 *1 (-297))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-313)) (-5 *1 (-297))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-313)) (-5 *1 (-297))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-1158))) (-5 *3 (-1158)) (-5 *2 (-313))
+ (-5 *1 (-297)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-943 *4)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-952 (-566))) (-5 *3 (-1175))
- (-5 *4 (-1093 (-409 (-566)))) (-5 *1 (-30)))))
-(((*1 *2 *2 *3)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-988 (-410 (-567)) (-865 *3) (-240 *4 (-772))
+ (-247 *3 (-410 (-567)))))
+ (-14 *3 (-645 (-1176))) (-14 *4 (-772)) (-5 *1 (-987 *3 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-1050)) (-4 *2 (-365))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-660 *4 *2))
+ (-4 *2 (-657 *4)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-559)) (-4 *3 (-172))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -2557 (-645 *1))))
+ (-4 *1 (-369 *3))))
+ ((*1 *2)
(|partial| -12
- (-5 *3 (-644 (-2 (|:| |func| *2) (|:| |pole| (-112)))))
- (-4 *2 (-13 (-432 *4) (-1002))) (-4 *4 (-558))
- (-5 *1 (-277 *4 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-264))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-264)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-771)) (-4 *5 (-558))
+ (-5 *2
+ (-2 (|:| |particular| (-456 *3 *4 *5 *6))
+ (|:| -2557 (-645 (-456 *3 *4 *5 *6)))))
+ (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268))))
+ ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1268)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-365))
+ (-5 *2 (-112)) (-5 *1 (-668 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417))))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-5 *2 (-112))
+ (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-567))) (-5 *1 (-1048)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *8)) (-4 *8 (-950 *5 *7 *6))
+ (-4 *5 (-13 (-308) (-147))) (-4 *6 (-13 (-851) (-615 (-1176))))
+ (-4 *7 (-794))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-969 *5 *3)) (-4 *3 (-1241 *5)))))
+ (-645
+ (-2 (|:| -2432 (-772))
+ (|:| |eqns|
+ (-645
+ (-2 (|:| |det| *8) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (|:| |fgb| (-645 *8)))))
+ (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-645 (-953 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-645 (-953 *4))) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-645 (-953 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-645 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1266 (-456 *4 *5 *6 *7))) (-5 *2 (-645 (-953 *4)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-559)) (-4 *4 (-172))
+ (-14 *5 (-922)) (-14 *6 (-645 (-1176))) (-14 *7 (-1266 (-690 *4))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-4 *3 (-1065 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1071 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1065 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-772)) (-5 *6 (-112)) (-4 *7 (-455)) (-4 *8 (-794))
+ (-4 *9 (-851)) (-4 *3 (-1065 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1145 *7 *8 *9 *3 *4)) (-4 *4 (-1109 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-772)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1065 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1145 *6 *7 *8 *3 *4)) (-4 *4 (-1109 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-645 *4))
+ (|:| |todo| (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))))
+ (-5 *1 (-1145 *5 *6 *7 *3 *4)) (-4 *4 (-1109 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-13 (-1050) (-718 (-410 (-567)))))
+ (-4 *5 (-851)) (-5 *1 (-1282 *4 *5 *2)) (-4 *2 (-1287 *5 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4416)) (-4 *1 (-119 *2)) (-4 *2 (-1215)))))
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-410 (-567)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567)))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8))
+ (-5 *5 (-1233 (-410 (-567)))) (-5 *6 (-410 (-567)))
+ (-4 *8 (-13 (-27) (-1201) (-433 *7)))
+ (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-410 (-567))))
+ (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *8)))
+ (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-410 (-567))) (-4 *4 (-1050)) (-4 *1 (-1249 *4 *3))
+ (-4 *3 (-1226 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-5 *2 (-421 (-1172 (-1172 *4))))
+ (-5 *1 (-1214 *4)) (-5 *3 (-1172 (-1172 *4))))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1036))
+ (-5 *1 (-750)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-142 *2 *4 *3))
+ (-4 *3 (-375 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-506 *2 *4 *5 *3))
+ (-4 *5 (-375 *2)) (-4 *3 (-375 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *4)) (-4 *4 (-993 *2)) (-4 *2 (-559))
+ (-5 *1 (-694 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-993 *2)) (-4 *2 (-559)) (-5 *1 (-1235 *2 *4 *3))
+ (-4 *3 (-1242 *4)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-596 *2)) (-4 *2 (-38 (-409 (-566)))) (-4 *2 (-1049)))))
-(((*1 *2 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267))))
- ((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1267)))))
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-375 *3)) (-4 *3 (-1216)) (-4 *3 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1216))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-1180)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-1211 *3))
+ (-4 *3 (-975)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2807 (-645 (-2 (|:| |irr| *10) (|:| -3259 (-567)))))))
+ (-5 *6 (-645 *3)) (-5 *7 (-645 *8)) (-4 *8 (-851)) (-4 *3 (-308))
+ (-4 *10 (-950 *3 *9 *8)) (-4 *9 (-794))
+ (-5 *2
+ (-2 (|:| |polfac| (-645 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-645 (-1172 *3)))))
+ (-5 *1 (-626 *8 *9 *3 *10)) (-5 *4 (-645 (-1172 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-4 *5 (-13 (-455) (-1039 *4) (-640 *4)))
+ (-5 *2 (-52)) (-5 *1 (-316 *5 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-455) (-1039 *5) (-640 *5))) (-5 *5 (-567))
+ (-5 *2 (-52)) (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1233 (-567)))
+ (-4 *7 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-567)))
+ (-4 *3 (-13 (-27) (-1201) (-433 *7)))
+ (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-567)) (-4 *4 (-1050)) (-4 *1 (-1228 *4 *3))
+ (-4 *3 (-1257 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1226 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1063)) (-5 *3 (-1158)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-915 *3)) (-4 *3 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1100)) (-5 *2 (-890 *3 *5)) (-5 *1 (-886 *3 *4 *5))
+ (-4 *3 (-1100)) (-4 *5 (-667 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1257 *2 *3 *4)) (-4 *2 (-1049)) (-14 *3 (-1175))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-952 (-566)))) (-5 *1 (-439))))
+ (|partial| -12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455))
+ (-5 *1 (-362 *3 *4)) (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455))
+ (-14 *4 (-645 (-1176))) (-5 *1 (-629 *3 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-129))))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1220)) (-4 *3 (-1242 *4))
+ (-4 *5 (-1242 (-410 *3))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-381)) (-5 *1 (-1063)))))
+(((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269))))
+ ((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-5 *2 (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -1386 *1)))
+ (-4 *1 (-1065 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -3087 *1) (|:| |gap| (-772)) (|:| -1386 *1)))
+ (-4 *1 (-1065 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-772)) (-4 *6 (-365)) (-5 *4 (-1210 *6))
+ (-5 *2 (-1 (-1156 *4) (-1156 *4))) (-5 *1 (-1274 *6))
+ (-5 *5 (-1156 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-225))) (-5 *2 (-1103))
- (-5 *1 (-759))))
+ (-12 (-5 *4 (-772)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-52)) (-5 *1 (-316 *5 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1175)) (-5 *4 (-689 (-566))) (-5 *2 (-1103))
- (-5 *1 (-759)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-771)) (-4 *2 (-1099))
- (-5 *1 (-678 *2)))))
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-295 *3)) (-5 *5 (-772))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6))
+ (-4 *6 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1233 (-772)))
+ (-4 *7 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-772)))
+ (-4 *3 (-13 (-27) (-1201) (-433 *7)))
+ (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1228 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1257 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-317 *5)))
+ (-5 *1 (-1129 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176)))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-645 (-645 (-317 *5))))
+ (-5 *1 (-1129 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-850) (-614 (-1175))))
- (-4 *6 (-793)) (-5 *2 (-644 *3)) (-5 *1 (-924 *4 *5 *6 *3))
- (-4 *3 (-949 *4 *6 *5)))))
+ (-12 (-5 *3 (-770))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))))
+ (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-770)) (-5 *4 (-1063))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))))
+ (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-788)) (-5 *3 (-1063))
+ (-5 *4
+ (-2 (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-645 (-1094 (-844 (-225))))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))
+ (|:| |extra| (-1036))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-788)) (-5 *3 (-1063))
+ (-5 *4
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))
+ (|:| |extra| (-1036))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-801)) (-5 *3 (-1063))
+ (-5 *4
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-809))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158)))))
+ (-5 *1 (-806))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-809)) (-5 *4 (-1063))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158)))))
+ (-5 *1 (-806))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-840)) (-5 *3 (-1063))
+ (-5 *4
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))
+ (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-840)) (-5 *3 (-1063))
+ (-5 *4
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225)))) (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-842))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158)))))
+ (-5 *1 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-842)) (-5 *4 (-1063))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158)))))
+ (-5 *1 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-896)) (-5 *3 (-1063))
+ (-5 *4
+ (-2 (|:| |pde| (-645 (-317 (-225))))
+ (|:| |constraints|
+ (-645
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158))
+ (|:| |tol| (-225))))
+ (-5 *2 (-2 (|:| -2509 (-381)) (|:| |explanations| (-1158))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-899))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158)))))
+ (-5 *1 (-898))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-899)) (-5 *4 (-1063))
+ (-5 *2
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158)))))
+ (-5 *1 (-898)))))
+(((*1 *1) (-5 *1 (-440))))
+(((*1 *2 *1) (-12 (-4 *1 (-530)) (-5 *2 (-692 (-1222))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-314 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1158)) (|:| |prob| (-1158))))))
+ (-5 *1 (-423 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1201) (-433 *5)))
+ (-14 *6 (-1176)) (-14 *7 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $))
+ (-15 -4078 ((-1125 *3 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *3 (-613 $))))))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1176)))
+ (-4 *6 (-13 (-559) (-1039 *5))) (-4 *5 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-953 *6)))))) (-5 *1 (-1040 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1174 *4 *5 *6))
+ (-4 *4 (-1050)) (-14 *5 (-1176)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1239 *5 *4)) (-5 *1 (-1258 *4 *5 *6))
+ (-4 *4 (-1050)) (-14 *5 (-1176)) (-14 *6 *4))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-171)) (-5 *1 (-1164 *4 *5))
+ (-14 *4 (-922)) (-4 *5 (-1050)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1266 *4)) (-5 *3 (-690 *4)) (-4 *4 (-365))
+ (-5 *1 (-668 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-365))
+ (-4 *5 (-13 (-375 *4) (-10 -7 (-6 -4417))))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417))))
+ (-5 *1 (-669 *4 *5 *2 *3)) (-4 *3 (-688 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-645 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-365))
+ (-5 *1 (-815 *2 *3)) (-4 *3 (-657 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *1 (-1128 *3 *2)) (-4 *3 (-1242 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-370)) (-4 *2 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-410 (-953 (-169 (-567))))))
+ (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-295 (-410 (-953 (-169 (-567)))))))
+ (-5 *2 (-645 (-645 (-295 (-953 (-169 *4)))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 (-169 (-567)))))
+ (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-295 (-410 (-953 (-169 (-567))))))
+ (-5 *2 (-645 (-295 (-953 (-169 *4))))) (-5 *1 (-380 *4))
+ (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-861)) (-5 *2 (-692 (-552))) (-5 *3 (-552)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-365)) (-5 *2 (-645 (-1156 *4))) (-5 *1 (-286 *4 *5))
+ (-5 *3 (-1156 *4)) (-4 *5 (-1257 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1100))
+ (-4 *6 (-1100)) (-4 *2 (-1100)) (-5 *1 (-681 *5 *6 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1100)) (-4 *2 (-370)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1206 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *1) (-5 *1 (-1082))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-977 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *5 (-1065 *3 *4 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1099)) (-4 *6 (-1099))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-684 *4 *5 *6)) (-4 *4 (-1099)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1250 *3 *4 *5)) (-4 *3 (-365)) (-14 *4 (-1175))
- (-14 *5 *3) (-5 *1 (-320 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-381))) (-5 *1 (-1040)) (-5 *3 (-381)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-429 *3 *2)) (-4 *3 (-13 (-172) (-38 (-409 (-566)))))
- (-4 *2 (-13 (-850) (-21))))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1215)))))
+ (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-645 (-1176))) (-4 *5 (-455))
+ (-5 *2 (-484 *4 *5)) (-5 *1 (-632 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1171 *1)) (-5 *4 (-1175)) (-4 *1 (-27))
- (-5 *2 (-644 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1171 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-952 *1)) (-4 *1 (-27)) (-5 *2 (-644 *1))))
+ (-12 (-5 *3 (-1172 *2)) (-4 *2 (-950 (-410 (-953 *6)) *5 *4))
+ (-5 *1 (-733 *5 *4 *6 *2)) (-4 *5 (-794))
+ (-4 *4 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $)))))
+ (-4 *6 (-559)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-5 *2 (-644 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-558)) (-5 *2 (-644 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 (-225))) (-5 *4 (-644 (-1175)))
- (-5 *5 (-1093 (-843 (-225)))) (-5 *2 (-1155 (-225))) (-5 *1 (-301)))))
-(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-862))))
-(((*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-365)) (-4 *1 (-330 *3))))
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *2 (-112)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1158)) (-4 *1 (-366 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-241)) (-5 *3 (-1158))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-241))))
+ ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-421 *3)) (-4 *3 (-559)))))
+(((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *2 *3 *4 *5 *6)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *2 (-1100))))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *4))))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-905 *4))
+ (-4 *4 (-1100))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-539)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))))
+(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-645 (-645 (-567)))) (-5 *1 (-972))
+ (-5 *3 (-645 (-567))))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-169 (-225))) (-5 *5 (-567))
+ (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-4 *1 (-303))) ((*1 *1 *1) (-4 *1 (-303))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *5 (-112))
+ (-5 *2 (-1036)) (-5 *1 (-746)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8)))
+ (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1071 *4 *5 *6 *7)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-645 *7)) (|:| -2138 *8)))
+ (-4 *7 (-1065 *4 *5 *6)) (-4 *8 (-1071 *4 *5 *6 *7)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1176)))
+ (-5 *2
+ (-645 (-1146 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6)))))
+ (-5 *1 (-629 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *4 (-1176))
+ (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-645 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1) (-4 *1 (-1139))))
+(((*1 *1 *2) (-12 (-5 *2 (-820 *3)) (-4 *3 (-851)) (-5 *1 (-673 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-4 *5 (-330 *4)) (-4 *6 (-1242 *5))
+ (-5 *2 (-645 *3)) (-5 *1 (-778 *4 *5 *6 *3 *7)) (-4 *3 (-1242 *6))
+ (-14 *7 (-922)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-241)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-365)) (-4 *5 (-1050))
+ (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-567)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-1190 *2)) (-4 *2 (-365)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1100)) (-5 *2 (-1158)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-520)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))
+ (-5 *2 (-645 (-1176))) (-5 *1 (-268))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1172 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-645 *5))
+ (-5 *1 (-322 *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-341 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-390))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-433 *3)) (-4 *3 (-1100)) (-5 *2 (-645 (-1176)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-645 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050))
+ (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *5))
+ (-5 *1 (-951 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $)))))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-974 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-4 *5 (-851)) (-5 *2 (-645 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-5 *2 (-645 (-1176)))
+ (-5 *1 (-1044 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567))))
+ ((*1 *1 *1) (-12 (-4 *1 (-675 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1) (-4 *1 (-870 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-974 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-793))
+ (-4 *4 (-851)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1209 *4 *5 *3 *6)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *3 (-851)) (-4 *6 (-1065 *4 *5 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-922)) (-5 *1 (-445 *2))
+ (-4 *2 (-1242 (-567)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-922)) (-5 *4 (-772)) (-5 *1 (-445 *2))
+ (-4 *2 (-1242 (-567)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *1 (-445 *2))
+ (-4 *2 (-1242 (-567)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772))
+ (-5 *1 (-445 *2)) (-4 *2 (-1242 (-567)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-922)) (-5 *4 (-645 (-772))) (-5 *5 (-772))
+ (-5 *6 (-112)) (-5 *1 (-445 *2)) (-4 *2 (-1242 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-421 *2)) (-4 *2 (-1242 *5))
+ (-5 *1 (-447 *5 *2)) (-4 *5 (-1050)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-2 (|:| -3986 (-114)) (|:| |w| (-225)))) (-5 *1 (-204)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-421 *4) *4)) (-4 *4 (-559)) (-5 *2 (-421 *4))
+ (-5 *1 (-422 *4))))
+ ((*1 *1 *1) (-5 *1 (-927)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-927))))
+ ((*1 *1 *1) (-5 *1 (-928)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1094 (-225))) (-5 *1 (-928))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))
+ (-5 *4 (-410 (-567))) (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))
+ (-5 *1 (-1021 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))
+ (-5 *4 (-410 (-567))) (-5 *1 (-1022 *3)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567)))))
+ (-5 *1 (-1022 *3)) (-4 *3 (-1242 (-410 (-567))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3))
+ (-4 *3 (-1242 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-597 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1226 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-567))) (-4 *1 (-1257 *3)) (-4 *3 (-1050)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1267))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1267))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-264))) (-5 *1 (-1268)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1036))
+ (-5 *1 (-747)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-397)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-174 *3)) (-4 *3 (-308))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-675 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-741 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-851))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *1 (-981 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-5 *3 (-645 *7)) (-4 *1 (-1071 *4 *5 *6 *7))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 *1)) (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-147))) (-5 *2 (-645 *3))
+ (-5 *1 (-1236 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1172 (-410 (-1172 *2)))) (-5 *4 (-613 *2))
+ (-4 *2 (-13 (-433 *5) (-27) (-1201)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *1 (-563 *5 *2 *6)) (-4 *6 (-1100))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-1241 *4)) (-4 *4 (-1219))
- (-4 *1 (-344 *4 *3 *5)) (-4 *5 (-1241 (-409 *3)))))
+ (-12 (-5 *2 (-1172 *1)) (-4 *1 (-950 *4 *5 *3)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *3 (-851))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-1265 *1)) (-4 *4 (-172))
- (-4 *1 (-369 *4))))
+ (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1050)) (-4 *1 (-950 *4 *5 *3))
+ (-4 *5 (-794)) (-4 *3 (-851))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-1172 *2))) (-4 *5 (-794)) (-4 *4 (-851))
+ (-4 *6 (-1050))
+ (-4 *2
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $)))))
+ (-5 *1 (-951 *5 *4 *6 *7 *2)) (-4 *7 (-950 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-1172 (-410 (-953 *5))))) (-5 *4 (-1176))
+ (-5 *2 (-410 (-953 *5))) (-5 *1 (-1044 *5)) (-4 *5 (-559)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-758)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
+ (-14 *4 *2) (-4 *5 (-172))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-922)) (-5 *1 (-165 *3 *4))
+ (-4 *3 (-166 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-922))))
+ ((*1 *2)
+ (-12 (-4 *1 (-372 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1242 *3))
+ (-5 *2 (-922))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *5)) (-5 *4 (-1266 *5)) (-4 *5 (-365))
+ (-5 *2 (-772)) (-5 *1 (-668 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417))))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417)))) (-5 *2 (-772))
+ (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3))
+ (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
+ (-5 *2 (-772)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1176)) (-5 *6 (-112))
+ (-4 *7 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-4 *3 (-13 (-1201) (-960) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *7 *3)) (-5 *5 (-844 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884))
+ (-5 *3 (-645 (-567)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884))
+ (-5 *3 (-645 (-567))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1027 (-844 (-567))))
+ (-5 *3 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *4)))) (-4 *4 (-1050))
+ (-5 *1 (-597 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *4)) (-4 *4 (-640 (-567))) (-5 *2 (-112))
+ (-5 *1 (-1293 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-567)) (-5 *1 (-448 *3)) (-4 *3 (-407)) (-4 *3 (-1050)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-760)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1050)) (-5 *1 (-895 *2 *3)) (-4 *2 (-1242 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-1265 *1)) (-4 *4 (-172))
- (-4 *1 (-372 *4 *5)) (-4 *5 (-1241 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-411 *3 *4))
- (-4 *4 (-1241 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1265 *3)) (-4 *3 (-172)) (-4 *1 (-419 *3)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1073))))
+ (-12 (-5 *3 (-645 (-922))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-922))
+ (-4 *2 (-365)) (-14 *5 (-994 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-714 *5 *6 *7)) (-4 *5 (-851))
+ (-4 *6 (-238 (-2268 *4) (-772)))
+ (-14 *7
+ (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *6))
+ (-2 (|:| -3811 *5) (|:| -4164 *6))))
+ (-14 *4 (-645 (-1176))) (-4 *2 (-172))
+ (-5 *1 (-464 *4 *2 *5 *6 *7 *8)) (-4 *8 (-950 *2 *6 (-865 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-512 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-851))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4))
+ (-4 *4 (-1242 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-736 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-727))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5))
+ (-4 *4 (-1050)) (-4 *5 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050))
+ (-4 *2 (-851))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6))
+ (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *2 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 *5)) (-4 *1 (-974 *4 *5 *6))
+ (-4 *4 (-1050)) (-4 *5 (-793)) (-4 *6 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-974 *4 *3 *2)) (-4 *4 (-1050)) (-4 *3 (-793))
+ (-4 *2 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1242 *5))
+ (-4 *7 (-1242 (-410 *6))) (-4 *8 (-344 *5 *6 *7))
+ (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-912 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
+ (-4 *4 (-1242 (-410 (-567)))) (-4 *5 (-1242 (-410 *4)))
+ (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-112))
+ (-5 *1 (-913 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036))
+ (-5 *1 (-749)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-645 (-410 *6))) (-5 *3 (-410 *6))
+ (-4 *6 (-1242 *5)) (-4 *5 (-13 (-365) (-147) (-1039 (-567))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-571 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-331)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -3843 *4) (|:| -3933 (-567)))))
+ (-4 *4 (-1100)) (-5 *2 (-1 *4)) (-5 *1 (-1018 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1216)) (-5 *2 (-772)) (-5 *1 (-182 *4 *3))
+ (-4 *3 (-675 *4)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-172))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1242 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-172)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)))))
(((*1 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-771)) (-5 *1 (-120 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-566)) (-5 *3 (-921)) (-4 *1 (-406))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-566)) (-4 *1 (-406))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-645 (-1266 *4))) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
+ (-5 *2 (-645 (-1266 *3))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-567)) (-5 *6 (-1 (-1271) (-1266 *5) (-1266 *5) (-381)))
+ (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271))
+ (-5 *1 (-789)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050))
+ (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1201)))
+ (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1201)))
+ (-5 *1 (-601 *4 *5 *2)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-851)) (-4 *5 (-794))
+ (-4 *6 (-559)) (-4 *7 (-950 *6 *5 *3))
+ (-5 *1 (-465 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1039 (-410 (-567))) (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $))
+ (-15 -4078 (*7 $))))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-5 *2
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-528)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-559)) (-5 *1 (-970 *2 *3)) (-4 *3 (-1242 *2)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -3424 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-645 (-410 *8))) (-4 *7 (-365)) (-4 *8 (-1242 *7))
+ (-5 *3 (-410 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-577 *7 *8)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-377 *4 *2))
+ (-4 *2 (-13 (-375 *4) (-10 -7 (-6 -4417)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365))
+ (-5 *2
+ (-2 (|:| |ir| (-588 (-410 *6))) (|:| |specpart| (-410 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-410 *6)) (|:| |h| *6)
+ (|:| |c1| (-410 *6)) (|:| |c2| (-410 *6)) (|:| -1923 *6)))
+ (-5 *1 (-1017 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *1) (-5 *1 (-1268))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-684 *4 *3)) (-4 *4 (-1100))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-645 (-772)))) (-5 *1 (-905 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *1 *1) (-4 *1 (-968))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-1156 (-225))) (-5 *1 (-192))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-225))) (-5 *4 (-645 (-1176)))
+ (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-1156 (-225))) (-5 *1 (-301))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *4 (-645 (-1176)))
+ (-5 *5 (-1094 (-844 (-225)))) (-5 *2 (-1156 (-225))) (-5 *1 (-301)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8))) (-4 *7 (-851))
+ (-4 *8 (-308)) (-4 *6 (-794)) (-4 *9 (-950 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-645 (-2 (|:| -2296 (-1172 *9)) (|:| -4164 (-567)))))))
+ (-5 *1 (-743 *6 *7 *8 *9)) (-5 *3 (-1172 *9)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-498)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1050)))))
+(((*1 *1) (-5 *1 (-1271))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-922)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-264)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-14 *5 (-645 (-1176))) (-5 *2 (-645 (-645 (-1025 (-410 *4)))))
+ (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-112))
+ (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-645 (-1025 (-410 *5))))) (-5 *1 (-1292 *5 *6 *7))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-953 *4)))
+ (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2 (-645 (-645 (-1025 (-410 *4))))) (-5 *1 (-1292 *4 *5 *6))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-567))
+ (-14 *4 (-772)) (-4 *5 (-172)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-324 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-131))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-363 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-388 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-389 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1100)) (-5 *1 (-650 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-844 (-381))) (-5 *2 (-844 (-225))) (-5 *1 (-306)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 *4))))
+ (-5 *1 (-890 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100))))
((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *2 *6)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *2 (-1099)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-295 *6)) (-5 *4 (-114)) (-4 *6 (-432 *5))
- (-4 *5 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-644 *7))
- (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7))
- (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-644 (-295 *8))) (-5 *4 (-644 (-114))) (-5 *5 (-295 *8))
- (-5 *6 (-644 *8)) (-4 *8 (-432 *7))
- (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114))) (-5 *5 (-295 *7))
- (-4 *7 (-432 *6)) (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-644 *8)) (-5 *4 (-644 (-114))) (-5 *6 (-644 (-295 *8)))
- (-4 *8 (-432 *7)) (-5 *5 (-295 *8))
- (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-295 *5)) (-5 *4 (-114)) (-4 *5 (-432 *6))
- (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6))
- (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-4 *3 (-432 *6))
- (-4 *6 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-295 *3)) (-5 *6 (-644 *3))
- (-4 *3 (-432 *7)) (-4 *7 (-13 (-558) (-614 (-538)))) (-5 *2 (-52))
- (-5 *1 (-318 *7 *3)))))
+ (-12 (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100))
+ (-4 *7 (-1100)) (-5 *2 (-645 *1)) (-4 *1 (-1103 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-772))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-615 (-893 *3))) (-4 *3 (-887 *3)) (-4 *3 (-455))
+ (-5 *1 (-1207 *3 *2)) (-4 *2 (-615 (-893 *3))) (-4 *2 (-887 *3))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-613 *1)) (-4 *1 (-303)))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-103 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-247 *4 *5))) (-5 *2 (-247 *4 *5))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-455)) (-5 *1 (-632 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1258 *2 *3 *4)) (-4 *2 (-1050)) (-14 *3 (-1176))
+ (-14 *4 *2))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-824)) (-5 *1 (-823)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-1011 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-1098 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *2 (-1271)) (-5 *1 (-452 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-295 (-953 (-567))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-645 (-1176)))
+ (|:| |inhom| (-3 (-645 (-1266 (-772))) "failed"))
+ (|:| |hom| (-645 (-1266 (-772))))))
+ (-5 *1 (-236)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-775)) (-5 *1 (-114))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-775)) (-5 *1 (-114)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-308)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-308)) (-5 *1 (-463 *3 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-308)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-772)))
+ (-5 *1 (-542 *3 *2 *4 *5)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-158 *4 *2))
+ (-4 *2 (-433 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092 *2)) (-4 *2 (-433 *4)) (-4 *4 (-559))
+ (-5 *1 (-158 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-160))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1176)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1216)) (-5 *1 (-874 *3 *2)) (-4 *3 (-1216))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-972)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-752)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927))
- (-5 *1 (-925 *3)) (-4 *3 (-614 (-538)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1175)) (-5 *5 (-1093 (-225))) (-5 *2 (-927))
- (-5 *1 (-925 *3)) (-4 *3 (-614 (-538)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-926))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-926))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-926))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1093 (-225))) (-5 *1 (-927))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-927))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-927))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225)))
+ (|partial| -12 (-5 *3 (-772)) (-4 *4 (-308)) (-4 *6 (-1242 *4))
+ (-5 *2 (-1266 (-645 *6))) (-5 *1 (-458 *4 *6)) (-5 *5 (-645 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-327 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-793))
+ (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100))
+ (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1156 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 *3)) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-727))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *3)) (-4 *3 (-1050)) (-5 *2 (-645 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1050)) (-5 *2 (-1156 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144)))
+ ((*1 *1 *1) (-4 *1 (-1144))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *4)) (-4 *4 (-1216)) (-4 *1 (-238 *3 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-922))) (-5 *1 (-1101 *3 *4)) (-14 *3 (-922))
+ (-14 *4 (-922)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *5 (-1039 (-48)))
+ (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4))
+ (-5 *2 (-421 (-1172 (-48)))) (-5 *1 (-438 *4 *5 *3))
+ (-4 *3 (-1242 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851))
+ (-5 *2 (-59 (-645 (-673 *5)))) (-5 *1 (-673 *5)))))
+(((*1 *1) (-5 *1 (-157))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1050)) (-5 *1 (-50 *2 *3)) (-14 *3 (-645 (-1176)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 (-922))) (-4 *2 (-365)) (-5 *1 (-152 *4 *2 *5))
+ (-14 *4 (-922)) (-14 *5 (-994 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-317 *3)) (-5 *1 (-223 *3 *4))
+ (-4 *3 (-13 (-1050) (-851))) (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-324 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-131))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-384 *2 *3)) (-4 *3 (-1100)) (-4 *2 (-1050))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-559)) (-5 *1 (-624 *2 *4))
+ (-4 *4 (-1242 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-709 *2)) (-4 *2 (-1050))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1050)) (-5 *1 (-736 *2 *3)) (-4 *3 (-727))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *5)) (-5 *3 (-645 (-772))) (-4 *1 (-741 *4 *5))
+ (-4 *4 (-1050)) (-4 *5 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-741 *4 *2)) (-4 *4 (-1050))
+ (-4 *2 (-851))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-4 *1 (-853 *2)) (-4 *2 (-1050))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *6)) (-5 *3 (-645 (-772))) (-4 *1 (-950 *4 *5 *6))
+ (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *6 (-851))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-950 *4 *5 *2)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *2 (-851))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *2 (-950 *4 (-534 *5) *5))
+ (-5 *1 (-1126 *4 *5 *2)) (-4 *4 (-1050)) (-4 *5 (-851))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-953 *4)) (-5 *1 (-1210 *4))
+ (-4 *4 (-1050)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-944 *3))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3063 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1071 *3 *4 *5 *6)) (-4 *3 (-455)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-567)) (-5 *5 (-690 (-169 (-225))))
+ (-5 *2 (-1036)) (-5 *1 (-755)))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-784 *2)) (-4 *2 (-38 (-410 (-567))))
+ (-4 *2 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-645 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)))))
+(((*1 *1 *1 *1) (-4 *1 (-662))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1220)) (-4 *5 (-1242 *4))
+ (-5 *2 (-2 (|:| |radicand| (-410 *5)) (|:| |deg| (-772))))
+ (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1242 (-410 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-112)) (-5 *1 (-597 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-225))) (-5 *2 (-317 (-410 (-567))))
+ (-5 *1 (-306)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1) (-5 *1 (-186))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-365)) (-4 *4 (-559)) (-4 *5 (-1242 *4))
+ (-5 *2 (-2 (|:| -4208 (-624 *4 *5)) (|:| -3765 (-410 *5))))
+ (-5 *1 (-624 *4 *5)) (-5 *3 (-410 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1164 *3 *4))) (-5 *1 (-1164 *3 *4))
+ (-14 *3 (-922)) (-4 *4 (-1050))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-455)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1242 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-317 *4))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225)))
(-5 *1 (-927))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-644 (-1 (-225) (-225)))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-927))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225)))
+ (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225)))
(-5 *1 (-927))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1093 (-225)))
- (-5 *1 (-927)))))
-(((*1 *2 *2) (-12 (-5 *2 (-921)) (-5 *1 (-359 *3)) (-4 *3 (-351)))))
-(((*1 *2 *1) (-12 (-5 *2 (-566)) (-5 *1 (-312))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-771)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
+ (-12 (-5 *2 (-1 (-944 (-225)) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-953 (-567))))) (-5 *2 (-645 (-317 (-567))))
+ (-5 *1 (-1032)))))
+(((*1 *1 *1 *1) (-4 *1 (-662))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-794)) (-4 *7 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
+ (-5 *2 (-112)) (-5 *1 (-452 *4 *5 *6 *7)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-559)) (-5 *1 (-970 *4 *2))
+ (-4 *2 (-1242 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4))
+ (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6)))
+ (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567))))
+ (-5 *2 (-2 (|:| -1909 (-772)) (|:| -3116 *8)))
+ (-5 *1 (-912 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
+ (-4 *4 (-1242 (-410 (-567)))) (-4 *5 (-1242 (-410 *4)))
+ (-4 *6 (-344 (-410 (-567)) *4 *5))
+ (-5 *2 (-2 (|:| -1909 (-772)) (|:| -3116 *6)))
+ (-5 *1 (-913 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-863)) (-5 *1 (-1156 *3)) (-4 *3 (-1100))
+ (-4 *3 (-1216)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-613 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4)))
+ (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)))))
+(((*1 *1) (-5 *1 (-186))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-558)))))
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-870 *3)) (-5 *2 (-567))))
+ ((*1 *1 *1) (-4 *1 (-1003)))
+ ((*1 *1 *2) (-12 (-5 *2 (-567)) (-4 *1 (-1013))))
+ ((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1013))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-922))))
+ ((*1 *1 *1) (-4 *1 (-1013))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-313)) (-5 *1 (-830)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1265 (-317 (-225))))
+ (-12
+ (-5 *3
+ (-645 (-2 (|:| -2993 (-410 (-567))) (|:| -3005 (-410 (-567))))))
+ (-5 *2 (-645 (-410 (-567)))) (-5 *1 (-1021 *4))
+ (-4 *4 (-1242 (-567))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1172 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 (-645 *8)))
+ (-4 *7 (-851)) (-4 *8 (-308)) (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794))
(-5 *2
- (-2 (|:| |additions| (-566)) (|:| |multiplications| (-566))
- (|:| |exponentiations| (-566)) (|:| |functionCalls| (-566))))
- (-5 *1 (-306)))))
+ (-2 (|:| |upol| (-1172 *8)) (|:| |Lval| (-645 *8))
+ (|:| |Lfact|
+ (-645 (-2 (|:| -2296 (-1172 *8)) (|:| -4164 (-567)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-743 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172 *6)) (-4 *6 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-1172 *7)) (-5 *1 (-322 *4 *5 *6 *7))
+ (-4 *7 (-950 *6 *4 *5)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1227 *3 *2)) (-4 *3 (-1049))
- (-4 *2 (-1256 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
+ (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-645 (-295 *4))) (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-4 *1 (-107 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1141 *2 *3)) (-4 *2 (-13 (-1100) (-34)))
+ (-4 *3 (-13 (-1100) (-34))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4416)) (-4 *1 (-492 *4))
+ (-4 *4 (-1216)) (-5 *2 (-112)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 *6)) (-5 *4 (-644 (-1155 *7))) (-4 *6 (-850))
- (-4 *7 (-949 *5 (-533 *6) *6)) (-4 *5 (-1049))
- (-5 *2 (-1 (-1155 *7) *7)) (-5 *1 (-1125 *5 *6 *7)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-974)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1241 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1187 (-644 *4))) (-4 *4 (-850))
- (-5 *2 (-644 (-644 *4))) (-5 *1 (-1186 *4)))))
+ (-12 (-5 *4 (-645 (-48))) (-5 *2 (-421 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1242 (-48)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1242 (-48)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794))
+ (-5 *2 (-421 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-950 (-48) *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-48))) (-4 *5 (-851)) (-4 *6 (-794))
+ (-4 *7 (-950 (-48) *6 *5)) (-5 *2 (-421 (-1172 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1172 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-167 *4 *3))
+ (-4 *3 (-1242 (-169 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-5 *2 (-421 *3)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1242 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-772))) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-645 (-772))) (-5 *5 (-772)) (-5 *2 (-421 *3))
+ (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-421 *3)) (-5 *1 (-445 *3))
+ (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 (-169 (-567)))) (-5 *1 (-449))
+ (-5 *3 (-169 (-567)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
+ (-13 (-851)
+ (-10 -8 (-15 -3542 ((-1176) $))
+ (-15 -4295 ((-3 $ "failed") (-1176))))))
+ (-4 *5 (-794)) (-4 *7 (-559)) (-5 *2 (-421 *3))
+ (-5 *1 (-459 *4 *5 *6 *7 *3)) (-4 *6 (-559))
+ (-4 *3 (-950 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-308)) (-5 *2 (-421 (-1172 *4))) (-5 *1 (-461 *4))
+ (-5 *3 (-1172 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365))
+ (-4 *7 (-13 (-365) (-147) (-725 *5 *6))) (-5 *2 (-421 *3))
+ (-5 *1 (-497 *5 *6 *7 *3)) (-4 *3 (-1242 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-421 (-1172 *7)) (-1172 *7)))
+ (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794))
+ (-5 *2 (-421 *3)) (-5 *1 (-543 *5 *6 *7 *3))
+ (-4 *3 (-950 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-421 (-1172 *7)) (-1172 *7)))
+ (-4 *7 (-13 (-308) (-147))) (-4 *5 (-851)) (-4 *6 (-794))
+ (-4 *8 (-950 *7 *6 *5)) (-5 *2 (-421 (-1172 *8)))
+ (-5 *1 (-543 *5 *6 *7 *8)) (-5 *3 (-1172 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-645 *5) *6))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *6 (-1242 *5)) (-5 *2 (-645 (-654 (-410 *6))))
+ (-5 *1 (-658 *5 *6)) (-5 *3 (-654 (-410 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *5 (-1242 *4)) (-5 *2 (-645 (-654 (-410 *5))))
+ (-5 *1 (-658 *4 *5)) (-5 *3 (-654 (-410 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-820 *4)) (-4 *4 (-851)) (-5 *2 (-645 (-673 *4)))
+ (-5 *1 (-673 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-5 *2 (-645 *3)) (-5 *1 (-697 *3))
+ (-4 *3 (-1242 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351)) (-5 *2 (-421 *3))
+ (-5 *1 (-699 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-351))
+ (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1172 *7)))
+ (-5 *1 (-699 *4 *5 *6 *7)) (-5 *3 (-1172 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794))
+ (-4 *5
+ (-13 (-851)
+ (-10 -8 (-15 -3542 ((-1176) $))
+ (-15 -4295 ((-3 $ "failed") (-1176))))))
+ (-4 *6 (-308)) (-5 *2 (-421 *3)) (-5 *1 (-731 *4 *5 *6 *3))
+ (-4 *3 (-950 (-953 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794))
+ (-4 *5 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *6 (-559))
+ (-5 *2 (-421 *3)) (-5 *1 (-733 *4 *5 *6 *3))
+ (-4 *3 (-950 (-410 (-953 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-13 (-308) (-147)))
+ (-5 *2 (-421 *3)) (-5 *1 (-734 *4 *5 *6 *3))
+ (-4 *3 (-950 (-410 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147)))
+ (-5 *2 (-421 *3)) (-5 *1 (-742 *4 *5 *6 *3))
+ (-4 *3 (-950 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-13 (-308) (-147)))
+ (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-421 (-1172 *7)))
+ (-5 *1 (-742 *4 *5 *6 *7)) (-5 *3 (-1172 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1008 *3))
+ (-4 *3 (-1242 (-410 (-567))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1042 *3))
+ (-4 *3 (-1242 (-410 (-953 (-567)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1242 (-410 (-567))))
+ (-4 *5 (-13 (-365) (-147) (-725 (-410 (-567)) *4)))
+ (-5 *2 (-421 *3)) (-5 *1 (-1079 *4 *5 *3)) (-4 *3 (-1242 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1242 (-410 (-953 (-567)))))
+ (-4 *5 (-13 (-365) (-147) (-725 (-410 (-953 (-567))) *4)))
+ (-5 *2 (-421 *3)) (-5 *1 (-1081 *4 *5 *3)) (-4 *3 (-1242 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455))
+ (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1172 (-410 *7))))
+ (-5 *1 (-1171 *4 *5 *6 *7)) (-5 *3 (-1172 (-410 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1220))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-421 *3)) (-5 *1 (-1231 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1156 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4)))
+ (-5 *2 (-1266 *6)) (-5 *1 (-338 *3 *4 *5 *6))
+ (-4 *6 (-344 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-317 (-169 (-381)))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-695))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-702))) (-5 *1 (-331))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-700))) (-5 *1 (-331))))
+ ((*1 *1) (-5 *1 (-331))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-192))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-301))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-225))) (-5 *2 (-645 (-1158))) (-5 *1 (-306)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1265 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
- (-4 *1 (-724 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1241 *5))
- (-5 *2 (-689 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1177 (-409 (-566)))) (-5 *1 (-190)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-983 *2)) (-4 *2 (-1200)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)) (-4 *2 (-454)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *2 (-1035))
+ (-12 (-4 *5 (-365)) (-4 *5 (-559))
+ (-5 *2
+ (-2 (|:| |minor| (-645 (-922))) (|:| -2823 *3)
+ (|:| |minors| (-645 (-645 (-922)))) (|:| |ops| (-645 *3))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))))
+(((*1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-875)) (-5 *1 (-1269)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8))
+ (-4 *8 (-950 *5 *7 *6)) (-4 *5 (-13 (-308) (-147)))
+ (-4 *6 (-13 (-851) (-615 (-1176)))) (-4 *7 (-794)) (-5 *2 (-112))
+ (-5 *1 (-925 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1239 *5 *4)) (-4 *4 (-455)) (-4 *4 (-821))
+ (-14 *5 (-1176)) (-5 *2 (-567)) (-5 *1 (-1114 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1036)) (-5 *1 (-306))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1036))) (-5 *2 (-1036)) (-5 *1 (-306))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *1)) (-4 *1 (-652 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *1) (-5 *1 (-1063)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1156 (-1156 *4))) (-5 *2 (-1156 *4)) (-5 *1 (-1153 *4))
+ (-4 *4 (-1216))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-874 (-967 *3) (-967 *3)))) (-5 *1 (-967 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1094 *3)) (-4 *3 (-950 *7 *6 *4)) (-4 *6 (-794))
+ (-4 *4 (-851)) (-4 *7 (-559))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567))))
+ (-5 *1 (-596 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-559))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-567))))
+ (-5 *1 (-596 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1168 *4 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1201)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092 *2)) (-4 *2 (-13 (-433 *4) (-160) (-27) (-1201)))
+ (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1168 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567))))
+ (-5 *2 (-410 (-953 *5))) (-5 *1 (-1169 *5)) (-5 *3 (-953 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176)) (-4 *5 (-13 (-559) (-1039 (-567))))
+ (-5 *2 (-3 (-410 (-953 *5)) (-317 *5))) (-5 *1 (-1169 *5))
+ (-5 *3 (-410 (-953 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092 (-953 *5))) (-5 *3 (-953 *5))
+ (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 *3))
+ (-5 *1 (-1169 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092 (-410 (-953 *5)))) (-5 *3 (-410 (-953 *5)))
+ (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-3 *3 (-317 *5)))
+ (-5 *1 (-1169 *5)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-755)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-690 *5)) (-4 *5 (-1050)) (-5 *1 (-1055 *3 *4 *5))
+ (-14 *3 (-772)) (-14 *4 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-683 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-645 *5) (-645 *5))) (-5 *4 (-567))
+ (-5 *2 (-645 *5)) (-5 *1 (-683 *5)) (-4 *5 (-1100)))))
+(((*1 *1 *1) (-4 *1 (-662))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-365)) (-4 *3 (-1242 *4)) (-4 *5 (-1242 (-410 *3)))
+ (-4 *1 (-337 *4 *3 *5 *2)) (-4 *2 (-344 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-365)) (-4 *4 (-1242 *2))
+ (-4 *5 (-1242 (-410 *4))) (-4 *1 (-337 *2 *4 *5 *6))
+ (-4 *6 (-344 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-365)) (-4 *3 (-1242 *2)) (-4 *4 (-1242 (-410 *3)))
+ (-4 *1 (-337 *2 *3 *4 *5)) (-4 *5 (-344 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4)))
+ (-4 *1 (-337 *3 *4 *5 *2)) (-4 *2 (-344 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-416 *4 (-410 *4) *5 *6)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5)) (-4 *3 (-365))
+ (-4 *1 (-337 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-605 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1216)) (-5 *2 (-1271)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-421 *3)) (-4 *3 (-559))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| -2296 *4) (|:| -3677 (-567)))))
+ (-4 *4 (-1242 (-567))) (-5 *2 (-772)) (-5 *1 (-445 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-1094 (-225))) (-5 *2 (-928))
+ (-5 *1 (-926 *3)) (-4 *3 (-615 (-539)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176)) (-5 *2 (-928)) (-5 *1 (-926 *3))
+ (-4 *3 (-615 (-539)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-928))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1094 (-225)))
+ (-5 *1 (-928)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-768 *3)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381))))
+ ((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-381)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4416)) (-4 *1 (-34)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-250))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-847)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-690 *3))
+ (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *4 (-1242 *3)) (-5 *1 (-502 *3 *4 *5)) (-4 *5 (-412 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1050)) (-5 *2 (-1266 *4))
+ (-5 *1 (-1177 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-922)) (-5 *2 (-1266 *3)) (-5 *1 (-1177 *3))
+ (-4 *3 (-1050)))))
+(((*1 *1 *1) (-5 *1 (-1063))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-772)) (-4 *4 (-13 (-559) (-147)))
+ (-5 *1 (-1236 *4 *2)) (-4 *2 (-1242 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-690 (-225))) (-5 *4 (-567)) (-5 *2 (-1036))
(-5 *1 (-756)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *3 *4)) (-4 *3 (-851)) (-4 *4 (-1050))
+ (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1289 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-847)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1265 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
- (-5 *2 (-689 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-419 *3)) (-4 *3 (-172)) (-5 *2 (-689 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-112)) (-4 *6 (-454)) (-4 *7 (-793)) (-4 *8 (-850))
- (-4 *3 (-1064 *6 *7 *8))
+ (-12 (-5 *3 (-613 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1100))
+ (-4 *4 (-559)) (-5 *2 (-410 (-1172 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-613 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1201)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *2 (-1172 (-410 (-1172 *3)))) (-5 *1 (-563 *6 *3 *7))
+ (-5 *5 (-1172 *3)) (-4 *7 (-1100))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1262 *5)) (-14 *5 (-1176)) (-4 *6 (-1050))
+ (-5 *2 (-1239 *5 (-953 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-953 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-950 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-1172 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851)) (-5 *2 (-1172 *1))
+ (-4 *1 (-950 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-1050))
+ (-4 *7 (-950 *6 *5 *4)) (-5 *2 (-410 (-1172 *3)))
+ (-5 *1 (-951 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1172 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $)) (-15 -4078 (*7 $)))))
+ (-4 *7 (-950 *6 *5 *4)) (-4 *5 (-794)) (-4 *4 (-851))
+ (-4 *6 (-1050)) (-5 *1 (-951 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176)) (-4 *5 (-559))
+ (-5 *2 (-410 (-1172 (-410 (-953 *5))))) (-5 *1 (-1044 *5))
+ (-5 *3 (-410 (-953 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-1180)))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-823)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-772))
+ (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1201) (-433 (-169 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-13 (-559) (-1039 (-567))))
+ (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 (-169 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1205 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *1 (-1033 *2))
+ (-4 *2 (-13 (-1100) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-384 *3 *4)) (-4 *3 (-1050)) (-4 *4 (-1100))
+ (-5 *2 (-645 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-2 (|:| |k| (-894 *3)) (|:| |c| *4))))
+ (-5 *1 (-628 *3 *4 *5)) (-4 *3 (-851))
+ (-4 *4 (-13 (-172) (-718 (-410 (-567))))) (-14 *5 (-922))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-673 *3))) (-5 *1 (-894 *3)) (-4 *3 (-851)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-801))
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-1036)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-582)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-559))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-327 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-793))
+ (-4 *2 (-559))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-559)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050))
+ (-4 *3 (-375 *2)) (-4 *4 (-375 *2)) (-4 *2 (-559))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-772)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-559))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1266 *4)) (-4 *4 (-1242 *3)) (-4 *3 (-559))
+ (-5 *1 (-970 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1054 *3 *4 *2 *5 *6)) (-4 *2 (-1050))
+ (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-559))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-1160 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1050))
+ (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 *4) (-1003) (-1201)))
+ (-5 *1 (-601 *4 *2 *3))
+ (-4 *3 (-13 (-433 (-169 *4)) (-1003) (-1201))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 (-112) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-5 *1 (-978 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-281)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365))
(-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1068 *6 *7 *8 *3 *4)) (-4 *4 (-1070 *6 *7 *8 *3))))
+ (-2 (|:| A (-690 *5))
+ (|:| |eqs|
+ (-645
+ (-2 (|:| C (-690 *5)) (|:| |g| (-1266 *5)) (|:| -2823 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *5)) (-5 *4 (-1266 *5))
+ (-4 *6 (-657 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
+ (-12 (-4 *5 (-365)) (-4 *6 (-657 *5))
+ (-5 *2 (-2 (|:| -4302 (-690 *6)) (|:| |vec| (-1266 *5))))
+ (-5 *1 (-814 *5 *6)) (-5 *3 (-690 *6)) (-5 *4 (-1266 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-2 (|:| |done| (-644 *4))
- (|:| |todo| (-644 (-2 (|:| |val| (-644 *3)) (|:| -3860 *4))))))
- (-5 *1 (-1144 *5 *6 *7 *3 *4)) (-4 *4 (-1108 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1215))
- (-4 *5 (-375 *4)) (-4 *2 (-375 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-566)) (-4 *1 (-1053 *4 *5 *6 *7 *2)) (-4 *6 (-1049))
- (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))))
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-1065 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-645 *8))
+ (|:| |towers| (-645 (-1028 *5 *6 *7 *8)))))
+ (-5 *1 (-1028 *5 *6 *7 *8)) (-5 *3 (-645 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *8 (-1065 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-645 *8))
+ (|:| |towers| (-645 (-1146 *5 *6 *7 *8)))))
+ (-5 *1 (-1146 *5 *6 *7 *8)) (-5 *3 (-645 *8)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-433 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-55)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-772)) (-5 *1 (-114))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1176)) (-5 *1 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-158 *3 *4))
+ (-4 *4 (-433 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-114)) (-5 *1 (-163))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-277 *3 *4))
+ (-4 *4 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-302 *3)) (-4 *3 (-303))))
+ ((*1 *2 *2) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *4 (-1100)) (-5 *1 (-432 *3 *4))
+ (-4 *3 (-433 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-434 *3 *4))
+ (-4 *4 (-433 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-613 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-4 *3 (-559)) (-5 *1 (-631 *3 *4))
+ (-4 *4 (-13 (-433 *3) (-1003) (-1201)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1020)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1220)) (-4 *5 (-1242 (-410 *2)))
+ (-4 *2 (-1242 *4)) (-5 *1 (-343 *3 *4 *2 *5))
+ (-4 *3 (-344 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1220))
+ (-4 *4 (-1242 (-410 *2))) (-4 *2 (-1242 *3)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-820 *3)) (|:| |rm| (-820 *3))))
+ (-5 *1 (-820 *3)) (-4 *3 (-851))))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-1029 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-690 *3))) (-4 *3 (-1050)) (-5 *1 (-1029 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-78 FUNCTN))))
+ (-5 *2 (-1036)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6))
+ (-4 *5 (-13 (-1100) (-34))) (-4 *6 (-13 (-1100) (-34)))
+ (-5 *2 (-112)) (-5 *1 (-1140 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1172 *9)) (-5 *4 (-645 *7)) (-5 *5 (-645 *8))
+ (-4 *7 (-851)) (-4 *8 (-1050)) (-4 *9 (-950 *8 *6 *7))
+ (-4 *6 (-794)) (-5 *2 (-1172 *8)) (-5 *1 (-322 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-559) (-1039 (-567)))) (-5 *1 (-188 *3 *2))
+ (-4 *2 (-13 (-27) (-1201) (-433 (-169 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-1205 *3 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *3))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1242 *6))
+ (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-559) (-1039 (-567))))
+ (-4 *8 (-1242 (-410 *7))) (-5 *2 (-588 *3))
+ (-5 *1 (-555 *5 *6 *7 *8 *3)) (-4 *3 (-344 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-433 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-158 *4 *5)) (-4 *5 (-433 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-277 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-302 *4)) (-4 *4 (-303))))
+ ((*1 *2 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *5 (-1100)) (-5 *2 (-112))
+ (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-434 *4 *5)) (-4 *5 (-433 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-114)) (-4 *4 (-559)) (-5 *2 (-112))
+ (-5 *1 (-631 *4 *5)) (-4 *5 (-13 (-433 *4) (-1003) (-1201))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-645 (-317 (-225)))) (|:| -2596 (-645 (-225)))))
+ (-5 *2 (-381)) (-5 *1 (-268))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *2 (-381)) (-5 *1 (-306)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455)))
+ (-5 *2 (-844 *4)) (-5 *1 (-314 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1201) (-433 *3))) (-14 *5 (-1176))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455)))
+ (-5 *2 (-844 *4)) (-5 *1 (-1252 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1201) (-433 *3))) (-14 *5 (-1176))
+ (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1100)) (-4 *5 (-1100))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-684 *4 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3) (-12 (-5 *3 (-509)) (-5 *2 (-692 (-187))) (-5 *1 (-187)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *1) (-12 (-4 *1 (-1121 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-772))) (-5 *3 (-112)) (-5 *1 (-1164 *4 *5))
+ (-14 *4 (-922)) (-4 *5 (-1050)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-645 (-1172 *13))) (-5 *3 (-1172 *13))
+ (-5 *4 (-645 *12)) (-5 *5 (-645 *10)) (-5 *6 (-645 *13))
+ (-5 *7 (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| *13)))))
+ (-5 *8 (-645 (-772))) (-5 *9 (-1266 (-645 (-1172 *10))))
+ (-4 *12 (-851)) (-4 *10 (-308)) (-4 *13 (-950 *10 *11 *12))
+ (-4 *11 (-794)) (-5 *1 (-708 *11 *12 *10 *13)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-1 *6 *5)) (-5 *1 (-707 *4 *5 *6))
+ (-4 *4 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-351)) (-4 *4 (-330 *3)) (-4 *5 (-1242 *4))
+ (-5 *1 (-778 *3 *4 *5 *2 *6)) (-4 *2 (-1242 *5)) (-14 *6 (-922))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-4 *3 (-370))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1285 *2)) (-4 *2 (-365)) (-4 *2 (-370)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1276)))))
+(((*1 *1 *1 *1) (-4 *1 (-308))) ((*1 *1 *1 *1) (-5 *1 (-772)))
+ ((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-169 (-381))) (-5 *1 (-786 *3)) (-4 *3 (-615 (-381)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-922)) (-5 *2 (-169 (-381))) (-5 *1 (-786 *3))
+ (-4 *3 (-615 (-381)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-615 (-381)))
+ (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-169 *5)) (-5 *4 (-922)) (-4 *5 (-172))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-615 (-381)))
+ (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-953 *4)) (-4 *4 (-1050)) (-4 *4 (-615 (-381)))
+ (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559)) (-4 *4 (-615 (-381)))
+ (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559)) (-4 *5 (-851))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
+ (-5 *1 (-786 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1208 *3 *4 *5 *6)) (-4 *3 (-558)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-644 *5)))))
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-645 (-171)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-740 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-613 *5))) (-5 *3 (-1176)) (-4 *5 (-433 *4))
+ (-4 *4 (-1100)) (-5 *1 (-576 *4 *5)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1176)) (-5 *3 (-1158)) (-5 *1 (-990))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1094 *4)) (-4 *4 (-1216))
+ (-5 *1 (-1092 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-944 *5)) (-5 *3 (-772)) (-4 *5 (-1050))
+ (-5 *1 (-1164 *4 *5)) (-14 *4 (-922)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7)) (-5 *2 (-112))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| (-112)) (|:| -3860 *4))))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1158)) (-5 *3 (-824)) (-5 *1 (-823)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-470)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-448 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-875))
+ (-5 *5 (-922)) (-5 *6 (-645 (-264))) (-5 *2 (-1267))
+ (-5 *1 (-1270))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-645 (-264)))
+ (-5 *2 (-1267)) (-5 *1 (-1270)))))
+(((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537))))
+ ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1100)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-409 (-566))) (-4 *4 (-1038 (-566))) (-4 *4 (-558))
- (-5 *1 (-32 *4 *2)) (-4 *2 (-432 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-134)))
+ (-12 (-4 *3 (-559)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1206 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-4 *9 (-1065 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2823 (-645 *9)) (|:| -2138 *4) (|:| |ineq| (-645 *9))))
+ (-5 *1 (-989 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9))
+ (-4 *4 (-1071 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794))
+ (-4 *8 (-851)) (-4 *9 (-1065 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2823 (-645 *9)) (|:| -2138 *4) (|:| |ineq| (-645 *9))))
+ (-5 *1 (-1107 *6 *7 *8 *9 *4)) (-5 *3 (-645 *9))
+ (-4 *4 (-1071 *6 *7 *8 *9)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-410 *4)) (-4 *4 (-1242 *3))
+ (-4 *3 (-13 (-365) (-147) (-1039 (-567)))) (-5 *1 (-571 *3 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216))
+ (-4 *3 (-1100)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-906 *4)) (-4 *4 (-1100)) (-5 *2 (-112))
+ (-5 *1 (-905 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-922)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *2) (-12 (-5 *2 (-1094 (-844 (-225)))) (-5 *1 (-306)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-978 *3 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1172 *3)) (-4 *3 (-370)) (-4 *1 (-330 *3))
+ (-4 *3 (-365)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-366 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1100)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-906 *3)))))
+(((*1 *2) (-12 (-5 *2 (-844 (-567))) (-5 *1 (-537))))
+ ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1100)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-317 (-567))) (|:| -2111 (-317 (-381)))
+ (|:| CF (-317 (-169 (-381)))) (|:| |switch| (-1175))))
+ (-5 *1 (-1175)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))) ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1172 (-567))) (-5 *3 (-567)) (-4 *1 (-870 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-4 *5 (-433 *4))
+ (-5 *2 (-421 (-1172 (-410 (-567))))) (-5 *1 (-438 *4 *5 *3))
+ (-4 *3 (-1242 *5)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-567)) (-5 *3 (-922)) (-5 *1 (-700))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-690 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-365)) (-5 *1 (-979 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-308) (-147))) (-4 *5 (-13 (-851) (-615 (-1176))))
+ (-4 *6 (-794)) (-5 *2 (-645 (-645 (-567))))
+ (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-567)) (-4 *7 (-950 *4 *6 *5)))))
+(((*1 *1 *1) (-5 *1 (-539))))
+(((*1 *2 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-331)))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1156 *3)) (-4 *3 (-1100))
+ (-4 *3 (-1216)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-365)) (-4 *2 (-1242 *4))
+ (-5 *1 (-923 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-567))) (-5 *1 (-943)) (-5 *3 (-567))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-308)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-1124 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-567))) (-5 *4 (-567)) (-5 *2 (-52))
+ (-5 *1 (-1006)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *2)) (-4 *2 (-172))))
+ ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-419 *3 *2)) (-4 *3 (-420 *2))))
+ ((*1 *2) (-12 (-4 *1 (-420 *2)) (-4 *2 (-172)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2764 (-645 *3)) (|:| -4361 (-645 *3))))
+ (-5 *1 (-1217 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1156 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3674
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1036)) (-5 *1 (-306)))))
+(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-112)) (-5 *1 (-277 *4 *3))
+ (-4 *3 (-13 (-433 *4) (-1003))))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1144)) (-5 *2 (-1233 (-567))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1285 *3)) (-4 *3 (-365)) (-5 *2 (-772)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-893 *4)) (-4 *4 (-1100)) (-5 *1 (-890 *4 *3))
+ (-4 *3 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1039 (-567))) (-4 *1 (-303)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-4 *1 (-548)) (-5 *2 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-906 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-567)) (-5 *4 (-421 *2)) (-4 *2 (-950 *7 *5 *6))
+ (-5 *1 (-743 *5 *6 *7 *2)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-308)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201)))))
+ ((*1 *1 *1 *1) (-4 *1 (-794))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1172 *4)) (-5 *1 (-531 *4))
+ (-4 *4 (-351)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-613 *1))) (-4 *1 (-303)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-1147 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
+ (-5 *2
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1266 (-772))) (-5 *1 (-676 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-1100)) (-5 *2 (-645 *1))
+ (-4 *1 (-384 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-736 *3 *4))) (-5 *1 (-736 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-727))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-950 *3 *4 *5)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-1120)) (-4 *4 (-351))
+ (-5 *1 (-531 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1100)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-684 *4 *5)) (-4 *4 (-1100))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1100)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-317 (-567))) (-5 *1 (-931))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *3 *2)) (-4 *3 (-851)) (-4 *2 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1050)) (-5 *1 (-1289 *2 *3)) (-4 *3 (-847)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 (-645 *8))) (-5 *3 (-645 *8))
+ (-4 *8 (-1065 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794))
+ (-4 *7 (-851)) (-5 *2 (-112)) (-5 *1 (-978 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-589 *2)) (-4 *2 (-548)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225)))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1036)) (-5 *1 (-754)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-567))))
+ (-4 *4 (-13 (-1242 *3) (-559) (-10 -8 (-15 -3276 ($ $ $)))))
+ (-4 *3 (-559)) (-5 *1 (-1245 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1178 (-410 (-567)))) (-5 *1 (-190)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-455) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-560 *5 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3))
+ (-4 *4 (-13 (-365) (-849))) (-4 *3 (-1242 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-611 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875)))
+ (-5 *4 (-645 (-922))) (-5 *5 (-645 (-264))) (-5 *1 (-471))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *3 (-645 (-875)))
+ (-5 *4 (-645 (-922))) (-5 *1 (-471))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471))))
+ ((*1 *1 *1) (-5 *1 (-471))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-567)) (-5 *5 (-1158)) (-5 *6 (-690 (-225)))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-86 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-391)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-391)) (|:| |fp| (-88 OUTPUT))))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-750)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-158 *3 *2)) (-4 *2 (-432 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-225)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-566))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3))
- (-4 *5 (-1256 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1227 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-409 (-566))) (-4 *4 (-365)) (-4 *4 (-38 *3))
- (-4 *5 (-1225 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1248 *4 *5))
- (-4 *6 (-983 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-285)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-566)) (-5 *1 (-363 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *1) (-5 *1 (-381)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-388 *2)) (-4 *2 (-1099))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1139))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1158)) (-5 *1 (-192))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092 (-844 *3))) (-4 *3 (-13 (-1201) (-960) (-29 *5)))
+ (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1092 (-844 *3))) (-5 *5 (-1158))
+ (-4 *3 (-13 (-1201) (-960) (-29 *6)))
+ (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 *3)) (|:| |f2| (-645 (-844 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-219 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1092 (-844 (-317 *5))))
+ (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-410 (-953 *6))) (-5 *4 (-1092 (-844 (-317 *6))))
+ (-5 *5 (-1158))
+ (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1092 (-844 (-410 (-953 *5))))) (-5 *3 (-410 (-953 *5)))
+ (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *5))) (|:| |f2| (-645 (-844 (-317 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1092 (-844 (-410 (-953 *6))))) (-5 *5 (-1158))
+ (-5 *3 (-410 (-953 *6)))
+ (-4 *6 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-3 (|:| |f1| (-844 (-317 *6))) (|:| |f2| (-645 (-844 (-317 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-220 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-3 *3 (-645 *3))) (-5 *1 (-431 *5 *3))
+ (-4 *3 (-13 (-1201) (-960) (-29 *5)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-432 *3)) (-4 *3 (-1099))
- (-4 *3 (-1111))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-475)) (-5 *2 (-566))))
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-477 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
+ (-5 *5 (-381)) (-5 *6 (-1063)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
+ (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
+ (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-1094 (-844 (-381))))
+ (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381)))))
+ (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381)))))
+ (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381)))))
+ (-5 *5 (-381)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-1094 (-844 (-381)))))
+ (-5 *5 (-381)) (-5 *6 (-1063)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1092 (-844 (-381))))
+ (-5 *5 (-1158)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-317 (-381))) (-5 *4 (-1092 (-844 (-381))))
+ (-5 *5 (-1176)) (-5 *2 (-1036)) (-5 *1 (-568))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-567)))) (-4 *5 (-1242 *4))
+ (-5 *2 (-588 (-410 *5))) (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176)) (-4 *5 (-147))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-3 (-317 *5) (-645 (-317 *5)))) (-5 *1 (-591 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *3 (-365)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-506 *3 *4 *5 *6)) (-4 *6 (-949 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1265 *4)) (-5 *3 (-566)) (-4 *4 (-351))
- (-5 *1 (-530 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-538))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-538))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *4 (-1099))
- (-5 *1 (-682 *4))))
+ (-12 (-4 *1 (-741 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-851))
+ (-4 *3 (-38 (-410 (-567))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))
+ (-12 (-5 *2 (-1176)) (-5 *1 (-953 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-4 *3 (-1050))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-4 *2 (-851))
+ (-5 *1 (-1126 *3 *2 *4)) (-4 *4 (-950 *3 (-534 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050))
+ (-5 *1 (-1160 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *1 (-687 *3 *4 *5)) (-4 *3 (-1049))
- (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1167 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1173 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1174 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *1 (-1210 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-2909
+ (-12 (-5 *2 (-1176)) (-4 *1 (-1226 *3)) (-4 *3 (-1050))
+ (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1201))
+ (-4 *3 (-38 (-410 (-567))))))
+ (-12 (-5 *2 (-1176)) (-4 *1 (-1226 *3)) (-4 *3 (-1050))
+ (-12 (|has| *3 (-15 -2449 ((-645 *2) *3)))
+ (|has| *3 (-15 -2113 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1226 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1230 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1242 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-2909
+ (-12 (-5 *2 (-1176)) (-4 *1 (-1247 *3)) (-4 *3 (-1050))
+ (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1201))
+ (-4 *3 (-38 (-410 (-567))))))
+ (-12 (-5 *2 (-1176)) (-4 *1 (-1247 *3)) (-4 *3 (-1050))
+ (-12 (|has| *3 (-15 -2449 ((-645 *2) *3)))
+ (|has| *3 (-15 -2113 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1251 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2909
+ (-12 (-5 *2 (-1176)) (-4 *1 (-1257 *3)) (-4 *3 (-1050))
+ (-12 (-4 *3 (-29 (-567))) (-4 *3 (-960)) (-4 *3 (-1201))
+ (-4 *3 (-38 (-410 (-567))))))
+ (-12 (-5 *2 (-1176)) (-4 *1 (-1257 *3)) (-4 *3 (-1050))
+ (-12 (|has| *3 (-15 -2449 ((-645 *2) *3)))
+ (|has| *3 (-15 -2113 (*3 *3 *2))) (-4 *3 (-38 (-410 (-567))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1050)) (-4 *2 (-38 (-410 (-567))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1258 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *3 (-1050)) (-14 *5 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1100)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-192)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-567))
+ (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567)))))))
+ (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112))
+ (-5 *2
+ (-2 (|:| |contp| (-567))
+ (|:| -2807 (-645 (-2 (|:| |irr| *3) (|:| -3259 (-567)))))))
+ (-5 *1 (-1231 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1098 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-112)) (-5 *1 (-483)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1216)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1085)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-842)) (-5 *4 (-1063)) (-5 *2 (-1036)) (-5 *1 (-841))))
+ ((*1 *2 *3) (-12 (-5 *3 (-842)) (-5 *2 (-1036)) (-5 *1 (-841))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-645 (-381))) (-5 *5 (-645 (-844 (-381))))
+ (-5 *6 (-645 (-317 (-381)))) (-5 *3 (-317 (-381))) (-5 *2 (-1036))
+ (-5 *1 (-841))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381)))
+ (-5 *5 (-645 (-844 (-381)))) (-5 *2 (-1036)) (-5 *1 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-317 (-381))) (-5 *4 (-645 (-381))) (-5 *2 (-1036))
+ (-5 *1 (-841))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-317 (-381)))) (-5 *4 (-645 (-381)))
+ (-5 *2 (-1036)) (-5 *1 (-841)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *10))
+ (-5 *1 (-625 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1071 *5 *6 *7 *8))
+ (-4 *10 (-1109 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1047 *5 *6)))
+ (-5 *1 (-629 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1176)))
+ (-5 *2
+ (-645 (-1146 *5 (-534 (-865 *6)) (-865 *6) (-781 *5 (-865 *6)))))
+ (-5 *1 (-629 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1028 *5 *6 *7 *8))) (-5 *1 (-1028 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 (-781 *5 (-865 *6)))) (-5 *4 (-112)) (-4 *5 (-455))
+ (-14 *6 (-645 (-1176))) (-5 *2 (-645 (-1047 *5 *6)))
+ (-5 *1 (-1047 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1146 *5 *6 *7 *8))) (-5 *1 (-1146 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-112)) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-645 (-1146 *5 *6 *7 *8))) (-5 *1 (-1146 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1209 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1242 *4)) (-5 *1 (-808 *4 *2 *3 *5))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *3 (-657 *2))
+ (-4 *5 (-657 (-410 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1242 *4)) (-5 *1 (-808 *4 *2 *5 *3))
+ (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567))))) (-4 *5 (-657 *2))
+ (-4 *3 (-657 (-410 *2))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *3 (-559)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-772))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-405)) (-5 *2 (-772)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-645
+ (-2 (|:| |scalar| (-410 (-567))) (|:| |coeff| (-1172 *3))
+ (|:| |logand| (-1172 *3)))))
+ (-5 *1 (-588 *3)) (-4 *3 (-365)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-112)) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-264)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-849) (-365))) (-5 *2 (-112)) (-5 *1 (-1061 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1216)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-605 *3 *2)) (-4 *3 (-1100))
+ (-4 *2 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-953 *4)))) (-4 *4 (-455))
+ (-5 *2 (-645 (-3 (-410 (-953 *4)) (-1165 (-1176) (-953 *4)))))
+ (-5 *1 (-293 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| (-645 *3)) (|:| -2138 *4))))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1242 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-183 (-249))) (-5 *1 (-248)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-953 *3))) (-4 *3 (-455)) (-5 *1 (-362 *3 *4))
+ (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-453 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-689 *4)) (-5 *3 (-771)) (-4 *4 (-1049))
- (-5 *1 (-690 *4))))
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-453 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-1158)) (-4 *7 (-950 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-453 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-781 *3 (-865 *4)))) (-4 *3 (-455))
+ (-14 *4 (-645 (-1176))) (-5 *1 (-629 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-151 *2)) (-4 *2 (-1216))
+ (-4 *2 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1100)) (-5 *2 (-112)) (-5 *1 (-886 *3 *4 *5))
+ (-4 *3 (-1100)) (-4 *5 (-667 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-890 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-317 *3)) (-4 *3 (-13 (-1050) (-851)))
+ (-5 *1 (-223 *3 *4)) (-14 *4 (-645 (-1176))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1290 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-172))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-820 *3)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1266 *5)) (-4 *5 (-793)) (-5 *2 (-112))
+ (-5 *1 (-846 *4 *5)) (-14 *4 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-794)) (-4 *6 (-851)) (-4 *7 (-559))
+ (-4 *3 (-950 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -4164 (-772)) (|:| -3087 *3) (|:| |radicand| (-645 *3))))
+ (-5 *1 (-954 *5 *6 *7 *3 *8)) (-5 *4 (-772))
+ (-4 *8
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *3)) (-15 -4067 (*3 $)) (-15 -4078 (*3 $))))))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 (-690 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-114)) (-5 *4 (-772))
+ (-4 *5 (-13 (-455) (-1039 (-567)))) (-4 *5 (-559))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *5 (-613 $)) $))
+ (-15 -4078 ((-1125 *5 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *5 (-613 $))))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-645 (-171))))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-648 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1050)) (-4 *3 (-1242 *4)) (-4 *2 (-1257 *4))
+ (-5 *1 (-1260 *4 *3 *5 *2)) (-4 *5 (-657 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-247 *3 *4))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-14 *3 (-645 (-1176)))
+ (-5 *1 (-457 *3 *4 *5)) (-4 *4 (-1050))
+ (-4 *5 (-238 (-2268 *3) (-772)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-484 *3 *4))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-1050)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -3424 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-365)) (-4 *7 (-1242 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6))
+ (-2 (|:| -3424 (-410 *7)) (|:| |coeff| (-410 *7))) "failed"))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-4 *1 (-235 *3))))
+ ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3005 *6) (|:| |sol?| (-112))) (-567)
+ *6))
+ (-4 *6 (-365)) (-4 *7 (-1242 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-410 *7)) (|:| |a0| *6))
+ (-2 (|:| -3424 (-410 *7)) (|:| |coeff| (-410 *7))) "failed"))
+ (-5 *1 (-577 *6 *7)) (-5 *3 (-410 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))
+ ((*1 *1 *1) (-5 *1 (-1120))))
+(((*1 *1 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *7)) (|:| |badPols| (-645 *7))))
+ (-5 *1 (-978 *4 *5 *6 *7)) (-5 *3 (-645 *7)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1050)) (-4 *3 (-1100))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -4164 (-567)))) (-4 *1 (-433 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-893 *3)) (|:| -4164 (-893 *3))))
+ (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050))
+ (-4 *7 (-950 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -4164 (-567))))
+ (-5 *1 (-951 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $))
+ (-15 -4078 (*7 $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-157))))
+ ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-875))))
+ ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(((*1 *1 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1209 *2 *3 *4 *5)) (-4 *2 (-559))
+ (-4 *3 (-794)) (-4 *4 (-851)) (-4 *5 (-1065 *2 *3 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *3 (-1049)) (-5 *1 (-714 *3 *4))
- (-4 *4 (-648 *3))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1254 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-567))) (-5 *4 (-906 (-567)))
+ (-5 *2 (-690 (-567))) (-5 *1 (-592))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-645 (-690 (-567))))
+ (-5 *1 (-592))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-567))) (-5 *4 (-645 (-906 (-567))))
+ (-5 *2 (-645 (-690 (-567)))) (-5 *1 (-592)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-645
+ (-2 (|:| -2432 (-772))
+ (|:| |eqns|
+ (-645
+ (-2 (|:| |det| *7) (|:| |rows| (-645 (-567)))
+ (|:| |cols| (-645 (-567))))))
+ (|:| |fgb| (-645 *7)))))
+ (-4 *7 (-950 *4 *6 *5)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)) (-5 *2 (-772))
+ (-5 *1 (-925 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-38 (-410 (-567))))
+ (-4 *2 (-172)))))
+(((*1 *1)
+ (-12 (-4 *1 (-407)) (-1397 (|has| *1 (-6 -4407)))
+ (-1397 (|has| *1 (-6 -4399)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1100)) (-4 *2 (-851))))
+ ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-851))))
+ ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1039 (-567)) (-640 (-567)) (-455)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1251 *4 *5 *6))
+ (|:| |%expon| (-320 *4 *5 *6))
+ (|:| |%expTerms|
+ (-645 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4))))))
+ (|:| |%type| (-1158))))
+ (-5 *1 (-1252 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1201) (-433 *3)))
+ (-14 *5 (-1176)) (-14 *6 *4))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-645 (-1176))) (-4 *4 (-172))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *2))
+ (-2 (|:| -3811 *5) (|:| -4164 *2))))
+ (-4 *2 (-238 (-2268 *3) (-772))) (-5 *1 (-464 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-851)) (-4 *7 (-950 *4 *2 (-865 *3))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))
+ ((*1 *1 *1 *1) (-5 *1 (-1120))))
+(((*1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-295 *2)) (-4 *2 (-727)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *8)) (-5 *4 (-645 *7)) (-4 *7 (-851))
+ (-4 *8 (-950 *5 *6 *7)) (-4 *5 (-559)) (-4 *6 (-794))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1266 (-410 *8)) "failed"))
+ (|:| -2557 (-645 (-1266 (-410 *8))))))
+ (-5 *1 (-670 *5 *6 *7 *8)))))
+(((*1 *1) (-5 *1 (-824))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-605 *3 *2)) (-4 *3 (-1100)) (-4 *3 (-851))
+ (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *1 (-678 *2)) (-4 *2 (-851))))
+ ((*1 *2 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1216)) (-5 *1 (-874 *2 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-894 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1254 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2) (-12 (-5 *2 (-1147 (-1158))) (-5 *1 (-394)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *2 *5)) (-4 *3 (-1050)) (-4 *4 (-851))
+ (-4 *5 (-794)) (-4 *2 (-267 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-752)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-503 *2)) (-14 *2 (-567))))
+ ((*1 *1 *1 *1) (-5 *1 (-1120))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-112) *7 (-645 *7))) (-4 *1 (-1209 *4 *5 *6 *7))
+ (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-365) (-147) (-1039 (-567))))
+ (-4 *5 (-1242 *4))
+ (-5 *2 (-2 (|:| -3424 (-410 *5)) (|:| |coeff| (-410 *5))))
+ (-5 *1 (-571 *4 *5)) (-5 *3 (-410 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120))))))
+ (-4 *4 (-351)) (-5 *2 (-690 *4)) (-5 *1 (-348 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1172 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6))
+ (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-953 *5)) (-4 *5 (-455)) (-5 *2 (-645 *6))
+ (-5 *1 (-541 *5 *6 *4)) (-4 *6 (-365)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *5)) (-5 *4 (-922)) (-4 *5 (-851))
+ (-5 *2 (-645 (-673 *5))) (-5 *1 (-673 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-328 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1216))
+ (-14 *4 (-567)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179)))))
+(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201)))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-863))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-863)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1202 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-1202 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-4 *4 (-1049))
- (-5 *1 (-714 *4 *5)) (-4 *5 (-648 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-720)) (-5 *2 (-921))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-771))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-726)) (-5 *2 (-771))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-771)) (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-836 *3)) (-4 *3 (-1049))))
+ (-12 (-5 *3 (-645 (-1202 *2))) (-5 *1 (-1202 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1180)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-690 (-225))) (-5 *6 (-690 (-567))) (-5 *3 (-567))
+ (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1271)) (-5 *1 (-381)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1156 *4)) (-5 *3 (-1 *4 (-567))) (-4 *4 (-1050))
+ (-5 *1 (-1160 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1216)) (-5 *1 (-1132 *4 *2))
+ (-4 *2 (-13 (-605 (-567) *4) (-10 -7 (-6 -4416) (-6 -4417))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-851)) (-4 *3 (-1216)) (-5 *1 (-1132 *3 *2))
+ (-4 *2 (-13 (-605 (-567) *3) (-10 -7 (-6 -4416) (-6 -4417)))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-365)) (-4 *3 (-1050))
+ (-5 *1 (-1160 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1158)) (-5 *1 (-306)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-772)) (-4 *3 (-1050)) (-4 *1 (-688 *3 *4 *5))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1264 *3)) (-4 *3 (-23)) (-4 *3 (-1216)))))
+(((*1 *2 *3) (-12 (-5 *3 (-645 (-52))) (-5 *2 (-1271)) (-5 *1 (-864)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271))
+ (-5 *1 (-1072 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1158)) (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-1271))
+ (-5 *1 (-1108 *4 *5 *6 *7 *8)) (-4 *8 (-1071 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1050)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351))
+ (-5 *2 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120))))))
+ (-5 *1 (-348 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1216)) (-5 *2 (-772))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-324 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-131))
+ (-5 *2 (-772))))
+ ((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-772)) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-363 *3)) (-4 *3 (-1100))))
+ ((*1 *2) (-12 (-4 *1 (-370)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-388 *3)) (-4 *3 (-1100)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-389 *3)) (-4 *3 (-1100))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1100)) (-5 *2 (-772)) (-5 *1 (-427 *3 *4))
+ (-4 *3 (-428 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-772)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-4 *5 (-1242 *4)) (-5 *2 (-772))
+ (-5 *1 (-724 *3 *4 *5)) (-4 *3 (-725 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-820 *3)) (-4 *3 (-851))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1007))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3))
+ (-4 *3 (-1242 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4416)) (-4 *1 (-492 *4))
+ (-4 *4 (-1216)) (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-183 (-139)))) (-5 *1 (-140)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-928)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *5)) (-4 *5 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-410 (-567)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-295 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-295 *3)) (-5 *5 (-410 (-567)))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-316 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-567))) (-5 *4 (-295 *6))
+ (-4 *6 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3))
+ (-4 *3 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-567))) (-5 *4 (-295 *7)) (-5 *5 (-1233 (-567)))
+ (-4 *7 (-13 (-27) (-1201) (-433 *6)))
+ (-4 *6 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-567)))
+ (-4 *3 (-13 (-27) (-1201) (-433 *7)))
+ (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-410 (-567)))) (-5 *4 (-295 *8))
+ (-5 *5 (-1233 (-410 (-567)))) (-5 *6 (-410 (-567)))
+ (-4 *8 (-13 (-27) (-1201) (-433 *7)))
+ (-4 *7 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1176)) (-5 *5 (-295 *3)) (-5 *6 (-1233 (-410 (-567))))
+ (-5 *7 (-410 (-567))) (-4 *3 (-13 (-27) (-1201) (-433 *8)))
+ (-4 *8 (-13 (-559) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-52))
+ (-5 *1 (-462 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *3))))
+ (-4 *3 (-1050)) (-5 *1 (-597 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-5 *1 (-598 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-2 (|:| |k| (-567)) (|:| |c| *3))))
+ (-4 *3 (-1050)) (-4 *1 (-1226 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *3 (-566)) (-5 *1 (-836 *4)) (-4 *4 (-1049))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-892 *3)) (-4 *3 (-1099))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1002)) (-5 *2 (-409 (-566)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1111)) (-5 *2 (-921))))
+ (-12 (-5 *2 (-772))
+ (-5 *3 (-1156 (-2 (|:| |k| (-410 (-567))) (|:| |c| *4))))
+ (-4 *4 (-1050)) (-4 *1 (-1247 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-1050)) (-4 *1 (-1257 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 (-2 (|:| |k| (-772)) (|:| |c| *3))))
+ (-4 *3 (-1050)) (-4 *1 (-1257 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2414 *4)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-508 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 (-410 (-567))))
+ (-5 *2
+ (-645
+ (-2 (|:| |outval| *4) (|:| |outmult| (-567))
+ (|:| |outvect| (-645 (-690 *4))))))
+ (-5 *1 (-780 *4)) (-4 *4 (-13 (-365) (-849))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1139))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-567)) (-5 *1 (-489 *4))
+ (-4 *4 (-1242 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-241))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1158))) (-5 *2 (-1271)) (-5 *1 (-241)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-649 *5)) (-4 *5 (-1050))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-853 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-690 *3)) (-4 *1 (-420 *3)) (-4 *3 (-172))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1050))
+ (-5 *1 (-854 *2 *3)) (-4 *3 (-853 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-906 *4)) (-4 *4 (-1100)) (-5 *2 (-645 (-772)))
+ (-5 *1 (-905 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-244 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217))))
+ ((*1 *2 *1) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490))))
+ ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-559)) (-4 *2 (-308))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1005 *3)) (-14 *3 (-567))))
+ ((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *2 *1) (-12 (-4 *1 (-675 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-410 (-953 *6)) (-1165 (-1176) (-953 *6))))
+ (-5 *5 (-772)) (-4 *6 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *6)))))
+ (-5 *1 (-293 *6)) (-5 *4 (-690 (-410 (-953 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-410 (-953 *5)) (-1165 (-1176) (-953 *5))))
+ (|:| |eigmult| (-772)) (|:| |eigvec| (-645 *4))))
+ (-4 *5 (-455)) (-5 *2 (-645 (-690 (-410 (-953 *5)))))
+ (-5 *1 (-293 *5)) (-5 *4 (-690 (-410 (-953 *5)))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3))
+ (-4 *3 (-1242 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *3 (-375 *2)) (-4 *4 (-375 *2))
+ (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-375 *2)) (-4 *5 (-375 *2)) (-4 *2 (-172))
+ (-5 *1 (-689 *2 *4 *5 *3)) (-4 *3 (-688 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1123 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2))
+ (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4418 "*"))) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-690 (-410 (-953 (-567)))))
+ (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1216)) (-4 *2 (-1100))
+ (-4 *2 (-851)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-14 *5 (-645 (-1176)))
+ (-5 *2
+ (-645 (-2 (|:| -3894 (-1172 *4)) (|:| -3216 (-645 (-953 *4))))))
+ (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2
+ (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5))))))
+ (-5 *1 (-1292 *5 *6 *7)) (-5 *3 (-645 (-953 *5)))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2
+ (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5))))))
+ (-5 *1 (-1292 *5 *6 *7)) (-5 *3 (-645 (-953 *5)))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-112)) (-4 *5 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2
+ (-645 (-2 (|:| -3894 (-1172 *5)) (|:| -3216 (-645 (-953 *5))))))
+ (-5 *1 (-1292 *5 *6 *7)) (-5 *3 (-645 (-953 *5)))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-5 *2
+ (-645 (-2 (|:| -3894 (-1172 *4)) (|:| -3216 (-645 (-953 *4))))))
+ (-5 *1 (-1292 *4 *5 *6)) (-5 *3 (-645 (-953 *4)))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-645 (-1176))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1216)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-567))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-567)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-944 (-225))) (-5 *4 (-875)) (-5 *2 (-1271))
+ (-5 *1 (-471))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-1050)) (-4 *1 (-981 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-944 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-1050)) (-4 *1 (-1134 *3))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-566)) (-4 *1 (-1122 *3 *4 *5 *6)) (-4 *4 (-1049))
- (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))
+ (-12 (-5 *2 (-772)) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *1 (-1134 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-944 (-225))) (-5 *1 (-1212)) (-5 *3 (-225)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-484 *4 *5))) (-14 *4 (-645 (-1176)))
+ (-4 *5 (-455)) (-5 *2 (-645 (-247 *4 *5))) (-5 *1 (-632 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-645 (-613 *3)))
+ (|:| |vals| (-645 *3))))
+ (-5 *1 (-278 *5 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *5))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-893 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1100))
+ (-4 *5 (-1216)) (-5 *1 (-891 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-893 *4)) (-5 *3 (-645 (-1 (-112) *5))) (-4 *4 (-1100))
+ (-4 *5 (-1216)) (-5 *1 (-891 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-893 *5)) (-5 *3 (-645 (-1176)))
+ (-5 *4 (-1 (-112) (-645 *6))) (-4 *5 (-1100)) (-4 *6 (-1216))
+ (-5 *1 (-891 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1216)) (-4 *4 (-1100))
+ (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-1 (-112) *5))) (-4 *5 (-1216)) (-4 *4 (-1100))
+ (-5 *1 (-938 *4 *2 *5)) (-4 *2 (-433 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1216))
+ (-5 *2 (-317 (-567))) (-5 *1 (-939 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-645 (-1 (-112) *5))) (-4 *5 (-1216))
+ (-5 *2 (-317 (-567))) (-5 *1 (-939 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1176))) (-5 *3 (-1 (-112) (-645 *6)))
+ (-4 *6 (-13 (-433 *5) (-887 *4) (-615 (-893 *4)))) (-4 *4 (-1100))
+ (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4))))
+ (-5 *1 (-1076 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-953 (-169 *4))) (-4 *4 (-172))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-953 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-172))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-953 *4)) (-4 *4 (-1050))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-953 *5)) (-5 *4 (-922)) (-4 *5 (-1050))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-953 *4))) (-4 *4 (-559))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-410 (-953 (-169 *4)))) (-4 *4 (-559))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-410 (-953 (-169 *5)))) (-5 *4 (-922))
+ (-4 *5 (-559)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
+ (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 *4)) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-317 *5)) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
+ (-5 *1 (-786 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 (-169 *4))) (-4 *4 (-559)) (-4 *4 (-851))
+ (-4 *4 (-615 (-381))) (-5 *2 (-169 (-381))) (-5 *1 (-786 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-317 (-169 *5))) (-5 *4 (-922)) (-4 *5 (-559))
+ (-4 *5 (-851)) (-4 *5 (-615 (-381))) (-5 *2 (-169 (-381)))
+ (-5 *1 (-786 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-645 (-944 (-225))))) (-5 *1 (-471)))))
+(((*1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
+(((*1 *1 *1 *1) (-4 *1 (-143)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
- (-5 *1 (-1160 *3))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1100)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036))
+ (-5 *1 (-755)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-1216)))))
+(((*1 *1) (-5 *1 (-562))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-281)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050))
+ (-5 *2 (-645 (-645 (-645 (-944 *3))))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-433 *4)) (-5 *1 (-158 *4 *2))
+ (-4 *4 (-559)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-645 (-1176))) (-14 *5 (-772))
+ (-5 *2
+ (-645
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567))))))
+ (-5 *1 (-508 *4 *5))
+ (-5 *3
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567))))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-365)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -4099 *1)))
+ (-4 *1 (-853 *3)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036))
+ (-5 *1 (-749)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-645 *2)) (-4 *2 (-1100)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-337 *3 *4 *5 *6)) (-4 *3 (-365)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-4 *6 (-344 *3 *4 *5))
+ (-5 *2 (-416 *4 (-410 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *6)) (-4 *6 (-13 (-412 *4 *5) (-1039 *4)))
+ (-4 *4 (-993 *3)) (-4 *5 (-1242 *4)) (-4 *3 (-308))
+ (-5 *1 (-416 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-365))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-507 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-772)) (|:| -3586 *4))) (-5 *5 (-772))
+ (-4 *4 (-950 *6 *7 *8)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-452 *6 *7 *8 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-410 (-567))) (-5 *1 (-306)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-1100)) (-5 *2 (-112))
+ (-5 *1 (-890 *4 *5)) (-4 *5 (-1100))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-893 *5)) (-4 *5 (-1100)) (-5 *2 (-112))
+ (-5 *1 (-891 *5 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-893 *5)) (-4 *5 (-1100))
+ (-4 *6 (-1216)) (-5 *2 (-112)) (-5 *1 (-891 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-567))
+ (-5 *6
+ (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))))
+ (-5 *7 (-1 (-1271) (-1266 *5) (-1266 *5) (-381)))
+ (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271))
+ (-5 *1 (-789))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-567))
+ (-5 *6
+ (-2 (|:| |try| (-381)) (|:| |did| (-381)) (|:| -3710 (-381))))
+ (-5 *7 (-1 (-1271) (-1266 *5) (-1266 *5) (-381)))
+ (-5 *3 (-1266 (-381))) (-5 *5 (-381)) (-5 *2 (-1271))
+ (-5 *1 (-789)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1158)) (-5 *1 (-1197)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-225) (-225) (-225)))
+ (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined"))
+ (-5 *5 (-1094 (-225))) (-5 *6 (-645 (-264))) (-5 *2 (-1133 (-225)))
+ (-5 *1 (-698))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-944 (-225)) (-225) (-225))) (-5 *4 (-1094 (-225)))
+ (-5 *5 (-645 (-264))) (-5 *2 (-1133 (-225))) (-5 *1 (-698))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1133 (-225))) (-5 *3 (-1 (-944 (-225)) (-225) (-225)))
+ (-5 *4 (-1094 (-225))) (-5 *5 (-645 (-264))) (-5 *1 (-698)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2)
+ (-12 (-14 *4 (-772)) (-4 *5 (-1216)) (-5 *2 (-134))
+ (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-365)) (-5 *2 (-134)) (-5 *1 (-329 *3 *4))
+ (-4 *3 (-330 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-393 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-172))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-567))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-851)) (-4 *4 (-365)) (-4 *5 (-794))
+ (-5 *2 (-567)) (-5 *1 (-507 *4 *5 *6 *7)) (-4 *7 (-950 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-981 *3)) (-4 *3 (-1050)) (-5 *2 (-922))))
+ ((*1 *2) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-365)) (-5 *2 (-134)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1103 *2 *3 *4 *5 *6)) (-4 *2 (-1100)) (-4 *3 (-1100))
+ (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455))
+ (-5 *2
+ (-645
+ (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1165 (-1176) (-953 *4))))
+ (|:| |eigmult| (-772))
+ (|:| |eigvec| (-645 (-690 (-410 (-953 *4))))))))
+ (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-863)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1220)) (-4 *5 (-1242 (-410 *2)))
+ (-4 *2 (-1242 *4)) (-5 *1 (-343 *3 *4 *2 *5))
+ (-4 *3 (-344 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-344 *3 *2 *4)) (-4 *3 (-1220))
+ (-4 *4 (-1242 (-410 *2))) (-4 *2 (-1242 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *2)) (-5 *1 (-179 *2)) (-4 *2 (-308))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-645 (-645 *4))) (-5 *2 (-645 *4)) (-4 *4 (-308))
+ (-5 *1 (-179 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 *8))
+ (-5 *4
+ (-645
+ (-2 (|:| -2557 (-690 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-690 *7)))))
+ (-5 *5 (-772)) (-4 *8 (-1242 *7)) (-4 *7 (-1242 *6)) (-4 *6 (-351))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-690 *7))))
+ (-5 *1 (-501 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-1076 *3 *4 *5))) (-4 *3 (-1100))
+ (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3))))
+ (-4 *5 (-13 (-433 *4) (-887 *3) (-615 (-893 *3))))
+ (-5 *1 (-1077 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-683 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-344 *4 *5 *6)) (-4 *4 (-1220))
+ (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5)))
+ (-5 *2 (-2 (|:| |num| (-690 *5)) (|:| |den| *5))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *1) (-5 *1 (-824))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1103 *2 *3 *4 *5 *6)) (-4 *2 (-1100)) (-4 *3 (-1100))
+ (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-147))
+ (-4 *3 (-308)) (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-978 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *1 (-231 *4))
+ (-4 *4 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-772))))
+ ((*1 *1 *1) (-4 *1 (-233)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-4 *1 (-267 *3)) (-4 *3 (-851))))
+ ((*1 *1 *1) (-12 (-4 *1 (-267 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220))
+ (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-402 *3 *4))
+ (-4 *4 (-1242 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-402 *2 *3))
+ (-4 *3 (-1242 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-477 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-365)) (-4 *2 (-901 *3)) (-5 *1 (-588 *2))
+ (-5 *3 (-1176))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-588 *2)) (-4 *2 (-365))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-863))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *4)) (-5 *3 (-645 (-772))) (-4 *1 (-901 *4))
+ (-4 *4 (-1100))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-901 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *1 (-901 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-901 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1167 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1173 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1174 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1230 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1242 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1251 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1262 *4)) (-14 *4 (-1176)) (-5 *1 (-1258 *3 *4 *5))
+ (-4 *3 (-1050)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050))
+ (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1216))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851)))
+ (-14 *4 (-645 (-1176)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-894 *3)) (-4 *3 (-851)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-645
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-772)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-794)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455)) (-4 *5 (-851))
+ (-5 *1 (-452 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-861)) (-5 *3 (-128)) (-5 *2 (-772)))))
+(((*1 *1 *2) (-12 (-4 *1 (-667 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1176))) (-5 *1 (-1176)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1 (-381))) (-5 *1 (-1041)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-851)) (-4 *5 (-910)) (-4 *6 (-794))
+ (-4 *8 (-950 *5 *6 *7)) (-5 *2 (-421 (-1172 *8)))
+ (-5 *1 (-907 *5 *6 *7 *8)) (-5 *4 (-1172 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-910)) (-4 *5 (-1242 *4)) (-5 *2 (-421 (-1172 *5)))
+ (-5 *1 (-908 *4 *5)) (-5 *3 (-1172 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-690 *1)) (-5 *4 (-1266 *1)) (-4 *1 (-640 *5))
+ (-4 *5 (-1050))
+ (-5 *2 (-2 (|:| -4302 (-690 *5)) (|:| |vec| (-1266 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *1)) (-4 *1 (-640 *4)) (-4 *4 (-1050))
+ (-5 *2 (-690 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381))))
+ (-5 *2 (-1036)) (-5 *1 (-306)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1216)) (-5 *1 (-1266 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-950 *4 *5 *6)) (-4 *6 (-615 (-1176)))
+ (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *2 (-1165 (-645 (-953 *4)) (-645 (-295 (-953 *4)))))
+ (-5 *1 (-507 *4 *5 *6 *7)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5)))
+ (-5 *2 (-112)) (-5 *1 (-343 *3 *4 *5 *6)) (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-794)) (-4 *4 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
+ (-5 *1 (-743 *5 *4 *6 *3)) (-4 *3 (-950 *6 *5 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-317 *3)) (-4 *3 (-559)) (-4 *3 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-254 *4 *3 *5 *6)) (-4 *4 (-1050)) (-4 *3 (-851))
+ (-4 *5 (-267 *3)) (-4 *6 (-794)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-267 *3)) (-4 *3 (-851)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-922))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-338 *4 *5 *6 *7)) (-4 *4 (-13 (-370) (-365)))
+ (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5))) (-4 *7 (-344 *4 *5 *6))
+ (-5 *2 (-772)) (-5 *1 (-395 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-405)) (-5 *2 (-834 (-922)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-407)) (-5 *2 (-567))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-598 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-559)) (-5 *2 (-567)) (-5 *1 (-624 *3 *4))
+ (-4 *4 (-1242 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-741 *4 *3)) (-4 *4 (-1050))
+ (-4 *3 (-851))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-741 *4 *3)) (-4 *4 (-1050)) (-4 *3 (-851))
+ (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-4 *1 (-870 *3)) (-5 *2 (-772))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-905 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-906 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-338 *5 *6 *7 *8)) (-4 *5 (-433 *4))
+ (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6)))
+ (-4 *8 (-344 *5 *6 *7)) (-4 *4 (-13 (-559) (-1039 (-567))))
+ (-5 *2 (-772)) (-5 *1 (-912 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-338 (-410 (-567)) *4 *5 *6))
+ (-4 *4 (-1242 (-410 (-567)))) (-4 *5 (-1242 (-410 *4)))
+ (-4 *6 (-344 (-410 (-567)) *4 *5)) (-5 *2 (-772))
+ (-5 *1 (-913 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-338 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-365))
+ (-4 *7 (-1242 *6)) (-4 *4 (-1242 (-410 *7))) (-4 *8 (-344 *6 *7 *4))
+ (-4 *9 (-13 (-370) (-365))) (-5 *2 (-772))
+ (-5 *1 (-1019 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1050)) (-4 *3 (-559))
+ (-5 *2 (-772))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1244 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-793)))))
+(((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1094 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1093 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-112)) (-5 *1 (-893 *4))
+ (-4 *4 (-1100)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-121 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-645 *1)) (-4 *1 (-433 *4))
+ (-4 *4 (-1100))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1176)) (-4 *1 (-433 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-225))) (-5 *2 (-410 (-567))) (-5 *1 (-306)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-292)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-1164 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1164 *2 *3)) (-14 *2 (-922)) (-4 *3 (-1050))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-1268))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1133 (-225))) (-5 *1 (-1268)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *2 (-645 *3)) (-5 *1 (-978 *4 *5 *6 *3))
+ (-4 *3 (-1065 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-955)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-410 (-1172 (-317 *3)))) (-4 *3 (-559))
+ (-5 *1 (-1130 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1142 *3 *4)) (-14 *3 (-922)) (-4 *4 (-365))
+ (-5 *1 (-994 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *2 (-1266 (-317 (-381))))
+ (-5 *1 (-306)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-645 *1))
+ (-4 *1 (-1071 *4 *5 *6 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3)))
+ (-5 *1 (-689 *3 *4 *5 *6)) (-4 *6 (-688 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-701 *3))
+ (-4 *3 (-308)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1100)) (-5 *1 (-930 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-317 (-567))) (-5 *1 (-931)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-567)) (-5 *5 (-169 (-225))) (-5 *6 (-1158))
+ (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-4 *6 (-1065 *3 *4 *5)) (-5 *1 (-625 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *2 (-1109 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-292))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2414 *3) (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1050)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3276 (-783 *3)) (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -3276 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1065 *3 *4 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-645 (-1172 *7))) (-5 *3 (-1172 *7))
+ (-4 *7 (-950 *5 *6 *4)) (-4 *5 (-910)) (-4 *6 (-794))
+ (-4 *4 (-851)) (-5 *1 (-907 *5 *6 *4 *7)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1050)) (-14 *3 (-645 (-1176)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1050) (-851)))
+ (-14 *3 (-645 (-1176))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158)) (-5 *2 (-567)) (-5 *1 (-1198 *4))
+ (-4 *4 (-1050)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-700)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1071 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-989 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1071 *5 *6 *7 *8)) (-4 *5 (-455))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7))
+ (-5 *2 (-112)) (-5 *1 (-1107 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-953 *4)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *2 (-950 *4 *6 *5)) (-5 *1 (-925 *4 *5 *6 *2))
+ (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794)))))
+(((*1 *1 *1) (-4 *1 (-1144))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1176)) (-5 *1 (-331)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-421 (-1172 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1172 *1))
+ (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1100))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1172 *1))) (-5 *3 (-1172 *1)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-365)) (-4 *4 (-375 *3)) (-4 *5 (-375 *3))
+ (-5 *1 (-524 *3 *4 *5 *2)) (-4 *2 (-688 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-4 *7 (-993 *4)) (-4 *2 (-688 *7 *8 *9))
+ (-5 *1 (-525 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-688 *4 *5 *6))
+ (-4 *8 (-375 *7)) (-4 *9 (-375 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-688 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-375 *2))
+ (-4 *4 (-375 *2)) (-4 *2 (-308))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-308)) (-4 *3 (-172)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *1 (-689 *3 *4 *5 *2))
+ (-4 *2 (-688 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-308)) (-5 *1 (-701 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1054 *2 *3 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-308)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *7)) (-4 *7 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-978 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *4)) (-5 *3 (-922)) (-4 *4 (-1050))
+ (-5 *1 (-1029 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 (-690 *4))) (-5 *3 (-922)) (-4 *4 (-1050))
+ (-5 *1 (-1029 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-172)) (-4 *2 (-1050)) (-5 *1 (-715 *2 *3))
+ (-4 *3 (-649 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-837 *2)) (-4 *2 (-172)) (-4 *2 (-1050)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1269)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-690 (-567))) (-5 *1 (-1110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-772)) (-5 *1 (-226))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-169 (-225))) (-5 *3 (-772)) (-5 *1 (-226))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-38 (-409 (-566))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1139))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-1176))) (-4 *4 (-1100))
+ (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4))))
+ (-5 *1 (-1076 *4 *5 *2))
+ (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1100)) (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3))))
+ (-5 *1 (-1076 *3 *4 *2))
+ (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-4 *1 (-745 *3)) (-4 *3 (-172)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1266
+ (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225))
+ (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -4229 (-567))
+ (|:| -4303 (-567)) (|:| |spline| (-567)) (|:| -3277 (-567))
+ (|:| |axesColor| (-875)) (|:| -1700 (-567))
+ (|:| |unitsColor| (-875)) (|:| |showing| (-567)))))
+ (-5 *1 (-1267)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-332 *3)) (-4 *3 (-851)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-410 (-567))) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-559)) (-4 *8 (-950 *7 *5 *6))
+ (-5 *2 (-2 (|:| -4164 (-772)) (|:| -3087 *9) (|:| |radicand| *9)))
+ (-5 *1 (-954 *5 *6 *7 *8 *9)) (-5 *4 (-772))
+ (-4 *9
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *8)) (-15 -4067 (*8 $)) (-15 -4078 (*8 $))))))))
+(((*1 *1 *1) (-12 (-4 *1 (-283 *2)) (-4 *2 (-1216)) (-4 *2 (-1100))))
+ ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1100)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1172 *6)) (-5 *3 (-567)) (-4 *6 (-308)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *1 (-743 *4 *5 *6 *7)) (-4 *7 (-950 *6 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-567))) (-4 *3 (-1050)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1050)) (-5 *1 (-99 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
(-5 *1 (-1161 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1256 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *1 (-588 *2)) (-4 *2 (-1039 *3))
+ (-4 *2 (-365))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-365))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-5 *1 (-631 *4 *2))
+ (-4 *2 (-13 (-433 *4) (-1003) (-1201)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1092 *2)) (-4 *2 (-13 (-433 *4) (-1003) (-1201)))
+ (-4 *4 (-559)) (-5 *1 (-631 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-960)) (-5 *2 (-1176))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1092 *1)) (-4 *1 (-960)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-559)) (-4 *2 (-1050))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-970 *3 *2)) (-4 *2 (-1242 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-559))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *1))))
+ (-4 *1 (-1071 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-4 *5 (-793)) (-4 *6 (-850))
- (-4 *7 (-1064 *4 *5 *6))
- (-5 *2 (-644 (-2 (|:| -2482 *1) (|:| -3099 (-644 *7)))))
- (-5 *3 (-644 *7)) (-4 *1 (-1208 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-896))
+ (-5 *3
+ (-2 (|:| |pde| (-645 (-317 (-225))))
+ (|:| |constraints|
+ (-645
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158))
+ (|:| |tol| (-225))))
+ (-5 *2 (-1036)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-400)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1266 (-1101 *3 *4))) (-5 *1 (-1101 *3 *4))
+ (-14 *3 (-922)) (-14 *4 (-922)))))
+(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-794))
+ (-4 *3 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))) (-4 *5 (-559))
+ (-5 *1 (-733 *4 *3 *5 *2)) (-4 *2 (-950 (-410 (-953 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1050)) (-4 *5 (-794))
+ (-4 *3
+ (-13 (-851)
+ (-10 -8 (-15 -3542 ((-1176) $))
+ (-15 -4295 ((-3 $ "failed") (-1176))))))
+ (-5 *1 (-985 *4 *5 *3 *2)) (-4 *2 (-950 (-953 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *6))
+ (-4 *6
+ (-13 (-851)
+ (-10 -8 (-15 -3542 ((-1176) $))
+ (-15 -4295 ((-3 $ "failed") (-1176))))))
+ (-4 *4 (-1050)) (-4 *5 (-794)) (-5 *1 (-985 *4 *5 *6 *2))
+ (-4 *2 (-950 (-953 *4) *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1209 *4 *5 *6 *3)) (-4 *4 (-559)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1) (-5 *1 (-509))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1100)) (-4 *6 (-887 *5)) (-5 *2 (-886 *5 *6 (-645 *6)))
+ (-5 *1 (-888 *5 *6 *4)) (-5 *3 (-645 *6)) (-4 *4 (-615 (-893 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1100)) (-5 *2 (-645 (-295 *3))) (-5 *1 (-888 *5 *3 *4))
+ (-4 *3 (-1039 (-1176))) (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1100)) (-5 *2 (-645 (-295 (-953 *3))))
+ (-5 *1 (-888 *5 *3 *4)) (-4 *3 (-1050))
+ (-1397 (-4 *3 (-1039 (-1176)))) (-4 *3 (-887 *5))
+ (-4 *4 (-615 (-893 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1100)) (-5 *2 (-890 *5 *3)) (-5 *1 (-888 *5 *3 *4))
+ (-1397 (-4 *3 (-1039 (-1176)))) (-1397 (-4 *3 (-1050)))
+ (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-384 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1100))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-5 *2 (-1156 *3)) (-5 *1 (-1160 *3))
+ (-4 *3 (-1050))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-820 *4)) (-4 *4 (-851)) (-4 *1 (-1283 *4 *3))
+ (-4 *3 (-1050)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-851)) (-5 *1 (-126 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3276 (-783 *3)) (|:| |coef1| (-783 *3))
+ (|:| |coef2| (-783 *3))))
+ (-5 *1 (-783 *3)) (-4 *3 (-559)) (-4 *3 (-1050))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-559)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| -3276 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1065 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003))))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-645
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-567)))))
+ (-4 *2 (-559)) (-5 *1 (-421 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-567))
+ (|:| -2807 (-645 (-2 (|:| |irr| *4) (|:| -3259 (-567)))))))
+ (-4 *4 (-1242 (-567))) (-5 *2 (-421 *4)) (-5 *1 (-445 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-1100)) (-5 *1 (-1001 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-959 (-1120))) (-5 *1 (-345 *3 *4)) (-14 *3 (-922))
+ (-14 *4 (-922))))
+ ((*1 *2)
+ (-12 (-5 *2 (-959 (-1120))) (-5 *1 (-346 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-1172 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-959 (-1120))) (-5 *1 (-347 *3 *4)) (-4 *3 (-351))
+ (-14 *4 (-922)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1220)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4)))
+ (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-308) (-10 -8 (-15 -1401 ((-421 $) $)))))
+ (-4 *4 (-1242 *3))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-690 *3))))
+ (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-412 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1242 (-567)))
+ (-5 *2
+ (-2 (|:| -2557 (-690 (-567))) (|:| |basisDen| (-567))
+ (|:| |basisInv| (-690 (-567)))))
+ (-5 *1 (-769 *3 *4)) (-4 *4 (-412 (-567) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-351)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 *4))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-690 *4))))
+ (-5 *1 (-986 *3 *4 *5 *6)) (-4 *6 (-725 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-351)) (-4 *4 (-1242 *3)) (-4 *5 (-1242 *4))
+ (-5 *2
+ (-2 (|:| -2557 (-690 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-690 *4))))
+ (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *6 (-412 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1099)) (-4 *4 (-13 (-1049) (-886 *3) (-614 (-892 *3))))
- (-5 *2 (-644 (-1075 *3 *4 *5))) (-5 *1 (-1076 *3 *4 *5))
- (-4 *5 (-13 (-432 *4) (-886 *3) (-614 (-892 *3)))))))
-(((*1 *1 *1) (-5 *1 (-112))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-612 *3)) (-5 *5 (-644 *3))
- (-4 *3 (-13 (-432 *6) (-27) (-1200)))
- (-4 *6 (-13 (-454) (-1038 (-566)) (-147) (-639 (-566))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-644 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-568 *6 *3 *7)) (-4 *7 (-1099)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-566)) (-5 *2 (-112)) (-5 *1 (-555)))))
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)) (-5 *2 (-645 *1))
+ (-4 *1 (-1065 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-119 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-820 *2)) (-4 *2 (-851)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1181)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-133))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-154))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-218))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-677))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1066))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-1135))) (-5 *1 (-1096)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-410 (-567)))
+ (-4 *4 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *4 *2)) (-4 *2 (-13 (-27) (-1201) (-433 *4))))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-752)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 (-317 (-225)))) (-5 *1 (-268)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-645 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1209 *5 *6 *7 *8)) (-4 *5 (-559))
+ (-4 *6 (-794)) (-4 *7 (-851)) (-4 *8 (-1065 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-645
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-794)) (-4 *3 (-950 *4 *5 *6)) (-4 *4 (-455)) (-4 *6 (-851))
+ (-5 *1 (-452 *4 *5 *6 *3)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-823)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-455))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-452 *4 *5 *6 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-233)) (-4 *3 (-1050)) (-4 *4 (-851)) (-4 *5 (-267 *4))
+ (-4 *6 (-794)) (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1050)) (-4 *3 (-851)) (-4 *5 (-267 *3)) (-4 *6 (-794))
+ (-5 *2 (-1 *1 (-772))) (-4 *1 (-254 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-267 *2)) (-4 *2 (-851)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-455))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1172 *6)) (-4 *6 (-950 *5 *3 *4)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *5 (-910)) (-5 *1 (-460 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-910)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *6)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))
+ (-5 *2 (-2 (|:| -3858 (-645 *6)) (|:| -1367 (-645 *6)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-109))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-366 *2 *3)) (-4 *3 (-1100)) (-4 *2 (-1100))))
+ ((*1 *2 *1) (-12 (-4 *1 (-392)) (-5 *2 (-1158))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-441 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-486))))
+ ((*1 *2 *1) (-12 (-4 *1 (-836 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-866))))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-966))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1176)) (-5 *1 (-1075 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-509)) (-5 *1 (-1115))))
+ ((*1 *1 *1) (-5 *1 (-1176))))
+(((*1 *1 *1 *1) (-4 *1 (-762))))
(((*1 *2)
- (-12 (-4 *3 (-558)) (-5 *2 (-644 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-419 *3)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-225))
- (-5 *7 (-689 (-566))) (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-752)))))
+ (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
+ (-4 *3 (-369 *4))))
+ ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158)) (-5 *2 (-645 (-1181))) (-5 *1 (-1136)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548)))))
+(((*1 *2 *3) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-564)) (-5 *3 (-567)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1178 (-410 (-567))))
+ (-5 *1 (-190)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1) (-4 *1 (-496)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1100)) (-5 *2 (-645 *1))
+ (-4 *1 (-433 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-645 (-893 *3))) (-5 *1 (-893 *3))
+ (-4 *3 (-1100))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-645 *1)) (-4 *1 (-950 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1050))
+ (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-645 *3))
+ (-5 *1 (-951 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-365)
+ (-10 -8 (-15 -4101 ($ *7)) (-15 -4067 (*7 $))
+ (-15 -4078 (*7 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-567)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1039 *4)) (-4 *3 (-559)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-539)) (-5 *1 (-538 *4))
+ (-4 *4 (-1216)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-978 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-645 *7)) (-5 *3 (-112)) (-4 *7 (-1065 *4 *5 *6))
+ (-4 *4 (-455)) (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-5 *1 (-978 *4 *5 *6 *7)))))
+(((*1 *1)
+ (-12 (-4 *1 (-407)) (-1397 (|has| *1 (-6 -4407)))
+ (-1397 (|has| *1 (-6 -4399)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-428 *2)) (-4 *2 (-1100)) (-4 *2 (-851))))
+ ((*1 *1) (-4 *1 (-845))) ((*1 *1 *1 *1) (-4 *1 (-851)))
+ ((*1 *2 *1) (-12 (-4 *1 (-969 *2)) (-4 *2 (-851)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-772)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-794)) (-4 *2 (-950 *4 *5 *6)) (-5 *1 (-452 *4 *5 *6 *2))
+ (-4 *4 (-455)) (-4 *6 (-851)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-117 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-567))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-872 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-872 *2)) (-14 *2 (-567))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-14 *3 *2) (-5 *1 (-873 *3 *4))
+ (-4 *4 (-870 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-567)) (-5 *1 (-873 *2 *3)) (-4 *3 (-870 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-567)) (-4 *1 (-1228 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-1257 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1228 *2 *3)) (-4 *2 (-1050)) (-4 *3 (-1257 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-5 *1 (-1032)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-451 *3 *4 *5 *2)) (-4 *2 (-949 *3 *4 *5)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1) (-4 *1 (-496)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1050))
+ (-5 *1 (-854 *5 *2)) (-4 *2 (-853 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-365)) (-4 *3 (-794)) (-4 *4 (-851))
+ (-5 *1 (-507 *2 *3 *4 *5)) (-4 *5 (-950 *2 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-490)))))
+(((*1 *2 *1) (-12 (-5 *2 (-959 (-772))) (-5 *1 (-334)))))
+(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-381)))
+ ((*1 *1) (-5 *1 (-381))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-752)))))
+(((*1 *1) (-5 *1 (-141))))
+(((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1158)) (-4 *1 (-392)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-137))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-481))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-594))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-627))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1100))
+ (-4 *2 (-13 (-433 *4) (-887 *3) (-615 (-893 *3))))
+ (-5 *1 (-1076 *3 *4 *2))
+ (-4 *4 (-13 (-1050) (-887 *3) (-615 (-893 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1100)) (-5 *1 (-1165 *2 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -4135 *1) (|:| -4403 *1) (|:| |associate| *1)))
+ (-4 *1 (-559)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1) (-4 *1 (-496)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-351)) (-5 *3 (-567)) (-5 *2 (-1189 (-922) (-772))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1172 *7)) (-4 *7 (-950 *6 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1050)) (-5 *2 (-1172 *6))
+ (-5 *1 (-322 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-850))
- (-4 *5 (-267 *4)) (-4 *6 (-793)) (-5 *2 (-644 *4)))))
+ (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1060)) (-4 *3 (-1201))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-548))))
+ ((*1 *1 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-972)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-1039 (-410 *2)))) (-5 *2 (-567))
+ (-5 *1 (-115 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *2 (-13 (-433 (-169 *4)) (-1003) (-1201)))
+ (-5 *1 (-601 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1003) (-1201))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-953 *6))) (-5 *4 (-645 (-1176))) (-4 *6 (-455))
+ (-5 *2 (-645 (-645 *7))) (-5 *1 (-541 *6 *7 *5)) (-4 *7 (-365))
+ (-4 *5 (-13 (-365) (-849))))))
+(((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-62 *3)) (-14 *3 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-69 *3)) (-14 *3 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-72 *3)) (-14 *3 (-1176))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398)) (-5 *2 (-1271))))
+ ((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1271)) (-5 *1 (-400))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1158)) (-5 *4 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1271)) (-5 *1 (-1138))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-863))) (-5 *2 (-1271)) (-5 *1 (-1138)))))
+(((*1 *2 *3) (-12 (-5 *3 (-823)) (-5 *2 (-52)) (-5 *1 (-830)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *1 *1) (-4 *1 (-496)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1060))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172)) (-4 *2 (-1060))))
+ ((*1 *1 *1) (-4 *1 (-849)))
+ ((*1 *2 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)) (-4 *2 (-1060))))
+ ((*1 *1 *1) (-4 *1 (-1060))) ((*1 *1 *1) (-4 *1 (-1139))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1242 *5)) (-4 *5 (-365))
+ (-5 *2 (-2 (|:| -3424 (-410 *6)) (|:| |coeff| (-410 *6))))
+ (-5 *1 (-577 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1176))
+ (|:| |arrayIndex| (-645 (-953 (-567))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1176)) (|:| |rand| (-863))
+ (|:| |ints2Floats?| (-112))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1175)) (|:| |thenClause| (-331))
+ (|:| |elseClause| (-331))))
+ (|:| |returnBranch|
+ (-2 (|:| -3353 (-112))
+ (|:| -3843
+ (-2 (|:| |ints2Floats?| (-112)) (|:| -4256 (-863))))))
+ (|:| |blockBranch| (-645 (-331)))
+ (|:| |commentBranch| (-645 (-1158))) (|:| |callBranch| (-1158))
+ (|:| |forBranch|
+ (-2 (|:| -3674 (-1092 (-953 (-567))))
+ (|:| |span| (-953 (-567))) (|:| -1830 (-331))))
+ (|:| |labelBranch| (-1120))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1175)) (|:| -1830 (-331))))
+ (|:| |commonBranch|
+ (-2 (|:| -1817 (-1176)) (|:| |contents| (-645 (-1176)))))
+ (|:| |printBranch| (-645 (-863)))))
+ (-5 *1 (-331)))))
+(((*1 *1) (-5 *1 (-130))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-567))
+ (-5 *1 (-452 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-471))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1267))))
+ ((*1 *2 *1) (-12 (-5 *2 (-567)) (-5 *1 (-1268)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-394)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1257 *4)) (-5 *1 (-1259 *4 *2))
+ (-4 *4 (-38 (-410 (-567)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-1202 *3))) (-5 *1 (-1202 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *1 *1) (-4 *1 (-496)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-922)) (-4 *5 (-308)) (-4 *3 (-1242 *5))
+ (-5 *2 (-2 (|:| |plist| (-645 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-463 *5 *3)) (-5 *4 (-645 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-276)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-753)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *2 (-1065 *4 *5 *6)) (-5 *1 (-777 *4 *5 *6 *2 *3))
+ (-4 *3 (-1071 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-205)))))
+(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-567)) (-4 *5 (-365))
+ (-4 *5 (-1050)) (-5 *2 (-112)) (-5 *1 (-1030 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365)) (-4 *4 (-1050))
+ (-5 *2 (-112)) (-5 *1 (-1030 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-967 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1271)) (-5 *1 (-394))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-394)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *1 *1) (-4 *1 (-496)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-676 *2)) (-4 *2 (-1050)) (-4 *2 (-1100)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-567))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-772)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-794)) (-4 *4 (-950 *5 *6 *7)) (-4 *5 (-455)) (-4 *7 (-851))
+ (-5 *1 (-452 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-690 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-690 *4)) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2) (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-690 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-564)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1271)) (-5 *1 (-1218))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-1176))) (-5 *2 (-1271)) (-5 *1 (-1218)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-772)) (-5 *1 (-857 *2)) (-4 *2 (-172)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-645 (-1176))) (-4 *2 (-172))
+ (-4 *3 (-238 (-2268 *4) (-772)))
+ (-14 *6
+ (-1 (-112) (-2 (|:| -3811 *5) (|:| -4164 *3))
+ (-2 (|:| -3811 *5) (|:| -4164 *3))))
+ (-5 *1 (-464 *4 *2 *5 *3 *6 *7)) (-4 *5 (-851))
+ (-4 *7 (-950 *2 *3 (-865 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-588 *3)) (-5 *1 (-429 *5 *3))
+ (-4 *3 (-13 (-1201) (-29 *5))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-645
+ (-2
+ (|:| -1762
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -3859
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1156 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3674
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-562)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-772)) (-4 *5 (-365)) (-5 *2 (-174 *6))
+ (-5 *1 (-868 *5 *4 *6)) (-4 *4 (-1257 *5)) (-4 *6 (-1242 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1050)) (-5 *1 (-447 *3 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1100))
+ (-5 *2 (-2 (|:| -3087 (-567)) (|:| |var| (-613 *1))))
+ (-4 *1 (-433 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-605 *4 *3)) (-4 *4 (-1100))
+ (-4 *3 (-1216)) (-4 *3 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *2) (-12 (-5 *2 (-645 *3)) (-4 *3 (-849)) (-5 *1 (-304 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-324 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-131))
+ (-4 *3 (-793)))))
+(((*1 *2 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *3 (-567))
+ (-5 *2 (-1036)) (-5 *1 (-757)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| -1762 (-1176)) (|:| -3859 (-440)))))
+ (-5 *1 (-1180)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-52))) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1271)) (-5 *1 (-1179))))
+ ((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-1179)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-645 (-317 (-225))))
+ (|:| |constraints|
+ (-645
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158))
+ (|:| |tol| (-225))))
+ (-5 *2 (-112)) (-5 *1 (-210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1121 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1036)) (-5 *3 (-1176)) (-5 *1 (-192)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-1216)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-645 (-613 *2))) (-5 *4 (-1176))
+ (-4 *2 (-13 (-27) (-1201) (-433 *5)))
+ (-4 *5 (-13 (-559) (-1039 (-567)) (-640 (-567))))
+ (-5 *1 (-278 *5 *2)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-645 (-567))) (-5 *1 (-1110)) (-5 *3 (-567)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1156 (-567))) (-5 *1 (-1160 *4)) (-4 *4 (-1050))
+ (-5 *3 (-567)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-690 (-225))) (-5 *5 (-690 (-567))) (-5 *6 (-225))
+ (-5 *3 (-567)) (-5 *2 (-1036)) (-5 *1 (-752)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1156 *3)) (-5 *1 (-174 *3)) (-4 *3 (-308)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176))
+ (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-805 *4 *2)) (-4 *2 (-13 (-29 *4) (-1201) (-960))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-317 (-225)))) (-5 *4 (-772))
+ (-5 *2 (-690 (-225))) (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-645 (-645 (-225)))) (-5 *1 (-1212)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-861)) (-5 *2 (-692 (-129))) (-5 *3 (-129)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2138 *7))))
+ (-4 *6 (-1065 *3 *4 *5)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-989 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-2 (|:| |val| (-645 *6)) (|:| -2138 *7))))
+ (-4 *6 (-1065 *3 *4 *5)) (-4 *7 (-1071 *3 *4 *5 *6)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-1107 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 (-381))) (-5 *3 (-645 (-264))) (-5 *1 (-262))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-381))) (-5 *1 (-471))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-875)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1267)))))
+(((*1 *2 *1) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))))
+(((*1 *1) (-4 *1 (-351))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1176)) (-5 *2 (-1180)) (-5 *1 (-1179)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-590 *4))
+ (-4 *4 (-351)))))
+(((*1 *1 *1) (-12 (-4 *1 (-255 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-375 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-844 (-225)))) (-5 *4 (-225)) (-5 *2 (-645 *4))
+ (-5 *1 (-268)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 (-169 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-112))
+ (-5 *1 (-1205 *4 *3)) (-4 *3 (-13 (-27) (-1201) (-433 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-1242 *4)) (-5 *1 (-542 *4 *2 *5 *6))
+ (-4 *4 (-308)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-772))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1156 *4) (-1156 *4))) (-5 *2 (-1156 *4))
+ (-5 *1 (-1291 *4)) (-4 *4 (-1216))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-645 (-1156 *5)) (-645 (-1156 *5)))) (-5 *4 (-567))
+ (-5 *2 (-645 (-1156 *5))) (-5 *1 (-1291 *5)) (-4 *5 (-1216)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *1 *1 *1) (-5 *1 (-381)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3)) (-4 *3 (-1050)) (-5 *2 (-1172 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1100)) (-5 *2 (-55)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-112))
+ (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-391)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1036)) (-5 *1 (-757)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 G)))) (-5 *2 (-1036))
+ (-5 *1 (-749)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1158)) (-4 *4 (-13 (-308) (-147)))
+ (-4 *5 (-13 (-851) (-615 (-1176)))) (-4 *6 (-794))
+ (-5 *2
+ (-645
+ (-2 (|:| |eqzro| (-645 *7)) (|:| |neqzro| (-645 *7))
+ (|:| |wcond| (-645 (-953 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1266 (-410 (-953 *4))))
+ (|:| -2557 (-645 (-1266 (-410 (-953 *4))))))))))
+ (-5 *1 (-925 *4 *5 *6 *7)) (-4 *7 (-950 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1242 *2)) (-4 *2 (-1242 *4)) (-5 *1 (-986 *4 *2 *3 *5))
+ (-4 *4 (-351)) (-4 *5 (-725 *2 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9))))
+ (-5 *4 (-772)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1071 *5 *6 *7 *8))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1271))
+ (-5 *1 (-1069 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9))))
+ (-5 *4 (-772)) (-4 *8 (-1065 *5 *6 *7)) (-4 *9 (-1109 *5 *6 *7 *8))
+ (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851)) (-5 *2 (-1271))
+ (-5 *1 (-1145 *5 *6 *7 *8 *9)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-483)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1100)) (-4 *4 (-1100))
+ (-4 *6 (-1100)) (-5 *2 (-1 *6 *5)) (-5 *1 (-685 *5 *4 *6)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-567)) (-5 *1 (-381)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-254 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-851))
+ (-4 *5 (-267 *4)) (-4 *6 (-794)) (-5 *2 (-645 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-97)))))
(((*1 *1 *2 *3)
- (-12 (-5 *3 (-420 *2)) (-4 *2 (-308)) (-5 *1 (-914 *2))))
+ (-12 (-5 *3 (-421 *2)) (-4 *2 (-308)) (-5 *1 (-915 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 *5))) (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *5))))
+ (-12 (-5 *3 (-410 (-953 *5))) (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-420 (-952 *6))) (-5 *5 (-1175)) (-5 *3 (-952 *6))
- (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-915 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-822)) (-5 *1 (-821)))))
-(((*1 *2 *3) (-12 (-5 *3 (-493)) (-5 *2 (-691 (-581))) (-5 *1 (-581)))))
+ (-12 (-5 *4 (-421 (-953 *6))) (-5 *5 (-1176)) (-5 *3 (-953 *6))
+ (-4 *6 (-13 (-308) (-147))) (-5 *2 (-52)) (-5 *1 (-916 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1216)) (-4 *2 (-1003))
+ (-4 *2 (-1050)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-645 (-645 (-645 *4)))) (-5 *3 (-645 *4)) (-4 *4 (-851))
+ (-5 *1 (-1187 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-690 *3)) (-4 *3 (-1050)) (-5 *1 (-691 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-645 *3)) (-4 *3 (-1242 *5)) (-4 *5 (-308))
+ (-5 *2 (-772)) (-5 *1 (-458 *5 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1065 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1050)) (-4 *4 (-172))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))
+ (-4 *3 (-172)))))
+(((*1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-1186)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-169 (-567))) (-5 *2 (-112)) (-5 *1 (-449))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-507 (-410 (-567)) (-240 *5 (-772)) (-865 *4)
+ (-247 *4 (-410 (-567)))))
+ (-14 *4 (-645 (-1176))) (-14 *5 (-772)) (-5 *2 (-112))
+ (-5 *1 (-508 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-548))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1220)) (-5 *2 (-112)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1216))
+ (-5 *2 (-112)))))
+(((*1 *2 *1) (-12 (-5 *2 (-823)) (-5 *1 (-822)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1172 *1)) (-4 *1 (-1013)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-922)) (-5 *1 (-787)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-366 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-5 *2 (-1158)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-509)) (-5 *2 (-692 (-775))) (-5 *1 (-114))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-775)) (-5 *1 (-114))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1104)) (-5 *1 (-966)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1013)) (-5 *2 (-863)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1164 3 *3)) (-4 *3 (-1050)) (-4 *1 (-1134 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1134 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *3)) (-5 *1 (-1128 *4 *3)) (-4 *4 (-1242 *3)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1101 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-928))
+ (-5 *2
+ (-2 (|:| |brans| (-645 (-645 (-944 (-225)))))
+ (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))))
+ (-5 *1 (-153))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-928)) (-5 *4 (-410 (-567)))
+ (-5 *2
+ (-2 (|:| |brans| (-645 (-645 (-944 (-225)))))
+ (|:| |xValues| (-1094 (-225))) (|:| |yValues| (-1094 (-225)))))
+ (-5 *1 (-153)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1172 *4)) (-5 *1 (-359 *4))
+ (-4 *4 (-351))))
+ ((*1 *1) (-4 *1 (-370)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1266 *4)) (-5 *1 (-531 *4))
+ (-4 *4 (-351))))
+ ((*1 *1 *1) (-4 *1 (-548))) ((*1 *1) (-4 *1 (-548)))
+ ((*1 *1 *1) (-5 *1 (-772)))
+ ((*1 *2 *1) (-12 (-5 *2 (-906 *3)) (-5 *1 (-905 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4))
+ (-4 *4 (-1100))))
+ ((*1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-548)) (-4 *2 (-559)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-439)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
+ ((*1 *1 *1) (-4 *1 (-1204))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-455))
+ (-5 *2
+ (-645
+ (-2 (|:| |eigval| (-3 (-410 (-953 *4)) (-1165 (-1176) (-953 *4))))
+ (|:| |geneigvec| (-645 (-690 (-410 (-953 *4))))))))
+ (-5 *1 (-293 *4)) (-5 *3 (-690 (-410 (-953 *4)))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
(|:| |relerr| (-225))))
- (-5 *2 (-566)) (-5 *1 (-204)))))
+ (-5 *2 (-567)) (-5 *1 (-204)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-559))
+ (-5 *2 (-2 (|:| -4302 (-690 *5)) (|:| |vec| (-1266 (-645 (-922))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-922)) (-4 *3 (-657 *5)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-327 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050))
+ (-4 *2 (-455))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *4)) (-4 *4 (-1242 (-567))) (-5 *2 (-645 (-567)))
+ (-5 *1 (-489 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-455))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-950 *3 *4 *2)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *2 (-851)) (-4 *3 (-455)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1100)) (-5 *1 (-965 *3 *2)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308))
+ (-5 *2 (-645 (-772))) (-5 *1 (-779 *3 *4 *5 *6 *7))
+ (-4 *3 (-1242 *6)) (-4 *7 (-950 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-706 *3 *4)) (-4 *3 (-1216)) (-4 *4 (-1216)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-558)) (-4 *3 (-1049))
- (-5 *2 (-2 (|:| -2383 *1) (|:| -3033 *1))) (-4 *1 (-852 *3))))
+ (-12 (-4 *3 (-559)) (-4 *3 (-1050))
+ (-5 *2 (-2 (|:| -3545 *1) (|:| -1386 *1))) (-4 *1 (-853 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-558)) (-4 *5 (-1049))
- (-5 *2 (-2 (|:| -2383 *3) (|:| -3033 *3))) (-5 *1 (-853 *5 *3))
- (-4 *3 (-852 *5)))))
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-559)) (-4 *5 (-1050))
+ (-5 *2 (-2 (|:| -3545 *3) (|:| -1386 *3))) (-5 *1 (-854 *5 *3))
+ (-4 *3 (-853 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
+ ((*1 *1 *1) (-4 *1 (-1204))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1158)) (-5 *1 (-1197)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-645 (-1140 *4 *5))) (-5 *3 (-1 (-112) *5 *5))
+ (-4 *4 (-13 (-1100) (-34))) (-4 *5 (-13 (-1100) (-34)))
+ (-5 *1 (-1141 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-1140 *3 *4))) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))) (-5 *1 (-1141 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1172 (-953 *6))) (-4 *6 (-559))
+ (-4 *2 (-950 (-410 (-953 *6)) *5 *4)) (-5 *1 (-733 *5 *4 *6 *2))
+ (-4 *5 (-794))
+ (-4 *4 (-13 (-851) (-10 -8 (-15 -3542 ((-1176) $))))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-128)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-365)) (-4 *2 (-849)) (-5 *1 (-946 *2 *3))
+ (-4 *3 (-1242 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269))))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-1269)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-455)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-645 *4))
+ (-5 *1 (-1108 *5 *6 *7 *3 *4)) (-4 *4 (-1071 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-509)) (-5 *3 (-1118)) (-5 *1 (-1115)))))
+(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-953 (-381))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-410 (-953 (-381)))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 (-381))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-381))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-953 (-567))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-410 (-953 (-567)))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 (-567))) (-5 *1 (-341 *3 *4 *5))
+ (-4 *5 (-1039 (-567))) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 *2))
+ (-14 *4 (-645 *2)) (-4 *5 (-390))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-317 *5)) (-4 *5 (-390)) (-5 *1 (-341 *3 *4 *5))
+ (-14 *3 (-645 (-1176))) (-14 *4 (-645 (-1176)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-567))))) (-4 *1 (-386))))
+ ((*1 *1 *2) (-12 (-5 *2 (-690 (-410 (-953 (-381))))) (-4 *1 (-386))))
+ ((*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-567)))) (-4 *1 (-386))))
+ ((*1 *1 *2) (-12 (-5 *2 (-690 (-953 (-381)))) (-4 *1 (-386))))
+ ((*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-567)))) (-4 *1 (-386))))
+ ((*1 *1 *2) (-12 (-5 *2 (-690 (-317 (-381)))) (-4 *1 (-386))))
+ ((*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-567)))) (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-410 (-953 (-381)))) (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-953 (-567))) (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-953 (-381))) (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-567))) (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-317 (-381))) (-4 *1 (-399))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 (-410 (-953 (-567))))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 (-410 (-953 (-381))))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 (-953 (-567)))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 (-953 (-381)))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 (-317 (-567)))) (-4 *1 (-444))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1266 (-317 (-381)))) (-4 *1 (-444))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-645 (-1094 (-844 (-225)))))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))))
+ (-5 *1 (-770))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (-5 *1 (-809))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-317 (-225))) (|:| -2596 (-645 (-225)))
+ (|:| |lb| (-645 (-844 (-225))))
+ (|:| |cf| (-645 (-317 (-225))))
+ (|:| |ub| (-645 (-844 (-225))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-645 (-317 (-225))))
+ (|:| -2596 (-645 (-225)))))))
+ (-5 *1 (-842))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-645 (-317 (-225))))
+ (|:| |constraints|
+ (-645
+ (-2 (|:| |start| (-225)) (|:| |finish| (-225))
+ (|:| |grid| (-772)) (|:| |boundaryType| (-567))
+ (|:| |dStart| (-690 (-225))) (|:| |dFinish| (-690 (-225))))))
+ (|:| |f| (-645 (-645 (-317 (-225))))) (|:| |st| (-1158))
+ (|:| |tol| (-225))))
+ (-5 *1 (-899))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *1 (-977 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2)
+ (-2909
+ (-12 (-5 *2 (-953 *3))
+ (-12 (-1397 (-4 *3 (-38 (-410 (-567)))))
+ (-1397 (-4 *3 (-38 (-567)))) (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)))
+ (-12 (-5 *2 (-953 *3))
+ (-12 (-1397 (-4 *3 (-548))) (-1397 (-4 *3 (-38 (-410 (-567)))))
+ (-4 *3 (-38 (-567))) (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)))
+ (-12 (-5 *2 (-953 *3))
+ (-12 (-1397 (-4 *3 (-993 (-567)))) (-4 *3 (-38 (-410 (-567))))
+ (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *1 (-1065 *3 *4 *5)) (-4 *4 (-794))
+ (-4 *5 (-851)))))
+ ((*1 *1 *2)
+ (-2909
+ (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5))
+ (-12 (-1397 (-4 *3 (-38 (-410 (-567))))) (-4 *3 (-38 (-567)))
+ (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))
+ (-12 (-5 *2 (-953 (-567))) (-4 *1 (-1065 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))))
+ (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-953 (-410 (-567)))) (-4 *1 (-1065 *3 *4 *5))
+ (-4 *3 (-38 (-410 (-567)))) (-4 *5 (-615 (-1176))) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-1268))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
+ ((*1 *1 *1) (-4 *1 (-1204))))
+(((*1 *1) (-5 *1 (-1085))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216)))))
(((*1 *2)
- (-12 (-5 *2 (-409 (-952 *3))) (-5 *1 (-455 *3 *4 *5 *6))
- (-4 *3 (-558)) (-4 *3 (-172)) (-14 *4 (-921))
- (-14 *5 (-644 (-1175))) (-14 *6 (-1265 (-689 *3))))))
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1172 *9)) (-5 *4 (-645 *7)) (-4 *7 (-851))
+ (-4 *9 (-950 *8 *6 *7)) (-4 *6 (-794)) (-4 *8 (-308))
+ (-5 *2 (-645 (-772))) (-5 *1 (-743 *6 *7 *8 *9)) (-5 *5 (-772)))))
+(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-157)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *1 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *5 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-753)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-650 *2 *3 *4)) (-4 *2 (-1100)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-409 (-952 (-566)))))
- (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-848) (-365)))))
+ (-12 (-5 *3 (-645 (-410 (-953 (-567)))))
+ (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-295 (-409 (-952 (-566))))))
- (-5 *2 (-644 (-644 (-295 (-952 *4))))) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-848) (-365)))))
+ (-12 (-5 *3 (-645 (-295 (-410 (-953 (-567))))))
+ (-5 *2 (-645 (-645 (-295 (-953 *4))))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-409 (-952 (-566)))) (-5 *2 (-644 (-295 (-952 *4))))
- (-5 *1 (-382 *4)) (-4 *4 (-13 (-848) (-365)))))
+ (-12 (-5 *3 (-410 (-953 (-567)))) (-5 *2 (-645 (-295 (-953 *4))))
+ (-5 *1 (-382 *4)) (-4 *4 (-13 (-849) (-365)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-295 (-409 (-952 (-566)))))
- (-5 *2 (-644 (-295 (-952 *4)))) (-5 *1 (-382 *4))
- (-4 *4 (-13 (-848) (-365)))))
+ (-12 (-5 *3 (-295 (-410 (-953 (-567)))))
+ (-5 *2 (-645 (-295 (-953 *4)))) (-5 *1 (-382 *4))
+ (-4 *4 (-13 (-849) (-365)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1175))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-4 *4 (-13 (-29 *6) (-1200) (-959)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2227 (-644 *4))))
- (-5 *1 (-652 *6 *4 *3)) (-4 *3 (-656 *4))))
+ (|partial| -12 (-5 *5 (-1176))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-4 *4 (-13 (-29 *6) (-1201) (-960)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -2557 (-645 *4))))
+ (-5 *1 (-653 *6 *4 *3)) (-4 *3 (-657 *4))))
((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1175)) (-5 *5 (-644 *2))
- (-4 *2 (-13 (-29 *6) (-1200) (-959)))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *1 (-652 *6 *2 *3)) (-4 *3 (-656 *2))))
+ (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-645 *2))
+ (-4 *2 (-13 (-29 *6) (-1201) (-960)))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-653 *6 *2 *3)) (-4 *3 (-657 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *5)) (-4 *5 (-365))
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-365))
(-5 *2
- (-2 (|:| |particular| (-3 (-1265 *5) "failed"))
- (|:| -2227 (-644 (-1265 *5)))))
- (-5 *1 (-667 *5)) (-5 *4 (-1265 *5))))
+ (-2 (|:| |particular| (-3 (-1266 *5) "failed"))
+ (|:| -2557 (-645 (-1266 *5)))))
+ (-5 *1 (-668 *5)) (-5 *4 (-1266 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365))
+ (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365))
(-5 *2
- (-2 (|:| |particular| (-3 (-1265 *5) "failed"))
- (|:| -2227 (-644 (-1265 *5)))))
- (-5 *1 (-667 *5)) (-5 *4 (-1265 *5))))
+ (-2 (|:| |particular| (-3 (-1266 *5) "failed"))
+ (|:| -2557 (-645 (-1266 *5)))))
+ (-5 *1 (-668 *5)) (-5 *4 (-1266 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-689 *5)) (-4 *5 (-365))
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-365))
(-5 *2
- (-644
- (-2 (|:| |particular| (-3 (-1265 *5) "failed"))
- (|:| -2227 (-644 (-1265 *5))))))
- (-5 *1 (-667 *5)) (-5 *4 (-644 (-1265 *5)))))
+ (-645
+ (-2 (|:| |particular| (-3 (-1266 *5) "failed"))
+ (|:| -2557 (-645 (-1266 *5))))))
+ (-5 *1 (-668 *5)) (-5 *4 (-645 (-1266 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-644 *5))) (-4 *5 (-365))
+ (-12 (-5 *3 (-645 (-645 *5))) (-4 *5 (-365))
(-5 *2
- (-644
- (-2 (|:| |particular| (-3 (-1265 *5) "failed"))
- (|:| -2227 (-644 (-1265 *5))))))
- (-5 *1 (-667 *5)) (-5 *4 (-644 (-1265 *5)))))
+ (-645
+ (-2 (|:| |particular| (-3 (-1266 *5) "failed"))
+ (|:| -2557 (-645 (-1266 *5))))))
+ (-5 *1 (-668 *5)) (-5 *4 (-645 (-1266 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416))))
- (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416))))
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417))))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4417))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2227 (-644 *4))))
- (-5 *1 (-668 *5 *6 *4 *3)) (-4 *3 (-687 *5 *6 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-669 *5 *6 *4 *3)) (-4 *3 (-688 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4416))))
- (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4416))))
+ (-12 (-4 *5 (-365)) (-4 *6 (-13 (-375 *5) (-10 -7 (-6 -4417))))
+ (-4 *7 (-13 (-375 *5) (-10 -7 (-6 -4417))))
(-5 *2
- (-644
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2227 (-644 *7)))))
- (-5 *1 (-668 *5 *6 *7 *3)) (-5 *4 (-644 *7))
- (-4 *3 (-687 *5 *6 *7))))
+ (-645
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2557 (-645 *7)))))
+ (-5 *1 (-669 *5 *6 *7 *3)) (-5 *4 (-645 *7))
+ (-4 *3 (-688 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-952 *5))) (-5 *4 (-644 (-1175))) (-4 *5 (-558))
- (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-770 *5))))
+ (-12 (-5 *3 (-645 (-953 *5))) (-5 *4 (-645 (-1176))) (-4 *5 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-771 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-952 *4))) (-4 *4 (-558))
- (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-770 *4))))
+ (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-771 *4))))
((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *1 (-772 *5 *2)) (-4 *2 (-13 (-29 *5) (-1200) (-959)))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-773 *5 *2)) (-4 *2 (-13 (-29 *5) (-1201) (-960)))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-689 *7)) (-5 *5 (-1175))
- (-4 *7 (-13 (-29 *6) (-1200) (-959)))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
+ (|partial| -12 (-5 *3 (-690 *7)) (-5 *5 (-1176))
+ (-4 *7 (-13 (-29 *6) (-1201) (-960)))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
(-5 *2
- (-2 (|:| |particular| (-1265 *7)) (|:| -2227 (-644 (-1265 *7)))))
- (-5 *1 (-802 *6 *7)) (-5 *4 (-1265 *7))))
+ (-2 (|:| |particular| (-1266 *7)) (|:| -2557 (-645 (-1266 *7)))))
+ (-5 *1 (-803 *6 *7)) (-5 *4 (-1266 *7))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-689 *6)) (-5 *4 (-1175))
- (-4 *6 (-13 (-29 *5) (-1200) (-959)))
- (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *2 (-644 (-1265 *6))) (-5 *1 (-802 *5 *6))))
+ (|partial| -12 (-5 *3 (-690 *6)) (-5 *4 (-1176))
+ (-4 *6 (-13 (-29 *5) (-1201) (-960)))
+ (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-1266 *6))) (-5 *1 (-803 *5 *6))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-644 (-295 *7))) (-5 *4 (-644 (-114)))
- (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1200) (-959)))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
+ (|partial| -12 (-5 *3 (-645 (-295 *7))) (-5 *4 (-645 (-114)))
+ (-5 *5 (-1176)) (-4 *7 (-13 (-29 *6) (-1201) (-960)))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
(-5 *2
- (-2 (|:| |particular| (-1265 *7)) (|:| -2227 (-644 (-1265 *7)))))
- (-5 *1 (-802 *6 *7))))
+ (-2 (|:| |particular| (-1266 *7)) (|:| -2557 (-645 (-1266 *7)))))
+ (-5 *1 (-803 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-644 *7)) (-5 *4 (-644 (-114)))
- (-5 *5 (-1175)) (-4 *7 (-13 (-29 *6) (-1200) (-959)))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
+ (|partial| -12 (-5 *3 (-645 *7)) (-5 *4 (-645 (-114)))
+ (-5 *5 (-1176)) (-4 *7 (-13 (-29 *6) (-1201) (-960)))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
(-5 *2
- (-2 (|:| |particular| (-1265 *7)) (|:| -2227 (-644 (-1265 *7)))))
- (-5 *1 (-802 *6 *7))))
+ (-2 (|:| |particular| (-1266 *7)) (|:| -2557 (-645 (-1266 *7)))))
+ (-5 *1 (-803 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1175))
- (-4 *7 (-13 (-29 *6) (-1200) (-959)))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
+ (-12 (-5 *3 (-295 *7)) (-5 *4 (-114)) (-5 *5 (-1176))
+ (-4 *7 (-13 (-29 *6) (-1201) (-960)))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
(-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2227 (-644 *7))) *7 "failed"))
- (-5 *1 (-802 *6 *7))))
+ (-3 (-2 (|:| |particular| *7) (|:| -2557 (-645 *7))) *7 "failed"))
+ (-5 *1 (-803 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-1175))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
+ (-12 (-5 *4 (-114)) (-5 *5 (-1176))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2227 (-644 *3))) *3 "failed"))
- (-5 *1 (-802 *6 *3)) (-4 *3 (-13 (-29 *6) (-1200) (-959)))))
+ (-3 (-2 (|:| |particular| *3) (|:| -2557 (-645 *3))) *3 "failed"))
+ (-5 *1 (-803 *6 *3)) (-4 *3 (-13 (-29 *6) (-1201) (-960)))))
((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-644 *2))
- (-4 *2 (-13 (-29 *6) (-1200) (-959))) (-5 *1 (-802 *6 *2))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))))
+ (|partial| -12 (-5 *3 (-295 *2)) (-5 *4 (-114)) (-5 *5 (-645 *2))
+ (-4 *2 (-13 (-29 *6) (-1201) (-960))) (-5 *1 (-803 *6 *2))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))))
((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-644 *2))
- (-4 *2 (-13 (-29 *6) (-1200) (-959)))
- (-4 *6 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *1 (-802 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-808)) (-5 *2 (-1035)) (-5 *1 (-805))))
+ (|partial| -12 (-5 *3 (-114)) (-5 *4 (-295 *2)) (-5 *5 (-645 *2))
+ (-4 *2 (-13 (-29 *6) (-1201) (-960)))
+ (-4 *6 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *1 (-803 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-809)) (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-808)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-805))))
+ (-12 (-5 *3 (-809)) (-5 *4 (-1063)) (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1265 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4))
- (-5 *2 (-1035)) (-5 *1 (-805))))
+ (-12 (-5 *3 (-1266 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
+ (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1265 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4))
- (-5 *2 (-1035)) (-5 *1 (-805))))
+ (-12 (-5 *3 (-1266 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
+ (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1265 (-317 *4))) (-5 *5 (-644 (-381)))
- (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805))))
+ (-12 (-5 *3 (-1266 (-317 *4))) (-5 *5 (-645 (-381)))
+ (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1265 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-644 *4))
- (-5 *2 (-1035)) (-5 *1 (-805))))
+ (-12 (-5 *3 (-1266 (-317 (-381)))) (-5 *4 (-381)) (-5 *5 (-645 *4))
+ (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1265 (-317 *4))) (-5 *5 (-644 (-381)))
- (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805))))
+ (-12 (-5 *3 (-1266 (-317 *4))) (-5 *5 (-645 (-381)))
+ (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1265 (-317 *4))) (-5 *5 (-644 (-381)))
- (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1035)) (-5 *1 (-805))))
+ (-12 (-5 *3 (-1266 (-317 *4))) (-5 *5 (-645 (-381)))
+ (-5 *6 (-317 (-381))) (-5 *4 (-381)) (-5 *2 (-1036)) (-5 *1 (-806))))
((*1 *2 *3 *4 *5)
(|partial| -12
(-5 *5
(-1
- (-3 (-2 (|:| |particular| *6) (|:| -2227 (-644 *6))) "failed")
+ (-3 (-2 (|:| |particular| *6) (|:| -2557 (-645 *6))) "failed")
*7 *6))
- (-4 *6 (-365)) (-4 *7 (-656 *6))
- (-5 *2 (-2 (|:| |particular| (-1265 *6)) (|:| -2227 (-689 *6))))
- (-5 *1 (-813 *6 *7)) (-5 *3 (-689 *6)) (-5 *4 (-1265 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-898)) (-5 *2 (-1035)) (-5 *1 (-897))))
+ (-4 *6 (-365)) (-4 *7 (-657 *6))
+ (-5 *2 (-2 (|:| |particular| (-1266 *6)) (|:| -2557 (-690 *6))))
+ (-5 *1 (-814 *6 *7)) (-5 *3 (-690 *6)) (-5 *4 (-1266 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-899)) (-5 *2 (-1036)) (-5 *1 (-898))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-898)) (-5 *4 (-1062)) (-5 *2 (-1035)) (-5 *1 (-897))))
+ (-12 (-5 *3 (-899)) (-5 *4 (-1063)) (-5 *2 (-1036)) (-5 *1 (-898))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157))
- (-5 *8 (-225)) (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381))
- (-5 *2 (-1035)) (-5 *1 (-897))))
+ (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1158))
+ (-5 *8 (-225)) (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381))
+ (-5 *2 (-1036)) (-5 *1 (-898))))
((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-771)) (-5 *6 (-644 (-644 (-317 *3)))) (-5 *7 (-1157))
- (-5 *5 (-644 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1035))
- (-5 *1 (-897))))
+ (-12 (-5 *4 (-772)) (-5 *6 (-645 (-645 (-317 *3)))) (-5 *7 (-1158))
+ (-5 *5 (-645 (-317 (-381)))) (-5 *3 (-381)) (-5 *2 (-1036))
+ (-5 *1 (-898))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 (-409 (-566)))) (-5 *2 (-644 (-381)))
- (-5 *1 (-1023)) (-5 *4 (-381))))
+ (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 (-381)))
+ (-5 *1 (-1024)) (-5 *4 (-381))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-952 (-566))) (-5 *2 (-644 (-381))) (-5 *1 (-1023))
+ (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 (-381))) (-5 *1 (-1024))
(-5 *4 (-381))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-409 (-566)))))))
- (-5 *2 (-644 *4)) (-5 *1 (-1127 *3 *4)) (-4 *3 (-1241 *4))))
+ (-12 (-4 *4 (-13 (-365) (-10 -8 (-15 ** ($ $ (-410 (-567)))))))
+ (-5 *2 (-645 *4)) (-5 *1 (-1128 *3 *4)) (-4 *3 (-1242 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4))
+ (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4))
(-5 *3 (-317 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *2 (-644 (-295 (-317 *4)))) (-5 *1 (-1130 *4))
+ (-12 (-4 *4 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *4)))) (-5 *1 (-1131 *4))
(-5 *3 (-295 (-317 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5))
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5))
(-5 *3 (-295 (-317 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175))
- (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *2 (-644 (-295 (-317 *5)))) (-5 *1 (-1130 *5))
+ (-12 (-5 *4 (-1176))
+ (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-295 (-317 *5)))) (-5 *1 (-1131 *5))
(-5 *3 (-317 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-1175)))
- (-4 *5 (-13 (-308) (-1038 (-566)) (-639 (-566)) (-147)))
- (-5 *2 (-644 (-644 (-295 (-317 *5))))) (-5 *1 (-1130 *5))
- (-5 *3 (-644 (-295 (-317 *5))))))
+ (-12 (-5 *4 (-645 (-1176)))
+ (-4 *5 (-13 (-308) (-1039 (-567)) (-640 (-567)) (-147)))
+ (-5 *2 (-645 (-645 (-295 (-317 *5))))) (-5 *1 (-1131 *5))
+ (-5 *3 (-645 (-295 (-317 *5))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-644 (-409 (-952 *5)))) (-5 *4 (-644 (-1175)))
- (-4 *5 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *5))))))
- (-5 *1 (-1184 *5))))
+ (-12 (-5 *3 (-645 (-410 (-953 *5)))) (-5 *4 (-645 (-1176)))
+ (-4 *5 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *5))))))
+ (-5 *1 (-1185 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-1175))) (-4 *5 (-558))
- (-5 *2 (-644 (-644 (-295 (-409 (-952 *5)))))) (-5 *1 (-1184 *5))
- (-5 *3 (-644 (-295 (-409 (-952 *5)))))))
+ (-12 (-5 *4 (-645 (-1176))) (-4 *5 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-953 *5)))))) (-5 *1 (-1185 *5))
+ (-5 *3 (-645 (-295 (-410 (-953 *5)))))))
((*1 *2 *3)
- (-12 (-5 *3 (-644 (-409 (-952 *4)))) (-4 *4 (-558))
- (-5 *2 (-644 (-644 (-295 (-409 (-952 *4)))))) (-5 *1 (-1184 *4))))
+ (-12 (-5 *3 (-645 (-410 (-953 *4)))) (-4 *4 (-559))
+ (-5 *2 (-645 (-645 (-295 (-410 (-953 *4)))))) (-5 *1 (-1185 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-644 (-644 (-295 (-409 (-952 *4))))))
- (-5 *1 (-1184 *4)) (-5 *3 (-644 (-295 (-409 (-952 *4)))))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-645 (-295 (-410 (-953 *4))))))
+ (-5 *1 (-1185 *4)) (-5 *3 (-645 (-295 (-410 (-953 *4)))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-4 *5 (-558))
- (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1184 *5))
- (-5 *3 (-409 (-952 *5)))))
+ (-12 (-5 *4 (-1176)) (-4 *5 (-559))
+ (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1185 *5))
+ (-5 *3 (-410 (-953 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-4 *5 (-558))
- (-5 *2 (-644 (-295 (-409 (-952 *5))))) (-5 *1 (-1184 *5))
- (-5 *3 (-295 (-409 (-952 *5))))))
+ (-12 (-5 *4 (-1176)) (-4 *5 (-559))
+ (-5 *2 (-645 (-295 (-410 (-953 *5))))) (-5 *1 (-1185 *5))
+ (-5 *3 (-295 (-410 (-953 *5))))))
((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4)))))
- (-5 *1 (-1184 *4)) (-5 *3 (-409 (-952 *4)))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4)))))
+ (-5 *1 (-1185 *4)) (-5 *3 (-410 (-953 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-644 (-295 (-409 (-952 *4)))))
- (-5 *1 (-1184 *4)) (-5 *3 (-295 (-409 (-952 *4)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-771)) (-5 *5 (-644 *3)) (-4 *3 (-308)) (-4 *6 (-850))
- (-4 *7 (-793)) (-5 *2 (-112)) (-5 *1 (-625 *6 *7 *3 *8))
- (-4 *8 (-949 *3 *7 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-5 *2 (-112)))))
+ (-12 (-4 *4 (-559)) (-5 *2 (-645 (-295 (-410 (-953 *4)))))
+ (-5 *1 (-1185 *4)) (-5 *3 (-295 (-410 (-953 *4)))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-645 *3))
+ (-5 *1 (-978 *4 *5 *6 *3)) (-4 *3 (-1065 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1265 (-644 (-2 (|:| -2465 *4) (|:| -2430 (-1119))))))
- (-4 *4 (-351)) (-5 *2 (-1270)) (-5 *1 (-530 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-862))))
- ((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1270)) (-5 *1 (-962)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
+ ((*1 *1 *1) (-4 *1 (-1204))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-1158)) (-5 *5 (-690 (-225)))
+ (-5 *2 (-1036)) (-5 *1 (-748)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1065 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-14 *4 (-644 (-1175))) (-4 *5 (-454))
- (-5 *2
- (-2 (|:| |glbase| (-644 (-247 *4 *5))) (|:| |glval| (-644 (-566)))))
- (-5 *1 (-631 *4 *5)) (-5 *3 (-644 (-247 *4 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-824)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (-5 *2 (-381)) (-5 *1 (-192)))))
+(((*1 *2)
+ (-12 (-4 *3 (-559)) (-5 *2 (-645 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-420 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-657 *3)) (-4 *3 (-1050)) (-4 *3 (-365))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-1 *5 *5)) (-4 *5 (-365))
+ (-5 *1 (-660 *5 *2)) (-4 *2 (-657 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-793)))))
(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
(-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-2 (|:| -2465 *4) (|:| -4277 *4) (|:| |totalpts| (-566))
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
(|:| |success| (-112))))
- (-5 *1 (-789)) (-5 *5 (-566)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1270)) (-5 *1 (-214 *4))
- (-4 *4
- (-13 (-850)
- (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 (*2 $))
- (-15 -1397 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1270)) (-5 *1 (-214 *3))
- (-4 *3
- (-13 (-850)
- (-10 -8 (-15 -3282 ((-1157) $ (-1175))) (-15 -2498 (*2 $))
- (-15 -1397 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-504)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-5 *2 (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1172 *3)) (-4 *3 (-351)) (-5 *1 (-359 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-351)) (-5 *2 (-112))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1172 *4)) (-4 *4 (-351)) (-5 *2 (-112))
+ (-5 *1 (-359 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-324 *4 *2)) (-4 *4 (-1100))
+ (-4 *2 (-131)))))
+(((*1 *1 *1) (-12 (-4 *1 (-375 *2)) (-4 *2 (-1216)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-375 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-645 (-906 *3))) (-5 *1 (-906 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1050)) (-4 *5 (-794)) (-4 *3 (-851))
+ (-4 *6 (-1065 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3992 *1) (|:| |upper| *1)))
+ (-4 *1 (-977 *4 *5 *3 *6)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-756)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
+ ((*1 *1 *1) (-4 *1 (-1204))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *5 (-1158))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-82 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1036))
+ (-5 *1 (-751)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1179))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1179))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1176))) (-5 *4 (-1176))
+ (-5 *1 (-1179))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1179))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-440)) (-5 *3 (-1176)) (-5 *1 (-1180))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-440)) (-5 *3 (-645 (-1176))) (-5 *1 (-1180)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-772)) (-5 *5 (-645 *3)) (-4 *3 (-308)) (-4 *6 (-851))
+ (-4 *7 (-794)) (-5 *2 (-112)) (-5 *1 (-626 *6 *7 *3 *8))
+ (-4 *8 (-950 *3 *7 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1050))
+ (-14 *4 (-645 (-1176)))))
((*1 *2 *1)
- (-12 (-5 *2 (-112)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-921))
- (-4 *4 (-1049)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-365)) (-5 *1 (-766 *2 *3)) (-4 *2 (-708 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-1049)) (-4 *2 (-365)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1050) (-851)))
+ (-14 *4 (-645 (-1176))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002)))
- (-5 *1 (-176 *3)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-654 *4)) (-4 *4 (-344 *5 *6 *7))
+ (-4 *5 (-13 (-365) (-147) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *6 (-1242 *5)) (-4 *7 (-1242 (-410 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2557 (-645 *4))))
+ (-5 *1 (-807 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-645 (-114))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567))
+ (-5 *5 (-3 (|:| |fn| (-391)) (|:| |fp| (-64 -2111))))
+ (-5 *2 (-1036)) (-5 *1 (-749)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-645 (-410 *7)))
+ (-4 *7 (-1242 *6)) (-5 *3 (-410 *7)) (-4 *6 (-365))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-577 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-772)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-559))
+ (-5 *2 (-112)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-597 *2)) (-4 *2 (-38 (-410 (-567)))) (-4 *2 (-1050)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-943 *3)) (-4 *3 (-13 (-365) (-1200) (-1002)))
- (-5 *1 (-176 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-566)) (-5 *2 (-1270)) (-5 *1 (-904 *4))
- (-4 *4 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-904 *3)) (-4 *3 (-1099)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-332 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
+ ((*1 *1 *1) (-4 *1 (-1204))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8)))
- (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *8))))
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-644 *7)) (|:| -3860 *8)))
- (-4 *7 (-1064 *4 *5 *6)) (-4 *8 (-1070 *4 *5 *6 *7)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1099)) (-5 *2 (-1157)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-225))) (-5 *5 (-225))
- (-5 *6 (-3 (|:| |fn| (-390)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1035))
- (-5 *1 (-746)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-225)))
- (-5 *6 (-225)) (-5 *2 (-1035)) (-5 *1 (-752)))))
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-365)) (-5 *1 (-286 *3 *2)) (-4 *2 (-1257 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-875)) (-5 *1 (-264))))
+ ((*1 *1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-264)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-264))) (-5 *4 (-1176)) (-5 *2 (-112))
+ (-5 *1 (-264)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *1 (-103 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1239 *4 *5)) (-5 *3 (-645 *5)) (-14 *4 (-1176))
+ (-4 *5 (-365)) (-5 *1 (-924 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 *5)) (-4 *5 (-365)) (-5 *2 (-1172 *5))
+ (-5 *1 (-924 *4 *5)) (-14 *4 (-1176))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-645 *6)) (-5 *4 (-772)) (-4 *6 (-365))
+ (-5 *2 (-410 (-953 *6))) (-5 *1 (-1051 *5 *6)) (-14 *5 (-1176)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-410 (-567))) (-5 *1 (-1025 *3))
+ (-4 *3 (-13 (-849) (-365) (-1023)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-849) (-365))) (-5 *1 (-1061 *2 *3))
+ (-4 *3 (-1242 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1068 *2 *3)) (-4 *2 (-13 (-849) (-365)))
+ (-4 *3 (-1242 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-471)) (-5 *3 (-645 (-264))) (-5 *1 (-1267))))
+ ((*1 *1 *1) (-5 *1 (-1267))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1158)) (-5 *1 (-192))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1158)) (-5 *1 (-301))))
+ ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1158)) (-5 *1 (-306)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-112)) (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-365) (-849))) (-5 *2 (-421 *3))
+ (-5 *1 (-181 *4 *3)) (-4 *3 (-1242 (-169 *4))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 (-566)))
- (-5 *2 (-1265 (-566))) (-5 *1 (-1292 *4)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1175)) (-5 *2 (-439)) (-5 *1 (-1179)))))
+ (-12 (-5 *3 (-1266 (-690 *4))) (-4 *4 (-172))
+ (-5 *2 (-1266 (-690 (-953 *4)))) (-5 *1 (-189 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003)))
+ (-5 *1 (-176 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-875)))))
+(((*1 *1 *1) (-4 *1 (-630)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003) (-1201))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-381)) (-5 *1 (-1063)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-351)) (-5 *2 (-420 *3)) (-5 *1 (-216 *4 *3))
- (-4 *3 (-1241 *4))))
+ (-12 (-5 *3 (-645 (-953 *4))) (-4 *4 (-455)) (-5 *2 (-112))
+ (-5 *1 (-362 *4 *5)) (-14 *5 (-645 (-1176)))))
((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566)))))
+ (-12 (-5 *3 (-645 (-781 *4 (-865 *5)))) (-4 *4 (-455))
+ (-14 *5 (-645 (-1176))) (-5 *2 (-112)) (-5 *1 (-629 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-455) (-1039 (-567)))) (-4 *3 (-559))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $))
+ (-15 -4078 ((-1125 *3 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *3 (-613 $))))))))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-1048)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-839))) (-5 *1 (-140)))))
+(((*1 *1) (-5 *1 (-157)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1045 *2)) (-4 *2 (-23)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-690 *5))) (-4 *5 (-308)) (-4 *5 (-1050))
+ (-5 *2 (-1266 (-1266 *5))) (-5 *1 (-1030 *5)) (-5 *4 (-1266 *5)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-783 *3)) (|:| |polden| *3) (|:| -4297 (-772))))
+ (-5 *1 (-783 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4297 (-772))))
+ (-4 *1 (-1065 *3 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1216))
+ (-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-375 *2))
+ (-4 *5 (-375 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 (-567))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 (-567)) (-14 *5 (-772))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-772))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-772))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-772))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-772))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-567))
+ (-14 *4 (-772))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-245 (-1158))) (-5 *1 (-214 *4))
+ (-4 *4
+ (-13 (-851)
+ (-10 -8 (-15 -1552 ((-1158) $ *3)) (-15 -3877 ((-1271) $))
+ (-15 -1450 ((-1271) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-990)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-851)
+ (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 ((-1271) $))
+ (-15 -1450 ((-1271) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-772)) (-5 *1 (-245 *4)) (-4 *4 (-851))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-851))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-772)) (-5 *2 (-1181)) (-5 *1 (-250))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-287 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-289 *3 *2)) (-4 *3 (-1100)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *3 (-172)) (-5 *1 (-290 *3 *2 *4 *5 *6 *7))
+ (-4 *2 (-1242 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-645 *1)) (-4 *1 (-303))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-303)) (-5 *2 (-114))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-344 *2 *3 *4)) (-4 *2 (-1220)) (-4 *3 (-1242 *2))
+ (-4 *4 (-1242 (-410 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-4 *1 (-420 *2)) (-4 *2 (-172))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-1158)) (-5 *1 (-505))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1176)) (-5 *2 (-52)) (-5 *1 (-633))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1233 (-567))) (-4 *1 (-652 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-772)) (-5 *1 (-676 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-645 (-567))) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-645 (-893 *4))) (-5 *1 (-893 *4))
+ (-4 *4 (-1100))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-904 *2)) (-4 *2 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-906 *4)) (-5 *1 (-905 *4))
+ (-4 *4 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-922)) (-4 *2 (-365))
+ (-5 *1 (-994 *4 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "value") (-4 *1 (-1011 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1027 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7)) (-4 *2 (-1050))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-1054 *4 *5 *2 *6 *7))
+ (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1050))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-922)) (-4 *4 (-1100))
+ (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4))))
+ (-5 *1 (-1076 *4 *5 *2))
+ (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-922)) (-4 *4 (-1100))
+ (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4))))
+ (-5 *1 (-1077 *4 *5 *2))
+ (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 (-567))) (-4 *1 (-1103 *3 *4 *5 *6 *7))
+ (-4 *3 (-1100)) (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100))
+ (-4 *7 (-1100))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100))
+ (-4 *4 (-1100)) (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100))))
+ ((*1 *1 *1 *1) (-4 *1 (-1144)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-410 *1)) (-4 *1 (-1242 *2)) (-4 *2 (-1050))
+ (-4 *2 (-365))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-410 *1)) (-4 *1 (-1242 *3)) (-4 *3 (-1050))
+ (-4 *3 (-559))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1244 *2 *3)) (-4 *3 (-793)) (-4 *2 (-1050))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "last") (-4 *1 (-1254 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "rest") (-4 *1 (-1254 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "first") (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4416)) (-4 *1 (-151 *3))
+ (-4 *3 (-1216))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-675 *3)) (-4 *3 (-1216))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1209 *4 *5 *3 *2)) (-4 *4 (-559))
+ (-4 *5 (-794)) (-4 *3 (-851)) (-4 *2 (-1065 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-5 *1 (-1213 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *3 (-1100)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-1100)) (-4 *7 (-1100)) (-5 *2 (-112)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-1065 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *3 (-559)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-978 *3 *4 *5 *6)))))
+(((*1 *1 *1) (-5 *1 (-1063))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1242 *9)) (-4 *7 (-794)) (-4 *8 (-851)) (-4 *9 (-308))
+ (-4 *10 (-950 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-645 (-1172 *10)))
+ (|:| |dterm|
+ (-645 (-645 (-2 (|:| -2251 (-772)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-645 *6)) (|:| |nlead| (-645 *10))))
+ (-5 *1 (-779 *6 *7 *8 *9 *10)) (-5 *3 (-1172 *10)) (-5 *4 (-645 *6))
+ (-5 *5 (-645 *10)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 *4)) (-4 *4 (-365)) (-5 *2 (-1172 *4))
+ (-5 *1 (-535 *4 *5 *6)) (-4 *5 (-365)) (-4 *6 (-13 (-365) (-849))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-893 *3)) (-4 *3 (-1100)))))
+(((*1 *1)
+ (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-567)) (-14 *3 (-772))
+ (-4 *4 (-172)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4416)) (-4 *1 (-492 *3)) (-4 *3 (-1216))
+ (-5 *2 (-645 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 *3)) (-5 *1 (-738 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1) (-12 (-5 *2 (-645 (-442))) (-5 *1 (-866)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-567)) (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-905 (-567))) (-5 *1 (-918))))
+ ((*1 *2) (-12 (-5 *2 (-905 (-567))) (-5 *1 (-918)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-328 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-5 *1 (-519 *3 *4)) (-4 *3 (-1216)) (-14 *4 *2))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1 (-112) *8))) (-4 *8 (-1065 *5 *6 *7))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-5 *2 (-2 (|:| |goodPols| (-645 *8)) (|:| |badPols| (-645 *8))))
+ (-5 *1 (-978 *5 *6 *7 *8)) (-5 *4 (-645 *8)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))))
+(((*1 *1) (-5 *1 (-1063))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1266 (-645 (-2 (|:| -3843 *4) (|:| -3811 (-1120))))))
+ (-4 *4 (-351)) (-5 *2 (-1271)) (-5 *1 (-531 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-365) (-849))) (-5 *1 (-181 *2 *3))
+ (-4 *3 (-1242 (-169 *2))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-112)) (-5 *1 (-830)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-169 (-225)))) (-5 *2 (-1036))
+ (-5 *1 (-757)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-1176)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-303)) (-5 *3 (-114)) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-112)) (-5 *1 (-613 *4))
+ (-4 *4 (-1100))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-613 *4)) (-4 *4 (-1100))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-836 *3)) (-4 *3 (-1100)) (-5 *2 (-112))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3))
- (-4 *3 (-1241 (-566)))))
+ (-12 (-4 *5 (-1100)) (-5 *2 (-112)) (-5 *1 (-888 *5 *3 *4))
+ (-4 *3 (-887 *5)) (-4 *4 (-615 (-893 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-644 (-771))) (-5 *2 (-420 *3)) (-5 *1 (-444 *3))
- (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-644 (-771))) (-5 *5 (-771)) (-5 *2 (-420 *3))
- (-5 *1 (-444 *3)) (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-771)) (-5 *2 (-420 *3)) (-5 *1 (-444 *3))
- (-4 *3 (-1241 (-566)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-1007 *3))
- (-4 *3 (-1241 (-409 (-566))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-420 *3)) (-5 *1 (-1230 *3)) (-4 *3 (-1241 (-566))))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-771)) (-4 *5 (-365)) (-5 *2 (-174 *6))
- (-5 *1 (-867 *5 *4 *6)) (-4 *4 (-1256 *5)) (-4 *6 (-1241 *5)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-331)))))
-(((*1 *2 *1) (-12 (-4 *1 (-835 *3)) (-4 *3 (-1099)) (-5 *2 (-55)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-144))))
- ((*1 *1 *2) (-12 (-5 *2 (-771)) (-5 *1 (-144)))))
+ (-12 (-5 *3 (-645 *6)) (-4 *6 (-887 *5)) (-4 *5 (-1100))
+ (-5 *2 (-112)) (-5 *1 (-888 *5 *6 *4)) (-4 *4 (-615 (-893 *5))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-645 (-567))) (-5 *2 (-1178 (-410 (-567))))
+ (-5 *1 (-190)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-927)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050)) (-5 *2 (-112)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-692 (-967 *3))) (-5 *1 (-967 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *5 (-1242 *4))
+ (-5 *2 (-645 (-2 (|:| |deg| (-772)) (|:| -2823 *5))))
+ (-5 *1 (-810 *4 *5 *3 *6)) (-4 *3 (-657 *5))
+ (-4 *6 (-657 (-410 *5))))))
+(((*1 *1 *1) (-4 *1 (-630)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-631 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003) (-1201))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1036)) (-5 *3 (-1176)) (-5 *1 (-268)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-922)) (-5 *1 (-1101 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-678 *3)) (-4 *3 (-851))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820 *3)) (-4 *3 (-851)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1172 *1)) (-5 *3 (-1176)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-953 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1176)) (-4 *1 (-29 *3)) (-4 *3 (-559))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-559))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1172 *2)) (-5 *4 (-1176)) (-4 *2 (-433 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-559))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1172 *1)) (-5 *3 (-922)) (-4 *1 (-1013))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1172 *1)) (-5 *3 (-922)) (-5 *4 (-863))
+ (-4 *1 (-1013))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-922)) (-4 *4 (-13 (-849) (-365)))
+ (-4 *1 (-1068 *4 *2)) (-4 *2 (-1242 *4)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1134 *3)) (-4 *3 (-1050))
+ (-5 *2 (-645 (-645 (-645 (-772))))))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1010 *3)) (-4 *3 (-1215)) (-4 *3 (-1099))
- (-5 *2 (-112)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1157)) (-5 *4 (-169 (-225))) (-5 *5 (-566))
- (-5 *2 (-1035)) (-5 *1 (-758)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-365)) (-5 *2 (-644 *3)) (-5 *1 (-945 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1035)))))
-(((*1 *2)
- (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-368 *3 *4))
- (-4 *3 (-369 *4))))
- ((*1 *2) (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-5 *2 (-112)))))
+ (-12 (-5 *2 (-112)) (-5 *1 (-650 *3 *4 *5)) (-4 *3 (-1100))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1265 *4)) (-4 *4 (-639 (-566)))
- (-5 *2 (-1265 (-409 (-566)))) (-5 *1 (-1292 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-949 *3 *5 *4)) (-5 *1 (-987 *3 *4 *5 *2))
- (-4 *3 (-454)) (-4 *4 (-850)) (-4 *5 (-793)))))
+ (-12 (-5 *4 (-922)) (-4 *6 (-559)) (-5 *2 (-645 (-317 *6)))
+ (-5 *1 (-221 *5 *6)) (-5 *3 (-317 *6)) (-4 *5 (-1050))))
+ ((*1 *2 *1) (-12 (-5 *1 (-421 *2)) (-4 *2 (-559))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 *5)) (-4 *5 (-13 (-29 *4) (-1201)))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567)))) (-5 *2 (-645 *5))
+ (-5 *1 (-586 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-588 (-410 (-953 *4))))
+ (-4 *4 (-13 (-455) (-1039 (-567)) (-640 (-567))))
+ (-5 *2 (-645 (-317 *4))) (-5 *1 (-591 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1095 *3 *2)) (-4 *3 (-849)) (-4 *2 (-1149 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1095 *4 *2)) (-4 *4 (-849))
+ (-4 *2 (-1149 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1281 (-1176) *3)) (-5 *1 (-1288 *3)) (-4 *3 (-1050))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1290 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1050)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-644 *3)) (-5 *1 (-969 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-351)) (-4 *2 (-1049)) (-5 *1 (-712 *2 *3))
- (-4 *3 (-1241 *2)))))
+ (-12 (-4 *4 (-559))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-645 (-1176))) (-4 *5 (-455))
+ (-5 *2
+ (-2 (|:| |glbase| (-645 (-247 *4 *5))) (|:| |glval| (-645 (-567)))))
+ (-5 *1 (-632 *4 *5)) (-5 *3 (-645 (-247 *4 *5))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1209 *3 *4 *5 *2)) (-4 *3 (-559)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *2 (-1065 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-1271)) (-5 *1 (-585)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-772)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-420 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1120)) (-5 *2 (-112)) (-5 *1 (-822)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *1)) (-4 *1 (-369 *4)) (-4 *4 (-172))
+ (-5 *2 (-1266 (-690 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1266 (-690 *4))) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-5 *2 (-1266 (-690 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1176))) (-4 *5 (-365))
+ (-5 *2 (-1266 (-690 (-410 (-953 *5))))) (-5 *1 (-1086 *5))
+ (-5 *4 (-690 (-410 (-953 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-1176))) (-4 *5 (-365))
+ (-5 *2 (-1266 (-690 (-953 *5)))) (-5 *1 (-1086 *5))
+ (-5 *4 (-690 (-953 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-690 *4))) (-4 *4 (-365))
+ (-5 *2 (-1266 (-690 *4))) (-5 *1 (-1086 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1176)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-703 *4 *5 *6 *7))
+ (-4 *4 (-615 (-539))) (-4 *5 (-1216)) (-4 *6 (-1216))
+ (-4 *7 (-1216)))))
+(((*1 *1 *1 *1) (-4 *1 (-548))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-533 *3)) (-4 *3 (-13 (-727) (-25))))))
+(((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))
+ ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-434 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1) (-4 *1 (-1139))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1172 *1))) (-5 *3 (-1172 *1)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1266 (-1176))) (-5 *3 (-1266 (-456 *4 *5 *6 *7)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922))
+ (-14 *6 (-645 (-1176))) (-14 *7 (-1266 (-690 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-1266 (-456 *4 *5 *6 *7)))
+ (-5 *1 (-456 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-922))
+ (-14 *6 (-645 *2)) (-14 *7 (-1266 (-690 *4)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 (-456 *3 *4 *5 *6))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176)))
+ (-14 *6 (-1266 (-690 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 (-1176))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-172)) (-14 *4 (-922)) (-14 *5 (-645 (-1176)))
+ (-14 *6 (-1266 (-690 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1176)) (-5 *1 (-456 *3 *4 *5 *6)) (-4 *3 (-172))
+ (-14 *4 (-922)) (-14 *5 (-645 *2)) (-14 *6 (-1266 (-690 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-456 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-922))
+ (-14 *4 (-645 (-1176))) (-14 *5 (-1266 (-690 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-772)) (-5 *2 (-1 (-1156 (-953 *4)) (-1156 (-953 *4))))
+ (-5 *1 (-1274 *4)) (-4 *4 (-365)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1171 *2)) (-4 *2 (-432 *4)) (-4 *4 (-558))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *1 (-914 *2)) (-4 *2 (-308)))))
+ (-12 (-5 *3 (-922)) (-5 *1 (-1031 *2))
+ (-4 *2 (-13 (-1100) (-10 -8 (-15 -3146 ($ $ $))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-645 (-1076 *4 *5 *2))) (-4 *4 (-1100))
+ (-4 *5 (-13 (-1050) (-887 *4) (-615 (-893 *4))))
+ (-4 *2 (-13 (-433 *5) (-887 *4) (-615 (-893 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-645 (-1076 *5 *6 *2))) (-5 *4 (-922)) (-4 *5 (-1100))
+ (-4 *6 (-13 (-1050) (-887 *5) (-615 (-893 *5))))
+ (-4 *2 (-13 (-433 *6) (-887 *5) (-615 (-893 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-1176)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-613 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1176)))
+ (-4 *2 (-13 (-433 *5) (-27) (-1201)))
+ (-4 *5 (-13 (-455) (-1039 (-567)) (-147) (-640 (-567))))
+ (-5 *1 (-569 *5 *2 *6)) (-4 *6 (-1100)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922))))
+ ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))
+ ((*1 *1 *1 *1) (-5 *1 (-1223))) ((*1 *1 *1 *1) (-5 *1 (-1224))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-644 *3)) (|:| |image| (-644 *3))))
- (-5 *1 (-905 *3)) (-4 *3 (-1099)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1155 *3)) (-4 *3 (-1049)) (-5 *1 (-1159 *3)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1175)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-702 *3 *5 *6 *7))
- (-4 *3 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215))
- (-4 *7 (-1215))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1175)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *3 *5 *6))
- (-4 *3 (-614 (-538))) (-4 *5 (-1215)) (-4 *6 (-1215)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-558)) (-5 *1 (-277 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1002))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1157)) (-5 *4 (-566)) (-5 *5 (-689 (-169 (-225))))
- (-5 *2 (-1035)) (-5 *1 (-754)))))
+ (|partial| -12 (-4 *3 (-455)) (-4 *4 (-851)) (-4 *5 (-794))
+ (-5 *2 (-112)) (-5 *1 (-988 *3 *4 *5 *6))
+ (-4 *6 (-950 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1140 *3 *4)) (-4 *3 (-13 (-1100) (-34)))
+ (-4 *4 (-13 (-1100) (-34))))))
+(((*1 *1 *1) (-5 *1 (-1063))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *1) (-12 (-4 *1 (-468 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-539))) ((*1 *1) (-4 *1 (-723)))
+ ((*1 *1) (-4 *1 (-727)))
+ ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100))))
+ ((*1 *1) (-12 (-5 *1 (-894 *2)) (-4 *2 (-851)))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1196)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-589 *2)) (-4 *2 (-548)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-439)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-410 (-567))) (-4 *1 (-557 *3))
+ (-4 *3 (-13 (-407) (-1201)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-787)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-430 *3 *2)) (-4 *3 (-13 (-172) (-38 (-410 (-567)))))
+ (-4 *2 (-13 (-851) (-21))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *3 (-1099)) (-4 *4 (-1099))
- (-4 *5 (-1099)) (-4 *6 (-1099)) (-4 *7 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-566)) (-5 *1 (-381)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1012)) (-5 *2 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-334)) (-5 *1 (-249)))))
+ (-12 (-4 *1 (-1249 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1226 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-217)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-772)) (-5 *2 (-112)) (-5 *1 (-589 *3)) (-4 *3 (-548)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $))
+ (-15 -4078 ((-1125 *3 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *3 (-613 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-41 *3 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *3 (-613 $)) $))
+ (-15 -4078 ((-1125 *3 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *3 (-613 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *4 (-613 $)) $))
+ (-15 -4078 ((-1125 *4 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *4 (-613 $)))))))
+ (-4 *4 (-559)) (-5 *1 (-41 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-613 *2)))
+ (-4 *2
+ (-13 (-365) (-303)
+ (-10 -8 (-15 -4067 ((-1125 *4 (-613 $)) $))
+ (-15 -4078 ((-1125 *4 (-613 $)) $))
+ (-15 -4101 ($ (-1125 *4 (-613 $)))))))
+ (-4 *4 (-559)) (-5 *1 (-41 *4 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-129)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1183 *2)) (-14 *2 (-922))))
+ ((*1 *1 *1 *1) (-5 *1 (-1221))) ((*1 *1 *1 *1) (-5 *1 (-1222)))
+ ((*1 *1 *1 *1) (-5 *1 (-1223))) ((*1 *1 *1 *1) (-5 *1 (-1224))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-943 *3) (-943 *3))) (-5 *1 (-176 *3))
- (-4 *3 (-13 (-365) (-1200) (-1002))))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-943 (-225)))) (-5 *1 (-1266)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-921)) (-5 *4 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1266)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1157)) (-5 *5 (-689 (-225))) (-5 *6 (-689 (-566)))
- (-5 *4 (-566)) (-5 *2 (-1035)) (-5 *1 (-757)))))
-(((*1 *2 *1) (-12 (-4 *1 (-391)) (-5 *2 (-112)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-493)))))
+ (-12 (-5 *3 (-953 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-953 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013))))
+ ((*1 *2 *3) (-12 (-5 *3 (-953 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1172 (-567))) (-5 *2 (-645 *1)) (-4 *1 (-1013))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1172 (-410 (-567)))) (-5 *2 (-645 *1)) (-4 *1 (-1013))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1172 *1)) (-4 *1 (-1013)) (-5 *2 (-645 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-849) (-365))) (-4 *3 (-1242 *4)) (-5 *2 (-645 *1))
+ (-4 *1 (-1068 *4 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-921)) (-5 *2 (-1171 *4)) (-5 *1 (-359 *4))
- (-4 *4 (-351)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-1157)) (-5 *5 (-689 (-225)))
- (-5 *2 (-1035)) (-5 *1 (-747)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1270)) (-5 *1 (-1267)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-438)))))
+ (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-351)) (-5 *2 (-1266 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-690 *1)) (-4 *1 (-145)) (-4 *1 (-910))
+ (-5 *2 (-1266 *1)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-753)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-473 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-539)))
+ ((*1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1058))))
+ ((*1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100))))
+ ((*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1058)))))
+(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-582)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1157)) (-5 *2 (-1270)) (-5 *1 (-1192 *4 *5))
- (-4 *4 (-1099)) (-4 *5 (-1099)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-454)) (-4 *6 (-793)) (-4 *7 (-850))
- (-4 *3 (-1064 *5 *6 *7))
- (-5 *2 (-644 (-2 (|:| |val| *3) (|:| -3860 *4))))
- (-5 *1 (-1107 *5 *6 *7 *3 *4)) (-4 *4 (-1070 *5 *6 *7 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4415)) (-4 *1 (-604 *4 *3)) (-4 *4 (-1099))
- (-4 *3 (-1215)) (-4 *3 (-1099)) (-5 *2 (-112)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-644 (-612 *2))) (-5 *4 (-1175))
- (-4 *2 (-13 (-27) (-1200) (-432 *5)))
- (-4 *5 (-13 (-558) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-278 *5 *2)))))
-(((*1 *1) (-4 *1 (-351))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1157)) (-4 *4 (-13 (-308) (-147)))
- (-4 *5 (-13 (-850) (-614 (-1175)))) (-4 *6 (-793))
+ (-12 (-5 *3 (-772)) (-5 *2 (-1266 (-645 (-567)))) (-5 *1 (-483))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-602 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1216)) (-5 *1 (-1156 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-381) (-381))) (-5 *4 (-381))
(-5 *2
- (-644
- (-2 (|:| |eqzro| (-644 *7)) (|:| |neqzro| (-644 *7))
- (|:| |wcond| (-644 (-952 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1265 (-409 (-952 *4))))
- (|:| -2227 (-644 (-1265 (-409 (-952 *4))))))))))
- (-5 *1 (-924 *4 *5 *6 *7)) (-4 *7 (-949 *4 *6 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850))))
- ((*1 *1) (-4 *1 (-1150))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1064 *3 *4 *2)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *2 (-850))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1064 *2 *3 *4)) (-4 *2 (-1049)) (-4 *3 (-793))
- (-4 *4 (-850)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1012)) (-5 *2 (-862)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-997 *2)) (-4 *2 (-172)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-365)) (-4 *2 (-848)) (-5 *1 (-945 *2 *3))
- (-4 *3 (-1241 *2)))))
-(((*1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-157)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-327 *3 *4)) (-4 *3 (-1049))
- (-4 *4 (-792)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-874)) (-5 *3 (-644 (-264))) (-5 *1 (-262)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1238 *4 *5)) (-5 *3 (-644 *5)) (-14 *4 (-1175))
- (-4 *5 (-365)) (-5 *1 (-923 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *5)) (-4 *5 (-365)) (-5 *2 (-1171 *5))
- (-5 *1 (-923 *4 *5)) (-14 *4 (-1175))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-644 *6)) (-5 *4 (-771)) (-4 *6 (-365))
- (-5 *2 (-409 (-952 *6))) (-5 *1 (-1050 *5 *6)) (-14 *5 (-1175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-644 (-838))) (-5 *1 (-140)))))
-(((*1 *1)
- (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-566)) (-14 *3 (-771))
- (-4 *4 (-172)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-566)) (-5 *4 (-689 (-169 (-225)))) (-5 *2 (-1035))
- (-5 *1 (-756)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-921)) (-5 *1 (-1100 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1119)) (-5 *2 (-112)) (-5 *1 (-821)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-862))) (-5 *1 (-1175)))))
+ (-2 (|:| -3843 *4) (|:| -2553 *4) (|:| |totalpts| (-567))
+ (|:| |success| (-112))))
+ (-5 *1 (-790)) (-5 *5 (-567)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-308)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1124 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-557 *2)) (-4 *2 (-13 (-407) (-1201))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-532)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-771)) (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-547)))))
-(((*1 *1 *2) (-12 (-5 *2 (-644 (-144))) (-5 *1 (-141))))
- ((*1 *1 *2) (-12 (-5 *2 (-1157)) (-5 *1 (-141)))))
+ (-12 (-5 *3 (-1266 (-317 (-225)))) (-5 *4 (-645 (-1176)))
+ (-5 *2 (-690 (-317 (-225)))) (-5 *1 (-205))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1100)) (-4 *6 (-901 *5)) (-5 *2 (-690 *6))
+ (-5 *1 (-693 *5 *6 *3 *4)) (-4 *3 (-375 *6))
+ (-4 *4 (-13 (-375 *5) (-10 -7 (-6 -4416)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-144))) (-5 *1 (-141))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-141)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-645 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567)))))
+ (-4 *4 (-1242 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *5))
+ (-4 *5 (-1242 (-410 *4))))))
+(((*1 *1 *1) (-5 *1 (-225)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-341 *2 *3 *4)) (-14 *2 (-645 (-1176)))
+ (-14 *3 (-645 (-1176))) (-4 *4 (-390))))
+ ((*1 *1 *1) (-5 *1 (-381))) ((*1 *1) (-5 *1 (-381))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225))
+ (-5 *2 (-1036)) (-5 *1 (-756))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-567)) (-5 *5 (-690 (-225)))
+ (-5 *6 (-3 (|:| |fn| (-391)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-391)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-391))
+ (-5 *4 (-225)) (-5 *2 (-1036)) (-5 *1 (-756)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-557 *3)) (-4 *3 (-13 (-407) (-1201))) (-5 *2 (-112)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -4345)) (-5 *2 (-112)) (-5 *1 (-618))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3271)) (-5 *2 (-112)) (-5 *1 (-618))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3286)) (-5 *2 (-112)) (-5 *1 (-618))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -1970)) (-5 *2 (-112)) (-5 *1 (-692 *4))
+ (-4 *4 (-614 (-863)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-614 (-863))) (-5 *2 (-112))
+ (-5 *1 (-692 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-594))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-481))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1166))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-627))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1096))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-971))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1037))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-312))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-528))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1277))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1066))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-682))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1115))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-1276))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1137)) (-5 *3 (|[\|\|]| (-527))) (-5 *2 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1158))) (-5 *2 (-112)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-509))) (-5 *2 (-112)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1181))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-567))) (-5 *2 (-112)) (-5 *1 (-1181)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *3)) (-4 *3 (-1050)) (-5 *1 (-713 *3 *4))
+ (-4 *4 (-1242 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-922)) (-5 *2 (-1271)) (-5 *1 (-214 *4))
+ (-4 *4
+ (-13 (-851)
+ (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 (*2 $))
+ (-15 -1450 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1271)) (-5 *1 (-214 *3))
+ (-4 *3
+ (-13 (-851)
+ (-10 -8 (-15 -1552 ((-1158) $ (-1176))) (-15 -3877 (*2 $))
+ (-15 -1450 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-505)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1254 *3)) (-4 *3 (-1216)) (-5 *2 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-953 *5)) (-4 *5 (-1050)) (-5 *2 (-247 *4 *5))
+ (-5 *1 (-945 *4 *5)) (-14 *4 (-645 (-1176))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1120)) (-5 *1 (-822)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-943 *4)) (-4 *4 (-1049)) (-5 *1 (-1163 *3 *4))
- (-14 *3 (-921)))))
+ (-12 (-5 *2 (-944 *4)) (-4 *4 (-1050)) (-5 *1 (-1164 *3 *4))
+ (-14 *3 (-922)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-645 *1)) (-4 *1 (-1065 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1209 *5 *6 *7 *3))
+ (-4 *5 (-559)) (-4 *6 (-794)) (-4 *7 (-851))
+ (-4 *3 (-1065 *5 *6 *7)) (-5 *2 (-112)))))
+(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))
+ ((*1 *1 *1 *1) (-4 *1 (-476)))
+ ((*1 *1 *1) (-12 (-4 *1 (-798 *2)) (-4 *2 (-172))))
+ ((*1 *2 *2) (-12 (-5 *2 (-645 (-567))) (-5 *1 (-884))))
+ ((*1 *1 *1) (-5 *1 (-972)))
+ ((*1 *1 *1) (-12 (-4 *1 (-998 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3) (-12 (-5 *3 (-539)) (-5 *1 (-538 *2)) (-4 *2 (-1216))))
+ ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-539)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -2806 (-645 (-863))) (|:| -2140 (-645 (-863)))
+ (|:| |presup| (-645 (-863))) (|:| -2166 (-645 (-863)))
+ (|:| |args| (-645 (-863)))))
+ (-5 *1 (-1176))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-645 (-863)))) (-5 *1 (-1176)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112)))))
+(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))
+ ((*1 *1 *1 *1) (-5 *1 (-1120))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-433 *3) (-1003))) (-5 *1 (-277 *3 *2))
+ (-4 *3 (-559)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4418 "*"))) (-4 *5 (-375 *2)) (-4 *6 (-375 *2))
+ (-4 *2 (-1050)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1242 *2))
+ (-4 *4 (-688 *2 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1216)) (-5 *2 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-112)) (-5 *1 (-1164 *3 *4)) (-14 *3 (-922))
+ (-4 *4 (-1050)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-989 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *7 (-1065 *4 *5 *6)) (-5 *2 (-112))
+ (-5 *1 (-1107 *4 *5 *6 *7 *3)) (-4 *3 (-1071 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-567)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *1 (-689 *4 *5 *6 *2))
+ (-4 *2 (-688 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-4 *5 (-1242 *4)) (-5 *2 (-1172 (-410 *5))) (-5 *1 (-616 *4 *5))
+ (-5 *3 (-410 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-421 *6) *6)) (-4 *6 (-1242 *5))
+ (-4 *5 (-13 (-147) (-27) (-1039 (-567)) (-1039 (-410 (-567)))))
+ (-5 *2 (-1172 (-410 *6))) (-5 *1 (-616 *5 *6)) (-5 *3 (-410 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4)))
+ (-5 *2 (-2 (|:| |num| (-1266 *4)) (|:| |den| *4))))))
(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1289 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-850))
+ (-12 (-5 *2 (-1290 *3 *4)) (-4 *1 (-376 *3 *4)) (-4 *3 (-851))
(-4 *4 (-172))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-388 *2)) (-4 *2 (-1099))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-819 *2)) (-4 *2 (-850))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-820 *2)) (-4 *2 (-851))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049))))
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-819 *3)) (-4 *1 (-1282 *3 *4)) (-4 *3 (-850))
- (-4 *4 (-1049))))
+ (-12 (-5 *2 (-820 *3)) (-4 *1 (-1283 *3 *4)) (-4 *3 (-851))
+ (-4 *4 (-1050))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1282 *2 *3)) (-4 *2 (-850)) (-4 *3 (-1049)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-5 *2 (-112)))))
-(((*1 *2 *1)
+ (-12 (-4 *1 (-1283 *2 *3)) (-4 *2 (-851)) (-4 *3 (-1050)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-421 (-1172 *1))) (-5 *1 (-317 *4)) (-5 *3 (-1172 *1))
+ (-4 *4 (-455)) (-4 *4 (-559)) (-4 *4 (-1100))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-910)) (-5 *2 (-421 (-1172 *1))) (-5 *3 (-1172 *1)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-225)) (-5 *5 (-567)) (-5 *2 (-1211 *3))
+ (-5 *1 (-791 *3)) (-4 *3 (-975))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-645 (-944 (-225))))) (-5 *4 (-112))
+ (-5 *1 (-1211 *2)) (-4 *2 (-975)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-645 *6)) (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5))
+ (-4 *3 (-559)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-863))) (-5 *1 (-863))))
+ ((*1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-862))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-862)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *1) (-4 *1 (-968))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-830)) (-5 *3 (-1158)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1100))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-388 *3))))
+ ((*1 *2 *1 *1)
(-12
(-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-331)))))
+ (-2 (|:| |lm| (-389 *3)) (|:| |mm| (-389 *3)) (|:| |rm| (-389 *3))))
+ (-5 *1 (-389 *3)) (-4 *3 (-1100))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-820 *3)) (|:| |mm| (-820 *3)) (|:| |rm| (-820 *3))))
+ (-5 *1 (-820 *3)) (-4 *3 (-851)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-645 (-690 *5))) (-5 *4 (-1266 *5)) (-4 *5 (-308))
+ (-4 *5 (-1050)) (-5 *2 (-690 *5)) (-5 *1 (-1030 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1175)) (-4 *4 (-558)) (-4 *4 (-1099))
- (-5 *1 (-575 *4 *2)) (-4 *2 (-432 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-454)) (-5 *1 (-1206 *3 *2))
- (-4 *2 (-13 (-432 *3) (-1200))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-644 *6)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-147))
- (-4 *3 (-308)) (-4 *3 (-558)) (-4 *4 (-793)) (-4 *5 (-850))
- (-5 *1 (-977 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-644 *2)) (-5 *1 (-1189 *2)) (-4 *2 (-365)))))
+ (-12 (-5 *3 (-410 (-567))) (-4 *4 (-1039 (-567))) (-4 *4 (-559))
+ (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-134)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-158 *3 *2)) (-4 *2 (-433 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-225)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-567))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3))
+ (-4 *5 (-1257 *4)) (-5 *1 (-279 *4 *5 *2)) (-4 *2 (-1228 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-410 (-567))) (-4 *4 (-365)) (-4 *4 (-38 *3))
+ (-4 *5 (-1226 *4)) (-5 *1 (-280 *4 *5 *2 *6)) (-4 *2 (-1249 *4 *5))
+ (-4 *6 (-984 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-285)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-567)) (-5 *1 (-363 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *1) (-5 *1 (-381)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-4 *1 (-388 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-389 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-433 *3)) (-4 *3 (-1100))
+ (-4 *3 (-1112))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-476)) (-5 *2 (-567))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *3 (-365)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *1 (-507 *3 *4 *5 *6)) (-4 *6 (-950 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1266 *4)) (-5 *3 (-567)) (-4 *4 (-351))
+ (-5 *1 (-531 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-539))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-539))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-772)) (-4 *4 (-1100))
+ (-5 *1 (-683 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)) (-4 *3 (-365))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-690 *4)) (-5 *3 (-772)) (-4 *4 (-1050))
+ (-5 *1 (-691 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-4 *3 (-1050)) (-5 *1 (-715 *3 *4))
+ (-4 *4 (-649 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-4 *4 (-1050))
+ (-5 *1 (-715 *4 *5)) (-4 *5 (-649 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-721)) (-5 *2 (-922))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-772))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-727)) (-5 *2 (-772))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-772)) (-5 *1 (-820 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-837 *3)) (-4 *3 (-1050))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *3 (-567)) (-5 *1 (-837 *4)) (-4 *4 (-1050))))
+ ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-893 *3)) (-4 *3 (-1100))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1003)) (-5 *2 (-410 (-567)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1112)) (-5 *2 (-922))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-1123 *3 *4 *5 *6)) (-4 *4 (-1050))
+ (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-365))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1049)) (-4 *4 (-1241 *3)) (-5 *1 (-164 *3 *4 *2))
- (-4 *2 (-1241 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-295 *2)) (-4 *2 (-1215)))))
+ (-12 (-5 *2 (-645 *6)) (-4 *6 (-950 *3 *4 *5)) (-4 *3 (-455))
+ (-4 *4 (-794)) (-4 *5 (-851)) (-5 *1 (-452 *3 *4 *5 *6)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-771)) (-4 *1 (-231 *4))
- (-4 *4 (-1049))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1049))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-771))))
- ((*1 *1 *1) (-4 *1 (-233)))
+ (-12 (-5 *2 (-567)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1216))
+ (-4 *3 (-375 *4)) (-4 *5 (-375 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-977 *3 *4 *5 *6)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-4 *6 (-1065 *3 *4 *5)) (-5 *2 (-112)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-567)) (-5 *1 (-1198 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1071 *4 *5 *6 *3)) (-4 *4 (-455)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-112))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| |val| (-112)) (|:| -2138 *1))))
+ (-4 *1 (-1071 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1266 *1)) (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220))
+ (-4 *4 (-1242 *3)) (-4 *5 (-1242 (-410 *4))))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-645
+ (-2
+ (|:| -1762
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -3859
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1156 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3674
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-562))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-605 *3 *4)) (-4 *3 (-1100)) (-4 *4 (-1216))
+ (-5 *2 (-645 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-369 *3)) (-4 *3 (-172)) (-4 *3 (-559))
+ (-5 *2 (-1172 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1 *1) (-4 *1 (-968))))
+(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-645 (-866))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1142 *4 *2)) (-14 *4 (-922))
+ (-4 *2 (-13 (-1050) (-10 -7 (-6 (-4418 "*")))))
+ (-5 *1 (-903 *4 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-825)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-772)) (-4 *1 (-1242 *3)) (-4 *3 (-1050))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-771)) (-4 *3 (-13 (-365) (-147))) (-5 *1 (-401 *3 *4))
- (-4 *4 (-1241 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-365) (-147))) (-5 *1 (-401 *2 *3))
- (-4 *3 (-1241 *2))))
- ((*1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-644 *4)) (-5 *3 (-644 (-771))) (-4 *1 (-900 *4))
- (-4 *4 (-1099))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-771)) (-4 *1 (-900 *2)) (-4 *2 (-1099))))
+ (-12 (-5 *2 (-922)) (-4 *1 (-1244 *3 *4)) (-4 *3 (-1050))
+ (-4 *4 (-793))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-644 *3)) (-4 *1 (-900 *3)) (-4 *3 (-1099))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1099)))))
-(((*1 *2) (-12 (-5 *2 (-566)) (-5 *1 (-926)))))
+ (-12 (-5 *2 (-410 (-567))) (-4 *1 (-1247 *3)) (-4 *3 (-1050)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-875)) (-5 *3 (-645 (-264))) (-5 *1 (-262)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1172 *1)) (-4 *1 (-1013)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-5 *1 (-422 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1200) (-432 *3)))
- (-14 *4 (-1175)) (-14 *5 *2)))
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-559)) (-4 *4 (-1100))
+ (-5 *1 (-576 *4 *2)) (-4 *2 (-433 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-421 *3)) (-5 *1 (-561 *3)) (-4 *3 (-548))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308)) (-5 *2 (-421 *3))
+ (-5 *1 (-743 *4 *5 *6 *3)) (-4 *3 (-950 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-308))
+ (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1172 *7)))
+ (-5 *1 (-743 *4 *5 *6 *7)) (-5 *3 (-1172 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-455)) (-4 *3 (-1050)) (-4 *4 (-794)) (-4 *5 (-851))
+ (-5 *2 (-421 *1)) (-4 *1 (-950 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-851)) (-4 *5 (-794)) (-4 *6 (-455)) (-5 *2 (-421 *3))
+ (-5 *1 (-980 *4 *5 *6 *3)) (-4 *3 (-950 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-794)) (-4 *5 (-851)) (-4 *6 (-455))
+ (-4 *7 (-950 *6 *4 *5)) (-5 *2 (-421 (-1172 (-410 *7))))
+ (-5 *1 (-1171 *4 *5 *6 *7)) (-5 *3 (-1172 (-410 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1220))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-5 *2 (-421 *3)) (-5 *1 (-1245 *4 *3))
+ (-4 *3 (-13 (-1242 *4) (-559) (-10 -8 (-15 -3276 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1047 *4 *5)) (-4 *4 (-13 (-849) (-308) (-147) (-1023)))
+ (-14 *5 (-645 (-1176)))
+ (-5 *2
+ (-645 (-1146 *4 (-534 (-865 *6)) (-865 *6) (-781 *4 (-865 *6)))))
+ (-5 *1 (-1292 *4 *5 *6)) (-14 *6 (-645 (-1176))))))
+(((*1 *2)
+ (-12 (-4 *4 (-172)) (-5 *2 (-1172 (-953 *4))) (-5 *1 (-419 *3 *4))
+ (-4 *3 (-420 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-420 *3)) (-4 *3 (-172)) (-4 *3 (-365))
+ (-5 *2 (-1172 (-953 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1172 (-410 (-953 *3)))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-944 *3) (-944 *3))) (-5 *1 (-176 *3))
+ (-4 *3 (-13 (-365) (-1201) (-1003))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))))
+(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-863)))
+ ((*1 *1 *1) (-4 *1 (-968))) ((*1 *1 *1) (-5 *1 (-1120))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-950 *2 *3 *4)) (-4 *2 (-1050)) (-4 *3 (-794))
+ (-4 *4 (-851)) (-4 *2 (-455))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *1))))
+ (-4 *1 (-1071 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1220)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-454) (-1038 (-566)) (-639 (-566))))
- (-4 *2 (-13 (-27) (-1200) (-432 *3) (-10 -8 (-15 -2725 ($ *4)))))
- (-4 *4 (-848))
- (-4 *5
- (-13 (-1243 *2 *4) (-365) (-1200)
- (-10 -8 (-15 -3009 ($ $)) (-15 -1879 ($ $)))))
- (-5 *1 (-424 *3 *2 *4 *5 *6 *7)) (-4 *6 (-983 *5)) (-14 *7 (-1175)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1155 *3))) (-5 *2 (-1155 *3)) (-5 *1 (-1159 *3))
- (-4 *3 (-38 (-409 (-566)))) (-4 *3 (-1049)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-976 *3 *4 *5 *6)) (-4 *3 (-1049)) (-4 *4 (-793))
- (-4 *5 (-850)) (-4 *6 (-1064 *3 *4 *5)) (-4 *3 (-558))
- (-5 *2 (-112)))))
+ (-12 (-4 *3 (-559)) (-5 *1 (-1245 *3 *2))
+ (-4 *2 (-13 (-1242 *3) (-559) (-10 -8 (-15 -3276 ($ $ $))))))))
+(((*1 *1 *1 *1) (-5 *1 (-863))))
+(((*1 *1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-157))))
+ ((*1 *2 *3) (-12 (-5 *3 (-944 *2)) (-5 *1 (-983 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-944 *3)) (-4 *3 (-13 (-365) (-1201) (-1003)))
+ (-5 *1 (-176 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-410 (-567))) (-5 *1 (-564)) (-5 *3 (-567))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1172 (-410 (-567)))) (-5 *1 (-943)) (-5 *3 (-567)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-988 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-644 *7)) (-4 *7 (-1064 *4 *5 *6)) (-4 *4 (-454))
- (-4 *5 (-793)) (-4 *6 (-850)) (-5 *2 (-112))
- (-5 *1 (-1106 *4 *5 *6 *7 *8)) (-4 *8 (-1070 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-1242 *2)) (-4 *2 (-1220)) (-5 *1 (-148 *2 *4 *3))
+ (-4 *3 (-1242 (-410 *4))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1104)) (-5 *3 (-775)) (-5 *1 (-52)))))
+(((*1 *2) (-12 (-5 *2 (-381)) (-5 *1 (-1041)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-953 (-225))) (-5 *2 (-317 (-381))) (-5 *1 (-306)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-645 (-1181))) (-5 *1 (-1181))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-509)) (-5 *3 (-645 (-1181))) (-5 *1 (-1181)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-977 *4 *5 *6 *3)) (-4 *4 (-1050)) (-4 *5 (-794))
+ (-4 *6 (-851)) (-4 *3 (-1065 *4 *5 *6)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3)) (-4 *3 (-1216)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1242 (-410 (-567))))
+ (-5 *2 (-2 (|:| |den| (-567)) (|:| |gcdnum| (-567))))
+ (-5 *1 (-914 *3 *4)) (-4 *4 (-1242 (-410 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1242 (-410 *2))) (-5 *2 (-567)) (-5 *1 (-914 *4 *3))
+ (-4 *3 (-1242 (-410 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-445 *3)) (-4 *3 (-1242 (-567))))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-748)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050))
+ (-4 *4 (-375 *3)) (-4 *5 (-375 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-369 *2)) (-4 *2 (-172)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1176)) (-5 *5 (-645 (-410 (-953 *6))))
+ (-5 *3 (-410 (-953 *6)))
+ (-4 *6 (-13 (-559) (-1039 (-567)) (-147)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-645 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-573 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-645 (-331))) (-5 *1 (-331)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-558)) (-5 *2 (-958 *3)) (-5 *1 (-1162 *4 *3))
- (-4 *3 (-1241 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1270)) (-5 *1 (-822)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-656 *2)) (-4 *2 (-1049)) (-4 *2 (-365))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-365)) (-5 *1 (-659 *4 *2))
- (-4 *2 (-656 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-927)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-644 (-1175))) (-5 *1 (-538)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-375 *3)) (-4 *3 (-1215)) (-4 *3 (-850)) (-5 *2 (-112))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-375 *4)) (-4 *4 (-1215))
- (-5 *2 (-112)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-344 *4 *3 *5)) (-4 *4 (-1219)) (-4 *3 (-1241 *4))
- (-4 *5 (-1241 (-409 *3))) (-5 *2 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112))))
+ (-12 (-5 *2 (-1156 (-645 (-567)))) (-5 *1 (-884))
+ (-5 *3 (-645 (-567))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-365)) (-4 *5 (-794)) (-4 *6 (-851)) (-5 *2 (-112))
+ (-5 *1 (-507 *4 *5 *6 *3)) (-4 *3 (-950 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-365)) (-4 *5 (-375 *4)) (-4 *6 (-375 *4))
+ (-5 *2 (-772)) (-5 *1 (-524 *4 *5 *6 *3)) (-4 *3 (-688 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1219)) (-4 *4 (-1241 *3))
- (-4 *5 (-1241 (-409 *4))) (-5 *2 (-112)))))
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-4 *3 (-559)) (-5 *2 (-772))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *4 (-172)) (-4 *5 (-375 *4))
+ (-4 *6 (-375 *4)) (-5 *2 (-772)) (-5 *1 (-689 *4 *5 *6 *3))
+ (-4 *3 (-688 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-559))
+ (-5 *2 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-225)) (-5 *4 (-567)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1126 *4 *3 *5))) (-4 *4 (-38 (-410 (-567))))
+ (-4 *4 (-1050)) (-4 *3 (-851)) (-5 *1 (-1126 *4 *3 *5))
+ (-4 *5 (-950 *4 (-534 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1210 *4))) (-5 *3 (-1176)) (-5 *1 (-1210 *4))
+ (-4 *4 (-38 (-410 (-567)))) (-4 *4 (-1050)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-455)) (-4 *5 (-794)) (-4 *6 (-851))
+ (-4 *3 (-1065 *4 *5 *6)) (-5 *2 (-3 *3 (-645 *1)))
+ (-4 *1 (-1071 *4 *5 *6 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-769))
- (-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))
- (-5 *1 (-567))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-769)) (-5 *4 (-1062))
- (-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157))) (|:| |extra| (-1035))))
- (-5 *1 (-567))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-787)) (-5 *3 (-1062))
- (-5 *4
- (-2 (|:| |fn| (-317 (-225)))
- (|:| -3192 (-644 (-1093 (-843 (-225))))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))
- (|:| |extra| (-1035))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-787)) (-5 *3 (-1062))
- (-5 *4
- (-2 (|:| |var| (-1175)) (|:| |fn| (-317 (-225)))
- (|:| -3192 (-1093 (-843 (-225)))) (|:| |abserr| (-225))
- (|:| |relerr| (-225))))
- (-5 *2
- (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))
- (|:| |extra| (-1035))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-800)) (-5 *3 (-1062))
- (-5 *4
- (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
- (|:| |fn| (-1265 (-317 (-225)))) (|:| |yinit| (-644 (-225)))
- (|:| |intvals| (-644 (-225))) (|:| |g| (-317 (-225)))
- (|:| |abserr| (-225)) (|:| |relerr| (-225))))
- (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-993 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3))
+ (-4 *3 (-375 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-808))
- (-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157)))))
- (-5 *1 (-805))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-808)) (-5 *4 (-1062))
- (-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157)))))
- (-5 *1 (-805))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-839)) (-5 *3 (-1062))
- (-5 *4
- (-2 (|:| |lfn| (-644 (-317 (-225)))) (|:| -1342 (-644 (-225)))))
- (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-839)) (-5 *3 (-1062))
- (-5 *4
- (-2 (|:| |fn| (-317 (-225))) (|:| -1342 (-644 (-225)))
- (|:| |lb| (-644 (-843 (-225)))) (|:| |cf| (-644 (-317 (-225))))
- (|:| |ub| (-644 (-843 (-225))))))
- (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))))))
+ (-12 (-4 *4 (-559)) (-4 *5 (-993 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-506 *4 *5 *6 *3)) (-4 *6 (-375 *4)) (-4 *3 (-375 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-690 *5)) (-4 *5 (-993 *4)) (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |num| (-690 *4)) (|:| |den| *4)))
+ (-5 *1 (-694 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-365) (-147) (-1039 (-410 (-567)))))
+ (-4 *6 (-1242 *5))
+ (-5 *2 (-2 (|:| -2823 *7) (|:| |rh| (-645 (-410 *6)))))
+ (-5 *1 (-808 *5 *6 *7 *3)) (-5 *4 (-645 (-410 *6)))
+ (-4 *7 (-657 *6)) (-4 *3 (-657 (-410 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-559)) (-4 *5 (-993 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1235 *4 *5 *3))
+ (-4 *3 (-1242 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 (-1266 *4))) (-4 *4 (-1050)) (-5 *2 (-690 *4))
+ (-5 *1 (-1030 *4)))))
+(((*1 *1) (-5 *1 (-824))))
+(((*1 *2 *3) (-12 (-5 *3 (-645 (-567))) (-5 *2 (-772)) (-5 *1 (-592)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1158)) (-4 *1 (-366 *2 *4)) (-4 *2 (-1100))
+ (-4 *4 (-1100))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-366 *2 *3)) (-4 *2 (-1100)) (-4 *3 (-1100)))))
+(((*1 *1 *2) (-12 (-5 *2 (-772)) (-5 *1 (-134)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-365)) (-5 *1 (-767 *2 *3)) (-4 *2 (-709 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-853 *2)) (-4 *2 (-1050)) (-4 *2 (-365)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1158)) (-5 *2 (-381)) (-5 *1 (-787)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158)))))
+ (-5 *2 (-1036)) (-5 *1 (-306))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -2509 (-381)) (|:| -1817 (-1158))
+ (|:| |explanations| (-645 (-1158))) (|:| |extra| (-1036))))
+ (-5 *2 (-1036)) (-5 *1 (-306)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-690 (-410 (-953 (-567)))))
+ (-5 *2 (-645 (-690 (-317 (-567))))) (-5 *1 (-1032)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1176)) (-4 *4 (-455)) (-4 *4 (-1100))
+ (-5 *1 (-576 *4 *2)) (-4 *2 (-285)) (-4 *2 (-433 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 (-645 (-645 *4)))) (-5 *2 (-645 (-645 *4)))
+ (-4 *4 (-851)) (-5 *1 (-1187 *4)))))
+(((*1 *1) (-12 (-4 *1 (-330 *2)) (-4 *2 (-370)) (-4 *2 (-365))))
((*1 *2 *3)
- (-12 (-5 *3 (-841))
+ (-12 (-5 *3 (-922)) (-5 *2 (-1266 *4)) (-5 *1 (-531 *4))
+ (-4 *4 (-351)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-890 *4 *5)) (-5 *3 (-890 *4 *6)) (-4 *4 (-1100))
+ (-4 *5 (-1100)) (-4 *6 (-667 *5)) (-5 *1 (-886 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-922)) (-5 *4 (-225)) (-5 *5 (-567)) (-5 *6 (-875))
+ (-5 *2 (-1271)) (-5 *1 (-1267)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1158)) (-5 *1 (-760)))))
+(((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-470))))
+ ((*1 *2) (-12 (-5 *2 (-567)) (-5 *1 (-928)))))
+(((*1 *2) (-12 (-5 *2 (-645 (-1158))) (-5 *1 (-1269)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-365) (-1201)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-922)) (-5 *4 (-381)) (-5 *2 (-1271)) (-5 *1 (-1267))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-645 *1)) (|has| *1 (-6 -4417)) (-4 *1 (-1011 *3))
+ (-4 *3 (-1216)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-772)) (-4 *4 (-1050)) (-5 *1 (-1238 *4 *2))
+ (-4 *2 (-1242 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1050))
+ (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-953 (-567))) (-5 *2 (-331))
+ (-5 *1 (-333))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1176)) (-5 *4 (-1092 (-953 (-567)))) (-5 *2 (-331))
+ (-5 *1 (-333))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-772)) (-5 *1 (-676 *3)) (-4 *3 (-1050))
+ (-4 *3 (-1100)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-690 (-1172 *8))) (-4 *5 (-1050)) (-4 *8 (-1050))
+ (-4 *6 (-1242 *5)) (-5 *2 (-690 *6)) (-5 *1 (-504 *5 *6 *7 *8))
+ (-4 *7 (-1242 *6)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-509)) (-5 *3 (-645 (-966))) (-5 *1 (-109)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1158) (-775))) (-5 *1 (-114)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-559)) (-5 *1 (-277 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1003)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1257 *3))
+ (-5 *1 (-279 *3 *4 *2)) (-4 *2 (-1228 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-410 (-567)))) (-4 *4 (-1226 *3))
+ (-5 *1 (-280 *3 *4 *2 *5)) (-4 *2 (-1249 *3 *4)) (-4 *5 (-984 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1161 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1156 *3)) (-4 *3 (-38 (-410 (-567))))
+ (-5 *1 (-1162 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1254 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-688 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-375 *3))
+ (-4 *5 (-375 *3)) (-5 *2 (-645 (-645 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1054 *3 *4 *5 *6 *7)) (-4 *5 (-1050))
+ (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-645 (-645 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-645 (-645 *3))) (-5 *1 (-1188 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1228 *3 *2)) (-4 *3 (-1050)) (-4 *2 (-1257 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-410 (-953 *3))) (-5 *1 (-456 *3 *4 *5 *6))
+ (-4 *3 (-559)) (-4 *3 (-172)) (-14 *4 (-922))
+ (-14 *5 (-645 (-1176))) (-14 *6 (-1266 (-690 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-645 (-966))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1158) (-775))) (-5 *1 (-114)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1220)) (-4 *5 (-1242 *4)) (-4 *6 (-1242 (-410 *5)))
+ (-5 *2 (-645 (-645 *4))) (-5 *1 (-343 *3 *4 *5 *6))
+ (-4 *3 (-344 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-4 *3 (-370)) (-5 *2 (-645 (-645 *3))))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-112)) (-4 *6 (-455)) (-4 *7 (-794)) (-4 *8 (-851))
+ (-4 *3 (-1065 *6 *7 *8))
+ (-5 *2 (-645 (-2 (|:| |val| *3) (|:| -2138 *4))))
+ (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1071 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-645 (-2 (|:| |val| (-645 *8)) (|:| -2138 *9))))
+ (-5 *5 (-112)) (-4 *8 (-1065 *6 *7 *4)) (-4 *9 (-1071 *6 *7 *4 *8))
+ (-4 *6 (-455)) (-4 *7 (-794)) (-4 *4 (-851))
+ (-5 *2 (-645 (-2 (|:| |val| *8) (|:| -2138 *9))))
+ (-5 *1 (-1072 *6 *7 *4 *8 *9)))))
+(((*1 *2)
+ (-12 (-4 *1 (-344 *3 *4 *5)) (-4 *3 (-1220)) (-4 *4 (-1242 *3))
+ (-4 *5 (-1242 (-410 *4))) (-5 *2 (-690 (-410 *4))))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-851))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-851))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-567)) (-4 *1 (-283 *3)) (-4 *3 (-1216))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-567)) (-4 *1 (-283 *2)) (-4 *2 (-1216))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157)))))
- (-5 *1 (-840))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-841)) (-5 *4 (-1062))
+ (-2
+ (|:| -1762
+ (-2 (|:| |var| (-1176)) (|:| |fn| (-317 (-225)))
+ (|:| -3674 (-1094 (-844 (-225)))) (|:| |abserr| (-225))
+ (|:| |relerr| (-225))))
+ (|:| -3859
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1156 (-225)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -3674
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-562))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-772)) (-4 *1 (-696 *2)) (-4 *2 (-1100))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157)))))
- (-5 *1 (-840))))
+ (-2
+ (|:| -1762
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
+ (|:| -3859
+ (-2 (|:| |stiffness| (-381)) (|:| |stability| (-381))
+ (|:| |expense| (-381)) (|:| |accuracy| (-381))
+ (|:| |intermediateResults| (-381))))))
+ (-5 *1 (-804))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-895)) (-5 *3 (-1062))
- (-5 *4
- (-2 (|:| |pde| (-644 (-317 (-225))))
- (|:| |constraints|
- (-644
- (-2 (|:| |start| (-225)) (|:| |finish| (-225))
- (|:| |grid| (-771)) (|:| |boundaryType| (-566))
- (|:| |dStart| (-689 (-225))) (|:| |dFinish| (-689 (-225))))))
- (|:| |f| (-644 (-644 (-317 (-225))))) (|:| |st| (-1157))
- (|:| |tol| (-225))))
- (-5 *2 (-2 (|:| -1303 (-381)) (|:| |explanations| (-1157))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-898))
+ (-12 (-5 *2 (-1271)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-1100))
+ (-4 *4 (-1100)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-381)) (-5 *2 (-1271)) (-5 *1 (-1268)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-567)) (-5 *4 (-690 (-225))) (-5 *2 (-1036))
+ (-5 *1 (-753)))))
+(((*1 *2)
+ (-12
(-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157)))))
- (-5 *1 (-897))))
+ (-1266 (-645 (-2 (|:| -3843 (-911 *3)) (|:| -3811 (-1120))))))
+ (-5 *1 (-353 *3 *4)) (-14 *3 (-922)) (-14 *4 (-922))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120))))))
+ (-5 *1 (-354 *3 *4)) (-4 *3 (-351)) (-14 *4 (-3 (-1172 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1266 (-645 (-2 (|:| -3843 *3) (|:| -3811 (-1120))))))
+ (-5 *1 (-355 *3 *4)) (-4 *3 (-351)) (-14 *4 (-922)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1050)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1065 *3 *4 *5)) (-4 *3 (-1050)) (-4 *4 (-794))
+ (-4 *5 (-851)) (-5 *2 (-112)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-984 *2)) (-4 *2 (-1201)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1176)) (-5 *1 (-676 *3)) (-4 *3 (-1100)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-559) (-1039 (-567)))) (-5 *2 (-410 (-567)))
+ (-5 *1 (-436 *4 *3)) (-4 *3 (-433 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-898)) (-5 *4 (-1062))
+ (-12 (-5 *4 (-613 *3)) (-4 *3 (-433 *5))
+ (-4 *5 (-13 (-559) (-1039 (-567)))) (-5 *2 (-1172 (-410 (-567))))
+ (-5 *1 (-436 *5 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390))))
+ ((*1 *2)
+ (-12 (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5)) (-14 *3 (-645 (-1176)))
+ (-14 *4 (-645 (-1176))) (-4 *5 (-390)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-455)) (-5 *1 (-1207 *3 *2))
+ (-4 *2 (-13 (-433 *3) (-1201))))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-169 (-225))) (-5 *5 (-567)) (-5 *6 (-1158))
+ (-5 *3 (-225)) (-5 *2 (-1036)) (-5 *1 (-759)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-567)) (-5 *1 (-572 *3)) (-4 *3 (-1039 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225))
+ (|:| |fn| (-1266 (-317 (-225)))) (|:| |yinit| (-645 (-225)))
+ (|:| |intvals| (-645 (-225))) (|:| |g| (-317 (-225)))
+ (|:| |abserr| (-225)) (|:| |relerr| (-225))))
(-5 *2
- (-2 (|:| -1303 (-381)) (|:| -3534 (-1157))
- (|:| |explanations| (-644 (-1157)))))
- (-5 *1 (-897)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1232 (-566))) (-4 *1 (-651 *3)) (-4 *3 (-1215))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-566)) (-4 *1 (-651 *3)) (-4 *3 (-1215)))))
-(((*1 *1) (-12 (-4 *1 (-427 *2)) (-4 *2 (-370)) (-4 *2 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-644 (-1175))) (-4 *5 (-454))
- (-5 *2 (-483 *4 *5)) (-5 *1 (-631 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-943 *2)) (-5 *1 (-982 *2)) (-4 *2 (-1049)))))
-(((*1 *2 *2) (-12 (-5 *1 (-588 *2)) (-4 *2 (-547)))))
-((-1298 . 732196) (-1299 . 732122) (-1300 . 731993) (-1301 . 731925)
- (-1302 . 731769) (-1303 . 728470) (-1304 . 728087) (-1305 . 727896)
- (-1306 . 727833) (-1307 . 727781) (-1308 . 727603) (-1309 . 727550)
- (-1310 . 727446) (-1311 . 727059) (-1312 . 726898) (-1313 . 726762)
- (-1314 . 726258) (-1315 . 726209) (-1316 . 725377) (-1317 . 725218)
- (-1318 . 725144) (-1319 . 724966) (-1320 . 724870) (-1321 . 724754)
- (-1322 . 724239) (-1323 . 724099) (-1324 . 723542) (-1325 . 723440)
- (-1326 . 723330) (-1327 . 723240) (-1328 . 723177) (-1329 . 723106)
- (-1330 . 723002) (-1331 . 722879) (-1332 . 722784) (-1333 . 722725)
- (-1334 . 722335) (-1335 . 722256) (-1336 . 722155) (-1337 . 722106)
- (-1338 . 722009) (-1339 . 721945) (-1340 . 721889) (-1341 . 721686)
- (-1342 . 721561) (-1343 . 721134) (-1344 . 721106) (-1345 . 720898)
- (-1346 . 720762) (-1347 . 720544) (-1348 . 720428) (-1349 . 720359)
- (-1350 . 720263) (-1351 . 720191) (-1352 . 720059) (-1353 . 719965)
- (-1354 . 719912) (-1355 . 719860) (-1356 . 719706) (-1357 . 719613)
- (-1358 . 719546) (-1359 . 719431) (-1360 . 719379) (-1361 . 719316)
- (-1362 . 719261) (-1363 . 719108) (-1364 . 718969) (-1365 . 718874)
- (-1366 . 718562) (-1367 . 718484) (-1368 . 718359) (-1369 . 718304)
- (-1370 . 718202) (-1371 . 718104) (-1372 . 718001) (-1373 . 717878)
- (-1374 . 717745) (-1375 . 717587) (-1376 . 717534) (-1377 . 717434)
- (-1378 . 717314) (-1379 . 717218) (-1380 . 717115) (-1381 . 717045)
- (-1382 . 716992) (-1383 . 716943) (-1384 . 716784) (-1385 . 715986)
- (-1386 . 715914) (-1387 . 715791) (-1388 . 715617) (-1389 . 715437)
- (-1390 . 715383) (-1391 . 714926) (-1392 . 714758) (-1393 . 714658)
- (-1394 . 714558) (-1395 . 714405) (-1396 . 714239) (-1397 . 713817)
- (-1398 . 713598) (-1399 . 713546) (-1400 . 713472) (-1401 . 713274)
- (-1402 . 713201) (-1403 . 713082) (-1404 . 712940) (-1405 . 712787)
- (-1406 . 712687) (-1407 . 712529) (-1408 . 712349) (-1409 . 702899)
- (-1410 . 702723) (-1411 . 702437) (-1412 . 702227) (-1413 . 702153)
- (-1414 . 702101) (-1415 . 701744) (-1416 . 701608) (-1417 . 701485)
- (-1418 . 701286) (-1419 . 701191) (-1420 . 701121) (-1421 . 700755)
- (-1422 . 700724) (-1423 . 700521) (-1424 . 700315) (** . 697250)
- (-1426 . 696856) (-1427 . 696713) (-1428 . 696461) (-1429 . 695901)
- (-1430 . 695827) (-1431 . 695656) (-1432 . 695549) (-1433 . 695436)
- (-1434 . 695370) (-1435 . 695300) (-1436 . 695141) (-1437 . 695029)
- (-1438 . 694969) (-1439 . 694895) (-1440 . 694704) (-1441 . 694631)
- (-1442 . 694534) (-1443 . 694321) (-1444 . 694208) (-1445 . 694062)
- (-1446 . 693992) (-1447 . 692812) (-1448 . 691031) (-1449 . 690769)
- (-1450 . 690614) (-1451 . 690404) (-1452 . 689807) (-1453 . 689751)
- (-1454 . 689205) (-1455 . 689145) (-1456 . 689026) (-1457 . 688835)
- (-1458 . 688695) (-1459 . 688517) (-1460 . 688416) (-1461 . 688156)
- (-1462 . 687983) (-1463 . 687882) (-1464 . 687796) (-1465 . 687713)
- (-1466 . 687552) (-1467 . 687371) (-1468 . 687160) (-1469 . 687057)
- (-1470 . 686878) (-1471 . 686757) (-1472 . 686658) (-1473 . 686406)
- (-1474 . 686344) (-1475 . 685896) (-1476 . 685801) (-1477 . 685745)
- (-1478 . 685692) (-1479 . 685636) (-1480 . 685506) (-1481 . 685383)
- (-1482 . 685277) (-1483 . 685228) (-1484 . 685091) (-1485 . 684203)
- (-1486 . 684073) (-1487 . 684005) (-1488 . 683764) (-1489 . 683712)
- (-1490 . 683348) (-1491 . 683196) (-1492 . 682993) (-1493 . 682965)
- (-1494 . 682807) (-1495 . 682724) (-1496 . 682579) (-1497 . 682477)
- (-1498 . 682376) (-1499 . 682195) (-1500 . 682116) (-1501 . 682001)
- (-1502 . 681549) (-1503 . 681393) (-1504 . 681240) (-1505 . 681093)
- (-1506 . 680985) (-1507 . 680843) (-1508 . 680737) (-1509 . 679921)
- (-1510 . 679765) (-1511 . 679567) (-1512 . 679056) (-1513 . 678763)
- (-1514 . 678613) (-1515 . 678530) (-1516 . 678419) (-1517 . 678212)
- (-1518 . 678159) (-1519 . 677973) (-1520 . 677378) (-1521 . 677293)
- (-1522 . 677075) (-1523 . 676856) (-1524 . 676746) (-1525 . 676541)
- (-1526 . 676463) (-1527 . 675860) (-1528 . 675778) (-1529 . 675625)
- (-1530 . 675373) (-1531 . 675308) (-1532 . 675255) (-1533 . 675083)
- (-1534 . 674997) (-1535 . 673797) (-1536 . 673729) (-1537 . 673394)
- (-1538 . 672754) (-1539 . 672557) (-1540 . 672437) (-1541 . 672127)
- (-1542 . 671796) (-1543 . 671663) (-1544 . 671491) (-1545 . 670917)
- (-1546 . 670831) (-1547 . 670765) (-1548 . 670480) (-1549 . 670311)
- (-1550 . 670215) (-1551 . 669539) (-1552 . 669398) (-1553 . 669248)
- (-1554 . 669076) (-1555 . 668992) (-1556 . 668885) (-1557 . 668744)
- (-1558 . 668466) (-1559 . 667880) (-1560 . 667556) (-1561 . 667498)
- (-1562 . 667439) (-1563 . 667310) (-1564 . 667227) (-1565 . 666001)
- (-1566 . 665613) (-1567 . 665441) (-1568 . 665264) (-1569 . 665170)
- (-1570 . 665096) (-1571 . 664889) (-1572 . 664809) (-1573 . 664738)
- (-1574 . 664684) (-1575 . 664610) (-1576 . 664426) (-1577 . 664313)
- (-1578 . 664170) (-1579 . 664082) (-1580 . 663741) (-1581 . 663623)
- (-1582 . 663384) (-1583 . 663298) (-1584 . 663060) (-1585 . 663005)
- (-1586 . 662878) (-1587 . 662744) (-1588 . 662631) (-1589 . 662530)
- (-1590 . 662473) (-1591 . 662251) (-1592 . 661965) (-1593 . 661912)
- (-1594 . 661832) (-1595 . 661773) (-1596 . 661723) (-1597 . 661668)
- (-1598 . 661464) (-1599 . 660812) (-1600 . 660752) (-1601 . 660693)
- (-1602 . 660271) (-1603 . 659956) (-1604 . 659887) (-1605 . 659536)
- (-1606 . 659090) (-1607 . 658899) (-1608 . 658666) (-1609 . 658569)
- (-1610 . 656791) (-1611 . 656725) (-1612 . 656627) (-1613 . 656571)
- (-1614 . 656472) (-1615 . 656419) (-1616 . 656081) (-1617 . 655937)
- (-1618 . 655857) (-1619 . 653442) (-1620 . 653373) (-1621 . 653320)
- (-1622 . 653174) (-1623 . 652838) (-1624 . 651968) (-1625 . 651913)
- (-1626 . 651757) (-1627 . 651419) (-1628 . 651352) (-1629 . 651229)
- (-1630 . 651063) (-1631 . 651010) (-1632 . 650954) (-1633 . 650873)
- (-1634 . 650748) (-1635 . 650679) (-1636 . 650450) (-1637 . 650348)
- (-1638 . 650202) (-1639 . 650130) (-1640 . 650028) (-1641 . 649812)
- (-1642 . 649585) (-1643 . 649381) (-1644 . 649030) (-1645 . 648720)
- (-1646 . 648647) (-1647 . 648551) (-1648 . 648437) (-1649 . 648359)
- (-1650 . 648280) (-1651 . 648206) (-1652 . 648123) (-1653 . 647448)
- (-1654 . 647273) (-1655 . 647091) (-1656 . 646888) (-1657 . 646723)
- (-1658 . 646610) (-1659 . 646551) (-1660 . 645943) (-1661 . 645577)
- (-1662 . 645494) (-1663 . 645384) (-1664 . 645117) (-1665 . 644664)
- (-1666 . 644405) (-1667 . 644373) (-1668 . 644184) (-1669 . 644101)
- (-1670 . 643912) (-1671 . 643834) (-1672 . 643529) (-1673 . 643401)
- (-1674 . 643198) (-1675 . 643137) (-1676 . 643078) (-1677 . 643007)
- (-1678 . 642627) (-1679 . 642514) (-1680 . 642401) (-1681 . 642041)
- (-1682 . 641824) (-1683 . 641729) (-1684 . 641611) (-1685 . 641453)
- (-1686 . 641382) (-1687 . 641186) (-1688 . 638841) (-1689 . 638698)
- (-1690 . 638638) (-1691 . 638582) (-1692 . 638501) (-1693 . 638418)
- (-1694 . 638286) (-1695 . 637858) (-1696 . 637796) (-1697 . 637701)
- (-1698 . 637409) (-1699 . 637357) (-1700 . 637300) (-1701 . 637229)
- (-1702 . 636871) (-1703 . 636619) (-1704 . 636567) (-1705 . 636407)
- (-1706 . 636351) (-1707 . 635266) (-1708 . 635197) (-1709 . 635044)
- (-1710 . 634991) (-1711 . 634701) (-1712 . 634503) (-1713 . 634224)
- (-1714 . 634136) (-1715 . 634084) (-1716 . 634018) (-1717 . 633944)
- (-1718 . 633887) (-1719 . 633792) (-1720 . 633667) (-1721 . 633572)
- (-1722 . 633444) (-1723 . 633358) (-1724 . 633330) (-1725 . 633091)
- (-1726 . 633026) (-1727 . 632911) (-1728 . 632719) (-1729 . 632273)
- (-1730 . 632218) (-1731 . 632080) (-1732 . 632018) (-1733 . 631875)
- (-1734 . 631778) (-1735 . 631504) (-1736 . 631420) (-1737 . 631312)
- (-1738 . 631062) (-1739 . 631007) (-1740 . 630849) (-1741 . 630771)
- (-1742 . 630293) (-1743 . 629983) (-1744 . 629882) (-1745 . 629781)
- (-1746 . 629653) (-1747 . 629549) (-1748 . 629147) (-1749 . 629119)
- (-1750 . 628943) (-1751 . 628848) (-1752 . 628249) (-1753 . 628215)
- (-1754 . 624208) (-1755 . 623998) (-1756 . 623916) (-1757 . 623888)
- (-1758 . 623577) (-1759 . 623477) (-1760 . 623398) (-1761 . 623343)
- (-1762 . 623229) (-1763 . 623157) (-1764 . 622191) (-1765 . 621815)
- (-1766 . 621737) (-1767 . 621631) (-1768 . 621579) (-1769 . 621527)
- (-1770 . 621475) (-1771 . 621373) (-1772 . 621100) (-1773 . 620882)
- (-1774 . 620508) (-1775 . 620389) (-1776 . 620321) (-1777 . 619802)
- (-1778 . 619743) (-1779 . 619570) (-1780 . 619539) (-1781 . 619364)
- (-1782 . 619251) (-1783 . 619148) (-1784 . 619010) (-1785 . 618714)
- (-1786 . 618610) (-1787 . 618514) (-1788 . 618418) (-1789 . 618348)
- (-1790 . 618268) (-1791 . 618202) (-1792 . 617956) (-1793 . 617762)
- (-1794 . 617620) (-1795 . 617496) (-1796 . 617401) (-1797 . 616561)
- (-1798 . 616305) (-1799 . 615345) (-1800 . 614227) (-1801 . 614126)
- (-1802 . 614011) (-1803 . 613929) (-1804 . 613892) (-1805 . 613790)
- (-1806 . 613699) (-1807 . 613508) (-1808 . 613405) (-1809 . 613243)
- (-1810 . 612697) (-1811 . 612569) (-1812 . 612489) (-1813 . 612350)
- (-1814 . 612251) (-1815 . 612198) (-1816 . 612072) (-1817 . 611846)
- (-1818 . 611705) (-1819 . 611554) (-1820 . 611375) (-1821 . 611341)
- (-1822 . 611237) (-1823 . 611141) (-1824 . 610769) (-1825 . 610735)
- (-1826 . 610698) (-1827 . 610648) (-1828 . 610552) (-1829 . 610345)
- (-1830 . 610026) (-1831 . 609816) (-1832 . 609750) (-1833 . 609611)
- (-1834 . 609517) (-1835 . 609289) (-1836 . 608973) (-1837 . 608738)
- (-1838 . 608657) (-1839 . 608477) (-1840 . 608353) (-1841 . 607945)
- (-1842 . 607851) (-1843 . 607732) (-1844 . 607619) (-1845 . 607324)
- (-1846 . 607044) (-1847 . 606331) (-1848 . 606121) (-1849 . 606041)
- (-1850 . 605575) (-1851 . 605501) (-1852 . 605448) (-1853 . 605361)
- (-1854 . 605169) (-1855 . 605079) (-1856 . 604980) (-1857 . 604790)
- (-1858 . 604512) (-1859 . 603169) (-1860 . 602974) (-1861 . 602924)
- (-1862 . 602677) (-1863 . 602564) (-1864 . 602303) (-1865 . 601001)
- (-1866 . 600928) (-1867 . 600851) (-1868 . 600799) (-1869 . 600700)
- (-1870 . 600565) (-1871 . 600513) (-1872 . 600407) (-1873 . 600282)
- (-1874 . 600223) (-1875 . 600094) (-1876 . 600066) (-1877 . 599978)
- (-1878 . 599844) (-1879 . 592901) (-1880 . 592788) (-1881 . 592687)
- (-1882 . 592580) (-1883 . 592467) (-1884 . 592324) (-1885 . 591222)
- (-1886 . 591067) (-1887 . 590428) (-1888 . 590302) (-1889 . 590162)
- (-1890 . 590090) (-1891 . 589992) (-1892 . 589770) (-1893 . 589386)
- (-1894 . 589358) (-1895 . 589251) (-1896 . 589195) (-1897 . 589142)
- (-1898 . 589092) (-1899 . 588869) (-1900 . 588745) (-1901 . 588652)
- (-1902 . 588557) (-1903 . 588409) (-1904 . 588357) (-1905 . 588154)
- (-1906 . 588016) (-1907 . 587933) (-1908 . 587794) (-1909 . 587742)
- (-1910 . 587656) (-1911 . 587568) (-1912 . 587318) (-1913 . 587265)
- (-1914 . 587042) (-1915 . 586823) (-1916 . 586752) (-1917 . 586656)
- (-1918 . 586498) (-1919 . 586047) (-1920 . 585963) (-1921 . 585738)
- (-1922 . 585681) (-1923 . 585596) (-1924 . 585458) (-1925 . 585322)
- (-1926 . 585204) (-1927 . 585021) (-1928 . 584918) (-1929 . 584268)
- (-1930 . 584110) (-1931 . 583912) (-1932 . 583770) (-1933 . 583696)
- (-1934 . 583646) (-1935 . 583536) (-1936 . 583439) (-1937 . 583353)
- (-1938 . 583240) (-1939 . 583061) (-1940 . 582918) (-1941 . 582797)
- (-1942 . 582745) (-1943 . 582648) (-1944 . 582529) (-1945 . 582419)
- (-1946 . 582276) (-1947 . 582221) (-1948 . 580679) (-1949 . 580576)
- (-1950 . 580433) (-1951 . 579895) (-1952 . 579834) (-1953 . 579769)
- (-1954 . 579604) (-1955 . 579506) (-1956 . 579450) (-1957 . 579353)
- (-1958 . 579114) (-1959 . 578977) (-1960 . 578661) (-1961 . 578461)
- (-1962 . 578158) (-1963 . 578014) (-1964 . 577918) (-1965 . 577846)
- (-1966 . 577787) (-1967 . 577680) (-1968 . 577291) (-1969 . 577205)
- (-1970 . 576980) (-1971 . 576824) (-1972 . 576686) (-1973 . 576393)
- (-1974 . 576143) (-1975 . 576065) (-1976 . 576009) (-1977 . 575854)
- (-1978 . 575701) (-1979 . 575593) (-1980 . 575370) (-1981 . 575212)
- (-1982 . 575099) (-1983 . 575065) (-1984 . 574408) (-1985 . 574282)
- (-1986 . 573888) (-1987 . 573722) (-1988 . 573539) (-1989 . 573438)
- (-1990 . 573382) (-1991 . 573162) (-1992 . 572987) (-1993 . 572959)
- (-1994 . 572890) (-1995 . 572600) (-1996 . 572409) (-1997 . 572321)
- (-1998 . 572235) (-1999 . 571689) (-2000 . 571309) (-2001 . 570823)
- (-2002 . 570679) (-2003 . 570541) (-2004 . 566381) (-2005 . 566300)
- (-2006 . 565849) (-2007 . 565818) (-2008 . 565704) (-2009 . 565636)
- (-2010 . 565158) (-2011 . 564797) (-2012 . 564713) (-2013 . 564568)
- (-2014 . 564501) (-2015 . 564279) (-2016 . 563964) (-2017 . 563860)
- (-2018 . 563782) (-2019 . 563564) (-2020 . 563505) (-2021 . 563339)
- (-2022 . 563043) (-2023 . 558501) (-2024 . 558429) (-2025 . 557950)
- (-2026 . 557832) (-2027 . 557782) (-2028 . 557607) (-2029 . 557533)
- (-2030 . 557389) (-2031 . 557270) (-2032 . 557120) (-2033 . 556999)
- (-2034 . 556827) (-2035 . 556556) (-2036 . 555983) (-2037 . 555905)
- (-2038 . 555803) (-2039 . 555622) (-2040 . 555513) (-2041 . 555295)
- (-2042 . 555210) (-2043 . 555155) (-2044 . 555017) (-2045 . 554947)
- (-2046 . 554847) (-2047 . 554261) (-2048 . 554117) (-2049 . 553967)
- (-2050 . 553871) (-2051 . 553819) (-2052 . 553787) (-2053 . 553734)
- (-2054 . 553591) (-2055 . 553197) (-2056 . 553030) (-2057 . 552853)
- (-2058 . 552572) (-2059 . 552466) (-2060 . 552384) (-2061 . 551681)
- (-2062 . 551521) (-2063 . 551487) (-2064 . 551315) (-2065 . 551241)
- (-2066 . 551188) (-2067 . 551073) (-2068 . 551018) (-2069 . 550788)
- (-2070 . 550733) (-2071 . 549869) (-2072 . 549726) (-2073 . 549568)
- (-2074 . 549469) (-2075 . 549416) (-2076 . 549364) (-2077 . 549269)
- (-2078 . 549209) (-2079 . 549096) (-2080 . 548909) (-2081 . 548841)
- (-2082 . 548712) (-2083 . 548638) (-2084 . 548466) (-2085 . 548344)
- (-2086 . 548313) (-2087 . 548140) (-2088 . 548001) (-2089 . 547885)
- (-2090 . 547706) (-2091 . 547565) (-2092 . 547333) (-2093 . 547229)
- (-2094 . 547165) (-2095 . 547133) (-2096 . 547056) (-2097 . 546924)
- (-2098 . 546428) (-2099 . 546273) (-2100 . 546221) (-2101 . 532134)
- (-2102 . 532046) (-2103 . 531976) (-2104 . 531828) (-2105 . 531602)
- (-2106 . 531470) (-2107 . 531418) (-2108 . 531322) (-2109 . 531228)
- (-2110 . 530982) (-2111 . 530916) (-2112 . 530833) (-2113 . 530735)
- (-2114 . 528508) (-2115 . 528352) (-2116 . 528254) (-2117 . 528027)
- (-2118 . 527975) (-2119 . 527875) (-2120 . 527758) (-2121 . 527707)
- (-2122 . 527536) (-2123 . 527363) (-2124 . 527294) (-2125 . 527235)
- (-2126 . 527182) (-2127 . 527063) (-2128 . 526826) (-2129 . 526691)
- (-2130 . 526607) (-2131 . 526534) (-2132 . 526441) (-2133 . 525839)
- (-2134 . 525684) (-2135 . 525597) (-2136 . 525545) (-2137 . 525492)
- (-2138 . 525365) (-2139 . 525303) (-9 . 525275) (-2141 . 524671)
- (-2142 . 524449) (-2143 . 524139) (-2144 . 524073) (-2145 . 523929)
- (-2146 . 523792) (-2147 . 523682) (-2148 . 523630) (-2149 . 523294)
- (-2150 . 519627) (-8 . 519599) (-2152 . 519500) (-2153 . 519060)
- (-2154 . 518814) (-2155 . 518713) (-2156 . 518651) (-2157 . 518527)
- (-2158 . 518352) (-2159 . 518264) (-2160 . 518122) (-2161 . 517967)
- (-2162 . 517914) (-7 . 517886) (-2164 . 517833) (-2165 . 517781)
- (-2166 . 517704) (-2167 . 517621) (-2168 . 517570) (-2169 . 517479)
- (-2170 . 517378) (-2171 . 517198) (-2172 . 517127) (-2173 . 517048)
- (-2174 . 516515) (-2175 . 516336) (-2176 . 516206) (-2177 . 516129)
- (-2178 . 516034) (-2179 . 515642) (-2180 . 515465) (-2181 . 515286)
- (-2182 . 515203) (-2183 . 515084) (-2184 . 515028) (-2185 . 514926)
- (-2186 . 514701) (-2187 . 514543) (-2188 . 514375) (-2189 . 514222)
- (-2190 . 513837) (-2191 . 513649) (-2192 . 513402) (-2193 . 513286)
- (-2194 . 513145) (-2195 . 513048) (-2196 . 512949) (-2197 . 512856)
- (-2198 . 512735) (-2199 . 512662) (-2200 . 512387) (-2201 . 512299)
- (-2202 . 512161) (-2203 . 512090) (-2204 . 511885) (-2205 . 511508)
- (-2206 . 511142) (-2207 . 510725) (-2208 . 510673) (-2209 . 510570)
- (-2210 . 510183) (-2211 . 509966) (-2212 . 509781) (-2213 . 509463)
- (-2214 . 509326) (-2215 . 509141) (-2216 . 508976) (-2217 . 508847)
- (-2218 . 508578) (-2219 . 508462) (-2220 . 508400) (-2221 . 508105)
- (-2222 . 507522) (-2223 . 507237) (-2224 . 507155) (-2225 . 506954)
- (-2226 . 506902) (-2227 . 506036) (-2228 . 505983) (-2229 . 505773)
- (-2230 . 505677) (-2231 . 505418) (-2232 . 505339) (-2233 . 504585)
- (-2234 . 504511) (-2235 . 504444) (-2236 . 504184) (-2237 . 504079)
- (-2238 . 504009) (-2239 . 503914) (-2240 . 503848) (-2241 . 503714)
- (-2242 . 503635) (-2243 . 503582) (-2244 . 503514) (-2245 . 503354)
- (-2246 . 503247) (-2247 . 503132) (-2248 . 502877) (-2249 . 502735)
- (-2250 . 502384) (-2251 . 502312) (-2252 . 502224) (-2253 . 502105)
- (-2254 . 502021) (-2255 . 501955) (-2256 . 501883) (-2257 . 501795)
- (-2258 . 501763) (-2259 . 501501) (-2260 . 501150) (-2261 . 501081)
- (-2262 . 500986) (-2263 . 500929) (-2264 . 500874) (-2265 . 500788)
- (-2266 . 500720) (-2267 . 500626) (-2268 . 500353) (-2269 . 500269)
- (-2270 . 500192) (-2271 . 500044) (-2272 . 499791) (-2273 . 499673)
- (-2274 . 499188) (-2275 . 499136) (-2276 . 499013) (-2277 . 498896)
- (-2278 . 498843) (-2279 . 498702) (-2280 . 498586) (-2281 . 497588)
- (-2282 . 497430) (-2283 . 496922) (-2284 . 496849) (-2285 . 496113)
- (-2286 . 495972) (-2287 . 495875) (-2288 . 495648) (-2289 . 495426)
- (-2290 . 495242) (-2291 . 494841) (-2292 . 494296) (-2293 . 494195)
- (-2294 . 492339) (-2295 . 491854) (-2296 . 491827) (-2297 . 491750)
- (-2298 . 491654) (-2299 . 491604) (-2300 . 491482) (-2301 . 491167)
- (-2302 . 490972) (-2303 . 490672) (-2304 . 490500) (-2305 . 490432)
- (-2306 . 490355) (-2307 . 490107) (-2308 . 490034) (-2309 . 489904)
- (-2310 . 489852) (-2311 . 489752) (-2312 . 489527) (-2313 . 488311)
- (-2314 . 488168) (-2315 . 488013) (-2316 . 487944) (-2317 . 487892)
- (-2318 . 487734) (-2319 . 487706) (-2320 . 487473) (-2321 . 487390)
- (-2322 . 487334) (-2323 . 486959) (-2324 . 486872) (-2325 . 486747)
- (-2326 . 486543) (-2327 . 486457) (-2328 . 486397) (-2329 . 486249)
- (-2330 . 486154) (-2331 . 485378) (-2332 . 485295) (-2333 . 484964)
- (-2334 . 484869) (-2335 . 484744) (-2336 . 484679) (-2337 . 484605)
- (-2338 . 484167) (-2339 . 484075) (-2340 . 483855) (-2341 . 483777)
- (-2342 . 483650) (-2343 . 483569) (-2344 . 483481) (-2345 . 483388)
- (-2346 . 483311) (-2347 . 483258) (-2348 . 483186) (-2349 . 483135)
- (-2350 . 483080) (-2351 . 482956) (-2352 . 482831) (-2353 . 482772)
- (-2354 . 482656) (-2355 . 482573) (-2356 . 482421) (-2357 . 482344)
- (-2358 . 482162) (-2359 . 482110) (-2360 . 482040) (-2361 . 481925)
- (-2362 . 481534) (-2363 . 481372) (-2364 . 480456) (-2365 . 480322)
- (-2366 . 480189) (-2367 . 479446) (-2368 . 479200) (-2369 . 479061)
- (-2370 . 478973) (-2371 . 478883) (-2372 . 478824) (-2373 . 478472)
- (-2374 . 478393) (-2375 . 478312) (-2376 . 478203) (-2377 . 478171)
- (-2378 . 477925) (-2379 . 477581) (-2380 . 477413) (-2381 . 477320)
- (-2382 . 477180) (-2383 . 476930) (-2384 . 476830) (-2385 . 476745)
- (-2386 . 476587) (-2387 . 476479) (-2388 . 475958) (-2389 . 475713)
- (-2390 . 475662) (-2391 . 475429) (-2392 . 475351) (-2393 . 475235)
- (-2394 . 475017) (-2395 . 474373) (-2396 . 474287) (-2397 . 474157)
- (-2398 . 474027) (-2399 . 473394) (-2400 . 473323) (-2401 . 473270)
- (-2402 . 472846) (-2403 . 472746) (-2404 . 472674) (-2405 . 472605)
- (-2406 . 472503) (-2407 . 472420) (-2408 . 472337) (-2409 . 472198)
- (-2410 . 472095) (-2411 . 472015) (-2412 . 471822) (-2413 . 471734)
- (-2414 . 471607) (-2415 . 471444) (-2416 . 471391) (-2417 . 471309)
- (-2418 . 471225) (-2419 . 471065) (-2420 . 470985) (-2421 . 470886)
- (-2422 . 470834) (-2423 . 470577) (-2424 . 470520) (-2425 . 470461)
- (-2426 . 470383) (-2427 . 470315) (-2428 . 470024) (-2429 . 469862)
- (-2430 . 469535) (-2431 . 469351) (-2432 . 469229) (-2433 . 469106)
- (-2434 . 468771) (-2435 . 468583) (-2436 . 468304) (-2437 . 468226)
- (-2438 . 467895) (-2439 . 467772) (-2440 . 467649) (-2441 . 467575)
- (-2442 . 465998) (-2443 . 465910) (-2444 . 465649) (-2445 . 465502)
- (-2446 . 464882) (-2447 . 464456) (-2448 . 464403) (-2449 . 464273)
- (-2450 . 464158) (-2451 . 463285) (-2452 . 463076) (-2453 . 462587)
- (-2454 . 462413) (-2455 . 461115) (-2456 . 461041) (-2457 . 460947)
- (-2458 . 460801) (-2459 . 460721) (-2460 . 460390) (-2461 . 460224)
- (-2462 . 459972) (-2463 . 459867) (-2464 . 459713) (-2465 . 459401)
- (-2466 . 459306) (-2467 . 459182) (-2468 . 459050) (-2469 . 458867)
- (-2470 . 458739) (-2471 . 458592) (-2472 . 458515) (-2473 . 458422)
- (-2474 . 458130) (-2475 . 458056) (-2476 . 457948) (-2477 . 457790)
- (-2478 . 457534) (-2479 . 457433) (-2480 . 457280) (-2481 . 457243)
- (-2482 . 457084) (-2483 . 456874) (-2484 . 455672) (-2485 . 455635)
- (-2486 . 455582) (-2487 . 455455) (-2488 . 455336) (-2489 . 455178)
- (-2490 . 454836) (-2491 . 454701) (-2492 . 454466) (-2493 . 454247)
- (-2494 . 454159) (-2495 . 454056) (-2496 . 453876) (-2497 . 453596)
- (-2498 . 452842) (-2499 . 452768) (-2500 . 452347) (-2501 . 452281)
- (-2502 . 451959) (-2503 . 451760) (-2504 . 451193) (-2505 . 451078)
- (-2506 . 450954) (-2507 . 450853) (-2508 . 450701) (-2509 . 450558)
- (-2510 . 450495) (-2511 . 450214) (-2512 . 450118) (-2513 . 449806)
- (-2514 . 449732) (-2515 . 448849) (-2516 . 448750) (-2517 . 448444)
- (-2518 . 448324) (-2519 . 448192) (-2520 . 448044) (-2521 . 446974)
- (-2522 . 446851) (-2523 . 446799) (-2524 . 446726) (-2525 . 446647)
- (-2526 . 446501) (-2527 . 446400) (-2528 . 446305) (-2529 . 445891)
- (-2530 . 445738) (-2531 . 445667) (-2532 . 445594) (-2533 . 445565)
- (-2534 . 445494) (-2535 . 445400) (-2536 . 445329) (-2537 . 444962)
- (-2538 . 444781) (-2539 . 444685) (-2540 . 444587) (-2541 . 444176)
- (-2542 . 443334) (-2543 . 443127) (-2544 . 442049) (-2545 . 441975)
- (-2546 . 441918) (-2547 . 441866) (-2548 . 441808) (-2549 . 441677)
- (-2550 . 441570) (-2551 . 441511) (-2552 . 440359) (-2553 . 436750)
- (-2554 . 436700) (-2555 . 435427) (-2556 . 435296) (-2557 . 435132)
- (-2558 . 434853) (-2559 . 434758) (-2560 . 434630) (-2561 . 434598)
- (-2562 . 434546) (-2563 . 433809) (-2564 . 433685) (-2565 . 433455)
- (-2566 . 433304) (-2567 . 433249) (-2568 . 432956) (-2569 . 432737)
- (-2570 . 432666) (-2571 . 432486) (-2572 . 432316) (-2573 . 432184)
- (-2574 . 432133) (-2575 . 432078) (-2576 . 431984) (-2577 . 431901)
- (-2578 . 431845) (-2579 . 431686) (-2580 . 431394) (-2581 . 431345)
- (-2582 . 431233) (-2583 . 431104) (-2584 . 430976) (-2585 . 430890)
- (-2586 . 430856) (-2587 . 430790) (-2588 . 429869) (-2589 . 429754)
- (-2590 . 429677) (-2591 . 429575) (-2592 . 429420) (-2593 . 429350)
- (-2594 . 428532) (-2595 . 428232) (-2596 . 428176) (-2597 . 428016)
- (-2598 . 427925) (-2599 . 427608) (-2600 . 427428) (-2601 . 427332)
- (-2602 . 427064) (-2603 . 426586) (-2604 . 426558) (-2605 . 426463)
- (-2606 . 426384) (-2607 . 426176) (-2608 . 426124) (-2609 . 426028)
- (-2610 . 425904) (-2611 . 425608) (-2612 . 425444) (-2613 . 425391)
- (-2614 . 424584) (-2615 . 424413) (-2616 . 424325) (-2617 . 424212)
- (-2618 . 424113) (-2619 . 423911) (-2620 . 423768) (-2621 . 423613)
- (-2622 . 423581) (-2623 . 423398) (-2624 . 423080) (-2625 . 423052)
- (-2626 . 422608) (-2627 . 422370) (-2628 . 422260) (-2629 . 422170)
- (-2630 . 422087) (-2631 . 421317) (-2632 . 421233) (-2633 . 420699)
- (-2634 . 420567) (-2635 . 420516) (-2636 . 420416) (-2637 . 420324)
- (-2638 . 420046) (-2639 . 419653) (-2640 . 419556) (-2641 . 418896)
- (-2642 . 418711) (-2643 . 418652) (-2644 . 418474) (-2645 . 418215)
- (-2646 . 418004) (-2647 . 417551) (-2648 . 417480) (-2649 . 417420)
- (-2650 . 417368) (-2651 . 417241) (-2652 . 417064) (-2653 . 416777)
- (-2654 . 416285) (-2655 . 416156) (-2656 . 415723) (-2657 . 415640)
- (-2658 . 415528) (-2659 . 415417) (-2660 . 415207) (-2661 . 415126)
- (-2662 . 415060) (-2663 . 414861) (-2664 . 414580) (-2665 . 414480)
- (-2666 . 414332) (-2667 . 414184) (-2668 . 414128) (-2669 . 413982)
- (-2670 . 413911) (-2671 . 413850) (-2672 . 413488) (-2673 . 413209)
- (-2674 . 413010) (-2675 . 412944) (-2676 . 412772) (-2677 . 412710)
- (-2678 . 412498) (-2679 . 412338) (-2680 . 412286) (-2681 . 412008)
- (-2682 . 411880) (-2683 . 411661) (-2684 . 411051) (-2685 . 410959)
- (-2686 . 410888) (-12 . 410716) (-2688 . 410633) (-2689 . 409920)
- (-2690 . 409706) (-2691 . 409004) (-2692 . 408708) (-2693 . 408656)
- (-2694 . 408525) (-2695 . 408339) (-2696 . 408145) (-2697 . 408052)
- (-2698 . 407996) (-2699 . 407609) (-2700 . 407528) (-2701 . 407473)
- (-2702 . 406794) (-2703 . 406745) (-2704 . 406668) (-2705 . 406450)
- (-2706 . 406002) (-2707 . 405878) (-2708 . 405779) (-2709 . 405719)
- (-2710 . 405633) (-2711 . 405437) (-2712 . 405360) (-2713 . 405309)
- (-2714 . 405180) (-2715 . 405099) (-2716 . 405019) (-2717 . 404593)
- (-2718 . 404519) (-2719 . 404382) (-2720 . 404118) (-2721 . 403963)
- (-2722 . 403710) (-2723 . 403099) (-2724 . 402850) (-2725 . 384275)
- (-2726 . 383888) (-2727 . 383726) (-2728 . 383595) (-2729 . 383496)
- (-2730 . 383439) (-2731 . 383266) (-2732 . 383209) (-2733 . 383069)
- (-2734 . 382753) (-2735 . 382600) (-2736 . 382493) (-2737 . 382162)
- (-2738 . 379341) (-2739 . 379077) (-2740 . 378947) (-2741 . 378845)
- (-2742 . 378646) (-2743 . 378488) (-2744 . 378418) (-2745 . 378351)
- (-2746 . 378278) (-2747 . 378174) (-2748 . 378029) (-2749 . 377874)
- (-2750 . 377793) (-2751 . 377266) (-2752 . 376792) (-2753 . 376720)
- (-2754 . 376543) (-2755 . 376387) (-2756 . 376235) (-2757 . 376183)
- (-2758 . 375847) (-2759 . 375795) (-2760 . 375461) (-2761 . 375358)
- (-2762 . 375278) (-2763 . 375079) (-2764 . 374794) (-2765 . 374742)
- (-2766 . 374685) (-2767 . 374376) (-2768 . 374231) (-2769 . 374132)
- (-2770 . 373823) (-2771 . 373707) (-2772 . 373280) (-2773 . 373186)
- (-2774 . 373119) (-2775 . 373025) (-2776 . 372948) (-2777 . 372878)
- (-2778 . 372808) (-2779 . 368745) (-2780 . 368538) (-2781 . 368192)
- (-2782 . 368097) (-2783 . 368041) (-2784 . 367920) (-2785 . 367834)
- (-2786 . 367291) (* . 362797) (-2788 . 362007) (-2789 . 361913)
- (-2790 . 361834) (-2791 . 361748) (-2792 . 361591) (-2793 . 361297)
- (-2794 . 361226) (-2795 . 361198) (-2796 . 360960) (-2797 . 360617)
- (-2798 . 360565) (-2799 . 360001) (-2800 . 359598) (-2801 . 359521)
- (-2802 . 359288) (-2803 . 358096) (-2804 . 357737) (-2805 . 357685)
- (-2806 . 357618) (-2807 . 357287) (-2808 . 356975) (-2809 . 356721)
- (-2810 . 356490) (-2811 . 356300) (-2812 . 356075) (-2813 . 355943)
- (-2814 . 355755) (-2815 . 355685) (-2816 . 355570) (-2817 . 355298)
- (-2818 . 355180) (-2819 . 355100) (-2820 . 354998) (-2821 . 354836)
- (-2822 . 354641) (-2823 . 354447) (-2824 . 354380) (-2825 . 354292)
- (-2826 . 354193) (-2827 . 353351) (-2828 . 353317) (-2829 . 352807)
- (-2830 . 352514) (-2831 . 352326) (-2832 . 352147) (-2833 . 351916)
- (-2834 . 351813) (-2835 . 351731) (-2836 . 351566) (-2837 . 351458)
- (-2838 . 350863) (-2839 . 350673) (-2840 . 350587) (-2841 . 350535)
- (-2842 . 350434) (-2843 . 350355) (-2844 . 350268) (-2845 . 350234)
- (-2846 . 350152) (-2847 . 349952) (-2848 . 349850) (-2849 . 349688)
- (-2850 . 349574) (-2851 . 348823) (-2852 . 348608) (-2853 . 348556)
- (-2854 . 348397) (-2855 . 348368) (-2856 . 348244) (-2857 . 348216)
- (-2858 . 346912) (-2859 . 346654) (-2860 . 346532) (-2861 . 346124)
- (-2862 . 346006) (-2863 . 345978) (-2864 . 345900) (-2865 . 345813)
- (-2866 . 345760) (-2867 . 345663) (-2868 . 345528) (-2869 . 345424)
- (-2870 . 345390) (-2871 . 345338) (-2872 . 345204) (-2873 . 344965)
- (-2874 . 344877) (-2875 . 344015) (-2876 . 343965) (-2877 . 343483)
- (-2878 . 343156) (-2879 . 343078) (-2880 . 342594) (-2881 . 342536)
- (-2882 . 341196) (-2883 . 340614) (-2884 . 340534) (-2885 . 340087)
- (-2886 . 340035) (-2887 . 339484) (-2888 . 339346) (-2889 . 339228)
- (-2890 . 338937) (-2891 . 338841) (-2892 . 338739) (-2893 . 338557)
- (-2894 . 338324) (-2895 . 338109) (-2896 . 337946) (-2897 . 336760)
- (-2898 . 336708) (-2899 . 336461) (-2900 . 336398) (-2901 . 336113)
- (-2902 . 336027) (-2903 . 335917) (-2904 . 335772) (-2905 . 334590)
- (-2906 . 334556) (-2907 . 334345) (-2908 . 332488) (-2909 . 332419)
- (-2910 . 332321) (-2911 . 332242) (-2912 . 331898) (-2913 . 331787)
- (-2914 . 331708) (-2915 . 331527) (-2916 . 329320) (-2917 . 329246)
- (-2918 . 329194) (-2919 . 329128) (-2920 . 329022) (-2921 . 328955)
- (-2922 . 328902) (-2923 . 328828) (-2924 . 328625) (-2925 . 328548)
- (-2926 . 328190) (-2927 . 327663) (-2928 . 327243) (-2929 . 327011)
- (-2930 . 326960) (-2931 . 326861) (-2932 . 326712) (-2933 . 326611)
- (-2934 . 326529) (-2935 . 326025) (-2936 . 325439) (-2937 . 325320)
- (-2938 . 324777) (-2939 . 324711) (-2940 . 324459) (-2941 . 324109)
- (-2942 . 324027) (-2943 . 322731) (-2944 . 322551) (-2945 . 322465)
- (-2946 . 322377) (-2947 . 322276) (-2948 . 322181) (-2949 . 321897)
- (-2950 . 321845) (-2951 . 321729) (-2952 . 321483) (-2953 . 321400)
- (-2954 . 321304) (-2955 . 321216) (-2956 . 321164) (-2957 . 321094)
- (-2958 . 321036) (-2959 . 320643) (-2960 . 320313) (-2961 . 320260)
- (-2962 . 320123) (-2963 . 320028) (-2964 . 319537) (-2965 . 319351)
- (-2966 . 319035) (-2967 . 318876) (-2968 . 318671) (-2969 . 318637)
- (-2970 . 318504) (-2971 . 318426) (-2972 . 318331) (-2973 . 318093)
- (-2974 . 317901) (-2975 . 317469) (-2976 . 316997) (-2977 . 316969)
- (-2978 . 316858) (-2979 . 316731) (-2980 . 316526) (-2981 . 316425)
- (-2982 . 316289) (-2983 . 316171) (-2984 . 316011) (-2985 . 315918)
- (-2986 . 315753) (-2987 . 315679) (-2988 . 315432) (-2989 . 315348)
- (-2990 . 314978) (-2991 . 314891) (-2992 . 314773) (-2993 . 314554)
- (-2994 . 314167) (-2995 . 314065) (-2996 . 314002) (-2997 . 313928)
- (-2998 . 313783) (-2999 . 313706) (-3000 . 313653) (-3001 . 313557)
- (-3002 . 313439) (-3003 . 313167) (-3004 . 313096) (-3005 . 313022)
- (-3006 . 312804) (-3007 . 311074) (-3008 . 310949) (-3009 . 308787)
- (-3010 . 308625) (-3011 . 307987) (-3012 . 307893) (-3013 . 307305)
- (-3014 . 307245) (-3015 . 307141) (-3016 . 307029) (-3017 . 306892)
- (-3018 . 306013) (-3019 . 305942) (-3020 . 305754) (-3021 . 305695)
- (-3022 . 305551) (-3023 . 305324) (-3024 . 305295) (-3025 . 305157)
- (-3026 . 304717) (-3027 . 304636) (-3028 . 304528) (-3029 . 304369)
- (-3030 . 304295) (-3031 . 304063) (-3032 . 303922) (-3033 . 303714)
- (-3034 . 303599) (-3035 . 303505) (-3036 . 303417) (-3037 . 303325)
- (-3038 . 303236) (-3039 . 303045) (-3040 . 300204) (-3041 . 300154)
- (-3042 . 300120) (-3043 . 300009) (-3044 . 299346) (-3045 . 299183)
- (-3046 . 299131) (-3047 . 298869) (-3048 . 298703) (-3049 . 298606)
- (-3050 . 298487) (-3051 . 298415) (-3052 . 298362) (-3053 . 297964)
- (-3054 . 297866) (-3055 . 297723) (-3056 . 297616) (-3057 . 297516)
- (-3058 . 297463) (-3059 . 297284) (-3060 . 297183) (-3061 . 297088)
- (-3062 . 296894) (-3063 . 296757) (-3064 . 296421) (-3065 . 296363)
- (-3066 . 296311) (-3067 . 296205) (-3068 . 295834) (-3069 . 295779)
- (-3070 . 295441) (-3071 . 295240) (-3072 . 295047) (-3073 . 294932)
- (-3074 . 294832) (-3075 . 294554) (-3076 . 293992) (-3077 . 291736)
- (-3078 . 291648) (-3079 . 291582) (-3080 . 291194) (-3081 . 291120)
- (-3082 . 290879) (-3083 . 290685) (-3084 . 290607) (-3085 . 290362)
- (-3086 . 290204) (-3087 . 290104) (-3088 . 289833) (-3089 . 289568)
- (-3090 . 289497) (-3091 . 289304) (-3092 . 289114) (-3093 . 288891)
- (-3094 . 288524) (-3095 . 288086) (-3096 . 287834) (-3097 . 287746)
- (-3098 . 287666) (-3099 . 287492) (-3100 . 287390) (-3101 . 287338)
- (-3102 . 287243) (-3103 . 287091) (-3104 . 286969) (-3105 . 286684)
- (-3106 . 286154) (-3107 . 285904) (-3108 . 285764) (-3109 . 285648)
- (-3110 . 285306) (-3111 . 285191) (-3112 . 284939) (-3113 . 284853)
- (-3114 . 284491) (-3115 . 284258) (-3116 . 284109) (-3117 . 284038)
- (-3118 . 283893) (-3119 . 283823) (-3120 . 283758) (-3121 . 283681)
- (-3122 . 283611) (-3123 . 283583) (-3124 . 283486) (-3125 . 283368)
- (-3126 . 283114) (-3127 . 282522) (-3128 . 282379) (-3129 . 282262)
- (-3130 . 282209) (-3131 . 282119) (-3132 . 282035) (-3133 . 281979)
- (-3134 . 281896) (-3135 . 281604) (-3136 . 281505) (-3137 . 281347)
- (-3138 . 281145) (-3139 . 281019) (-3140 . 280725) (-3141 . 280623)
- (-3142 . 280545) (-3143 . 280486) (-3144 . 280389) (-3145 . 280332)
- (-3146 . 279846) (-3147 . 279814) (-3148 . 279517) (-3149 . 279464)
- (-3150 . 279184) (-3151 . 279065) (-3152 . 278744) (-3153 . 278692)
- (-3154 . 278584) (-3155 . 278208) (-3156 . 278092) (-3157 . 277995)
- (-3158 . 277800) (-3159 . 277668) (-3160 . 277573) (-3161 . 277439)
- (-3162 . 277333) (-3163 . 277256) (-3164 . 277098) (-3165 . 276880)
- (-3166 . 276717) (-3167 . 276595) (-3168 . 276509) (-3169 . 276291)
- (-3170 . 276043) (-3171 . 275945) (-3172 . 275862) (-3173 . 275764)
- (-3174 . 275491) (-3175 . 275436) (-3176 . 275271) (-3177 . 275151)
- (-3178 . 275052) (-3179 . 274736) (-3180 . 274644) (-3181 . 274289)
- (-3182 . 274185) (-3183 . 274044) (-3184 . 273847) (-3185 . 270512)
- (-3186 . 270391) (-3187 . 270274) (-3188 . 270178) (-3189 . 270077)
- (-3190 . 269869) (-3191 . 269745) (-3192 . 269606) (-3193 . 269521)
- (-3194 . 269332) (-3195 . 268675) (-3196 . 268589) (-3197 . 268561)
- (-3198 . 268246) (-3199 . 268142) (-3200 . 267868) (-3201 . 267523)
- (-3202 . 265740) (-3203 . 265563) (-3204 . 265341) (-3205 . 265183)
- (-3206 . 265013) (-3207 . 264930) (-3208 . 264902) (-3209 . 264495)
- (-3210 . 264440) (-3211 . 264309) (-3212 . 264193) (-3213 . 264143)
- (-3214 . 263896) (-3215 . 263650) (-3216 . 263567) (-3217 . 263438)
- (-3218 . 263216) (-3219 . 263133) (-3220 . 262797) (-3221 . 262697)
- (-3222 . 262215) (-3223 . 261833) (-3224 . 261749) (-3225 . 261663)
- (-3226 . 261560) (-3227 . 261472) (-3228 . 261392) (-3229 . 260639)
- (-3230 . 260160) (-3231 . 260094) (-3232 . 259330) (-3233 . 259206)
- (-3234 . 259105) (-3235 . 258986) (-3236 . 258866) (-3237 . 258341)
- (-3238 . 258138) (-3239 . 256915) (-3240 . 255948) (-3241 . 255799)
- (-3242 . 255630) (-3243 . 255439) (-3244 . 255211) (-3245 . 254959)
- (-3246 . 254888) (-3247 . 254824) (-3248 . 254722) (-3249 . 254603)
- (-3250 . 254250) (-3251 . 254152) (-3252 . 254081) (-3253 . 253975)
- (-3254 . 253808) (-3255 . 253404) (-3256 . 253182) (-3257 . 252736)
- (-3258 . 252429) (-3259 . 252328) (-3260 . 251441) (-3261 . 251001)
- (-3262 . 250609) (-3263 . 250506) (-3264 . 250340) (-3265 . 250100)
- (-3266 . 250046) (-3267 . 250012) (-3268 . 249845) (-3269 . 249715)
- (-3270 . 249619) (-3271 . 249524) (-3272 . 249366) (-3273 . 249237)
- (-3274 . 248791) (-3275 . 248646) (-3276 . 248578) (-3277 . 248363)
- (-3278 . 248307) (-3279 . 248093) (-3280 . 247766) (-3281 . 247279)
- (-3282 . 242111) (-3283 . 242008) (-3284 . 241830) (-3285 . 241752)
- (-3286 . 241700) (-3287 . 241627) (-3288 . 241526) (-3289 . 240461)
- (-3290 . 240373) (-3291 . 240210) (-3292 . 240144) (-3293 . 239984)
- (-3294 . 239557) (-3295 . 239504) (-3296 . 239455) (-3297 . 239402)
- (-3298 . 239280) (-3299 . 239164) (-3300 . 239057) (-3301 . 238897)
- (-3302 . 238717) (-3303 . 238631) (-3304 . 238488) (-3305 . 238288)
- (-3306 . 238128) (-3307 . 237983) (-3308 . 237918) (-3309 . 237863)
- (-3310 . 237396) (-3311 . 237182) (-3312 . 236755) (-3313 . 236660)
- (-3314 . 236448) (-3315 . 236283) (-3316 . 236190) (-3317 . 236062)
- (-3318 . 235996) (-3319 . 235677) (-3320 . 235604) (-3321 . 235518)
- (-3322 . 235417) (-3323 . 235343) (-3324 . 235257) (-3325 . 235094)
- (-3326 . 235021) (-3327 . 234876) (-3328 . 234661) (-3329 . 234317)
- (-3330 . 234199) (-3331 . 234104) (-3332 . 234016) (-3333 . 233911)
- (-3334 . 233767) (-3335 . 233651) (-3336 . 233121) (-3337 . 232892)
- (-3338 . 232734) (-3339 . 232581) (-3340 . 232266) (-3341 . 232142)
- (-3342 . 232018) (-3343 . 226680) (-3344 . 226601) (-3345 . 226460)
- (-3346 . 226027) (-3347 . 225900) (-3348 . 225828) (-3349 . 225748)
- (-3350 . 225318) (-3351 . 225190) (-3352 . 225107) (-3353 . 225078)
- (-3354 . 224669) (-3355 . 224617) (-3356 . 224487) (-3357 . 224389)
- (-3358 . 224304) (-3359 . 224175) (-3360 . 224146) (-3361 . 224082)
- (-3362 . 223840) (-3363 . 223565) (-3364 . 223471) (-3365 . 223389)
- (-3366 . 223221) (-3367 . 222792) (-3368 . 222673) (-3369 . 222470)
- (-3370 . 222039) (-3371 . 221780) (-3372 . 221695) (-3373 . 221667)
- (-3374 . 221583) (-3375 . 221524) (-3376 . 221420) (-3377 . 221191)
- (-3378 . 221047) (-3379 . 220931) (-3380 . 220221) (-3381 . 219792)
- (-3382 . 219696) (-3383 . 219518) (-3384 . 219490) (-3385 . 219408)
- (-3386 . 219135) (-3387 . 218899) (-3388 . 218827) (-3389 . 218773)
- (-3390 . 218674) (-3391 . 218601) (-3392 . 218523) (-3393 . 218391)
- (-3394 . 218164) (-3395 . 218109) (-3396 . 217853) (-3397 . 217800)
- (-3398 . 217595) (-3399 . 217540) (-3400 . 217444) (-3401 . 217392)
- (-3402 . 217250) (-3403 . 217037) (-3404 . 216985) (-3405 . 216854)
- (-3406 . 216771) (-3407 . 216698) (-3408 . 216429) (-3409 . 216333)
- (-3410 . 216225) (-3411 . 216152) (-3412 . 216036) (-3413 . 215883)
- (-3414 . 215792) (-3415 . 215739) (-3416 . 215417) (-3417 . 215254)
- (-3418 . 214870) (-3419 . 214745) (-3420 . 214717) (-3421 . 214469)
- (-3422 . 214276) (-3423 . 213859) (-3424 . 213237) (-3425 . 212813)
- (-3426 . 212469) (-3427 . 212341) (-3428 . 211873) (-3429 . 211757)
- (-3430 . 211707) (-3431 . 210679) (-3432 . 210431) (-3433 . 210357)
- (-3434 . 210329) (-3435 . 210207) (-3436 . 210075) (-3437 . 209578)
- (-3438 . 209444) (-3439 . 209283) (-3440 . 209167) (-3441 . 209112)
- (-3442 . 208977) (-3443 . 208441) (-3444 . 208337) (-3445 . 208309)
- (-3446 . 208131) (-3447 . 207890) (-3448 . 207636) (-3449 . 206907)
- (-3450 . 206782) (-3451 . 206105) (-3452 . 206077) (-3453 . 205989)
- (-3454 . 205831) (-3455 . 205718) (-3456 . 205620) (-3457 . 205352)
- (-3458 . 205279) (-3459 . 205078) (-3460 . 204973) (-3461 . 204244)
- (-3462 . 203677) (-3463 . 203504) (-3464 . 203438) (-3465 . 202920)
- (-3466 . 202837) (-3467 . 202719) (-3468 . 202374) (-3469 . 202303)
- (-3470 . 202232) (-3471 . 202076) (-3472 . 201906) (-3473 . 201802)
- (-3474 . 201126) (-3475 . 201027) (-3476 . 200873) (-3477 . 200801)
- (-3478 . 200717) (-3479 . 200599) (-3480 . 200496) (-3481 . 200386)
- (-3482 . 199205) (-3483 . 199153) (-3484 . 199043) (-3485 . 198534)
- (-3486 . 198438) (-3487 . 197923) (-3488 . 197359) (-3489 . 197330)
- (-3490 . 197260) (-3491 . 197188) (-3492 . 196661) (-3493 . 196517)
- (-3494 . 196451) (-3495 . 196335) (-3496 . 196110) (-3497 . 196005)
- (-3498 . 195952) (-3499 . 195642) (-3500 . 195078) (-3501 . 195026)
- (-3502 . 194467) (-3503 . 194408) (-3504 . 194157) (-3505 . 193983)
- (-3506 . 193888) (-3507 . 193790) (-3508 . 193687) (-3509 . 193629)
- (-3510 . 193521) (-3511 . 193416) (-3512 . 193289) (-3513 . 193122)
- (-3514 . 193009) (-3515 . 192445) (-3516 . 191886) (-3517 . 191855)
- (-3518 . 191646) (-3519 . 191569) (-3520 . 191405) (-3521 . 191264)
- (-3522 . 190856) (-3523 . 190822) (-3524 . 190728) (-3525 . 190694)
- (-3526 . 190536) (-3527 . 190400) (-3528 . 189726) (-3529 . 189563)
- (-3530 . 189484) (-3531 . 189405) (-3532 . 189309) (-3533 . 189243)
- (-3534 . 188597) (-3535 . 188544) (-3536 . 188216) (-3537 . 188120)
- (-3538 . 187960) (-3539 . 187619) (-3540 . 187550) (-3541 . 186876)
- (-3542 . 186574) (-3543 . 186392) (-3544 . 186340) (-3545 . 185853)
- (-3546 . 185261) (-3547 . 185171) (-3548 . 185118) (-3549 . 184854)
- (-3550 . 184799) (-3551 . 184440) (-3552 . 184297) (-3553 . 183560)
- (-3554 . 183099) (-3555 . 182956) (-3556 . 182788) (-3557 . 182673)
- (-3558 . 182530) (-3559 . 182399) (-3560 . 182290) (-3561 . 181957)
- (-3562 . 181681) (-3563 . 181569) (-3564 . 181188) (-3565 . 179756)
- (-3566 . 179194) (-3567 . 179094) (-3568 . 178994) (-3569 . 178830)
- (-3570 . 178772) (-3571 . 178614) (-3572 . 178515) (-3573 . 178370)
- (-3574 . 178134) (-3575 . 177904) (-3576 . 177102) (-3577 . 176540)
- (-3578 . 176473) (-3579 . 175866) (-3580 . 175695) (-3581 . 175565)
- (-3582 . 175426) (-3583 . 175367) (-3584 . 174992) (-3585 . 174819)
- (-3586 . 174295) (-3587 . 174242) (-3588 . 174044) (-3589 . 173482)
- (-3590 . 173400) (-3591 . 173144) (-3592 . 173029) (-3593 . 172913)
- (-3594 . 172588) (-3595 . 172507) (-3596 . 172133) (-3597 . 171924)
- (-3598 . 171716) (-3599 . 169748) (-3600 . 169521) (-3601 . 168846)
- (-3602 . 168762) (-3603 . 168681) (-3604 . 168614) (-3605 . 168524)
- (-3606 . 168450) (-3607 . 168309) (-3608 . 168221) (-3609 . 168097)
- (-3610 . 167833) (-3611 . 167781) (-3612 . 167106) (-3613 . 167022)
- (-3614 . 166966) (-3615 . 166934) (-3616 . 166860) (-3617 . 166807)
- (-3618 . 166583) (-3619 . 166509) (-3620 . 165968) (-3621 . 165879)
- (-3622 . 165204) (-3623 . 163616) (-3624 . 163105) (-3625 . 163009)
- (-3626 . 162836) (-3627 . 162713) (-3628 . 162684) (-3629 . 162510)
- (-3630 . 162413) (-3631 . 162224) (-3632 . 162130) (-3633 . 161844)
- (-3634 . 161725) (-3635 . 161162) (-3636 . 161107) (-3637 . 160977)
- (-3638 . 160904) (-3639 . 160708) (-3640 . 160375) (-3641 . 160260)
- (-3642 . 160163) (-3643 . 159495) (-3644 . 159315) (-3645 . 159197)
- (-3646 . 159066) (-3647 . 158885) (-3648 . 158322) (-3649 . 158103)
- (-3650 . 158040) (-3651 . 157988) (-3652 . 157850) (-3653 . 157631)
- (-3654 . 157563) (-3655 . 157315) (-3656 . 157211) (-3657 . 157145)
- (-3658 . 156582) (-3659 . 156415) (-3660 . 156331) (-3661 . 156193)
- (-3662 . 155844) (-3663 . 155739) (-3664 . 155624) (-3665 . 155596)
- (-3666 . 155270) (-3667 . 155187) (-3668 . 154805) (-3669 . 154476)
- (-3670 . 153914) (-3671 . 153683) (-3672 . 153500) (-3673 . 153321)
- (-3674 . 152732) (-3675 . 152655) (-3676 . 152602) (-3677 . 151901)
- (-3678 . 151804) (-3679 . 151752) (-3680 . 151681) (-3681 . 151600)
- (-3682 . 151038) (-3683 . 150928) (-3684 . 150869) (-3685 . 150783)
- (-3686 . 150728) (-3687 . 150651) (-3688 . 150550) (-3689 . 150473)
- (-3690 . 150414) (-3691 . 150120) (-3692 . 150025) (-3693 . 149976)
- (-3694 . 149903) (-3695 . 149837) (-3696 . 149275) (-3697 . 149178)
- (-3698 . 149101) (-3699 . 148952) (-3700 . 148791) (-3701 . 148653)
- (-3702 . 148532) (-3703 . 148504) (-3704 . 148409) (-3705 . 147847)
- (-3706 . 147662) (-3707 . 147498) (-3708 . 147145) (-3709 . 146754)
- (-3710 . 146646) (-3711 . 146286) (-3712 . 146141) (-3713 . 145978)
- (-3714 . 145894) (-3715 . 145792) (-3716 . 145634) (-3717 . 145377)
- (-3718 . 145289) (-3719 . 144727) (-3720 . 144653) (-3721 . 144488)
- (-3722 . 144374) (-3723 . 144253) (-3724 . 144149) (-3725 . 143951)
- (-3726 . 143885) (-3727 . 143819) (-3728 . 143698) (-3729 . 143561)
- (-3730 . 143437) (-3731 . 143386) (-3732 . 143204) (-3733 . 142200)
- (-3734 . 142020) (-3735 . 141397) (-3736 . 141341) (-3737 . 141267)
- (-3738 . 141113) (-3739 . 140906) (-3740 . 140755) (-3741 . 140413)
- (-3742 . 140328) (-3743 . 140259) (-3744 . 140152) (-3745 . 140057)
- (-3746 . 139681) (-3747 . 139532) (-3748 . 139453) (-3749 . 139086)
- (-3750 . 138670) (-3751 . 138549) (-3752 . 138434) (-3753 . 138235)
- (-3754 . 138017) (-3755 . 137851) (-3756 . 137723) (-3757 . 137610)
- (-3758 . 137240) (-3759 . 137133) (-3760 . 137081) (-3761 . 136957)
- (-3762 . 136873) (-3763 . 136781) (-3764 . 136475) (-3765 . 136175)
- (-3766 . 136057) (-3767 . 135971) (-3768 . 135886) (-3769 . 135733)
- (-3770 . 135659) (-3771 . 135046) (-3772 . 134889) (-3773 . 134782)
- (-3774 . 134726) (-3775 . 134644) (-3776 . 134552) (-3777 . 134350)
- (-3778 . 134079) (-3779 . 133858) (-3780 . 133701) (-3781 . 133274)
- (-3782 . 133221) (-3783 . 133048) (-3784 . 132967) (-3785 . 132717)
- (-3786 . 132580) (-3787 . 132494) (-3788 . 132288) (-3789 . 132117)
- (-3790 . 131965) (-3791 . 131867) (-3792 . 131815) (-3793 . 131644)
- (-3794 . 131582) (-3795 . 131438) (-3796 . 130934) (-3797 . 130863)
- (-3798 . 130561) (-3799 . 130375) (-3800 . 130122) (-3801 . 130014)
- (-3802 . 129568) (-3803 . 129370) (-3804 . 129212) (-3805 . 129056)
- (-3806 . 128957) (-3807 . 128796) (-3808 . 128640) (-3809 . 128464)
- (-3810 . 128322) (-3811 . 128068) (-3812 . 127938) (-3813 . 127860)
- (-3814 . 127747) (-3815 . 127576) (-3816 . 127434) (-3817 . 127323)
- (-3818 . 126962) (-3819 . 126427) (-3820 . 126378) (-3821 . 126324)
- (-3822 . 126140) (-3823 . 125994) (-3824 . 125836) (-3825 . 125721)
- (-3826 . 125628) (-3827 . 124949) (-3828 . 124882) (-3829 . 124745)
- (-3830 . 124612) (-3831 . 124325) (-3832 . 124195) (-3833 . 124041)
- (-3834 . 123650) (-3835 . 123520) (-3836 . 123452) (-3837 . 123379)
- (-3838 . 121265) (-3839 . 120681) (-3840 . 120602) (-3841 . 120485)
- (-3842 . 120198) (-3843 . 119856) (-3844 . 119803) (-3845 . 119698)
- (-3846 . 119612) (-3847 . 119516) (-3848 . 118978) (-3849 . 118882)
- (-3850 . 118691) (-3851 . 118593) (-3852 . 118508) (-3853 . 118390)
- (-3854 . 117973) (-3855 . 117692) (-3856 . 117608) (-3857 . 117525)
- (-3858 . 117469) (-3859 . 117392) (-3860 . 117330) (-3861 . 117115)
- (-3862 . 117027) (-3863 . 116950) (-3864 . 116813) (-3865 . 116586)
- (-3866 . 116529) (-3867 . 116371) (-3868 . 116181) (-3869 . 116139)
- (-3870 . 116065) (-3871 . 115889) (-3872 . 115746) (-3873 . 115652)
- (-3874 . 115493) (-3875 . 115440) (-3876 . 115387) (-3877 . 115279)
- (-3878 . 115223) (-3879 . 115137) (-3880 . 115085) (-3881 . 115054)
- (-3882 . 114911) (-3883 . 114859) (-3884 . 114749) (-3885 . 114666)
- (-3886 . 114570) (-3887 . 114429) (-3888 . 114190) (-3889 . 114141)
- (-3890 . 113973) (-3891 . 113866) (-3892 . 113814) (-3893 . 113685)
- (-3894 . 113581) (-3895 . 113509) (-3896 . 113405) (-3897 . 113187)
- (-3898 . 113092) (-3899 . 112960) (-3900 . 112866) (-3901 . 112759)
- (-3902 . 112340) (-3903 . 112053) (-3904 . 111675) (-3905 . 111500)
- (-3906 . 111124) (-3907 . 110884) (-3908 . 110669) (-3909 . 110597)
- (-3910 . 110545) (-3911 . 110318) (-3912 . 110246) (-3913 . 110186)
- (-3914 . 110127) (-3915 . 109884) (-3916 . 109542) (-3917 . 109295)
- (-3918 . 109172) (-3919 . 109075) (-3920 . 108896) (-3921 . 108625)
- (-3922 . 108451) (-3923 . 106319) (-3924 . 106124) (-3925 . 105940)
- (-3926 . 105665) (-3927 . 105542) (-3928 . 105415) (-3929 . 105358)
- (-3930 . 105261) (-3931 . 104882) (-3932 . 104784) (-3933 . 104647)
- (-3934 . 104451) (-3935 . 104354) (-3936 . 104076) (-3937 . 103992)
- (-3938 . 103676) (-3939 . 103553) (-3940 . 103251) (-3941 . 103033)
- (-3942 . 102935) (-3943 . 102861) (-3944 . 102799) (-3945 . 102739)
- (-3946 . 102687) (-3947 . 102306) (-3948 . 102232) (-3949 . 101984)
- (-3950 . 101913) (-3951 . 101490) (-3952 . 101384) (-3953 . 101356)
- (-3954 . 101193) (-3955 . 101109) (-3956 . 100955) (-3957 . 100788)
- (-3958 . 100274) (-3959 . 99179) (-3960 . 99126) (-3961 . 99060)
- (-3962 . 98986) (-3963 . 98677) (-3964 . 97479) (-3965 . 97161)
- (-3966 . 97088) (-3967 . 96227) (-3968 . 96107) (-3969 . 95974)
- (-3970 . 95883) (-3971 . 95572) (-3972 . 95419) (-3973 . 95266)
- (-3974 . 95238) (-3975 . 94951) (-3976 . 94828) (-3977 . 94713)
- (-3978 . 94553) (-3979 . 94466) (-3980 . 94389) (-3981 . 94216)
- (-3982 . 94075) (-3983 . 92673) (-3984 . 92536) (-3985 . 92390)
- (-3986 . 92293) (-3987 . 92097) (-3988 . 91850) (-3989 . 91768)
- (-3990 . 91529) (-3991 . 91162) (-3992 . 90928) (-3993 . 89836)
- (-3994 . 89759) (-3995 . 89727) (-3996 . 89639) (-3997 . 89365)
- (-3998 . 89331) (-3999 . 89194) (-4000 . 89116) (-4001 . 89085)
- (-4002 . 88932) (-4003 . 88837) (-4004 . 88590) (-4005 . 88531)
- (-4006 . 87535) (-4007 . 86905) (-4008 . 86810) (-4009 . 86738)
- (-4010 . 86689) (-4011 . 86526) (-4012 . 86407) (-4013 . 86333)
- (-4014 . 86087) (-4015 . 85877) (-4016 . 85725) (-4017 . 85653)
- (-4018 . 80139) (-4019 . 79969) (-4020 . 79902) (-4021 . 79784)
- (-4022 . 79639) (-4023 . 79474) (-4024 . 79046) (-4025 . 77600)
- (-4026 . 77466) (-4027 . 77407) (-4028 . 77014) (-4029 . 76921)
- (-4030 . 76855) (-4031 . 76259) (-4032 . 76165) (-4033 . 75926)
- (-4034 . 75628) (-4035 . 75600) (-4036 . 75566) (-4037 . 75406)
- (-4038 . 75319) (-4039 . 75226) (-4040 . 74929) (-4041 . 74488)
- (-4042 . 74415) (-4043 . 74329) (-4044 . 74273) (-4045 . 74086)
- (-4046 . 73711) (-4047 . 73659) (-4048 . 73516) (-4049 . 73482)
- (-4050 . 73411) (-4051 . 73194) (-4052 . 72859) (-4053 . 72763)
- (-4054 . 72695) (-4055 . 72634) (-4056 . 72524) (-4057 . 72061)
- (-4058 . 71711) (-4059 . 71631) (-4060 . 71074) (-4061 . 71003)
- (-4062 . 70932) (-4063 . 70834) (-4064 . 70781) (-4065 . 70692)
- (-4066 . 70663) (-4067 . 70580) (-4068 . 70514) (-4069 . 70482)
- (-4070 . 70351) (-4071 . 70271) (-4072 . 70183) (-4073 . 69976)
- (-4074 . 69849) (-4075 . 69717) (-4076 . 69498) (-4077 . 66717)
- (-4078 . 66229) (-4079 . 66066) (-4080 . 65983) (-4081 . 65931)
- (-4082 . 65742) (-4083 . 65656) (-4084 . 65337) (-4085 . 65284)
- (-4086 . 65038) (-4087 . 64823) (-4088 . 64766) (-4089 . 64653)
- (-4090 . 64190) (-4091 . 63839) (-4092 . 63687) (-4093 . 63577)
- (-4094 . 63443) (-4095 . 63328) (-4096 . 63136) (-4097 . 63002)
- (-4098 . 62865) (-4099 . 62576) (-4100 . 62480) (-4101 . 62427)
- (-4102 . 62354) (-4103 . 62223) (-4104 . 62146) (-4105 . 61866)
- (-4106 . 61837) (-4107 . 61711) (-4108 . 61586) (-4109 . 61406)
- (-4110 . 61282) (-4111 . 61214) (-4112 . 61153) (-4113 . 61109)
- (-4114 . 60994) (-4115 . 60942) (-4116 . 60865) (-4117 . 60797)
- (-4118 . 60438) (-4119 . 60379) (-4120 . 60068) (-4121 . 59764)
- (-4122 . 59618) (-4123 . 58437) (-4124 . 58409) (-4125 . 58356)
- (-4126 . 58252) (-4127 . 58143) (-4128 . 57509) (-4129 . 57368)
- (-4130 . 57289) (-4131 . 57155) (-4132 . 57069) (-4133 . 56958)
- (-4134 . 55530) (-4135 . 55423) (-4136 . 55337) (-4137 . 55182)
- (-4138 . 55038) (-4139 . 54943) (-4140 . 54847) (-4141 . 54672)
- (-4142 . 54525) (-4143 . 54446) (-4144 . 54348) (-4145 . 52719)
- (-4146 . 52653) (-4147 . 52440) (-4148 . 52318) (-4149 . 52163)
- (-4150 . 51937) (-4151 . 51771) (-4152 . 51711) (-4153 . 50461)
- (-4154 . 50373) (-4155 . 50296) (-4156 . 50155) (-4157 . 49296)
- (-4158 . 49168) (-4159 . 48757) (-4160 . 48676) (-4161 . 48436)
- (-4162 . 48279) (-4163 . 48193) (-4164 . 48023) (-4165 . 47969)
- (-4166 . 47868) (-4167 . 47701) (-4168 . 47571) (-4169 . 47392)
- (-4170 . 46096) (-4171 . 46046) (-4172 . 45994) (-4173 . 45611)
- (-4174 . 45514) (-4175 . 45333) (-4176 . 45196) (-4177 . 44953)
- (-4178 . 44785) (-4179 . 44711) (-4180 . 44477) (-4181 . 44308)
- (-4182 . 44058) (-4183 . 42910) (-4184 . 42844) (-4185 . 42680)
- (-4186 . 42584) (-4187 . 42550) (-4188 . 42466) (-4189 . 42313)
- (-4190 . 42176) (-4191 . 41949) (-4192 . 41839) (-4193 . 41686)
- (-4194 . 41591) (-4195 . 41518) (-4196 . 41452) (-4197 . 41266)
- (-4198 . 40996) (-4199 . 40919) (-4200 . 40259) (-4201 . 40136)
- (-4202 . 39951) (-4203 . 39686) (-4204 . 39584) (-4205 . 39500)
- (-4206 . 39173) (-4207 . 39104) (-4208 . 38957) (-4209 . 38814)
- (-4210 . 38527) (-4211 . 38423) (-4212 . 38345) (-4213 . 38185)
- (-4214 . 38058) (-4215 . 37950) (-4216 . 37732) (-4217 . 37512)
- (-4218 . 37351) (-4219 . 37256) (-4220 . 37135) (-4221 . 36843)
- (-4222 . 36645) (-4223 . 36589) (-4224 . 36443) (-4225 . 36373)
- (-4226 . 36278) (-4227 . 36199) (-4228 . 36093) (-4229 . 36036)
- (-4230 . 35965) (-4231 . 34199) (-4232 . 34119) (-4233 . 33823)
- (-4234 . 33632) (-4235 . 33418) (-4236 . 33086) (-4237 . 32991)
- (-4238 . 32921) (-4239 . 32861) (-4240 . 32739) (-4241 . 32619)
- (-4242 . 32401) (-4243 . 32183) (-4244 . 30728) (-4245 . 30620)
- (-4246 . 30315) (-4247 . 30265) (-4248 . 30171) (-4249 . 29529)
- (-4250 . 29419) (-4251 . 29366) (-4252 . 29293) (-4253 . 29224)
- (-4254 . 29136) (-4255 . 29102) (-4256 . 27612) (-4257 . 27584)
- (-4258 . 27377) (-4259 . 27264) (-4260 . 27108) (-4261 . 27049)
- (-4262 . 26853) (-4263 . 26095) (-4264 . 26014) (-4265 . 25827)
- (-4266 . 25724) (-4267 . 25672) (-4268 . 25569) (-4269 . 25495)
- (-4270 . 25205) (-4271 . 25066) (-4272 . 24937) (-4273 . 24624)
- (-4274 . 24553) (-4275 . 24495) (-4276 . 24160) (-4277 . 23851)
- (-4278 . 23794) (-4279 . 23739) (-4280 . 23493) (-4281 . 23394)
- (-4282 . 22658) (-4283 . 22599) (-4284 . 22533) (-4285 . 22456)
- (-4286 . 22402) (-4287 . 22317) (-4288 . 22222) (-4289 . 21893)
- (-4290 . 21730) (-4291 . 21644) (-4292 . 21538) (-4293 . 21311)
- (-4294 . 21260) (-4295 . 20676) (-4296 . 20427) (-4297 . 20371)
- (-4298 . 20201) (-4299 . 20102) (-4300 . 20011) (-4301 . 19576)
- (-4302 . 19545) (-4303 . 19489) (-4304 . 19197) (-4305 . 18798)
- (-4306 . 18539) (-4307 . 18411) (-4308 . 18266) (-4309 . 18163)
- (-4310 . 18069) (-4311 . 18016) (-4312 . 17979) (-4313 . 17895)
- (-4314 . 17677) (-4315 . 17256) (-4316 . 16957) (-4317 . 15993)
- (-4318 . 15723) (-4319 . 15631) (-4320 . 15416) (-4321 . 15348)
- (-4322 . 15277) (-4323 . 14633) (-4324 . 14571) (-4325 . 14264)
- (-4326 . 14169) (-4327 . 13959) (-4328 . 13753) (-4329 . 13600)
- (-4330 . 13218) (-4331 . 13146) (-4332 . 12937) (-4333 . 12809)
- (-4334 . 11637) (-4335 . 11568) (-4336 . 11496) (-4337 . 11423)
- (-4338 . 11371) (-4339 . 11258) (-4340 . 11170) (-4341 . 11037)
- (-4342 . 10952) (-4343 . 10860) (-4344 . 10601) (-4345 . 10486)
- (-4346 . 10371) (-4347 . 10298) (-4348 . 10238) (-4349 . 10137)
- (-4350 . 9919) (-4351 . 9788) (-4352 . 9516) (-4353 . 9372)
- (-4354 . 9302) (-4355 . 9274) (-4356 . 8539) (-4357 . 8395)
- (-4358 . 7258) (-4359 . 7185) (-4360 . 7111) (-4361 . 7034)
- (-4362 . 6637) (-4363 . 6536) (-4364 . 6440) (-4365 . 6387)
- (-4366 . 6314) (-4367 . 6019) (-4368 . 5991) (-4369 . 5817)
- (-4370 . 5736) (-4371 . 4919) (-4372 . 4805) (-4373 . 4749)
- (-4374 . 4662) (-4375 . 4609) (-4376 . 4398) (-4377 . 4370)
- (-4378 . 4113) (-4379 . 3973) (-4380 . 3871) (-4381 . 3765)
- (-4382 . 3706) (-4383 . 3651) (-4384 . 3409) (-4385 . 3185)
- (-4386 . 3114) (-4387 . 2962) (-4388 . 2145) (-4389 . 2093)
- (-4390 . 2025) (-4391 . 763) (-4392 . 390) (-4393 . 224) (-4394 . 165)
- (-4395 . 30)) \ No newline at end of file
+ (-2 (|:| |stiffnessFactor| (-381)) (|:| |stabilityFactor| (-381))))
+ (-5 *1 (-205)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-645 *3)) (-4 *3 (-950 *4 *6 *5)) (-4 *4 (-455))
+ (-4 *5 (-851)) (-4 *6 (-794)) (-5 *1 (-988 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-605 *2 *3)) (-4 *3 (-1216)) (-4 *2 (-1100))
+ (-4 *2 (-851)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-308)) (-4 *3 (-993 *2)) (-4 *4 (-1242 *3))
+ (-5 *1 (-416 *2 *3 *4 *5)) (-4 *5 (-13 (-412 *3 *4) (-1039 *3))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-772)) (-4 *5 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-970 *5 *3)) (-4 *3 (-1242 *5)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-772)) (-4 *4 (-351)) (-5 *1 (-216 *4 *2))
+ (-4 *2 (-1242 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-567)) (-5 *1 (-697 *2)) (-4 *2 (-1242 *3)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1176)) (-5 *3 (-437)) (-4 *5 (-1100))
+ (-5 *1 (-1106 *5 *4)) (-4 *4 (-433 *5)))))
+(((*1 *1) (-5 *1 (-1063))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3))
+ (-4 *3 (-1242 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-922)) (-5 *2 (-1158)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-588 *3)) (-4 *3 (-365)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-351)) (-5 *2 (-959 (-1172 *4))) (-5 *1 (-359 *4))
+ (-5 *3 (-1172 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1271)) (-5 *1 (-823)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-365)) (-4 *7 (-1242 *5)) (-4 *4 (-725 *5 *7))
+ (-5 *2 (-2 (|:| -4302 (-690 *6)) (|:| |vec| (-1266 *5))))
+ (-5 *1 (-812 *5 *6 *7 *4 *3)) (-4 *6 (-657 *5)) (-4 *3 (-657 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1050))
+ (-4 *2 (-13 (-407) (-1039 *4) (-365) (-1201) (-285)))
+ (-5 *1 (-446 *4 *3 *2)) (-4 *3 (-1242 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-922)) (-4 *5 (-1050))
+ (-4 *2 (-13 (-407) (-1039 *5) (-365) (-1201) (-285)))
+ (-5 *1 (-446 *5 *3 *2)) (-4 *3 (-1242 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1271)) (-5 *1 (-760)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-645 *2)) (-4 *2 (-950 *4 *5 *6)) (-4 *4 (-308))
+ (-4 *5 (-794)) (-4 *6 (-851)) (-5 *1 (-450 *4 *5 *6 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1216)) (-5 *2 (-645 *1)) (-4 *1 (-1011 *3)))))
+(((*1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702))))
+ ((*1 *2 *2) (-12 (-5 *2 (-922)) (-5 *1 (-702)))))
+(((*1 *1 *2) (-12 (-5 *1 (-692 *2)) (-4 *2 (-614 (-863))))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-567)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1216))
+ (-4 *4 (-375 *2)) (-4 *5 (-375 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4417)) (-4 *1 (-289 *3 *2)) (-4 *3 (-1100))
+ (-4 *2 (-1216)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-772)) (-5 *2 (-1271)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-996 *2)) (-4 *2 (-1216)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-559))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-970 *4 *3)) (-4 *3 (-1242 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-567)) (-5 *1 (-556)))))
+((-1299 . 733377) (-1300 . 733235) (-1301 . 733176) (-1302 . 733105)
+ (-1303 . 732873) (-1304 . 732811) (-1305 . 732712) (-1306 . 732635)
+ (-1307 . 732491) (-1308 . 732441) (-1309 . 732139) (-1310 . 731927)
+ (-1311 . 731874) (-1312 . 731769) (-1313 . 731699) (-1314 . 731631)
+ (-1315 . 731534) (-1316 . 731505) (-1317 . 731385) (-1318 . 731199)
+ (-1319 . 731039) (-1320 . 730895) (-1321 . 730800) (-1322 . 730656)
+ (-1323 . 730297) (-1324 . 730211) (-1325 . 730073) (-1326 . 729977)
+ (-1327 . 729724) (-1328 . 729446) (-1329 . 729366) (-1330 . 729300)
+ (-1331 . 729184) (-1332 . 729125) (-1333 . 728685) (-1334 . 728572)
+ (-1335 . 728500) (-1336 . 726085) (-1337 . 725951) (-1338 . 725421)
+ (-1339 . 725110) (-1340 . 724987) (-1341 . 724808) (-1342 . 724727)
+ (-1343 . 724378) (-1344 . 724321) (-1345 . 723759) (-1346 . 723690)
+ (-1347 . 723611) (-1348 . 723382) (-1349 . 723078) (-1350 . 722935)
+ (-1351 . 722827) (-1352 . 722722) (-1353 . 722477) (-1354 . 722419)
+ (-1355 . 722273) (-1356 . 722220) (-1357 . 722062) (-1358 . 721916)
+ (-1359 . 721757) (-1360 . 721636) (-1361 . 721505) (-1362 . 721390)
+ (-1363 . 721054) (-1364 . 720986) (-1365 . 720833) (-1366 . 720781)
+ (-1367 . 720607) (-1368 . 720533) (-1369 . 720505) (-1370 . 720398)
+ (-1371 . 719528) (-1372 . 719368) (-1373 . 719053) (-1374 . 718965)
+ (-1375 . 718383) (-1376 . 718242) (-1377 . 718145) (-1378 . 718086)
+ (-1379 . 717760) (-1380 . 717705) (-1381 . 717581) (-1382 . 717474)
+ (-1383 . 717394) (-1384 . 717120) (-1385 . 717049) (-1386 . 716841)
+ (-1387 . 716698) (-1388 . 716615) (-1389 . 716565) (-1390 . 716495)
+ (-1391 . 716380) (-1392 . 716224) (-1393 . 716124) (-1394 . 716000)
+ (-1395 . 715966) (-1396 . 715519) (-1397 . 715402) (-1398 . 715347)
+ (-1399 . 715232) (-1400 . 714850) (-1401 . 713577) (-1402 . 713461)
+ (-1403 . 713361) (-1404 . 713294) (-1405 . 713215) (-1406 . 712960)
+ (-1407 . 712908) (-1408 . 712771) (-1409 . 712712) (-1410 . 712615)
+ (-1411 . 712521) (-1412 . 710979) (-1413 . 710848) (-1414 . 710519)
+ (-1415 . 710435) (-1416 . 710295) (-1417 . 710172) (-1418 . 710031)
+ (** . 706894) (-1420 . 706752) (-1421 . 706341) (-1422 . 706263)
+ (-1423 . 706110) (-1424 . 706013) (-1425 . 705910) (-1426 . 705822)
+ (-1427 . 705658) (-1428 . 705427) (-1429 . 705209) (-1430 . 704585)
+ (-1431 . 704419) (-1432 . 703986) (-1433 . 703833) (-1434 . 703482)
+ (-1435 . 703386) (-1436 . 703220) (-1437 . 703037) (-1438 . 702945)
+ (-1439 . 702847) (-1440 . 702704) (-1441 . 702426) (-1442 . 702306)
+ (-1443 . 702027) (-1444 . 701606) (-1445 . 701504) (-1446 . 701409)
+ (-1447 . 701356) (-1448 . 701229) (-1449 . 701157) (-1450 . 700735)
+ (-1451 . 700633) (-1452 . 700538) (-1453 . 697203) (-1454 . 697114)
+ (-1455 . 696576) (-1456 . 696379) (-1457 . 696200) (-1458 . 696090)
+ (-1459 . 695791) (-1460 . 695735) (-1461 . 695663) (-1462 . 695575)
+ (-1463 . 695328) (-1464 . 695146) (-1465 . 694927) (-1466 . 694612)
+ (-1467 . 694551) (-1468 . 694277) (-1469 . 694149) (-1470 . 693958)
+ (-1471 . 693369) (-1472 . 693147) (-1473 . 692183) (-1474 . 692093)
+ (-1475 . 692034) (-1476 . 691953) (-1477 . 691834) (-1478 . 691754)
+ (-1479 . 691521) (-1480 . 691469) (-1481 . 691419) (-1482 . 691354)
+ (-1483 . 691293) (-1484 . 691046) (-1485 . 690993) (-1486 . 690961)
+ (-1487 . 690686) (-1488 . 690464) (-1489 . 690194) (-1490 . 690131)
+ (-1491 . 689701) (-1492 . 689586) (-1493 . 689461) (-1494 . 688465)
+ (-1495 . 688381) (-1496 . 688166) (-1497 . 688092) (-1498 . 688004)
+ (-1499 . 687970) (-1500 . 687805) (-1501 . 687753) (-1502 . 687052)
+ (-1503 . 686960) (-1504 . 686889) (-1505 . 686794) (-1506 . 686725)
+ (-1507 . 686659) (-1508 . 686531) (-1509 . 686333) (-1510 . 686170)
+ (-1511 . 685203) (-1512 . 685092) (-1513 . 684994) (-1514 . 684897)
+ (-1515 . 684160) (-1516 . 683945) (-1517 . 683841) (-1518 . 683769)
+ (-1519 . 683637) (-1520 . 683408) (-1521 . 683325) (-1522 . 683253)
+ (-1523 . 683201) (-1524 . 683128) (-1525 . 682961) (-1526 . 682864)
+ (-1527 . 682201) (-1528 . 682149) (-1529 . 682025) (-1530 . 681902)
+ (-1531 . 681834) (-1532 . 681732) (-1533 . 681590) (-1534 . 681502)
+ (-1535 . 681473) (-1536 . 681424) (-1537 . 681177) (-1538 . 681010)
+ (-1539 . 680847) (-1540 . 680710) (-1541 . 680639) (-1542 . 680409)
+ (-1543 . 680314) (-1544 . 680243) (-1545 . 680097) (-1546 . 679688)
+ (-1547 . 679656) (-1548 . 679493) (-1549 . 679430) (-1550 . 679277)
+ (-1551 . 678790) (-1552 . 673622) (-1553 . 673570) (-1554 . 673254)
+ (-1555 . 673103) (-1556 . 673022) (-1557 . 672963) (-1558 . 672901)
+ (-1559 . 672616) (-1560 . 672354) (-1561 . 672282) (-1562 . 672150)
+ (-1563 . 672098) (-1564 . 671998) (-1565 . 671879) (-1566 . 671617)
+ (-1567 . 671417) (-1568 . 671362) (-1569 . 671252) (-1570 . 670945)
+ (-1571 . 670555) (-1572 . 670481) (-1573 . 670383) (-1574 . 670281)
+ (-1575 . 670199) (-1576 . 669848) (-1577 . 669119) (-1578 . 669033)
+ (-1579 . 668875) (-1580 . 668806) (-1581 . 668503) (-1582 . 668337)
+ (-1583 . 668278) (-1584 . 667985) (-1585 . 667906) (-1586 . 667811)
+ (-1587 . 667595) (-1588 . 667510) (-1589 . 667330) (-1590 . 666844)
+ (-1591 . 666598) (-1592 . 665869) (-1593 . 665759) (-1594 . 665328)
+ (-1595 . 665231) (-1596 . 665087) (-1597 . 665001) (-1598 . 664782)
+ (-1599 . 664681) (-1600 . 664471) (-1601 . 664376) (-1602 . 664166)
+ (-1603 . 663939) (-1604 . 663810) (-1605 . 663134) (-1606 . 662989)
+ (-1607 . 653539) (-1608 . 653443) (-1609 . 653324) (-1610 . 653269)
+ (-1611 . 653198) (-1612 . 653149) (-1613 . 652943) (-1614 . 652767)
+ (-1615 . 652710) (-1616 . 652359) (-1617 . 652330) (-1618 . 651766)
+ (-1619 . 651732) (-1620 . 651580) (-1621 . 646242) (-1622 . 646170)
+ (-1623 . 646098) (-1624 . 645918) (-1625 . 645817) (-1626 . 645664)
+ (-1627 . 645567) (-1628 . 645512) (-1629 . 645301) (-1630 . 644991)
+ (-1631 . 644927) (-1632 . 644363) (-1633 . 644291) (-1634 . 644005)
+ (-1635 . 643875) (-1636 . 643816) (-1637 . 643763) (-1638 . 643593)
+ (-1639 . 643516) (-1640 . 643134) (-1641 . 643070) (-1642 . 642900)
+ (-1643 . 642690) (-1644 . 642448) (-1645 . 642375) (-1646 . 642289)
+ (-1647 . 641725) (-1648 . 641656) (-1649 . 641034) (-1650 . 640636)
+ (-1651 . 640529) (-1652 . 640235) (-1653 . 640103) (-1654 . 640031)
+ (-1655 . 639975) (-1656 . 639881) (-1657 . 639652) (-1658 . 639556)
+ (-1659 . 639488) (-1660 . 638814) (-1661 . 638747) (-1662 . 638649)
+ (-1663 . 638597) (-1664 . 638499) (-1665 . 638110) (-1666 . 638015)
+ (-1667 . 637964) (-1668 . 637755) (-1669 . 637552) (-1670 . 637434)
+ (-1671 . 637352) (-1672 . 637238) (-1673 . 636564) (-1674 . 636470)
+ (-1675 . 636391) (-1676 . 636034) (-1677 . 635985) (-1678 . 635849)
+ (-1679 . 635763) (-1680 . 635708) (-1681 . 635565) (-1682 . 635510)
+ (-1683 . 635006) (-1684 . 634878) (-1685 . 634451) (-1686 . 634283)
+ (-1687 . 634010) (-1688 . 633940) (-1689 . 633862) (-1690 . 633125)
+ (-1691 . 632856) (-1692 . 632711) (-1693 . 632367) (-1694 . 632260)
+ (-1695 . 632035) (-1696 . 631941) (-1697 . 631868) (-1698 . 631840)
+ (-1699 . 631771) (-1700 . 631387) (-1701 . 631234) (-1702 . 630805)
+ (-1703 . 630726) (-1704 . 630164) (-1705 . 630080) (-1706 . 629969)
+ (-1707 . 629804) (-1708 . 629730) (-1709 . 629574) (-1710 . 629474)
+ (-1711 . 629408) (-1712 . 629325) (-1713 . 629117) (-1714 . 629045)
+ (-1715 . 628968) (-1716 . 628827) (-1717 . 628399) (-1718 . 628350)
+ (-1719 . 627788) (-1720 . 627669) (-1721 . 627590) (-1722 . 627488)
+ (-1723 . 627350) (-1724 . 627297) (-1725 . 627241) (-1726 . 627144)
+ (-1727 . 627071) (-1728 . 626935) (-1729 . 626787) (-1730 . 626704)
+ (-1731 . 626545) (-1732 . 626342) (-1733 . 625780) (-1734 . 624334)
+ (-1735 . 624153) (-1736 . 623974) (-1737 . 623681) (-1738 . 623532)
+ (-1739 . 623373) (-1740 . 623321) (-1741 . 623103) (-1742 . 622969)
+ (-1743 . 622710) (-1744 . 622457) (-1745 . 622282) (-1746 . 622014)
+ (-1747 . 621339) (-1748 . 621204) (-1749 . 621130) (-1750 . 620880)
+ (-1751 . 620779) (-1752 . 620487) (-1753 . 620326) (-1754 . 620213)
+ (-1755 . 620161) (-1756 . 619979) (-1757 . 619304) (-1758 . 619219)
+ (-1759 . 619101) (-1760 . 619051) (-1761 . 618992) (-1762 . 618838)
+ (-1763 . 618743) (-1764 . 618588) (-1765 . 618450) (-1766 . 618401)
+ (-1767 . 618313) (-1768 . 618285) (-1769 . 617104) (-1770 . 616901)
+ (-1771 . 616416) (-1772 . 615741) (-1773 . 615675) (-1774 . 615124)
+ (-1775 . 615031) (-1776 . 614837) (-1777 . 614684) (-1778 . 614563)
+ (-1779 . 614451) (-1780 . 614318) (-1781 . 614266) (-1782 . 614101)
+ (-1783 . 614017) (-1784 . 613454) (-1785 . 613348) (-1786 . 613282)
+ (-1787 . 612723) (-1788 . 612664) (-1789 . 612527) (-1790 . 612419)
+ (-1791 . 612391) (-1792 . 612263) (-1793 . 612178) (-1794 . 612119)
+ (-1795 . 612060) (-1796 . 611937) (-1797 . 611810) (-1798 . 611247)
+ (-1799 . 611180) (-1800 . 610584) (-1801 . 610361) (-1802 . 610083)
+ (-1803 . 609747) (-1804 . 609652) (-1805 . 609566) (-1806 . 609474)
+ (-1807 . 609357) (-1808 . 608749) (-1809 . 608645) (-1810 . 608082)
+ (-1811 . 607988) (-1812 . 607914) (-1813 . 607856) (-1814 . 607777)
+ (-1815 . 607619) (-1816 . 607585) (-1817 . 606939) (-1818 . 606754)
+ (-1819 . 606495) (-1820 . 606129) (-1821 . 605985) (-1822 . 605932)
+ (-1823 . 605370) (-1824 . 605131) (-1825 . 604928) (-1826 . 604862)
+ (-1827 . 604749) (-1828 . 604697) (-1829 . 604533) (-1830 . 603941)
+ (-1831 . 603769) (-1832 . 603686) (-1833 . 603570) (-1834 . 603008)
+ (-1835 . 602010) (-1836 . 601712) (-1837 . 601635) (-1838 . 601264)
+ (-1839 . 601230) (-1840 . 601115) (-1841 . 600762) (-1842 . 600689)
+ (-1843 . 600531) (-1844 . 600421) (-1845 . 600145) (-1846 . 599435)
+ (-1847 . 598873) (-1848 . 598845) (-1849 . 598318) (-1850 . 598263)
+ (-1851 . 597606) (-1852 . 597451) (-1853 . 597343) (-1854 . 597283)
+ (-1855 . 596854) (-1856 . 596401) (-1857 . 595893) (-1858 . 595331)
+ (-1859 . 595099) (-1860 . 594939) (-1861 . 594813) (-1862 . 594475)
+ (-1863 . 594405) (-1864 . 594045) (-1865 . 593944) (-1866 . 593871)
+ (-1867 . 593496) (-1868 . 593237) (-1869 . 592675) (-1870 . 592579)
+ (-1871 . 592492) (-1872 . 592441) (-1873 . 592275) (-1874 . 592074)
+ (-1875 . 591911) (-1876 . 591093) (-1877 . 590875) (-1878 . 590794)
+ (-1879 . 590762) (-1880 . 590584) (-1881 . 589848) (-1882 . 589749)
+ (-1883 . 589656) (-1884 . 589473) (-1885 . 589280) (-1886 . 588980)
+ (-1887 . 588896) (-1888 . 588765) (-1889 . 588737) (-1890 . 588548)
+ (-1891 . 588407) (-1892 . 588253) (-1893 . 587956) (-1894 . 587807)
+ (-1895 . 587705) (-1896 . 587604) (-1897 . 587504) (-1898 . 587451)
+ (-1899 . 587291) (-1900 . 587019) (-1901 . 586937) (-1902 . 586854)
+ (-1903 . 586438) (-1904 . 586341) (-1905 . 586268) (-1906 . 586167)
+ (-1907 . 585976) (-1908 . 585920) (-1909 . 583664) (-1910 . 583573)
+ (-1911 . 583415) (-1912 . 583271) (-1913 . 582998) (-1914 . 582809)
+ (-1915 . 582582) (-1916 . 582496) (-1917 . 582414) (-1918 . 582337)
+ (-1919 . 582117) (-1920 . 581860) (-1921 . 581543) (-1922 . 581455)
+ (-1923 . 581382) (-1924 . 581267) (-1925 . 581197) (-1926 . 581141)
+ (-1927 . 580905) (-1928 . 580683) (-1929 . 580179) (-1930 . 578017)
+ (-1931 . 577929) (-1932 . 577754) (-1933 . 577688) (-1934 . 577592)
+ (-1935 . 577454) (-1936 . 577426) (-1937 . 577340) (-1938 . 577156)
+ (-1939 . 577084) (-1940 . 576878) (-1941 . 576691) (-1942 . 576105)
+ (-1943 . 576031) (-1944 . 575643) (-1945 . 575574) (-1946 . 575306)
+ (-1947 . 575168) (-1948 . 574433) (-1949 . 574367) (-1950 . 573822)
+ (-1951 . 573768) (-1952 . 573225) (-1953 . 572850) (-1954 . 572776)
+ (-1955 . 572486) (-1956 . 572008) (-1957 . 571931) (-1958 . 571766)
+ (-1959 . 571622) (-1960 . 571337) (-1961 . 571238) (-1962 . 571137)
+ (-1963 . 571085) (-1964 . 571019) (-1965 . 570991) (-1966 . 570914)
+ (-1967 . 570800) (-1968 . 570723) (-1969 . 570554) (-1970 . 570495)
+ (-1971 . 570422) (-1972 . 568566) (-1973 . 567414) (-1974 . 567162)
+ (-1975 . 567019) (-1976 . 566381) (-1977 . 566135) (-1978 . 564833)
+ (-1979 . 564738) (-1980 . 564661) (-1981 . 564540) (-1982 . 564143)
+ (-1983 . 564047) (-1984 . 563562) (-1985 . 563484) (-1986 . 563413)
+ (-1987 . 563063) (-1988 . 562980) (-1989 . 562907) (-1990 . 562855)
+ (-1991 . 562751) (-1992 . 562360) (-1993 . 562215) (-1994 . 562114)
+ (-1995 . 561973) (-1996 . 561946) (-1997 . 561719) (-1998 . 561502)
+ (-1999 . 561322) (-2000 . 561226) (-2001 . 561149) (-2002 . 560951)
+ (-2003 . 560855) (-2004 . 560759) (-2005 . 560609) (-2006 . 560523)
+ (-2007 . 560427) (-2008 . 560339) (-2009 . 557498) (-2010 . 557446)
+ (-2011 . 557380) (-2012 . 557256) (-2013 . 556183) (-2014 . 556130)
+ (-2015 . 555985) (-2016 . 555901) (-2017 . 555509) (-2018 . 555435)
+ (-2019 . 555228) (-2020 . 555160) (-2021 . 555072) (-2022 . 555020)
+ (-2023 . 554921) (-2024 . 554855) (-2025 . 554559) (-2026 . 554486)
+ (-2027 . 554379) (-2028 . 554311) (-2029 . 554134) (-2030 . 554033)
+ (-2031 . 553972) (-2032 . 553837) (-2033 . 553619) (-2034 . 553453)
+ (-2035 . 553383) (-2036 . 553219) (-2037 . 553098) (-2038 . 552803)
+ (-2039 . 552662) (-2040 . 552447) (-2041 . 552268) (-2042 . 552176)
+ (-2043 . 552081) (-2044 . 551971) (-2045 . 551919) (-2046 . 551801)
+ (-2047 . 551743) (-2048 . 551130) (-2049 . 551102) (-2050 . 550824)
+ (-2051 . 550741) (-2052 . 550685) (-2053 . 550593) (-2054 . 550309)
+ (-2055 . 549846) (-2056 . 549568) (-2057 . 549462) (-2058 . 549069)
+ (-2059 . 548744) (-2060 . 548691) (-2061 . 548264) (-2062 . 548090)
+ (-2063 . 547504) (-2064 . 547290) (-2065 . 547234) (-2066 . 547148)
+ (-2067 . 547096) (-2068 . 546746) (-2069 . 546621) (-2070 . 546291)
+ (-2071 . 545917) (-2072 . 545790) (-2073 . 545728) (-2074 . 545647)
+ (-2075 . 545323) (-2076 . 545221) (-2077 . 544894) (-2078 . 544778)
+ (-2079 . 544154) (-2080 . 544025) (-2081 . 543972) (-2082 . 543853)
+ (-2083 . 543644) (-2084 . 543545) (-2085 . 542728) (-2086 . 542669)
+ (-2087 . 542566) (-2088 . 542341) (-2089 . 542253) (-2090 . 542116)
+ (-2091 . 541958) (-2092 . 541750) (-2093 . 541636) (-2094 . 541507)
+ (-2095 . 541349) (-2096 . 541171) (-2097 . 541056) (-2098 . 540929)
+ (-2099 . 540834) (-2100 . 540700) (-2101 . 540358) (-2102 . 538390)
+ (-2103 . 537711) (-2104 . 537655) (-2105 . 537572) (-2106 . 537494)
+ (-2107 . 537341) (-2108 . 537223) (-2109 . 536844) (-2110 . 536353)
+ (-2111 . 536275) (-2112 . 536121) (-2113 . 529178) (-2114 . 529043)
+ (-2115 . 528816) (-2116 . 528729) (-2117 . 528341) (-2118 . 527956)
+ (-2119 . 527904) (-2120 . 527824) (-2121 . 527726) (-2122 . 527613)
+ (-2123 . 527427) (-2124 . 527343) (-2125 . 527108) (-2126 . 526931)
+ (-2127 . 526858) (-2128 . 526670) (-2129 . 526568) (-2130 . 526431)
+ (-2131 . 526014) (-2132 . 525913) (-2133 . 525597) (-2134 . 525516)
+ (-2135 . 525297) (-2136 . 525220) (-2137 . 524578) (-2138 . 524516)
+ (-2139 . 524422) (-2140 . 524321) (-2141 . 524074) (-2142 . 523912)
+ (-2143 . 523716) (-2144 . 523609) (-2145 . 523450) (-2146 . 523362)
+ (-2147 . 523295) (-2148 . 523185) (-2149 . 523111) (-2150 . 522046)
+ (-2151 . 521930) (-2152 . 521735) (-2153 . 521638) (-2154 . 521525)
+ (-2155 . 521320) (-2156 . 521217) (-2157 . 521127) (-2158 . 521074)
+ (-2159 . 521043) (-2160 . 520836) (-2161 . 520695) (-2162 . 520607)
+ (-2163 . 520523) (-2164 . 520329) (-2165 . 520149) (-2166 . 520115)
+ (-2167 . 519972) (-2168 . 519800) (-2169 . 519693) (-2170 . 519619)
+ (-2171 . 519546) (-2172 . 519466) (-2173 . 519369) (-2174 . 519206)
+ (-2175 . 519139) (-2176 . 518823) (-2177 . 518682) (-2178 . 518043)
+ (-2179 . 517910) (-2180 . 517803) (-2181 . 517523) (-2182 . 517454)
+ (-2183 . 517355) (-2184 . 517284) (-2185 . 517109) (-2186 . 517021)
+ (-2187 . 516955) (-2188 . 516832) (-2189 . 516780) (-2190 . 516553)
+ (-2191 . 516427) (-2192 . 516349) (-2193 . 516275) (-2194 . 516187)
+ (-2195 . 516099) (-2196 . 513967) (-2197 . 513870) (-2198 . 513816)
+ (-2199 . 513656) (-2200 . 513563) (-2201 . 513464) (-2202 . 513162)
+ (-2203 . 513067) (-2204 . 512927) (-2205 . 512506) (-2206 . 512382)
+ (-2207 . 512325) (-2208 . 512291) (-2209 . 512217) (-2210 . 512120)
+ (-2211 . 511999) (-2212 . 511572) (-2213 . 511354) (-2214 . 510512)
+ (-2215 . 510274) (-2216 . 510202) (-2217 . 510136) (-2218 . 509872)
+ (-2219 . 509665) (-2220 . 509567) (-2221 . 509383) (-2222 . 509310)
+ (-2223 . 509257) (-2224 . 509195) (-2225 . 509161) (-2226 . 509063)
+ (-2227 . 508871) (-2228 . 508819) (-2229 . 508497) (-2230 . 508384)
+ (-2231 . 508310) (-2232 . 508197) (-2233 . 508034) (-2234 . 507759)
+ (-2235 . 507710) (-2236 . 506615) (-2237 . 506105) (-2238 . 506021)
+ (-2239 . 505799) (-2240 . 505327) (-2241 . 505274) (-2242 . 505075)
+ (-2243 . 504919) (-2244 . 504776) (-2245 . 503915) (-2246 . 503862)
+ (-2247 . 503774) (-2248 . 503481) (-2249 . 503421) (-2250 . 503037)
+ (-2251 . 502926) (-2252 . 502870) (-2253 . 502303) (-2254 . 502244)
+ (-2255 . 502106) (-2256 . 502018) (-2257 . 501931) (-2258 . 501879)
+ (-2259 . 501757) (-2260 . 500355) (-2261 . 500167) (-2262 . 500060)
+ (-2263 . 499933) (-2264 . 499818) (-2265 . 499786) (-2266 . 499590)
+ (-2267 . 499249) (-2268 . 498882) (-2269 . 498766) (-2270 . 498695)
+ (-2271 . 498516) (-2272 . 498135) (-2273 . 497930) (-2274 . 497877)
+ (-2275 . 497753) (-2276 . 497679) (-2277 . 496921) (-2278 . 496890)
+ (-2279 . 496685) (-2280 . 496567) (-2281 . 496460) (-2282 . 495032)
+ (-2283 . 494958) (-2284 . 494855) (-2285 . 494225) (-2286 . 494175)
+ (-2287 . 494039) (-2288 . 493815) (-2289 . 493714) (-2290 . 493633)
+ (-2291 . 493394) (-2292 . 493146) (-2293 . 492769) (-2294 . 492609)
+ (-2295 . 492527) (-2296 . 487013) (-2297 . 486889) (-2298 . 486771)
+ (-2299 . 486697) (-2300 . 486545) (-2301 . 486358) (-2302 . 486193)
+ (-2303 . 486107) (-2304 . 485741) (-2305 . 485561) (-2306 . 485490)
+ (-2307 . 485097) (-9 . 485069) (-2309 . 484909) (-2310 . 484816)
+ (-2311 . 484275) (-2312 . 484132) (-2313 . 484029) (-2314 . 483943)
+ (-2315 . 483705) (-2316 . 483671) (-2317 . 483563) (-2318 . 483146)
+ (-2319 . 482705) (-2320 . 482282) (-8 . 482254) (-2322 . 482159)
+ (-2323 . 482066) (-2324 . 481977) (-2325 . 481914) (-2326 . 481862)
+ (-2327 . 481672) (-2328 . 481638) (-2329 . 481583) (-2330 . 481531)
+ (-2331 . 481388) (-2332 . 481282) (-2333 . 480947) (-7 . 480919)
+ (-2335 . 480771) (-2336 . 480490) (-2337 . 480325) (-2338 . 480241)
+ (-2339 . 478653) (-2340 . 478550) (-2341 . 478522) (-2342 . 478395)
+ (-2343 . 478195) (-2344 . 478092) (-2345 . 478012) (-2346 . 477926)
+ (-2347 . 477874) (-2348 . 477800) (-2349 . 477704) (-2350 . 477193)
+ (-2351 . 477119) (-2352 . 476959) (-2353 . 476825) (-2354 . 476773)
+ (-2355 . 476386) (-2356 . 476302) (-2357 . 476170) (-2358 . 475923)
+ (-2359 . 475720) (-2360 . 475408) (-2361 . 475312) (-2362 . 475022)
+ (-2363 . 474877) (-2364 . 474660) (-2365 . 474547) (-2366 . 474393)
+ (-2367 . 474292) (-2368 . 474077) (-2369 . 474020) (-2370 . 473907)
+ (-2371 . 473769) (-2372 . 473685) (-2373 . 473611) (-2374 . 473438)
+ (-2375 . 473299) (-2376 . 473220) (-2377 . 473119) (-2378 . 473054)
+ (-2379 . 472869) (-2380 . 472702) (-2381 . 472413) (-2382 . 472330)
+ (-2383 . 471882) (-2384 . 471759) (-2385 . 470876) (-2386 . 470747)
+ (-2387 . 470718) (-2388 . 470661) (-2389 . 470606) (-2390 . 470288)
+ (-2391 . 469774) (-2392 . 469740) (-2393 . 469653) (-2394 . 469514)
+ (-2395 . 469415) (-2396 . 469386) (-2397 . 469073) (-2398 . 468851)
+ (-2399 . 468714) (-2400 . 468247) (-2401 . 468165) (-2402 . 468099)
+ (-2403 . 468047) (-2404 . 467828) (-2405 . 467522) (-2406 . 467348)
+ (-2407 . 467277) (-2408 . 466991) (-2409 . 466806) (-2410 . 466592)
+ (-2411 . 466392) (-2412 . 466318) (-2413 . 466232) (-2414 . 465845)
+ (-2415 . 465748) (-2416 . 465616) (-2417 . 465558) (-2418 . 465505)
+ (-2419 . 465196) (-2420 . 465031) (-2421 . 464604) (-2422 . 462975)
+ (-2423 . 462813) (-2424 . 462764) (-2425 . 462676) (-2426 . 462574)
+ (-2427 . 462426) (-2428 . 462237) (-2429 . 461902) (-2430 . 461807)
+ (-2431 . 461727) (-2432 . 460477) (-2433 . 460348) (-2434 . 459489)
+ (-2435 . 459375) (-2436 . 458177) (-2437 . 458114) (-2438 . 457934)
+ (-2439 . 457694) (-2440 . 457444) (-2441 . 457350) (-2442 . 456280)
+ (-2443 . 456223) (-2444 . 455954) (-2445 . 455895) (-2446 . 455144)
+ (-2447 . 454932) (-2448 . 454614) (-2449 . 453318) (-2450 . 453265)
+ (-2451 . 453211) (-2452 . 453137) (-2453 . 453014) (-2454 . 452728)
+ (-2455 . 452673) (-2456 . 452623) (-2457 . 452507) (-2458 . 452342)
+ (-2459 . 452269) (-2460 . 452054) (-2461 . 451909) (-2462 . 451878)
+ (-2463 . 451655) (-2464 . 451198) (-2465 . 451146) (-2466 . 451027)
+ (-2467 . 450781) (-2468 . 450719) (-2469 . 450664) (-2470 . 450544)
+ (-2471 . 450451) (-2472 . 450377) (-2473 . 450325) (-2474 . 450270)
+ (-2475 . 450217) (-2476 . 450049) (-2477 . 449830) (-2478 . 449560)
+ (-2479 . 449487) (-2480 . 449301) (-2481 . 449202) (-2482 . 448907)
+ (-2483 . 448703) (-2484 . 448574) (-2485 . 448446) (-2486 . 448417)
+ (-2487 . 448284) (-2488 . 448213) (-2489 . 448070) (-2490 . 447974)
+ (-2491 . 447844) (-2492 . 447765) (-2493 . 447706) (-2494 . 447054)
+ (-2495 . 446986) (-2496 . 446920) (-2497 . 446337) (-2498 . 446246)
+ (-2499 . 446122) (-2500 . 446026) (-2501 . 445754) (-2502 . 445608)
+ (-2503 . 445412) (-2504 . 445346) (-2505 . 445061) (-2506 . 444742)
+ (-2507 . 444682) (-2508 . 444654) (-2509 . 441355) (-2510 . 441044)
+ (-2511 . 439278) (-2512 . 439120) (-2513 . 439049) (-2514 . 438716)
+ (-2515 . 438615) (-2516 . 438538) (-2517 . 438155) (-2518 . 438096)
+ (-2519 . 437838) (-2520 . 437716) (-2521 . 437643) (-2522 . 437561)
+ (-2523 . 437408) (-2524 . 435953) (-2525 . 435502) (-2526 . 435428)
+ (-2527 . 435333) (-2528 . 435236) (-2529 . 435182) (-2530 . 434991)
+ (-2531 . 434905) (-2532 . 434483) (-2533 . 434282) (-2534 . 434160)
+ (-2535 . 432670) (-2536 . 432517) (-2537 . 432433) (-2538 . 430703)
+ (-2539 . 430035) (-2540 . 429621) (-2541 . 429536) (-2542 . 429508)
+ (-2543 . 429193) (-2544 . 429141) (-2545 . 429040) (-2546 . 428632)
+ (-2547 . 428454) (-2548 . 428397) (-2549 . 428272) (-2550 . 428092)
+ (-2551 . 427939) (-2552 . 427844) (-2553 . 427535) (-2554 . 427248)
+ (-2555 . 427174) (-2556 . 426823) (-2557 . 425957) (-2558 . 425904)
+ (-2559 . 425168) (-2560 . 425050) (-2561 . 424965) (-2562 . 424803)
+ (-2563 . 424685) (-2564 . 424614) (-2565 . 424586) (-2566 . 424257)
+ (-2567 . 424094) (-2568 . 424008) (-2569 . 423885) (-2570 . 423439)
+ (-2571 . 423335) (-2572 . 423282) (-2573 . 423033) (-2574 . 422980)
+ (-2575 . 422886) (-2576 . 422748) (-2577 . 422617) (-2578 . 422544)
+ (-2579 . 422458) (-2580 . 422295) (-2581 . 422104) (-2582 . 421989)
+ (-2583 . 421861) (-2584 . 421783) (-2585 . 421573) (-2586 . 421186)
+ (-2587 . 421086) (-2588 . 420498) (-2589 . 420362) (-2590 . 420181)
+ (-2591 . 420152) (-2592 . 420046) (-2593 . 419886) (-2594 . 419813)
+ (-2595 . 419652) (-2596 . 419527) (-2597 . 419431) (-2598 . 419378)
+ (-2599 . 418734) (-2600 . 418616) (-2601 . 418512) (-2602 . 418441)
+ (-2603 . 418222) (-2604 . 417995) (-2605 . 417886) (-2606 . 417327)
+ (-2607 . 417204) (-2608 . 417107) (-2609 . 416962) (-2610 . 416826)
+ (-2611 . 416747) (-2612 . 416670) (-2613 . 415498) (-2614 . 415315)
+ (-2615 . 415178) (-2616 . 415115) (-2617 . 415021) (-2618 . 414970)
+ (-2619 . 414864) (-2620 . 414110) (-2621 . 413606) (-2622 . 413502)
+ (-2623 . 413287) (-2624 . 413172) (-2625 . 412999) (-2626 . 412896)
+ (-2627 . 412017) (-2628 . 411965) (-2629 . 411894) (-2630 . 411310)
+ (-2631 . 411261) (-2632 . 411187) (-2633 . 410843) (-2634 . 410702)
+ (-2635 . 410653) (-2636 . 410619) (-2637 . 409482) (-2638 . 409409)
+ (-2639 . 409335) (-2640 . 409116) (-2641 . 408749) (-2642 . 408693)
+ (-2643 . 408556) (-2644 . 408489) (-2645 . 408371) (-2646 . 408319)
+ (-2647 . 408182) (-2648 . 408145) (-2649 . 408077) (-2650 . 407981)
+ (-2651 . 407811) (-2652 . 406923) (-2653 . 406828) (-2654 . 406568)
+ (-2655 . 406434) (-2656 . 406288) (-2657 . 406186) (-2658 . 406088)
+ (-2659 . 405840) (-2660 . 405741) (-2661 . 405611) (-2662 . 405506)
+ (-2663 . 405418) (-2664 . 405321) (-2665 . 405082) (-2666 . 404991)
+ (-2667 . 404887) (-2668 . 404476) (-2669 . 404385) (-2670 . 404317)
+ (-2671 . 404197) (-2672 . 404109) (-2673 . 403913) (-2674 . 403722)
+ (-2675 . 403566) (-2676 . 403359) (-2677 . 403293) (-2678 . 403230)
+ (-2679 . 402679) (-2680 . 402438) (-2681 . 402386) (-2682 . 402230)
+ (-2683 . 402099) (-2684 . 402003) (-2685 . 401756) (-2686 . 400894)
+ (-2687 . 400791) (-2688 . 399713) (-2689 . 399546) (-2690 . 399490)
+ (-2691 . 399438) (-2692 . 398606) (-2693 . 398508) (-2694 . 398392)
+ (-2695 . 397910) (-2696 . 397671) (-2697 . 397509) (-2698 . 397425)
+ (-2699 . 397351) (-2700 . 397059) (-2701 . 396695) (-2702 . 396645)
+ (-2703 . 396418) (-2704 . 396184) (-2705 . 396106) (-2706 . 395974)
+ (-2707 . 395428) (-2708 . 395029) (-2709 . 394877) (-2710 . 394631)
+ (-2711 . 394579) (-2712 . 394420) (-2713 . 393936) (-2714 . 392844)
+ (-2715 . 392750) (-2716 . 392622) (-2717 . 392538) (-2718 . 392380)
+ (-2719 . 392121) (-2720 . 391918) (-2721 . 391818) (-2722 . 391735)
+ (-2723 . 391677) (-2724 . 391603) (-2725 . 391526) (-2726 . 391446)
+ (-2727 . 391286) (-2728 . 391150) (-2729 . 391005) (-2730 . 390977)
+ (-2731 . 390848) (-2732 . 390797) (-2733 . 390765) (-2734 . 389425)
+ (-2735 . 389286) (-2736 . 389187) (-2737 . 389024) (-2738 . 388921)
+ (-2739 . 388763) (-2740 . 388680) (-2741 . 388509) (-2742 . 388410)
+ (-2743 . 388331) (-2744 . 388279) (-2745 . 388185) (-2746 . 388102)
+ (-2747 . 387766) (-2748 . 387593) (-2749 . 387456) (-2750 . 386929)
+ (-2751 . 386876) (-2752 . 386619) (-2753 . 386523) (-2754 . 386420)
+ (-2755 . 386367) (-2756 . 386314) (-2757 . 386169) (-2758 . 386069)
+ (-2759 . 386000) (-2760 . 385526) (-2761 . 385299) (-2762 . 385173)
+ (-2763 . 385107) (-2764 . 385050) (-2765 . 385013) (-2766 . 384912)
+ (-2767 . 384853) (-2768 . 384371) (-2769 . 384314) (-2770 . 384137)
+ (-2771 . 383998) (-2772 . 383939) (-2773 . 383713) (-2774 . 383602)
+ (-2775 . 383549) (-2776 . 383368) (-2777 . 383249) (-2778 . 382867)
+ (-2779 . 382814) (-2780 . 382658) (-2781 . 382500) (-2782 . 382405)
+ (-2783 . 382264) (-2784 . 382186) (-2785 . 381858) (-2786 . 381694)
+ (-2787 . 381620) (-2788 . 381541) (-2789 . 381422) (-2790 . 381338)
+ (-2791 . 381148) (-2792 . 380996) (-2793 . 380845) (-2794 . 380777)
+ (-2795 . 380681) (-2796 . 380585) (-2797 . 380450) (-2798 . 380335)
+ (-2799 . 380304) (-2800 . 380218) (-2801 . 380166) (-2802 . 380124)
+ (-2803 . 379945) (-2804 . 379785) (-2805 . 379623) (-2806 . 379589)
+ (-2807 . 379024) (-2808 . 378940) (-2809 . 378837) (-2810 . 378785)
+ (-2811 . 378711) (-2812 . 378607) (-2813 . 378423) (-2814 . 378082)
+ (-2815 . 377929) (-2816 . 377773) (-2817 . 377693) (-2818 . 377547)
+ (-2819 . 377371) (-2820 . 377298) (-2821 . 376964) (-2822 . 376702)
+ (-2823 . 376492) (-2824 . 376396) (-2825 . 376327) (-2826 . 376205)
+ (-2827 . 376068) (-2828 . 375915) (-2829 . 375838) (-2830 . 375745)
+ (-2831 . 374992) (-2832 . 374889) (-2833 . 374746) (-2834 . 374645)
+ (-2835 . 374273) (-2836 . 373971) (-2837 . 373848) (-2838 . 373621)
+ (-2839 . 373474) (-2840 . 372995) (-2841 . 372393) (-2842 . 372194)
+ (-2843 . 372100) (-2844 . 372066) (-2845 . 371884) (-2846 . 371549)
+ (-2847 . 371487) (-2848 . 371377) (-2849 . 371269) (-2850 . 371114)
+ (-2851 . 371048) (-2852 . 370763) (-2853 . 370604) (-2854 . 370567)
+ (-2855 . 370379) (-2856 . 370327) (-2857 . 370174) (-2858 . 370032)
+ (-2859 . 369268) (-2860 . 369181) (-2861 . 369128) (-2862 . 369076)
+ (-2863 . 369026) (-2864 . 368747) (-2865 . 368260) (-2866 . 368165)
+ (-2867 . 368113) (-2868 . 368007) (-2869 . 367905) (-2870 . 367781)
+ (-2871 . 367728) (-2872 . 367419) (-2873 . 367303) (-2874 . 367207)
+ (-2875 . 367117) (-2876 . 367039) (-2877 . 366966) (-2878 . 366768)
+ (-2879 . 366667) (-2880 . 366614) (-2881 . 365798) (-2882 . 365690)
+ (-2883 . 365545) (-2884 . 365389) (-2885 . 365336) (-2886 . 365017)
+ (-2887 . 364948) (-2888 . 364617) (-2889 . 364551) (-2890 . 364498)
+ (-2891 . 363987) (-2892 . 363860) (-2893 . 363741) (-2894 . 363642)
+ (-2895 . 363586) (-2896 . 363367) (-2897 . 363157) (-2898 . 362958)
+ (-2899 . 362694) (-2900 . 362620) (-2901 . 362543) (-2902 . 362427)
+ (-2903 . 362134) (-2904 . 362014) (-2905 . 361952) (-2906 . 361866)
+ (-2907 . 361694) (-2908 . 361555) (-2909 . 361383) (-2910 . 360183)
+ (-2911 . 360128) (-2912 . 358551) (-2913 . 357891) (-2914 . 357839)
+ (-2915 . 357689) (-2916 . 357085) (-2917 . 356560) (-2918 . 356388)
+ (-2919 . 355961) (-2920 . 355867) (-12 . 355695) (-2922 . 355607)
+ (-2923 . 355248) (-2924 . 355125) (-2925 . 355042) (-2926 . 354948)
+ (-2927 . 354272) (-2928 . 354050) (-2929 . 353847) (-2930 . 353704)
+ (-2931 . 353532) (-2932 . 353501) (-2933 . 353273) (-2934 . 353130)
+ (-2935 . 352869) (-2936 . 352684) (-2937 . 352632) (-2938 . 352574)
+ (-2939 . 352367) (-2940 . 351144) (-2941 . 350834) (-2942 . 349608)
+ (-2943 . 349541) (-2944 . 349369) (-2945 . 349053) (-2946 . 348592)
+ (-2947 . 348445) (-2948 . 348180) (-2949 . 347994) (-2950 . 347845)
+ (-2951 . 347779) (-2952 . 347669) (-2953 . 347575) (-2954 . 347340)
+ (-2955 . 346720) (-2956 . 346577) (-2957 . 346475) (-2958 . 345880)
+ (-2959 . 345736) (-2960 . 345567) (-2961 . 345484) (-2962 . 345407)
+ (-2963 . 345326) (-2964 . 345158) (-2965 . 345105) (-2966 . 345021)
+ (-2967 . 344936) (-2968 . 344708) (-2969 . 344571) (-2970 . 344501)
+ (-2971 . 344405) (-2972 . 344225) (-2973 . 344110) (-2974 . 343980)
+ (-2975 . 343653) (-2976 . 343583) (-2977 . 343365) (-2978 . 343113)
+ (-2979 . 343003) (-2980 . 342862) (-2981 . 342793) (-2982 . 342615)
+ (-2983 . 342491) (-2984 . 342348) (-2985 . 342176) (-2986 . 342107)
+ (-2987 . 341997) (-2988 . 341926) (-2989 . 341874) (-2990 . 341635)
+ (-2991 . 341428) (-2992 . 341332) (-2993 . 340994) (-2994 . 340586)
+ (-2995 . 340455) (-2996 . 340246) (-2997 . 340193) (-2998 . 340046)
+ (-2999 . 339841) (-3000 . 339777) (-3001 . 339441) (-3002 . 339095)
+ (-3003 . 339046) (-3004 . 338451) (-3005 . 338113) (-3006 . 338019)
+ (-3007 . 337686) (-3008 . 337197) (-3009 . 336910) (-3010 . 336832)
+ (-3011 . 336595) (-3012 . 336493) (-3013 . 336053) (-3014 . 335958)
+ (-3015 . 335790) (-3016 . 335671) (* . 331063) (-3018 . 330889)
+ (-3019 . 330777) (-3020 . 330673) (-3021 . 330070) (-3022 . 329824)
+ (-3023 . 329705) (-3024 . 329501) (-3025 . 329449) (-3026 . 329393)
+ (-3027 . 329341) (-3028 . 329228) (-3029 . 327930) (-3030 . 327549)
+ (-3031 . 327471) (-3032 . 327389) (-3033 . 327260) (-3034 . 326907)
+ (-3035 . 326806) (-3036 . 326131) (-3037 . 326076) (-3038 . 325955)
+ (-3039 . 325842) (-3040 . 325547) (-3041 . 325473) (-3042 . 324041)
+ (-3043 . 323881) (-3044 . 323819) (-3045 . 323666) (-3046 . 323568)
+ (-3047 . 323301) (-3048 . 323215) (-3049 . 323111) (-3050 . 323011)
+ (-3051 . 322731) (-3052 . 322459) (-3053 . 322365) (-3054 . 322238)
+ (-3055 . 322186) (-3056 . 321934) (-3057 . 321759) (-3058 . 321688)
+ (-3059 . 321145) (-3060 . 321073) (-3061 . 320360) (-3062 . 320214)
+ (-3063 . 320114) (-3064 . 320006) (-3065 . 319941) (-3066 . 319878)
+ (-3067 . 319790) (-3068 . 319684) (-3069 . 318894) (-3070 . 318790)
+ (-3071 . 316445) (-3072 . 316281) (-3073 . 316071) (-3074 . 315740)
+ (-3075 . 315509) (-3076 . 315291) (-3077 . 314887) (-3078 . 314834)
+ (-3079 . 314692) (-3080 . 314264) (-3081 . 314046) (-3082 . 313952)
+ (-3083 . 313872) (-3084 . 313706) (-3085 . 313619) (-3086 . 313561)
+ (-3087 . 313203) (-3088 . 312983) (-3089 . 312888) (-3090 . 312802)
+ (-3091 . 312647) (-3092 . 312425) (-3093 . 312346) (-3094 . 312277)
+ (-3095 . 312025) (-3096 . 311559) (-3097 . 311401) (-3098 . 311242)
+ (-3099 . 310963) (-3100 . 310802) (-3101 . 310750) (-3102 . 310682)
+ (-3103 . 310629) (-3104 . 310183) (-3105 . 310051) (-3106 . 309965)
+ (-3107 . 309866) (-3108 . 309792) (-3109 . 309705) (-3110 . 309600)
+ (-3111 . 309505) (-3112 . 309411) (-3113 . 309076) (-3114 . 309023)
+ (-3115 . 308716) (-3116 . 308270) (-3117 . 308113) (-3118 . 307975)
+ (-3119 . 307913) (-3120 . 307721) (-3121 . 307566) (-3122 . 307421)
+ (-3123 . 307300) (-3124 . 306660) (-3125 . 306608) (-3126 . 306507)
+ (-3127 . 306213) (-3128 . 305794) (-3129 . 305716) (-3130 . 305406)
+ (-3131 . 305316) (-3132 . 305221) (-3133 . 304985) (-3134 . 304693)
+ (-3135 . 304496) (-3136 . 304123) (-3137 . 303236) (-3138 . 302637)
+ (-3139 . 302560) (-3140 . 298553) (-3141 . 298482) (-3142 . 298272)
+ (-3143 . 298148) (-3144 . 298049) (-3145 . 297819) (-3146 . 296633)
+ (-3147 . 296435) (-3148 . 296315) (-3149 . 296232) (-3150 . 295792)
+ (-3151 . 295414) (-3152 . 295176) (-3153 . 294986) (-3154 . 294803)
+ (-3155 . 294001) (-3156 . 292819) (-3157 . 292763) (-3158 . 292453)
+ (-3159 . 292061) (-3160 . 291788) (-3161 . 291737) (-3162 . 291363)
+ (-3163 . 291020) (-3164 . 290644) (-3165 . 290577) (-3166 . 290449)
+ (-3167 . 290171) (-3168 . 287964) (-3169 . 287897) (-3170 . 287751)
+ (-3171 . 287576) (-3172 . 287438) (-3173 . 287107) (-3174 . 287004)
+ (-3175 . 286913) (-3176 . 286861) (-3177 . 286621) (-3178 . 286506)
+ (-3179 . 285163) (-3180 . 285016) (-3181 . 284409) (-3182 . 284314)
+ (-3183 . 284068) (-3184 . 283935) (-3185 . 283769) (-3186 . 283668)
+ (-3187 . 283453) (-3188 . 282889) (-3189 . 282694) (-3190 . 282617)
+ (-3191 . 282446) (-3192 . 282331) (-3193 . 282252) (-3194 . 282137)
+ (-3195 . 281563) (-3196 . 281323) (-3197 . 281143) (-3198 . 280740)
+ (-3199 . 280668) (-3200 . 280618) (-3201 . 280525) (-3202 . 280395)
+ (-3203 . 280289) (-3204 . 280218) (-3205 . 280164) (-3206 . 279931)
+ (-3207 . 279859) (-3208 . 279612) (-3209 . 279320) (-3210 . 279181)
+ (-3211 . 279147) (-3212 . 279090) (-3213 . 278967) (-3214 . 278888)
+ (-3215 . 278758) (-3216 . 277566) (-3217 . 277506) (-3218 . 277447)
+ (-3219 . 277334) (-3220 . 277260) (-3221 . 277053) (-3222 . 276982)
+ (-3223 . 276783) (-3224 . 276717) (-3225 . 276358) (-3226 . 275825)
+ (-3227 . 275729) (-3228 . 275670) (-3229 . 275467) (-3230 . 275206)
+ (-3231 . 275098) (-3232 . 274925) (-3233 . 274845) (-3234 . 274750)
+ (-3235 . 274655) (-3236 . 274476) (-3237 . 274424) (-3238 . 274181)
+ (-3239 . 274023) (-3240 . 273499) (-3241 . 272701) (-3242 . 272405)
+ (-3243 . 272335) (-3244 . 272177) (-3245 . 272090) (-3246 . 271960)
+ (-3247 . 271618) (-3248 . 271551) (-3249 . 271467) (-3250 . 271211)
+ (-3251 . 271158) (-3252 . 270967) (-3253 . 270895) (-3254 . 270529)
+ (-3255 . 270400) (-3256 . 270323) (-3257 . 270076) (-3258 . 269745)
+ (-3259 . 269637) (-3260 . 269439) (-3261 . 269338) (-3262 . 269124)
+ (-3263 . 268918) (-3264 . 268795) (-3265 . 268700) (-3266 . 268254)
+ (-3267 . 268195) (-3268 . 267883) (-3269 . 267633) (-3270 . 267551)
+ (-3271 . 267523) (-3272 . 267370) (-3273 . 267038) (-3274 . 266644)
+ (-3275 . 266465) (-3276 . 265363) (-3277 . 265109) (-3278 . 264954)
+ (-3279 . 264899) (-3280 . 264862) (-3281 . 264606) (-3282 . 264511)
+ (-3283 . 264368) (-3284 . 264336) (-3285 . 263942) (-3286 . 263914)
+ (-3287 . 263683) (-3288 . 263412) (-3289 . 263254) (-3290 . 263198)
+ (-3291 . 263083) (-3292 . 262873) (-3293 . 262650) (-3294 . 262580)
+ (-3295 . 262328) (-3296 . 262161) (-3297 . 261864) (-3298 . 261690)
+ (-3299 . 261500) (-3300 . 261022) (-3301 . 260507) (-3302 . 260470)
+ (-3303 . 260354) (-3304 . 260294) (-3305 . 259734) (-3306 . 259557)
+ (-3307 . 259504) (-3308 . 259309) (-3309 . 259084) (-3310 . 258983)
+ (-3311 . 258863) (-3312 . 258582) (-3313 . 258508) (-3314 . 258228)
+ (-3315 . 258003) (-3316 . 257819) (-3317 . 257687) (-3318 . 257586)
+ (-3319 . 257488) (-3320 . 257336) (-3321 . 257118) (-3322 . 256947)
+ (-3323 . 256828) (-3324 . 256722) (-3325 . 256564) (-3326 . 256376)
+ (-3327 . 256101) (-3328 . 255991) (-3329 . 255863) (-3330 . 255681)
+ (-3331 . 255608) (-3332 . 255390) (-3333 . 255283) (-3334 . 254962)
+ (-3335 . 254880) (-3336 . 254810) (-3337 . 254687) (-3338 . 254583)
+ (-3339 . 254464) (-3340 . 254354) (-3341 . 254302) (-3342 . 254101)
+ (-3343 . 253993) (-3344 . 253860) (-3345 . 253747) (-3346 . 253695)
+ (-3347 . 252992) (-3348 . 252590) (-3349 . 252351) (-3350 . 252281)
+ (-3351 . 252176) (-3352 . 252018) (-3353 . 251713) (-3354 . 251553)
+ (-3355 . 251487) (-3356 . 251379) (-3357 . 251271) (-3358 . 251143)
+ (-3359 . 251037) (-3360 . 251009) (-3361 . 250618) (-3362 . 250051)
+ (-3363 . 250001) (-3364 . 249931) (-3365 . 249897) (-3366 . 249521)
+ (-3367 . 249075) (-3368 . 248856) (-3369 . 248680) (-3370 . 248614)
+ (-3371 . 248452) (-3372 . 248358) (-3373 . 248242) (-3374 . 248083)
+ (-3375 . 247911) (-3376 . 247301) (-3377 . 246907) (-3378 . 246709)
+ (-3379 . 246614) (-3380 . 245698) (-3381 . 245180) (-3382 . 245106)
+ (-3383 . 244994) (-3384 . 244902) (-3385 . 244707) (-3386 . 244679)
+ (-3387 . 244521) (-3388 . 244487) (-3389 . 244404) (-3390 . 244270)
+ (-3391 . 243089) (-3392 . 242247) (-3393 . 242187) (-3394 . 242072)
+ (-3395 . 241940) (-3396 . 241869) (-3397 . 241713) (-3398 . 241631)
+ (-3399 . 241498) (-3400 . 241380) (-3401 . 241352) (-3402 . 237743)
+ (-3403 . 237669) (-3404 . 237574) (-3405 . 237519) (-3406 . 237436)
+ (-3407 . 237275) (-3408 . 237247) (-3409 . 236902) (-3410 . 236159)
+ (-3411 . 236106) (-3412 . 235950) (-3413 . 235759) (-3414 . 235625)
+ (-3415 . 235395) (-3416 . 234682) (-3417 . 230140) (-3418 . 229829)
+ (-3419 . 229690) (-3420 . 229619) (-3421 . 229515) (-3422 . 229340)
+ (-3423 . 229267) (-3424 . 229212) (-3425 . 229106) (-3426 . 228930)
+ (-3427 . 228716) (-3428 . 228616) (-3429 . 228545) (-3430 . 228457)
+ (-3431 . 228348) (-3432 . 228251) (-3433 . 228174) (-3434 . 227310)
+ (-3435 . 227014) (-3436 . 226872) (-3437 . 226793) (-3438 . 226703)
+ (-3439 . 226547) (-3440 . 225913) (-3441 . 225700) (-3442 . 225557)
+ (-3443 . 225399) (-3444 . 225145) (-3445 . 225093) (-3446 . 225038)
+ (-3447 . 224979) (-3448 . 224809) (-3449 . 224668) (-3450 . 224555)
+ (-3451 . 224397) (-3452 . 224179) (-3453 . 224049) (-3454 . 223918)
+ (-3455 . 223804) (-3456 . 223452) (-3457 . 223348) (-3458 . 223269)
+ (-3459 . 223216) (-3460 . 223146) (-3461 . 222983) (-3462 . 222884)
+ (-3463 . 222806) (-3464 . 222620) (-3465 . 222548) (-3466 . 222469)
+ (-3467 . 222370) (-3468 . 222236) (-3469 . 222184) (-3470 . 221004)
+ (-3471 . 220882) (-3472 . 220829) (-3473 . 220635) (-3474 . 220522)
+ (-3475 . 219556) (-3476 . 219484) (-3477 . 219403) (-3478 . 219317)
+ (-3479 . 219286) (-3480 . 217505) (-3481 . 217410) (-3482 . 217324)
+ (-3483 . 217153) (-3484 . 217097) (-3485 . 216721) (-3486 . 216612)
+ (-3487 . 216528) (-3488 . 216417) (-3489 . 216262) (-3490 . 216120)
+ (-3491 . 216060) (-3492 . 215842) (-3493 . 215455) (-3494 . 201368)
+ (-3495 . 201290) (-3496 . 201172) (-3497 . 201140) (-3498 . 201033)
+ (-3499 . 200436) (-3500 . 200188) (-3501 . 200075) (-3502 . 199964)
+ (-3503 . 199883) (-3504 . 199777) (-3505 . 199433) (-3506 . 199330)
+ (-3507 . 199244) (-3508 . 199188) (-3509 . 199001) (-3510 . 198918)
+ (-3511 . 198863) (-3512 . 198502) (-3513 . 198385) (-3514 . 198333)
+ (-3515 . 198165) (-3516 . 198055) (-3517 . 197900) (-3518 . 197848)
+ (-3519 . 197302) (-3520 . 197234) (-3521 . 197136) (-3522 . 197087)
+ (-3523 . 196552) (-3524 . 196500) (-3525 . 196448) (-3526 . 196355)
+ (-3527 . 196211) (-3528 . 196151) (-3529 . 195878) (-3530 . 195749)
+ (-3531 . 195672) (-3532 . 195618) (-3533 . 195516) (-3534 . 195406)
+ (-3535 . 195266) (-3536 . 195171) (-3537 . 194987) (-3538 . 194868)
+ (-3539 . 194794) (-3540 . 194739) (-3541 . 194521) (-3542 . 190854)
+ (-3543 . 190755) (-3544 . 190537) (-3545 . 190287) (-3546 . 189778)
+ (-3547 . 189682) (-3548 . 189517) (-3549 . 189326) (-3550 . 189202)
+ (-3551 . 189030) (-3552 . 188582) (-3553 . 188436) (-3554 . 188317)
+ (-3555 . 188217) (-3556 . 188121) (-3557 . 187946) (-3558 . 187806)
+ (-3559 . 187707) (-3560 . 187585) (-3561 . 187461) (-3562 . 187303)
+ (-3563 . 187235) (-3564 . 187150) (-3565 . 186635) (-3566 . 186488)
+ (-3567 . 186310) (-3568 . 186137) (-3569 . 185821) (-3570 . 185722)
+ (-3571 . 185607) (-3572 . 185488) (-3573 . 184969) (-3574 . 184811)
+ (-3575 . 184782) (-3576 . 184703) (-3577 . 184535) (-3578 . 184275)
+ (-3579 . 184183) (-3580 . 184044) (-3581 . 183984) (-3582 . 183891)
+ (-3583 . 183832) (-3584 . 183762) (-3585 . 183654) (-3586 . 183556)
+ (-3587 . 183220) (-3588 . 183047) (-3589 . 182692) (-3590 . 182576)
+ (-3591 . 182490) (-3592 . 182423) (-3593 . 182250) (-3594 . 182005)
+ (-3595 . 181933) (-3596 . 181867) (-3597 . 181766) (-3598 . 181587)
+ (-3599 . 181483) (-3600 . 181287) (-3601 . 181150) (-3602 . 181119)
+ (-3603 . 181068) (-3604 . 180541) (-3605 . 180328) (-3606 . 180242)
+ (-3607 . 180101) (-3608 . 179960) (-3609 . 179883) (-3610 . 179750)
+ (-3611 . 179637) (-3612 . 179404) (-3613 . 179260) (-3614 . 179138)
+ (-3615 . 179055) (-3616 . 178934) (-3617 . 178702) (-3618 . 178415)
+ (-3619 . 178364) (-3620 . 178105) (-3621 . 178002) (-3622 . 177924)
+ (-3623 . 177858) (-3624 . 177703) (-3625 . 177626) (-3626 . 177465)
+ (-3627 . 177361) (-3628 . 177244) (-3629 . 177115) (-3630 . 176985)
+ (-3631 . 176689) (-3632 . 176573) (-3633 . 176457) (-3634 . 176231)
+ (-3635 . 176050) (-3636 . 175954) (-3637 . 175890) (-3638 . 175809)
+ (-3639 . 175418) (-3640 . 175314) (-3641 . 175089) (-3642 . 174871)
+ (-3643 . 174705) (-3644 . 174494) (-3645 . 174462) (-3646 . 174361)
+ (-3647 . 174281) (-3648 . 174151) (-3649 . 174055) (-3650 . 173950)
+ (-3651 . 173306) (-3652 . 173246) (-3653 . 173143) (-3654 . 173066)
+ (-3655 . 172858) (-3656 . 172784) (-3657 . 172716) (-3658 . 172620)
+ (-3659 . 172567) (-3660 . 172481) (-3661 . 172393) (-3662 . 172270)
+ (-3663 . 172091) (-3664 . 171959) (-3665 . 171835) (-3666 . 171698)
+ (-3667 . 171625) (-3668 . 171509) (-3669 . 171439) (-3670 . 171129)
+ (-3671 . 170999) (-3672 . 170922) (-3673 . 170801) (-3674 . 170662)
+ (-3675 . 170166) (-3676 . 169902) (-3677 . 167788) (-3678 . 167708)
+ (-3679 . 167307) (-3680 . 167255) (-3681 . 167125) (-3682 . 166984)
+ (-3683 . 166885) (-3684 . 166800) (-3685 . 166645) (-3686 . 166490)
+ (-3687 . 165906) (-3688 . 165840) (-3689 . 165589) (-3690 . 164956)
+ (-3691 . 164828) (-3692 . 164576) (-3693 . 164387) (-3694 . 164335)
+ (-3695 . 163948) (-3696 . 163869) (-3697 . 163675) (-3698 . 163501)
+ (-3699 . 163430) (-3700 . 163019) (-3701 . 162571) (-3702 . 162483)
+ (-3703 . 161826) (-3704 . 161709) (-3705 . 161547) (-3706 . 161405)
+ (-3707 . 161310) (-3708 . 161257) (-3709 . 161176) (-3710 . 161120)
+ (-3711 . 161025) (-3712 . 160955) (-3713 . 160869) (-3714 . 160582)
+ (-3715 . 160451) (-3716 . 160327) (-3717 . 160229) (-3718 . 159805)
+ (-3719 . 159648) (-3720 . 159592) (-3721 . 159564) (-3722 . 159416)
+ (-3723 . 159317) (-3724 . 158975) (-3725 . 158880) (-3726 . 158788)
+ (-3727 . 158688) (-3728 . 158585) (-3729 . 158499) (-3730 . 158446)
+ (-3731 . 158220) (-3732 . 158116) (-3733 . 158063) (-3734 . 158006)
+ (-3735 . 157166) (-3736 . 157108) (-3737 . 157036) (-3738 . 156866)
+ (-3739 . 156810) (-3740 . 156678) (-3741 . 156333) (-3742 . 156160)
+ (-3743 . 156055) (-3744 . 155978) (-3745 . 155722) (-3746 . 155653)
+ (-3747 . 155545) (-3748 . 155491) (-3749 . 155361) (-3750 . 155309)
+ (-3751 . 153526) (-3752 . 153440) (-3753 . 153300) (-3754 . 152340)
+ (-3755 . 152238) (-3756 . 152133) (-3757 . 152032) (-3758 . 151855)
+ (-3759 . 151759) (-3760 . 151443) (-3761 . 151347) (-3762 . 150229)
+ (-3763 . 150146) (-3764 . 149979) (-3765 . 149812) (-3766 . 149654)
+ (-3767 . 149560) (-3768 . 149022) (-3769 . 148869) (-3770 . 148768)
+ (-3771 . 148247) (-3772 . 148134) (-3773 . 148051) (-3774 . 147921)
+ (-3775 . 147751) (-3776 . 147505) (-3777 . 147241) (-3778 . 147145)
+ (-3779 . 147006) (-3780 . 146924) (-3781 . 146612) (-3782 . 146403)
+ (-3783 . 146224) (-3784 . 146141) (-3785 . 146075) (-3786 . 145945)
+ (-3787 . 145754) (-3788 . 145651) (-3789 . 145573) (-3790 . 145496)
+ (-3791 . 145446) (-3792 . 145366) (-3793 . 145338) (-3794 . 145255)
+ (-3795 . 145153) (-3796 . 145055) (-3797 . 144977) (-3798 . 144784)
+ (-3799 . 144620) (-3800 . 144568) (-3801 . 144488) (-3802 . 144390)
+ (-3803 . 143983) (-3804 . 143784) (-3805 . 143699) (-3806 . 143394)
+ (-3807 . 143306) (-3808 . 143015) (-3809 . 142874) (-3810 . 142491)
+ (-3811 . 142164) (-3812 . 142109) (-3813 . 139882) (-3814 . 139724)
+ (-3815 . 139606) (-3816 . 139478) (-3817 . 139070) (-3818 . 138943)
+ (-3819 . 138846) (-3820 . 138723) (-3821 . 138653) (-3822 . 138372)
+ (-3823 . 138169) (-3824 . 138135) (-3825 . 137709) (-3826 . 137546)
+ (-3827 . 137365) (-3828 . 136492) (-3829 . 136251) (-3830 . 136060)
+ (-3831 . 135993) (-3832 . 135909) (-3833 . 135848) (-3834 . 135795)
+ (-3835 . 135701) (-3836 . 135564) (-3837 . 135484) (-3838 . 135396)
+ (-3839 . 135202) (-3840 . 135119) (-3841 . 135046) (-3842 . 134987)
+ (-3843 . 134675) (-3844 . 134641) (-3845 . 134559) (-3846 . 134316)
+ (-3847 . 134184) (-3848 . 134098) (-3849 . 134020) (-3850 . 133916)
+ (-3851 . 133860) (-3852 . 133789) (-3853 . 133621) (-3854 . 133463)
+ (-3855 . 132917) (-3856 . 132702) (-3857 . 132557) (-3858 . 132398)
+ (-3859 . 131196) (-3860 . 130816) (-3861 . 130761) (-3862 . 130684)
+ (-3863 . 130610) (-3864 . 130510) (-3865 . 130130) (-3866 . 130042)
+ (-3867 . 129887) (-3868 . 129813) (-3869 . 129700) (-3870 . 129604)
+ (-3871 . 129348) (-3872 . 129114) (-3873 . 128843) (-3874 . 128357)
+ (-3875 . 128276) (-3876 . 128199) (-3877 . 127445) (-3878 . 127332)
+ (-3879 . 127279) (-3880 . 127229) (-3881 . 127060) (-3882 . 126795)
+ (-3883 . 126651) (-3884 . 126595) (-3885 . 126146) (-3886 . 126024)
+ (-3887 . 125819) (-3888 . 125569) (-3889 . 125498) (-3890 . 125360)
+ (-3891 . 125307) (-3892 . 125170) (-3893 . 124953) (-3894 . 124638)
+ (-3895 . 124583) (-3896 . 123435) (-3897 . 123311) (-3898 . 119151)
+ (-3899 . 118958) (-3900 . 118784) (-3901 . 117977) (-3902 . 117921)
+ (-3903 . 117826) (-3904 . 117631) (-3905 . 117535) (-3906 . 117469)
+ (-3907 . 117279) (-3908 . 117198) (-3909 . 117027) (-3910 . 116976)
+ (-3911 . 116858) (-3912 . 116806) (-3913 . 116506) (-3914 . 116426)
+ (-3915 . 115975) (-3916 . 115752) (-3917 . 115570) (-3918 . 115482)
+ (-3919 . 115301) (-3920 . 115143) (-3921 . 114971) (-3922 . 114829)
+ (-3923 . 114758) (-3924 . 114727) (-3925 . 114360) (-3926 . 114180)
+ (-3927 . 114067) (-3928 . 114015) (-3929 . 113944) (-3930 . 113731)
+ (-3931 . 113663) (-3932 . 113592) (-3933 . 113154) (-3934 . 113040)
+ (-3935 . 112941) (-3936 . 112318) (-3937 . 112122) (-3938 . 112070)
+ (-3939 . 111993) (-3940 . 111895) (-3941 . 111867) (-3942 . 111615)
+ (-3943 . 111547) (-3944 . 111404) (-3945 . 111348) (-3946 . 111205)
+ (-3947 . 111074) (-3948 . 110826) (-3949 . 110773) (-3950 . 110720)
+ (-3951 . 110632) (-3952 . 110154) (-3953 . 110003) (-3954 . 109848)
+ (-3955 . 109795) (-3956 . 109735) (-3957 . 109652) (-3958 . 109579)
+ (-3959 . 109490) (-3960 . 109438) (-3961 . 109336) (-3962 . 108975)
+ (-3963 . 108943) (-3964 . 108601) (-3965 . 108390) (-3966 . 108261)
+ (-3967 . 108205) (-3968 . 108132) (-3969 . 108002) (-3970 . 107081)
+ (-3971 . 107052) (-3972 . 106950) (-3973 . 106866) (-3974 . 106814)
+ (-3975 . 106729) (-3976 . 106546) (-3977 . 106518) (-3978 . 106462)
+ (-3979 . 106381) (-3980 . 106329) (-3981 . 106233) (-3982 . 106150)
+ (-3983 . 105970) (-3984 . 105875) (-3985 . 105557) (-3986 . 105478)
+ (-3987 . 105333) (-3988 . 105264) (-3989 . 105056) (-3990 . 104799)
+ (-3991 . 104716) (-3992 . 104616) (-3993 . 104508) (-3994 . 104442)
+ (-3995 . 104375) (-3996 . 104223) (-3997 . 104195) (-3998 . 104088)
+ (-3999 . 103948) (-4000 . 103816) (-4001 . 103614) (-4002 . 103541)
+ (-4003 . 103316) (-4004 . 103284) (-4005 . 103062) (-4006 . 102940)
+ (-4007 . 102845) (-4008 . 102401) (-4009 . 102299) (-4010 . 102209)
+ (-4011 . 102147) (-4012 . 101377) (-4013 . 101261) (-4014 . 100045)
+ (-4015 . 99914) (-4016 . 99863) (-4017 . 99578) (-4018 . 99263)
+ (-4019 . 99025) (-4020 . 98649) (-4021 . 98543) (-4022 . 98448)
+ (-4023 . 98305) (-4024 . 98152) (-4025 . 98072) (-4026 . 97968)
+ (-4027 . 97897) (-4028 . 97367) (-4029 . 97257) (-4030 . 97108)
+ (-4031 . 97049) (-4032 . 96958) (-4033 . 96666) (-4034 . 96379)
+ (-4035 . 96224) (-4036 . 95791) (-4037 . 95703) (-4038 . 95625)
+ (-4039 . 95375) (-4040 . 95296) (-4041 . 95213) (-4042 . 95158)
+ (-4043 . 95106) (-4044 . 95037) (-4045 . 94984) (-4046 . 94777)
+ (-4047 . 94743) (-4048 . 94659) (-4049 . 94519) (-4050 . 94301)
+ (-4051 . 93939) (-4052 . 93572) (-4053 . 93330) (-4054 . 93273)
+ (-4055 . 93221) (-4056 . 92899) (-4057 . 92772) (-4058 . 92656)
+ (-4059 . 92597) (-4060 . 92476) (-4061 . 91942) (-4062 . 91718)
+ (-4063 . 91647) (-4064 . 91489) (-4065 . 91326) (-4066 . 91107)
+ (-4067 . 90405) (-4068 . 90239) (-4069 . 89897) (-4070 . 89765)
+ (-4071 . 89650) (-4072 . 89579) (-4073 . 89486) (-4074 . 89234)
+ (-4075 . 89206) (-4076 . 89081) (-4077 . 86300) (-4078 . 85621)
+ (-4079 . 85506) (-4080 . 85210) (-4081 . 85110) (-4082 . 84911)
+ (-4083 . 84759) (-4084 . 84707) (-4085 . 84679) (-4086 . 84446)
+ (-4087 . 83958) (-4088 . 83886) (-4089 . 83634) (-4090 . 83506)
+ (-4091 . 83414) (-4092 . 82597) (-4093 . 82171) (-4094 . 82011)
+ (-4095 . 81763) (-4096 . 81680) (-4097 . 81517) (-4098 . 81264)
+ (-4099 . 80653) (-4100 . 80404) (-4101 . 61829) (-4102 . 61350)
+ (-4103 . 61264) (-4104 . 61151) (-4105 . 60758) (-4106 . 60706)
+ (-4107 . 60623) (-4108 . 60567) (-4109 . 60510) (-4110 . 60135)
+ (-4111 . 59942) (-4112 . 59835) (-4113 . 59504) (-4114 . 56683)
+ (-4115 . 56321) (-4116 . 56203) (-4117 . 55833) (-4118 . 55736)
+ (-4119 . 55668) (-4120 . 55543) (-4121 . 54458) (-4122 . 54371)
+ (-4123 . 53954) (-4124 . 53902) (-4125 . 53669) (-4126 . 53619)
+ (-4127 . 52959) (-4128 . 52852) (-4129 . 52797) (-4130 . 51535)
+ (-4131 . 51463) (-4132 . 51310) (-4133 . 50886) (-4134 . 50761)
+ (-4135 . 50572) (-4136 . 50520) (-4137 . 50446) (-4138 . 50297)
+ (-4139 . 50217) (-4140 . 50032) (-4141 . 49659) (-4142 . 49606)
+ (-4143 . 49549) (-4144 . 49345) (-4145 . 49001) (-4146 . 48915)
+ (-4147 . 48606) (-4148 . 48461) (-4149 . 48317) (-4150 . 48258)
+ (-4151 . 48134) (-4152 . 47968) (-4153 . 47678) (-4154 . 47592)
+ (-4155 . 47464) (-4156 . 43401) (-4157 . 43082) (-4158 . 43012)
+ (-4159 . 42893) (-4160 . 42809) (-4161 . 42631) (-4162 . 42572)
+ (-4163 . 42374) (-4164 . 41906) (-4165 . 41758) (-4166 . 41705)
+ (-4167 . 41640) (-4168 . 41490) (-4169 . 41231) (-4170 . 40925)
+ (-4171 . 40897) (-4172 . 40762) (-4173 . 40674) (-4174 . 40579)
+ (-4175 . 40463) (-4176 . 40217) (-4177 . 40140) (-4178 . 40019)
+ (-4179 . 39808) (-4180 . 39508) (-4181 . 39406) (-4182 . 39340)
+ (-4183 . 39290) (-4184 . 38514) (-4185 . 38051) (-4186 . 38023)
+ (-4187 . 37752) (-4188 . 37666) (-4189 . 37213) (-4190 . 37115)
+ (-4191 . 37041) (-4192 . 36013) (-4193 . 35930) (-4194 . 35579)
+ (-4195 . 35006) (-4196 . 34909) (-4197 . 34849) (-4198 . 34764)
+ (-4199 . 34707) (-4200 . 34459) (-4201 . 34128) (-4202 . 33976)
+ (-4203 . 33803) (-4204 . 33725) (-4205 . 33607) (-4206 . 33454)
+ (-4207 . 33402) (-4208 . 33307) (-4209 . 33212) (-4210 . 33138)
+ (-4211 . 33028) (-4212 . 32926) (-4213 . 32672) (-4214 . 32598)
+ (-4215 . 32471) (-4216 . 32346) (-4217 . 32221) (-4218 . 32193)
+ (-4219 . 32059) (-4220 . 31905) (-4221 . 31313) (-4222 . 31132)
+ (-4223 . 30975) (-4224 . 30798) (-4225 . 30703) (-4226 . 30638)
+ (-4227 . 30516) (-4228 . 30401) (-4229 . 30308) (-4230 . 29004)
+ (-4231 . 28895) (-4232 . 28752) (-4233 . 28645) (-4234 . 28081)
+ (-4235 . 27953) (-4236 . 27879) (-4237 . 27382) (-4238 . 27190)
+ (-4239 . 26972) (-4240 . 26919) (-4241 . 26863) (-4242 . 26734)
+ (-4243 . 26648) (-4244 . 26514) (-4245 . 26076) (-4246 . 25942)
+ (-4247 . 25615) (-4248 . 25530) (-4249 . 25440) (-4250 . 25357)
+ (-4251 . 25275) (-4252 . 25247) (-4253 . 25027) (-4254 . 24866)
+ (-4255 . 24729) (-4256 . 24591) (-4257 . 24507) (-4258 . 24389)
+ (-4259 . 24334) (-4260 . 24132) (-4261 . 24020) (-4262 . 23960)
+ (-4263 . 23890) (-4264 . 23651) (-4265 . 23535) (-4266 . 23457)
+ (-4267 . 23361) (-4268 . 23223) (-4269 . 23167) (-4270 . 22896)
+ (-4271 . 22785) (-4272 . 22720) (-4273 . 22593) (-4274 . 22538)
+ (-4275 . 22485) (-4276 . 20628) (-4277 . 20558) (-4278 . 20475)
+ (-4279 . 20265) (-4280 . 20044) (-4281 . 19929) (-4282 . 19848)
+ (-4283 . 19713) (-4284 . 19640) (-4285 . 19348) (-4286 . 19248)
+ (-4287 . 19167) (-4288 . 19010) (-4289 . 18957) (-4290 . 18869)
+ (-4291 . 18677) (-4292 . 18141) (-4293 . 17783) (-4294 . 17652)
+ (-4295 . 17232) (-4296 . 16646) (-4297 . 16547) (-4298 . 16494)
+ (-4299 . 16428) (-4300 . 16182) (-4301 . 16127) (-4302 . 16023)
+ (-4303 . 15930) (-4304 . 15853) (-4305 . 15734) (-4306 . 15681)
+ (-4307 . 15523) (-4308 . 15379) (-4309 . 15098) (-4310 . 14925)
+ (-4311 . 14679) (-4312 . 14597) (-4313 . 13301) (-4314 . 13158)
+ (-4315 . 13130) (-4316 . 13053) (-4317 . 12773) (-4318 . 12623)
+ (-4319 . 12421) (-4320 . 12321) (-4321 . 12240) (-4322 . 12143)
+ (-4323 . 11965) (-4324 . 11912) (-4325 . 11786) (-4326 . 11660)
+ (-4327 . 11564) (-4328 . 11314) (-4329 . 11166) (-4330 . 10892)
+ (-4331 . 10820) (-4332 . 10579) (-4333 . 10454) (-4334 . 10402)
+ (-4335 . 10108) (-4336 . 9971) (-4337 . 9823) (-4338 . 9772)
+ (-4339 . 9518) (-4340 . 9338) (-4341 . 9282) (-4342 . 9180)
+ (-4343 . 9148) (-4344 . 8716) (-4345 . 8688) (-4346 . 8517)
+ (-4347 . 8284) (-4348 . 8229) (-4349 . 8104) (-4350 . 7980)
+ (-4351 . 7879) (-4352 . 7801) (-4353 . 7748) (-4354 . 7602)
+ (-4355 . 7450) (-4356 . 7353) (-4357 . 7229) (-4358 . 6552)
+ (-4359 . 6484) (-4360 . 6341) (-4361 . 6284) (-4362 . 6166)
+ (-4363 . 6095) (-4364 . 5997) (-4365 . 4219) (-4366 . 4191)
+ (-4367 . 4066) (-4368 . 4005) (-4369 . 3953) (-4370 . 3835)
+ (-4371 . 3556) (-4372 . 3453) (-4373 . 3387) (-4374 . 3169)
+ (-4375 . 3110) (-4376 . 3022) (-4377 . 2978) (-4378 . 2907)
+ (-4379 . 2257) (-4380 . 2086) (-4381 . 2026) (-4382 . 1827)
+ (-4383 . 1704) (-4384 . 1606) (-4385 . 1494) (-4386 . 1336)
+ (-4387 . 1220) (-4388 . 1105) (-4389 . 917) (-4390 . 719)
+ (-4391 . 575) (-4392 . 348) (-4393 . 282) (-4394 . 226) (-4395 . 143)
+ (-4396 . 30)) \ No newline at end of file